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Nonparametric maximum likelihood estimation
in cure-rate models based on uncensored and censored data

Fang Tan

Abstract

In this thesis, we shall attempt to give the NPMLE of the event time distribution and
cure-rate based on different types of uncensored and censored data. Cure-mixture
model and hidden model are used extensively. We address the non-estimability of the
cure-rate when no cures are actually observed, in the uncensored case and some

important censoring models. A proof is also given for the almost sure convergence of

supF(x) to (1-7z), where supF(x) is the supremum of the MLE of the

underlying distribution function, and 7z is the true underlying cure-rate, for random
censoring and interval censoring (case-1). We describe and illustrate the “max-min
formula” derived by Groeneboom and Wellner (1992) for interval censoring (case-1),
then modify it to get the MLE of the cure-rate under a cure-mixture model, when
some cures are observed. We perform a simulation study to give some numerical
results as well. Finally, we discuss a probable approach to find the NPMLE in

interval censoring (case-2), as a problem for further research.
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Chapter 1 Maximum likelihood method and cure-rate models
1.1 Introduction

Medical data sets offer many challenges. Time-to-event data present themselves in
different ways which create special problems in analyzing such data. One peculiar
feature, often present in time-to-event data, is known as censoring, which, broadly
speaking, occurs when an individual’s life length is only known to belong to a certain
interval of time. The analysis of survival experiments is usually complicated by the
issue of censoring. In this thesis, we shall consider Type-I, Type-II, Random and
Interval censoring.

The survival function is perhaps the most important function in medical and health
studies, which is the probability of an individual surviving beyond some time
pointx > 0. It is defined as S(x) = P{X > x}, the complement of the cumulative
distribution function, i.e., S(x)=1-F(x), where F(x)=P {X < x} . Hence, if X
is a continuous random variable, the derivative of the survival function is found as
§'(x) =—f(x). Note that the survival function is non-negative and non-increasing
with  S(0)=1 and S()= }CI_I)I;}S (x)=0 . In some cases, we consider
S(e0) = 7 > 0, where there are some ultimate survivors.

Survival models that incorporate ‘immune’ or ‘cured’ individuals (so called Cure-rate
models) have been used in the biostatistical area for several decades. A ‘cured’
individual means one who is not subject to the event under study; such an event is like

death, contraction of a disease, or return to prison, and so on. Areas of interest are



such like Recidivism, Market penetration, Engineering reliability, Fisheries research,
and Education theory.
We consider cure-mixture model and hidden model to analyze time-to-event data,

with a nonparametric maximum likelihood estimation procedure.

1.2 Nonparametric maximum likelihood method

The maximum likelihood method at this point, is by far the most appropriate analysis
method for censored data.

There are various categories of censoring, such as right, left and interval censoring.
Each type will lead to a different likelihood function which will be the basis for the
inference. Though the likelihood function is unique for each type of censoring, there
is a common approach to be used in constructing it.

Let X be the time until some specific event, such as death, the appearance of a tumor,
the development of some disease, recurrence of a disease, equipment breakdown, and
so forth. More precisely, X is a nonnegative random variable from a homogeneous
population. Some functions characterizing the distribution of X will be used in this
thesis, namely, the survival function, which is the probability of an individual
surviving beyond time x, and the probability density function, which is the
unconditional probability of the event occurring at time x.

When constructing likelihood functions, a critical assumption is that the lifetimes and
censoring times are independent. An observation corresponding to an exact event time

provides information on the probability that the event occurs at this time which is



proportional to the density function of X at this time. For a right-censored observation,
all we know is that the event time is larger than this time, so that the information is
the survival function evaluated at the on study time. Similarly, for a left-censored
observation, all we know is that the event has already occurred, so that the
contribution to the likelihood is the cumulative distribution function evaluate at the on
study time. Finally, for interval-censored data, we know only that the event occurred
within the interval so that the information is the probability that the event time is in
this interval. More specifically, the likelihoods for various types of censoring schemes

may all be written by incorporating the following components:

exact lifetimes - f(%)
right-censored observations - S(C)
left-censored observations - 1-8(C)

interval-censored observations - S(L,)—-S(R))

The likelihood may be constructed by factioning all these terms together

L Hf(xi)HS(Cr)H(l _S(Cl))H[S(Li) - S(Ri)] (1-2~1)

ieD ieR iel iel

where D is the set of observed death times, R the set of right-censored observations, L
the set of left-censored observations, and [ the set of interval-censored observations.
If there exists a vector x* such that L(x")>L(x) for all possible choices of x ,

then x* is considered as the maximum likelihood estimator.
1.3 Cure-mixture model and hidden model

1.3.1 Mixture model



Models for survival analysis typically assume that everybody in the study population
is susceptible to the event under study and will eventually experience this event if the
follow-up is sufficiently long. However, there are situations when a fraction of
individuals are not expected to experience the event of interest; that is, those
individuals are cured or insusceptible. For example, researchers may be interested in
analyzing the recurrence of a disease. Many individuals may never experience a
recurrence; therefore, a cured fraction of the population exists.

Survival models that incorporate a surviving fraction are so-called Cure-Rate Models.
Historically, cure-rate models have been utilized to estimate the cure fraction. Cure
models are survival models which allow for a cured fraction, 7, of individuals, i.e.,
S(e0) = 7. These models extend the understanding of time-to-event data by allowing
for the formulation of more accurate and informative conclusions. These conclusions
are otherwise unobtainable from an analysis which fails to account for a cured or
insusceptible fraction of the population. If a cured component is not present, the
analysis reduces to the standard approach in survival analysis. The use of cure models
has been popular for joint modeling of the overall risk of a disease and the
age-at-onset distribution of the diseased individuals (e.g. Farewell 1977, 1982; Kuk
and Chen 1992).

In cure models, we use “cure fraction” and “insusceptible fraction” as interchangeable
notions. The population is divided into two sub-populations so that an individual
either is cured with probability 7, or has a proper survival function S,(z), with

probability 1—7. A model for the distribution of survival times that incorporates a



cured fraction is thus given by S (f) =7+ (1-7)-S,(¢). Traditional cure models
assume that those individuals experiencing the event of interest are homogeneous in
risk. During the last fifteen years, extensions of cure models were developed in order
to allow for heterogeneity among the fraction under risk by using frailty models
where the frailty distribution is a mixture of a discrete and a continuous part (e.g.
Aalen 1988, 1992; Longini and Halloran 1996).

Suppose that X is a random variable denoting the life time of an individual with the
cure-rate 7 . Let F, be the cumulative distribution function for the uncured

individuals, and F, be the cumulative distribution function for the whole population

(both cured and uncured individuals). Then we have, for 0<7z <land¢>0:

7= P{X =0} = lim P{X >t} =1-1im F, (¢) (13.1)
F.()=(1-mF,() o F)= ff_(t) =P{X <t| X <o) (1.3.2)
S ()=1-F.(t) =1 +(1-7)(1-F,(t)) (1.3.3)

1.3.2 Hidden model
The hidden model, motivated by a biological application, arises as follows (e.g. Chen
et al 1999):

Let N be the number of cancer cells, suppose that N ~ Poisson(6) ,

-
ie., P{N =t} =Qj'—,t =0,1,---; X, be the life time of the 7/th cancer cell, suppose

iid.

that X, ~ exp(d),ie., p(x)= He"gx“,xi >0.
minX,, ifN21
X ={IsisN
00, ifN=0

Define



= P{X >t} =P{N=0}+ZP{{9isnXi >t,N=n}t20
P <i<n

© o"
_ -8 -6.7 1_ n
SRR GAD

— e—@ +e—9 '[eg(l—Fo(t)) _1]

_ g 0RO

which yields S,()=e "V t>0. (1.3.4)
This model is suitable for any type of failure data that has a surviving fraction
(cure-rate). It can be used in modeling various types of failure time data, such as time
to relapse, time to death, time to first infection and so forth.
By taking the first derivative of (1.3.4), we have

S,(t)=—0-f,(t)-e*",t>0. (1.3.5)
Note that model (1.3.4) is not a proper survival function, since S,(o0)= e ®. This
also means that the cure-rate is given by

S, (0)=P{N=0}=¢". (1.3.6)

Meanwhile, in the cure-mixture model, the cure-rate is given by 7, hence there is a
relationship between the two models:

el=nrx (1.3.7)

S, (x) =7+ (1=7)-(1-F(x)
S,(x)=e? +(1-e?)1-F,(x)) = e 0h®

1= g 0F® o IR _ g0
= F,(x)= — and S,(x)= — (1.3.8)
under the hidden model,  AF,(x,) =[1—e *™]—[1—¢ ?H-)], (1.3.9)
while under the mixture model, AF (x) = (1-7)- AF,(x). (1.3.10)

Both models are computationally attractive. More importantly, when using the



nonparametric maximum likelihood method to estimate the survival function and
cure-rate, the cure-mixture model and hidden model are equivalent. In this thesis, we

use one or the other model depending on convenience.



Chapter 2 Preliminary results

In this chapter, to better process the maximum likelihood estimation, we apply the
hidden model to non-censored data, and the mixture model for censoring models. We
can arrive at explicit results for the NPMLE of the cure-rate in each case. All the

results presented in the chapter are original work.

2.1 NPMLE of non-censored data, when observing both cures and

non-cures, with known distribution

In this uncensored case, we apply the hidden model. Suppose F, is known,
iid.

X, X, ~S,,and S,(t)=e """ t>0.

When both cured and non-cured individuals are observed, define the indicator of

whether an individual belongs to a cure or not as follows

I, ifX, <o
5 = | 2.L1)
0, ifX, =0

Hence the p.d.f. of X, is f,(x)= [6’]’(,()6,.)-e‘%(”"):r;i -I:e_g:]1 ,x, > 0. (2.1.2)

The likelihood function is given by

L= I'!Il:(ef;)(xl) . e—6~Fb(xi))5i ,e-e-u-ai)]
i=1

n ~6- ) [5:"Fo(xi)+(1‘5i)] ) L
=T1[/G)] = 2z o
i=1

Hence, the log-likelihood function is given by

(2.1.3)

InL=InC-0-3[6 - Fx)+1-8)]+>.6 o, (2.1.4)
i=1 i=1



where InC = i@- -In[ £, (x;)]

i=1

To maximize the log-likelihood function, take the first derivative of (2.1.4) and equate

it to zero, then solve for &:

oln(L) & Cqavs 1
0 " 2[5 Fy(x)+( ‘5’)]+i=1‘5f 5 (2.1.5)
>
o) oy g-— i (2.1.6)

o0 I8 o) +1-6)]

i=1

Equivalently, the cure-rate is given by

7?=e'é=exp —— =l 2.1.7)
Y6 F&x)+(1-6)]

i=1

2.2 NPMLE of uncensored data, when observing both cures and

non-cures, with unknown distribution

When considering the distribution of life time is unknown, the estimation procedure
becomes more complicated. Let the indicator of cures be as in (2.1.1) and apply the
hidden model
Fy(t)=1-¢""",§,(5) = """ 2.2.1)
Take the derivative of S, (), then the probability distribution of X, is
-0.Fx) % [ -6,
£3x,8)=[6- fy(x)- e " (€)%, > 0, (2.2.2)

where the term (8- f,(x,)-e” ™))% is for an observation which is not a cure



(8, =1); and the term (e™%)""* is for observation which is a cure (5, = 0).

The likelihood function is hence found from (1.3.9) as

L(O,F,) = fl[ AR, (o) [T

=T TH- e 5) = (= A [ 7] (223)

Let y,=Fy(x)

= L(@,E)) = L(eayn' : 'ayn)
=ﬁ[(1 —e )= (- )P [e7°]7 (2.2.4)

where 0<y <<y <1 and k=z5i

i=1

= 0y <Ly, Yu="=y,=1

Furthermore, let z, =1—e‘9'y",1 <i<k,setz,=0. Since 0<y, <1 for any i, we

have
0<z <z, <<z, <1-¢”? (2.2.5)
and (2.2.4) becomes
k
L@,z, z,) = H(zi -Z,)) (e (2.2.6)
i=1
Let 2, =——213, set#,=0 = z, = (1—e"9)-t,.,i =0,---,n,

l-e
k
= L(ea tl PR tk) = (1 - e_g)k : (e—B)n-k ' H(tz - ti—l) (227)
i=1
When 6 is fixed, the maximum value of the likelihood function (2.2.7) only

k
depends on the value of H(ti -t_,). Observe that
i=1

10



I-k-[(ti -ti—l) =1 '(tz 'tl)'(t3 'tz)""(tk 'tk—l)

i=1

def
where £, =0, 0<t <¢t,<---<¢, <1
(t, =t , 0L <1
t, =(0, )t s 0<e,_, <1
Now $ :
t,=(0, 0 0, )t , 0<a,<1
L= a0 o)t 0<a <1
:>H(t t; 1) (a 27000 o, 1) (062 Oyeeee a,._ 1) (1 05)
(-0 o) (l—a,) (a5 ) (1-a)-

Oy '(1—ak—z)‘(1_ak—1)‘tk

o U—I(la)”ﬁa}

k-l }
-y -{1;[(1-%)-04} (2.2.8)

where 0<¢; <1 for 1<i<k-1.

Hence the MLEs are

~

t, =1 and d,:fi—,for 1<i<k-1 (2.2.9)
i+1

Consequently,

;k_lzf___l, h =k_1.k_2=k—2, ...... ,fl:l’fork=1,...’n’ ie.,
k k

t, = k for i=12,---,k (2.2.10)
With the estimator of &,
2 =(- '9) — for i=1,2,---,k (2.2.11)

And z =1-¢%",1<i<k

11



L 1 i 6 )
SE,(x,)—y,.———H;-ln[l—;~(l—e ):|, i

Notice that

S;(0) =" =¢,
implying P(non —cured)=1- e,
Also P(non—cured) = P(X <) =

b k13
hence 1—e”=;=_n..iz=1:5’_,
which yields é:-&na—ji@/n)
i1

Equivalently, the NPMLE of the cure-rate is

#=1-36/n
i=1

2.3 NPMLE of Type-I censoring with no cures

(2.2.12)

(2.2.13)

(2.2.14)

(2.2.15)

(2.2.16)

For convenience, we apply mixture model in this section and the following one. We

will consider Type-I censoring where the event is observed only if it occurs prior to

some pre-specified time. These censoring times may vary from individual to

individual.

Data from experiments involving right censoring can be conveniently represented by

pairs of random variables (7,8), where § indicates whether the lifetime X is

observed (6=1) ornot (§=0), and T is equal to X if the lifetime is observed and to

C. if it is right-censored, i.e., T =min(X,C,).

r

Details of constructing the likelihood function for Type-I censoring are as follows.

12



For 6 =0, it can be seen that

P{T,5 =0} =P{T =C, |5 =0} P{5 =0}
=P{5=0}=P{X>C,}=S(C),

Also, for §=1,

P{T,6=1t=P{T=X|5=1-P{5=1}
=P{X=T|X<C}PX<C)

A OR -
_[I—S(C,)} [I=-S(C)H]=f(®.

Combining these expressions, when we have a random sample of pairs (7,5,),

i=1,--+,n, the likelihood function is

L=TTPt03 T Tre 1560, @31)

id.

Define the indicator J,=1{X,;<C.} , X,..JX, e F.(x) , where

F.(#)=(01-x)-F,(¢) (under mixture model), F(z) is some appropriate distribution
function and X, is observed if and only if X, <C,, where C, is some pre-specified
number. Let T, =X, AC_, if X, >C,, then the individual is a survivor, whose event
time is censored at C, .

As stated before, the likelihood function is
n 6, _51_
Lz, F) = [[AF, )] [1-F.(C)]

’ (2.3.2)
=[1aF®T 1-E@)]™

= Lr, F) =] [[0-n) (R - K. )] [1-a-m)- K@) ™ 233

Put y,=F,(t), z,=(1-x)-y, setz,=0. Since T,---,T, are ordered statistics,

and 0<F (¢,)<1,wehave 0<z <.-.<z <l-7

13



= L(r,2) =[G -2, - 1-z)" (2.3.4)

Let X,,...,X, be ordered statistics, where k of them are not censored, i.e., T, = X,,

i 12

for i=1,2,....k; and n-k of them are censored, i.e., T,,, =---=T =C ; implying that

k=>6,and z,, =z, =(1-7)-F(C,).

i=1

k
= L(7,2) =H(Zi _Zi—l)'(l_zku)n_k (2.3.5)
i=1
where define z, =0.

k
Firstly, to maximize the product H(zi —z,_,), follow the same approach as shown in

i=1

Section 2.2, we get the MLEs as &, = . ,for 1<i<k-1,1e,

i+1
2,.=%-2k, for1<i<k-1 (2.3.6)
Equation (2.3.5) becomes
~ 1 k n-k
L(r,%) =75 % (1-2z,,) (2.3.7)

k n—-k
Max {zk (1-2,) }
0<z<l,

0<z, %<z, <l-7

k n—k
< Mox {zk (1-2z,) }
0<r<l,
0£z, <<z, <l-7

( k n—k
{)\Jaylc{(kj -(1—-’2) }, if7r£1——lE
=Maxd W\ n 7

Max{(1-7)" 7"}, if 7 >1-%

LOﬁerl n
( k n-k
(1‘.) .[1_£j ifr<i-k
= Max 5 " . " - "
(k—s] -(1—E+sj , with arbitrary £>0, if 7 >1—E
L n n n

14



k n—k .
Z(Ej .(1_5j , with P and?k=£
n

n n n
L=l k-1
Which implies 5 =" (2.3.8)
k
) l=k:' >N
n
2 |L, =1kl
and 5 =F)=""=k 7 (2.3.9)
-7z .
, i=k,,n
The MLE of the cure-rate is 7=1- L (2.3.10)
n

2.4 NPMLE of Type-II censoring with no cures

A second type of right censoring is Type-II censoring in which the study continues
until the failure of the first » individuals, where r is some predetermined integer (r<n).
It is true that the statistical treatment of Type-II censored data is simpler because the
data consists of the » smallest lifetimes in a random sample of # lifetimes, so that the
theory of order statistics is directly applicable in determining the likelihood and any
inferential technique employed. Here it should be noted that 7, the number of failures

and n-r, the number of censored observations are fixed integers and the censoring

time T ., the rth ordered lifetimes, is random.

(r?
For Type-II censoring, the data consists of the rth smallest lifetimes
X,y <Xy <o< X, out of a random sample of n lifetimes X,..,X, from the
assumed life distribution. Assuming X,,..,X, are iid, and have a continuous
distribution with p.d.f. f'and survival function S, it follows from the likelihood is (cf.

David, 1981)

15



LT}’pE—l] = ‘En—i"—r—)—'l:l—j—[f(x(,))] [S(x(r))]””’ (241)

The study continues until the failure of the first  individuals, where r is a

predetermined integer (r<n). Let the event times X,,..,X, be ordered statistics, so

the last n-r of them, ie., X,,,..,X, are censored observations, and they are all
jid.

censored at a random life time X ,,. If X,,...X, ~ F,(x), F,(x)=(1-7) F(x),

we have the likelihood function
n! 4 pr
i

n! r .
) (n—r)! .[HAF”(x("))}'[I_Fﬂ(x(r))]

i=1

L(z, Fy) =

= (,,,Tr)!'[1—(1—ﬂ)-1%(x,)]"" -f[[(l—ﬂ)-(%(xf)%(x,._l))] (2.4.2)

Making the same substitution as in Section 2.3, (2.4.2) becomes

! n-r =
L(z,F)= (nf 0 [--m B ]z -2.) (2:4.3)

We consequently get the MLEs of the underlying distribution function and cure-rate

by replacing k by r in the estimators given by (2.3.9) and (2.3.10).

16



Chapter 3 Non-estimability of cure-rate when no cures are

observed

In this chapter we adopt the estimate in random censoring considered by Laska and
Meisner (1992) and the result given by Groeneboom and Wellner (1992) to show that,
when no cures are actually observed, the likelihood function is independent of & in
the uncensored case, and that in some important censoring models, the non-parametric
maximum-likelihood method produces only the trivial estimator 7 =0 of the
cure-rate. This leads us to consider NPMLE with a non-zero number of cures in the
next chapter.

However, as part of our original work, we are able to show that in the random
censoring and interval censoring (case-1) models, the NPMLE of F() at the largest
observation (i.e., F (x,), where 0<x, <---<x, are the observed data) is a consistent

estimator of (1-7).

3.1 Non-censored data, with no cures

Given X, <oo, under the hidden model, the conditional probability distribution

function of X, is given by

d | 1-e%h™ 0 f,(x): g 0™
)= = 3.1.1
Jox) d6x|: 1-¢e* :| 1-e” ( )

The likelihood function is then

10, F) =] [[8F,(x)]
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_ n 1 — e‘a'Fo(xi) 1 _ e_e'FO(xi—l)
i=1 1 - e—g 1 - 6_0

=(1-¢?)" -ﬁ[(l—e"“’o("f))—(1—e'9'F°<xf—1>)} (3.1.2)

Let y; =F,(x),setx,=0,0<y, <1, i=1---,n

z,=1-e%, set z,=0,0< z, <l1-e?i=1---,n

i

= 10,2, ,z,)=1-e%)" -ﬁ(zi - zi_l)
i=1

Z.
Put t,=—"1—, set$,=0,0<¢t,<Li=1-,n
1-e

= L(O,t, .t )=(1-e )" -ﬁ(l—e“’)-(t, ~t,)

=1:[ (t,. - ti—l)

(3.1.3)

(3.1.4)

Following the same approach as in Section 2.2, with a certain 6, we have that the

MLE:s are as follows

N>
Il

Going back to (3.1.2), the likelihood function becomes

L(ea j}p' ‘ ',j},,) = (1 '—e—g)'n -ﬁ[e"e'f’i-l _ e—&ﬁ,-]
i=1

(3.1.5)

S [ ) R |

=(1-e?%)" 1‘1[[1 -(1—e-”)}

n

18



Thus the likelihood function is independent of &, hence € is non-estimable.

Comment: As illustrated in Chapter 1, the relationship between the cure-mixture
model and the hidden model is that

P(non—cured)=1-n=1-¢"*
Implying that 7 is equivalentto e™.In Section 2.2, when there are (n-k) cures

observed, we get

l—e? =% o gom Ty
n n—k
= ﬁzl—k.

n

When k=n, i.e., no cure is observed, the MLE of & isthen

9= lim In( "

k—n n—

)=,
The estimator of cure-rate is hence given by

7 =lim(1- E)=0,
n

k->n
which also implies the non-estimability of the cure-rate when there are no observed

curcs.
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3.2 Random censoring with no cures

Sometimes, individuals will experience some other competing event which causes
them to be removed from the study. In such cases the event of interest is not
observable. Some events which cause the individual to be randomly censored, with
respect to the event of interest, are accidental deaths, migration of human populations,
death due to some cause other than the one of interest, patient withdrawal from a
clinical trial, and so forth. If the distribution of random censoring times contains no
parameters common with S(¢), then, the estimators of such pafameters may be
obtained in the usual fashion for generalized Type-1 censoring. However, the
distribution of such estimators may be influenced by the distribution of the random
censoring times.

Here we consider one particular instance encountered frequently, in which there is no
complication. This random censoring process is one in which each subject has a
lifetime X and a censoring time C,, X and C, being independent random variables
with the usual notation for the probability density and survival function of X and the
p.d.f and survival function of C, are denoted by g and G, respectively.
Furthermore, let T=min(X,C,) and ¢ indicates whether the lifetime X is censored
(6=0) or not (6=1). The data from a sample of n subjects consist of the
pairs(t,,6;), i=1,...,n. The density function of the pair may be obtained from the joint

density function of X andC, , f(x,c,), as
P{T,=t,6 =0} =P{C,,=t,X,>C, }

=% J: [ fv)dudy
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When X and C, are independent of marginal densities of f and g, respectively, the

above probability becomes

d
== [ [ f@g()dudv
= % L’S(v)g(v)dv (3.2.1)
=S()g®)
and similarly,
P{T =1,6 =1}=P{X, =1, X, <C,,i} = f()G(?) (3.2.2)

Therefore, the likelihood function is given by

=TT/ @GwT [26)56)]

={H G(t)" g(n)l"’fHﬂf(t,.)‘* s<t,.)l-5f}.

If the distribution of the censoring times, as alluded to earlier, does not depend upon
the parameters of interest, then, the first term will be a constant with respect to the

parameters of interest and the likelihood function takes the form of (1.2.1):

Lo f[[ FOT[SE]™ (3.2.3)

Under the cure-mixture model, the likelihood function for random censoring without

observing any cure is given by

L) =TTI8F @] - E @] (324)

& L R [[0-7) F@)-(-n) @) 7 +a-m)-5,0)]™.

Now put y, =(1—-7)- F,(¢,;), setz,=0, hence y,=0, 0< y, <---<y <l-7x&

n
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Since

We see that

= 1w ) =] [~y 1-0]" (32.5)

i=1

max {H[ RN L ]““f}

0<y, <<y, Sl-7

< 0< yfgai‘yn o {H [ V=Y ]5,- ) [1 ~y, ]1—5, }

i=1

=0 (3.2.6)

Putting p, =y, ~ Y, =) = Z p;, then define y, =0, (3.2.5) becomes

J=1

1-6;

i

L(ﬂ,[))=ll[p,.‘s" -(1—-2%] . (3.2.7)

Introducing the conditional probability (c.f., Laska and Meisner, 1992)

and A, =p,,

then

:L(n,i)=f[,1ﬁ (1-2)" -ﬁ(l—ip,]

A=—2Pfi=2..n (3.2.8)

( -1
1-2.p;
j=1

1

I—ij
=1

-4 =—1—i=2-n (3.2.9)
1-) . p;
j=t
[Ta-2)=1->p, (3.2.10)
Jj=l J=1

i=1 J
n -5 n i-1

=4 -a-2) ~H[ (l—ﬁ,-)}
i=1 i=1 \_ Jj=1

n

= l'l[lfi '(l_ﬂi)l_ai 'H(l_ﬂ’i )n—i

i=1
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=14 -a-2)"" (3.2.11)
i=1

Consequently, we have that the MLE of A, is

i = 5 ,fori=1,...,n (3.2.12)
n—i+1
Hence j, = 9 =2 TN
n—i+l 1-y
with P, =0.
—~1— J, =1__yi_3’i-1 _ 1_;))i
n—i+l 1=y, 1=y,
Thus we have
1—9.=f1 1- J fori=1,.,n (3.2.13)
i L n_]+1 9 peees
In particular,
1-9 =f[ 1- J =(1—§)-(1—ﬁ—) ----- (1—% (1-6,) (32.14)
toa n—j+1 n n-1 2 !

Suppose that &, =0, i.e., the last observation is censored, thenl-J, >0 and so

1-y, >0, implying that y <1.

Convergence of (1-j, ) to 7.
Now we turn our attention to the convergence property of the NPMLE. We will show
that the above maximum likelihood estimator of the cure-rate converges to the true

parameter value.
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= ["'[(1— 5{' ] (3.2.15)

rx n—j+1
n 5j '
:g{l_n-[l—Hn(tj)]ﬂ}’
where Hn(t)—— 21 t}, and E[H, ()| = P{T <1} = H(¥). Hence,

7 =exp ln{lj;[{l n‘l:l—Hn(tj)]_i-l}}
n 5]
=eXp{;1n{l— n-l:l—Hn(tj)]+l}}

n 5]’
expy—
S| ne[1-H,2)]+1
which converges to

5 ) SJHx =) ~
exp{—E{l_H(t)}}—exp{ E{—T—_—H(T)—}} T=XnC)
{” X <C} /(9 8) dc}
(1-F@)-(1-G(c))

S,
—ep{ 1-F(x) }

Q

=7

Hence we have proved the convergence.
We shall also address the convergence property for interval censoring-case 1, which is

illustrated in the following section.

3.3 Interval censoring (case-1) with no cures

By interval-censored data, we mean that a random variable of interest is known only
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to lie in an interval, instead of being observed exactly. In such cases, the only
information we have for each individual is that their event time falls in an interval, but
the exact time is unknown. Interval censoring occurs when patients in a clinical trial
or longitudinal study have periodic follow-up and the patient’s event time is only
known to fall in an interval (Z,R,] (L for left endpoint and R for right endpoint of
the censoring interval).

Let (X,,T,), ... , (X,,T,) be a sample of random variables in R?, where X,
represents the life time and 7, represents the observation time of each individual.
X, and 7, are independent (non-negative) random variables with distribution
functions F, and G, respectively, where F, is a right-continuous distribution
function.

The only available observations are (7},d,), for i =1,---,n. Notice that here 7, is
the i” order statistic of 7;---,7,, and &, is the corresponding indicator, i.e., if
T,=T,,then & =1{X, <T}.

3.3.1 Non-estimablity when no cure is observed

Applying the cure-mixture model in (1.3.2) and (1.3.3), with the assumption that the

cure-rate is 7 ;

F.(t)=(1-7m)F, () (331
S ()=1-F.(f) = +(1-7)-5,(¢) ~
When there are no cures observed, the likelihood function is given by:
L (= F)=[IF@] 1-F@)]™
=l (3.3.2)

=T TIa-m) Ryt [z +1-m)-(1- K@)

i=1
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Put x, =(1-7)-F)(t,), obviously 0<x <---<x, <1-7.

n

= Lz, 5 =[[x*-Q-x)""
i=1

Observe that
) 1-5, i s
i _—X. < 9. —x
Olegl-g?jsl—ﬁ {11:1[ X; (1 X ) } - Oﬁxfg?s)fc,,sl {11:‘1[ X; (1 X, ) }
implying that A=0 (3.33)

3.3.2 Convergence property of the MLE of the cure-rate
In a general case, where we do not apply the cure-mixture model and no cure is

observed, the likelihood function is given by
n - -5
LR =[]FRe)-(1-F)) (3.3.4)
i=1

Take logarithms and make the replacements x, = F(¢,), for i=1,...,n, to get the log

likelihood function
InL(F,) =Y {8, -Inx, +(1-8,)-In(1 - x,)} (335)
i=1

where 0<x, <---<x <I.

Groeneboom and Wellner (1992) have given the so-called “max-min formula” for the
solution of the above general maximization problem (3.3.5) of interval censoring
Case-1. In this section, we prove that the MLE of the cure-rate based on the “max-min

formula” converges to the real value of the cure-rate, if there exists such a cure-rate.

2. %,
Since y, =maxmin ==t (3.3.6)
ism kzm Jr—j41]
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n

Z 6(1')

we have that y, = max-———. (3.3.7)
isn p—i+1
Define G, (x)= 1 D UT, <x}, (3.3.8)
n a
G, (x)=1-G,(x) :1-21{2 > x}, (3.3.9)
n ia
G,, (%) =l-25(,.) AT < x}, (3.3.10)
n
— n 1 n
G1n(x)=25(i)—Gln(x)=;'z5(i)'I{T; 2 x} (3.3.11)
i=1 i=1

Hence y, can be written as

2.0, UL 2T}

= maxS——
Vn i<n n-G(T)

- max - %u®) (3.3.12)

Observe that

o].F(z)dG(z)

i o]‘dG(z)

— 61(35)

G (3.3.13)

say,

where F(x)=F,(x) represents the distribution function of the event time X.
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Further,

G(x)

(6]

- 8D _ (5 (-G Fw)

- ({f((x) j[F(y) F)]dG()

hence

where 7 is supposed to be the cure-rate of our interest.

Now

28

(G(X)] L 6@ [F) - (~¢@)] -G ) [-2@)]

() { [F(1a60) - jF(x)dG(y)}

(3.3.14)

(3.3.15)



y,-U-m)|=-7)-y,
=(1-y,)-7
S
;';5(1)

=min|l-————-7x
1<i<n n_l+1

1—7 éln(yi)}

=min =
1<i<n L Gn (yl)

<max l—ﬂ—————G_I”(yi)
i<i<n Gn(yl)

Smaxl—G_l—"(-x—)—(l—ﬂ)l
= G (x)
— 0  with probability 1, as n — oo,

as in the Glivenko-Cantelli Theorem.

This we prove the convergence of the cure-rate MLE.
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Chapter 4 Maximum likelihood estimation with observed cures

and censored data

4.1 NPMLE for Type-I censoring with observing some cures

Type-I censoring occurs if the event is observed only if it occurs prior to some
pre-specified time. As a result, it is impossible for us to observe such an individual
that the life time of it is infinity. However, we could observe some cures in an

independent sample. Hence if there are m>1 cures, the likelihood function from

Eq.(2.3.5) becomes:

L(z,F)=n" [li[(z, —z,._l)}-(l—zkﬂ)"_k, (4.1.1)
where z, =(1-7)-Fy(¢,) fori=1,--k, and z, ,, =---=z, = (1-7)- F,(C)),
0<z <--<z, <l-7.FromEq.(2.3.7), we have
L(z,z)=n" -k—lk-zk" (1-2,.)"". (4.1.2)
Hence depending on the value of 7, we get:

Max{ Max {zkk-(l—zk)n—k}-ﬂm}

0<7<l \0<z <+ <z,81-7

1 k n—k
Max (kj -(1——]2) "y, ifﬂSl——]-c—
:Max< 0<7<l n n n

Max{(l—ﬂ)k N 'ﬂ'm}, ifﬂ'>1—£

L 071 n

1 k n—k+m
R .
n n n

m+n—k\ (m+n-k\'"™" _  m+n-k k
1- . , since —— >1—— always true
| m+n m+n m+n n

= Max-
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k n—k+m
___(1_m+n—k) -(m+n—k) . with 7%___m+n—k=1_ k

m+n m+n m+n m+n
L i=leek-1
Which gives 3 =M (4.1.3)
k .
> l=ka' s
m+n
2 |L, i=leek-1
and P =R)=—=k " (4.1.4)
1-7 .
, i=k,--,n
The MLE of the cure-rate is then a=1- k (4.1.5)
m+n

4.2 NPMLE for Type-1I censoring with observing some cures

Type-II Censoring is defined when the study continues until the failure of the first »
individuals, where r is a predetermined integer (r<n). We get the MLEs of the
underlying distribution function and cure-rate by replacing k£ by r in (4.1.4) and

(4.1.5).

4.3 NPMLE for random censoring with observing some cures

4.3.1 Introduction

In our discussion, we adopt some of the notations and conventions of Miller (1981).
The usual observations of survival times and censoring indicators are augmented by
the possibility of observing that an individual in the mixed population is in fact a cure.

The primary variable of interest is time to death from a disease for which the
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probability of recovery, i.e., cure, is 7 . An individual is known to recover if survival
is greater than a known time, say, C.

Let X' be arandom variable denoting the conditional survival time of the non-cured
population taking values in the possibly infinite interval [0 , C ), and X,s are
independently and identically distributed (i.i.d.), with F.

Let X be a random variable with P(X =X')=1-7 and P(X=C)=7x. X,s are
iid with F,, where F (x)=(1-7) F(x).

Let Y be a censoring random variable that is independent of X, and & an indicator
function which is defined by ¢ = I{X <Y } .

An outcome that is a cure, regardless of when it is noted, is mathematically equivalent
to observing X =C <Y .Let Z=min(X,Y), we observe the pair (Z,0).

Let S, be the survival distribution function of the observable survival random
variable X, m the probability that a randomly chosen member of the population is
cured, and S, the conditional survival distribution function of individuals not cured.
Then

S, (x)=1-F,(x)
=1-(1-7)-(1-5,(x))
=x+(1-7) S,(x)

and if C <0, S,(x) =0 for X > C.

(4.3.1)

4.3.2 NPMLE of the cure-rate 7
This case was already considered by Laska and Meisner (1992). We present their

result below. Given the N observations (Z,,0,), i=1--,n, and m cures, where

n+m=N. Based on our result of Section 3.2, augmented by observing some cures,
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maximizing the likelihood of the observations for the cure model S, is equivalent to

maximizing L given by:

L(z, Fy)y=n" -ﬁ[(l —7)- Fy(z) = (=7)- Fy(z. )] - [7+(1-7)-S,(2)] " (4.3.2)

Let
q; = F,(z,)) - Fy(z,,)
= S,(z,_)—S,(2), (4.3.3)
i=l-,n,and Z,=0
=5,(2)= z q; > So(zo)=2qj=1
JiZ;>z Jj=1
put p,=(01-m)q, (4.3.4)
=(1-7)-[F(z) - Fy(z_)]
=Fﬂ(zi)_Fzr(Zi-1) (435)
=S7r(zi—l)_S7r(Zi)’ i=1,--~,n
Note that p;=1-r,and lirrclS”(x)zﬂ
j=1 X~>

- 1-4,
TP S R p,}

i=1 JZ,>Z,

_ 1-8,
=™ leb‘, 11— z pj:| (4.3.6)
i=1 j

Using again the conditional probability

A=—2P (4.3.7)

then 1-4 =—222
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li[(l_lj):l_.z’_:pj
Hence =13 p) =[f[(1—,1,.)] [Ta-4)

1-5,
and p -[1— Z pj} =0 {1— Z pj:|
JiZ;<Z, JiZ;<Z;
i-1
=471 10-4)
Jj=1

Put (4.3.8), (4.3.9) and (4.3.10) into (4.3.6)

= L(x, 1) =[f](1—1i)m]-f[[zﬁ -ﬁ(l—zj)}

i=1 i=1 j=1

Notice that ﬁ{ﬁa-zj)] [Ta-4)

i=1 j=1 i=1

= Lim, ) =T]4# -1-4)

i=1

Hence the MLEs for A4,'s are given by

jo__ O

n+m—i+9,

Since [Ta-2)=1->p
i=1 i=1
And d.p=1-x

i=1
=z=]]0-4)
i=1
n 5
= lo—
1,:11( n+m—i+5,.)

is the NPMLE of the cure-rate.

4.3.3 NPMLE of the survival function
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We get the NPMLE of the survival function motivatied by of the Kaplan-Meier
product limit (PL) estimator of 1958.

To allow for possible ties in the data, suppose that the events occur at N distinct times
t, <t, <:--<ty, and that at time #, there are d, events. Let ¥, be the number of

individuals who are at risk at time ¢,, i.e., Y, is the number of individuals who are

4

: . . .4 .
alive at ¢, or experience the event of interest at f,. The quantity 7’ provides an

i
estimate of the conditional probability that an individual who survives to just prior to

time ¢, experiences the event at time ¢;. The Kaplan-Meier product limit estimator

of the survival function is hence given by:

1, if ¢ <,
S) = ]‘[(1—%), if 1 <1

In our approach, since the MLEs for the conditional probability are given by (4.3.14)

(c.f., Laska and Meisner, 1992):

P

" n+m—i+d,’

the MLEs of the survival distributions, éﬂ and §0, are given by

) 5

S =T1a—2—— 43.16

G H( prw— (4.3.16)

and S = —S-l(’—)l (4.3.17)
-7

Moreover, it is proven that the KM-PL estimator is the generalized maximum
likelihood estimator (GMLE) (Kaplan-Meier, 1958). Hence, the above estimators are

the GMLEs of .§'” (t) and S‘O (), respectively.
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4.4 NPMLE for interval censoring-case 1 with observing some cures

4.4.1 Background
We adopt the notations illustrated in Section 3.3. When applying the cure-mixture

model with the assumption that the cure-rate is 7, we have:

F ()=(1-m)F,(t
(0= (-D)F, 0 wan
S,)=1-F,(t)=n+(1-7m)-S,(¢t)
On assuming some cures are observed, the likelihood function is given by:
L(w,F)=="-T[F@)] [1-F@)]™
= (4.4.2)

=2 [ Ti-2) R@F b+ (-2)-(1- Fe))™

where m =Zl{x,. =o0} is the number of cures, and N=m+n is the total number of

i=1
individuals.

Put x, =(1-7) - Fy(¢), obviously 0<x, <---<x, <1-7.

= L(z,x)=7n" -Hxi‘s“ (1-x)%
i=1
The log-likelihood function is thus given by:

In L(r, %)= m.1m+z":{5,. Inx, +(1-35,)-In(1-x,)} (4.4.3)

i=1
To maximize the log-likelihood function is equivalent to first maximizing the

function:

¢()~c)dzi{é} ‘Inx, +(1—5i)-ln(l—xi)} (4.4.4)

under the condition that 0<x <---<x,<c (4.4.5)

n

where c is denoted as ¢ =1—7, and then solving
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max{mlnﬂ+ max ¢(i)} (4.4.6)

0s7<l 0<x S <x, <l-7
4.4.2 Optimal solution to the maximization problem of Eq. (4.4.4)

(i) Let (y,,~--,y,) be the optimal solution to the general interval censoring case-1

problem, which is without applying the cure- mixture model or observing any cures,

ie, y=arg max {Zn:{éi-lnx,.+(1—5,.)-ln(l—xi)}}

0y < <x, <1 =
Based on the property of concave function, since @(X) is concave, we have
#(%) - (7)) <(V4(%),% - 7) for Vi, jeR"

7 =argmax ¢(%) < (Vo) «(3-7)<0 for VieR" (4.4.7)
. )6 1-6,
Equivalently, —— T—l “(x,—,)<0 forall 0<x <-.-<x, <1 (4.4.8)
Yo 1=V
More specifically, Groeneboom and Wellner (1992) have given a so-called “max-min

formula” as the solution to this problem:

P
= max min == 4.4.9
m ism ke2m Jfp—741 ( )

(ii) We will first give the solution to our problem, then follows the proof. To show that

the optimal solution to maximizing (4.4.4) under condition (4.4.5) is

>,
. . j<j<
¥, = min(c, max min —-——)

nax min == (4.4.10)

=CA Y,

it is enough to show that

5168 1-6 58, 1-6,
Y - o )+ YA -0 (6, —0) S0 (44l
{yi 1‘)’:} (=) i=k+1{c l_c} (=) ( :
for alll 0<x <--<x,<¢ , where 1<k<m is such that
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Osy sy, <c<y, <<y,

(i) Take 0<x <.--<x,<c, apply the inequality (4.4.8) to the vector

(x1a"':xkayk+1a"'yn) to get

k —
Z{i—l—i}-(xi—yi)so (4.4.12)
=1 Vi 1- Yi
Hence, in view of (4.4.12), (4.4.11) will follow if we show that
Z{i_l‘._‘sf}.(xi_c)go (4.4.13)
mlc l-c

> (8- -0)
<

i=k+1

c(l-¢)

n
= Z(é'i—c)ai 20, wherea, =c-x,, anda,, >-->2a, 20
i=k+1

el (4.4.14)

Where it is assumed that at least one a; >0, otherwise the result is trivial.

a. _
—, fori=k+1,---,n.

n

2

i=k+1

Put p=

We havep,,, >---=2p, 20,and p,,,+ -+ p, =1. The inequality (4.4.14) is hence

equivalent to

(iv) Hence to prove (4.4.13), it is enough to prove that

i=k+1

cSmin{Z S, pi|Pin 22 p, 20, and p,, ++-+ p, =1}
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5k+1 + 6k+2 5k+1 + 5k+2 + 5k+3 5k+1 +oot 5n
2 3 n-k

b

=min {%, } (4.4.15)

The last equality holds because the minimum is attained at one of the extreme points.
To get all these points, we start at a simple case: minimize {51 p,+0, pz} with

respectto p, = p, =20, and p, + p, = 1(see bold segment in the following graph).

“ -

The extreme points are hence (1,0) and (1/2,1/2). In general, to minimize

{op+8,p,++5,p,} wrt pz--2p,20 and p+-+p,=1, the

11 111
extreme points are: (1,0,0,---,0), (5,5,0,---,0} (—3—,5,5,0---,0) ------ , and
111
n’n, ,n M
(v) Now note that
>4
. igls
< = max min
€< Ven =50 2k j— 41
2.4
oce<mind 2EL__ k1< j<ny, forsome1<i, <k+1.  (4.4.16)
Jj—iy+1
2.4
Meanwhile, ¢ >y, = max min -

i<k j2k j_i+1
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J
%
Se>mind—=— k< j<ny, forall 1<i<k. (4.4.17)
j—i+l

2, 4

@ In(4.4.16)if i, =k+1, ::>c$k+—1_gs—jk—— forallk+1<j<n,
]_

S+ 02 Oii+ Gk + s ,.,5k+1 +"'+6n}
2 3 ’ ik

< ¢ <min {5k+1,

Hence (4.4.15) is proved.

@ If i, <k, inview of (4.4.16) and (4.4.17), we have

k-iy+2 = k-i,+3 " n—i+]

for some 1<i, <k

( . {51‘0‘*""""51:4(1 5i0+"'+5k+1+5k+2 5io+”'+5n
¢ <min

} =a, (k,n), say,

. O+, S+ 40, 0,++6, N - e YN
¢ >min{ ——— , _ gty ——— =min{ ——,a,(k,n)
k—i+1 k—i+2 n—i+1 k—i+1
forall 1<i<k
Specializing the 2™ inequality to i = I, , we have
8,4+,
¢ >min{ =———,q, (k,n) ¢;
k—iy+1 ~ °
meanwhile, from the 1% inequality, ¢ < a, (k,n).
O, +-+6,
Hence — <c<a, (k,n).
O +-+90, O +:+0
(< iy : k+1 o iy : k+1 <5k+1
k—i,+2 k—ij+2
S, 443, <5i0+"'+5k+1+5k+2®5i(,+"'+5k+1+5k+2 O T 01n
—_ k—i,+3 k—i,+3 2

k—i,+1

<5iu _|_...+5n . 51‘0 +...+5n <5k+1+'“+5n
n—i,+1 n—i,+1 n-k
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Now we have

. |0 e+, O +"’+5k+1+5k+2 5; +et 0,
¢ <min<{ — — g —
k—iy+2 k—i,+3 n—i,+1

5k+1 + 5k+2 5k+1 + 5k+2 + 5k+3 5k+l toe 571 }

<min< &, ,, , yoe
2 3 n—k

Hence, the inequalities (4.4.16) and (4.4.17) imply that (4.4.15) holds, consequently
(4.4.13) is true, and then we get (4.4.11). By this approach, we have confirmed that

the optimal solution to maximizing (4.4.4) under condition (4.4.5) is

2.5

y! = min(c,max min =) (4.4.18)
ism k2m fk—7+1

for m=1,...,n,where ¢=1—m,and 7z isthe cure-rate.

4.4.3 NPMLE of the cure-rate

Now we turn our attention to finding the NPMLE of the cure-rate. The log-likelihood

function is 1nL(5E,c)=m-1n(1—c)+Z{5,.-lnx,.+(1—5i)-ln(1—xi)}, where

i=1

N
m= ZI{X .= oo} is the number of observed cures among all the N individuals, and

i=1

N=m+n.
By following the approach of Groeneboom and Wellner (1992), we get the optimal

solution to the maximization problem without involving a cure-rate, i.e.,

2.9
s isjsk
y, =max min £

for m=1,...,n. Denote y.,y.,--,y. as the distinct values
ism kem f—j+1] m n ny sz y

Jr

of ¥,¥,,"**s¥,, which form j +1 intervals for ¢ to pick up a value from. Since
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¥, =min(c, y, ), we determine the value of each y, depending on which interval ¢

lies in. We then solve

max {max [m ‘In(l1-¢)+ max ¢(i)}} (4.4.19)

1sk<n | ce4, 0sx < <x, <e

where 4, = (yjk_l’yjk ]

Example 4.1. Let n=5,6, = §, = 6, =1,and &, = &5 = 0. Then the vector maximizing

the log-likelihood without observing any cures is given by

1 2
)’1=y2=’2'=y3=y4=y5=§

(see Groeneboom & Wellner, 1992)
If we observe some cures in this example, the log-likelihood function with plugging

in the optimal solution y, =min(c,y,) will be given by

-

5
m-In(l-c)+ > {5, -Iny,+(1-35)-In(1-y,)}, ich%

i=1

def
f,e)=ym-In(1-¢c)+Iny +In(l1-y,)+Inc+Inc+In(1-c), if%<c<—32—

m-In(l-¢)+nc+In(l1-c)+Inc+Inc+In(1-c¢), ifOScS%

\

The maximum of f(X,c) is attained at the maximum of the following extreme

values:
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(m+3)- ln-;—, corresponding to ¢ = —i—

0<c<1

max f(¢c)=q(m+5)- ln%— &, corresponding to ¢ =%+ €

3. ln(—?’———j +(m+2)- m(m—ﬂ), corresponding to ¢ =
{ 5 m+5

m+ m+5

where £ >0,£ >0, ¢ and £ are arbitrary.
) 1 . 2 . A
Note that if m=0, 16na>1<f(c)=3-ln§:>c=§<:>7z:l—c:§.

If m>1, itis always true that

(m+3)-1n%£(m+5)-ln—;——§ and

1 3 m+2
(m+5)-1n-2——§33-1n(m—+5)+(ni+2)-ln(m+5j

with arbitrary £>0. Hence,

3 m+2
max f(¢)=3-In| —— |+(m+2)-In
wa/© (m+5) (n+2) (m+5j

o A ~ m+2
=Cc= Sa=1-¢c=
m+5 m+5

A simulation study of the above approach is also presented in the appendix.

4.5 Summary and further research

In this thesis, we first have introduced the non-parametric maximum likelihood

method and the mixture model as well as the “hidden” model for cure-rate. These two

models have been shown to be equivalent under the nonparametric maximum

likelihood method. As preliminary results, we have found the NPMLE of uncensored

data as well as Type-I censoring and Type-II censoring. Afterwards, we have shown
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that, in the uncensored model and also, Random censoring and Interval censoring
(case-1), the cure-rate is not estimable under the non-parametric maximum likelihood
method when no cures are actually observed. However, we have been able to give

explicit solutions for the event time distribution for all the above censoring models. A

proof has been given of the almost sure convergence of supF(x) to (1—x), where

X

sup F'(x) is the supremum of the MLE of the underlying distribution function, and

7 is the true underlying cure-rate, for random censoring and interval censoring
(case-1), even when no cures are observed.

Since in most applications, the data are interval censored, there has been a need for
some theoretical and numerical results on MLE for complex interval censored event
data. In this work, we have described and illustrated the “max-min formula”, for the
estimation of the distribution function, proposed by Groeneboom and Wellner (1992),
and modifed it to get the optimal solution to the maximization problem under a
cure-mixture model, when some cures are observed. Finally, we have performed a

simulation study to give some numerical results as well.

For further research, one may seek the MLE for interval censoring case-2 (IC-2).
Recent studies of interval censoring have focused on IC-2 data, which involves a
time-to-event variable X whose value is never observed but is known to lie in the time
interval between two consecutive inspections times 7 and U. Consider a random
sample X,,---,X, from unknown distribution function F (x)=(1-7) F(x) on

the real line, where 7 represents for the cure-rate. Instead of observing this sample
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directly, for each 7/ a quadruple with (ﬂ,U,.,Ai,F,.) is observed. Here T, and U,
are random time points, independent of X;, with 7, <U, a.s. and the indicators
A = l(_w,Ti](X ) and T, = l(T, ,U,.](X .) give information on the position of X, with
respect to these time points. Given a realization (ti,ui,é‘i,;/i) of the n quadruples,
the log-likelihood of the distribution function can be defined as
In(z, F,) = ;{5 ‘In(c: F,@))+7,-In(c-(F@) - F,()))+(1-6,-7)-In(1-c- E)(u,-))}

where c=1-7.

Jongbloed (1998) has suggested a modified iterative convex minorant (ICM)
algorithm and the expectation maximization (EM) algorithm for IC-2 data. However,
so far, very few theoretical results on the IC-2 have been addressed in scientific
publications, and this particular situation cannot be handled straightforwardly by
statistical software packages, even in the case of no cure-rate (i.e., 7 =0). For this

reason, we shall keep attempting to find an optimal solution.
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APPENDIX

For the following simulation work, we implement the approach illustrated in Section
4.4 in S-plus.
First, generate a sample of size N+n. The first data set of size N is generated using

LV, -V )~Uniform(0,1) , and m, the number of cures, is defined as

N
m :ZI{Vi < 7:0} , where 7, is an arbitrary initial value of the cure-rate. The

i=1
second data set of size n , independent of the first sample, is generated using
(C,,C,, - Cy)~Exponential(1), (1,,T,, - T\, )~k - Gamma(a, ), and
U,,U,, U, )~Uniform(0,1) , where k is some appropriate integer to make 7, and

C comparable. The indicator, o, , is found by

i

0 ifU,<m, orU>xr, and T>C, , _
= . . Then make the pairs of observations
1 ifU>n,and T, <C,

(C,,8,) ordered statistics corresponding to C,. The log-likelihood function based on

the entire sample is given by
InL(x,c)=m-In(l-c)+(N—-m)-Inc+ 2{51' ‘Inx, +(1-06,)-In(1- x,.)}
i=1

where x;, =(1-7)-F,(C,)=c-F,/(C,).

(i) Take N =30, n=50, 7, =0.35, 1=0.005, k=800, =0.5, f=2, it tumns
50

outthat m=12, N-m=18, and ) &, =22.
i=1

Applying the “max-min formula” (4.4.9), we have
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(1/6 fori=1,---,6
1/4 fori=7,---,10
1/3 fori=11,12,13
2/5 fori=14,---,28
4/9 fori=29,---,37
1/2 for i =38,39
2/3 for i =40,---,48
1 for i = 49,50

yi:<

And the likelihood function becomes

50
InL(%,c)=12-In(1-¢) +18-Inc+ > {5, -Inx, + (1~ 8) - In(1-x,)}

i=1
Take y; =y, Ac, discuss the extreme values of the log-likelihood function

In L(X,c), with respect to different intervals which c lies in.

def
40In(1-c)+40Inc = £(c), if 0< ¢ <0.16667
def
35In(1-c)+39Inc +3In(0.17x 0.83) = £,(c), if 0.16667 < ¢ <0.25
def
32In(1-c)+38Inc+3n(0.17x 0.83) + 2In(0.25x 0.75) = £;(c), if 0.25 < ¢ <0.33333

def
30In(1—c)+37Inc +3In(0.17 x 0.83) + 2In(0.25x 0.75) + In(0.33 x 0.67%) = £,(c),
if0.33333<c< 0.4
21In(1—¢)+31ine +3m(0.17 x 0.83) + 2In(0.25 % 0.75) + In(0.33x 0.67%) + In(0.4° x 0.6'°)

def
InL(%,c) = = fi(c), if 0.4 < ¢ <0.44444
161n(1~ )+ 27Inc+31n(0.17x 0.83) + 2In(0.25x 0.75) + In(0.33x 0.67%) + In(0.4° x 0.6'°)

def
+1n(0.44* x0.56%) = f,(c), if 0.44444 < <0.5
15In(1 - ¢) + 26 Inc +31n(0.17x 0.83) + 2In(0.25x 0.75) + In(0.33x 0.67%) + In(0.4° x 0.6'°)

def
+1In(0.44* x0.56°) +2In 0.5 = f,(c), if 0.5 < < 0.66667
12In(1-c) +20Inc+3In(0.17x 0.83) + 2In(0.25x 0.75) + In(0.33x 0.67%) + In(0.4° x 0.6'°)

def
+1n(0.44* x 0.56%) + 210 0.5+ In(0.67° x 0.33%) = f,(c), if 0.66667 <c <1

The extreme values are
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(

max f(c) =-34.2933, corresponds to ¢ = 1

(=)

max f,(c) =-29.0273, corresponds to ¢ =0.25
max f,(c) =-25.9164, corresponds to ¢ = %

< max f,(c) =-24.3594, corresponds to ¢ = 0.4
max f;(c) =—-23.6429, corresponds to ¢ = -;:
max f,(c) =-22.9939, corresponds to ¢ =0.5

max f,(c) =-22.3452, corresponds to ¢ = %

|max fg(c) =-22.3869 - &, corresponds to ¢ = 0.67 + & (with arbitrary £,& > 0)

The maximum of InL(X,c) is attained at the maximum of these extreme values,
which is max f,(c), the corresponding value of ¢ is hence the NPMLE:
i.e.,

~ 26 R ~ 15

c=—Sn=l-c=—

41 41

which is close to the initial value (0.35) of the cure-rate.
(ii) In an attempt to find how the parameters, such as sample size and initial value of
7, effect of the NPMLE of cure-rate, we fix the above generated data set, and start
with different arbitrary values. It is obvious that the expression of the log-likelihood
function varies according to different sample sizes, N and #, and hence yield different

estimator of cure-rate. For our interest, we perform the above approach all over again

for various initial values of 7, and get the following table of results.
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A 50
T, 7 T—7,| Number of z S
i

=1

cures

0.15 1/16 0.0875 2 26
0.25 3/16 0.0625 6 23
0.35 15/41 0.1659 12 22
0.45 7/16 0.0125 14 17
0.6 27/43 0.0279 21 15
0.7 30/43 0.0023 24 14
0.8 32/41 0.0195 26 10
0.9 44/51 0.0373 28 8

Procedure to get the NPMLE based on “max-min formula”
Input:
delta: indicator of whether an individual is censored or not, which is got from
simulated data set

n: size of data set

begin
for m=1ton
begin
fori=1tom
begin
fork=mton
begin
sum:=0;
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for j=itok
begin
sum:=sum + delta[j];
end;
commin[k]:=sum / (k -1+ 1);

end;

min:=commin[Kk];

for k=m to 50;

begin

if min > commin[k] then min:=commin[k];
end;
commax[i]:=min;

end;

max:=commax/i];

fori=1 tom

begin
if max < commax[i]} then max:=commax[i];
end;
max;
end;

end.
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