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ABSTRACT

Scale and Boundary Condition Effects on Elastic Moduli of Trabecular Bone
Cong Yu Wang

We study elastic moduli of trabecular bone. Trabecular bone structure is very
complex due to its randomness and spatial heterogeneity. To simplify the analysis one
can choose to represent bone as having an idealized periodic structure. In this thesis we
model bone as having a periodic prismatic structure, either two- or three-dimensional.
More specifically, we are interested in predicting the apparent elastic moduli of such an
idealized model of trabecular bone. If the “region of observation” is smaller than the
Representative Volume Element then the moduli calculated for that region depend on size
of that region and boundary conditions applied computationally or experimentally; these
moduli are referred to as the apparent moduli. In order to investigate the effect of scale
and boundary conditions on elastic moduli we apply displacement, traction, periodic or
mixed boundary conditions. The results calculated using periodic boundary conditions
give effective response while the remaining three boundary conditions give apparent
moduli. The apparent moduli calculated using displacement boundary conditions bound
effective moduli from above while the moduli obtained using traction boundary condition
bound the effective moduli from below. The larger is the size of the “region of
observation,” the closer are the bounds. Since our geometric models of trabecular bone
are effectively orthotropic with symmetry we apply only three loadings: unidirectional,
hydrostatic and shear loadings. We conduct our analysis using a finite element method
(ANSYS). We investigate the effect of mesh size, the mismatch in moduli (elastic

modulus of bone versus bone marrow), the size of “region of observation”, the effects of

iii



bone structures geometries, and boundary conditions on the elastic moduli of the
idealized models of trabecular bone. This research can give guidance in determining the
sufficient size of bone samples used in experiments or computations so the effect of
boundary conditions is minimized. These results are also applicable to other

porous/cellular materials.
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CHAPTER 1
INTRODUCTION

This thesis addresses the modeling of trabecular (also called cancellous) bone,
more specifically the prediction of the elastic moduli of trabecular bone. Bone is a
structural material that supports all tissues in a living body. In this chapter we discuss the
hierarchical structure of bone, the motivation of this research, and the organization of this
thesis.
1.1 Structure of bone

Bone is composed of periosteum, cortical bone, cancellous bone and bone
marrow. The outer surface of most bone is covered by the periosteum, a sheet of fibrous
connective tissue and an inner cellular or cambium layer of undifferentiated cells.
Cortical bone is a dense, solid mass with only microscopic channels. Approximately 80%
of the skeletal mass is cortical bone, which forms the outer wall of all bones and is
largely responsible for the supportive and protective function of the skeleton. The
remaining 20% of the bone mass is cancellous bone, a lattice of plates and rods known as

the trabecula, found in the inner parts of bones.



Cortical Trabecular
Bone Bon

Figure 1. 1 Structure of trabecular bone [ASBMR, 2001] and [Bouyge, 2000]

1.2 Hierarchical modeling of trabecular bone

In order to understand the mechanical properties of bone, it is necessary to
understand the response of bone at many length scales because bone’s structure is
hierarchical. These levels and structures are as follows: (1) the macrostructure: whole
bone; (2) the mesostructure: trabecular and cortical bone; (3) the microstructure:
Haversian systems, osteons, single trabeculae; (4) the sub-microstructure: lamellae; (5)
the nanostructure: fibrillar collagen and embedded minerals; and (6) the sub-
nanostructure: molecular structure of constituent elements, such as mineral, collagen, and
non-collagenous organic proteins. This hierarchically organized structure has an irregular,
yet optimized, arrangement and orientation of the components, resulting in bone’s

heterogeneous and anisotropic structure.



In this thesis, we focus on the trabecular bone at the mesostructure level, and
study its elastic properties. More specifically, we focus on scale and boundary conditions
effects on elastic moduli of trabecular bone.

1.3 Motivation of research

Bone fractures are major problems for osteoporotic patients. Osteoporosis is a disease
in which bones become more porous, more fragile, and are more likely to break. If not
prevented or if left untreated, osteoporosis can progress painlessly until a bone breaks. As
a public health issue, osteoporosis is now considered the main disease for the elders. This
is due to the fact that bone remodeling is affected and the bone formation rate is lower
than the bone resorption rate. This causes low bone mass, which results in changes in
geometric structure, accumulated microdamage, and differences in tissue properties.
Osteoporosis affects trabecular bone more than cortical bone because trabecular bone is
more porous to start with. Thus, much of the research in this area has focused on
trabecular bone.

Secondly, biomaterials are becoming increasingly more important in biomedical
practice. One such application is the use of biomaterials for bone implants. As a result, it
is important to understand the bone structure and its mechanical behavior so that
biomaterials can be correctly designed for orthopedic applications.

Thirdly, it is important to understand scale and boundary conditions effects in
bone because when the sample size is too small the mechanical properties (measured or
calculated) will be influenced by boundary conditions. This is an important issue for
trabecular bone analysis because bone samples need to be small due to spatially varying

porosity. Also, the amount of trabecular bone tissue in bone is limited



Dense, strong bone matrix Porous, damaged bong matrix

Cross section of bone Cross section of bone

Figure 1. 2 Normal bone structure versus osteoporotic bone structure (Najarian,1995)

From an engineering point of view, bone can be considered as a natural composite
material. Thus, the mechanical behavior of bone can be analyzed by the methods of
mechanics of composite materials and micromechanics. The random and complex
structure of trabecular bone can be characterized experimentally using Micro-CT. This
technique can provide us with the details of the trabecular bone structure, the degree of its
anisotropy, and its volume fraction. One can also predict the rate of bone mass loss by
measuring the changes of its bone tissue volume fraction. In addition to analytical
method, Finite Element Method (FEM) has been used extensively to compute mechanical
properties of bone.

The theoretical concepts that will be used in this study will include the Hooke law to
represent elastic stress-strain response of bone, the Hill condition to guarantee that direct
and energy approaches give the same results, and the average stress and strain theorems.

The trabecular bone structure will be represented as an idealized periodic structure. First,



the stiffness and compliance tensors will be found directly by applying uniform
displacement and traction boundary conditions. Secondly, the effective properties of
trabecular bone will be obtained by applying the periodic boundary condition to periodic
models. In this study we will be interested in understanding the size of the Representative
Volume Element (RVE). The RVE theory gives us the window size rule to determine the
effective properties of trabecular bone.

Although bone properties can be measured experimentally, the main drawback of the
experiments on bone is that not enough bone tissue may be available for testing.
Therefore, the modeling of trabecular bone can complement experimental results and can
be used to predict and better understand the mechanical response of trabecular bone.

It is known that the mechanical response of trabecular bone is dependent on a
number of factors: the size of the sample material, the mechanical properties of
constituents, the microstructure geometry of bone, the boundary conditions applied, the
geometry of sample, and the relative amounts of the bone structure. All of the above
factors will be addressed in this thesis. In summary, we will study the elastic moduli of
trabecular bone numerically and focus on the effects of boundary conditions and the size
of the region (scale effects) used for calculations or experiments.

1.4 Thesis organization

This thesis focuses on the modeling of the elastic response of trabecular bone
using two-dimensional (2D) and three-dimensional (3D) geometric models. The analysis
of scale effects is presented, along with the investigation of the effects of boundary
conditions. Numerical modeling using the FEM software package ANSYS 8.1 is used to

obtain the numerical examples to illustrate the topics addressed in this thesis.



The Introduction (present chapter) briefly outlines the motivation for this research

and the hierarchical structure of trabecular bone.

Chapter 2 demonstrates the mechanics background. In this chapter, the concepts
of effective properties, apparent properties, representative volume element, scale effects
and boundary conditions effects are presented.

Chapter 3 outlines the key past research works on different models of trabecular

bone, and the methodologies of the numerical analyses used.

The problem statement of our model with periodic structure is provided in
Chapter 4. First, the discussions in boundary conditions for the two-dimensional elastic
model are given. Then, two unit cells are examined in more detail. Also, the elastic
material inputs and model geometry inputs are described in this chapter.

Chapter 5 shows the results and discussion. To begin with, the procedures of
loading the boundary conditions in ANSYS are discussed. Then, it discusses the
numerical results and their relationships obtained from ANSYS under different loads.
Also, the results of uniform displacement and traction boundary conditions are compared
with those of periodic and mixed boundary conditions. Furthermore, the bone structure-
corner effect and volume fraction are considered. Finally, results from 2D and 3D models
are compared, and the Hill condition, average stress, and average strain are investigated

as well.

The thesis ends with Chapter 6, which provides the conclusions of this work,

contribution to the current knowledge and the suggestions for the future work.



CHAPTER 2
MECHANICS BACKGROUND
2.1 Representative volume element

Composite materials consist of many inclusions (pores, fibers, particles). To account
for all these micro-structural features would require very large computational efforts. To
simplify the analysis, the concept of the representative volume element (RVE) was
introduced (Biot, 1941, Hill, 1963). RVE is a region much smaller than the size of
composite structure but much larger than the size of micro-structural features (diameter
of pore, or of fiber, for example), and it has same properties as a whole composite. The
representative volume element (RVE) plays an important role in the mechanics and
physics of random heterogeneous materials with a view to predicting their effective
properties. The application of a representative volume element was investigated by
Hashin (1964), Huet (1990), Aboudi (1991), Christensen (1991), Drugan and Willis
(1996), and Jiang, Ostoja-Starzewski, and Jasiuk (2001), among others.

In his 1941 paper, M. A. Biot defined a representative volume element (RVE) as
follows: “Consider a small cubic element of soil, its sides being parallel with the
coordinate axes. This element is taken to be large enough compared to the size of the
pores so that it may be treated as homogenous, and at the same time small enough,
compared to the scale of the macroscopic phenomena in which we are interested, so that
it may be considered as infinitestimal in the mathematical treatment.”

In general, the RVE has a sufficient number of phases and it is structurally typical of
the entire composite materjal. More specifically, the RVE represents the properties of the

whole composite, and these properties are not influenced by the values of boundary



conditions (uniform traction and displacement) (Hill, 1963, Aboudi, 1991). Thus,
effective properties can be calculated using RVE which it is much smaller than the
structure to be analyzed.

Another definition of the RVE was proposed by Drugan and Willis (1996): “‘It is the
smallest material volume element of the composite for which the usual spatially constant
(overall modulus) macroscopic constitutive representation is a sufficiently accurate
model to represent mean constitutive response’’. This approach uses the solution of
homogenization, assuming periodicity of an infinite sample.

In summary, the RVE is an element that is small enough compared to the scale of the
macroscopic phenomena and large enough compared to the size of the inclusions (pores,
fibers, particles) so that the overall properties are independent of the external boundary
conditions.

2.2 Average stress, average strain theorems
The strain energy is described as the volume integral of the inner tensor product of

the material stress and strain tensors.

'O'ijgij .

1 _
/4 =-2-Vja,,gy,dV-— 14 @2.1)
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The bar denotes volume average as shown and V is the volume of the representative
volume element.

The average stress and strain are noted by the over bar.
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When applying a displacement at the boundary surface, the boundary condition is

given in the form
u =e-x (2.4)
where 83. is a uniform strain.

Alternatively, the traction is applied at the boundary surface, the boundary

condition is given in the form

t,:O'.Q-I’l. (25)

where 0'3 is a uniform stress.
The average stress theorem states when we apply a traction boundary

conditiont, = o) - n,, where o, is uniform, then the average stress o, in the composite

is equal to the applied stress 0'; ,

ci=0) (2.6)

The superscript ( ° ) indicates “applied”.
Similarly, the average strain theorem states when we apply a displacement boundary

conditionu, =&, -x,, where ¢, is uniform, then the average strain &, is equal to the

/

applied straine ,jo ,

gy =& 2.7)
The average strain theorem is valid for materials that have the perfectly bonded interfaces

(inclusion-matrix) while average stress theorem does not have this requirement.



2.3 Direct & energy approaches

2.3.1 Relations between averages - Direct approach

Consider the homogeneous boundary conditions with uniform 0';. or ey applied on
the surface of an RVE. Then, the average stress and strain are related by Hooke’s law as,
oy =Cheu 2.8)
£y =ST ou (2.9)
where C ;{5 are the effective elastic moduli and S;%, are the effective elastic compliances.
Eqn. (2.8) is used when EU is applied. We evaluate the average stress U—y and use
the average strain theorem (2.7). This allows us to evaluate C;’Z; . Similarly, Eqn. (2.9) is
used when 0';. is applied. The average strain Z‘;is calculated and the average stress is
found by using the average stress theorem (2.6). This gives S;7 .

When the size of the window of observation is smaller than the RVE, the average

stress and strain are related to Hooke’s law as,
oy =CIle, (2.10)
£y =ST o 2.11)
where Cj37 and S5/ are apparent stiffness and compliance, respectively. Following the

same procedure as above, the apparent moduli C37 and Sj37 can be evaluated
2.3.2 Relations between averages - Energy approach

Consider an elastic sample material, when EU or 0',.; are applied on the surface of

an RVE element. When the uniform strain ay is applied, the elastic strain energy is
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Vo ope
W == Clhen (2.12)

where the average strain theorem was used. W is calculated and the C;’,Z can be found.

Similarly, when uniform stress 0';. is applied, the elastic strain energy is

V o € [¢]
W =—oSion (2.13)

using the average stress theorem. W is calculated and S, can be found.

When the size of the window of observation is smaller than the RVE, the Wis

W= %g“c;,gpgk, (2.14)
V o capp
W= oiSioy, (2.15)

Following the same procedure as for the case of an RVE, Cj7 and Sji7 can be found.

The discussion of the average stress, strain theorems, and direct and energy
approaches can be found in (e.g., Aboudi, 1991; and Christensen, 1991).
2.4 Hill’s condition

Consider a two phase composite material subjected to displacement or traction
boundary conditions (2.4) and (2.5)

The strain energy is given by

—jtuds_ It,y LdS(or jay u,dS) = —a,,g,jV (2.16)

!
Since,

——jtuds_ ja £,dV 2.17)
So,
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CiEy =% [o,8,a7 (2.18)
14

Hill’s condition states that the volume averages of the product of stress and strain are
equal to the product of the volume average of stress and the volume average of strain

(Hill, 1963). It is given as,

G.E =05Ej (2.19)

/)

where o; and &, are the stress and strain tensors, respectively and an over bar denotes a

volume average.
2.5 Boundary conditions

From the Hill condition (2.19), we can obtain by integrating by parts
[, —0oum,)-(u,—€4x,)-dS =0 (2.20)
where S is the boundary surface. This equation is satisfied for the following boundary
conditions: displacement, traction, mixed, and periodic boundary conditions, which are
discussed below.

2.5.1 Displacement boundary conditions
Equation (2.20) is satisfied when u; —ny ; =0. If we use the average strain
theorem (2.7), the displacement boundary condition can be written as
U =g ‘X, on S (2.21)
2.5.2 Traction boundary conditions
Equation (2.20) is satisfied when ¢, —oyn ; =0. If we use the average stress
theorem (2.6), the traction boundary condition can be written as

t, = o, -n, on S (2.22)

-12-



2.5.3 Mixed boundary conditions

The mixed boundary conditions are including both traction and displacement
boundary conditions applied along the boundary of the sample material. However, they
can’t be applied at the same time on a given surface. More specifically, traction and
displacement components in the same direction cannot be both specified on the same

boundary. The mixed boundary conditions are written in the following form
(t,-0)n) -5 -x,)=0 (2.23)
2.5.4 Periodic boundary conditions
The periodic boundary condition can also be used to predict the effective
properties of sample material on the RVE. However, it can only be applied to the sample
with the periodic microstructure. They can be written as:
u,(x+L)=u,(x)+ &L, t(x+L)=—t(x) (2.24)
2.6 The hierarchy of bounds
The effective properties are calculated by using the material sample size equal to an
RVE. When the material sample size is smaller than the RVE, it gives the apparent

properties. It has been shown by Huet (1990) that apparent properties under displacement
and traction boundary conditions bound effective properties:

Syt <Cc? < (2.25)
where the subscripts ¢ (traction) and d (displacement) denote the type of applied boundary
condition. The use of the superscript ( 1) designates the inverse of a tensor.

When the window size is getting close to the RVE, the bounds are approaching
the effective properties. Therefore, it means that there are the scale effects. They can be

shown as the complete hierarchy of bounds (Huet, 1990)
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CR <8y, <(87)," <C? <(CP), <(CP); <C” (2.26)
where the subscript 8 is a finite material size and A is a larger finite material size, and
C®and C" denote Reuss and Voigt bounds (Voigt, 1910; Reuss, 1929).

2.7 Scale effects
As has been discussed in section 2.6, there are scale effects and boundary conditions
effects on composite material’s elastic properties when the sample is smaller than the
RVE. This is the subject studied in this thesis.
2.7.1 Mesoscale window
The finite-sized domain is called a window, and the relative size of this window is
described by the parameter:
6=L/d=1 (2.27)
where L is an edge-length, d is diameter of the inclusions within the window, assuming a

square geometry.

2.7.2 Volume fraction

The volume fraction of a phase of a composite is defined as the total volume of
that phase divided by the total volume of the composite. In general, the term volume

fraction will be assigned to be the volume fraction of the inclusion phase
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Vo
= InCiusion 2.28
g (2:28)

composite
2.7.3 Microstructures of the mesoscale window

Generally, there are three choices of microstructures, periodic, random-periodic,
or purely random, for choosing up a mesoscale window to describe the local geometry of
a composite.

1. Periodic structures

A periodic microstructure can be described as a structure with repeating
geometry. In this case, the smallest domain of a composite, representing the repeating
unit, gives all of the morphological characteristics of the composite. Two examples of
unit cells for periodic microstructure, effectively orthotropic and isotropic, can be seen in

Figure 2.1 for a composite with the inclusion microstructures.

(b)

Figure 2. 1 Periodic microstructures with sample unit cells (Jiang, 2000b)

(a) orthotropic, with square array, and (b) isotropic, with triangular array of inclusions
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When a composite has a periodic structure, periodic boundary conditions can be
used on a unit cell to evaluate its effective properties.

Periodic composites can also be used to study scale and boundary conditions
effects and this is the subject of this dissertation research. More specifically, we will be
applying displacement and traction boundary conditions on window sizes consisting of
increasing number of unit cells to study the convergence in apparent moduli to effective
ones. This will give us guidance on the response of random composites.

2. Random-periodic microstructure

The analysis of a random composite is more difficult than the analysis of a
periodic composite. Although most composites as manufactured are indeed not periodic,
a specific microstructure can be taken so that the analysis of the random composite can
follow the methods of periodic analysis. This type of microstructure is called random-
periodic.

A random-periodic composite has a random distribution of inclusions in a unit
cell, but the cell itself is repeated throughout the composite domain. Figure 2.2 shows the

random-periodic composites microstructure.
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Figure 2. 2 Random-periodic composites (Jiang, 2000b)

So, the periodic conditions can be applied to a random-periodic unit cell, and
effective properties of a random-periodic composite can be calculated.

3. Purely random composite microstructure

Comparing with periodic and random-periodic microstructures, a purely random
microstructure has no repeated unit cells and a mesoscale window will have a random
arrangement of inclusions. No periodic boundary conditions can be used for that case.
Many different realizations need to be considered. Also, windows taken from different
sections of the composite may have the different volume fraction and represent different

properties. (See Figure 2.3.)
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Figure 2. 3 Mesoscale windows taken from different locations in a random composite
(Jiang, 2000b)

2.7.4 Scale effects for periodic composites
1. Choice of window

The unit cell size is denoted by J,. Larger windows, which are multiples of the
6, window, are chosen in order to study the effects of scale by increasing the window

size. (Figure 2.4.)
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delta = 8 delta = 28y delta = 38y

Figure 2. 4 6, and larger scales (Jiang, 2000b)

2. Scale effects for periodic composites

The understanding of scale effects for periodic composites can help the
understanding of scale effects for random composites.

There are two bound width parameters introduced in thesis (Jiang, 2000b) to
discuss bounds on effective properties. The first parameter will be called the variational

bound width parameter and is defined:

CPP _ PP

where w" is the variational bound width parameter; (CV) and (C R) are Voigt and Reuss
bounds.

The other parameter is called the constituent bound width parameter and is

defined:
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¢ Czpp __Ctapp
w _—‘C,, o (2.30)

where w° is the constituent bound width parameter; (C ‘) and ( ”’) are the material

parameters of the constituent phases (inclusion and matrix, respectively).
Bounds are influenced by the stiffness mismatch (EZZ”’)’ edge of unit cell, and

even mesh size of models.
Several researchers have focused on scale effects for periodic composites
(Pecullan, Gibiansky, and Torquato, 1999; and Jiang, Ostoja-Starzewski, and Jasiuk,

2001).
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CHAPTER 3

REVIEW of TRABECULAR BONE MODELS

In this thesis we study the elastic moduli of the trabecular bone at the
microstructure level. In this chapter we present a review of the literature on the modeling
approaches and the 2D and 3D geometric models of trabecular bone at this structural
level.

More specifically, this chapter outlines some past research work on the
mechanical properties of trabecular bone. The parameters of bone structure (bone volume
fraction), the inputs for mechanical properties of bone tissue and soft tissue (bone

marrow), the models of bone geometry, and the analysis methodologies are addressed.
3.1 Mechanical properties of trabecular bone

3.1.1 Axial structural properties

Trabecular bone has a porous structure. Often more than half the bone volume is
associated with the pore volume. The theoretical models predicting the elastic moduli and
strength of high porosity materials are generally classified as to whether the pores of the
materials are connected (open cell) or not (closed cell) and as to whether the loads
applied to the cell walls deform them primarily in simple axial loading (tension
compression) or in bending. These classifications are used to represent idealized
mechanical models. An open cell high porosity material has the solid structure made of
struts. A closed cell high porosity material has none of its voids interconnected with each

other. There are four kinds of models for three-dimensional high porosity materials: open
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cell axially loaded models, open cell bending models (Christensen, 1986), closed axially
loaded models, and closed cell bending models (Gibson and Ashby, 1988).

Gibson (1985) proposed to model cancellous bone by a periodic network of cubic
or hexagonal cells. This model was used to estimate compressive behavior of cancellous
bone as a function of mechanical properties of the cell material and dimensions of the cell
(thickness ¢, length /). For cubic cells, the buckling is the dominant form of deformation.

The relations for Young’s moduli were obtained as follows:

4
For open cubic cells, £ oc (ij 3.1
E, \!
. E (tY
For closed cubic cells, — o | - 3.2)
E, \!

where the subscript W stands for bone wall (bone tissue).

At higher loads, the cubic cells began to collapse. The elastic collapse stress o,

and the plastic collapse stress 0';, can be expressed in term of cell wall properties as

follows:
o (1Y o (tY
For open cubic cells, —2 oc (—] —L o (-—] (3.3)
E, \l) o, \I
o (1Y o (tY
For closed cubic cells, —¢ (—J ,—2L o (—) (3.9
E, o, \U

Similar relations are derived for hexagonal cells considering similar deformation
modes and axial deformation. The transverse behavior of hexagonal cells is similar to

cubic cells under axial compression.
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Mech. Properties Open cell Closed cell
£ £\’ !
E, ] l
T £’ (t)
w l l
o r\: !
7 7 l
E, l

Table 3. 1 Mechanical properties of hexagonal cellular material (Gibson, 1985)

These results fit experimental data quite well except for the hexagonal model
loaded in transverse direction. Ashby (1993) used the same type of modeling to formulate
creeping and tensile behavior of cellular materials.

A separate analysis for very low density materials was done by Christensen
(1986) where exact expressions were derived for effective moduli of 3D open cell and
closed cell geometric models in isotropic or transversely isotropic media. The results
were independent of the cell geometry provided that the orientation of the cell walls was
sufficiently random to yield isotropy. The results showed that tensile Young’s moduli of
closed cells material (plates) were higher than open cells (rods) properties. On the other
hand, the compressive Young’s moduli of cellular materials with plate-like walls were
lower than the moduli of materials with rod-like connections. The plane stress

assumption reduced the strut stress-strain relationship to two-dimensions.

E _ 27-5v,)

E  3(1-v )0+ )"

m

(3.5)
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1+5v,
vV =
9+5v,

(3.6)

Where c is the volume fraction of the material, and v, and E, are Poisson’s ratio and

Young’s modulus of the constituent material.

Christensen compared the values to the bounds for the composite spheres model
introduced by Hashin (1962), where for very low density materials the bounds coincide
giving an exact result which was the same as the above elastic constants written in the
form of effective bulk and shear moduli. This result shows that the Christensen
formulation of effective properties of low density foams is independent of the cell
geometry as long as the material behaves such that the cell walls transmit the load
according to the two dimensional form appropriate for the elastic plane stress condition
(Christensen, 1986).

3.1.2 Volume fraction of trabecular bone

Measurement of volume fraction is of primary importance in the evaluation of
trabecular microstructure. Volume fraction can be obtained from three-dimensional
reconstructions of micro-CT images.

Those measurements have been based on Archimedes’ principle or on using
stereological techniques on histological sections. For quantifying the accuracy of this
measurement, one hundred and sixty human trabecular bone specimens which covered a
large range of volume fraction (9.8-39.8%) were studied (Ding, 1999).

Method I is such that all micro-CT data were segmented using individual
thresholds determined by the scanner supplied algorithm while in method II the
individual thresholds were determined based on a calibration of volume fraction to the

Archimedes-based volume fractions.
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Figure 3. 1 Bone volume fractions obtained by Micro-CT (Ding, 1999)

3.1.3 Material properties of trabecular bone

Several references addressed the trabecular tissue material properties. In these
studies a wide range of values was reported, with many studies suggesting that the actual
tissue modulus is much less than generally accepted for cortical bone (16-20 GPa).
Methods reported include traditional tensile and bending tests applied to single trabeculae
or similar sized specimens. Ryan and Williams (1989) used tensile testing experiments on
single trabeculae, and found a trabecular tissue modulus of 0.4-3.6 GPa. Other studies,
using three or four point bending experiments, have resulted in tissue values of 3.81-5.72
GPa (Kuhn et al., 1989). Recently, Rho e al. (1993) determined the Young's tissue
modulus of single trabeculae, using microtensile testing and ultrasonic techniques,
finding a tissue modulus of 10.4-14.8 GPa. An indirect way to determine the tissue
properties uses a numerical or analytical model representing a typical piece of trabecular

bone, in combination with apparent experimental data. These models can also be used to
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determine the stresses and strains in the trabeculae. Williams and Lewis (1982) used a
two-dimensional FE model of a trabecular cross-section in combination with
experimental results. They found a trabecular tissue modulus of 13 GPa. (Van Rietbergen,
B., 1995)
3.2 Trabecular bone models

The simplest way to model trabecular bone is to represent it as a material with a
periodic structure. For example, some geometric models were introduced by Gibson
(1985) and Ashby (Gibson and Ashby, 1988). Because trabecular bone structure varies
spatially and with the type of in-situ loading, four different idealized periodic unit cell
assemblages that take advantage of similar mechanisms of deformation were developed.

1) An equiaxed cubic open model of rod-like structure (Fig. 3.2)

2) A higher density equiaxed cubic cell composed of plates

3) The stress oriented prismatic composed of plates

4) The stress oriented parallel plate structure.

These four different model geometries for trabecular bone are illustrated in

Gibson and Ashby (1988).
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Figure 3. 2 Cubic equiaxed unit cell trabecular bone (Gibson and Ashby, 1988)

$ oy

Beaupre and Hayes (1985) modeled trabecular bone and investigated its linear
elastic constants by using an open cellular idealized geometry containing a body centered
spherical void. They applied uniaxial compressive strain and shear strain. The unit cell, as
shown in Figure 3.3, assumed a porous shape of a spherical void placed in the center of
the cell producing a body centered cubic structure. The numerical results utilized finite

element methods.
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Figure 3. 3 Body centered cubic unit cell (Beaupre and Hayes, 1985)

Hollister et al. (1991) compared the strain energy distribution within two simple periodic
models: one consists of parallelepipedic struts forming cubic cells and a body centered

spherical model. The strain energy distribution within two models had been computed

based on homogenization theory.

el

]
/L
]

Figure 3. 4 Finite element models for strut and spherical void cells (Hollister et al., 1991)
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Werner et al. (1996) introduced orthotropy in an idealized periodic model of
trabecular bone and developed a more complex cell unit. They were able to vary
trabecular length, thickness and length of trabecular connection to be close to real bone
geometric features. They also introduced a degree of deviation from a perfectly
rectangular lattice by removing trabecular units so they could model bone loss. They
found that compressive Young’s modulus and shear modulus are proportional to bone

volume fraction to the 1.2th and 1.5th power respectively.

Figure 3. 5 Finite element model of trabecular structure (Werner et. al., 1996)

Guo et al. (1994) studied the compressive fatigue of trabecular bone modeled by a
2-D hexagonal honeycomb structure. Silva et al. (1997) quantified the influence of
defects on both periodic and non periodic 2-D honeycomb microstructure. They used
Voronoi structures and showed that results are close to periodic arrangements of cell
walls in low-density honeycombs. Silva et al.(1997) also showed that the variability in
the arrangement of cell walls creates a small amount of variability in the elastic constants
of honeycombs, but that overall the relationship between the microstructure and the

elastic properties for isotropic and anisotropic non-periodic honeycombs are no different
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from periodic honeycombs. This result lends some evidence in utilizing periodic unit

cells in modeling the random geometry of trabecular bone.

a. Honeycomb Structure b.Unit Cell

Figure 3. 6 2-D honeycomb microstructure of trabecular bone

Analytical model was also developed to investigate the strength asymmetry
observed in trabecular bone. This has been observed experimentally in trabecular bone
(Keaveny, et al, 1994; Stone et al, 1983; and Kaplan et al, 1985). The geometry
formulations included a two dimensional honeycomb (Figure 3.6a) and a three
dimensional tetrahedral open cell foam (Figure 3.6b). The models were loaded under a
remote uniaxial stress and the unit cells were aligned with the direction of loading (Ford

and Gibson, 1998).
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(@) (b)

Figure 3. 7 Two-dimensional honeycomb and three-dimensional tetrahedral elements
used to model asymmetric trabecular bone (Ford and Gibson, 1998)

Periodic models have also been used to model the osteoporotic bone density loss.
The effects of this bone loss have been implemented as either uniform thinning of
trabecular struts or reduction in trabecular connections. A three dimensional array of
tetrakaidecahedral cells composed of elastic material was used to model the effect of
osteoporosis on the elastic modulus. The importance of trabecular bone microstructure
was underscored by the large reduction in modulus produced with a removal of a small

number of trabeculae (Guo and Kim, 1999).
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Figure 3. 8 Tetrakaidecahedral unit cell (Guo and Kim, 1999)

Adachi et. al. (1998) studied bone as a lattice continuum which was modeled as a
continuum consisting of rigidly interconnected elastic rod / beam elements and they used
the couple stress theory to represent elastic constants. They considered a two-dimensional

orthogonal lattice with unit cell thickness as shown in Fig. 3.9(a), where the coordinate

axes X; were chosen to be parallel to the principal axes of the lattice.
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(a) Macroscopic stress. (b) Unit cross.

Figure 3. 9 Lattice continuum model (Adachi et. al., 1998)
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Bouyge et al. (2001) used a 2D model to replace the periodic cellular structure
with triangular arrangement of pores by a higher order continuum (couple stress theory).

They used a periodic unit cell as a rhombus shaped domain of edge length L. and volume
V=bL 2\/% . The rhombus’ height in the x, direction is H=2h=L \[232‘- , and its thickness is

b. This geometry gives a composite material which is effectively isotropic.

ey

Figure 3. 10 Periodic unit cell with the inclusion(s) at the corner and the center
(Bouyge et. al., 2001)

Mathematical models are very useful tools for predicting of material properties

and they need to be compared with the experimental results. Through reviewing the
models in literatures described above, we found that the overall behavior depends on
three parameters: the type of cell structure; the volume fraction of solids; and the
properties of the cell wall material. In this thesis we focus on the additional factors: scale
and boundary conditions effects on elastic properties of trabecular bone. We use a two-
dimensional finite element model of an idealized trabecular bone. More specifically, the
trabecular bone is modeled as a two-dimensional periodic structure, square shaped with

thickness, consisting of hard tissue (bone) and soft tissue (bone marrow). The
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understanding of scale and boundary conditions effects is important in computational and

experimental studies of bone’s mechanical response.
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CHAPTER 4

PERIODIC FEM MODEL

4.1 Periodic model

4.1.1 Finite element model

In this chapter we use a computational approach to predict material properties of
trabecular bone. Trabecular bone is generally characterized as a cellular solid, consisting
of an interconnected network of rods and plates. The overall behavior depends on three
parameters: the type of cell structure (open- or closed-celled); the volume fraction of
solid phase; and the properties of the cell wall material. Trabecular bone is usually
represented as an open-celled material, since it has a very low relative density (the
volume fraction of bone tissue). Thus, the open-celled regular network is chosen as the

unit cell in this thesis.

Figure 4. 1 Two-dimensional finite element model of trabecular bone
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In this thesis we represent trabecular bone as having idealized 2D or 3D periodic
structures, square shaped with thickness in 2D or cubic in 3D, consisting of hard tissue
(bone) and soft tissue (bone marrow) (Fig. 4.1).

Two choices of unit cells are studied for this model (Fig. 4.2 and Fig. 4.3). Three
volume fractions are examined: 10%, 15%, and 20%. These volume fractions were
chosen from the ranges of trabecular bone obtained by the micro-CT measurements
(10~40%) (Ding et al, 1999). The geometric parameters are the length of sample material
(L), the thickness of sample material (), and the thickness of bone strut (/) as shown in
Figure 4.4. The material region window sizes are also shown in Figure 4.1. The finite
element method is implemented using ANSYS 8.1 software.

1. Unit Cell 1

v
f—

Figure 4. 2 Unit Cell 1

Unit Cell 1 involves the structure of bone sample which has stiff phase in the
center of unit cell. (Fig. 4.2)

2. Unit Cell 2
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Figure 4. 3 Unit Cell 2

The alternate choice of unit cell is shown in Fig. 4.3, in which stiff (bone) phase is
on outer edges of unit cell.
4.1.2 Elastic material inputs

In our analysis we model trabecular bone as a two phase material consisting of
bone tissue (hard phase) forming a trabecular network and soft tissue, which we refer to
as bone marrow (soft phase) present in pores. We assume that both phases are linear
elastic and isotropic. Bone tissue is assigned a Young’s modulus of 13.0 GPa and
Poisson’s ratio of 0.3 while the Young’s modulus of bone marrow is given a range from
1.3 Pa to 13.0 GPa with same Poisson’s ratio of 0.3. The Young’s modulus was chosen
from a variety of values given in literature. However, since the problem is linear elastic, it
is scalable so the actual value is of no importance.
4.1.3 Model geometry inputs

We give every unit cell size 5 x 5 x 0.1 to dimension of sample material (L x L x

1), the thickness of bone strut (/) is 0.528 according to volume fraction (20%). When
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considering mesh sizes, we always take it as %, 1/3, and % of the thickness of bone strut

(1), namely 0.132, 0.176, and 0.264.

X

e

v
—_

Figure 4. 4 Unit cell and its geometric parameters

4.2 Boundary conditions

The evaluation of elastic moduli of composite materials involves a solution of a
boundary value problem. When the window size of region used for calculations or
experiment is smaller than RVE, then the elastic moduli are dependent on boundary
conditions, uniform strain or uniform stress, which give upper or lower bounds,
respectively; such moduli are ‘called the apparent moduli. On the contrary, when the
sample material window size is of the RVE, it gives the effective properties. Periodic

boundary conditions give the effective properties. In order to determine the components

of either the stiffness matrix C,, , or the compliance matrix S, for our geometric models,

three types of loads: uniaxial extension/tension, biaxial tension/tension, and simple shear,

are applied. We apply displacement, traction and mixed boundary conditions to study
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scale effects. In addition, periodic boundary conditions are also studied here so that the
effective properties of trabecular bone can be obtained.

4.2.1 Displacement boundary conditions

Applying the displacement boundary conditions, the stiffness tensor (C;7¥) can be
directly calculated, which gives the upper bound on effective moduli. The stiffness tensor
(C;,f," ) is denoted as (C;,Z” ), with the subscript (d) indicating the applied displacement
boundary condition. For the 2D orthotropic model that we consider we need to evaluate
Ciii=Crp» C1p=Chyy1»and Cpy,=C, )y
1) Uniaxial extension

When a uniform &/, is applied on the sample material boundary, the displacement

boundary condition can be written as

u(x) = & X1; u(x) =0; on S 4.1)
_ A0
9) U = &%
A u2 = O
u, =0 u =g’ L
] 1 1
U, = u, =0
> 1
.0
Uy = &%
u, =
cell
which gives C,,,, = when g/} =1.
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2) Biaxial extension
When the uniform straing|} =&;, are applied on the sample material boundaries, the

displacement boundary condition can be written as

—_ [ N —_ .
w(x) = &) Xy; w(X) = €5, X; 4.2)
0
U = &yx
A 0
2 U, =&,L
u = =g\ L
1 U =&y
— 0 0
Uy =EpX, Uy =EpX,
> ]
0
U =&,x
u, =
) . 2W{:e11 v 0
which gives C,,, =—7——le when g, =¢5,= 1.

Note that the C,,,, test must be done first to calculate C, ,, .
3) Simple shear strain
When a uniform strain &, is applied on the sample material boundary, the

displacement boundary condition can be written as

ui(x) = &) Xz; w(x) = g5X1; (4.3)
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U =8,
2 U, =X
R 2 T EnX
------------- i
= '
) 1]
i i
) )
1] 1
1 1
1] 1]
0 | ' 0
Uy =e&px, + P U = ERX,
) i
_ k 0
U, = : =61
] '
! !
!
1 R
, I P
----- >
U, =
0
U, = &yX
cell
when g, =1.

which gives C,,,, =

4.2.2 Traction boundary conditions
Applying the traction boundary conditions, we can directly obtain the compliance

tensor (S,;7"), . Then inverting (S;77), , the stiffness tensor (C;"), , which gives the lower
bound on the effective mechanical properties, can then be found. The stiffness tensor
);! with the subscript (t) indicating the applied traction

(C;7), also equals to (S,

boundary condition. For the orthotropic model that we consider we need to evaluate

Sin=Spnn> Sun=Su,and Si212= S99 -

1) Uniaxial tension
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When a uniform stress oy, is applied on the sample material boundary, the

traction boundary condition can be written as

ti(x) = o jn;;  Hx)=0;

4.4
2 A =
t, =0
L= 0'101”‘1 L= 0'101”1
t, =0 t, =0
> 1
t,=0
t, =0

cell

which gives §,,,, = when o= 1.

2) Biaxial tension

When the uniform stress o)} = o3, are applied on the sample material boundaries,

the traction boundary condition can be written as

t(x) = o BX) = oym; 4.5
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t, =0

2
A =ag°
[, =0,n,
0 0
L =o,n I, =o.n
t,=0 t,=0
> 1
t,=0
0
l, =0y,n,
2chll
which giVCS S1122 =T"‘Snn when 0-101 = 0;2 =1

Note that the S;;,, test must be done first to calculate S, ,,, .

3) Simple shear traction

When a uniform stress oy, is applied on the sample material boundary, the

traction boundary condition can be written as

ti(x)=opn,; LX) =o5n;; (4.6)
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cell

when oy, =0, =1.

which gives S,,,, =

4.2.3 Periodic boundary conditions
To predict the effective properties of trabecular bone, the periodic boundary

conditions are used. The use of periodic boundary conditions eliminates surface effects

from computations. Uniaxial extension, biaxial extension, and simple shear involving

periodic deformations are used in to predict the effective properties of idealized models

of trabecular bone.

1) Uniaxial extension
When a uniform strain g} is applied on the sample material boundary, the

periodic boundary conditions can be written as
mx+L)=wu(x)+e\le  f(x+L)=-t(x); 4.7)
uz(l"'.L.) = uz(zc_) t2(2£+.L) =t2(2€); (4.8)
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w(x+L)=u(x)+&x,
p wGa+D=u)

u(x+L)=u(x)+e)L w(x+L)=u(x)+e&\L
Uy (x+ L) =u,(x) uy(x+ L) =u,(x)
|

w(x+ L) = (x) +&),x,
uy(x + L) = u,(x)

which gives C{7}, =2U°*"/ V when ¢{,=1; where e, is the unit vector and L is the length
of the unit cell.

2) Biaxial extension

The periodic boundary conditions withe);=¢;, can be written as

w@x+L)=u(x)+e)Le ; 1,(x+L)=-1(x) (4.9)

uy(x+L)=u,()+&pLey 5 1(x+L)=~1,(x) (4.10)
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w(x+L)=u(x)+&,L

w(x+ L) =1, (x) + &5,

2W cell

which gives CZ, = —" Cf, when &, =g3,= 1; where ¢;is the unit vector and L is

the length of the unit cell.

3) Simple shear

u(x+L)=u(x)+ 8101x1

Uy(x+ L) =u,(x)+ ngL

w(x+L)=u(x)+&)L

U, (E + L) =Uu, (E) + 332x2

|

w(x+L)=u(x)+ex,

wy(x+ L) = uy(x) + &5, L

When a uniform strain g/, is applied on the sample material boundary, the periodic

boundary conditions can be written as

u(x+L)=u(x)+eple,; Hx+L)=-(x) (4.11)

Uy (x+ L) = u,(x) + & Le;; L(x+L)=—-1,(x) (4.12)
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u(x+ L) = u(x) + e)yx,

2 uz(.-"l'*'L.) = u2(£)+8§1L
A
w(x+L)=u(x)+epL w(x+L)=u(x)+é&,L
u(x+L) =u2()_c)+€§1x2 u(x+1L)= “2(22)'*“9;)1’52

|
u (x+ L) = u(x) + £%%,

u(x+L)=u,(x)+ 8§1L

cell

which gives CZ, = 5 when &, =1; where e, is the unit vector and L is the length

of the unit cell.
4.2.4 Mixed boundary conditions

Mixed boundary conditions are including both traction and displacement
boundary conditions applied along the outer boundaries of the sample material in Eqn.
(2.23). The mixed boundary condition is very important because it is the loading used in
experiments to obtain Young’s modulus of the bone samples.

1) Mixed uniaxial extension
When a uniform strain g/ is only applied on the sample’s boundary n, face with
shear traction o, = 0, the mixed boundary conditions can be written as

= . 0
u=g;x,;6,#0

i

-47 -



i=1 u =g,x +&,%, U =%, (4.13)

i=2 u,=6,%+&px,>u,=0 (4.14)
t,=o,n;; 00, =0; o, =0y,

i=1 t=o,n+o,n =>t =0 (4.15)
i=2 t=0o,n+0,n =1 =0 (4.16)

5 u, =0

* t,=0

=0 0
U u =é&,L
> 1
u, =0
t, =0

which give CZ,=2U" / V when &/, =1.
2) Mixed biaxial extension

When the uniform straine/; =¢;, are applied on the n,and n, faces with shear
tractiono, = 0, the mixed boundary conditions can be written as
u =g, x; t,=0,n=0 onn; face (4.17)

W=&y, X5 1 =00, =0 onm face  (4.18)
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u =g L

t, =0

v
|

chll
eff 0 — 0 o
—C7, when g =¢),=1

which gives C7, =

3) Simple shear
When a uniform strain g/, is only applied with shear tractions, the mixed boundary

conditions can be written as
— 0 . —_ —
Uy =¢gnX,; 4, =0,n, =0 onn; face (4.19)
=&y X, L =0, =0 onn; face  (4.20)
0
U, =&)X
2 A tl =0
----------- i
_______ '
= L
) ]
] ]
1) ]
1 [
1] ]
' H
0 [ ' — a0
Uy =&,Xx, 4 PooUp = EpX,
] 1]
t,=0 : Do, =0
I' II
1 )
[}
; -
: -
- >
0
Uy = &%
1, =0
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cell

which gives CZ, = 5 when &), =1.

The three boundary condition tests give a system of three simultaneous equations

with the unknowns being C,,,, C,»,, and C,,, and the average stress o, average

strains (E ;) and elastic strain energy (W) calculated by the finite element method.
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CHAPTER §

RESULTS

In this dissertation, we study elastic moduli of trabecular bone computationally,
focusing on effects of scale and boundary conditions on elastic moduli. In this chapter,
FEM, the finite element software package ANSYS Version 8.1, was used to determine
the effective and apparent elastic moduli of trabecular bone. Two unit cells were studied
under different boundary conditions. The effects of mesh size, the ratio of bone tissue and
soft tissue (bone marrow), the sample window size, the sharp corners versus rounded
corners of bone structure, bone volume fractions, and the boundary conditions are
discussed. Hill’s condition, average stress, and average strain are also investigated. The
comparisons of 2D and 3D models are also presented in this chapter.

Several geometric models studied in this thesis are as follows. (Bf stands for bone

volume fraction in Fig. 5.1)
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Bf40% Bf20%

M1 M4

-
.

M2 M

M3 M6

Figure 5. 1 Models of higher and lower bone volume fractions
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5.1 Effects of mesh size

In this section, the effects of mesh sizes on properties of trabecular bone are
investigated. To solve the elastic moduli of trabecular bone with FEM efficiently, the
optimum mesh size for our calculations is our first concern. As a result, the same and
different mesh sizes for bone tissue and bone marrow (soft tissue) are investigated, and
the effects of different loads with varying of mesh sizes are discussed as well. Finally, the
conclusions and recommendations about the mesh sizes are given.
5.1.1 Same mesh size used for bone and bone marrow

1. Uniaxial tension (&, applied)

Wetake E,/E = 10° where E; and E,, are Young’s moduli of bone tissue and

bone marrow, respectively.

Mesh Size

Ratio of

. AW (%)
of Bone/Bone Elast.m W W,/
Bone/Bone Marrow No. of Strain ©
Marrow Mesh Size Elements | Energy (W) W _)*100
0.044/0.044 1 12960 22.5 0
0.066/0.066 1 5776 22.5 0
0.088/0.088 1 4128 22.5 0
0.132/0.132 1 1722 225 0
0.176/0.176 1 1018 225 0
0.264/0.264 1 486 22.4 0.4
0.528/0.528 1 150 22.3 0.9

Note: W _ is the elastic strain energy obtained using cruder mesh size; W , is the
elastic strain energy obtained using the finest mesh size.

Table 5. 1 Uniaxial tension results using same mesh sizes for bone tissue and soft tissue

(bone marrow).

2. Uniaxial extension (&), applied)

Results are given for E,/E, = 10°.
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Mesh Size Ratio of . AW (%)
of Bone/Bone Elas’gc W.-W ./
Bone/Bone | Marrow No. of Strain « 7
Marrow Mesh Size Elements Energy(W) | W. )*100
0.044/0.044 1 12960 7.21x107 0
0.066/0.066 1 5776 7.21%x107 0
0.088/0.088 1 4128 7.21x107 0
0.132/0.132 1 1722 7.23%x107* 0.28
0.176/0.176 1 1018 7.24x107 0.42
0.264/0.264 1 486 7.26x107 0.69
0.528/0.528 1 150 7.36x1072 2.08

When the mesh size is varied from cruder (0.528) to finer (0.044), the elastic

marrow

1. Uniaxial tension (o7, applied)

Results are given for E,/E, = 10°.
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Table 5. 2 Uniaxial extension results using same mesh sizes for bone tissue and bone

strain energy error (AW ) reduces from 0.9 to 0% for Uniaxial Tension Case and from 2.1
to 0% same trend in Uniaxial Extension Case. Note that the results do not change after
certain mesh size, 0.176 for Uniaxial Tension Case and 0.088 for Uniaxial Extension
Case while the results for larger mesh sizes are still very close (within 2%) of those
obtained using the finest mesh size (0.044/0.044). Recall that the length of the side of the

unit cell is 5 so the finest mesh corresponds to 114 elements along the width of the unit

5.1.2 Fixed mesh size for bone tissue with varied mesh size for bone marrow




. Ratio of ) AW (%)
Mesh Size of | Bone/Bone Elastic W.-W,/
Bone/Bone Marrow No. of Strain o/
Marrow Mesh Size | Elements | Energy(W) | W. )*100
0.264/0.044 6 11338 22.5 0
0.264/0.066 4 5176 22.5 0
0.264/0.088 3 3128 22.5 0
0.264/0.132 2 1382 22.5 0
0.264/0.264 1 486 22.4 0.4
0.264/0.4472 0.5903 268 22.3 0.9
0.264/1.118 0.2361 100 21.8 3.1
0.264/2.236 0.1181 40 20.2 10.2

Table 5. 3 Uniaxial tension results using fixed bone tissue mesh size

2. Uniaxial extension (&, applied)

Results are given for E,/E = 10°.

' Ratio of ) AW (%)
Mesh Size of | Bone/Bone Elastic W.-W ./
Bone/Bone Marrow No. of Strain ¢« 7/
Marrow Mesh Size | Elements | Energy(W) W, )*100
0.264/0.044 6 11338 7.22x107 0.14
0.264/0.066 4 5176 7.23x1072 0.28
0.264/0.088 3 3128 7.23%107 0.28
0.264/0.132 2 1382 7.25x107 0.55
0.264/0.264 1 486 7.26x1072 0.69
0.264/0.4472 0.5903 268 7.30x107 1.25
0.264/1.118 0.2361 100 7.56x107 4.85
0.264/2.236 0.1181 40 7.92x107 9.85

Table 5. 4 Uniaxial extension results for fixed bone mesh size

When we change the mesh size of bone marrow from 2.236 to 0.044, the elastic
strain energy errors are decreased. The results do not change much when we use mesh

size 0.264 or finer (error is less than 1%). The elastic strain energy error is calculated by
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comparing present results with those obtained using the finest mesh size (0.044/0.044).
This approach is followed in this section.

5.1.3 One mesh size for bone marrow with varied mesh size for bone tissue

1. Uniaxial tension (o, applied)

Results are given for E,/E = 10°.

Mesh Size Ratio of AW (%)
of Bone/Bone Elastic W W,/
Bone/Bone | Marrow No. of Strain ¢ 7/
Marrow | Mesh Sizes | Elements | Energy(W) W ,)*100
0.088/1.118 0.0787 876 21.8 3.2
0.132/1.118 0.1181 414 21.8 3.2
0.176/1.118 0.1574 190 21.8 3.2
0.264/1.118 0.2361 100 21.8 3.2
0.528/1.118 0.4723 42 21.8 3.2

Table 5. 5 Uniaxial tension results for fixed bone marrow mesh size

2. Uniaxial extension (&, applied)

Results are given for E,/E = 10°.

Mesh Size Ratio of . AW (%)
of Bone/Bone Elastic W.-W,/
Bone/Bone | Marrow No. of Strain ¢t
Marrow Mesh Sizes | Elements | Energy(W) W, )*100
0.088/1.118 0.0787 876 7.52x1072 4.29
0.132/1.118 0.1181 414 7.52x107 4.29
0.176/1.118 0.1574 190 7.53%x107* 4.43
0.264/1.118 0.2361 100 7.56x107 4.85
0.528/1.118 0.4723 42 7.64x1072 5.96

Table 5. 6 Uniaxial extension results for fixed bone marrow mesh size

The elastic strain energy error almost doesn’t change even though the mesh sizes
of bone are changed from 0.088 to 0.528 because bone marrow is the majority of sample.

5.1.4 Effects of mesh sizes versus different applied loads

-56-



Results are given for E,/E, = 10°.

Mesh
Size of Simple
Sample | No.of | Uniaxial Biaxial Biaxial Shear
Material | Element | Tension Uniaxial Extension Tension Extension Traction Simple Shear Strain

W | AW i AW | W | AW i AW | W | AW W AW

-2
0.044 12060 | 225 | o | 721x10 0

-2 -3
0066 | 5776 |225]| o |721x10 0 [323] 0 |o0150| o |372] o |360x10 0

-2
0.088 4128 | 2251 o | 72110 0

-2 -3
0.132 1722 | 225 | o |723x10 028 [323] 0 Jois0| o |372] o |365%x10 1.4

-2
0.176 1018 | 225| o | 724x10 042

-2 -3
0.264 486 | 224 1 04 | 726x10 069 3191120152 | 1.3 | 371 | 03 | 39x10 8.3

-2
0.528 150 | 223 | 09 | 736x10 2.08

Table 5. 7 Effects of mesh size under different loads (mesh sizes of bone tissue and bone
marrow are taken as equal)

Note that the displacement boundary conditions are more sensitive to the changes of
mesh size as shown in Table 5.7.
5.1.5 Discussion

After reviewing the effects of mesh sizes, the conclusions are given as follows.

1. Results obtained using same mesh size used for bone tissue and bone marrow
converge faster than corresponding cases with different mesh sizes for bone tissue
and bone marrow.

2. Elastic strain energy is more sensitive to the change of mesh size of bone marrow.
On the contrary, the elastic strain energy does not change when mesh size of bone

tissue is varied.
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3. Energy change as a function of different mesh sizes has the same trend under
different boundary conditions. However, it is more sensitive under displacement
boundary conditions, especially in simple shear strain.

4. The optimum mesh for our calculations is chosen as 0.264/0.264 due to its
accuracy with less elements.

5.2 Effects of ratio of moduli of bone and bone marrow

In this thesis, the bone and bone marrow follow classical elasticity (linear elastic,

isotropic) and they have Young’s moduli E, and E ,,, Poisson’s ratiov, =v,, =0.3. We
set E,= 13GPa and vary E , = 1.3E-09 ~13GPa to model a range of materials with stiff

bone and varying properties of bone marrow. The effects of the moduli ratio E ,/ E, are

studied to determine how the elastic properties of trabecular bone are changing by
varying the Young’s modulus of bone marrow. To conduct this parametric study we

apply displacement and traction boundary conditions.

5.2.1 Displacement boundary conditions (83 applied)

Eb/Em C;1111 Cla;22 C10(212
10" 1.53x10° 50 78
10° 1.53x10° 50 78
10° 1.53x10° 50 78
10* 1.53x10° 50 78.6
102 1.67x10° | 1.00x10% | 1.43x10?
10 2.96x10° | 5.40x10% | 6.98x10?

5 4.34x10° | 1.03x10% | 1.27x10°

1 1.43%x10* | 430%x10° | 5.00x10°
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-4~ Uniaxial Extension (C1111) |4
~%  Biaxial Extension {C1122)
—-Shear Extension (C1212)

C. MPa

10 1 1 L
10 10 10* 10° 10° 10"
Ratio:of Moduli-of Bone/Bone Marrow

Figure 5. 2 Displacement boundary conditions results as functions of E ,/E "

For displacement boundary conditions the elastic moduli results asymptote very

quickly to those with lower mismatches and they are independent after the ratio of E ,/E m
=10 (Fig. 5.2).

5.2.2 Traction boundary conditions (0'3. applied)

Eb/Em C;Hl C’lt122 C;212
10% 2.42x107° | 6.75x107 | 1.35%x10°¢
108 2.42x107™ | 6.75x107° [ 1.35%x10™*
10° 242x107% | 6.75%107° | 1.35%x1072
10* 2.42 0.675 1.35
102 2.36x10? 66.2 1.04x10?
10 2.05x10° | 5.72x10% | 6.17x10?
5 3.75x10° | 1.06x10° | 1.20x10°
1 1.43%x10* | 4.29x10° | 5.00x10°

Table 5. 9 Traction boundary conditions results as functions of E,/E ,

-59-




10 ' . . T
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Ratio of Moduli of Bone/Bone Matrow

Figure 5. 3 Traction boundary conditions results as functions of E,/E ,

The moduli under traction boundary condition are dependent on the changes of
the ratio of Young’s moduli of bone tissue and marrow in the linear way (Fig. 5.3).
5.3 Effects of sample window size

As it has been described in Section 4.1.1, a periodic model of trabecular bone can
be represented by repeating unit cells (Figure 4.1) and each unit cell (unit cell 1 or 2) is
the smallest part that contains same material properties and geometry (isotropic, linear) as
the whole system. In this section we are exploring how the apparent moduli, obtained
using displacement, traction or mixed boundary conditions, change when we increase a
window size. Since we will be dealing with a periodic structure we will compare these
results with effective properties obtained using periodic boundary conditions. This study
should help us in understanding a response of random composites and give us guidance

on the size of RVE for such materials.
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35,

Figure 5. 4 6, and larger scales of trabecular bone

5.3.1 C{,,, under displacement boundary conditions (&) applied)

No. of &, 1 2 3 4 6
Eb/Em Cldlll C;1111 Cldlll Cf’lll Cflll
10" 1.53x10° | 1.52x10° | 1.50x10° 1.49x10°
10® 1.53x10° | 1.52x10° | 1.50x10° 1.49x10°
10° 1.53x10° | 1.52x10° | 1.50x10° 1.49x10°
10* 1.53x10° | 1.52x10*® | 1.50x10° 1.50%x10°
10? 1.67x10° | 1.66x10° | 1.64x10° 1.64x10°
10 2.96x10° | 2.94x10° | 2.92x10° 2.92x10°
5 434x10° | 4.32x10° | 4.30x10° 4,30x10°
1 1.43x10* | 1.43x10* | 1.43x10° 1.43x10*
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5.3.2 C},,, under traction boundary conditions ( &, applied)

No. of &,

1 2 3 4 6
Eb/Em Cilll Cilll Cilll Cilll Cilll
10" 2.45x107° | 4.86x10° | 7.26x10°° 1.47x107°
10® 245x10™ | 4.86x10™ | 7.26x107 1.47x107
10° 2.45x107° | 4.86x107 | 7.26x107 0.147
10* 2.45 4.82 7.04 14.5
10* 2.37x10°
10 2.06x10°
5 3.76x10°
1 1.43x10*
Table 5. 11 Traction boundary conditions results (Clu)
5.3.3 Bounds(C %%,

Data is given for E,/E, =10°.

C1111, MPa

-6~ C1111 (displacement)
) -a%- G111 (traction)
10" F |
Geormees Er-----ioo G L (Y o
16° b |
10° | |
............... *
..... e
e oo
- L
107 . , ' ' | |
0 1 2 3 . : :
Window Size

Figure 5. 5 Bounds(C ",
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Fig. 5.5 shows that C %%, are far apart but they become closer as the window size

increases.

5.3.4 C{,, under displacement boundary conditions (&, = £, applied)

No. of &, 1 2 3 4 6
Eb/Em Cflzz C;i122 C;im CIdIZZ C;i122
10" 50 70 70 70
10® 50 70 70 70
10¢ 50 70 70 70
10* 50 70 70 60

102 1.00x10% | 1.13x10® | 1.20x10? 1.10x10?
10 540x10* | 5.70x10% | 5.70x10? 5.60x102
5 1.03x10° | 1.06x10° | 1.06x10° 1.05x10?
1 430x10° | 4.30x10° | 4.30x10° 430x10°
Table 5. 12 Displacement boundary conditions results (C 2
5.3.5 C{,p, under traction boundary conditions (o} = o, applied)
No. of &, 1 2 3 4 6
Eb/Em C;122 C;IZZ Ci122 C1122 C1122
10" 6.89x107 | 6.94x107 | 7.16x107 7.55%1077
108 6.89x107° | 6.94x107° | 7.16x107 7.54x107
10° 6.89x107 | 6.94x10 | 7.16x107 7.54x107
10 0.689 0.714 0.731 0.758
10° 67.4
10 5.76x10?
5 1.08x10°
1 430x10°

Table 5. 13 Traction boundary conditions results (C
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5.3.6 C{,,, under displacement boundary conditions ( &/, applied)

No. of &, 1 2 3 4 6
Eb/Em C;1212 C;IZIZ C;1212 C;1212 C;1212
10" 78 44 4 32 19.4
10® 78 44 .4 32 19.4
10° 78 44.4 32 19.4
10* 78.6 45 32 20
10? 1.4%x10° 1.09x10? 94.2 83

10 6.98x10% | 6.58x10> | 6.42x10° 6.29x10>

5 1.27x10° | 1.23x10° | 1.21x10° 1.20x10°

1 5.00x10° | 5.00x10° | 5.00x10° 5.00x10°

Table 5. 14 Displacement boundary conditions results (C%,,)

5.3.7 C},,, under traction boundary conditions (o, applied)

No. of 4, 1 2 3 4 6
Eb/Em C;212 C ;212 C;212 C ;212 C ;212
10" 1.35x107% | 2.22x107° | 3.14x10°° 5.95x107°
10° 1.35x10™ | 2.22x10™ | 3.14x10™ 5.95x107
10° 1.35x1072 | 2.22x107 | 3.14x107? 5.95x1072
10 1.30 1.98 2.58x107 3.92
102 1.03x10?
10 6.25x10?
5 1.21x10°
1 5.00x10°

Table 5. 15 Traction boundary conditions results (C1,,,)

5.3.8 Bounds (C /%,

Data is given for E,/E , =10°.
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Figure 5. 6 Bounds (C %%,

Fig. 5.6 showed that C %}, are far apart but become as window size increases.
However, the convergence is slow.
5.3.9 Discussion

1. The apparent stiffness components C,,,, and C ,,, are becoming more close to

each other by increasing the sample window sizes.

2. The stiffness component C,,,, is not as sensitive as C,,;, and C,,, to the

increase of window size.
3. According to the trend of each stiffness component above, we can conclude
that the bounds are still wide for window sizes of 6 when the ratio of the modulus of bone

and bone marrow is large (10°).
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5.4 Periodic boundary conditions results

Although the apparent stiffness components are coming closer to each other by
increasing the widow sizes, the bounds are still wide when window size of 6 is taken and
this is a computational limit for the available version of ANSYS. In this section the
periodic boundary conditions are introduced to predict and study the effective properties

of trabecular bone. Uniaxial Extension, Biaxial Extension, and Simple Shear are used to

obtain the effective properties of trabecular bone by forming the periodic deformations.

5.4.1 Uniaxial extension (&, applied)

E,E, Oy &y Energy (W) Chn
10" 14.0 1.00x107* 7.00x107 1.40x10°
108 14.0 1.00x107* 7.00x107> 1.40%x10°
10° 14.0 1.00x107 7.00x107 1.40x10°
10* 14.0 1.00x107 7.00x107* 1.40%x10°
102 15.5 1.00x107 7.73%107 1.55x10°
10 28.3 1.00x1072 0.141 2.83x10°

5 422 1.00x107? 0.211 4.22x10°
1 1.42x10? 1.00x1072 0.709 1.42x10*

Table 5. 16 Uniaxial extension results for periodic boundary conditions

5.4.2 Biaxial extension (&, = &3, applied)

Ener
E,/E, Oy Oxn o i (ny Cin
10" 14.6 14.6 0.01 0.01 0.146 60.0
10® 14.6 14.6 0.01 0.01 0.146 60.0
10° 14.6 14.6 0.01 0.01 0.146 60.0
10* 14.6 14.6 0.01 0.01 0.146 60.0
102 16.8 16.8 0.01 0.01 0.173 | 1.80x10?
10 34.0 34.0 0.01 0.01 0.360 | 7.70x10?
5 52.8 52.8 0.01 0.01 0.568 | 1.46x10°
1 1.85x10% | 1.85x10%* | 0.01 0.01 1.85 |4.30x10°

Table 5. 17 Biaxial extension results for periodic boundary conditions
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5.4.3 Simple shear strain (&, applied)

E,E, Oy 2y Energy (W) Cin
10" 8.70x107 1.00x107? 436x10™ 8.72
108 8.70%x107 1.00x1072 4.36x10™ 8.72
10° 8.70x107* 1.00x107 436x107* 8.72
10 9.33x107* 1.00x107* 4.67x10™ 9.35
102 0.718 1.00x1072 3.60x1072 72.0

10 6.20 1.00x1072 3.10x1072 6.20x10°
5 12.0 1.00x107 6.00x107 1.20x10°
1 50.0 1.00x107* 0.250 5.00x10°

Table 5. 18 Simple shear strain results for periodic boundary conditions

5.4.4 Results and discussion

Comparison of results from displacement (D), and traction (T), and periodic (P)

boundary conditions E ,/E , =10°, are shown in Table 5.19.

Cllll C1122 C1212
Window

Size D T Pl p T Pl p T P

. 1.53 | 245 | 1.40 6.89 1.35
x10° | x102 | x10° | 60.0 | x10™> | 60.0 | 78.0 | x10 | 8.72

) 1.52 | 486 | 1.40 6.94 2.22
x10° | x1072 | x10® | 70.0 | x107° | 60.0 | 44.4 | x102 | 8.72

6 1.49 1.40 7.54 5.95
x10° | 0.147 | x10® | 70.0 | x107° | 60.0 | 19.4 | x102 | 8.72

Table 5. 19 Comparison of bounds and periodic boundary conditions results

We make the following observations about these results:

1. The moduli under periodic boundary condition are independent of the sample

window size, as expected.

2. Periodic boundary conditions give the effective properties of trabecular bone.

3.5 Mixed boundary conditions results

-67 -




In this section we investigate the effect of mixed boundary conditions on elastic

moduli Cy, . The mixed boundary conditions are involving both traction and

displacement boundary conditions applied on the boundary of the sample material
(Section 4.2.4). Mixed boundary conditions are used in experiments to obtain the
Young’s modulus of bone samples. Thus, they simulate the realistic materials testing
conditions. We found that the moduli under mixed boundary conditions are very close to

those of periodic boundary conditions.

5.5.1 Mixed uniaxial extension (u, = &)x,,1, = 0 on n; faces;#, = 0,u, = 0 on n; faces)

E,/E, oy at Energy (W) Cin
10" 14.3 1072 7.14x107 1.43x10°
108 14.3 107 7.14%107 1.43x10°
10° 14.3 107 7.14x107 1.43x10°
10* 14.3 107 7.14x107 1.43%x10°
10? 15.6 107 7.80x1072 1.56x10°

10 27.3 107 0.136 2.73%10°
5 39.8 1072 0.199 3.98x10°
1 1.30x10° 107 0.650 1.30x10*

Table 5. 20 Mixed uniaxial extension results of mixed boundary conditions

. . . 4] . — .
5.5.2 Biaxial extension (u, = &,x,,t, = 0 on n, faces; #, =0,u, = £,,"x, on n; faces)

E,E, oy Oy €n | €2 | Energy (W) Cin
10" 15.0 15.0 0.01 | 0.01 0.150 70.0
10® 15.0 15.0 0.01 | 0.01 0.150 70.0
10° 15.0 15.0 0.01 | 0.01 0.150 70.0
10* 15.0 15.0 0.01 | 0.01 0.150 70.0
10° 17.0 17.0 0.01 | 0.01 0.170 1.40x10°

10 34.5 34.5 0.01 | 0.01 0.345 7.20%10?
5 53.3 53.3 0.01 | 0.01 0.533 1.35x10°
1 1.86x10% | 1.86x10* | 0.01 | 0.01 1.86 4.30%x10°

Table 5. 21 Biaxial extension results of mixed boundary conditions
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. : 0 .
5.5.3 Simple shear strain (#, = g,x,,t, =0 on n, faces; #, =0,u, = £,,°x, on n; faces)

E,/E, o, &1 Energy (W) Chap
10" 8.70x1072 107 4.36x10™ 8.72
10® 8.70x 107 107 4.36x107 8.72
10° 8.70x107 107 4.36x10™ 8.72
10* 9.33x1072 107 4.67x10™ 9.35
102 0.718 1072 3.60x107° 72.0

10 6.20 107 3.10x1072 6.20% 102
5 12.0 107 6.00x1072 1.20x10°
1 50.0 107 0.250 5.00x10°

Table 5. 22 Simple shear strain results of mixed boundary conditions

5.5.4 Results and discussion

When we take E, /E =105, the comparison among results from displacement (D),

and traction(T), and mixed (M) boundary conditions is given in Table 5.23.

C1111 C1122 C1212
Window
Size D T M D T M D T M
: 153 | 245 | 143 6.89 1.35
x10® | x10? | x10®° | 60.0 | x10™ | 700 | 78.0 | x10?2 | 8.72
0 152 | 486 | 143 6.94 222
x10° | x10? | x10® | 70.0 | x10™ | 70.0 | 444 | x10?% | 8.72
6 1.49 1.43 7.54 5.95
x10® | 0.147 | x10° | 700 | x10™ | 70.0 | 19.4 | x10?% | 8.72

Table 5. 23 Comparisons of bounds and mixed boundary conditions results

1. The moduli under mixed boundary condition are independent of the sample

window size.

2. The moduli under mixed boundary conditions are very close to those obtained

under periodic boundary conditions (Fig. 5.7).
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Figure 5. 7 Comparisons of periodic and mixed boundary conditions results

Fig. 5.7 showed that the elastic moduli obtained using periodic and mixed
boundary conditions are independent of window size, and the results obtained using

mixed boundary conditions are close to those obtained using periodic boundary

d

conditions. C{,, is closer to C{7; than C|,,,, while Cj,,is closer to CZ, than C{,,

5.6 Comparisons of two unit cells results

For our periodic model, there are two ways to take the unit cell to examine the

elastic properties of trabecular bone (as shown in Fig. 4.2 and Fig. 4.3). The first way is
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that the cross bone structure is in the center of unit cell; this model was used in sections
above. The second method to predict material behavior is to use the unit cell 2 in which a
half squared bone is around outside of unit cell. The results of unit cell 2 will be shown in

this section.

5.6.1 C{,,, under displacement boundary conditions (&, applied)

No. of &, 1 2 6
Eb/Em Cflll Cflll C;illl

10" 1.42x10° 1.42x10° 1.41x10°

10® 1.42%10° 1.42x10° 1.41x10°

10° 1.42x10° 1.42x10° 1.41x10°

10* 1.43%x10° 1.42x10° 1.41x10°

102 1.57x10° 1.56x10° 1.55%x10°

10 2.86x10° 2.86x10° 2.84x10°

5 4.26x10° 426x10° 424x10°

1 1.43x10* 1.43x10* 1.43%x10*

Table 5. 24 Displacement boundary conditions results (C¥,,) of Unit Cell 2
5.6.2 Cy,,, under traction boundary conditions (o, applied)
No. of 6, 1 2 6
Eb/Em C;m Cilll Cilll

10" 46.9 1.06x 102 3.07x10?

10 46.9 1.06x10? 3.07x10?

10° 46.9 1.06x10? 3.07x10?

10 49.7 1.09x10? 3.28x10?

102 3.17x10% | 4.91x10* | 9.19Ex10?

10 2.14x10° 2.42x10° 2.69x10°

5 3.81x10° 4.01x10° 4.18x10°
1.43x10* 1.43x10* 1.43x10*

Table 5. 25 Traction boundary conditions results (C;,,) of Unit Cell 2
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5.6.3 Bounds (C{¥7) and comparison with Unit Celll

Results are given for E,/E, =10°.

10
-9~ C1111 (displacement, unit cell 2) |
== LT (traction, unit cell 2)
\ @nnnnnnee R CSEEETERRPRPEEEEE R o
10°E i
G
Q.
=
= b &
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10°L T E
%
1
10 1 1 L 1 1 L
0 1 2 3 4 3 B
Window Size

Figure 5. 8 Bounds C ¥, obtained using Unit Cell 2

Fig. 5.8 shows that C{f}, for Unit Cell 2 are becoming closer to each other with

increasing window size.

-- C1111 (displacement, unit cell 2)
" -+~ C1111 (traction, unit.cell 2)
1070+ -=x~C1111 (displacement, unit celi 1) |H
<-4 C1111 {fraction, unit:cell 1)
Qrazszazss@fzszassarszsrsssrivsriachrasnnrananessie &
__________________ ®
St b o eeemem T 4
E_ & E
o
10° | .
___________________ *
,,,,, pmnmme T
="
10'2 1 1 ] L 1 1
0 1 2 3 4 5 6
Window Size

Figure 5. 9 Comparisons of bounds on C,,,, for Unit Cells 1 and 2
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Fig. 5.9 shows that the bounds C,,,, for Unit Cells 2 are closer to each other than those
obtained using Unit Cell 1.

5.6.4 C¢,, under the displacement boundary conditions (& =¢?, applied)

No. of 4, 1 2 6

Eb/Em C;1122 Cf122 C;1122
10" 80.0 80.0 80.0
10° 80.0 80.0 80.0
10° 80.0 80.0 80.0
10* 80.0 80.0 80.0

102 1.30% 102 1.20x10% | 1.20x10?

10 5.90%10? 5.70x10* | 5.80x10?

5 1.07x10? 1.05x10° | 1.06x10°

1 430x10° 430x10° | 4.30x10°

Table 5. 26 Displacement boundary conditions results (C%,,) using Unit Cell 2

5.6.5 C|,,, obtained using traction boundary conditions (o} = o2, applied)

No. of 6, 1 2 6
Eb/Em C;122 Ci122 C;122
10" 34.4 41.5 63.2
10® 34.4 41.5 63.2
10° 34.4 41.5 63.2
10* 35.7 04 71.8
10? 1.59%102 1.34x10° 97.8
10 7.76x10? 6. 57x10? 5. 79%10?
5 1.24x10° 1.11x10° 1.06x10°
4.30x10° 4.30x10° 430x10°

Table 5. 27 Traction boundary conditions results (C},,, ) using Unit Cell 2
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5.6.6 C},, obtained using displacement boundary conditions (’, applied)

No. of §, 1 2 6

Eb/Em C ;1212 C;i212 C ;1212
10" 1.18x102 40.0 20.0
10® 1.18x10? 40.0 20.0
10° 1.18x10° 40.0 20.0
10* 1.18x10? 40.0 22.0
10° 1.80x102 1.04x10° 84.0

10 7.16x10? 6.54x 10> 6.34x10>

5 1.28x10° 1.23x10° 1.21x10°

1 5.00x10° 5.00x10° 5.00x10°

Table 5. 28 Displacement boundary conditions results (C%,,) using Unit Cell 2

5.6.7 C},,, obtained using traction boundary conditions ( o\, applied)

No. of §, 1 2 6

Eb/E m Cizlz CiZIZ C;212
10" 2.70 4.50 6.71
108 2.70 4.50 6.71
10° 2.70 4.50 6.71
10* 3.33 5.18 7.41
10? 65.8 68.5 70.4

10 6.13x102 6.17x10? 6.17x10?

5 1.19x10° 1.19x10° 1.20x103

1 5.00x10° 5.00x10° 5.00x10°

Table 5. 29 Traction boundary conditions results (C},,,) using Unit Cell 2

5.6.8 Bounds (C}¥,) and comparison with Unit Celll
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Figure 5. 10 Bounds C7, obtained using Unit Cell 2

Fig.5.10 shows that C%7, are becoming closer to each other with increasing
window size.
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Figure 5. 11 Comparisons of bounds C ¥, for Unit Cells 1 and 2
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Fig. 5.11 shows that the bounds C 3}, obtained using the Unit Cell 2 are closer to
each other than those obtained using the Unit Cell 1.
5.6.9 Discussion

The results obtained using the Unit Cell 2 show the same trend as for the Unit

Cell 1 under displacement boundary conditions for C1;, and C{.,, . But, the results using

the Unit cell 2 under traction boundary conditions are different than those obtained from
Unit Cell 1. The Unit Cell 2 gives the closer bounds than the Unit Cell 1 because of its
stiff edges. This restrains deformation under traction boundary conditions.
5.7 Effects of sharp-corners in idealized trabecular bone models

The experiments have shown that failure of the trabecular bone occurs mostly at
the bone-corner interface. Therefore, the effects of sharp-corners versus rounded-corners
are studied in this section. The volume fraction of the new model (with rounded corner) is

same as in the earlier model (20% ); bone size is changing to 0.5 and corner radius is 0.5.

T
e

v

Figure 5. 12 The model of trabecular bone without sharp corners
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5.7.1 Displacement boundary conditions results

Model M6 M5 M6 M5 M6 M5
Eb/Em C;1111 Cflll Cfl22 Cfm C;i212 C;1212
10" ] 1.53x10° | 1.46x10° 50.0 60.0 78.0 82.0
102 | 1.53x%10° | 1.46x10° 50.0 60.0 78.0 82.0
10° | 1.53x10° | 1.46x10° 50.0 60.0 78.0 82.0
10° | 1.53x10° | 1.46x10° 50.0 60.0 78.6 82.0
10> | 1.67x10° | 1.60x10° | 1.00x10% | 1.10x10% | 1.43x10? | 1.46x10?
10 |2.96x10° | 2.88x10% | 5.40%x10% | 5.60x10% | 6.98x10? | 7.02x10?
5 4.34x10° | 428x10° | 1.03x10° | 1.08x10° | 1.27x10° | 1.28x10°
1 1.43x10* | 1.43x10* | 4.30x10° | 4.30x10° | 5.00x10° | 5.00x10°

Table 5. 30 Displacement boundary conditions results for models with and without sharp

cormers

5.7.2 Traction boundary conditions results

Model M6 M5 M6 M5 Mé M5
Eb/Em C:lll C;m C]t122 C1t122 C;m C;212
10" [ 2.45x107° | 2.39x10™° | 6.89x107 | 6.75x1077 | 1.35x107° | 1.33x10™®
10° [ 2.45x10™ | 2.39x10™ | 6.89x10™° | 6.75x10™° | 1.35x10™ | 1.33x10™
10° [ 2.45x107 | 2.39x107 | 6.89x107 | 6.75%107 | 1.35x107 | 1.33x1072
10* 2.45 2.39 0.689 0.675 1.30 1.28
10> | 2.37x10% | 2.36x10? 67.4 66.8 1.03x10? 73.5
10 | 2.06x10° | 2.05x10° | 5.76x10% | 5.76x10% | 6.25x10% | 6.21x10?
5 3.75x10° | 3.75x10° | 1.08x10° | 1.06x10° | 1.21x10° | 1.20x10°
1 1.43x10* | 1.43x10* | 4.30x10° | 4.29x10° | 5.00x10® | 5.00x10°

Table 5. 31 Traction boundary conditions results for models with and without sharp

corners

5.7.3 Analysis of contour of nodal solutions

Data is given for uniaxial traction boundary condition and E,/E , =10°.
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Figure 5. 13 Contour plot of normal stress o, for model 6
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Figure 5. 14 Contour plot of normal stress o, for model 5
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5.7.4 Discussion
Results from our finite element models show that there is no significant difference
(only 2~5% differences) between the elastic moduli obtained using Model 6 and Model 5
for the volume fraction of 20%. However, stress in the bone tissue is reduced slightly in
Model 5 as observed from Figures 5.13 and 5.14 due to rounded corners.
5.8 Effects of bone volume fractions
Volume fraction, the basic parameter in describing trabecular microstructure, can

easily be calculated from three-dimensional reconstructions of micro-CT images.
Because measurement of volume fraction is of primary importance for the evaluation of
trabecular microstructure, several volume fractions of bone have been examined in this
section. Two volume fraction ranges are used in this thesis. One is 5~20% (lower density
area ); another is 30~40% (high density area).

When modeling using 2D FEM models, the following assumptions are made.

e Unit cell §,and 2§, for lower and higher density areas

o Bone structure is represented as a cellular network with square cross sections

* Bone volume fraction of 5% - 20% and 30~40%

e Bone Young’s modulus of 13.0 GPa

e Bone marrow Young’s modulus of 13.0 Pa

o The Poisson’s ratio for both phases is 0.3
5.8.1 Lower volume fractions

The stiffness matrix is computed and the Cyy1y, C,,5,, and C,,, components are
discussed in this section. The model (2 §, ) used for determining the changes of moduli by

varying the bone volume fractions is shown below.
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Figure 5. 15 Changes of bone volume fraction from 5% to 20%
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1. Uniaxial extension
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Figure 5. 16 C}1,, as a function of bone volume fractions

2. Biaxial extension
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3. Simple shear strain
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Figure 5. 18 C

4. Uniaxial tension
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Figure 5. 19 Cj},; as a function of bone volume fractions
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5. Biaxial tension
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Figure 5. 20 Cj,,, as a function of bone volume fractions

6. Simple shear traction
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Figure 5. 21 C},,, as a function of bone volume fractions
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7. Stiffness matrix

The stiffness tensors obtained directly from the displacement boundary conditions
are given in their full form for the periodic model with bone volume fractions of 5%,

10% and 20%. (unit: MPa)

[1.52E+03 7.00E +01 0
Ci’! =|7.00E+01 1.52E+03 0
0 0 4.44E +01]

[7.06E +02 1.54E +01 0
Ci =|1.54E+01 7.06E +02 0
0 0 1.20E + 01

3.48E+02 2.00E+00 0
Cii! =|2.00E+00 3.48E +02 0
0 0 5.90E - 01

The stiffness tensors obtained directly from the traction boundary conditions are
given in their full form for the periodic model with bone volume fractions of 5%, 10%

and 20%. (unit: MPa)

[4.86E-02 694E—-03 0
CO =| 6.94E~03 486E—-02 0
0 0 222E-02

[4.29E-02 6.29E -03 0 ]
Ci" =16.29E-03 4.29E-02 0
0 0 2.16E-02

3.99E-02 5.93E-03 0
CLY =|5.93E-03 3.99E-02 0
0 0 2.13E-02
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8. Analysis
The following observations can be made about the C,,,,, C,,,, and C,,,, stiffness

components. These components decrease as the bone volume fraction decreases from
20% to 5%. Furthermore, we found that there are some differences between results from
the displacement and traction boundary conditions. The changes in moduli of trabecular
bone under displacement boundary conditions are larger than those in moduli under
traction boundary conditions; the change of moduli under shear strain is larger than those
of moduli under shear traction.

5.8.2 Higher volume fraction

1. Model 1 with 40% volume fraction
Mesh size is 0.264/0.264; sample size is 5x5x0.1 with holes (bone marrow). Data

is calculated using E,/E, =10°.

Eb/Em C;lll Cldlll Ci122 Cldl22 C;ZIZ C;i212
1.00x10° | 1.27x10° | 3.18x10° | 1.23x10° | 5.90x10% | 76.9 | 1.12x10°

2

A

v

Figure 5. 22 Model 1 with 40% volume fraction
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2. Model 2 with 40% volume fraction

Mesh size is 0.264/0.264; sample size is 5x5x0.1 with the stiff phase (bone) in the

center. Data is calculated using E, /E , =10°.

3. Model 3 with 40% volume fraction

v

Figure 5. 23 Model 2 with 40% volume fraction

Eb/Em Cilll Cfll] C;122 C;IIZZ C:212 Cf212
1.00x10° | 2.85x107% | 2.94x10° | 9.60x107° | 3.71x10% | 1.55x107% | 5.08x 102
2 A
1

Mesh size is 0.264/0.264; sample size is 5x5x0.1. Data is calculated using

E,/E,=10°.
Eb/Em Cilll Cflll C;122 C;i122 C;ZIZ C;IZIZ
1.00x10° | 3.23x107 | 3.28x10° [ 9.10x10™ | 3.90x102 | 1.84x107 | 6.08x10?
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v

Figure 5. 24 Model 3 with 40% volume fraction

5.8.3 Discussion

Data is calculated using E,/E, =10°.

VfofBone
Model (%) Chu Cin Clu-Chi
1 40 1.27x10* | 3.18x10° 1.91x10°
2 40 2.85x1072 | 2.94x10° 2.94x10°
3 40 3.23x107 | 3.28x10° 3.28x10°
4 20 46.9 1.42x10° 1.37x10°
5 20 2.39%107 | 1.46x10° 1.46x10°
6 20 2.45x1072 | 1.53x10° 1.53x10°

Table 5. 32 Bounds C,,,, of all models
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Figure 5. 25 Difference of upper and lower bounds C,,;, of all models

. The models with higher volume fraction (40%) of bone have higher

C,,1, than those with lower bone volume fraction (20%), as expected.

. The models with stiff outer edges (M1 and M4) have the closest bounds.

stiffness

. The stiffness components C,,,, of the models with rounded corners (M2 and M5)

are little lower than those with sharp corners. This is due to the fact that stresses

are locally lower near rounded corners.

V ,of Bone

Model (%) Ch Cla C ;1212 -Cho
Ml 40 1.12x10° 76.9 1.04x10°
M2 40 5.08x10? 1.55%107 5.08x10?
M3 40 6.08x 10’ 1.84x107 6.08x 10>
M4 20 1.18x10° 2.70 1.18x10?
M5 20 82.0 1.33x1072 82.0
M6 20 78.0 1.35x107 78.0

Table 5. 33 Bounds C,,, of all models
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Figure 5. 26 Difference of upper and lower bounds C ,,, of all models

4. The stiffness components C,;,, and C,,, of the higher bone volume fraction are
higher than those for lower bone volume fraction, as expected.

5. The effects of corer on C ,,, are not as large as those to C,,, .

6. The models with higher bone volume fraction have wider bounds on C,,,, .

5.9 The Hill condition, average stress, and average strain

So far we discussed apparent elastic stiffness components as a function of —E—”— ,

m

V,, and geometry. Now we focus on more fundament issues such as the satisfactions of

the average stress theorem, average strain theorem, and the Hill condition. Table 5.34

shows the component volume averages for uniform boundary conditions.
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Applied Displacement boundary conditions
BC’s g2 =0.01 eg. =), =0.01 gy, =0.01
£y oy Py o €y oy
-6.67 -5.96
XX 0.01 14.6 0.01 15.6 x1078 x10™
-5.55
YY |1.88x107 0.992 0.01 15.6 4.85x107* | x107*
-1.43 -7.17 -1.16
XY x107 x10™ x107 | 1.40x107 0.01 0.816
CiE 0.146 0312 8.16x107
2W 0.146 0311 8.20x107
Applied Traction boundary conditions
BC’s oo =1 On =0, =1 Oy =1
-4.53 -4.27
XX 45.4 1.00 32.6 1.00 x10™ x107*
2.61 -4.75
YY 128 [215x10° | 326 1.00 x10™ x10™
-3.53 -8.29 -2.39 -1.81
XY x107* x107° x107 x107° 74.0 1.00
oyEy 45.4 65.2 74.0
2W 45.4 65.2 75.1

Table 5. 34 Average stress/strain and the Hill conditions for uniform boundary conditions
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In contrast, if we apply a nonuniform boundary condition, for example, bending,
the average stress, average strain, and the Hill condition will not be satisfied. Table 5.35

gives the component volume averages for the nonuniform boundary conditions.

Applied
BC’s K:y =1
;g’ ;!‘j
XX 0.91 9.91x107*
YY -3.24%x107° | -1.25x10°°
XY -6.71107" | 2.33x107°
Oy 9.02x107*
2W 4.44%x10°
Applied #° =0.01
XX 2.50x1072 | 3.53x10’
YY 2.20x107 | 1.40x10°
XY 7.90x107° | 7.44x10°
CyEy 8.91x10°
2W 9.88x10°

Table 5. 35 The Hill condition not satisfied for non-uniform boundary conditions

Also, periodic and mixed boundary conditions calculated and the results show that the
Hill condition and the average strain theorem are satisfied for periodic and mixed
boundary conditions. Table 5.36 and Table 5.37 give the component volume averages for

the periodic and mixed boundary conditions.
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Applied Periodic boundary conditions
BC’s g2 =0.01 &y =¢,, =001 g, =0.01
£y oy py oy £y oy

-5.33 -5.72

XX 0.01 14 0.01 14.6 x107 x107™

1.98 4.05 -5.23

YY x1077 0.962 0.01 14.6 x107* x107

-1.38 -8.35 -1.09 1.34 8.70

XY x1077 x107 x107 x107 0.01 x107
o€ 0.14 0.292 8.70x10™
2W 0.14 0.292 8.72x10™

Table 5. 36 Average stress/strain and the Hill conditions for periodic boundary conditions

-93 -



Mixed boundary conditions
Applied g2 =0.01, o =¢), =001, gg,=0.01,
BC’s t,= t,=0 t,=
£y oy & oy €y oy
-5.57 -5.63
XX 0.01 14.3 0.01 15 x107® x107
227 4.29 -5.17
YY x107 0.845 0.01 15 x1078 x10™
-1.67 -9.66 -1.37 1.18 8.70
XY x107 x10™ x107 x107 0.01 x107?
oiEj 0.143 0.3 8.70x10™
2W 0.143 0.3 8.72x107

Table 5. 37 Average stress/strain and the Hill conditions for mixed boundary conditions

5.10 Comparison of 2D and 3D models with the same bone volume fraction

Although the full understanding of the mechanical behavior of a composite
material requires a three-dimensional (3D) analysis, it is more difficult to numerically
analyze due to larger computational resources required. 3D geometries can be
approximated by planar problems: planar stress and strain analyses.

In this section we introduce the 3D model and compare the results with those
obtained using our 2D model with the same bone volume fraction (20%), same

mechanical properties of constituents and similar structural features (Fig. 5.27).
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Figure 5. 27 The 3D model with &, = 3 unit cells with 20% bone volume fraction

We have also applied the displacement and traction boundary conditions. The results

compared with those of 2D model as follows,

3D 2D 2D
Window
Size C;m Cfm C;m Cfm C;212 C;IZIZ C;ZIZ C;Im
2.30 1.32 2.45 1.53 9.17 3.74 1.35
1 x107 | x10° | x10? | x10° | x10™ | x10®> | x107 78
5.00 1.32 4.86 1.52 1.80 2.20 2.22
2 x107 | x10° | x10?2 | x10° | x10? | x10% | x102 | 44.4
7.31 1.31 7.26 1.50 2.70 1.72 3.14
3 x107 x10° x107 x10° x107 x 102 x107 32

Table 5. 38 Comparison of bounds for 2D and 3D models
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Figure 5. 28 Comparison of bounds C,;,, between 2D and 3D
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Figure 5. 29 Comparison of bounds C ,,, between 2D and 3D
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From the results obtained above, we can conclude that the analysis of 2D model
can represent the one of 3D model because they have same trend by increasing the

window size (No. of unit cells), and almost same values for bounds C,,,, and closer

bounds C,,;, for 2D model. Thus, the 2D model studied in this thesis approximates well
the elastic moduli of trabecular bone.
5.11 Periodic model discussion

Effects of mesh size, the first step of analyzing the periodic models, are discussed
in section 1. To begin with, same mesh size, different mesh size of bone marrow, and
different mesh size of bone tissue were studied to determine which mesh size is used to
predict the elastic moduli of trabecular bone using ANSYS. We found that the same mesh
size used for bone and bone marrow is more accurate with less element numbers than the
models with different mesh sizes for bone tissue and bone marrow. Elastic strain energy
is more sensitive to the change of mesh size of bone marrow; on the contrary, it does not
change with the change of mesh size of bone. Then, the effects of mesh size on different
loads are observed. Elastic strain energy is changing with the same trend under different
boundary conditions; however, it is more sensitive to the mesh size under displacement
boundary condition, especially under simple shear strain. Relatively crude mesh size
(0.264) was picked up to mesh 2D models due to its sufficient accuracy (5%) as
compared with a very fine mesh.

Effects of the ratio of moduli of bone tissue and bone marrow were considered in
section 2. For displacement bc’s, the elastic moduli results asymptote very quickly for
lower mismatches and they are independent after the ratio of 1.00E+04. The moduli

under traction boundary condition are depended on the changes of the ratio of bone and
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marrow in the linear way. Thus, in most of our calculations we chose the ratio of bone
and bone marrow as 1.00E+06 to represent the properties of trabecular bone.

Effects of sample window size are shown in section 3. The apparent stiffness

components C,;), and C,,, are becoming closer to each other as window sizes increase.

However, the bounds are still wide open when window size goes to 6 and it is impossible
to further increase the window size due to the limitation of the version of ANSYS.

Periodic boundary conditions results in section 4 have shown that the moduli
under periodic boundary condition are independent on the sample window size, as
expected. Thus, periodic boundary conditions give the effective properties of trabecular
bone, as expected.

Mixed boundary conditions results in Section 5 have demonstrated that the
moduli under mixed boundary condition are also independent on the sample window size
like periodic boundary conditions. The moduli under mixed boundary conditions are very
close to those obtained using periodic boundary conditions.

The comparisons of two unit cells chosen from same model are given in Section
6. The Unit Cell 2 has shown the same trend as the Unit Cell 1 under displacement
boundary conditions. But, it gives the difference when compared with the Unit Celll
under the traction boundary conditions. After the ratio of 10, it follows an asymptotic line
not in linear way like unit cell 1. Also, the unit cell 2 gives closer bounds than the unit
cell 1 because of its stiff edges.

The effects of sharp-corner of trabecular bone are examined in Section 7. Results
from our finite element models show that there is no significant difference (only 2~5%

differences) between models with rounded versus sharp corners for the volume fraction
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of 20%. As a result, we conclude that the shape of corners has a small effect on the
moduli of trabecular bone. However, the stress of bone without sharp corners is reduced
as observed from Figure 5.14 and Figure 5.15.

The effects of bone volume fractions in section 8 have shown thatC,,,,, C,,,, and

Cy, stiffness components go down with the changes of bone volume fractions from
higher volume fraction to lower volume fraction in the linear way. Thus, the moduli of
trabecular bone are affected by varying the bone volume fractions. Some special
geometries are tested in this section.

The Hill condition, average stress, and average strain are shown (Table 5.33) to
hold for the three uniform loadings involving displacement and traction boundary
conditions. The results have shown that average stress, average strain, and the Hill
condition are satisfied for uniform boundary conditions. Also, it should be noted that the
traction shear boundary condition has a larger Hill Condition discrepancy because the
model must be constrained from rigid body motion by applying displacement boundary
conditions to several nodes. Conversely, Table 5.34 gives an example of nonuniform
boundary conditions to show average stress, average strain, and the Hill condition are not
satisfied for nonuniform boundary conditions.

The comparisons of 2D and 3D are investigated in Section 10 by applying
displacement and traction boundary conditions. We found that the 2D model can
represent 3D model to predict the elastic moduli of trabecular bone because of the close

results for 2D and 3D cases.

-99.



CHAPTER 6

CONCLUSIONS

The purpose of this research was to examine the effects of scale and boundary
conditions on the moduli of trabecular bone using numerical methods, specifically the
finite element software package ANSYS Version 8.1. The analysis of the moduli of
trabecular bone was performed using numerical simulations based on the concepts of
effective and apparent properties. The relevant mechanical background was presented in
Chapter 2, and the specific methodology employed in this thesis was presented in Chapter
4 and Chapter 5. During the course of studying the moduli of trabecular bone, the
apparent and effective properties of trabecular bone were evaluated using the theoretical
framework presented in Chapters 2 and 4. In Chapter 5 results to were presented and
discussed. The effected of different factors on elastic moduli was discussed in this
Chapter. This thesis also briefly summarizes the theoretical background on periodic
models and methodology for obtaining the effective properties of trabecular bone in the
2D models, as well as 3D model (Chapters 2 and 3).

As three-dimensional materials are harder to study numerically a simplification of
the fully three-dimensional case was proposed involving planar elasticity. We find that
our 2D and 3D results are very close to each other. This analysis be found in Chapter 5.

In this research, FEM was used to examine moduli of trabecular bone, and the
results of this work were presented in_ Chapter 5. Several models of different bone
structures were studied in comparison with the effects of scale and boundary conditions.

These models were modeled by the crossing rods or struts with or without sharp corners,
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open or closed cells, and center square or spherical models. Techniques for implementing
the displacement, traction, mixed, and periodic boundary conditions were also presented.

The moduli of trabecular bone were fully characterized using both displacement
and traction boundary conditions. The elastic bounds for the classical elasticity tensor
were found for several material window sizes and compared to the effective properties
obtained by using periodic boundary conditions. These results calculated using periodic
boundary conditions were compared to the elastic modulus applied by the mixed
boundary conditions. The closed cell was found to have the closer bounds on the apparent
stiffness than the open cell. A large difference for determining the apparent modulus of
trabecular bone by changing its volume fraction was also found. The effect of sharp
corner had shown that it seems no significantly different between models with or without
sharp corners; however, the stress of bone, to a certain extent, is reduced. Finally, the
comparison of 2D and 3D models was presented.

The Hill condition, and average stress and average strain theorems were satisfied
for uniform boundary conditions within computational error as well as periodic and
mixed boundary conditions. Conversely, the Hill condition was not satisfied for
nonuniform loadings. Meanwhile, for satisfying the Hill condition, the bone marrow had
to have a certain amount of modulus to represent voids for uniform boundary conditions.
The uniform displacement boundary condition results were not affected by the
mechanical properties of bone marrow due to the fact that the elastic strain energy resided
solely in the stiff phase. The uniform traction boundary condition results were affected by
the mechanical properties of bone marrow and they were necessary in calculating the

compliance terms because the applied traction produced a small non-negligible amount of
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elastic strain energy when compared to the even smaller elastic strain energy residing in
the stiff phase.
Finally, we can conclude the following
1. The apparent elastic moduli of trabecular are affected by the window sizes, the
boundary conditions, the different unit cell choices, and the mesh sizes.
B Effects of mesh size
The moduli are not changing after certain mesh size under different loads.
W Effects of the boundary conditions
The moduli under traction boundary conditions are depended on the
changes of bone and bone marrow in the linear way. For displacement
boundary conditions, they are independent after the ratio of 1.00E+04.
B Effects of the window sizes
Although the apparent moduli are still wide open in 6 unit cells case (J, =
6), the trend that they will go close to each other is clear.
B Effects of the different unit cells
The unit cell 2 gives the closer bounds than the unit cell 1 because of its
stiff edges.
2. The moduli under periodic boundary condition are independent on the sample
window sizes.
B They are more close to the moduli under uniform extension boundary
conditions for cellular network. On the other hand, they are more close to

the moduli under shear traction boundary conditions.
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B The moduli under mixed boundary conditions are very close to those of
periodic boundary conditions.
3. Effects of sharp-corner
B There is no significant difference (only 2~5% differences) between Model
1 and Model 2.
B However, the stress in bone is reduced when structure had rounded
corners.
4. Effects of bone volume fractions
o The stiffness C decreases with the changes of bone volume fractions from
20% to 5% in a linear way.
e The moduli of trabecular bone are affected by varying the bone volume
fractions.
5. Comparison of 2D and 3D models
B The analysis of 2D model can represent those of 3D model because they
have same trend by increasing the window size (unit cell no.), and almost

same amount for bounds C,;;, and closer bounds C,,;, for 2D model; as a

result, it is feasible for the 2D model in this thesis to predict the elastic
moduli of trabecular bone instead of the 3D model.

Future work should be focused on several aspects as follows. First, we will be

interested in the models without fill (bone marrow) like foams. Then, the non uniform

loadings and mechanical properties of trabecular bone will be studied. For example, to

account for the bone soft tissue including fluids, bone poroelasticity could be considered.

Also, the random periodic models have to be studied to account for the bone’s complex
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structure. Finally, it would be very helpful for clinical applications if we would
accumulate data about the structure-property relations in trabecular bone.

In conclusion, the numerical modeling of trabecular bone is a useful tool to
predict the apparent and effective properties of trabecular bone, and it makes it possible
to better understand the results from the experiments. As we know, the pure displacement
and traction conditions are very difficult to load in the laboratory, so the investigation of
boundary condition effects can be done most efficiently numerically. There results can
give insight to researchers involved in computational modeling of materials and in
experimental testing of mechanical properties of bone and other cellular materials.

The challenges in testing bone (and other cellular materials) involve the fact that
we may not have a sufficient amount of bone tissue to use for testing, because only a
limited amount is available in skeleton and its properties are changing spatially. If the
specimen is smaller than the RVE, the results from experimental testing will depend on
size of the specimen and applied boundary conditions and will represent apparent, not
effective, properties. The present study addresses the issue of the size of the specimen
and the nature of boundary conditions to be applied so the measured or calculated results

give effective properties.
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APPENDIX A

Finite Element Analysis (FEA)

Finite Element Analysis is a way to simulate loading conditions on a design and
determine the design’s response to those conditions.

The design is modeled using discrete building blocks called elements. Each
element has exact equations that describe how it responds to a certain load. The sum of
the response of all elements in the model gives the total response of the design. The
elements have a finite number of unknowns, hence the name finite elements.

The finite element model, which has a finite number of unknowns, can only
approximate the response of the physical system, which has infinite unknowns.

The advantages of FEA are to reduce the amount of prototype testing and to

simulate designs that are not suitable for prototype testing.
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APPENDIX B

ANSYS SOFTWARE

ANSYS is a complete FEA software package used by engineers worldwide in

virtually all fields of engineering. Partial listing of the capabilities:
1. Structural
e Linear
e Nonlinear
- Material, Geometric, Contact
e Dynamics
- Model, Harmonic, Transient Dynamic, Spectrum, Random
Vibration
- Explicit Dynamics with ANSYS LS-DYNA
2. Thermal
e Steady State and Transient
3. Fluid (CFD, Acoustics, and other fluid analyses)
4. Low- and High-Frequency Electromagnetics

5. Coupled Field
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