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ABSTRACT

Handwritten Digit Classification Using Cascading Neural Network Ensembles

Nancy Zaramian

In the problem of handwritten digit classification, difficulties are
encountered when there is ambiguity among the digits to be classified. Itis
desirable to detect this confusion and either reject the classification or attempt to
make a better decision using post-processing methods. In the proposed method, a
cascading neural network model is used to do the latter. Each level contains an
ensemble of neural networks trained on different features. This generates
classifiers that complement each other and help identify samples that are difficult
to classify. Experiments were done on the MNIST database. This database has
60000 training images and 10000 test images that contain segmented handwritten
digits. The results from the experiment show an improvement in the classification
accuracy with the addition of each level of neural networks. Out of the 10000 test
images 2206 of the samples were rejected from the cascading neural network
model and were sent to post-processing. Among the 7794 of the accepted samples
not sent to post-processing, only 52 were falsely classified. The overall

classification rate of the system, including post-processing is 96.58%.
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1. Introduction

1.1 Problem Description

Handwritten digit recognition is a type of optical character recognition
where we are asked to associate the correct digits to images that contain
handwritten numerals. In this particular case, the focus is on off-line handwritten
digit recognition where the data has already been captured and the digits have
been segmented. Therefore, the problem consists of associating the correct digit

class to the digit images given as input.

There are problems particular to handwritten digit recognition since there is
no predefined constraint on the input. However, there are some implied
constraints such as certain fields that must contain digits, and therefore there are
only ten possible values. A limit on the number of scriptors and handwriting
styles might also be some additional constraints. However, these are minimal and
a good recognition system should be able to deal with different writing styles.
Obviously, the fewer constraints there are the more difficult recognition becomes.
Dealing with different writing styles is an important aspect of achieving a

successful system.



Due to the very limited constraints imposed on handwritten characters,
learning machines are usually used to build the recognition systems. A learning
machine computes a function that allows the mapping of pattern inputs to their
corresponding categories. A set of patterns, called the training set, which is
representative of future inputs, is used during the learning process. The samples in
the training set are described by a set of values, called the feature vector, which
represent the important attributes of the samples. The learning system uses the
feature vectors of the training samples along with the labels associated to them to
compute the function. Classification occurs when the function computed by the
learning system is used to predict the class of a test pattern. To do so, the same
feature vector is extracted to describe the test sample and is given to the function.

The output is the predicted class.

Research has focused on the problem of handwritten digit classification
with good results. However, the current technology does not perform as well as
humans. As described in [13] there are three main sources of error in a
classification problem: *“Class ambiguity” arises when two samples from different
classes have identical feature values. “Imperfectly modeled boundary” occurs
when the classifier does not model the optimal decision boundary between the
classes. That is, the classifier does not partition the feature vector representations

of the samples into their corresponding classes in an optimal way. “Small sample



effect and feature space dimensionality” occurs when the training set for the

classifier does not accurately represent test samples.

It would be useful to, as much as possible, automatically identify
classification errors and be able to make the best possible decision on those
samples. The method proposed in this paper deals with handwritten digit
classification, focusing on the detection of samples that are difficult to classify and
the improvement of the error rate by attempting to make a better decision on those

samples.

1.2 The Importance of Handwritten Digit Recognition

Systems with very high recognition rates allow for the automation of
certain tasks. In particular, handwritten digit recognizers can be used for the
processing of bank checks where it is required to read fields such as the courtesy
amount and the date. Sorting mail by address and postal code and the automation
of data entry are just some of the other types of applications. Therefore,
handwritten digit recognition has a wide range of interesting applications. Since

these applications concern millions of documents then it becomes of great

economic interest.



1.3 System Overview

‘ é Result

Figure 1: OCR System Overview

OCR systems generally follow a certain processing pattern. The first step
is data capture where the source of the data is usually a document or an object
containing characters. Information is captured either by a scanner or another
method that digitizes the information. Since the quality of the data is important
for the identification of characters, this step usually attempts to make the data as
clear as possible. However, this is not always the case and often times distortions
and artifacts can be introduced. To deal with this problem, the digitized image is

then passed on to a preprocessing step.

Various types of preprocessing are applied depending on the data given to
the OCR system. Filters are used to remove noise, enhance the features of an
object or to simplify the image. The goal is to improve the quality of the data
without losing critical information. For documents that contain many lines of
characters the baseline for each one is detected. Depending on whether the system
will recognize individual characters or complete words, the preprocessor will

segment the data accordingly. The holistic approach attempts to recognize a



complete word at a time and is usually applied to cursive handwriting. The
segmentation is based on the spacing between words and characters and often
times this can be made difficult by inconsistent separations. Different fields are
identified as being numerical or alphanumeric or both and this information is

passed on to the following stage.

Following preprocessing is feature extraction. At this stage, the goal is to
extract important information from different parts of the data later used for
classification. Features should be chosen so that the data can be generalized
properly. Interesting features for characters are number of corners, holes,
endpoints, chain codes, pixel values and pixel distance features. Once the features
have been chosen, different methods are applied to extract them. A feature vector

is then used to represent the character.

During the classification phase we would like to associate the correct class
to the character. In the case of digit recognition the classes are from 0 t0 9. A
function is applied to the feature vectors and the output is the class associated to
the input. The classifier outputs the predicted class of the input and some
classifiers also give a confidence value that will help determine the certainty of the

classification.



Once a class is associated to an input, additional post-processing methods
can be applied. Some systems apply contextual information to provide more data
on the sample being classified. A measure of confidence can also be used to
identify classifications with low certainty. If the previous steps of the system
allow for the identification of misclassified characters then other methods can be

applied to deal with the more difficult cases.

1.4 Thesis Organization

In an attempt to deal with the complexities of handwritten digit recognition,
the main focus of this thesis will be on the detection and classification of digits
that are harder to classify. The goal is to improve classification accuracy by
identifying samples that are confusing and to use post-processing methods to make
a final decision on these samples. In chapter 2 I will give an overview of the
current state of the art followed by a description of the proposed method in chapter
3. I will then discuss the implementation in chapter 4, experimental results in

chapter 5, and give some suggestions on additional improvements in chapter 6.



2. Background

The general problem of classification consists of predicting the class of
some case or object based on some measurements [3]. The goal is to find a
classifier that accurately predicts the required class. It receives the measurements
as input, and outputs the class to which the input belongs. Some output a set of
scores each of which is a measurement of how likely it is the input belongs to that
category. Generally, the one with the highest score is associated with the given

input.

As mentioned in the introduction, dealing with different writing styles is
important for a successful recognition system. Therefore, classifiers used for
handwritten digit recognition usually have a learning stage. The idea behind using
a method that “learns” comes from statistics. We gather as much data as
necessary to represent future inputs then we attempt to find a function that
generalizes the data without over-fitting. Over-fitting occurs when the function
resulting from the learning process has not only learned the general characteristics
of the training patterns, but has also learned information specific to the samples
which are not necessary to the generalization. This can result in false predictions

in test samples.



This section gives an overview of different classification methods currently
applied to handwritten digit recognition. Experiments done in [16] give a
comparison of the different classification rates. Additional background
information will be given on neural networks and neural network ensembles and

other works that relate directly to the research presented in this thesis.

2.1 Classifiers

Classifiers applied to handwritten digit recognition range from very simple
to more complex. Simple classifiers generally have the advantage of requiring
less training time, however a compromise is usually made in the classification rate.
The following gives an overview of the classifiers currently used in applications of

handwritten digit recognition.

Linear Classifier

A linear classifier, the stmplest kind of learning method, uses a linear
function on the given input to determine its class. Output units are determined by
a weighted sum of the input feature values. The output unit with the highest value
indicates the class of the input. Experiments done in [16] show it is the classifier
that yields the highest error rate for handwritten digit recognition. The

deficiencies of linear classifiers are documented in [§].



K-Nearest Neighbor Classifier

Another simple method is the K-Nearest Neighbor Classifier [7]. Features
are extracted from the training set and plotted in the multi-dimensional feature
space. The learning stage consists of forming feature vectors of the objects in the
training set and associating them to the class of the object. When classifying
unknown samples the same features are extracted from the new samples, and the
geometric distance is computed with all the prior feature vectors from the training
set. The majority of the classification results of the K shortest distance is taken to
be the class of the new sample. This method has the advantage that no training

time is required.

Radial Basis Function Network

The radial basis function network is a specific type of neural network [17].
It is made up of the input layer, one hidden layer and an output layer. The neurons
in the hidden layer use nonlinear activation functions and the output layer uses
linear activation functions. The idea is based on Cover’s theorem on the
separability of patterns [6]. It states that nonlinearly separable patterns can be

separated linearly if the pattern 1s cast nonlinearly into a higher dimensional space.

The hidden neurons contain the radial basis function that is usually based
on a Gaussian distribution. This function, which takes the center and width as

parameters, has a peak when the input center is at zero distance from the center.
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Convolutional Network

The idea behind convolutional networks, introduced in [16], is to allow the
neurons of the network to extract local features. Local features such as end-points
and corners have been shown to be useful in identifying characters. To extract
these local features the units in one layer receive inputs from a small
neighborhood of units in the previous layer called local receptive fields. Once the
local features have been extracted they are combined by subsequent layers and
used to detect higher order features. Since the position of features can vary it is

important to normalize the size and center the digits.

The elementary features extracted can be useful on another part of the
image. Since units have receptive fields located at different places of the image,
then assigning identical weight factors to a set of units allows the detection of the
same features at different parts of the image. The back-propagation algorithm is

used to learn the weights.

LeNet-5 described in [16] is a typical convolutional network for
recognizing characters. Experiments have shown that convolutional networks

yield very high recognition rates.
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Support Vector Machines

Support Vector Machines are a method for generating functions from the
labeled training set [29]. The output for a classification function is binary. It
determines whether the input belongs to a category or not. The method operates
by finding a hyper surface in the space of possible inputs such that the distance
from the hyper surface to the nearest positive and negative examples is the largest.
The method achieves very high recognition rates, however the computation cost is

very high.

Neural Networks

A neural network is a learning system that is often used for classification
problems. A network is composed of several layers of nodes, and connections
between these nodes. The number of layers, the number of nodes in each layer,
and the connections between the nodes, determine the structure of a neural
network. Networks have an input layer and an output layer. Nodes receive a
weighted sum of inputs and determine an output based on an activation function.
Initially, the weights are chosen randomly and the goal of the learning method is

to adjust these weights according to statistical data.

A supervised learning scheme is used to train the neural network. A
database of sample patterns and their associated labels are given, and a training

algorithm is used to modify the weights of the neural network until it has learned
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the training sample set. The learning algorithm extracts relevant information from
the database in order to properly generalize and correctly classify future input

patterns that have similar properties to the samples already seen [18].

Fully connected feed-forward neural networks have been studied and used
extensively. In this type of network, the connections from one layer to another go
in one direction. That is the information is propagated from one level to another
but never back to a previous level. Also, every node from one level is connected
to every other node in the next level. That is the output from a node on a given

level is propagated to every other node in the following level.

Back-propagation is a learning algorithm that is often used for this type of
network [21]. On every iteration of the algorithm, the training samples are run
through the network. For every sample, the output of the network is a vector of
values. The algorithm computes the error between the target output and the output
actually computed by the neural network. The error is then propagated upwards
through the network and weights are modified to reduce the error. The algorithm
iterates in this way until the output of the network on the training samples
correspond to the target outputs. The algorithm attempts to minimize the number
of errors over the training sample set. Therefore, it searches for a local minimum

on the error surface of the training data.
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Decision Trees

Decision trees are also used for classification [3]. Like neural networks,
they take as input a set of measurements of an object and output a decision. The
decision output can be binary or a larger set of classes can be represented. The
decisions are taken at each node and they are based on tests done on the values of

the attributes. The leaf nodes specify the output of the decision tree.

The structure of the decision tree is not known until it is built. Building a
decision tree consists of deriving a set of rules from the training data in order to
classify them. The idea is to generalize as much as possible at each node so the
class of the input can be narrowed down as quickly as possible. The process of
deriving the classification rules from the samples is called discrimination, which is
a way of partitioning the data into smaller subsets. The elements in the subsets are
grouped together because they all share a certain property. The key to building a
good decision tree is to determine the best discrimination at each node and unless
the tree is pruned it learns 100% of the training data. Applying the rules to new

objects of unknown class is classification.

Although decision trees can learn the complete training set, over-fitting can
occur, in which case the classification accuracy on test samples can decrease.
Therefore, the tree is often pruned and a compromise is made between the

accuracy on the training data and the accuracy on the test data.
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2.2 Cross-validation

In any learning algorithm there is a risk of over-fitting. That is, the
classifier loses the ability to generalize properly by over-learning the training set,
which can contain samples with noise. This occurs when the number of
parameters of the classification function is more than what is required to
generalize over that data. In this case, the classifier not only learns about the
required features of a class but also learns about the features that are not necessary
to associate a sample with the class it belongs to. For test samples, over-fitting

can lead to unpredictable results.

The overall goal for a learning method is to minimize errors on test
samples. Therefore, instead of using the classification rate on the training set,
cross-validation can be used to determine the ability of the classifier to generalize.
Cross-validation is a standard way of determining how much training is required
to increase the classification rate on future samples [27]. To do so, the training
database can be partitioned into specific training and validation sets. During the
training of a classifier, a validation error can be computed on the validation set to
determine whether to continue training. One known method called “early
stopping” stops training when the error rate on the validation set starts to go up.
One disadvantage to cross-validation is stopping training too early and therefore
not finding a global minimum on the error surface. In this case, it would be

possible to achieve a better recognition rate by continuing training, however since
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we rely on the result of the validation, then we are “stuck” at a local minimum

with a higher error rate.

2.3 Confidence Scoring

Recognition systems often require automatic methods of detecting
misclassifications. These systems must decide whether to accept or reject the
result of a classification. Methods have been developed such as in [9] to optimize

the error-reject trade off.

Some classifiers provide additional information on the classification result.
They provide a measure on the certainty of the classification. Confidence scoring
is a way of measuring how sure we are of the result obtained from the classifier.
In a neural network that outputs values for each class, the maximum is usually
taken as the class of the input. However, the scores associated to every other
possible class can also give us information about how much we can rely on the
classification. Therefore, many measures consider not only how sure we are of the
hypothesized class but also how sure we are the input does not belong to another
class. Many applications use the confidence score as a way to determine whether
the result is accepted or rejected. Therefore, a good way of measuring the

certainty of a classification is important for post-processing operations.
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Confidence measures such as likelihood ratio and estimated posterior
probability are discussed in [13]. Both of these measures make use of the scores
associated with more than one class and give a confidence value on the best
hypothesis. In the case of the posterior probability, once a hypothesis h; is
determined, the following formula is used to determine the probability of a valid
classification:

P(h,) = score(h,) /X score(hy), k=1 to # of classes

2.4 Ensembles

Ensembles of classifiers are a way of combining the classification of
multiple experts. The classifiers in an ensemble can be the same type or different
experts can be combined such as in hybrid systems. Experiments have shown that
the combination of more than one classifier can yield better results than just one.
There are many variations on the structure of an ensemble. Decisions such as the
number and type of classifiers affect the increase in the classification accuracy.
Once the structure of the ensemble has been chosen then the combination of the
classifier outputs must also be chosen. More detailed descriptions of ensemble

methods are given in section 2.6.
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Neural Network Ensembles

The basic idea of a neural network ensemble is to use more than one
network to determine the class of an input. We obtain the classification result
from each network in the ensemble and use a consensus scheme to decide the
collective vote. A consensus scheme is when the final classification result is based
on the agreement of the majority of the networks. The motivation for using more
than one neural network for a classification problem is the possibility of error
independence among the networks. This occurs when neural networks in an
ensemble do not misclassify the same samples. They can complement each other

by making different classification errors.

As mentioned earlier, training a neural network consists of searching for the
right weights associated with the links between the nodes. We are seeking a local
minimum on the error surface where the parameters are the weights. However, the
selection of the weights is an optimization problem with many local minima.
Because the initial weights are chosen randomly, the chances of two neural
networks trained on the same data converging to the same local minimum is
unlikely. This would imply that they would most probably generate different
errors. It has been shown that, in an ensemble of neural networks, if each network
can get the right answer more than half the time and network responses are
independent then the more networks used the less the likelihood of an error by a

majority decision rule [4].
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In [4] the authors argue that the collective decision made by the ensemble is
less likely to be in error than an individual network. They also give different

models for the correlation of the networks in the ensemble.

Most neural network ensemble methods make use of error independence to
build classifiers that complement each other. Two known methods that promote
error independence among the individual classifiers are bagging and boosting

which will be explained in section 2.6.

2.5 Combination Strategies

Once the structure of the ensemble is determined and the classifiers have
been trained, then a combination strategy needs to be used. A combination
strategy is how the classifier results in an ensemble are combined to make a final
decision. Usually the results of all classifiers are considered. These combination

methodologies are described in [26].

Highest Confidence
When using the highest confidence the classifiers in the ensemble are

ranked and the class with the highest one is chosen to be the correct one.
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Majority Voting

Majority voting works by counting the number of votes for each digit and
selecting the digit with the highest number of votes. Prior performance is not
considered when equal weight is given to the results of all classifiers. However,
weights can be assigned to certain classifiers based on prior performance. In the

event of a tie the confidence values can be used if they are available.

Borda Count

The Borda count is a consensus function. For each class we determine the
sum of the number of classes ranked below it by each classifier. The ranking is
determined by arranging the classes so that their Borda counts are in descending
order. The class with the highest Borda count is considered to be the correct

classification.

Bayesian Combination Rule

This method uses information derived from the training set to determine the
combination strategy. It takes into consideration the performance of each expert
on the training samples of each class. The confusion matrix is used to derive this
information. The confusion matrix for the classification results of digits, is a two
dimensional matrix where the columns and rows range from 0 to 9. The rows
represent the actual class and the columns the predicted class. Each entry in the

matrix is the number of samples that were predicted to be in the class represented
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by the column. This matrix is useful in determining the types of mistakes that a

particular classifier tends to make.

2.6 Ensemble Methods

As mentioned earlier, many methods have been developed to increase the
error independence among the classifiers in an ensemble. These methods are
employed to determine the structure of an ensemble and this section gives an

overview of the ones used most often.

Bagging
Bagging attempts to reduce error correlation among the classifiers by
training them on different datasets of the training set [4]. The datasets are formed

by random selection with replacement of the training samples.

These are bootstrap replicates of the original training set. For a training set
with N examples a bootstrap replicate is formed by resampling N examples with
replacement. Some examples may appear more than once and others may not
appear in the sample at all. The training sets are independent and the classifiers
could be trained in parallel. Bagging performs well when the classifiers are
unstable, that is, when changing the learning set changes the behavior of the

classification.
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Boosting

Boosting is a general method applied to learning algorithms to generate
highly accurate composite classifiers [22]. The method combines classifiers that
are considered to give “weak hypotheses” because they are only required to do

moderately well on the training set.

AdaBoost is a well-known boosting algorithm that has been applied to
neural networks [16]. The algorithm trains a predetermined number of classifiers
T. To do so, T training sets are generated sequentially and the classifiers are
trained on these sets. In each round t, the classifier is trained with respect to a
probability distribution on the training set. Initially, a uniform probability
distribution is assigned. Each training example has an equal chance of being
chosen. After the first classifier is trained, a new set is generated by classifying
the training set with the initial classifier and assigning new weights to the samples.
The weight on a given sample is determined according to whether the result was
correct or not. The probability of incorrect samples is increased and the
probability of correct samples is reduced. This is done to put more emphasis on
harder to learn samples in subsequent classifiers. A weighted voting scheme,
based on the classifier’s performance on the training set, is used when classifying

test samples.
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Random Subspace Method

A method called Random Decision Forests proposed in [5] describes an
ensemble method for decision trees. The trees in the ensemble are built using
randomly selected subspaces of the feature space and the combination has been
shown to monotonically improve classification accuracy as the number of trees is
increased. A discriminant function is used to combine the outputs of the tree
classifiers. The selection of random subspaces of the feature space has been
shown to promote error independence among classifiers. Each tree learns 100% of
the training data however the errors in generalization are different due to the fact

that different subspaces of the feature space have been used.
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3. Proposed Method

The proposed method uses an ensemble of neural networks to improve the
classification accuracy of handwritten digits. In this section I will describe how
the ensemble is built and how the outputs are later combined. I will also give

additional explanations on the possible advantages of the method.

The purpose of the method is to use error independence among the
classifiers to detect samples that are harder to learn or classify. The structure of
the ensemble is based on a cascading neural network model. Figure 2 is an
example of such a model. The first level, C1, consists of a pre-determined number
of neural networks trained on the complete training set. Each neural network is
trained with different feature subspaces. Once the training of each neural network
is completed, a new database of samples is generated from the training database
used on the first level. The neural networks on the second level are trained on this
new database each using a different feature subspace. This procedure is followed

until it is determined to stop training by the results of cross-validation.
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Input
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Rejectiong

Figure 2: Cascading Neural Network

The idea is to use error independence among the neural networks to identify
samples that are difficult to learn and to allow a subsequent level to learn these
samples. This allows the neural networks on the first level to learn the more
general cases while the subsequent classifiers learn the exceptional cases. The
following sections describe the training and classification procedures used in the

method.

3.1 Training

Cross-validation is used to determine how much each network should be
trained. To do so, a subset of the training set which is not used for training is set
aside. After a certain number of iterations of the learning algorithm the classifier
is used to classify the samples in the validation set. Training of each classifier is

stopped once the classification rate decreases.
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Once the networks on a certain level have been trained, the training set
associated to that level is classified using the neural networks of that level. If at
least one network disagrees with another network then the sample is considered to
be hard to learn and is put into’a different database. If all classifiers agree then the
posterior probability of each network is calculated and the average is taken. If this
value is below a threshold then the sample is also rejected and put into the
database. The optimal threshold is determined using the validation set. The goal
is to allow the following levels to learn more about the samples that harder to

learn.

If the classifiers on one level complement each other perfectly then they
should only agree on correct classifications. If they do agree on incorrect
classifications then the confidence determined by the average posterior probability

should not be high.

The networks on the following level are trained on the new database. Since
the number of samples in this new database is less then the previous one we do not
need the same number of parameters for the new neural networks. The number of
hidden nodes is decreased proportionally to the reduced size of the database. The
process continues until either the complete training set has been learned or cross-
validation has determined to stop training. The following gives a description of

the training method:
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i=0
D;=Complete Training Set
Repeat:

1. For every feature space F;, train classifier C;; on D; until cross-
validation decides to stop training.

2. Classify training set D; using classifiers Cj; for j=0 to j=#of feature
spaces.

3. If at least one classifier disagrees or the average posterior probability
of the agreements is less than a threshold then reject the sample and
put it in database D;+1.

4. i=i+1

Until (ID;l == 0) or cross-validation of the complete ensemble decides to stop the
training.

The structure of the cascading neural network is determined dynamically.
We do not know in advance how many neural networks and how many levels
there will be. The ensemble is considered to have converged when it is

determined that additional levels are not required.

3.2 Classification

Classification of test samples does not always require all neural networks in
the ensemble. It is a sequential process that starts by classifying the sample using
all the neural networks on the first level. An agreement occurs when all the

classifiers on the same level agree on the classification result. If the classifiers do
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not agree or if they agree but have an average posterior probability below a
threshold then the sample is rejected and passed on to the following level.
Otherwise, the classification result is accepted. Therefore, an acceptance occurs
when all classifiers on a given level agree with an average posterior probability
greater than the determined threshold. The process continues until the sample is
either accepted by a level or rejected by all levels. In the latter case post-
processing can be applied to determine the class of the sample. The following

gives a description of the classification method:

For every sample in the classification set:
i=0
While the class of the sample has not been determined and (i < # of levels):

1. For every feature space Fj, classify the sample with classifier Cj;

2. If all classifiers agree with posterior probability greater than or equal to a
threshold then accept the classification. In that case, the class of the
sample has been determined.

3. =i+l

If the class of the sample has not been determined then apply post-processing to
determine the class.
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Like Boosting, the additional networks during the training phase focus on
samples that are harder to learn. However, a sample is considered to be hard to
learn if there is either at least one disagreement among the networks on one level

or the average posterior probability of the agreement is below a threshold.

During the classification of test samples, each level allows for the
identification of samples that are harder to classify. The same rejection method is
used as in the training phase. This allows for an increase in the classification
accuracy by extracting images that are more difficult to classify given the
complexity of the classifiers, the selected feature spaces and the training data. By
focusing only on these samples we increase the chances of correctly classifying
samples that are more difficult to classify while reducing the chances of

misclassifying samples that are easy to classify.

3.3 Generalization on each Level

The generalization ability of the neural networks is reduced at each level
since the training set is reduced during training. However if the classifiers have
been shown to complement each other well, then different generalization errors
should occur at each level and the misclassifications should be detected and
rejected. We count on the fact that the networks at each level will make different

mistakes.
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3.4 Speed

Unlike Boosting, we do not always need all neural networks during
classification. If the training set is representative of test samples then most
classifications should be accepted at the initial levels. As the focus is narrowed

down to the more difficult samples more processing power is required.

3.5 Complementing Classifiers

As demonstrated in [5], where decision trees in an ensemble are trained on
different feature subspaces, as the number of classifiers increase, the error rate
decreases monotonically. Since this is true, then the number of incorrectly
accepted classifications using the rejection method proposed in this paper, should
also decrease as the number of classifiers is increased. This is because the chance
of at least one classifier making the correct decision is increased and therefore a

disagreement is generated.

For the method to work properly, the neural networks on each level must
complement each other so well that there is at least one disagreement on all
samples that are hard to classify and the networks only agree on samples that are
correctly classified. If all classifiers have a high classification accuracy and they
complement each other, i.e. there is a low correlation among the classifiers, then if
the training set is representative of test patterns, the classifiers should correctly

agree on most classifications and correctly disagree on most misclassifications.
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If ¢; is the error rate of classifier i then the maximum rate of rejections at
each level would be the sum of e;. Since the error rate of each classifier is usually
quite low and classifiers usually misclassify the same difficult patterns then the
rejection rate should also be low. The number of undetected misclassifications

can be a measure of the correlation among the classifiers in the ensemble.

The method used in [5] learns 100% of the training samples but relies on
different generalization errors to increase generalization accuracy. It increases
generalization while avoiding over-fitting. It is a coverage optimization method.
The method proposed in this thesis learns until either the complete training set has
been learned, or cross-validation of the complete ensemble decides to stop
training. It increases generalization accuracy by rejecting samples on a given level
and learning more about the rejected set in subsequent layers. Error independence
among the classifiers ensures that a disagreement will be generated for

misclassified samples.

Since the training set is reduced at each level it allows for the generalization
on a smaller subset of the training set. This smaller subset represents patterns that
deviate from the general case. We are able to concentrate on cases that are harder
to learn and training neural networks on these subsets allows for an increase in the

confidence of the validity of a classification. The chance of a set of neural
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networks with low error correlation agreeing with very high confidence on a
classification is very low. For networks that complement each other very well, the

pattern must look like the digit as it was classified.

In the end, we are left with some undetected misclassifications at each level
and digits that have been identified as “difficult to classify”. We can reduce the
undetected misclassifications by adding networks that complement each other at
each level. We can increase the classification accuracy by concentrating on the

more difficult patterns.

3.6 Ensemble as a Decision Tree

The cascading neural network ensemble can be seen as a decision tree.
Figure 3 demonstrates this. The decision at each level is whether to accept or
reject the classification by the neural networks of that level. The training of the
tree is done by learning the samples of the training set and determining an optimal
rejection threshold with the use of the validation set. If the complete training set is
learned, the method partitions the training set into smaller subsets such that each
one has been learned by a set of neural networks on one level of the tree. These
neural networks agree on the classification of the training sample within the

determined threshold.
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Level 1: Two
neural networks

Level 2: Two
neural networks

Level 3: Two
neural networks

Figure 3: Ensemble as a Decision Tree
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4. Implementation

A cascading neural network ensemble was implemented using the method
described in the previous section. Figure 4 gives an overview of the structure of
the implemented ensemble. As can be seen there are 4 levels, with two neural
networks per level. The two networks on each level have been trained on different
features. The chosen feature spaces remain the same for all levels. In this section
I will describe the implementation of the recognition system used for

experimentation.

@ral Neural\
Qwork 1 Netwow Level 1

l Rejections

@ral Neural\
@ork 3 Netwow Level 2

l Rejections

@ral Neural
@vork 5 Network 6 Level 3

l Rejections

mral Neural\
I\ Newwork 7 Nework8 /| Level 4

Figure 4: Implemented Neural Network Ensemble

/
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4.1 Preprocessing and Feature Extraction

Before extracting the features, each image containing one digit was
preprocessed. Since the background of the image is black (i.e. pixel values were
0) then a simple binarization was applied by setting every value greater than O to
1. Following that, isolated pixels were set to O to remove noise. A thinning
operation, which removes a layer of pixels around the digit, was also applied. The
first neural network on each level was trained on these pixel values. For the
second neural network on the same level, the largest connected component in each
image was detected and the chain codes were extracted. Examples of largest

connected components are shown in figure 5.

Handwritten Digit Largest Connected Component

7
)

Figure 5: Largest Connected Components

LS

The chain codes of an object in an image are a sequence of numbers that describe

the shape of the object. Each value of the chain code gives information on the
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direction of the next pixel connected to the object. This sequence of numbers was

given as input to the second neural network.

4.2 Neural Network Structures

The neural networks are feed-forward and fully connected. Table 1
describes the structure of the neural networks on the first level. The structure of

the two networks on the same level is 1identical.

Levels 1 2 3 4
# of inputs 784 | 784 | 784 | 784
# of hidden layers 1 1 1 1
# of outputs 10 {10 |10 |10
# of nodes in hidden layer | 70 |33 |15 |11

Table 1 Neural Network Structure

The number of inputs is the number of pixels per image sample. The
number of outputs is 10 since we would like to represent the number of digits.
Initially, there are 70 nodes in the hidden layer. For each subsequent layer the

number of nodes in the hidden layer is decreased proportionally to the reduced

size of the database.
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4.3 Neural Network Training

The back-propagation learning algorithm is used to learn the training set. A
subset of the training set is kept for validation. A minimum of 1000 training
iterations was done for each neural network. After this initial training period, the
neural network was tested on the validation set after every 50 iterations. If the
error rate on the validation set increased by any amount or did not decrease within
the last 50 iterations, then training of the neural network was stopped. Testing on
the validation set allows for good generalization ability by each neural network. If
some over-fitting does occur then error independence among the classifiers on the

same level allows for the rejection of misclassified samples.

4.4 Ensemble Training

Once the neural networks on a given level are trained, harder to learn
images are rejected from the training set. This is done by classifying the training
set associated to the level using the networks on that level. If the two networks
disagree on the classification then the sample is rejected and put into the next
database. If the networks agree but have an average posterior probability less than
0.9995 then they are also rejected and put into the next database. This was the
optimal threshold found by testing the neural networks on the validation set. If the
sample is accepted then the image is excluded from the next level. The procedure

was stopped at the 4™ Jevel.
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4.6 Classification

For classification of test samples the process starts with the first level. The
classification is done sequentially until a set of neural networks on one level
agrees on the classification of the sample with average posterior probability
greater than or equal to 0.9995. If none of the levels meet the requirement, then

the sample is passed on to post-processing.

4.7 Post-Processing

During classification of test samples, if an image has not been accepted on
any of the levels of the ensemble then it is rejected and passed on to the post-
processor. An additional neural network was trained for this stage. The neural
network was trained on the horizontal distance features of the training set (not
including the validation set). The horizontal distance feature of a pixel in an
image gives the direction and the distance to the nearest white pixel on the same

horizontal line. An example of this is given in figure 6.

The classification results of the two neural networks on the first level, along
with this new neural network are used to make a final decision. If all three
networks agree on the classification then it is accepted as the result. Otherwise, if
one classifier disagrees but the other two agree then a decision is made based on
the previous performance of the classifiers. If all three classifiers disagree then for

the experiment, the one with the highest posterior probability was chosen to be the
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result. However, the sample can be rejected since there is no definitive consensus

on the result.

=
-
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Figure 6: Horizontal Distance Features of the digit 2
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S. Experimental Results

Experiments were done on the MNIST database. This database contains
60000 images for training and 10000 images for testing. Each image is 28x28. Of
the 60000 training samples, the experiments done for this paper used 50000
images for training and the remaining 10000 images were set aside for validation.
After a minimum number of 1000 training iterations, the neural networks were
tested on the validation set after every 50 iterations. If the error rate increased by
any amount or if the classification rate did not improve then training was stopped.

All 10000 testing samples were used to test the neural network ensemble.

5.1 Training Databases
The following table shows the number of images in each database

associated to the levels of the neural network ensemble:

Level | # Training Images in Database
1 50000
2 23864
3 11024
4 7470

Table 2 Training Databases
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As expected, most of the training samples were learned by the first two
levels. The easier samples can be generalized relatively well. However, as the
levels in the ensemble increase the samples become harder to learn and generalize.
This can be seen by the small decrease in the number of training samples between

levels 3 and 4.

5.2 Testing

Table 3 shows the number of samples accepted and the number of samples
rejected at each level. As expected, there are more samples accepted on the first
level than any other level. This is because the neural networks on the first level
were trained on the largest training set which allows for better generalization.
When comparing the classification result on the complete test database between
the neural networks trained on the pixel values from the first level to the one on

the second level we obtain a classification rate of 94.43% versus 93.37%.

Level | # Samples Accepted | # Samples Rejected
1 4912 5088
2 2127 2961
3 466 2495
4 289 2206

Table 3 Accepted and Rejected Samples
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A sample has been correctly accepted if all neural networks on a given level
correctly agree on the classification with a very high posterior probability. A
sample has been falsely accepted if at a given level, all classifiers agree on the
incorrect classification with a very high confidence level. This is important
because once a classification has been accepted then it will no longer be
reconsidered for classification. The more accepted misclassifications there are on

a given level of the cascading classifier the higher the error rate will be.

Level | # Correct Accept | # False Accept
1 4901 11
2 2112 15
3 454 12
4 275 14
Total 7742 52

Table 4 Correct and False Accepts

It would also be interesting to see the number of samples that were rejected
because of a disagreement, as opposed to the number of samples rejected because
of a low average posterior probability. The following table shows the number of

disagreements at each level:
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Level | # of Disagreements
1 1469
2 1526
3 1570
4 1585

Table 5 Disagreements

The following table shows the number of agreements with low average

posterior probability at each level:

Level | # Classifications with
Low Average Posterior
Probability

1 3619
2 1435
3 925
4 621

Table 6 Agreements with Low Posterior Probability

The number of disagreements has changed very little between the top and

bottom levels. However, the number of agreements with low posterior probability
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has decreased dramatically. As the levels increase, the average posterior

probability among agreements increases and samples are accepted.

In the end we are left with 52 falsely accepted samples and a total of 2206
rejected samples sent to post-processing. This indicates that the system was able
to reduce the test set to a smaller subset of samples that are more difficult to
classify while only leaving behind 52 misclassified samples out of the 7794

accepted samples.

5.3 Classification Results

The classification rate of the neural network trained on 50000 images with

chain codes features of the largest components is 86.86%.

The classification rate of the neural network trained on 50000 images with

pixel value features is 94.43%.

When applying the cascading neural network model to the classification, the
post-processing method described in section 4.7 was applied. The following table

shows the improvements in the classification rates with post-processing:



Level | Classification Rate
1 94.43%
2 96.51%
3 96.58%
4 96.58%

Table 7 Classification Rates
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Therefore, the overall classification rate of the system is 96.58%. Although most

classification systems reach an accuracy rate of over 99%, the proposed method
reduces the training set to a smaller subset of images that are harder to classify.

That is, the samples that are rejected from the cascading neural networks are

considered to be difficult to classify. The classification rate of the overall system

can be increased if the post-processor has high classification accuracy on this

smaller subset.

Table 8 gives the classification results obtained from the system and the
possible trade-offs. The results show that by rejecting images where the neural

networks on each level disagree on the classification results, the error rate

decreases by more than 23%.
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Performance No rejections Reject if all classifiers
disagree
Best Recognition % 96.58 95.61
Rejection % 0 1.8
Error % 3.42 2.61

Table 8 Classification, Rejection and Error Trade-offs

5.4 Speed

For samples accepted on the first level the classification time is 93 samples
per second on an Athlon AMD 1600+ processor. This means that the
classification of each image accepted on the first level takes about 11
milliseconds. Every additional layer takes approximately the same time.
Therefore, for a sample accepted at level t the classification time is t*11

milliseconds.

5.5 Image Samples

Two types of images are considered especially difficult to classify. The
first are samples that were accepted by an agreement among neural networks with
a very high average posterior probability. The following are some images from
this category. The digit on the left is the label and the one on the right is the

classification result:
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5->2 7->2 7->2 6->1 9->0

2->7 4->9 5->3

Figure 7: Images Accepted by Agreements with Very High Confidence

As can be seen, many of these images are in fact confusing. However, with
better feature extraction there is room for improvement in at least raising a doubt
on the classification result. Some of these images are clear enough to be classified
properly. Using the largest connected component might not be enough
information for cases like the first sample in figure 7. The top of the number 5

would be excluded and the digit would look more like the number 4.
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The second category is when there are no agreements among the classifiers.
The following are some images from this category. The digit on the left is the
label and the one on the right is the classification result which is obtained by

taking the result of the classifier with the highest confidence:

1->3 4->6 9->0

Figure 8: Images Rejected by all Levels



48

It is clear that some of these images are more difficult to classify however
there are enough identifying features to extract better information and classify
them correctly. Interesting information on these types of images would be
geometric features such as the number of holes, number of corners, number of

endpoints, number of curves and the location of the curves.

5.6 Types of Agreements and Disagreements
There are different categories of agreements and disagreements generated
on each level. Each level contains two neural networks and table 9 shows the

types of agreements and disagreements generated by them:

Classification Classification Agreement Disagreement
Result from Result from
Neural Network 1 | Neural Network 2
Correct Correct Yes No
Incorrect Incorrect (same Yes No
result as Neural
Network 1)
Incorrect Incorrect (different No Yes
result from Neural
Network 1)
Correct Incorrect No Yes

Table 9 Types of Agreements and Disagreements
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Obviously, the goal is to reduce the second case where we have two
incorrect classifications that are in agreement. However, it would also be
interesting to see how many of the disagreements lie in the third case. That is,
among the disagreements, how many of them were incorrectly classified by both
classifiers and how many were correctly classified by at least one classifier. The

results are given in the following table:

Level Correctly Classified Incorrectly Classified
by at Least One Classifier | by All Classifiers
1 1027 442
2 1068 458
3 1021 549
4 943 642

Table 10 Results for Types of Disagreements

From the results given in Table 10, we can see that most of the samples
were correctly classified by at least one neural network. This suggests there may
be a way to identify samples that are consistently misclassified by including

additional classifiers on each level trained on different feature subspaces.



5.7 Additional Experiments

Additional experiments were done with different features given to the

second network on each level. Like the original experiment, a cascading neural
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network ensemble was constructed with two neural networks on each level trained

on different features. The first neural network on each level was again trained on

the pixel values and the second one on the horizontal pixel distance features.
There were a total of 4 levels and table 11 shows the classification results as the

additional levels were added. The same behavior is observed as in the original

experiment. That is, the classification accuracy increases as the number of levels

increase. There were no rejections in this experiment and table 11 shows the error

rates accordingly.

Level | Classification Rate | Error Rate
1 95.91% 4.09%
2 96.31% 3.69%
3 96.33% 3.67%
4 96.34% 3.66%

Table 11 Classification Results from Additional Experiments
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6. Suggested Improvements

This section provides suggestions for improving the classification accuracy
and the rejection rate of the proposed method. I will discuss some improvements
required in the pre-processing and post-processing methods and also suggest ways

to improve the classification accuracy by changing the structure of the ensemble.

Many experiments have shown that good pre-processing greatly improves
the classification accuracy of an OCR system. Specifically, introducing
normalizations such as shifting, and scaling of training samples has yielded very
good results. Also, deslanting the digits will most likely result in better
classification results. Experiments with the proposed method are required to

demonstrate this.

Improvements in the post-processing stage can also be made. As
mentioned in a preceding section, support vector machines yield very good
classification results. Since we are able to reduce the test set to a smaller set that
1s more difficult to classify, then a hybrid ensemble system can be used. Support
vector machines have a high computation cost. However, it may be used on a
smaller subset of the test set. As long as the false accepts are kept at a minimum
at each level then the additional classifier has a chance of correctly classifying the

sample. Contextual information can also be used to confirm classification results.
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For example, in bank check processing systems where we are trying to classify the
digits in the courtesy amount field, the information extracted from the legal

amount can be used to confirm the classification.

Also, certain images require additional information taken from the context
to confirm that the input is in fact a digit. Otherwise, the input might not be a digit
but the classification system will try to classify it as one. However, this can be a
limitation on the database used for the experiments, such as for MNIST, and in

that case it is assumed that the input is in fact a digit.

Improvements on the structure of the ensemble can also be made. The most
obvious one is increasing the number of neural networks at each level. Each
network should be trained on different feature subspaces. There has been quite a
bit of research on the selection of feature subspaces that result in highly accurate
classifiers. Since the classification accuracy increases in [5] as more classifiers
are added, then the rejection accuracy should also increase at each level in the
proposed method. There is a trade-off between the number of classifiers and the
rejection rate. Too many classifiers might mean too many rejections if the
individual classifiers do not have high classification accuracy. But if most
classifiers have high classification accuracy then most should agree on correct

classifications.
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Another improvement on the structure would be to train the neural
networks on features which differ from one level to another. That is, the neural
networks on one level can be trained on different features from the networks on
the previous level. This can help since the rejected samples from the previous
level might have features that were not considered by the networks on the previous

level.

As the number of classifiers on each level is increased, a more tolerant
rejection criteria can be used. There can be a threshold set by considering the
number of required agreements in the majority of the classifications. Samples can
be rejected if the number of agreements does not reach the threshold on each level.
Also, boosting can be used to improve error independence on each level and

different feature subspaces can be used on every level.
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7. Conclusion

The proposed method uses complementing classifiers to detect samples that
are harder to learn or classify. The neural networks are trained on different feature
subspaces and this allows for the detection of the majority of misclassifications. It
uses a cascading neural network model to focus on samples that are more difficult
to learn and classification accuracy increases when the method is applied to test

samples.

It is necessary to do more experiments with additional neural networks
trained on different features on each level to help extract as many
misclassifications as possible. Since many samples are accepted within the first
two levels, we can take advantage of the speed of neural networks while applying
more processing power on the more difficult samples. This method is a good
complement to support vector machines that require a higher computational

power.
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