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Abstract

3D-UMLVis — Visualizing Design Pattern in 3D Space
Vu-Loc Nguyen

With the ever increasing complexity of software systems programmers face new
challenges in comprehending the structures of these programs, their artefacts, and the
behavioural relationships among these artefacts. While modeling languages and notations
that were introduced to support the forward engineering process have been quite effective
in abstracting the underlying information, these techniques have failed when applied in a
reverse engineering context. One reason for the failure is the information overload due to
the level of detail available at the source code and a lack of appropriate filtering and
analysis techniques. Another limitation of the current approaches is the conceptual gap
that exists between the models created during the forward and reverse engineering
process. This occurs because the reverse engineered model cannot convey the
information and justification behind the architecture chosen. This gap is particularly
noticeable when one considers the differences in layout, grouping and organization
between the original and reverse engineered models. This thesis attempts to addresses
these issues, by introducing a 3D extension of UML (Unified Modelling Language)
diagrams to support the visualization of recovered design patterns from source code. The
goal is to provide additional guidance during program comprehension. In addition, new
viewing techniques are proposed to facilitate the navigation and filtering of the

information in the three dimensional world.
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Chapter 1 Introduction

Source code comprehension plays a predominant role in facilitating software
maintenance and evolution. The essence of comprehension is identifying program
artefacts and understanding their relationships. Software engineers typically start
comprehending a program by identifying artefacts at a certain abstraction level and then
aggregate this knowledge to form a more abstract understanding [STOR97].
Comprehension of software systems can be improved by providing higher level of
abstraction to visualize the data to be observed and inspected. However, regardless of the
visualization technique the sheer volume of information presented to the developers
becomes daunting, as programs grow more complex and larger in size [MAYR9S,
STOR99].

Design patterns have become increasingly popular among sofiware developers
since the mid 1990s [GAMMO5]. They help to communicate intent and scope of designs,
help new developers to avoid problems that have been experienced in the past and to
allow reuse of successful designs. Design patterns are typically modeled with Unified
Modelling Language (UML) [UML] [GAMMO95] at the risk of losing their purpose and
role within the design since UML does not provide a direct modeling support for design
patterns. The benefits of design patterns are thus significantly compromised since the
domain knowledge and design decisions associated with the original patterns are no
longer available. Furthermore, in the context of reverse engineering, these reverse
engineering tools (covered in section 2.2.4) do not support the recovery of design patterns

or their visualization at all. Reverse engineering tools focus on the recovery of UML



class diagrams (without visualizing design patterns) as their major metaphor for designs
from the source code.

This research proposes to combine two techniques, design pattern recovery and
3D software visualization to enhance the expressiveness of UML with respect to
visualized reverse engineered software designs from source code. The presented design
pattern visualization approach in 3D provides maintainers and users with additional
insights into the complex relationships among data without having to analyze the
underlying source code in detail. Most importantly, it enables maintainers to better
understand software design decisions, which are usually not easy or explicitly found in
reverse engineered UML class model diagrams. As a part of this thesis, a prototype tool
was developed for the 3D visualization. Entitled 3D-UMLViz, the prototype [RILLOS]
displays design patterns with respect to the UML based layout proposed by the “Gang of
Four” (GoF). 3D-UMLViz can support cases where a class participates in more than one
design pattern, commonly known as pattern cross-cutting. Since 3D interaction poses its
own challenges, this thesis also experiments with new ideas to navigate in 3D space using
traditional input devices like mouse and keyboard. In fact, 3D UMLViz adopts
techniques that have been shown to be useful in the computer gaming industry.
3D _UMLViz is part of the CONCEPT project [RILLO2b] that was originally introduced
to explore new program comprehension techniques and approaches. Its main goal was to
assist programmers in creating mental models and comprehending software systems.

The thesis is organized as follows. Chapter 2 introduces background relevant to
this research followed by the research hypotheses and research contributions of this thesis

(Chapter 3). The implementation of 3D-UMLViz and its integration to the CONCEPT



research framework is described in Chapter 4. Chapter 5 provides the conclusion and

summarizes the contribution of this thesis along with a brief discussion on future work.



Chapter 2 Background

Due to the rapid development of the software technology during the last decades
and the increased demand for software products, a large number of software systems have
been developed. The resulting legacy code is passed on from generations of programmers
as part of a company’s “know-how” and assets. On the other hand, the continuously
changing needs of the business environment require those systems to be always up to date
with the latest technologies and to evolve during their life cycle. Evolving often means
refactoring, adding new functionalities, modifying existing ones or migrating to a new
environment. However, to succeed in such a step, a full understanding of the software
system is required, leading to the need to recover its architecture and design decisions
and to pass on to the maintenance team. In this chapter background literature relevant to
program comprehension, software visualization and 2D versus 3D software visualization

is reviewed.

2.1 Program Comprehension

The long life cycle of software systems makes it in most cases impossible for a
maintenance team to have the same members as the development team. A large body of
knowledge about the system is therefore frequently not available to the maintainers.
Often a system’s documentation is out of date and/or insufficient, leaving the source code
as the only reliable source of information for maintenance programmers. Reverse
engineering tools have been developed, as describe later in section 2.2.4, to allow for

regaining some of the lost insights of these existing systems. It has been estimated that



the complexity of the existing systems and the lack of documentation and supporting
tools result in a maintenance cost amounting to a 60-75% of the total cost of software
product during its lifecycle [BOEHS81].

Program comprehension is an essential part of software evolution and software
maintenance. The importance of program comprehension has been studied in
[RUGA95a] [RAJLO02]. Software that is not comprehended cannot be changed or
maintained. The fields of software documentation, visualization, program design, and so
forth, are driven by the need for program comprehension. Program comprehension also
provides motivation for program analysis, refactoring, reengineering, and other
processes. Programs that are not maintained properly end up aging [GARG98]

[HUANOS5] and eventually must be retired.

2.1.1 Comprehension Gaps

A major part of the software maintenance process is devoted to the
comprehension of the system in question. More than 50% of maintenance time is spent
on comprehension activities such as reading documentations, browsing codes,
understanding the system architecture etc. [FJEL83]. During forward engineering,
programmers make a set of decisions, taking into account the restrictions and challenges
at the time. Some compromises are made and the product is delivered within schedule
with a set of functionalities. However, decisions and compromises made during forward
engineering are not specified or directly reflected in the source code and are rarely

documented. As a result, a reverse engineer is left with many unanswered questions.



Why was it done this way? Could I have come up with a better design? These sorts of
questions are representative for the challenges one faces during program comprehension.
Rugaber [RUGA9S5] identified five comprehension gaps a maintainer typically has to

overcome.

1) Application domain and program

A program is a solution to a problem in a particular application domain. In order
to find a solution one must have the knowledge about the initial problem and thus the
domain application. For example, the domain model of an Operating System would
contain knowledge of OS components such as memory management and other OS
structures. This knowledge often takes the form of specialized schema including design
rationalization such as the use of “first come first serve” versus “Round Robin”
scheduling. Without the domain knowledge of the OS architecture, one would have a

difficult time understanding what the program models.

2) Physical machines and abstract description

In order to understand what task or functionality the code is supposed to perform,
one must identify the important concepts, a process called abstraction. Yet, a given code
section might be part of several abstractions, such abstractions are said to be interleaved
[RUGA95b]. This could easily confuse the person reading the program code. There is

typically no documentation of the interleaving in the source code.



3) Coherent models and incoherent artefacts

It is rare to find programs that have up-to-date documentations. Frequently,
programs are upgraded and maintained while the documentation remains unchanged. As
a result, the original structure has deteriorated [BELA71] and the program documentation
and the program code do not relate to the same information. What is a programmer to
believe when the documentation specifies one thing yet the code is clearly performing
something else? Is the documentation out of date or is the code not following the original
specification /design document, whom to trust? Moreover, as the application undergoes
several maintenance iterations, the application might become incoherent within itself.
For example, a functionality called “getCustomerNumber” was used in one part of the
code as “getting the customer ID” whereas at some other code portion, the code was used
as “getting the number of customer count”. ~What is the correct usage of

“getCustomerNumber” in the first place?

4) Hierarchical programs and associative cognition

Computer programs are highly structured and organized in specific concepts such
as functions, expressions and declarations. In order to understand the program, the
reverse engineer must be able to build mental abstractions (also called chunks
[LUKES80]) from these concepts. A program is understood to the extent that the
programmer can correctly build correct high level chunks from the low level concepts

present in the program.
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5) Bottom-up program analysis and top-down model synthesis

There exist two traditional ways to analyze a program. In the first approach the
low level concepts are considered as part of a higher construct intended to accomplish a
larger purpose. In this case it is called the bottom up approach [SOLO84] [LETOS86].
On the other hand, a programmer can have some idea of the overall purpose of the
program and how it might be assembled, thus as the program is being studied, concepts
are refined into more complete descriptions by adding lower level details. This is the top-
down approach [BROO77]. The challenge is that both of these activities need to proceed

at the same time in a synchronized fashion [ORNB92].

2.1.2 Cognitive Models

To overcome these gaps, different programmers adopt different comprehension
strategies, depending on the task at hand (debugging, adding functionalities, refactoring
etc.). Researchers have identified several cognitive models used by programmers while

performing different comprehension tasks.

1) Bottom-up

Programmers read source code and “chunk™ low-level software artefacts into
more meaningful higher-level abstraction [SHNE8S0]. These abstractions are then
grouped to gain a higher understanding of the program. Programmers using bottom-up
strategy gather code statement and controls- flow information to mentally create the

application low level structure. These structures are chunked and cross-referenced by

11



macro-structures to form a program model using application domain knowledge to

produce a hierarchy of functional abstractions [PENNS&7].

top {recuirements)

o
L]

fevel of abstraction
quantity properties
quality properties

bottom ftechnical basis)

Figure 1: Bottom-up and Top-down reasoning, the bottom up process uses technical

basis “chunk” to derive requirements [PI1ZK03]

For example, a programmer will associate a “for loop” with a “sort algorithm
function”. Then the “sorting algorithm” is linked as part of a higher abstraction such as
“sorting a priority task list”. A schematic representing the bottom-up approach and the

top-down reasoning is presented in Figure 1.

2) Top-down
In the top-down approach, programmers reconstruct knowledge from the

application domain and map this knowledge back to the source code [BROOS3].
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Figure 2: The cognitive process of the “Top-Down” approach [KEOW00].

Programmers have a general hypothesis about the program. Verifying or rejecting
the hypothesis depends on the presence of beacons (cues) detected by the programmer
while exploring the code [PENNS§7].
programmer is faced with a familiar program type [SOLO84}[MAYROS].

programmers recognize program plans and exploit programming conventions (design

patterns) during comprehension.

application domain, see Figure 2.
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3) Knowledge-based

The assumption for this comprehension model is that programmers are
opportunistic and are capable of exploiting either bottom-up or top-down cues [ LETOS86].
As depicted in Figure 3, this theory has 3 major components;

o Knowledge base: the programmer’s application and comprehension expertise.
¢ Mental model: the programmer’s current understanding of the program.
e Assimilation process: how the mental model evolves using the programmer’s
knowledge as program information is absorbed.
Inquiry steps are keys to the assimilation process. It consists of the programmer asking

questions and finding answers as he searches through the code and documentation to

verify his answers.

Programmer

. ——
-

- ~
Knowledge /7 Mental ™
Base . Model /

ha P

- .

o

Assimilation
Process

External
Representation

Figure 3: Using a knowledge base to understand programs [OBRI03].

14



4) Systematic and “as needed”

For the systematic “as needed” approach, programmers either use a systematic

approach, reading the code in details and tracing through all control and data flow, or an

“as-needed” approach, focusing only on the code related to the task at hand [LITT86], see

Figure 4. However, the systematic approach is less feasible for larger programs while the

as-needed approach could generate more mistakes since important interactions might be

overlooked. Modifying codes based on an incomplete understanding of the program may

be error prone.

Time

T0

T2

T4

Programmer

Scans Code

Discovers a
Beacon in code

Prompis plan
sxpeciation

iJses beacon io
validate
existence of
ptan using
ancillary
gvidence

Knowledge of
Presence of

Source Code

f

R

Goal

t ¢t

Plan
Elements

Figure 4: Opportunistic approach while parsing code [OBRI03]
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5) Integrated approaches

This approach is a combination of bottom-up, top-down and knowledge-based
comprehension model, integrating them into a single metamodel as proposed by
[MAYR95] and demonstrated in Figure 5 [OBRIO3]. In practice, programmers freely
switch between the three comprehension strategies, adopting the strategy that fits best for
the task at hand. At any moment during the comprehension process, any of the above
comprehension models can be applied. For example, during the program model
construction a programmer recognizes a beacon, indicating a common task such as a
sorting algorithm. This leads to the hypothesis that the code sorts something that triggers
the use of the top-down model. The programmer has some objective in mind and
searches the code for clues to support his expectations or hypothesis. If during the search
he finds more unrecognized code, he may jump back to program model building (top-

down).

Top-Down Model

Top-DOWD
Struciurss

é-ﬁ'; -

y Frogram Situation

" WModel HModet
Struciures StrUctyres

i

Program Model
Situation Model

Figure 5: The integrated approach as per Mayrhauser & Vans metamodel [MAYR94]
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2.2 Software Visualization

Software Visualization (SV) is “the use of the crafts of typography, graphic

design, animation and cinematography with modern human-computer interaction
technology to facilitate both the human understanding and effective use of computer
software” [PRIC93b].
When approaching an unknown piece of software for the first time, programmers always
find it a challenge to comprehend it unless it is of the most trivial kind. Understanding
software 1s a major challenge within the software development and maintenance domain.
Great expense is required to employ people to analyze software for modification,
alteration, bug fixing, and maintenance. Certain measures such as meaningful comments
in code and up to date documentation can reduce this problem. The recent rise in
popularity of object-oriented programming was supposed to be a solution to the problem
of software comprehension. Although object orientation (OO) brought a richer model to
programming, it is not a total solution to the problem. Current software is too large and
too complex for a single human to digest in a reasonable amount of time. Moreover,
traditional means of navigating through these large systems (e.g. text editors) have not
adapted well to these new challenges.

Comprehension tools can facilitate program comprehension by using
visualization to disclose the high level structure of programs. At its best, software
visualization should be equivalent to having the original author available to discuss the
program structure [REOWO00]. Generally when a new programmer confronts a piece of

software and has some confusion over a part of the software, or needs clarification, the

17



quickest solution would be a consultation with the original author. Original developers
have a mental picture or conceptual model of the software that they will transform into
program code [JERD94]. The goal of visualisation is to serve as a comprehension tool
similar to having the software architect as mentor. Software visualization tools should
help the programmer to focus on program sections that is relevant to the programmer’s
task at hand instead of having to look at the entire application code.

The ultimate aim of visualization is to speed up and improve the production and
maintenance of software. Software is very expensive to create and maintain, so obviously

the more efficient these processes are, the better [JERD94], [PRIC93a], and [ROMA92].

2.2.1 Traditional Visualization Techniques
1. Line color-coded representation
Typically, software visualization has mainly been code visualization. Software codes
were highlighted in meaningful colors, and then the code lines were reduced in size to

allow a more global view of the source code [BALL96].

18



Figure 6: Color-coding from Visual Assist [V_ASSIST].

Figure 6 represents C++ type coloring. Strings, macros, functions, variables and
other types are color-coded. This provides a quick recognition of types and facilitates
comprehension. Color-coding could represent anything from program functionalities to
program slices and even to code version history. However, the drawback manifest itself
when there are too many color codes whereas the user is overwhelmed with a multicolour
text and coloring just becomes a nuisance to the comprehension process. Color-coding 1s

not scalable and of course it would be meaningless to color-blind people.

19



2. Directed Acyclic Graph

Program executions could be presented and visualized as call trees and call graphs, see
Figure 7. As the name implies, these graphs represent what functions are called and who
is calling whom. Directed Acyclic Graphs (DAG) are useful for visualizing program
behavior and the interaction between codes portions. With a DAG, it becomes easier for
programmer to see the code behavior without having to go through a program execution

trace. Again the scalability of this technique can be a restricting factor.

i :l_l

=

Figure 7: A tree graph of packages [FOURO04]

Furthermore, although the call graph does indicate what functions are being called, it fails
to demonstrate the calling order and number of times a function is being called. An even
more serious problem is dynamic call graph in object-oriented programming.

Representing recursive calls within a call graph is a challenge.

20



3. Tree Maps
Tree maps are 2D representation of the program source code. Each rectangle
represents a file source code of the program. The rectangles are directly proportional to

the file size relative to the entire program.

Figure 8: Tree map of file distribution [FOUR04]

A quick glance at a tree map can show the programmer the main cores of the program
code and what files are more important in size (code volume content) than others. Figure

8 shows a “Tree map” demonstrating the size of each file within the application.

21



4. UML representations

The object-oriented programming has an intuitive nature for modeling the reality.
UML class diagram is an intuitive technique to model object-oriented class hierarchy. A
class diagram represents objects that the code models and the relational hierarchy
amongst them. It helps the user divide the program code into smaller and more
manageable code portions where each portion represents an object or concept of the real

world.

[% _ | ’ Vehicle E

‘Water_Vehicle

Barge

Figure 9: UML Class diagram
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An UML class diagram helps the programmer to visualize code “chunks” and code
“beacons” within the application. Figure 9 shows a typical UML class diagram structure

and classes hierarchy. It clearly depicts what real world object the code is modeling.

2.2.2 Main Challenges of Software Visualization

Visualization is a major technique in software comprehension. It allows software
engineers to create a concrete view out of intangible design ideas. If an image is worth a
thousand words then software visualisation (SV) is worth a thousand lines of codes. It is
an extra channel of communication among software engineers in addition to words and
codes. It allows the comprehension of larger ideas instead of code details. As useful as
software visualization might be, the technique still faces major challenges. As listed by

[YOUNG96], they are:

1. Metaphor: How to represent the different entities of the software?

A large part of the difficulty in providing intuitive visualizations is the lack of
physical structure in software. A question arises immediately, “What does the software
look like?” According to [BROOS7], softwares have no “visualisable” structure despite
progress in restricting and simplifying them. They remain inherently “unvisualisable”,
and thus do not permit the mind to use some of its most powerful conceptual tools.

Creating visualizations that are both useful and intuitive is a difficult problem.

23



2. Abstraction: What to present and in how much detail?

Another problem common to many SV systems is information overload. A view
may seem useful and intuitive for small, simple examples, but may quickly become too
cluttered to understand for larger software. Acyclic graphs are a natural representation
for many software artefacts. They usually consist of nodes and links carefully arranged
by a layout algorithm. The most difficult aspect of showing software through graphs
involves the graph layout problem. The nodes and edges must be positioned in an
informative layout that clearly shows the underlying graph’s structure [BALL96].
Unfortunately, drawing informative graphs is exceedingly difficult for large systems. In
the case of acyclic graphs, the numbers of nodes can become overwhelming and the

numbers of edges crossing each other can render the graph unreadable.

3. Navigation: How to move through the set of visual objects?

When looking at a large set of data, one must be able to locate and focus in the
interested portion in a quick and intuitive manner. Navigating through the presented
information should not hinder the comprehension process and it should be as transparent
as possible. However, large systems require large screen space to display. Where two
related artefacts are displayed too far from each other (perhaps even on another screen
page) navigating back and forth between pages can hinder the general comprehension
process due to a sudden jump from one view to the next and therefore interrupting the

context.
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4. Correlation: How to link the abstractions to the source code and documentation?
After all, software visualization is only a picture of the source code. It remains
difficult to show that the visualization represents the actual source code. The abstraction
is merely a summary of the source code. Since it is possible to convey all the information
of the source code in the abstraction what information should be kept and what should be
discarded? Keeping too much information will create an abstraction that is too complex
to understand and leaving out too much will create a view that might lose some crucial

information from the code.

2.2.3 Criteria for evaluating a SV system

Many software visualization tools exist. Some are more efficient than others.
How does one evaluate the quality of a software visualization tool? Every traditional
visualization technique exposed in the previous section has some drawback. It is difficult
to come up with a tool that satisfies all visualization purposes. [STAP99] proposes the
following key criteria to evaluate a software visualization system.

e Usefulness: The visualization makes the programmer’s job easier. A useful
visualization should provide information that is not readily available by direct
inspection of the source code. That is the purpose of the visualization tool. If a
tool cannot justify its usefulness, then it simply cannot justify its existence.

e Intuitiveness: The visualization is easy to understand. It should match the
programmer’s intuition about what the software “looks” like. Although it is
accepted that software has neither form nor shape [BROOS7], the software

engineering community has established some standards in the domain of software
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visualization. A class is generally represented as a rectangle whereas a directed
arrow represents a relationship. Unless the abstraction attempts to introduce new
ideas in the representation, those well-established abstractions should remain
unchanged.

e Scalability: The visualization works well for large (real world) systems. It should
not become less useful or less intuitive as the size of the visualized system
increases. Although most tools will serve their purpose in small and medium size
program code but as the code volume increase, the visualization becomes too
complex and the amount of information presented to the user becomes
overwhelming. Facing real world systems that are large and complex the
usefulness and the intuitiveness disappear causing failure of the visualization tool.
This is by far the greatest challenge of software visualization. Information
overload hinders the comprehension capability of the user and will eventually

render the visualization totally useless.

2.2.4 A Review of Existing Commercial and Research Tools:

There exist several software visualization tools that can provide valuable
information to software engineers about program codes and guide these programmers
during the comprehension of large software systems. However, these tools also suffer
from several weaknesses. The following sections will evaluate a few of these tools and

discuss their strengths and weaknesses.
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2.2.4.1 CC- Rider

A product of Western Wares [http://www.westernwares.com//, CC-Rider is a tool
to develop, visualize and document software written in the C and C++ programming
languages.

The CC-Rider Visual Browser provides information on classes, functions,
variables, strings, comments, templates, enum values, name spaces, and macros. A CC-

Rider interface is presented in Figure 10.

class Event ;
¥ DERIVES: public KbdEvent, public Mous
public: :
virtual EventType getType(void] const
virtual "Eventjveid] {.}; /* Event destructy

b

Figure 10: CC-Rider Interface

CC-Rider also provides additional numerous useful views and filtering techniques such
as:

o Class Hierarchy represents the class inheritance structure of the program.

System's root classes are shown to the left. Derived classes are displayed to the

left with connections to the primary parent classes.
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Class Ancestry displays a reverse graphical representation of the class
inheritance structure of the program. It differs from the Hierarchy View in that
individual derived classes are shown on the left, with all their parent classes
shown to the left. Branches in this graph indicate multiple inherited classes.

Class Nesting displays a graphical representation of the class nesting structure of
the program. These are classes defined within the scope of another class. In this
tree, classes with nesting are shown on the left, with nested classes to the right.
Double-clicking on any class in the Hierarchy, Ancestry or Nesting windows will
bring up details for the class.

Call/Caller Trees display complex relationships between the functions, methods
and data in the applications. Function calls and data references are represented as
differently shaped nodes in the tree. These trees are useful for examining the
structure of C applications, which do not have the object-oriented -class
relationships.

File Relationship Views display graphical representations of the files number
included by other source files in the system.

Symbol Find is a list box showing various alphabetic ranges of raw symbol
names.

Program Statistics display the symbols stored in the CC-RIDER Database by the
source code Analyzer.

Documentation generator generates documentation for the projects in various

formats (RTF, html and winHelp)
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CC-Rider strength

e Understanding and Navigating Code: Code reading and navigation is made easier
with CC-Rider. The visualization could clarify future development, accelerates
maintenance and quickly bring new team members up-to-speed.

e Code Documentation: Whether for maintenance, commencing a new project or
accommodating a new team member, CC-Rider enables a quick understanding of
the source code.

e Team Collaboration: Programming teams can share code documentation over the
Internet with HTML documented version of the project thus enhances
communication among team members.

CC-Rider weaknesses

o Scalability: CC-Rider performance and usefulness diminishes as the program and
diagrams get larger causing the programmer to suffer information overload.

e Domain knowledge: while the diagrams are useful to describe the current status

of the source code, it does not explain why it has been written that way.

2.2.4.2 Source Insight
A project oriented program code editor and code browser, with built-in analysis
for C/CH+, CH#, and Java programs, Source Insight

(http://www.sourcedyn.com/index.html) parses source code and maintains its own

database of symbolic information dynamically while the programmer works, and presents

contextual information automatically. Source Insight also display reference trees, class
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inheritance diagrams, and call trees. The vendor claims that Source Insight was designed

for large, demanding, real world programming projects, see Figure 11.
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Figure 11: Source Insight interface

Source Insight main features

e Always Up-To-Date information: Source Insight automatically builds and
maintains its own symbol database of functions, methods, global variables,
structures, classes, and other types of symbols defined in the project source files.
The symbol database provides browsing feature, without having to compile the
project or having to depend on the compiler to provide browser files.

e Call Graphs and Class Tree Diagrams: The Relation Window shows relationships
between symbols. Programmers can view class hierarchies, call trees and

reference trees.
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Syntax Formatting: Information while programmers read their code. For example,
references to local variables can look different from references to global variables,
references to functions and references to C function-like macros can also appear
different. With Syntax Formatting, it becomes obvious what an identifier refers to,
or if it is misspelled.

Context-Sensitive Smart Rename: Source Insight’s indexes allow programmers to
rename variables, functions, and other identifiers in one step. Source Insight’s
context-sensitive can rename local scope variables and global or class scope
identifiers.

Team Programming Support: Changes made by any member of a programming
team are reflected automatically since the entire code base is scanned and
resynchronized as needed. Programmers can instantly jump to the definition or
usages of any symbol, and can access modules and other symbols without having

to know what directory, machine, or file they are in.
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Other feature includes

¢ Mixed Language Editing.

Keyword Searches like an Internet Search on Code Base.

¢ Symbolic Auto-Completion.

e Access to All Symbols and Files

e Hyper Source Links to Link Compiler Errors and Search Results
o Project-Wide Search and Replace

s Project Window with Multiple Views

Source Insight weaknesses

Although Source Insight is a powerful source code editor and browser, it remains
a source code editor helper. It neither provides great help in understanding the
architecture of the program nor does it help in understanding the application’s concepts.
Source Insight is useful for the development process but it will offer little efficiency for
comprehension and maintenance. Even though the vendor claims that Source Insight is
useful for large software, the reading of source codes (even facilitated by all the features)
can quickly become overwhelming to anyone as the software grows in size. Source

Insight will need other comprehension means to override its weaknesses.

2.2.4.3 Understand for C++

Understand for C++ (hitp://www.scitools.com/ucpp.html) is a reverse

engineering, documentation and metrics tool for C and C++ source code, see Figure 12. It

offers code navigation using a cross reference, a syntax colorizing "smart" editor, and a
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variety of graphical reverse engineering views. Understand for C++ is an interactive

development environment (IDE) designed to help maintain and understand large amounts

of legacy or newly created C and C++ source code.

erived Classes: ‘
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Figure 12: Understand for C++ class hierarchy

Understand for C++ offers a variety of reverse engineering diagrams such as:

Class Inheritance Diagrams reverse engineer class inheritance relationships.
The Derived Classes Tree documents how a C++ class was built (inheritance).
The Base Class tree shows what other classes depend on a class (inherit from it).

Invocation Trees document a calling hierarchy between C and C++ functions
from the top to the bottom (or from the bottom to the top). There are two types of

trees. The Call Tree (Invocation), indicates what is accomplished by a function
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call (or causes to be called). The CallBy Tree, reveals who calls a function,
permitting the programmer to easily trace the impact of a change to that function.

e Include Trees show what depends on a given C or C++ header (.h) file (include
file dependency) as well as what header files a given section of code depends on.

e Declaration Diagrams are available for any declared item that has structural
relationships with other items. It also documents the first level of uses and
dependencies.

e Class Diagram shows what a members a class offers as well as where it derives
from, and what derives from it.

o Include File shows what macros, functions, “typedef” and classes are provided
by the included file. Also shown are the other files that include this file
(dependencies) and what this file includes (depends on)

¢ Function shows parameters and return type. Also shown are the files that this
function depends on (calls) and those that depend on this function (called by).

¢ Data Member Diagrams are available for any declared class, type or “struct”
that has data members. The diagram shows all components and how they are

being built. The diagram follows and unfolds the types used to build members.

Understand for C++ strengths

It provides a great variety of views and diagrams for programmers. Given the
many views options, the programmer can choose the appropriate diagram that would best
fit his comprehension task. It is a tool meant for reverse engineers and provides a wide

range of comprehension tools to understand the source code.
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Understand for C++ weaknesses

Since these diagrams are in 2D the difficulty of the comprehension task increases
exponentially as the program becomes larger. Diagrams quickly become
overwhelmingly large and too much information is presented in a single view. Multiple
view windows are good filtering techniques but it will become confusing to manage too

many opened windows as the program increases in size.

2.2.4.4 SNiFF+

SNiFF+ (http://www.windriver.com/products/development tools/ide/sniff plus/)

is an Integrated Development Environment (IDE) for Unix or Windows application
developers who are working with large volumes of code (generally 100 KLOC to
5MLOC) using C, C++, Java, or ADA or a mixture of any of those languages. It is a
source code analysis environment for software developers and teams who work with
large amount of application code. The SNiFF+ tool promotes engineering productivity
and code quality by providing a comprehensive set of code visualization and navigation
tools that enable development teams to organize and manage code, see figure 13. It also
support reverse engineering, configuration management, workspaces and build

management.
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Figure 13: Sniff++ interface

SNiFF+ is a powerful source code browser and a great IDE. It provides more
functionalities than traditional IDEs such as Eclipse, Visual Studios or JBuilder.
However it remains a development tool more than a reverse engineering tool. Its
functionalities promote quick understanding of the source code but provide little insight
about the program architecture. It helps in browsing the code and with finding out
“what” is in there but it does not provide “why” it is there and “why” it is done that way.
For that reason, it can help new developers to understand the current code and continue to
add on features but it will be little help when the developer needs to maintain the

currently existing features.
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2.2.4.5 Imagix 4D

Imagix 4D is a comprehensive program understanding tool, it enables
programmers to check or study software on any level, from the high level architecture
down to the details of its build, class, and functional dependencies. Programmers can
visually explore aspects of their software such as control structures, data usage, and

inheritance, see Figure 14.

Imagix 4D Features

e Build Dependencies: This view indicates the interrelations among files, showing
which files are required to build other files. Some of these dependencies result
from build rules in “makefiles” while others are the result of include statements in
the source code.

¢ UML Class Diagram: uses the format from the Unified Modeling Language to
depict what UML terms the collaborations, associations and relationships inherent
in the software.

e UML File Diagram: shows the “include” relationship and the member-to-
member relationships (associations). Programmers are able to follow a symbol
and its dependencies across files.

¢ Function Pointers: tracks assignments from one function pointer to another and

recognizes function pointers or functions passed as parameters.
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Figure 14: Imagix 4D interface

o Control Flow Mode: Through the Control Flow graph, programmers can
visualise the complex dependencies and understand the critical areas of the code.

e 3D Graph: All graphs can be view in 3D layouts

e 2D Graph: All graphs can also be view in 2D layouts which are more intuitive

than 3D

Imagix 4D strength
Providing a large variety of potentially useful views it is one of the rare tools that

allow the user to visualize the global program architecture. Without having to browse
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though the source code, the user can have a general idea of the program structure with a

simple glance at the class diagram.

Imagix 4D weaknesses

Tool’s usability diminishes as the program size increases.

Diagrams quickly

become overwhelmingly complex and the user is presented with too much information.

Furthermore, the use of colors quickly becomes a nuisance and it becomes difficult to

understand their metaphor.

2.2.4.6 A Tool Summary
Tool Strength Weakness
CC-Rider Easy code navigation Scalability

Documentation generation

Source Insight

Good code editor

Good code browser

Only good for code view, no

insight on program architecture

Understand for C+{ Variety of views Scalability
Variety of filtering techniques | Only support 2D
Sniff++ Good IDE No support for program
Good code browser architecture comprehension.
Imagix 4D Provide visual architecture Scalability

Supports 3D views

Color coding becomes confusing
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In general, only some tools support a 3D environment and they all suffer a
scalability issue at one point or another. It is also evident that the main vocation of these
tools are for the forward engineering process and provide little values for reverse

engineering.

2.3 3D versus 2D Visualization

Traditional 2D visualization quickly decreases in effectiveness as the systems to
be visualized become larger. This decrease in effectiveness is mainly due to the
information overload and the limited navigation provided within typical 2D visualization
approaches. The information presented creates a significant comprehension burden for
the programmer. The comprehension of 2D diagrams is restricted by the resolution limit
of the visual medium (usually the 2D computer screen) and the limit of the user’s
cognitive and perceptual capabilities.

With the development of graphic techniques and the dramatically reduced price of
3D hardware, 3D graphic is gaining more and more attention and becoming an active
visualization area. By analyzing some properties of 3D modeling, one can see how the
third dimension can be applied to alleviate some problems associated with traditional 2D

software visualization [NGANO2].
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2.3.1 Advantages of 3D visualization

The third dimension can address some of the drawbacks that can generally hinder

traditional 2D visualization techniques [KEOWO00].

1. 3D makes more effective use of available screen space.
3D visualization can use the additional dimension to encode additional knowledge
due to the larger working volume. The additional dimension can be used to handle either
larger information volume compared to 2D visualization (enhancing information density),

or to provide the ability to visualize additional types of information to enrich the visuals.

r -7 1

Figure 15: Two distinct grouping of objects |[PITT98].
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In step with cognitive science and human perceptual system, 3D software
visualization can provide the intuitive exploration and interaction of the system.
Mapping artefacts into a 3D space allows users to identify common shapes or common
configuration that may become apparent, and which could be then related to design
features in the code.

As an example, Figure 15 shows two distinct groups of objects. They represent
two different modules of an application. It is clear that the box shape objects represent

the module containing other elements.

2. Enhancing information density.

The average distance between entities in 3D space is less than in an equivalent 2D
space [NEIL98]. 2D diagrams must spread out, whereas 3D has the potential to be more
compact [DWYEO1]. If one takes the world map as an example (Figure 16), when it is
wrapped around a sphere Australia and Hawaii are spatially close to each other. They are
at opposite sides on a 2D map, a user would be forced to scroll for some time to move
from one country to the other, see Figure 16. By using 3D compact space, the average
distance between countries is reduced. 3D visualization browsing should theoretically be

faster and simpler due to the density of entities.
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Figure 16: World map analogy, entities are placed closer to each other in 3D.

3. Reduction of visual clutter

Links and relationships among objects in 3D space are less likely to cross (or
come close) than in 2D diagrams. In a complex 2D diagram, in which entities may be
linked to other entities to show relationships, it is often impossible to avoid the crossing
of links. If this happens too often diagrams can become very confusing and virtually
unreadable. 3D diagrams help to avoid this potential problem. There is no single plane
that links are restricted to, they can travel in any direction. It is rarely necessary for links
to cross in a 3D diagram, allowing for a reduction of the necessary link crossings in a 3D

diagram [DWYEO1], see Figure 17. Combining with the ability to view the diagram
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from various angles without having to recreate the view (only available in 3D), the user

can choose the viewpoint that provides the least links crossing.

Figure 17: 3D reduces edge crosscutting, edges are not only restricted to a plane.

4. Increase in representational range.
3D characteristics of entities can represent properties of underlying objects. For
instance a sphere may represent class X, a pyramid class Y, etc. Although a similar
regime is possible in 2D, 3D allows a much greater scope, since the potential complexity
of shapes can be much greater. Transparencies can be used to express the notion of

belonging or to generate a relevant meaningful space that can be easily be interpreted by
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the user, see Figure 18. Less important 3D objects can also be drawn in wire frames, thus
highlighting full 3D shaded objects. Wire frames indicate the object’s presence but
objects that are fully 3D rendered will be the focal points. The greater the number of
means of representation available, the more meaningful and “information dense” the

diagram becomes.

Figure 18: 3D transparency, one object is contained inside another.

5. The positions of objects in space may have relevance to their properties.
For example, objects below object X have property P, objects behind have property K,
etc. In two-dimensional diagrams, this is limited to above, below, left and right. Three-
dimensional view adds the notion of depth, allowing more information density, see
Figure 19. One can now connect meaning to an entity being behind another, or in front of
it. The figure below shows that the notion of depth is easier to represent in 3D than with

2D counterpart.
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Figure 19: Depth is easier to represent in 3D than 2D.

6. Intuitive Navigation.

3D offers more interesting options as far as actual viewing is concerned. Whereas
a user can scroll around a 2D diagram, they may wish to fly around a 3D view, or walk,
or simply stay put and rotate the world around them. When a model is built, the most
appropriate means of navigation will have to be considered. For small diagrams, the best
solution may be to have the model surround the user, and allow them to study the entire
world simply by spinning it around on some axes. For a large diagram there may be tiers
of information, the top level may contain different information relative to the second
level. Therefore it is feasible that the user may walk around the levels, and fly between

them [MALEOI].
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7.

3D can give a sense of reality.

3D visualization may impart a sense of “being there" to a user. If users feel that

they are traversing a virtual world, they are more likely to become immersed in the

world, and be more receptive to details portrayed in the world [MALEOQ1].

2.3.2 Challenges facing 3D visualization

Although 3D visualisation provides many advantages, it is not the “Holy Grail” of

software visualisation. Along with its promising advantages, it also brings its own

drawbacks and challenges. Following are issues that arise with of 3D visualisation:

The frame rate (the rate at which a browser displaying a virtual world can update
its screen) must be considered as a potential disadvantage if it is not realistically
high. Low frame rate will cause non-fluid screen updates when the user rotates,
zooms or navigates around in the 3D space. Reasons for a low frame rate are
predominantly technological, due to limitation of adequate hardware support for
3D rendering. If a diagram is unpleasant for users to navigate then they are
unlikely to gain anything from it. They are also unlikely to want to use it again.
Fortunately, 3D is now quite feasible on the average desktop. With advancement
of computer CPU speed and more powerful graphic cards, this issue will be of

lesser importance in the future.

Disorientation is another potential shortcoming of 3D. A user may get lost within

a diagram, by facing an inappropriate direction, or by moving too close to some
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object or too far from the model in general. Disorientation problems are
preventable, however, with sensible model design. A user can be prevented from
getting too far away from a model by encasing it in walls. Sign posts can also be
positioned to give users an idea of where they are. Other more complex help aids
may also be devised. For instance, one may imagine programmed help agents,
which appear to inform the user of their current location. Similar problems also
exist in two dimensions. These issues are being addressed by such techniques as

fish eye views.

Spatial Navigation in 2D-graphs visualizations is limited to translation in x and y
coordinates, scaling about a point of interest, and rotation about a point
orthogonal to the screen. However, rotations are not commonly used. In 3D space
users are exposed to much more freedom of movement. If not used properly,
navigating in 3D space could result in the programmer being totally lost in the
environment and this could hinder the comprehension process. Navigation and
orientations are problems that arise hand in hand. With the third dimension
available, one must also consider the “world up” and the travel direction. One

cannot successfully navigate through the world without proper orientation.

Text labels pose a problem in 3D. In a 2D diagram, text labels cause no
problem. They are always readable since they are always viewed from the
“front”. It is assumed that labels are readable no matter where a user should scroll

too. However in 3D there are some important considerations. Should labels
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always face the user? Should they scale as the user moves towards or away from
them? Should they appear only when the user comes within proximity? Label
density is also an issue. If text is too densely packed it may obscure objects in the

background or make the entire display confusing, see Figure 20.

Figure 20: 3D texts are difficult to read.

Text labels in 3D also have the disadvantage of being geometrically complex,
which can lead to a reduction in frame rate. For this reason we must try to reduce
the use of text whenever possible. Another important consideration is that the
viewing tool should avoid overwhelming the user with unnecessary data causing
information overload. The user should never be faced with an overly complex

screen brimming with information.
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e Information overload can result in diagrams that are unreadable. Utilizing a third
dimension, viewing tools are able to display more information on the computer

screen.

Figure 21: A system of over 1200 classes [LEWE01].

From figure 21, which shows a system with over 1200 classes, it becomes
obvious that there is too much information condensed into a limited visual space
causing the visualisation to be difficult to understand. Thus more information
might be presented to the user within a given (limited) computer screen space
than using a 2D representation. However, the resulting view can become too
complex or cluttered for the user to understand easily. 3D visualization can

present in theory more information than 2D but if that information is not
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presented in a fashion that is useful to the user, it will only hinder the
comprehension process. The key to solve this information overload challenge is
to apply “filtering techniques”. The user should have the option to specify what
information to view and what information should be filtered out, therefore

allowing for a reduction of the information to be displayed.

Scalability is still an issue for 3D visualization. Even though 3D representations
are more scalable than their 2D counterpart, scalability remains an important
issue. As the program grows bigger, more items must be shown to describe its
system. As a result, 3D visualisation is again faced with the problem of
information overload. Scalability and information overload are usually problems
that come hand in hand. New filtering techniques can be applied to address the
scalability issue, by only displaying artefacts that provide relevant information

and by filtering out the unnecessarily artefacts.

2.3.3 Potential solutions to 3D visualization challenges.
There are some potential solutions to the 3D visualization challenges.

(1) Navigation: Intuitive ways must be found for navigation through the 3D
world to explore the information presented. The information might be
dense but with efficient navigation users may find what they need quickly

and thus minimizing the effect of information complexity.
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(2) Viewing technique: the main view is broken to different specific subviews
where each of them can be assigned to convey a different type of
information.

3) Better filtering and analysis techniques: exclusion of unwanted
information, reduction of information overload and improved scalability.

Divide and conquer is the solution for large and complex tasks.

Presented below are potential techniques to address these 3D visualization

challenges.

1) Orientation and Navigation in 3D scenes
Navigation through 2D visualization is generally trivial and simplistic. The user
is exposed to generally accepted navigation process such as scrolling with scrollbars,
dragging the 2D scene or opening a new view perspective. There are a number of
differences between the visual structure of 2D and 3D interfaces. Probably the greatest
difference is that 3D interfaces do not offer a unique, comprehensive view in the most
situations. Many view angles are available but only a few are useful for comprehension.
The user needs to move through the scene to perform the given tasks. 3D interfaces
generally offer an approach based on exploration rather than on synthesis, that is the
reason why orientation and navigation are two key issues of 3D interfaces [PITT98].
e Environment orientation: Orientation is the first requirement for navigation.
One cannot know what direction to go without being properly situated within the

environment. There are a number of elements people use to orient themselves
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within a 3D space. Directional signs are generally used to communicate space
location and directions. When looking at a map of a shopping center or a large
building, the user can generally locate a marker showing “You are here” to
identify his current location. Also the map is usually oriented with an arrow
indication the direction “North”. Those are the cues used in most 2D maps to
help the users to locate and orient themselves. In a 3D world, the view can use an
animated object to identify the current location and use the standard x/y/z axis to
orient the user.

¢ Navigation input: Once the user has successfully situated and oriented himself
he may attempt to navigate through the 3D scene. This is not a simple task since
the 3D scene is not similar to the real world that people are used to. Computer
visualisation is limited to the input devices that are currently available (mouse,
keyboard, game-pad, trackballs etc.) Using a single one of these devices will not
be sufficient. The key is to combine these inputs, a multimodal approach, and to

have one device complements the weakness of the other [PITT98].

2) Different viewing techniques

Most systems for visualizing large information structures use 2D graphics to view
networks of nodes and arcs that represent data. To understand large structures, it is often
necessary to show both small-scale and large-scale structures. This is usually referred as
the problem of focus and context. It is important to provide information about the large-

scale structure of the graph, while at the same time allowing users to drill down to an
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arbitrary level of detail. There are four techniques to solve the focus-context problem:

multiple windows, distortion, rapid zooming, and elision.

Multiple windows: It is common, especially in mapping systems, to have one
window that shows an overview and several others that show expanded details
[BEDE94]. In Pad++ [BEDE94], multiple windows are called portals and each
portal can be individually zoomed. One potential problem with multiple window
techniques is that the details are disconnected from the overview and therefore
from the overall context. It might be difficult to see where the zoomed details

belong to in the overview window.

Distortion techniques: A number of techniques have been developed that
spatially distort a graph. Distortion gives more room to the designated points of
interest and decreases the space given to less interesting objects. Some
techniques such as the hyperbolic lens have been designed to work with a single
focus [LAMP95]. Others allow for multiple foci to be simultaneously expanded
[NOIK94]. Many of these methods use simple algebraic functions to distort the
graph based on the distance from each focus. An alternative method called
“intelligent zooming” [SCHA96] [DEER92] uses techniques of graph layout to
dynamically resize and reposition parts of a graph based on selected points of
interest. The basic concept of every distortion techniques is to spatially expand
what is currently interesting and collapse of what is not, thus providing both focus

and context.
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Rapid zooming techniques: In rapid zooming techniques a large information
landscape is provided, but only a small interested part of it is visible through the
viewing window at any instant. The user is given the ability to rapidly zoom in to
and out of points of interest, which means that although focus and context are not
simultaneously available, the user can rapidly and smoothly move from focus to
context and back. This may allow the user to cognitively integrate the
information. There are a number of 3D techniques that could be referred to as
“zooming”. These include changing the camera focal length, moving the camera
toward an object, and up-scaling an object. In all cases, part of the scene occupies
a larger area of the viewing window. In [MACKO90] a rapid navigation technique
for 3D scenes was presented, referred to as POI navigation. This method moves a
user towards a point of interest that has been selected on the surface of some
object. At the same time, the viewpoint of the user is brought to a point that is

perpendicular to the surface.

Elision techniques: Elision is a technique where parts of the structure are hidden
until they are needed. It is achieved by collapsing a sub-graph into a single node.
In the intelligent zoom system [BART94], as a node is opened, it expands to
reveal its contents while simultaneously adjusting the entire graph to make more
space for the already expanded nodes. Any number of nodes can be expanded
while the graph is continuously adjusted, creating more space for objects of

interest and correspondingly reducing the size of other parts of the graph.
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Therefore rescaling and elision work hand in hand. In elision methods, eliding
blocks of structure into a single more compact representation provides context.
This kind of technique works well in nested graph structures because entire

sub-graphs can be collapsed into representative nodes.

3) Analysis and filtering support

Filtering is an important intermediate step in reducing the information volume
that has to be displayed [SHNE92]. Two major categories of filtering techniques, namely
structural and semantic filtering, can be distinguished. The most commonly used
structural filtering techniques in software visualization are based on creating hierarchical
views of a software system. Information reduction by structural filtering techniques is
one approach to improve the scalability and applicability of visualization techniques.
However, without a meaningful interpretation, these filtering techniques might sill not be
sufficient in interpreting the systems. Source code analysis techniques can be applied to
filter and group the analyzed source code to provide for more meaningful interpretation
of the visual representations. One well-known approach to source code analysis is

program slicing [GUPT97, HARMO1, HORW90, KORES8S, WEIS82].

e Program slicing: “Slicing” is a program analysis and reverse engineering
technique that reduces a program to those statements that are relevant for a
particular computation. A slice provides the answer to the question "What
program statements potentially affect the value of variable v at statement s?" It

was observed [WEIS84] that programmers have some abstractions about the
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program in mind during debugging. The process of debugging consists of
following dependencies from the erroneous statement s back to the influencing
parts of the program. These parts may influence s either because they decide
whether s is executed at all (control dependence) or because they define a variable
that is used by s (data dependence). A program “slicer” can be used to
automatically compute and visualize the slice of the program with regard to the
statement s and the variables used or defined at s. It allows the programmer to
focus his attention on statements that are part of the slice. Additionally, the
programmer sees any statements that are not part of the slice and can reduce the
importance an attention he might pay to them. Program slicing can be used to
assist the programmer in many tedious and error prone tasks, such as debugging,
program integration, software maintenance, testing, and software quality
assurance. Several variants of program slicing have been proposed for these
purposes, including static slicing, dynamic slicing, backward slicing, forward

slicing, chopping, interface slicing, etc. [GUPT97, HARMO1, HORW90]

UML and design patterns: The Unified Modeling Language (UML) is a
general-purpose modeling language for specifying, constructing, visualizing and
documenting artefacts of software systems [BOOC99]. It provides a collection of
notations to capture different aspects of the system under development. A simple
glance at the “class diagram”™ shows the programmer what class exists in the
system and the relation between these classes. The “sequence diagram” shows

the run time behaviour of the system and shows how classes interact with each
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other. Looking at the diagram makes is easier than going through files and lines
of codes in order to understand the program.

Design patterns [GAMMO95] have become increasingly popular among
software developers since the early 1990s. They help developers communicate
architectural knowledge, help people learn a new design paradigm, and help new
developers ignore traps and pitfalls that have traditionally been learned only by
costly experience. Design patterns are usually modeled and documented in the
UML [BOOC99]. However, UML does not keep track of pattern-related
information when a design pattern is applied or composed. The elements in the
model, such as classes, operations, and attributes, in each design pattern usually
play certain roles that are manifested by their names. The application of a design
pattern may change the names of its classes, operations, and attributes to the terms
in the application domain. Thus, the role information of the pattern is lost.
Without this information it is no longer obvious which model elements participate
in this pattern so it is hard for a designer to identify design patterns in software
system designs [VLIS98] [DONGO03].

The omission of design patterns in the visual representations can cause several
problems. Without the visualization of design patters, software developers can
only communicate at the class level instead of the pattern level. Since they do not
have access to pattern-related information in system designs, the benefits of
design patterns are compromised. Firstly, designers can no longer communicate
with each other in terms of the design patterns they use and the design decisions

and tradeoffs associated with the use of the patterns. Secondly, each pattern
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typically documents some ways for future evolutions, which are buried in system
designs. Secondly it may require considerable efforts to identify design patterns
manually within an existing software system design [KELL99].

Design patterns not only provide solutions to a recurring problem, but they
also convey the rationale behind their solution, i.e., not only “what”, but also
“why” [BECK94]. Existing work on design pattern recovery typically focuses on
the use of static information to recover design patterns. There exists a smaller
body of work that also integrates dynamic source code information. Heuzeroth et
al [HEUZ03] argue that a static analysis is often not sufficient for pattern
recovery. They introduce dynamic analysis techniques to detect design patterns in
legacy code. Reverse engineering focuses on creating “representations of a
system in another form at a higher level of abstraction” [BASS02]. Reverse
engineering tools that support design pattern views of the overall system structure
can allow for some additional reasoning about “why” certain
implementation/design rationales might have been chosen in the original

implementation.

Grouping and Layout: Analysis, 3D visualization and filtering techniques on
their own are only steps towards improving software visualization. They are
typically not sufficient to close the conceptual gap between representations
created during the traditional forward engineering and those created as part of
reverse engineering. The success of a visualization technique depends also on its

ability to visually organize and decompose a system. It has been shown [BASS02,
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FAVRO1] that grouping, clustering and layout can improve readability by
supporting representations that closely related to the mental model programmer
forms of a system during typical comprehension tasks [MALEO1, MAYR9S,
STOR99].

Many factors influence the original layout decision of the visual notation used
while modeling or designing a software system, e.g., functional, domain
knowledge, architectural aspects or just pure personal preferences that cannot
easily, if at all, be extracted from the source code. Traditional layout algorithms
focus mostly on improving the readability by reducing the number of edge
crossings in the diagrams [DWYEO1]. Other issues, like mapping the visual
representation to the programmer’s mental model are ignored. The major
objective of a good layout and/or grouping algorithm has to be the ability to
recreate a representation that (1) closely matches the perception a user has of the
system, either based on previous involvement with the system or based on
existing domain knowledge, and (2) provide meaningful interpretations (views) of
the system which might not correspond to a typical metric based layout/grouping
approach. However, it must be noted that recreating a graph layout that matches
the original layout created by the designer/developer is a near impossible task.

Typical clustering approaches in software visualization are based on a
hierarchical clustering or metric based approaches. For large systems, the problem
of minimizing the metric becomes a greater challenge [BECK94]. Not only does
the complexity increase when trying to find an optimum solution, it is often

impossible to minimize the overlapping and crossing of edges. This quickly leads
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to visuals that are very difficult to comprehend. The major challenge of visual
clustering and grouping is one of reducing visual aliases. Depending on the
number of objects, clustering priority must be shared between user interpretations
and clearer visualization. For the forward engineering of new systems, software
visualization has been established as the tool of choice to control their
complexity. Typically, UML diagrams are used as the graphical view to represent
static and dynamic aspects of a software system [DONGO03, DWYEO1]. However,
the combination of applying both hierarchical and non-hierarchical relations poses

a special challenge to a graph layout tool.

2.3.3 Key issues for the Implementation of a Software Visualization tool.

Not all software visualization tools have been effective in their application. For

software visualization to be effective, they must satisfy several identified key issues

[LANZ02].

The overall architecture: how the entire software visualization tool is
structured. It needs a clear separation between the core, the visualization engine
and the metamodel. Flexibility is the key, as the software will likely evolve as
development progresses and requirement changes. The metamodel may need to
be refined and the visualization techniques may be required to change. An
architecture that cannot cope with changes is doomed and the tool may someday

need a complete rewrite. Since software visualization is still a field under
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research, changes are inevitable, the tool must be flexible to accommodate any
new visualization idea or techniques

The internal architecture: the design of the core domain model. This should be
simple at first sight but the domain model must be easily extendable. Adding new
functionalities and requirements should be simple and should not compromise the
integrity of the internal architecture. It is important since research requires
exploration of different avenues and the internal architecture should be solid to
support those experiments.

The visualization engine: software visualization tools that have special needs
and commercial libraries do not provide the degree of freedom needed. On the
other hand, writing a complete visualization library from scratch is cumbersome
and should not be a burden to the tool provider. A compromise must be made that
would provide enough flexibility without having to put most of the effort in
writing the visualization engine.

The metamodel: the way data is collected and stored. Although not directly
related to software visualization, it is an important issue. The data should be
separated from the visualization engine. In this way, data is provided from an
external tool. As long as the input data is of the same format, the SV tool can use
it.

The interactive facilities: the direct manipulation provided to the user.
Although hard to validate, it is the aspect that requires the most work and
ultimately dictates the tool’s usability and success. The user not only wants to

look at the software, most of the times he also wants to interact with the
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visualization. Static visualization seldom offers satisfaction to the user. The
direct manipulation must also be intuitive and efficient. Slow response
manipulation will hinder the ability of the user to understand the software and

reduce his will to use the tool again.
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Chapter 3 Contribution

3.1 Objective and specific goals

This research focuses on two major areas: (1) Extension of the traditional 2D
UML representation into the 3D space. (2) Combination of 3D UML with source code
analysis techniques and 3D navigation techniques to facilitate the exploration of the
virtual world. The resulting contribution of this research also consists of two parts.
Firstly, source code analysis is used to extract design patterns that had been used during
forward engineering and to create a layout that would make them easier to recognize and
to comprehend. Secondly, a prototype tool entitled 3D-UMLViz implements a 3D

navigation system that reduces the disorientation while navigating the 3D world.

3.2 Hypothesis

Source code views are primarily based on some diagrammatic notations that have
evolved from the early days of computing [KNIG99]. For large and complex software
systems, the comprehension of such diagrammatic depictions is limited by the resolution
limits of the visual medium (2D computer screen) and the limits of a user’s cognitive and

perceptual capacities. These limitations are results of the following problems:
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e Scalability: For large systems, the resulting visual representations tend to be
cluttered, often resulting in information overload problems.

e Layout: The awkward and sometimes arbitrary layout techniques tend to focus on
minimizing line crossing and often lead to the obstruction of important software
aspects such as patterns and other types of relationships.

e Non-intuitive navigation: Typical navigation includes pan-zoom and overlapping
of multiple windows, which confuses the user when he must browse amongst

multiple views.

Visualization mapping techniques such as fisheye-views [FURNS86], perspective
information walls [MACK91] and hyperbolic trees [LAMP95] offer some solutions for
focus versus detail. Although useful to assist the user in not getting lost in the visual
space they are limited in their scalability for large software.

It is expected that 3D UML combined with design pattern recovery and filtering
techniques can enhance the comprehensibility of the existing metaphors and help close
the conceptual gap between forward and reverse engineering. On the other hand it is
recognized that 3D visual representation, source code analysis techniques and existing
metaphors will not provide any improvement in the comprehensibility of visual
representations. Closing the conceptual gap between forward and reverse engineering
will require further effort.

In the last several years, three-dimensional software visualization has been
recommended in consideration of its advantages over 2D diagrams [JING03] [KNIG99],

many of which have been described in detail in section 2.3.1. It is believed that
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representing an UML diagram in 3D can significantly reduce the size of the diagram. An
extra dimension is available and new viewing metaphors can be divided to convey
additional concepts or information that cannot otherwise be expressed in a simple 2D
representation

Design patterns [GAMMO5] consist of sets of classes that represent a design
concept. They are high-level design elements that address recurring problems in object
oriented design. A design pattern not only provides a solution to a recurring problem, but
also conveys the rationale behind the solution, i.e., not only “what”, but also “why”
[BECK94].

A significant effort has been devoted to recovering design patterns by focusing on
the use of static information such as source code while some works also include tracing
dynamic code execution to detect behavioural patterns. Source code analysis can be used
to detect design patterns and group the participating classes in a 3D representation to
simplify diagram pattern matching. Furthermore, those design patterns have specific
layouts that are familiar to most programmers as suggested in [BOOC99]. 1t is perceived
that the comprehension process can be improved if the classes were grouped in the same
or similar layout. This is due to several factors. One can understand the classes’ roles due
to their roles in the design pattern (which is known and documented in the existing
literature) [BOOC99], therefore the comprehension process can be moved to a higher
level of abstraction, enabling visual pattern matching, and their interpretations. This type
of pattern matching is similar to recognition a stellar constellation (pattern) as a whole

instead of individual stars.
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With regards to information overload, numerous techniques have been explored to
overcome this problem. Filtering is an avenue to explore in trying to tackle this issue.
Filtering and slicing techniques were discussed in section 2.3.3 as potential solution to
3D visualisation challenges.

The forgoing analysis justifies the effort to introduce 3D visualization regardless

of the overload issue.

33 Research goals

Commercial reverse engineering tools such as “UML  studio”

(www.pragsoft.com/products.html) and Rational Rose (www-

306.ibm.com/software/rational/) simply detect and reverse engineer program classes and
connect them with relationship such as dependency and inheritance. They provide
neither insight into the program source code nor information on the general structure.
The recovered 2D UML diagrams scatter classes over the 2D display without logical
positioning or minimizing edge crossings. The diagram sometimes span over several
computer screens. Overlapping of relation edges makes the diagram almost unreadable,
especially for large systems. The badly presented information becomes overwhelming
for the user who cannot concentrate on the relevant information. Such diagrams are of
little used for program comprehension.

In an attempt to overcome these difficulties the present research is directed at the

following goals:
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e Extending the UML representation to 3D space to take advantage of
programmers’ familiarity with UML and make use of the extra screen space
and more advanced rendering techniques that are available for 3D
representations.

e Combining 3D visualization techniques with source code analysis to provide
programmers with more insights about the software design than mere
traditional UML diagrams. The prototype tool 3D-UMLVis detects design
patterns and adds this extra knowledge in its UML representation.

e Making design patterns easier for the user to locate by using layout and
grouping that closely matches the 2D layouts introduced by the GoF
[BOOC99] to reduce the conceptual gap between forward and reverse
engineering. The focus will be on the visualization of static design patterns
defined by the GoF.

o Proposing advanced navigation and filtering techniques to reduce

disorientation while navigating the 3D virtual world.

3.4  Workflow for 3D-UMLVis within CONCEPT

Source code parsing, code analysis and design pattern recognition have sustained
research interest for many years [SHAU98, NOBLO03]. The recovery of design patterns
and their application in comprehending the program during maintenance have recently
gained momentum. The CONCEPT project [RILLO2] develops a program

comprehension environment that supports various levels of abstraction. The CONCEPT
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environment is built around a layered architecture supporting a variety of analysis and
visualization plug-ins, it also includes a Java3D based prototype implementation of a 3D

UML diagram. An architectural representation of CONCEPT is presented in Figure 22.
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Figure 22: CONCEPT architecture, from source code to 3D visualization [RILLO02b].
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Figure 23 presents the steps required for the extraction of design pattern from
source code. In this research we only consider design patterns based on an existing
design pattern recovery tool [ZHAO03] that was previously developed as part of the
CONCEPT project. 3D-UMLVis is provided with design patterns present in the code
along with the classes that participates in them. 3D-UMLVis groups the classes together
in virtual 3D space, then presents the information to the user via a 3D rendering

environment.
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Figure 23: Steps in extracting design patterns from source code.

This research contributes mainly in the ‘Visualization Processing” portion of the
overall system. In this part the extracted design patterns are imported from an XML file
and then laid out with respect to the representations suggested by the GoF. After the
layout for the design patterns is completed the “Representation” takes charge of

displaying, viewing and navigating.
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3.5 Approach

3.5.1 Source code parsing

Source code parsing, design pattern detection and layout are works from previous
research [HEUZO03, RILL02b, SHAU98, NOBLO03]. Although the research is still in
progress, the 3D-UMLVis is provided with a data file in XML format in which a layout
has already been made and the design patterns detected. 3D-UMLVis depicts design
patterns that exist within the provided XML data file and then renders the classes and the

existing layout in the 3D space.

3.5.2 Design patterns layout

Design patterns are increasingly accepted as a major concept within the software

engineering domain.

Figure 24: A view where classes of a design pattern are scattered all around the view.
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In the context of this research 3D-UMLVis applies an existing source code
analysis tool [HEUZ03] [SMIT03] to detect design patterns that were implemented
during the forward engineering process.

Design patterns are typically documented in 2D UML and are fairly easy to
recognize. However, most of the existing tools and even the UML standard do not
support the visualization of 3D UML design patterns. Under a 3D environment, when
elements are not grouped coherently, they quickly become meaningless. Figure 24
presents design patterns that are ungrouped, classes are scattered and it is difficult to
locate any design pattern presence.

However, like a star constellation, design patterns become recognizable when
they are coherently and consistently grouped, even when mixed amongst other classes.
The goal is therefore to recreate a layout of recovered classes and patterns that matches
the design pattern layout proposed by the GoF. The resulting view will be more
meaningful and allows visual pattern matching and recognition. Therefore, the
interpretation of classes and their respective roles in the overall design becomes more
intuitive since they now match a layout generally accepted by the software engineering

community.
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Figure 25: The well-known and easily recognisable bridge pattern.
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Familiar shapes and formations are more recognizable.  However, 2D
representations have drawbacks when the design pattern has more than one class with the
same role, which is likely the case in any software. Take for example bridge pattern in
figure 25 representing a bridge pattern. If one were to add four more classes playing the
role of “concrete implementor” to the pattern, then the traditional layout must be
distorted. Attaching those classes will add complexity to the layout. Figure 26 shows
that the ideal pattern layout must be rearranged to accommodate extra members in a 2D

viewing environment.
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Figure 26: A design pattern with extra members.

Traditional 2D representation would have to position classes with the same role
one “beside” each other (Figure 27) which makes the view cumbersome and nowhere

resembles the layout proposed by the GoF.
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Figure 27: The bridge pattern with classes of the same role “stack” behind each other.

On the other hand, a 3D representation can “stack” those same classes one
“behind” each other and the result is a more compact layout that requires less screen
space, and still respects the layout template proposed by the GoF. The user can clearly
see that these classes are part of the bridge pattern without having to read a single line of

code as shown in Figure 27.
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Figure 28: Classes reorganised with respect to their design pattern.

As an example, Figure 28 shows how 3D-UMLViz can rearrange and groups classes
together, allowing for a much cleaner view of the design pattern. Classes sharing the

same role in the design pattern are “stacked” behind each other to preserve the view

proposed by the GoF.

3.5.3 Dealing with Design Pattern Crosscutting

It is common that a class participates in more than one design pattern (often also
refereed to as “crosscutting”). In a simple 2D layout view, classes that participate in
different design patterns would be connected by crossing edges among the different
patterns and/or the layout that would reflect the GoF layout is distorted, by moving

classes from one pattern to another one. As a result of this crosscutting, the same design
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pattern is now more difficult to detect in the diagram even though the classes
participating in that pattern are grouped together as shown in the Figure 29. In such a

situation The layout is confusing and one must also choose a design pattern with which to

group the algorithm.
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Figure 29: Crosscutting between “Bridge” and “Abstract Factory” pattern.

A two step approach is taken in developing 3D-UMLViz. In the first step, the
layout algorithm identifies a location in 3D space where to position and group the classes
that belong to a design pattern. The GoF design pattern templates are used to position
and group the classes participate in a design pattern according to their role. In the second
step, two-view options are used to address the issue of crosscutting between design
patterns. The first view mode is a compact mode where classes that participate in the

same design patterns are grouped together and classes that participate in more than one
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patterns will be assigned to one of the patterns. In the compact mode, 3D-UMLViz
arbitrarily assigns the class to one design pattern configuration whereas the other design
pattern will be missing a member. This view generates some patterns with missing
members but the view will not introduce any additional class artefacts. The drawback is
that the design pattern in the compact mode might not always be recognizable due to a
missing object in the layout.

The second view mode is the relaxed mode. It is similar to the compact mode,
but classes that participate in multiple design patterns will be duplicated in all the design
patterns. This mode will add to the complexity of the diagram, since the same class can
appear in multiple locations. On the other hand, it allows the tool to lay out all the design

patterns in a fashion suggested by the GoF template.
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Figure 30: Crosscutting in the compact mode.
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Figure 30 shows an example of a compact mode, where a class is arbitrarily

assigned to one pattern and the second pattern is missing a member.
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Figure 31: Crosscutting in the relaxed mode.

Figure 31 shows the relaxed mode, where a “Class A” may appear in more than
one location if it participates in multiple design patterns.

Switching between these two modes can cause some disorientation for the user,
due to the change of the context in which the diagram is viewed. An immediate switch
will cause some classes to disappear and fragments to appear, and vice versa. This issue
is addressed in 3D-UMLVis through animation that allows closing this context gap

between the two views. The animation provides the user with a visual link between the
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two modes. An animated transition creates a gradual and continuous transition between
the two views, by animating the repositioning of the classes from one view to another.
Instead of seeing a sudden change, the user can now see a gradual transformation from
one diagram to the other. The animation shows the class that participates in multiple
patterns break down into multiple fragments and each piece transit toward the positions
where is should reside for each pattern. This animation works in both directions, from
the compact to the relaxed (class break down into fragments) mode and visa versa

(fragments collapses back together).

3.5.4 Navigation in a 3D scene

Two-dimensional navigation is typically restricted to scrolling up, down, left and
right. In 3D navigation additional challenges and benefits can be identified due to the
added depth navigation. Benefits of 3D navigation include the ability to implement a
navigation that is more intuitive to the user such as walk through, fly through and
rotation.

However, it must be noted that a poorly designed three-dimensional navigation
system can cause a loss of perspective and disorientation. Navigating in 3D space
sometimes causes total disorientation and the user must then “reset” the view and start
over again. Ideally, the user would not want to do this since resetting the view might also
mean restarting the comprehension process. A more intuitive navigation system with
reference markers will help the user to locate and self-orient in the scene. Such a

navigation system will resemble a helicopter flying over the earth surface rather than a
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plane through space. In comparison, a plane can roll whereas a helicopter cannot.
Rolling cause disorientation since the user tends to lose the notion of up and down.
3D-UMLYVis proposes an overview map and an indicator of the user’s current location to
avoid being lost in the virtual space.

Within 3D-UMLVis, a solution proposes a global view of the entire diagram that
shows the current location of the viewpoint and the direction that the user is currently
viewing. This approach is similar to a global positioning system. The user can always
pinpoint his location within the 3D space.

Furthermore, navigation can be confusing in 3D space if the user does not have a
notion of what is up and what is down. In real world navigation, the notion of up and
down is clear (defined by gravity and the surface), but in 3D virtual space, that notion no
longer exists. 3D-UMLVis compensates the lack of gravity and surface, by adding a
virtual ground in the diagram to create a sense of up and down.

The last navigation challenges are the input devices. Navigation devices should
support the notion of a 3D space in the form of X, Y and Z coordinates. Typical mouse or
key pointers do not allow this 3D navigation. Other devices, more specific for 3D, input
such as data gloves, gaming input devices (joysticks, wheels, etc) should be considered
for further improvement. These 3D specific input devices were not considered in this
research.

3D-UMLVis implements a combination of mouse and keyboard inputs based on
the navigation concepts typically supported by computer games. It requires the user to

“move” (translate) the viewpoint with the keyboard and “look™ (rotate) with the mouse.
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The effects are similar to a human walking and looking around by turning his head. This

metaphor is closer to the real world and thus easier to grasp.
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Chapter 4 Implementation

4.1 The CONCEPT environment

As mentioned earlier, the CONCEPT project [RILLO2b] supports both source
code analysis and design pattern recovery techniques. The project is part of an ongoing
effort to facilitate program comprehension and improve software maintenance. The
CONCEPT environment is currently being implemented as a plug-in to the ECLIPSE
platform [ECLIPSE]. All its tools and functionalities can directly be triggered or
launched from the ECLIPSE environment. Following the same approach, 3D-UMLVis
is integrated with the CONCEPT and ECLIPSE environment. Therefore, after the
parsing and extraction process is completed, 3D-UMLVis can be applied to view both,
the class models extracted from the source code and the recovered design patterns.

OpenGL [OGL] was chosen as the graphic library since it is mostly independent
of the platform and the operating system. All functions for windowing task as well as
functions for user input are excluded, making it easy to combine OpenGL with other
platform-dependant programming libraries that handle the windowing and user input.
Furthermore, OpenGL is a streamlined, high performance graphic rendering library. The
design is close to the graphic hardware to render geometric objects such as points, lines
and polygons at tremendous speed. Consequently, with efficient code, the tool can render
hundred of thousands of polygons without compromising the frame rate. This is
especially important when the size of the diagram increases and the number of objects

can drastically slow down the rendering process.
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OpenGL library also includes functions for some important 3D properties, like
scene camera, lights, textures, face culling etc. The OpenGL Utility Library (GLU)
contains all routines that use lower-level OpenGL commands to perform matrices for
specific viewing orientations and projections, polygon tessellation and surface rendering.
The extension to the X-Windows system (GLX) provides means of creating OpenGL
context and associating it with a window that can be drawn on machines using the X-
Window system. The Utility Toolkit (GLUT) functionalities support multiple window
rendering, call back driven event processing, “idle” routines, timers and various solid and
wire-frame basic objects rendering. With all the support that OpenGL provides and its

portability, it is the ideal rendering system for the prototype GUL

4.2 XML data parsing.

The CONCEPT project provides an implementation for static source code
analysis [ZHANO4] that detects and recovers design patterns from source code. It also
has a grouping algorithm and a layout algorithm to generate the 3D layout for the
“Virtual city” [SHI04]. The data input parsing is rather simple since all artefacts and
their respective coordinates for the 3D space are provided. There exist many free XML
parsers that can provide a simple interface to access the elements of the XML tree data.

A sample XML data input is presented in Figure 32.
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<entities>

< l-—kbhstract £aCLOoy paRLLErn--3

<entity id="0" name="Abstract Factory::CFactory” material="NETAL" wvisible="true" >
<azize factor="1" controlRadius="1"/>
<coordinator x="-27 y="5r oz=rgr/s

<fentity>

<entity id="1" nams="Concrete Factory::CGraphicObj" material="PEWTER" visible="true">
<size factor="1" controlRadius="1"/>
<poordinator x="-37 y=r3v oz=ror/>

</entityr

<entity id="2" name="Concrete Factory::CRealation” material="PEWTER" wisible="true'>
<zize factor="1" controlRadius="1"/>
<gpordinator x="-1" y="3v og=ronis

<fentity>

<egntity id="3" name="Abstract Product::(3dCbj" material="PEWTER" wvisible="true":>
<zize factor="1" controlRadius="1"/>
<coordinator x="1" y="3" g="-1"/>

</entity>

<entity id="4" name="lbstract Product::CArrow" material="PEWTER" visible="true">
<aize factor="1" controlRadius="1"/>
<goordinator x="1" y="Iar oz=r-1M/>

¢ }=-~The ohzerver pattert-->

<entity id="55" name="Subject::CData"> <coordinator x="-137 y=rar g=w3m/s

Zentity id="56" nawe="ConcreteSubject::CTxtData"> <coordinator x="-13" y=rir z="3n/>
<entity id="57" name="ConcreteSuliject::CXMLData™> <coordinator x=M-13" y=mir g=nzn/s
<entity id="S58" name="Chserver::CSceneView"™> <coordinator x="-11" y="2" z=m3n/s

<entity id="S53" name="ConcreteCbserver::CMainView"> <coordinator x="-11" y="if z="3#/>
<entity id="60" name="ConcreteObserver::CCompactView"> <coordinator x="-11" y="ir z=wzm/s
<entity id="61" name="ConcreteChserver::CRelaxedView"> <coordinator x="-11" y=mim g=rin/s
<entity id="82" name="ConcreteChserver::CSummaryView™> <coordinator x="-11" ys"imr gz=rQn/s

Figure 32: Sample XML data input.

The data also provides a list of classes that participate in a design pattern.
Although those classes are already grouped close to each other in 3D coordinates, they
are not positioned in a way that would match with the GoF layout. The 3D-UMLVis
uses the GoF layout as a template to reorganize the classes that corresponds to the basic
UML layout [BOOC99]. Using a simple grid algorithm, 3D-UMLVis relocates the
classes to their new positions resulting in a layout specific for the particular pattern.

There is a separate sub-layout algorithm for each of the specific GoF patterns.
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4.3  Visualizing design patterns.

When the design patterns are presented in a traditional 2D UML visualization
suffers some drawbacks as previously discussed in section 3.3. Within the 3D-UMLVis
classes that share the same role are stacked in a design in view of preserving the original

layout proposed by the GoF.

Figure 33: Classes “stacking”.

Figure 33 illustrates such a class stacking, while preserving the “Bridge” pattern
layout. Not only is the GoF layout preserved, 3D-UMLVis can also accommodate
multiple classes serving the same role in the design patterns. Figure 33 also illustrates a

view from the front, as well as from a different angle, a feature only available in 3D.
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This grouping layout allows the user a visual pattern matching of the familiar design

pattern shape/layout, even in a busier class diagrams.

4.4 Dealing with crosscutting between design patterns

As described in section 3.5.3, the major problem in grouping classes with their
respective design patterns is that some classes might participate in more than one design
pattern, known as crosscutting. One class can play the role of a “concrete product” in an
“Abstract factory” pattern and the role of a “concrete implementor” in a “Bridge” pattern.
One must decide where to position the class. Should it be grouped with the abstract
factory pattern or should it be grouped with the bridge pattern?

The situation will cause one of the pattern layouts to be incomplete. A class can
only be physically be at one location at a time. 3D provides the advantage of a depth
layer, animation and the ability to follow gradual animated changes with multiple camera
views. Countless viewing angles are available in 3D without having to reorganize the
diagram. While it is difficult to find one view angle that suits all comprehension tasks,
3D allows the observer to choose the view that best fit the current requirement. The 3D

crosscutting problem is circumvented by providing two alternative views.
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Figure 34: 3D-UMLVis compact view mode

The compact view mode groups classes with their respective design patterns
explained previously in section 3.5.3. However, in cases of crosscutting a class cannot be
grouped within all of its respective patterns. There is only one instance of each class in
the view, and the pattern might not be clearly identifiable. The compact mode is
typically what 3D-UMLVis can do best in grouping design patterns. Classes of the same
design patterns are physically grouped together, see Figure 34. However, some patterns
will be missing some members from its configuration. This causes some difficulties with

recognizing the design pattern on a crowded environment since its shape is not familiar.
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Figure 35: 3D-UMLVis Relaxed view mode

Figure 35 shows the same diagram in the relaxed view mode. In this mode, the
design patterns are positioned according to the layout presented in [BOOC99]. However,
the price for following the GoF template is that one has included extra artefacts in the
relaxed view. Classes that participate in more than one pattern will appear several times
(depending on their number of occurrences in different patterns). Each copy will be
placed in the layout location predetermined by their respective role in the pattern. A
drawback of this approach is the number of software artefacts and complexity of the
diagram increases. This is one of the main reasons why both of relaxed view mode and

compact view mode are provided in the development of 3D-UMLVis.
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4.5 Smooth transition between Compact and Relaxed mode

In general, switching between the different view modes is a problem in software
visualization. The user might easily get disoriented and might loose the context in which
a diagram was viewed. 3D-UMLVis introduces an animated transition where the classes
that participate in several design patterns will be “split out” in several fragments and
“migrate” toward the position they occupy in the pattern. A wire-frame copy denoting
the migration end point indicates the destination of each “class split”. The animation
creates a smooth transition between two end points and allows the user to visually follow

the transition, see Figure 36.

&5 OpenGL_UML3D

FPS 7502

Figure 36: Animated crosscutting, classes migrates to their assigned position.
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The user can follow the diagram transformation from one view mode to the other
and therefore reducing the disorientation factor. The camera can also focus on the
migration of a single class. The camera will zoom in to the class of interest and follow its
migration path from one destination to another. The user can also freely alternate between
the “Compact view mode” and the “Relaxed view mode”. A similar animation is
supported for any diagram zoom in/out, allowing the user to follow the view without

loosing focus and orientation.

4.6  Addressing the Navigation Challenge

There are differences between the visual structure of 2D and 3D interfaces. In
most situations, 3D interfaces do not offer a unique, comprehensive view. The user
needs to move through the scene to perform a given tasks. 3D interfaces are generally
based on exploration rather than on synthesis, that is the reason why orientation and
navigation are among the key issues for a successful 3D interface [NEIL9S].

Orientation is the first requirement for navigation. A proper orientation strategy
will help the user navigate the virtual 3D environment. There are a several techniques for
supporting orientation within a 3D environment:

e Signs to communicate directions, in terms of the 3D world, 3D-UML.Vis can use

x/y/z axes to aid orientation.

e Tools that identify the current position with respect to natural or artificial key
points. In this 3D world, 3D-UMLVis applies a global positioning system of the

scene and an identification to locate the user’s current position.
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e A global plan of the scene that allows the user to locate himself within the big

picture, a map to indicate where he is.

3D-UMLVis has added to the 3D scene a ground grid to help with orientation, to
provide guidance whether one is viewing the scene from a top angle (above the ground
level) or from below. Within the multiple window system, 3D-UMLVis simultaneously
provides a general global system view always at the same level of abstraction. Therefore
the global view can be used as an orientation guide to recover the previous location if one
navigates within the detailed view. Once successfully positioned and oriented, the user
can then start navigating through the 3D scene. However, this task is often more
complicated than navigating through a real world environment. Within the software
environment the user is limited to the available input devices (mouse, keyboard, game-
pad, trackballs etc.) each of which alone is insufficient. The key is to combine these
inputs, to provide a multimodal approach and to have devices that complement one
another [MALEO1]. Light is also used to help orienting the user. In the real world,
people use sunlight and shadow to orient themselves when other method fails. Similarly
in the virtual word, 3D-UMLVis uses lighting techniques to help users during the

orientation process.
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Figure 37: Navigation system in 3D-UMLVis

Figure 37 shows the overview window on the top right, in which the current user
position and viewing angle is indicated by a dot. This marker shows the current location
and direction of the viewing point so the user can determine where he is in the 3D world.
Moving the mouse will rotate the viewing direction, simulating the user looking around
like a person turning his head to look around his environment. Movement is
accomplished through the directional arrows on the keyboard where up/down is used as
moving forward/backward and left/right is used as “side-stepping”. This navigation
technique simulates a person walking around the 3D word to explore its components.

This technique endeavours to submerge the user in his virtual environment.
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4.7 Integration within ECLIPSE

Since 3D-UMLVis requires pre-processed information (to generate the XML
input), it is essential that a user can perform operations such as selecting source code to
be parsed, generate the XML input data and then visualise the result in 3D-UMLVis all
within one single tool. As mentioned in section 4.1, 3D-UMLVis would be an extra
plug-in into the ECLIPSE environment and thus completing the CONCEPT process of
parsing, extracting and then viewing the design patterns. Figure 38 shows how 3D-

UMLYVis plug-in integrates with the ECLIPSE interface.

O entodings="UTF-87

e g

. <plugin>

<extension
point="prg.eclipse.ui,actiondets™>
<actionSet
label="Launch 3JdUTHL"
wvigible="trus"
id="urel?DLauncher.action3er™>
<menu
label="UHL 3D Launchsr™
id="zampleHenu>
<zeparator
name="COMNCEPT" >
<fseparator:>
</ mwenus
: <action

| Overview | De;e—l;denciesg Runtim

'_ogvtTasks Problems | Properti

Figure 38: Integration of 3D-UML Vis as an Eclipse plug-in.
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4.8 Related work and discussion

It has been shown that displaying UML diagrams in 3D is useful and feasible
[DWYEOL, MCINO4]. As mentioned in the previous sections, taking advantage of the
third dimension allows for extra flexibility to increase the expressiveness and
comprehension of UML diagrams. With the rapid advances in computer graphics and the
increased performance of video cards, one can now display several millions of polygons
per second allowing for the display of large systems without compromising the rendering
frame rate [NEIL9S].

The core of the system is the knowledge base that stores both static and dynamic
information extracted from source code, execution traces and available documentation.
The knowledge base serves as input to the various analysis techniques supported by the
environment. The results can then be visualized through different visualization
techniques integrated within the viewing environment.

UML, design patterns and 3D visualisation are topics of sustained research
interest [LEWEOQO1, FOURO4, DONGO3] and researchers recently began combining the
advantages of 3D visualization and UML representation. As demonstrated in [THADO3],
3D animation and UML representation can greatly help the comprehension of object-
oriented programs. The animation helps understand the dynamic sequence of program
execution, which means that programmers have an intuitive model of the software
actions. [SHI04] has also demonstrated that one could help the comprehension process
by representing design patterns in a 3D environment. Under the metaphor of a virtual

city, users can grasp the interactions between classes participating in a design patterns.
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3D-UMLVis combines the concept of 3D visualisation, 3D animation and UML
design patterns representation to address a new aspect of design patterns. It addresses the
cross-cutting between design patterns, the event where a class participates in multiple
design pattern concept. 3D-UMLVis fully takes advantage of the third dimension from
the 3D environment to “stack™ classes that plays the same role within a design pattern
thus keeping the same layout presented by the GoF. This approach is not limited to
reverse engineering design patterns; it can also be applied during forward engineering,
while creating class models. However, 3D-UMLVis still cannot address information
overload, 3D texts and view scalability which are the major hurdles of Software
Visualization.

Some of the remaining challenges and problems are:

1. Grouping and layout depend on the availability of source code analysis techniques
and the quality of the design pattern recovery. Presently the CONCEPT project is
limited to the recovery of eight static GoF patterns.

2. Scalability continues to be an important issue. The existing screen space is still a
limiting factor for really large systems. Further filtering and use of other
abstraction levels will be needed.

3. Current approaches are limited by the UML metaphor itself. There is a lack of
expressiveness to represent certain semantic grouping/information such as design
patterns, features, etc.

4. Domain knowledge plays an essential role during the reverse engineering process.
It is an inherently complex problem of reverse engineering, to recover and

therefore also to represent domain knowledge that had an influence during the
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forward engineering. The expertise of the programmer using the tool and his/her
ability to identify what grouping and/or analysis techniques might best match the
original design determines the usefulness of the presented approach.

Layout algorithms have to be adapted individually to the different design patterns.

There is no general layout algorithm for all design patterns.
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Chapter 5 Conclusions and Future Work

Numerous techniques and metaphors to visualise software system are available
today. Several of these techniques go beyond the traditional approach of 2D
representation by utilizing and taking advantage of the 3D space. However, most of the
existing tools and even the UML standard do not support the visualization of UML
patterns.

This thesis reviews major software visualization techniques and tools. A
discussion on the use of a 3D representation for UML and how this representation in
combination with source code analysis can benefit the comprehension process is
presented. More specifically issues related to crosscutting, navigation and the use of
animation to visualize recovered design patterns from the source code are addressed. It
should be noted that this thesis does not claim that there exists one solution to all
problems. The effectiveness of the presented approach of combining 3D visualization
with semantic source code analysis depends on several factors that limit its applicability.
Furthermore, techniques for visualizing design patterns in the 3D space are presented, as
well as challenges with respect to cross-cutting and navigation were discussed and
addressed. In addition, new viewing techniques are proposed to facilitate the navigation
and filtering of the information in this 3D world. A tool, entitled 3D-UMLVis, was
implemented as a part of this research to illustrate the applicability of the presented

techniques.
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Future work should address issues related to extending the analysis techniques for
detecting design patterns. Another major challenge which should be addressed as part of
future work should be identifying new metaphors that are more suitable to represent
concepts like design patterns and features. The challenges will not be to identify new
metaphors only but also to ensure that these new metaphors become an integrated part of
the modeling process (forward and reverse engineering). Regrettably, this thesis could
not address fully the issue of scalability. Design patterns formations can easily be
recognised within a large diagram but as more artefacts are added to the view, the
configuration is less visible. It would require additional filtering and grouping strategies
to tackle this issue of large systems. The CONCEPT project explored the use of slicing
to produce a smaller visualisation. However, in several occasions, the resulting slice still

includes too much information to be usable, even for visualization in 3D.
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