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Abstract
An Algorithm for Gossiping and Broadcasting

Guo Tai Chen

Effectively disseminating the information among processors is an important feature for an
interconnection network. Among all information dissemination models, broadcasting and
gossiping are two of the most popular research topics. Finding the optimal broadcasting and
gossiping schedule in an arbitrary net is an NP-Hard complete problem. This thesis presents an
algorithm for both broadcasting and gossiping in arbitrary networks. The time complexity of this
algorithm is O(Rn’), where R is the rounds used for the broadcasting or gossiping, and 7 is the
total number of nodes in the network. The test has been implemented in both regularly used
graphs and four of the NS-2 network design models. The regularly used graph models include
Butterfly, CCC,, de Bruijn and Shuffle Exchange. And the four NS-2 internet models include

GT-ITM random, GT-ITM Transit-Stub, Tiers and Inet.
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1. Introduction

In order to find the best communication structure for parallel and distributed computing, a lot of
work has been done in the study of the properties of interconnection networks. The ability to
effectively disseminate the information among the processors is an important feature for an
interconnection network. There are four main problems regarding information dissemination:
broadcasting, accumulating, multicasting and gossiping. The main focus of this thesis is

broadcasting and gossiping.

1.1 Problem Statement

In order to formalize the gossip problem, let us assume that each node in a graph has a token that
needs to communicate to all of the other nodes in the graph. Tokens can be combined so that all
communications involve constant time. The time needed for combining 1s irrelevant and treated
as zero. Thus a formal definition can be stated as follows:

Initialization: Let G = (V, E) be a graph (interconnection network). Each node, v, is
associated to an initial singleton set S(v) which is the initial data. These initial singleton
sets are disjoint.

Allowable Steps: Each node can send its set to a neighbor or neighbors or receive a set from
a neighbor or neighbors depending on the model of communication used. After
receiving some sets, a node unites its existing set with all sets received at that step thus
forming a new set for the next step.

Final state: All nodes must have the same set locally, containing all tokens in the initial

singleton set. [8]



We have named the action of exchanging tokens between two nodes as a call. Then, for
gossiping, we have the following constraints in the model considered in this thesis:
1) A node can only call one adjacent node per unit of time.
2) A node can participate in only one call per unit of time.
3) Two-way mode is used, that is, a node sends its set and receives a set from its neighbor at
the same time.
4) Each call requires one unit of time.

5) Many calls can be performed in parallel.

In order to measure the gossip time, we employ the term round. In gossiping, a round is a set of
parallel calls in the same time unit. A solution to a gossip problem is a sequence of feasible

rounds that finish the communication.

In broadcasting we assume that a source node in a graph has a token that needs to be sent to all
the other nodes in the graphs. The formal definition for broadcasting is simply stated:
Initialization: Let G = (V, E) be a graph (interconnection network). A source node, v,
associate an initial unique token (the initial data). None of other nodes has a token.
Allowable Steps: Depending on the model of communication used, the nodes that have
received this token can send it to a neighbor or neighbors who have not yet received
this token.

Final state: All nodes must have this token locally.

For broadcasting, we have the following constraints in the model considered in this thesis:
1) A node can only call one adjacent node per unit of time.
2) A node can participate in only one call per unit of time.

3) Each call requires one unit of time.



4) Many calls can be performed in parallel.

For broadcasting, a round is a set of parallel calls in the same time unit. The number of rounds is
used to measure the broadcast time. Since one round spends one unit of time, the number of
rounds is equal to the total time-steps needed for broadcasting. Given a graph G, the broadcast

time b(G, u), or simply b(u), is the minimum broadcast time of graph G originated at node u.

I will study both of these two problems on common topologies and four NS-2 models that will be

introduced in Chapter 2 and Chapter 5 respectively.

1.2 Previously-Known Heuristics

There are several previously known heuristics. Among all of them, Round_Heuristic introduced
in [1] is the best existing heuristic. This heuristic is designed for both gossiping and broadcasting.
Its performance in broadcasting and gossiping is considered in this thesis. In [10], the testing
results from this heuristic in several commonly used graphs are presented. Most of the results are

equal to the optimal broadcast time.

In [1], two heuristics are given. One is matching heuristic, while another is coloring heuristic. The
Matching heuristic computes the weight for all edges, constructs a maximum weighted matching
to active the edged matched for token distribution and recalculates the token distribution. This
procedure will continue until every node has sent the same token to every other node. The critical

step is how to set the edge weights. The weight is the sum of the contributions from all tokens.



In each round of broadcasting or gossiping, weights are assigned to all edges in the graph. Then, a
maximum weighted matching is constructed in the graph. The matched edges are active in this
round. When an edge is active in a round, it means that a message is passed through this edge in

this round.

e

Dispersion Region  DR(p.t)
Figure 1: Definitions in Round_Heuristic

As stated in [1], setting the weight is the most important part for most other broadcasting and
gossiping algorithms including Round_Heuristic. There were two approaches used in the
Round_Heuristic. One is the Potential Approach, where the weight of an edge (v, w) is set to
equal its potential, defined as the number of messages known by either v or w, but not by both of
them. Although this approach is simple, requires little storage and is very fast, it does not perform

as well as the Breadth-First-Search (BFS) approach.

Several definitions are needed in order to introduce the BFS approach. These definitionswill be
used to introduce the new algorithm in Chapter 3. The dispersion region DR (p,t) of a message p
refers to the set of nodes that know p at the beginning of round ¢ ( this is a connected sub graph).

For a node v, dist,(p,t) denotes the shortest distance in the graph from v to a node w in DR (p,t).



The set of border-crossing edges bce(p, t) = {(v, w)e E | ve DR(p, t) and w & DR (p, t)}. For a
node v not in DR(p, t), bce,(p, t) consists of all edges in bce(p, t) that lies on the shortest path

from DR (p, t) to v. See Figure 1. {1]

The question that decides the direction of improving how to calculate the contribution of edge e
in bee(p,t): (How useful is e for the rapid dissemination of p?) is a very important one. Message
p should be routed on the shortest paths from DR(p,?) to all other nodes. It is better for e to lie on
more of these shortest paths. The larger dist,(p,t) is, the more priority should be given to
forwarding p towards v. Based on this idea, two parameters, Dist_Exp and Num_Exp that could be
used to highlight the importance of dist,(p,t) and the number of edges in bce(p,t) were introduced
in order to calculate the weight. These parameters play a very important role in the following

formula to calculate weight. [1]

distv(p,t)Dist_Exp
| bcev (p,t) |Num_Exp

weight(v, p,t) =

In [1], a modified breadth first search algorithm is used to calculate the weight. Because it is a
breadth first search algorithm, the nodes are considered in an order of increasing dist,(p, t). For
nodes v with dist,(p, t) = 1, bce(p, t) consists of all adjacent edges that connect v to a node in

DR(p,1).

The set bece,( p, t) is the union of a maximum of n sets with a maximum of m elements each for a
node v,. It takes O(nm) time to finish this calculation. The bce,(p, t) is computed for all
uninformed nodes. Thus, calculating the weights takes O(n’m) in total. Calculating a maximum

weighted matching is viewed as an external routine in [1].



Many of the testing results in several commonly used topologies are equal to the real broadcast
time. The paper [1] presents the test results in the CCCy, graph, the Shuffle Exchange graph, the

Butterly graph and the De Bruijn graphs.

The choice of parameters has a great impact on the quality of the heuristic.. Dist_Exp is the
parameter of particular importance. It determines the influence of the distance between nodes and
dispersion regions. Values in the range from 0.25 to 60 are used. The precise choice of two

topologies is mentioned in [1]: for the mesh, Dist_Exp = 4, and for butterfly graph, Dist_Exp=2.

In [7], a new algorithm was introduced. This thesis has replaced the way of finding destination
nodes for dissemination by using matching, and the main idea is used in gossiping also. In [7], a
heuristic for broadcasting in arbitrary networks is given. In this heuristic, at the beginning of a
round, all the nodes in a graph are separated into two parts: a dark region which is composed of
all uninformed nodes and a bright region which is composed of all informed nodes. The main
purpose of this exercise is to find all the matched pairs among the nodes located at a bright border
called bb(t) and the nodes located in the dark border called db(t) to spread the unique message
from the former to the latter. The weight is assigned to the nodes db(t) only by calculating the
estimated distance from any node in a dark region using the BFS method and identifying the
descendant relationship between nodes using distance values and neighbor ordered by their
estimated distance. After this has been accomplished, the maximum-number-weight matching
between bb(t) and db(t) is used to decide which node in db(t) should be informed by checking the

maximum weight assigned to them. This procedure continues until bb(t+1) becomes empty.



1.3 Thesis Outline

The structure of the remainder of this thesis is following. The related background knowledge is
introduced in Chapter 2. This includes commonly used topologies, NP-Completeness of the
broadcast and gossip problem, and the matching problem. The new algorithm for both
broadcasting and gossiping is formally presented in Chapter 3. Chapter 4 introduces the
implementation of the algorithm. The experimental results concerning the heuristic are introduced
in Chapter 5. The performance of the new algorithm is compared with those from previously

known heuristics in Chapter 5 as well. Finally, this thesis is concluded in Chapter 6.



2. Background

2.1 Terminologies and Symbols

In the following sections, I will use a graph to model a network. For the purpose of message
dissemination, it is natural to assume that the network is represented by a connected graph. A
graph can be represented as G = (V, E), where V is the set of vertices and E is the set of edges. If
an edge e € E and has two end vertices u € V and v € V, we can say that ¢ = (4, v), and these
two vertices u and v are adjacent, or vertex u (or v) is a neighbor of the other vertex. The degree
of a vertex is the number of its neighbors. The degree of a graph G is the maximum degree among
all vertices in this graph. We use A to denote the degree of a graph. The distance between a vertex
u and a vertex v is the length of the shortest path between vertex u and vertex v, denoted by
dist(u,v). The diameter of a graph G is the maximal distance between any pair of vertices in the

graph G. We denote it with D.

In order to measure the broadcast time and gossiping time, we use round that is the set of parallel
calls in the same time unit. The number of rounds is the time used for broadcasting and gossiping.
A broadcast scheme or broadcasting schedule is a series of round that perform broadcast. While a
gossiping scheme or gossiping schedule is a series of rounds that perform gossiping. For a given
graph G and u as any one of its nodes, the broadcast time of u is the minimum broadcast time of
graph G originated at vertex u, this can be denoted by b(u, G) or b(u). The broadcast time of
graph G is defined as follows: b(G)= max {b(u,G) | u € V }. Similarly, g(G) stands for the

gossiping time of graph G.



2.2 Commonly Used Topologies

Both algorithms of Broadcasting and Gossiping will be tested based on some topologies or
models. As presented in this section, there are many commonly used network topologies. NS-2
models that simulate the real-life Internet structure and pure random networks are introduced in

Chapter 5.

Before introducing all of the commonly used network topologies, here are some preliminaries.
For any graph that has n vertices, we have |_log2 n_l < b(G) < n - 1. Since any vertex holding a
message can only send it to one of its adjacent vertices, the number of informed vertices could at
most be doubled in each round. Thus, at least I_log2 n-| rounds are needed for finishing

broadcasting. On the other hand, in broadcasting, at least one vertex must be informed in each
round. A situation in which no new vertex is informed means that the broadcasting has been
finished. Therefore, broadcasting takes at most n-/ rounds. For any graph of maximum degree A,
and diameter D, where D < b(G) < AD, it is possible to broadcast in any shortest path spanning

tree of G of height D and maximum degree A in at most AD rounds [5].

Lemma 1. In any graph of diameter D, if three different vertices u, v; and v,, with both v; and v,

at a distance D from u, exist, then b(G) 2 D+1.

In [11], some bounds of the gossiping problem are given as follows: since a gossiping scheme can
be used as a 1-broadcast scheme, we have b(G) < g(G). Again, gossiping can be performed in two
phases. One must first collect all of the messages in one vertex through the use of a gather
operation, and then one must broadcast the full information to all of the vertices, so we have

g(G) < 2b(G) — 1. Therefore we have:



[_ ] SHG)<g(G)<26(G)-1<2n- 3

In the rest of this section I will present the commonly used network topologies, and also indicate
their broadcast and gossiping time. Most of the results presented in this section were surveyed in

[5], [11], [12] and [13]. All of the figures in this section were presented in [5], [11] and [13].

The Complete Graph: In a complete graph, any vertex is linked to all other vertices. K, denotes a
complete graph [11]. Figure 2 (a) present an example with node number » = 4 and Figure 2 (b)

shows another example with n = 6. The degree of all vertices is n — 1, while the diameter is 1 and
the number of edges is n(n — 1)/ 2 [11]. In [11], we can see that b(K,) = |_10g2 n-|, because any
informed vertex can send the message to any of its k£ uninformed neighbors in each round. The
following results are shown in [14]: g(K,) = |_log2 n-|, if nis even, and g(K,) = I_ log, n—| +1,ifn

is odd.

@n=4 ®)n=6

Figure 2: Complete Graphs withn=4andn=6

The Path: In the graph of Path with the length of n, the vertices are all labeled by integers from 1
to n, and all edges connect a vertex labeled by integer i(1 £ { < n) to the vertex labeled by i + 1,

we denote the path by P, [S]. With n vertices, P, has a diameter of n - 1 and a maximum degree

10



of 2. Figure 3 gives an example of P6 [5]. b(u, P,) is at the maximum, when the originator u is at

either end of P,. In such a case b(u, P,) = b(P,) =n-1.

° ° @ ° ® ®
1 2 3 4 5 6

Figure 3: The Path with n=6

Cycle Graph: In a graph of cycle with n vertices, each vertex is linked to only two neighbors, it
can be created from path P, connecting the two end nodes. A Cycle graph with #n vertices can be

denoted by C,. The degree of Cycle graph C, is two. Figure 4 (a) shows the example of C,, and

Figure 4 (b) shows another example Cg [11]. In the cycle graph C,, the broadcast time is [g—,

[11]. The result for the gossiping problem in a cycle graph is:
g(C,) =n/2 = D, if nis even.

g(C)=(n-1)2+2=D+2,if nis odd.

(@) n=4 (byn=6

Figure 4: The Ring Graph with n=4 and n=6
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The d-grid graph: The d-grid graph is a graph with d path graph parallelly connected.

GDy= P

m

P, for Is i < d, where F, is a path on n; vertices [11]. Figure 5 gives an

example of 2-grid. We have the bound from [15], b( P,L1 ... P)= Zni —d =D.

We use G,,, to denote a 2-grid with m columns and n rows. When the originator is on a corner of
the graph, broadcast will have the worst case and broadcast time is m + n ~ 2 [15]. In [16], we
can see the following results on gossiping time:

b(P, .. P )=D+1,ifdisodd;

b(P

n

Pnd y=D,if d is even.

[ ® ®

Figure 5: The 2-grid Graph of 12 Nodes

The d-Torus graph: A d-Totus graph is a d-grid graph with both ends of path of row and column

connected as circle. If we use T, to denote d-Torus graph, similarly with d-grid graph, we have

Tq=C, .. C, forlI<isd, where C, isacycle on p; vertices [11]. Figure 6 presents a

2-Torus graph with 12 nodes.
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The optimal broadcast time of the 2-Torus graph is ’V%—’ + [—;——‘ , when m or n is even; and it is

[_n_z] + (g—l-l when both m and n are odd [15]. The only known result of broadcast on

2

multidimensional torus is : D £ b(C o C », ) S D+ max(0, m - 1), where m is the number of

odd dimensionsin C, ... C, [11]. For gossiping, D < g(Ty) <D + 2d [17].

Figure 6: A 2-Tori Graph with 12 nodes

Hypercube Graph: A hypercube is a cube with d dimensions (d = 1), and each node in a d
dimensional cube is directly connected to d other nodes. We can use Hy to denote hypercube
graph. A d-dimensional hypercube has n = 24 vertices and d2%" edges. It is beneficial to number
each vertex with a corresponding d-bit binary string, because two vertices are linked with an edge
if and only if their binary strings differ by precisely one bit [11]. As a consequence, each vertex is

adjacent to d other vertices, one for each bit position [11]. The diameter of Hy is d.

From [13], we know that any d-dimensional hypercube could be derived from two

(d — 1)-dimensional hypercube graphs. This can be seen from Figure 7 that gives an example of

13



how a 4-dimensional hypercube Figure 7 (b) is constructed from two 3-dimensional hypercube

(Figure 7 (a)).

Broadcasting in Hy can be done in d rounds as follows: at step i, each informed vertex sends the

message in dimension i (/< i <d) [11]. Gossiping in H, can also be done in d rounds [11].

000 001 001 000

100 101 101 100

110 111 111 110

010 011 011 010

Figure 7: The Hypercube Graphs of 3 and 4 Dimensions

Cube Connected Cycles: A d-dimensional cube connected cycle can be constructed from a d-
dimensional hypercube by replacing each vertex of the hypercube with a cycle of d vertices [11].

We use CCC, to denote a d-dimensional cube connected cycle. The diameter of the CCC, is
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2d +[f12—J- 2, when d > 3 [4]. For broadcasting time, D £ b(CCC,) £ D + 1 when d is even. But

when d = 4, it is an exception, since b(CCC,) = D + 1. And D+] < b(CCCy) £ D + 2, when d is

odd

In [6], we can see the result for gossiping in the CCCy graph: D < g(CCCy) £5d/2=D +2,ifd is

even; D+ 1 <g(CCCy < [ —Sziw +2=D+35,if dis odd. Figure 8 shows an example of the CCC

graph of 3 dimensions.

"

Figure 8: The CCC Graph with 3 Dimensions
The butterfly graph: The n-dimensional butterfly graph is a graph with vertices that are pairs
(w, i), where w is a binary string of length n and i is an integer in the range O to n and with edges
from vertex (w, i) to (w’, i + 1), if and only if w' is identical to w in all bits with the possible
exception of the (i + 1) bit counted from the left. We use BF, to denote it. The d-dimensional
butterfly BF has d2¢ vertices, Figure 9 showsan example of BF; [11]. According to the definition
above we know that each vertex is labeled with a pair of numbers (/, x). I represents the level
(0= 1< d-1),and X = Xg ...Xq 1s a d-bits binary string called the position-within-level [11]. BF4

has degree four and diameter |_3d / 2J [11].
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From [18], we know that 1.7417 < b(BF,) < 2d — 1. For gossiping, we can conclude from the fact

that CCCy4 is a sub graph of BF,, that D < g(BFy) =< |—5D/3—| if d is even; D £ g(BFy) <

[5(D+10)/3],if d is odd.

000 001 010 011 100 101 110 111
Level O
Level 1
Level 2 ./
1
Level O 5

Duplicated

Figure 9: The Butterfly Graph with d =3
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The de Bruijn Graph: The de Bruijn digraph is a graph that has nodes that are sequences of
symbols from the binary alphabet. Its edges indicate the sequence that might overlap. We use
UB(d, D) to denote it. The de Bruijn digraph B(d, D) has in-degree and out-degree d and diameter
D, and has N = d” vertices. The vertices are denoted by the words of length D on an alphabet of
d letters [11]. There is a direct edge from each vertex (xpx;...xp.;) to (xpx,...Xp.ry), where y could be
any letter in the alphabet [11]. Actually, we can get the de Bruijn graph UB(d, D) from B(d, D) by

removing the edge orientation in B(d,D) [11]. Figure 10 is an example of UB(2, D).

001 011

000 010 111

100 110

Figure 10: The de Bruijn Graph withD =3,d =2
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The Shuffle-Exchange Graph: The shuffle-exchange graph consists of nodes that are all binary
string of length ma and its edges connect each string aa, where o is a binary string of length m-1
and a is in {0,1}, with the string oa and with the string ao The d-dimensional shuffle-exchange
graph has n=2" vertices. Figure 11 gives the example of SE; [11]. From this example we can see
that each vertex corresponds to a unique d-bit binary number, and for two vertices u# and v, they

are linked by an edge, if either u and v differ in precisely the last bit, or u is a left or right cyclic

shift of v [13].
010 011
000 00 110 111
®
100 101

Figure 11: The Shuffle-Exchange Graph withd =3

2.3 NP-Completeness

2.3.1 Definition

NP(Non-deterministic Polynomial time) is a set of decision problems that are solvable in
polynomial time on a non-deterministic Turing machine [22]. Equivalently, it is the set of

problems that can be "verified" by a deterministic Turing machine in polynomial time.

NP-complete problems are the most difficult problems in NP, in that they are the ones least likely

to be in Polynomial time. This is due to the fact that if one were able to solve one NP-complete
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problem quickly, then one could use that algorithm to solve all NP problems quickly. The

complexity class consists of all NP-complete problems.

In [22], A decision problem C is NP-complete if
1. 1itisin NP and
2. itis NP-hard, i.e. every other problem in NP is reducible to it

"Reducible" here means that for every problem L, there is a polynomial-time many-one reduction,

a deterministic algorithm which transforms instances / € L into instances ¢ € C, such that the

answer to ¢ is YES if and only if the answer to [ is YES. To prove that a NP problem A is in fact a
NP-complete problem one must demonstrate that an already known NP-complete problem
reduces to A. Thousands of other problems have been shown to be NP-complete by reductions
from other problems previously shown to be NP-complete; many of these problems are collected
in  Garey and Johnson's 1979 book Computers and Intractability: A Guide to NP-

Completeness.[22]

2.3.2 Broadcasting and Gossiping in arbitrary network is NP-complete

From [19], we know that the broadcast problem on an arbitrary graph is NP-complete. This can
be proved because the NP-complete problem, the three-dimension matching (3DM) problem,

reduces to the broadcast problem on an arbitrary graph.

In [20], we also learn that the gossiping problem on an arbitrary graph is also NP-complete. This

can be proved under either full-duplex or half-duplex pair wise model of communications. The

reduction uses the Minimum Broadcast Time Problem as described by Garey and Johnson [23] .
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After giving the result for the half-duplex model, it can be modified to yield the same result for

the full-duplex model. In addition the reversibility can be realized as well.

Through the observation that any single source broadcast algorithm becomes another algorithm
when the sequence of communications is reversed, one can conclude that by running a broadcast
algorithm backwards, one can collect tokens from all of the nodes. Given an instance of the
Minimum Broadcast Time Problem involving a graph G = (V, E) and a specified node v, one
constructs another graph, G* = (V", E” ) that depends on the choice of v with the property that the
Minimum Broadcast Time Problem for G and v has a solution using k or fewer steps if and only if
the gossiping problem for G™ has a solution using 2k + 2 or fewer steps. [20] demonstrates proof
that a solution to the Minimum Broadcast Time Problem for G and v in k steps exists if and only
if there is a solution to the gossiping problem for G* in 2k+2 steps. Since the construction of G

uses only polynomial resources, the minimum-time gossiping problem is NP-complete.

Since the broadcasting process is always achieved through the use of a single source- node, the
full duplex capability is not a possibility. In other words, there can be no case where the
replacement of a half-duplex transmission by a full duplex one would improve any of the above
algorithms. So, the entire above proof can be repeated for the full duplex model, with 2k +

being used in place of 2k + 2 because the exchange can be done in one step.
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2.4 Matching

2.4.1 General Matching Problem

A matching in a graph is a set of edges without common vertices [24]. Given a graph G=(V, E) a
matching M in G is a set of non-adjacent edges. The maximum matching makes the number of
matched pairs as great as possible. There may be many maximum matches. A perfect matching is
a matching that covers all vertices of the graph. That is, every vertex of the graph is incident to

exactly one edge of the matching.

Finding a maximum matching on a graph is a very useful procedure in that it can facilitate
operation research and integer programming. Let us take the example of a university instructor
who wishes to divide his entire class into teams of two. We will assume that certain students are
prohibited from pairing up with each other because they are considered incompatible. In this case,
the finding a maximum matching concept can be employed as a guide in order to choose the

greatest possible number of teams of compatible students.

Augmenting path is a very important concept to understand the following implementation. An
augmenting path with respect to a matching M is a simple path abc...yz of nodes connected by
edges in E such that nodes a and z are exposed, and edges bc, de, ... xy are in M and the other

edges of the path are not in M.
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2.4.2 Matching Used in this Thesis

In this thesis, I will employ the implementation of Edmond’s algorithm for maximum matching
by Harold N. Gabow [25]. This implementation is based on a system of labels that encodes the
structure of alternative paths. It constructs a maximum matching on a graph. It starts with empty
matching, and continues to improve it with augmenting paths until it stops. Using an array called
MATE to store the matching and array called LABEL for the every outer vertex, one can write
the algorithm as follows.

1. Read the graph into adjacency lists, number the vertices 1 to n and the edges n + 1 and
n + 2W. Set all vertices as non router and unmatched. This step is for initialization.

2. Find unmatched vertex: Increase u by 1. If u > V, stop. U is unmatched, so assign a start
label and begin a new search.

3. Choose an edge: choose an edge xy, where x is an outer vertex. If no such edge exists go
to step 8. Edge xy can be chosen in an arbitrary order. A possible choosing method is
“breadth-first”.

4. Augment the matching: if y is unmatched and y is not u, set x as mate to y, rematch x and
y, then go to step 8.

5. Assign edge labels: if y is outer, call label function, then go to step 3.

6. Assign a vertex label: set vas MATE(y), go to step 3.

7. Get next edge: y is nonouter and MATE(y) is outer, so add nothing. Go to step 3.

8. Sstop the search. Set LABEL(0) as -1, now all vertices are nonouter for the next search

[25].

In order to view the algorithm in detail, please refer to [25], The computation time of this

implementation is proportional to n’, where n is the number of vertices. This algorithm can be

22



generalized to find maximum matching on weighted graphs. In a weighted graph, each edge has a

weight that is a real number. The main problem is to find a matching with maximum weight.
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3. Algorithm

3.1 Broadcasting

3.1.1 Algorithm Description

For the purpose of simplifying the description, we will first define several terms. There are three
kinds of definitions that are important for this algorithm: region, descent graph and children.

Following the definitions, we will present both the algorithm and an example.

3.1.1.1 Definitions

Definition 1. For a given graph G at round t, there are two regions according to the situation of
the message distribution, the Dark Region and the Bright Region. The Dark Region, denoted by
DR(t), is a subset of nodes in G that is composed of all uninformed nodes at the beginning of
round t. Those nodes in DR(t) that have informed neighbors, compose the dark border, denoted
by db(t). The bright border bb(t) is composed of those informed nodes that have uninformed
neighbors. The edges that cross between Dark Region and Bright Region are called cross board

edges that are denoted by cbe(t).

Figure 12 illustrates how these concepts are defined. The dark region DR(t) is represented by the

shadowed area. The nodes in DR(t) with the black backgrounds belong to db(t), for example k, i,

J, h, m and [, and the nodes not in DR(t) with shadowed backgrounds belong to bb(t). The edges

(f, k), (f, i), (f, j). (d, b) and (g, m) belong to cbe(t).
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Dark Region: DR(t)

____A node of dark border: db(t)

Figure 12 Definitions of Graph Parts

Definition 2. For a graph and an uninformed node v at round t, There is a shortest distance from

node v to a node in bb(t). The shortest distance is denoted as D(v,t) .

The shortest distance can be used to define a child as follows:

Definition 3 child, parent and descendants: Given an uninformed vertex u and its uninformed
neighbor v, if D(u, t) = D(v, t) + 1, we say u is a child of v, and v is the parent of u. The node u,

its children and its children’s children are all called v’s descendants.

Now it is possible to define the descendant graph as follows:

Definition 4. For a graph and an uninformed node v at round t, one can find a descendant graph
for v. This descendant graph consists of node v and all its descendants. This is named as the

descendant graph of v, which is denoted by DG(V, E, v), or rather DG(v).
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Definition 5. Estimated time: in order to estimate the broadcast time of DG(v) in round t, we use
EB(v, t). EB(v, t) is defined recursively as follows:

1. EB(v, t) = 0, if node v has no children.

2. Ifv has k children, c,, c, ..., ¢, and all these k children are listed in order of EB(c;, t) 2

EB(ciypt), then EB(v, t) = max{EB(c, t) + i}, for I Si<k.

The following is the algorithm to calculate EB(v, t), given EB of all children of node v.
Algorithm of Calculating EB(v, t).

1. Find max{EB(c;t)}, and denote it by MAX.

2. Create k buckets, and number them from O to k-1.

3. Consider any child ¢, if MAX -1 2 EB(c,t) 2 MAX - i - 1, put ¢ into the ith bucket.
Here, we only record the minimum value and the number of elements. SUM(i) denotes
the number of elements in the first ith buckets and MIN(i) denotes the minimum value in
the ith bucket.

4. Get EB(v, t)= max{EB(c; t) + i}.

For step 4 above, we have a lemma.

Lemma 1. EB(v, t) = max{SUM(i) + MIN(i)}, for0<i<k.

Proof: If a node v has k children, c;, ¢, ..., ¢, . And these children of v are ordered so that
EB(c, t) 2 EB(c;s1,t), then according to definition 5, we have EB(v, t) = max{EB(c; t) + i}, for 1 £
i<k EB(c; t) + iis order-weight of c;. Because MAX —1 2 EB(c,t) 2 MAX ~ i~ 1 for any child
¢ in the ith bucket, the maximum difference among EB of the children in this bucket is less than

1. Therefore, in the ith bucket, the child with the minimum EB has the maximum order-weight,
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which is equal to SUM(i) + MIN(i). Thus, max{SUM(i) + MIN(i)}, for 0 £ i < k is the maximum

order-weight of all the children, which is EB(v, t).

3.1.1.2 Algorithm

According to the above definitions, the algorithm can be defined as follows:

1. Initialize the graph to make all control information ready, Set up bright region BR(t) to
contain one node only as the originator, t = 0. This node is the unique node in bb(t) also.

2. Calculate EB(v, t) for all nodes in DR(z), and assign this as weight value to the
corresponding node.

3. Assign weight to cbe(t) according to the weight value for adjacent nodes in bb(t)

4. Get the maximum weight matching between bb(t) and db(t).

5. Disseminate the message to inform the matched node in db(t) and be moved them to
bb(t), increase t by 1.

6. Repeat 2 to 5 until db(z+1) becomes empty.

Then the t would be the number of total rounds used for the broadcasting.

3.1.1.3 An Example

Here is an example to illustrate the process of broadcasting with this algorithm.
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Figure 13: The Original Example Graph

Figure 13 shows the graph I will employ to do the broadcast. Vertex a is the originator in that a

possesses the unique message that will be disseminated to all of the other nodes.

28



(a) ()

Figure 14: The Example Graph at First Round

In Figure 14 one can see how the first round is defined: only the originator a is informed and it
is the only element in bb(0). All of the other nodes have their weights as shown in the figure.
Node a has three neighbors, b, ¢ and d which consists of db(t). Node b and node ¢ have the same
weight 5 while node d has weight 3. The area encompassed by the shorter dashed lines, which is
located on the left, is DG(c), and the area defined by the longer dashed lines , which is located on
the right, is DG(d). The weight of node ¢ is 5. This means that broadcasting in DG(c) that
originated at node ¢ takes 5 rounds. After assigning weight to cbe(0) which includes edge(a,b),
edge(a,c) and edge (a,d), one can get a sub graph as shown in Figure 14(b). As a result of the

algorithm of maximum weight matching, in the first round we get a and c¢ as the matched pair. .
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(b)

Figure 15: The Example Graph at the Second Round

One can see the second round from Figure 15. As shown in Figure 15(a), nodes a and ¢ are
informed nodes. Node a has two uninformed neighbors node b and node d. The weight of node b
is 0 because DG(b) has only one node b. After assigning weight to corresponding cbe(1), one can
get the graph shown as Figure 15(b). Based on this graph, one can obtain the match (a, d) and

(c, e). This is the second round.
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Figure 16: The Example Graph at the Third Round

For the third step (as shown in Figure 16) one is capable of observing that several descendant
trees share nodes. The areas representing DG(f), DG(g) and DG(h) overlap. One can see this in
Figure 16 (a), in similar steps to those presented in 1 and 2, one can get the match from the graph

as shown in Figure 16(b).

The broadcasting continues in a similar fashion until all nodes are informed or have obtained the
message originated from node a. Finally, one can get the schedule created by the new heuristic as
shown in Figure 17. The numbers on the edges indicate the round in which the edge is used
during broadcasting, and the arrows demonstrate the direction in which the message has been
sent. One can see that in this particular graph the algorithm provides the optimal broadcast

schedule.
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Figure 17: The Final Schedule in the Example Graph

3.1.2 Refinement

3.1.2.1 Motivation

One of the critical parts in regards to the successful functioning of this algorithm is to calculate
EB(v, 1) (which has played an important role for the match) and then to decide which one should
be the next informed node accordingly. One can notice that a child may have more than one
parent, and thus the weight of such a child could potentially be counted several times when one
computes the weight of the parents. If this occurs, the effect of this child during the process of
broadcasting is overestimated. In order to make the results to reflect the above theory, one should

depend on the refinement solution as given in the following section.
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3.1.2.2 Refinement Description

The refinement and the original algorithm are subject to the same procedure for the calculation of
EB. To simplify, one must employ the same logic that I have referred to above: provide a

definition and then describe the algorithm.

Definition 7. Refined Estimated time: in order to make the estimation for the broadcast time of
DG(v) in round t more accurately, we use REB(v, t). REB(v, t) is defined recursively as follows:

1. REB(v, t) = 1, if node v has no children.

2. Ifv has k children, c, c;, ..., ¢, and all these k children are listed in order of REB(c;, t) 2

REB(c;,1,t), then

EB(c.
REB(v,1) = max{M + i}.

n

n is the number of parents of c¢; p is a parameter.

With this new definition the refined algorithm can be defined as the follows:

1. Initialize the graph to make all control information ready. Set up the bright region BR(t)
to contain one node only as the originator, r = 0. This node is also the unique node in
bb(t) also.

2. Calculate REB(v, t) for any node in DR(z), and assign this as weight value to the
corresponding node.

3. Assign weight to cbe(t) according to the weight value for adjacent nodes in bb(t)

4. Get the maximum weight matching between bb(t) and db(t).

5. Disseminate message to inform the matched nodes in db(t) and move it to bb(t), t=t + 1.

6. Repeat 2 to 5 until db(z+ /) become empty.

33



From the description above, we can see that the difference is only at step 2, and the improvement
depends on the way p is selected and on the topologies. For some topologies, it works well, for
example Cube-Connected, Cycle, the ButterFly and the ShuffleExchange. With other topologies,
it does not work very well. The parameter p also has some impact. We can simply assign p =1 to
all kinds of topologies. In such a situation, the performance is improved in some topologies, but,
the improvement is not significant. To make the results better, we have to adjust p accordingly to

different topologies.

3.1.2.3 An Example that Makes a Difference

Let us use the following graph shown in Figure 18 as the topology. I will illustrate the difference
that the refinement algorithm will make. In this graph, node a is the originator. The difference
will be demonstrated from round 2. The first round is (a, b) no matter which algorithm one

follows. So we start from second round, that is, after node a and node b are informed.

\
©

Nt
g

Figure 18: The Example that Refinement Makes Difference



With the original algorithm as shown in Figure 19 (a), the weights of each uninformed node are
presented in round 2. The nodes with shadowed backgrounds are informed nodes. As mentioned
before, the weight of a node is the approximate time before broadcasting is finished after the node
is informed. By using the new heuristic, in the second round, the weight of node f and c are both 1
because node g is a child of theirs. Based on the calculation following the original algorithm, we

can ultimately get the final schedule as seen in Figure 19 (b).

?

Figure 19: The Example with Schedule from Original Algorithm

[

(a)

With the refined algorithm as shown in Figure 20, the weights of each uninformed node are also
presented in round 2. By using the new heuristic, in the second round, the weight of node f and ¢
are both 1.5, because node g is a child of theirs and g is divided into two and assigned to its
parents accordingly. The weights of each uninformed node are presented in round 2 according to
definition 7. Based on the calculation following the refined algorithm, one can get the final
schedule as show in Figure 20(b). And one can see that with the refined algorithm, one can

reduce one round for this topology
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Figure 20: The Example with Schedule from Refinement Algorithm

3.1.3 Complexity

Step 1 O(n)
Step 2 Oo(m)
Step 3 O(n)
Step 4 ond)
Step 5 O(n)

Table 1: List of Steps' Complexity

The original and refinement algorithm have the same complexity since they are only different in
the way the weight calculation is done. That does not make a difference for the complexity. From
the algorithm one can see that steps 2 and 4 dominate the time complexity. Step 2 (the
implementation of assigning weights) has two phases. In the first phase, the heuristic performs a
Breadth First Search (BFS) of DR(t) from the bb(t) and label each node by D(v, t). At the same

time, a set is created to save nodes that have no children. This set is denoted by rb(t), which
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stands for remote border where m denotes the number of edges of graph G. This step can be done
in O(m) time. In the second phase, a recursive process is used to compute weight for each node in
DR(t). This process starts from rb(t) towards db(z). In the worst case, one has to calculate EB(v,t)
for every node of graph G. The degree of the ith node of graph G is denoted by d;. By using the

new heuristic to calculate EB(v, t), the time needed for a node with degree d is O(d). The time
needed to calculate all the nodes is Z;O(d ;). Since Z; d, = 2m, the complexity of this step

is O(m). Thus, the total complexity of assigning weights (step 2) is O(m)[7].

When using the maximum matching algorithm and Gabow’s implementation of Edmond’s
algorithm for step 4, the time complexity in one round is O(n’) according to Chapter 2 This
approach to implementation will dominate the complexity of the whole algorithm. As seen from
Table 1, the complexities at step 1, 3 and 5 are trivial for the whole process. Assuming that the
total round for the whole procedure is R, so we can see that the total time complexity of the new

algorithm is O(Rn’).

3.2 Gossiping

3.2.1 Description

This section presents a heuristic for gossiping in arbitrary graphs. This heuristic is derived from
the broadcasting algorithm as described above. The input of this algorithm is a graph G=(V, E)

and its output is a gossiping schedule for this graph.

At each round ¢, a message s has an informed area (vertices holding s), an uninformed area

(vertices not holding s), a bright border (vertices are holding s and having uninformed neighbors)
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and a dark border (a set of vertices are not holding s and have informed neighbors). For a

message s, this algorithm performs a variant of BFS from the bright border to the uninformed

border and labels each visited vertex u with the shortest distance from « to the bright border of s.

Then, this algorithm calculates the weights for all uninformed vertices to message s. Given an

edge (u, v), the weight of (i, v) of message s is the weight of v if u is in the bright border of s and

v is in the dark border of s, and is zero otherwise. In total, the final weight of an edge is the sum

of its weights of all the |V| messages. Then, the new algorithm finds the matched pairs of nodes

for graph G based on the weights of all edges Maximum-Weighted Matching. Based on this idea

one can describe the algorithm as follows:

1.

Initial graph: All nodes have one unique message. Bright Region BR(#) contains one node
only for any node.

Select the first node in the graph.

Calculate EB for any node in Dark Region DR(#) for round t, and set this node’s weight
as EB.

Extract the weight value for all nodes in bright border bb(#), and add this weight to
adjacent edge in cbe(?).

Go to the next node, repeat step 3 and step 4, until all nodes have been selected to assign
weight to their cbe(?).

Get the maximum-weight match for the whole graph.

Exchange messages between the matched nodes, so both of them have the same
information. Recalculate BR(#) and DR(#) for all nodes. Increase t by 1.

Repeat 2 to 8 until all the nodes have all the messages from all the other nodes.

Actually, we have two solutions for this also: original and refinement. These solutions are based

on the way we calculate the EB in step 3. For the original we set EB as EB(v, ) (by definition)

38



and similarly we chose REB(v, ) (as shown in definition 7) for refinement. Again the refinement

makes a difference only for some topologies.

3.2.2 Complexity

The gossiping problem on an arbitrary graph is also NP-complete [20]. Several heuristics for
gossiping have been presented in [10] and [21]. Among them, the algorithm in [10] is the best

existing heuristic in practice.

In regards to the new algorithm, one can derive the complexity in the same way as in section
3.1.3. The dominating step is step 6 which is the same as step 5 in the broadcasting process. Step
2 to step 5 is the procedure that involves assigning weight to edges. The complexity for them is
O(nm), since this is the repeating process for all nodes. Thus the complexity for gossiping is the

same as that of broadcasting: O(Rr%).

3.2.3 Example

Suppose one has a graph with 4 nodes and 3 edges as shown in Figure 21. At the very beginning,
each node has a unique message (identified by its ID) to be disseminated to all other nodes. At
round t, every message P can contribute to the weight of all edges in its cbe(t). Thus, one can get
weight for every edge that sums weight contributions from all nodes. The entire procedure will

be described in the following section.
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Figure 21 Gossip Example -- Original State

The gossiping procedure is finished with 3 rounds as shown in Figure 22. In the first round, all of
the weights assigned to the three edges are listed in Table 2. N stands for nodes, while E refers to
edge. These values are weights and the distribution situation for the eédges from corresponding
nodes obtained from the algorithm discussed above. So edge (b, ¢) and (a, d) are selected as

matched edges for round 1.

(b,a) 1 1 2 No
(b,c) 1 2 3 Yes
(a,d) 1 2 3 Yes

Table 2: Weight Calculation at Gossip example -- round 1

After round 1, every node changes its corresponding cross border edges for round 2 Specifically,
node a and d share the same cross border edge (a, b) and have the same DR and BR. Node b and
node ¢ share the same cross border edge (a, b) as well and have the same DR and BR. In the
end the only cross border edge all of these four nodes share are the same (b, a). It is obvious that

only (b, a) is selected as the matched pair.
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(b,a) 1 1 1 4 Yes
(b,c) No
(a,d) No

Table 3: Weight Calculation at Gossiping Example -- round 2

(b’a) No
(b,c) 1 1 Yes
(a,d) 1 1 Yes

Table 4: Weight Calculation at Gossiping Example -- round 3

Similarly, for round 3 the matched pairs (b, ¢) and (a, d) are derived from the Table 4. Actually in
this situation there are two BRs, for g, d, it is (a, b, d) and for b, c it is (a, b, ¢). Edge (a, b) is
always in the BR, so it is impossible for it to be select as a matched pair. The result for round 3 is
the same as round 1. After this round, all of the nodes have received all of the messages, thus, all

nodes have become experts in regards to the information.

Ly

Figure 22 Gossiping Example -- Round 1 & 2
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Finally, we can see that all of the messages are disseminated to all of the nodes as shown in
Figure 23. All the nodes have received all of the messages, and all the nodes have the same DR,

BR and the cross border edge set is empty.

Figure 23: Gossiping Example -- Final State
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4. Implementation

In order to test the algorithm and compare it with other heuristics, this implementation was done
with a pure C++ solution. The objective of this implementation is to develop a research-grade,

full C++ compliant and easy to use application.

To run this program, one only needs the exe file of graph.exe and a set of empty folders for
specified graphs to hold the log file and other temporary files. These folders can be generated
with an accompanying program called Makdir.exe. This application is coded with Visual C++ 6.0
and has been tested on Windows 2000 and Windows XP. The run program graph.exe is about

800K 1in size.

In this chapter, the high level classes are introduced in section two and the data structure used is
presented in section three. These two sections illustrate the basics for the implementation in
following sections. The flowchart and some important methods are introduced in section four and

five.
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4.2 High Level Class Structure Diagram:

4.2.1 The Class Diagram

GossipMaininfo

GraphBasic
-the_graph : Graphinfo
+initialGraphCCC({() : bool
+process() : void
| _
IPGraphinfo * -set up} contains
-theVertexID : long *
-firstlP * : Vertexinfo
-numOfVertexeslP : long part of
-firstBorderEdge * : EdgeMarkInfo Graphinfo * -prints
+assignWeightIP(() : bool -firstNode * : VertexInfo
+BFSIP() : void = -lastNode * : Vertexinfo
+addBorderEdgeMarkIP() : bool N -numOfNode : long Schedulelnfo
+growDuringDissemination() : void -numOfEdge : long _‘ part of -aSchedule : Edgelistinfo
+run() : void -round : long
+maxMatching() : void +addARound() : void
1 1. -1 Q +printCurrentSchedule(() : void
+writeSchedute() : void
1 -1
1 -1
. 4 1 -1
|
EdgeMarkinfo *
-theEdeNode * : Edgelnfo
-next * . EdgeMarkinfo
* -BFS Queue -m
-1 temp Children in order
VertexMarkQueueListinfo * -1
1 -1
* e -m * 9
Vertexinfo Edgelnfo
-one-one -nodelD : long -edgelD : long
——P—m -roundinfo * : long -node1 : Vertexinfo
* 4 -infoGot [] : long N 1 -node2 : Vertexinfo *
-1 children -numOfinfo : long -weight : long
- VertexMarkinfo = -next * : Vertexinfo ————————————@®-weightSource * : long —
-aVertex * : VertexInfo ~ -distance * : long 2 -4 -nextEdge1 * : Edgelnfo -n
~—-informedBorder : bool - +infoAccept() : long -aftribute2 : Edgelnfo

« -next * : VertexMarkinfo k]

+infoSend() : void
* +getNuminfoGot() : long

+getSpecificinfoTY() : bool

Figure 24: Static Class Diagram

+get

+assignWeight() : void
+addEdgeln!P() : void

Weightindividual() : int

Figure 24 presents the structure of the high level classes. In this diagram, we can see 9 classes.

The names follow specific naming conventions for the purpose of consistency. The class ending

with “Info” is the physical class. The corresponding name without “Info” is the pointer to this

class. Among these classes as shown in Figure 24, the Class Edgelnfo and VertexInfo are the

basic classes that contain the important info for the class Graph. The class IPGraphlnfo is the
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heuristic class that is the main entity that is employed to implement the algorithm and control the
dissemination process. In this case, IP stands for “Informed Points”. The class of GraphBasicInfo
contains all the constants and variables including those that may be used to adjust the interval

distance and parameters to decide to run the original version of the algorithm or the refined one.

4.2.2 Classes Introduction

GossipMainInfo This class initializes the graph given and offers the procedure’s
entrance and top level procedure control (initial a graph as input, print
schedule as output)

VertexInfo This is the main object used to store the information needed: message
(represented by index ID) of its own or from others, it is the one that
receives and sends messages to and from others. The main function of
Vertex is to aid in determining the weight for the border edge by
calculating the smallest distance from a given message area
represented by IPGraph with BFS. Every vertex has a growing
IPGraph

VertexMarkInfo This class is the virtual map to the vertex used for IPGraph

VertexMarkQueueListInfo{This class is temporarily used for the process of BFS (used as queue)
and sort the children (used as linked list)

Edgelnfo This is the class for the connection between two vertices for messages
to disseminate. It has weight that can be used as inference for
maximum weight matching,

EdgeMarkInfo This class is the virtual map of the edge for IPGraph’s border cross
edge and is an element of the class of Schedule in a round

Graphlnfo This class provides a container for overall vertices and edges for the
dissemination of messages.

IPGraphlInfo This class represents a part of the graph with vertexMarks as a
dispersion area for a given message. Like Graphlnfo, it is a linked list
based on vertex. However, while GraphInfo consists of real vertexes,
[PGraphiInfo only contains the pointer to the existing vertexes in the
GraphlInfo. Each vertex (message) has an IPGraph. It is the heuristic
class.
Schedulelnfo This class contains the final result of the run. It is a sequence of sets of
edges, the result for the dissemination track. It contains an edge list
that consists of pointers to existing edges of a given graph.

Table 5: Classes Introduction
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Table 5 lists the main top level classes and their descriptions. These top classes were selected
carefully based on the algorithm description. They have properties of independence, balance and
interrelation. Any particular aspect of the solution fits into one and only one class. For example,
the VertexInfo is the container for all of the information originating from a node, while

corresponding IPGraphlInfo is the control class for the entireinformation dissemination process.

4.2.3 Design Evaluation

The standard and the initial design were completed based on the principles of simplicity, coupling

and cohesion, as well as information hiding.

Simplicity: Classes, methods, and the overall design are finished in as simple a way as possible.
At class level, any operation or data element can no longer be removed. All the parameters and
their return types are necessary and simplified. The code for any particular method fits on one
page or one screen and each method need only be aware of its local environment and need not be
aware of the overall class structure of the implementation of other classes, which could easily

change.

Cohesion and Coupling: The proper set of classes has been chosen through cohesion and
coupling. By cohesion, each class has only a single purpose. In addition, all classes do not depend
on knowledge of the internal implementation of other classes. All of the relationships among

classes are based on operations as opposed to data elements,

Information Hiding: The design has provided a high degree of abstraction and information

hiding: it conceals implementation details within a particular class or method and separates those
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details from other classes. Data elements of each class are local to that class and are inaccessible

elsewhere.

4.3 Data Structure

In this implementation, the main classes that hold information which need space are VertexInfo
and Edgeinfo. VertexInfo has an ID that represents the unique message and contains the control
information such as the number of messages received so far. Also, it has the message
dissemination status info such as, its corresponding IPGraphlnfo, weight value, its children and
parents for other nodes during the weight calculation process. Edgelnfo contains information such
as its weights, contribution distribution from the adjacent nodes. Other classes such as GraphInfo
and IPGraphlInfo contain the pointer to them with a linked list. There are other temporary classes
which are mainly used at the middle of the weight calculation procedure such asVertexMarkInfo,
VertexMarkQueueListInfo and EdgeMarkInfo. They are pure linked lists for VertexInfo or
Edgelnfo. It should be noted that the most important part of datastructure in this implementation

is the Multilist that was used in VertexInfo and Edgelnfo.

In order to introduce why one needs this data structure, let us start with a question that is asked
quite often in school. Suppose one has 11,000 students in a university that offers 600 courses.
And one wishes to record both every course that a student takes and every individual who attends
a specific class. If one decided to select an array as the data structure, this would require an
11,000 x 600 array, which is huge. Furthermore, most of the entries in the array would be empty!
Clearly this is a case for a Multilist. A Multilist is a data structure capable of providing several
simultaneous linkages of data. The data points are regarded as belonging to several lists--each

data point belongs to one list for each list type or entity. As shown in Figure 25, one can employ
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this data structure to make it more efficient. To see which students are in course C1, one simply
checks the first column of the Multilist. To see which courses student S1 is taking, all one has to

do is check the first row of the Multilist.

E Cl C
—»| S1|-1™ -
—»| 82 >
v ¥
’——b Sn | +» o - >

Figure 25: Multilist for Courses and Students

Similar to the case shown above, one can employ the same idea in the data structure for a graph.
A node may have multiple adjacent edges, and an edge has two end nodes as well In this case the
situation is less complex, since an edge has only two end nodes. So, one can simulate the situation
as shown in Figure 26. N represents the nodes while E represents the edge. An edge is always

located at a list with two nodes only.
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Figure 26: Multilist for Graph

The main purpose for creating the class of IPGraphInfo for each node is to make a visual net on a
set of vertices corresponding to the way in which this node’s message is disseminated. This
virtual net expands based on the message dissemination procedure. This virtual net that covers the
graph originates from its owner node. Whenever a round finishes, the net will spread in the

direction of the neighbor nodes that have been chosen in the matched pairs.

4.4 Execution Flow Chart

As shown in Figure 27, one can see the process of the program. All of these operation methods

are distributed to corresponding classes.
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Figure 27: Flow Chart for the Implementation
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4.5 Some of the Core Methods in this Solution.

Some of the methods that are critical for the solution are listed as follows.

bool GossipMainInfo::initialGraphCCC(): This is the sample of the methods that
initialize graph. There are groups of this kind of methods. Different graph ends with
abbreviation.

void GraphInfo::runGossip(): This is the main method that controls the entire process. It
is the start point to go to all of the steps in detail or control the display of the message or
the log file.

void Graphlnfo::runBroadcast(IntegerID aIDD): Similar with runGossip(), but for
broadcasting process.

void IPGraphlnfo::BFSFindChildrenIP(): This is the one of the main parts of the
algorithm that finds the children of all nodes according to the current message that is
spreading.

void IPGraphInfo::growDuringDissemination(EdgeMark aEM): This method is used to
control the process of the virtual net growing.

bool IPGraphlnfo::assignWeightIP(): This is place to get the weight values contributed

from a node.
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5. Experimented Result and Comparison with Round_Heuristic

5.1 Introduction

This chapter presents the test results in several regular topologies shown in Chapter two and three
NS-2 models for both gossiping and broadcasting. The test result for four regular topologies will
be shown in section 2, while the results for three models are introduced in section 3. Also in
section 3, the three models are presented for the reference. Finally in section 4, a summary will be

given.

On the tables and figures, we use the following abbreviations:
= RH: The best result obtained from Round_Heuristics algorithm {1] ;
* RHS8I1: The testing result from Round_Heuristic with parameters of Dis_Exp as 8 and
Num_Exp as 1
=  QOriginal: test result of the original version of the new algorithm.
» Refinement: test result from the refinement version of the new algorithm.
= P: the parameter in the refinement version.
= LB: lower bound
=  UP: Upper bound

= K: dimension number
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5.2 Test Result of Four Regular Graphs and Comparison

In this part, one can see the test result for four regular graphs, the CCC, graph, the deBruijn
graph, the Shuffle Exchange graph and the butterfly graph. The following algorithms were tested:
Round_Heuristic, Round_Heuristics with parameter Dis_Exp as 8 and Num_Exp as 1, original
version of the new algorithm, the refinement algorithm, and TBA [7] for the broadcasting part.
These will be shown together both in the table and figures in order to clarify the comparison

between them.

5.2.1 Testing Result of Gossiping

5.2.1.1 The de Bruin Graph

Table 6: Testing Result of de Bruin Graph for Gossiping
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Nurber of Rounds

10 | 12 | 14 | 16 | 18
10 | 13 | 15 | 17 | 19
10| 12 | 14 | 17 | 19
10 | 14 | 15 | 18 | 20

—e—RH

—a— Original

o Refinement
—>e— RH81
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Figure 28: Testing Result of de Debruin for Gossiping

For the de Bruin Graph, we tested a variety of numbers (K) from 3 to 10 as shown in Table 6 and

Figure 28. When K is small, all of the algorithms perform the same way. Then when K increases,
the difference gradually becomes apparent. The best result from Round Heuristics has a stronger

result. But the refinement of the new algorithm always generates a better result than RH81.

5.2.1.2 The Butterfly Graph

3 5

4 7 9 7 1.6 8 7 13
5 10 12 10 1.2 12 9 17
6 12 14 13 1.6 16 11 21
7 15 17 16 0.8 18 13 25
8 17 18 18 24 18 15 29
9 20 21 1.6 17 33

Table 7: Testing Result of Butterfly for Gossiping
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Number of Rounds

34 5 | 6|7]8]9

—e—RH 5 | 7 |10 12|15 | 17 | 20
—= Original 6 9 12| 14 | 17 | 18

Refinement| 5 | 7 | 10 | 13 | 16 | 18 | 21
—— RH81 6 8 | 12| 16| 18 | 18

Figure 29: Testing Result of Butterfly for Gossiping

The difference for the Butterfly graph starts at the very beginning as evidenced in Table 7 and
Figure 29. The results from the original algorithm and RH81 always get a worse result, while the

result of the refinement keeps close to Round_Heuristics.

5.2.1.3 The Shuffle-Exchange Graph

3 5 6 5 0 6 5 9
4 7 8 7 1.6 8 7 13
5 10 11 10 1.2 12 9 17
6 12 13 13 1.6 16 11 21
7 15 17 16 0.8 18 13 25
8 17 19 18 24 20 15 29
9 20 23 21 1.6 23 17 33
10 23 26 25 2 25 19 37

Table 8: Testing Result of Shuffle-Exchange for Gossiping
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Figure 30: Testing Result of Shuffle-Exchange for Gossiping

In Table 8 and Figure 30, one can see the test result for the Shuffle-Exchange graph. Like the
Butterfly graph, four results are different. The refinement keeps close to the best result of
Round_Heuristic and better than the Round_Heuristic with parameters of Dis_Exp 8 and

Num_Exp 1.

5.2.1.4 The Cube Connected Cycles Graph

3 9 8 1.2 7 7 10
4 10 9 0 10 9 10
5 13 15 13 0 13 11 15
6 14 17 15 2 16 13 15
7 19 20 20 0.1 20 16 20
8 19 23 22 0 22 18 20

Table 9: Testing Result of CCC for Gossiping
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Number of Rounds

3 4 5 6 7 8

—+—RH 7 9 13 14 19 19

= Original 9 10 15 17 20 23

Refinement| 8 9 13 15 20 22

_w—RH81 | 7 10 13 16 20 22
K

Figure 31: Testing Result of CCC for Gossiping

For the Cube Connected Cycles Graph, one gets the testing result shown in Table 9 and Figure
31. When employing this kind of graph, the original of the new algorithm will always generate

the worst result. However, the refinement has better results.

5.2.2 Broadcasting Testing Result

For this test, one encounters the same results as in [7]. In regards to the broadcasting process, the
new algorithm performs in an almost identical fashion as the Round_Heuristic in several regular
topologies. All of the results for d < 14 are the same as those in Round-Heuristics with the
exception of four cases. In two cases the new algorithm gives better results and in two other cases
the result from RH is better. Three of the four differences occurred in the butterfly graph where

d =10, d = 12 and d = 14. In addition, the new algorithm generates new upper bounds on
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broadcast time for the Butterfly graph and cub connected cycles graph when 15 < d < 16, and for

de Bruin (2, d) and Shuffle-Exchange with 15 < d < 20.

5.3 Four Topology Models Test Result and Comparison

5.3.1 Introduction to the Models

If one wishes to accurately test the algorithm in the real world, an Internet like topology should be
considered. The basic topological structure of the Internet can be modeled as the following graph

that reflects the locality and hierarchy of the Internet [2].

e Mulzz homed Stub @

N

Transit Domains

©

Stub—Stub Edpe 4“

O

Stub Domains

Figure 32: Internet Domain Structure

As seen from Figure 32, today’s Internet can be viewed as a collection of interconnected routing
domains. Each domain is a group of nodes (routers, switches and hosts): Each routing domain in
the Internet can be classified as either a stub domain or a transit domain. A transit domain

consists of a set of backbone nodes that also connect to a number of stub domains via gateway
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nodes in the stubs or connect to other transit domains. Stub domain can be further classified as

single- or multi- homed. Some stub domains may have links to other stubs.

Three levels of hierarchy can be modeled, in correspondence with the transit domain, stub

domains, and LANs attached to stub nodes. Also two sets of parameters can be used to control

the coarse properties of the generated networks.

For the size of the three levels in the hierarchy:

T: the total number of transit domains; Nr: the average number of nodes per transit
domains.

S: the average number of stub domains per transit domain; Ns: the average number of
nodes per stub domain.

L: the average number of LANs per stub node; Ny : the average number of hosts per LAN.

For the Intranet work connectivity and Internet work connectivity, we have:

Er: the average number of edges from a transit node to other transit nodes in the same
domain.

Es: the average number of edges from stub node to other stub nodes in the same domain.
Er1: the average number of edges from a transit domain to another transit domain.

Esr: the average number of edges from a stub domain to a transit domain.

Eis: the average number of edges from a LAN to a stub node.

Currently, there are three main implementations of the basic generation method:

Transit-Stub (TS): part of Georgia Tech Internetwork Topology Models (GT-ITM). All nodes

are of the same type, that is Ny = E;x = 0. This model produces connected sub-graphs by
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repeatedly generating a graph according to the edge count, and checking the graph for
connectivity. Extra edges from stub domains to transit nodes are added through the random

selection of domains and nodes.

Inet: Tnet [13] is a generator aimed at reproducing the connectivity properties of Internet
topologies. This generator initially assigns node degrees from a power-law distribution and then
proceeds to interconnect them by using different rules. Inet first determines whether the resulting
topology will be connected, second forms a spanning tree using nodes of degree greater than two,
attaches nodes with degree one to the spanning tree and then matches the remaining unfulfilled

degrees of all nodes with each other.

Tiers: In the three level hierarchy structure, tiers are referred to as WAN, MAN and LAN levels.
T= 1 because it does not support multiple WANSs. It produces connected sub-graphs by joining all
the nodes in a single domain through the use of a minimum spanning tree. When adding edges for
Intranet work redundancy, edges are added to the closest nodes in the network in the increasing
order of Euclidean distance. For internet work redundancy, extra edges are added to the closest

nodes in the next higher domain.

Figure 33 shows a single level of network, Figure 34 shows a typical full internet work, and

Figure 35 shows a larger internet work .
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Figure 34: A Typical Tiers Internetwork
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Ultimately one is not very concerned with the details of its implementation. What is important is
one’s ability to operate it and the results that it generates. In order to compare the algorithm of the
original one, refinement and Round_Heuristic and TBA’s result, four different network design
models from ns-2 are considered: GT-ITM (including GT-ITM pure random and GT-ITM

Transit-Stub), Tiers and Inet.

5.3.2 Gossiping Testing Results from Original, Refinement and Round_Heuristic

5.3.2.1 GT-ITM Random Model

Table 10, Table 11, and Table 12 present the test results in GT-ITM random model. Probability in
the tables stands for the probability of having an edge between each pair of nodes. The number
of nodes in the graphs corresponding to Table 10, Table 11, and Table 12 are 100, 300 and 400

respectively. Figure 36, Figure 37 and Figure 38 illustrate the differences and trends in a more
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staright forward way. In these figures, the horizontal scale represents the probability, and the
vertical scale refers to the round used in the gossip process. There are three lines in these figures.
The line of diamond points represents the testing result of the original algorithm, the line of
triangle point represents the testing result of the Round-Heuritcs, and the line of square points

shows the testing result in regards to refinement.

0.025 148 23 16 4 21
0.035 187 14 13 3 15
0.028 145 20 16 2 19
0.030 158 21 14 35 16
0.033 177 22 16 4 19
0.038 204 13 13 1.5 15
0.040 211 13 12 25 13
0.043 213 13 12 7 15
0.045 225 13 12 0.5 13
0.050 235 13 12 1 13

Table 10: Testing Result of GT-ITM Random with 100 Nodes for Gossiping

o
£l
E
3
z
T
&
a3
o
19
0.025 | 0.035 = 0.028 | 0.030 | 0.033 | 0.038 | 0.040 | 0.043 | 0.045 | 0.050 |
|—e—Origin 23 | 14 20 | 2 22 13 | 13 13 13 13
—m—Refinement| 16 | 13 16 14 16 13 | 12 12 12 12 ‘
RH81 | 21 15 19 16 19 15 | 13 15 13 13 |

Edge Probability

Figure 36: Testing Result of GT-ITM Random with 100 Nodes for Gossiping

In Table 10 and Figure 36, one can see the testing result of graphs with 100 nodes. When the

probability increases, the edge number increases accordingly, and the round number generated by
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three algorithms tends to generate a similar result. However, the refinement algorithm always
generates a better result. At the probability of 0.035, all three algorithms have lower values. The
reason for this is that the relatively large number of edges (187). The connections among the
nodes results in an increase in speed of the gossiping and leads to a decrease in the round number
employed for the entire procedure. Upon analyzing Table 10, one can see that the P value changes

for different probabilities as well, even though there is no rule for this change.

0.020 926 14 13 0 14
0.022 943 14 14 0 14
0.025 1125 13 12 0 13
0.028 1267 12 12 0 12
0.030 1350 12 12 0 12
0.033 1475 11 11 0 11
0.035 1569 11 11 0 11
0.038 1698 11 11 0 11
0.040 1788 11 11 0 11
0.043 1989 11 11 0 11

Table 11: Testing Result of GT-ITM Random with 300 Nodes for Gossiping

o
o
E
S
Z
T
c
3
<}
1
0.020 | 0.022 | 0.025 | 0.028 | 0.030 | 0.033 | 0.035 | 0.038 . 0.040 | 0.043
—— Origin 14 14 13 12 12 1 11 11 11 11
—a—Refinement | 13 14 12 12 12 moo1p 11t 1 L
RH81 14 14 13 12 12 m o1 n 11 1

Edge Probability

Figure 37: Testing Result of GT-ITM Random with 300 Nodes for Gossiping
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Table 11 and Figure 37 show the test result in GT-ITM model with 300 nodes. Onecan see that

both the original and the Round_Heuristic have the same value and the refinement has a better

value when the probability is less than 0.028.

Round Number

0.009 779 27 19 2 23
0.010 866 24 17 3 21
0.011 902 24 16 0 17
0.016 1319 14 13 3 14
0.018 1405 13 13 0 14
0.021 1645 13 12 3 13
0.026 2049 12 12 0 12
0.030 2389 11 12 0 12
0.031 2488 11 11 0 11
0.036 2881 11 11 0 12

Table 12: Testing Result of GT-ITM Random with 400 Nodes for Gossiping

0.009/0.010/0.011/0.0160.018|0.021/0.026|0.030/0.031/0.036
—&— Origin 27 | 24 | 24 14 13 | 13 | 12 | 11 11 11
—a— Refinement | 19 17 | 16 13 | 13 | 12 | 12 | 12 11 11
~ RH81 | 23 | 21 17 | 14 | 14 | 13 | 12 | 12 11 12

Figure 38: Testing Result of GT-ITM Random with 400 Nodes for Gossiping

Edge Probability
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The graphs corresponding to Table 12 and Figure 38 have 400 nodes, and they are also generated
through the use of the GT-ITM pure random model. When the probability is 0.030, the original
algorithm has a better value than both of the refinement and Round_Heuristics. However as seen
in the previous two cases, when the probability is little, refinement always posses a greater value.

When the probability increases, they tend to generate the same value.

5.3.2.2 GT-ITM Transit-Stub Model

166 28 21 5.5 26
168 23 21 35 23
176 25 17 1.5 26
177 26 19 2.5 22
179 27 20 55 27
185 23 19 4 27
187 24 20 5 24
189 28 22 3 25
191 22 17 35 24
192 26 22 4 30

Table 13: Testing Result of GT-ITM Transit Stub with 100 Nodes for Gossiping
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O i66 | 168 | 176 | 177 | 179 185 187 | 189 | 191 | 192
—e—Original| 28 | 23 | 25 | 26 | 27 | 23 | 24 | 28 | 22 | 26
_m-Refine | 21 | 21 | 17 | 19 | 20 | 19 | 20 | 22 | 17 | 22

RH81 | 26 | 23 | 26 | 22 | 27 | 27 | 24 | 25 | 24 | 30
Edges

Figure 39: Testing Result of GT-ITM Transit Stub with 100 Nodes for Gossiping

Table 13 and Figure 39 show the test result from graphs generated according to the following
parameters. The initial seed is 47. Each graph has 3 stub domains per transit node, with no extra
transit-stub or - stub-edges. There is only one transit domain with 4 nodes, and the probability of
an edge between each pair of nodes is 0.6. Each stub domain will have (on average) eight nodes,

and an edge probability of 0.42. The total number of nodes is 100. It is evident that the new

refinement algorithm always generates better results than the other two.

335 34 29 3 30
340 28 26 1.5 31
345 31 26 25 33
353 30 27 55 38
354 34 26 6 40
355 32 25 4 33
357 30 25 2 35
357 28 26 4.5 33
361 34 29 5 31
368 30 25 2 37

Table 14: Testing Result of GT-ITM Transit Stub with 200 Nodes for Gossiping
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Round Number

0

335 | 340 | 345 353 | 354 | 355 | 357 | 357 361 | 368
e _Original| 34 | 28 | 31 30 | 34 32| 30 28 34 | 30
_m Refne | 29 | 26 | 26 | 27 | 26 | 25 | 25 | 26 29 | 25 |

RH81 | 30 | 31 | 33 | 38 | 40 | 33 | 35 | 33 31 | 37
Edges o

Figure 40: Testing Result of GT-ITM Transit Stub with 200 Nodes for Gossiping

Table 14 and Figure 40 show the testing result from graphs with 200 nodes that have various
edges. They were generated according to the following parameters. Initial seed is 47. Each graph
has 3 stub domains per transit node, with no extra transit-stub or stub-stub edges. There is only
one transit domain that has eight nodes on average, and the probability of an edge between each
pair of nodes is 0.6. Each stub domain will have (on average) eight nodes, and an edge probability
of 0.42. The total number of nodes is 200. One can see that the new refinement algorithm always

generates better results then the other two. The number of rounds remains at a similar level.

100 185 23 19 4 27
200 355 32 25 4 33
304 453 42 37 15 39
400 368 43 38 25 39
496 1029 42 36 15 42
640 | 1696 42 37 3 43

Table 15: Testing Result of GT-ITM Transit Stub with Various Nodes for Gossiping
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Figure 41: Testing Result of GT-ITM Transit Stub with Various Nodes for Gossiping

In order to study the performance of these algorithms as the number of nodes increase with a
large number of nodes, four graphs have been created as shown in Table 15 and Figure 41. These
four extra graphs have two transit domains. The graph with 304 nodes has 8 nodes for each transit
domain on average and 6 nodes for each stub domain. Similarly the graphs with 400, 496 and 640
nodes have 8 nodes for each transit domain on average and 8, 10 and 13 nodes for each of the
stub domains. It is evident that the new algorithm always generates better results. In the case of 2
transit domains the number of nodes has only a small effect on the number of rounds used in the

gossiping procedure.

5.3.2.3 Tiers

For Tiers graphs, we will compare three kinds of graphs based on the number of levels each has.

The parameters and their meanings are as follows:
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NW: maximum number of WANs (currently only 1 supported, it is not shown in the
tables)

NM: maximum number of MANs per WAN

NL: maximum number of LANs per MAN

SW: maximum number of nodes per WAN

SM: maximum number of nodes per MAN

SL: maximum number of nodes per LAN

RW: intranetwork redundancy for WAN (default 1)

RM: intranetwork redundancy for MANSs (default 1)

RL: intranetwork redundancy for LANSs (currently only 1 supported, it is not shown in the
tables)

RMW: internetwork redundancy for MAN to WAN (default 1)

RLM: internetwork redundancy for LAN to MAN (default 1)

0]0 00| 3 1 1 1 |20 27 19 8

0 |0]|30|0 /|03 1 1 1 (30| 38 12 15 3 19
0|10}140, 00| 3 1 1 1 |40 51 28 25 2| 27
0 |0|45] 0|0 1 1 1 1 [45] 44 40 37 2| 42
0048|010 S5 1 1 1 |48] 87 25 24 0] 26
0|0 |50]0]|0]| 2 1 1 1 (50| 53 32 33 1 34
0 |0|52]0 (0|7 1 1 I 52| 109 18 15 3 16
0|0 |55] 00| 4 1 1 1 |(55] 73 29 24 2| 24
00 |57]010] 5 1 1 1 [57] 80 27 24 41 26
0(0|60| 0|03 1 1 1 |60] 75 34 28 2 32

Table 16: Testing Result of Tiers with WAN for Gossiping
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50
40
30
20
10

0

Round Number

—e—Original | 19 | 12 | 28 | 40 | 25 | 32 | 18 29 | 27 | 34
—m—Refine | 11 | 15 | 25 | 37 24 | 33 | 15 24 | 24 28
RH81 | 13 | 19 | 27 | 42 | 26 | 34 | 16 24 | 26 | 32

Figure 42: Testing Result of Tiers with WAN for Gossiping

Table 16 and Figure 42 show the test results from graphs that have a WAN with some
redundancy. The number of nodes in the graphs changes according to the difference of the
maximum number of nodes per WAN and intranet work redundancy for WAN. The new

algorithm always has a strong result. However, the number of rounds used for the gossiping

process also changes due to the number of their edges

1 10205 (|0 3 2 1 1 25| 32 19 15 6 19
2 1020140 3 1 1 1 28| 33 19 16 1 22
310(20)110(0] 3 2 1 1 50| 121 48 24 21 26
3010 (105 (0] 3 2 1 1 |160| 164 39 36 31 39
30020 5|10 3 2 1 1 [170] 174 36 29 3] 35
30 0|20 S |0 3 2 1 1 |170| 174 41 34 0} 39
301 01305 (|0 3 2 1 1 |[180] 190 38 41 1 44
30102517 {0} 3 2 1 1 235 239 40 38 1| 45
3010 (251910 3 2 1 1 |295| 306 42 38 0| 39
30[ 030|100 3 2 1 1 |330| 343 45 44 2| 48

Table 17: Testing Result of Tiers with WAN and MAN for Gossiping
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60
50
40
30 -
20
10

0

RoundNumber

25 | 28 | 50 160 | 170 | 170 | 180 | 235 | 295 | 330

—e—Original | 19 | 19 | 48 39 | 36 | 41 | 38 | 40 | 42 | 45
—m—Refne | 15 | 16 | 24 36 | 20 | 34 | 41 38 | 38 | 44
RH81 | 19 | 22 | 26 39 | 35 | 39 | 44 | 45 30 | 48

Figure 43: Testing Result of Tiers with WANs and MANs for Gossiping

From Table 17 and Figure 43, one can see the test result from graphs that have a WAN with some
MANSs. The number of nodes of graphs changes according to maximum number of WANS, the
difference of the maximum number of nodes per WAN and maximum number of nodes per

MAN. The new refined algorithm always has a good result. However the number of rounds used

for the gossiping process increases based on the number of nodes in the graphs.

10| 2 (30102 3 2 1 1 |170| 178 41 39 2| 40
102 (30104} 3 2 1 1 |210]| 220 46 47 1| 49
10| 2 (30107 3 2 1 1 |270| 280 50 52 0| 52
104 (30104 3 2 1 1 [290| 298 50 47 0| 53
10510105 2 1 2 1 |360| 373 48 47 2| 51
10| 5130105 3 2 1 1 |380| 394 56 50 2 57
10|19 (30,10|4 ]| 3 2 1 1 [490| 495 53 55 1 53
10| 8 (30|10 8] 3 2 1 1 |530| 544 63 62 1 64
10|19 (30104 3 2 1 1 |610| 618 70 65 0| 63
10| 8 (30]|10| 8] 3 2 1 2 |770| 863 68 64 2| 66

Table 18: Testing Result of Tiers with Three Lays for Gossiping
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170 | 210 | 270 | 290 | 360 | 380 | 490 | 530 | 610 | 770
'—e—Original | 41 | 46 | 50 | 50 | 48 | 56 | 53 | 63 | 70 | 68
—m—Refne | 3 | 47 | 52 | 47 | 47 | 50 | 55 | 62 | 65 | 64
RH81 | 40 | 49 | 52 | 53 | 51 | 57 | 53 | 64 | 63 | 66

Figure 44: Testing Result of Tiers with Three Layers for Gossiping

All of the graphs shown in Table 18 and Figure 44 have three-tier-networks with redundancy.

These three results are similar.

5.3.2.3 Inet

This type of graph has special properties that contribute to a dramatic increase in the round

number used for gossiping and broadcasting. Let us take the graphs with fewer nodes to test this

theory.

900 1094 415 367 345
950 1174 456 396 406
1000 1252 446 503 7.5 557
1050 1332 459 425 7.5 495
1150 1492 503 489 8 648
1250 1654 515 529 8 735
1300 1735 655 515 3 692
1350 1816 550 510 3 690
1400 1899 524 499 25 690
1500 2064 530 516 7.5 671
2000 2914 534 518 8 681

Table 19: Testing Result of Inet for Gossiping
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800
600
400
200

Number of Rounds

900 ;| 950 11000|1050|1150] 1250/1300/1350| 1400|1500/ 2000

—e—Original | 415 | 456 | 446 | 459 | 503 | 515 | 655 | 550 | 524 | 530 | 534
_m_Refine | 367 | 396 503 425 489 | 529 | 515 | 510| 499 | 516 | 518
RH81 | 345 406 | 557 | 495 648|735 692 690 | 690 | 671 681

Figure 45: Testing Result of Inet for Gossiping

By observing Table 19 and Figure 45, one can see that in most cases, the new algorithm has
stronger results except when the number of nodes is 900. It is also evident that the number of

rounds used increases in relation to the increasing of the node number in the graphs.
5.3.3 Broadcasting Testing Results

Here are the test results for the broadcasting algorithm [7], the new algorithm of refinement, the

new original algorithm, and Round_Heuristic.
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5.3.3.1 GT-ITM Random Model

0.025 148 10 9 1 10 12
0.028 145 9 9 1 9 12
0.030 158 9 9 1 9 10
0.033 177 9 8 2 8 11
0.035 187 8 8 1 8 10
0.038 204 9 9 1 9 11
0.040 211 9 9 1 9 11
0.043 213 8 8 3.5 8 10
0.045 225 8 8 1 8 9
0.050 235 8 7 15 8 8

Table 20: Testing Result of GT-ITM Random with 100 Nodes for Broadcasting

T
c
=]
O
o
©
&
Q
E
=]
=
0.025 0.028 0.030|0.033 | 0.035|0.038 | 0.040 0.043|0.0450.050
—e—Origin 9 9 9 8|9 9 8|88
—®—Refinement. 9 ' 9|8 8 |99 8.8 |7
_TBA ° o |8 |89 ]9 8 8 8
—— RH81 12 1011|100 11 11 10 9 | 8

Figure 46: Testing Result of GT-ITM Random with 100 Nodes for Broadcasting

Edge Probability

By observing Table 20 and Figure 46, one can see the test result for the graph with 100 nodes for

GT-ITM pure random model. The broadcasting time obtained by using the new algorithm is

always less than that of the Round_Heuristic, and the difference between the original and the

refinement is not substantial. However, for this group of graph models, there is one case in which

the result is greater than TBA when they have the same P value. From Figure 46 one can see
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that when the probability increases from 0.025 to 0.050, there is no significant change in the

broadcast time.

0.020 926 10 10
0.022 943 10 10 1.5 10 11
0.025 1125 9 9 1.5 9 10
0.028 1267 9 9 0 9 10
0.030 1350 9 9 0 9 10
0.033 1475 9 9 0 9 10
0.035 1569 9 9 0 9 9
0.038 1698 9 9 0 9 9
0.040 1788 9 9 0 9 9
0.043 1989 9 9 0 9 9

Table 21: Testing Result of GT-ITM Random with 300 Nodes for Broadcasting

o
2
E
=3
2
c
[
=4
]
[+
0.020 | 0.022 | 0.025 | 0.028 | 0.030 | 0.033 | 0.035 | 0.038 | 0.040 | 0.043 !
—&— Origin 9 10 9 9 9 9 9 9 9 9
—=—Refinement | 9 10 9 | 9 9 9 9 9 9 9
TBA 10 | 10| 9 | 9 9 9 9 9 9 9
—¢— RH81 10 11 10 10 10 10 9 9 9 9

Edge Probability
Figure 47: Testing Result of GT-ITM Random with 300 Nodes for Broadcasting

Table 21and Figure 47 show the test results for graphs with 300 nodes. One can see that both the
original and the refinement algorithm have the same broadcast time. When the probability is less
than 0.035 they have better results than Round_Heuristic, and all of them tend to have the same

value. Again with the probability of 0.020, the new algorithm’s result is better than TBA.
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0.009 779 12 11 1.5 11 13
0.010 866 11 10 2 10 13
0.011 902 11 10 1.5 10 13
0.016 1319 9 9 0.5 10 10
0.018 1405 9 9 2 9 10
0.021 1645 9 9 2 9 10
0.026 2049 9 9 0 10 10
0.030 2389 9 9 0 9 9
0.031 2488 9 9 0 9 9
0.036 2881 9 9 0 9 9

Table 22: Testing Result of GT-ITM Random with 400 Nodes for Broadcasting

]
K]
£
=]
=z
<
[=
3
2]
a4 .
0.009 | 0010 0011 | 0.016 | 0.018 | 0.021 | 0.026 | 0.030 | 0.031 | 0.036
—e— Origin 12 AL 9 9 9 9 9 9 9
—m—Refinement| 11 | 10 10 9 9 9 9 9 9 9
TBA " | 10 10 | 10 9 9 10 9 9 9
—%—RH81 13 13 13 10 10 10 10 9 9 9

Edge Probability

Figure 48: Testing Result of GT-ITM Random with 400 Nodes for Broadcasting

In Table 22 and Figure 48, one can see the broadcast test results for graphs with 400 nodes
generated by the GI-ITM pure random model. When the probability increases, all of these three
algorithms tend to finish broadcasting in fewer rounds. At the beginning, the refined algorithm
has a better result, but eventually both have identical results. In two cases, the new algorithm has

a better result than TBA: when Probability = 0.016 and Probability = 0.026, and when they have

the same P value. In the end, all of them tend to generate same value.
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5.3.3.2 GT-ITM Transit-Stub Model

166 10 10 10 13
168 10 9 L5 9 14
176 10 9 1 9 12
177 10 10 1 10 12
179 10 10 1 10 11
185 10 10 1 9 12
187 10 10 0.5 11 10
189 9 9 1 10 11
191 9 9 1 9 11
192 9 9 1 9 13

Table 23: Testing Result of GT-ITM Transit Stub with 100 Nodes for Broadcasting

N 15
QO
£
5 10
2
2 5
3
0

166 | 168 | 176 | 177 | 179 | 185 | 187 | 189 | 191 192
—e—Original ; 10 10 10 10 10 10 10 9 9 9
—&— Refine 10 9 9 10 10 10 10 9 9 9
.~ TBA 10 9 9 10 10 | 9 11 10 9 9
—>— RH81 13 14 12 | 12 11 12 10 11 11 13

Edges

Figure 49: Testing Result of GT-ITM Transit Stub with 100 Nodes for Broadcasting

Table 23 and Figure 49 use the same graph as seen in Table 13 and Figure 39. In these graphs,

the new algorithm always generates good results (both the original and refinement). In three
cases, the new algorithm has different values than TBA and in two cases, the new algorithm has

better results. When there are 187 edges, all of these three algorithms generate identical results.
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335 12 12 11 15
340 11 10 1 11 14
345 12 11 15 11 15
353 12 12 1 12 17
354 12 12 05 12 14
355 11 10 1 10 16
357 12 1 2 11 14
357 11 1 1 11 11
361 13 12 1 11 15
368 11 11 15 11 14

Table 24: Testing Result of GT-ITM Transit Stub with 200 Nodes for Broadcasting

Round Number

335 | 340 | 345 | 353 | 354 | 355 | 357 | 357 | 361 | 368

—e—Original 12 11 | 12 [ 12 12 11 ] 12 11| 13 11

@ Refinement| 12 | 10 | 11 | 12 | 12 | 10 | 11 11 | 12 | 11

TBA 1111 ] 11 1212 10 11 11 ] 11 ] 11

% RH81 15 | 14 | 15 | 17 | 14 | 16 | 14 | 11 | 15 | 14
- Edges

Figure 50: Testing Result of GT-ITM Transit Stub with 200 Nodes for Broadcasting

The results of Table 24 and Figure 50 are based on the same graphs as the results of Table 14 and
Figure 40. For these graphs, the new algorithm always generates good results regardless of
whether it is the original or a refinement. When there are 357 edges, all of these three algorithms

generate the same result. Compared with TBA, the new algorithm has two cases that generate the

worse result and one case that generates a better result.
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100 176 10 1 12
200 355 11 10 1 10 16
304 453 11 12 1 12 24
400 368 13 13 15 13 21
496 | 1029 13 13 1 14 2
640 | 1696 14 14 2 14 2

Table 25: Testing Result of GT-ITM Transit Stub with Various Nodes for Broadcasting

N 30
Q
E
5 20
=2
S 10
=2
0
« 0
100 200 304 400 496 640
—— Original 10 11 1 13 13 14
—&— Refine 9 10 12 7 13 13 14
TBA | 9 10 7 12 13 14 14 |
—>—RH81 | 12 16 - 24 ‘ 21 22 22
N

Figure 51: Testing Result of GT-ITM Transit Stub with Various Nodes for Broadcasting

We can see the test result for broadcasting with different nodes from Table 25 and Figure 51.
They use the same graphs with Table 15 and Figure 41. For broadcast, the new algorithm always
generates far better results. When the number of nodes is 304, the original has better results than
the refinement. For this group of graph models, there is one case in which TBA’s result is worse.

This occurred when N = 496.
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5.3.3.3 Tiers

In this section, the same graphs have been employed as those seen in section 5.3.2.3.

01]0 00| 3 1 1 1 (20| 27 1
0 |0(30]0/]0]| 3 1 1 1 30 38 11 11 1|11 12
0O [0]|40{ 0 (O] 3 1 1 1 |40| 51 20 20 120 25
0|0 |45 0|0 1 1 1 1 |45 44 25 25 1|25 31
0|0 |48 0|0 5 1 1 1 |48] 87 14 14 1|14 17
0 [0]|5)| 00| 2 1 1 1 |50 53 24 25 125 30
0O |10(52]10 (0|7 1 1 1 [52] 109 10 10 1|10 11
0O |O0I[5]10]0)| 4 1 1 1 |[55] 73 12 12 1|12 15
0 |0([57]0 |0 S 1 1 1 |57 80 13 13 1 (13 16
0O [0]J60f O[O0 3 1 1 1 (60| 75 25 25 1|25 29
Table 26: Testing Result of Tiers with WAN for Broadcasting

@

a

£

E

4

°

£

S

)

o

—e—oOriginal | © | 11 20 | 25 | 14 24 10 | 12 | 13 | 25
—mRefine 9 | 11 20 | 25 | 14 | 25 10 | 12 | 13 | 25
 tBA | 9 | 11 20 | 25 | 14 | 25 10 | 12 | 13 | 25
—>—RH8! 11 | 12 25 31 17 | 30 11 | 15 | 16 | 29

Figure 52: Testing Result of Tiers with WAN for Broadcasting

Table 26 and Figure 52 above have the same graph as Table 16 and Figure 42. 1t is evident that

for the majority of the cases, the new refined algorithm shares the same value with the original

one. They also give better results than Round_Heuristics with parameter values of 8 and 1. The
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number of rounds needed to complete broadcasting changes dramatically. In this group of

graphs, the new algorithm always generates the same result as TBA.

0 o 3 2 1 1 25 32 1
2 10|20 0 3 1 1 1 28 | 33 11 11 1] 11 16
3 10(20)]10(0] 3 2 1 1 50 | 121 17 17 1] 17 21
30| 0|10 510 3 2 1 1 160| 164 13 13 213 14
301 01201510 3 2 1 1 170| 174 14 14 114 17
301 01201 510 3 2 1 1 170| 174 14 14 2| 14 19
30| 013050 3 2 1 1 180] 190 10 10 1|10 11
30| 01257 |0 3 2 1 1 |235] 239 18 18 1] 18 23
301 0125 9|0 3 2 1 1 1295| 239 19 19 119 25
301 0130|100 3 2 1 1 [330] 343 16 16 1|16 23
Table 27: Testing Result of Tiers with WANs and MANs for Broadcasting
= 30
@
a
E 20
=
g 10
3
&
0

25 | 28 | 50 | 160 | 170 | 170 | 180 | 235 | 295 | 330

—e—Original 9 | 11 | 17 | 13 14 | 14 | 10 | 18 | 19 | 16
—m—Refine 9 | 11 | 17 | 13 14 | 14 | 10 | 18 | 19 | 16
TBA . 9 | 11 | 17 | 13 14 | 14 | 10 | 18 | 19 | 16
——RH81 11 | 16 | 21 | 14 | 17 | 19 | 11 | 23 | 25 | 23

Figure 53: Testing Result of Tiers with WANs and MANs for Broadcasting

With the same corresponding graphs in Table 17 and Figure 43, Table 27 and Figure 53 show the
testing result of broadcasting. The new refined algorithm has exactly the same values as the
original. All of the values are better than RH81. Once again, the new algorithm and TBA

generates the same results.
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10]2]3[10]2]3 2] 1 1 |170] 178 | 18 18 | 1] 18] 20
10]2]3010]4] 3 2] 1 1 [210] 220 | 18 18 | 1] 18| 22
0]230]|10]7] 3] 2] I 1 [270] 280 | 23 23 | 1|23 30
0] 430]|10]4] 3] 2] 1 1 [290] 298 | 21 21 | 1] 21 28
0|s5]0]t0[5]2]1] 2 1 [360] 373 | 16 16 | 1|16 | 24
0[5(310]5]3 2] 1 1 |380] 394 | 24 24 2|24 30
10[9]30(10]4]3 2] 1 1 |490] 495 | 20 20 | 1] 20| 24
108301083 2] 1 1 |530] 544 | 22 22 | 1|22] 25
10]9]30(10]4]3 2] 1 I |610] 618 | 28 28 | 1] 28 | 31
108301083 2] I 2 |770] 863 | 26 26 | 2| 26| 32
Table 28: Testing Result of Tiers with Three Layers for Broadcasting
40
3 30
g
= 20
5 10
&
97470 | 210 | 270 | 290 | 360 | 380 | 490 | 530 | 610 | 770
—e—Original| 18 | 18 | 23 21 | 16 | 24 | 20 | 22 | 28 | 26
—w—Refine | 18 | 18 | 23 | 21 | 16 | 24 | 20 | 22 28 26
. TBA 18 | 18 | 23 | 21 | 16 | 24 | 20 22 | 28 | 26
—%—HR81 20 | 22 | 30 | 28 | 24 | 30 | 24 | 25 | 31 | &2
N

Figure 54: Testing Result of Tiers with Three Layers for Broadcasting

Similar to the two layers Tiers model the test results from three layers shown above have

indicated that the new algorithm generates stronger results than RH81, but the same results as

TBA.
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5.3.3.3 Inet

900 1094 176 176 0 183 179
950 1174 190 190 0 195 195
1000 1252 195 194 25 196 194
1050 1332 203 201 0 207 202
1150 1492 221 221 0 230 225
1250 1654 226 225 1.5 231 228
1300 1735 235 235 3 240 238
1350 1816 234 235 1 242 236
1400 1899 226 226 1 240 228
1500 2064 229 229 1 237 238
2000 2914 235 235 1 246 232

Table 29: Testing Result of Inet for Broadcasting

0 300
o
c
3
o 200
k]
9 100
£
S
2 0

900 | 950 | 1000|1050 11501250 1300|1350 | 1400 | 1500 | 2000

—e—Original | 176 | 190 | 195 ' 203 | 221 | 226 | 235 | 234 ' 226 | 229 | 235
_m—Refine | 176 190 194 | 201 | 221 | 225 | 235 | 235 | 226 | 229 | 235

TBA | 183 | 195 | 196 | 207 | 230 | 231 | 240 242 | 240 | 237 | 246
—s—RH81 179 | 195 | 194 | 202 | 225 | 228 | 238 236 | 228 | 238 | 232

Figure 55: Testing Result of Inet for Broadcasting

All the graphs in Table 29 and Figure 55 are the same as those in Table 18 and Figure 44. By
observing them one can see that these three results have different values, and one can conclude
that the refinement algorithm is better. In all of the cases, the new algorithm generates better

results than TBA.
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5.4 Summary

Through an analysis of the three sections presented above, one can conclude that the results of the
new algorithm. While in terms of gossiping, the new algorithm performs in a similar way to the
Round_Heuristic (in several commonly used topologies), it results in a better performance in

three NS-2 models.

When it comes to broadcasting, the results are even better. The difference between original and
refinement is more obvious for gossiping. For broadcasting in regular graphs, the new algorithm
generates the same results as TBA. But in the four new NS-2 models, they are different. In some
cases the new algorithm has better results than TBA, But in some cases, TBA’s results are better.
With the exception of the Inet model, the new algorithm always generates better results when the

number of rounds increases dramatically.

As the authors mentioned, the quality of the Round_Heuristic depends heavily on the choice of
parameters. There are two parameters in this heuristic. A range from 0.25 to 60 of one parameter
is used to test the heuristic. In practice, it is hard to determine the best parameter, and this could
degrade the performance of the heuristic. When using the new original heuristic, there is no
parameter at all. Even when using refinement, there is only one parameter. Moreover, as tested,
the values of the parameter are the integer numbers between 1 and 8. Combined with the low time

complexity of the new heuristic, it is easy to try these values in practice.
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6. Conclusions and Future Work

The new algorithm offers an alternative way to find a schedule for broadcasting and gossiping in

an arbitrary network. The test results show that the algorithm works very well in practice.

My contribution include:

L.

Researched on regular models and internet graph models and their generation in order to
find the suitable topologies for testing.

Designed an algorithm for both gossiping and broadcasting based on the idea from [1]
and [7].

Implemented the algorithm for both gossiping and broadcasting.

Implemented the algorithm of Round_Heuristic for both Gossiping and Broadcasting for
test result comparison.

Implemented TBA algorithm for comparison with the new algorithm.

Evaluated and compared the difference between the new algorithm, TBA ‘and

Round_Heuristic.

In the implementation part, the future work includes reducing the redundant data in the

implementation to save more space for big graphs and integrating the matching program in the

implementation to reduce data IO time from the hard disk.
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