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ABSTRACT

Sudantha Balage

Splitting Methods are considered to be a strong candidate for obtaining accurate, robust
and computationally efficient incompressible Navier-Stokes (NS) solvers based on Finite
Element Method. The type of spatial errors such as the numerical boundary layer
observed on pressure solution near walls is known to affect the stability of NS solvers.
The inclusion of stabilization terms such as upwinding or artificial viscosity terms would
adversely affect the accuracy of the solver. NS solvers based on LBB compliant
elements, such as Taylor Hood (TH) elements do not require stabilization terms to
simulate higher Reynolds number flow provided their robustness is not affected by above
mentioned type of error. This motivates the study of Splitting Methods based on Taylor
Hood elements with the emphasis on how well they handle numerical boundary layer
type errors to obtain highly accurate NS flow solvers. The effect of the enrichment of the
TH elements with pressure bubble nodes is also investigated. The present work brings
several well-known Splitting Methods under a common theoretical framework and
classifies them appropriate to the study. A new technique named Mixed Mass Method
(M3) is introduced. Recently published works of equivalences of the previous techniques
are discussed. Based on the classification, three Fractional Splitting Methods (FSM) and
one Consistent Splitting Method representing a larger number of techniques are
implemented in computer program. Comparative accuracies of momentum, pressure and
continuity between the methods are discussed. The spatial error distribution of the
pressure and its conjugate problem of the continuity are also discussed.

The FSM based on approximate pressure method was observed to have the numerical
boundary layer in pressure and a similar error manifested in continuity. Guermond’s
Consistent Pressure Method, as reported for Spectral Elements, is found to have no
pressure boundary layer for TH elements. Both methods however, have large errors in
both continuity and pressure for vortical flows. FSM that uses the weak form of the split
consistently (classical methods) had near machine accuracy for continuity of the flows
studied. The numerical boundary layer is observed in classical pressure methods using
TH elements as well. However, when TH+Pbubble element are used, the numerical
boundary layer is eliminated though error in L, norm remained high for the test flow
used. Bubble nodes were also found to increase the accuracy of velocity but not always
the pressure. Present work concludes that approximate pressure methods are weaker in
comparison to classical pressure methods in high Reynolds number flows.

il
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1. Introduction

1.1 Motivation

Incompressible flow solvers, based on Finite Element Method (FEM), face several
technical challenges in terms of stability and specification of boundary conditions. The
variational formulation of the Navier-Stokes (NS) equations yields the pressure as a
Lagrange multiplier to a saddle point problem. Three main types of issues can be
identified regarding the spatial stability of a NS solver. The type I is based on the work
of Ladyzhenskaya-Babushka-Brezzi [11] who pointed out that, in order to have a stable
solution, there is a necessary condition on the elements that discritize velocity and
pressure. This condition is known as inf-sup condition or as LBB condition. Taylor-
Hood elements (bi-quadratic in velocity and bilinear in pressure), for example, satisfy the
LBB condition. Alternatively, the LBB condition can also be satisfied by adding an
artificial viscosity or a stabilization term to the NS solver. The LBB non-compliance is
manifested by spurious modes on the pressure. The type II instabilities arise in
advection-dominated flow. The stabilization of the solvers to prevent oscillations at flows
of high Reynolds numbers (cell Reynolds number exceeding unity by much) remains a
current topic of research. This issue is tackled by adding an up winding or an artificial
viscosity term to the NS solver. The type III issue of stability arises at a wall boundary,
where the pressure is observed to be having a high error. This is referred to as the
numerical boundary layer of pressure. The addition of stabilization terms is known to
adversely affect the accuracy of the solutions. The presences of the type III errors are
known to affect the robustness of the solvers by reducing the maximum Reynolds number

of simulations.

The main motivation behind this work is the need for a robust, accurate and
computationally efficient Incompressible Navier-Stokes Computational Fluid Dynamics

(CFD) solver (computer code) that is based on Finite Element Method (FEM). The



elements selected for this study are the Taylor-Hood (TH) type elements and a modified
Taylor-Hood element with a bubble node in the pressure (TH+Pbubble). Taylor-Hood
elements are chosen primarily due to their LBB compliance and wide usage. The less
known, yet promising technique of enriching the TH elements with pressure bubble
nodes is also investigated. Splitting Methods (SM) that separate the solution of velocities
from the pressure, are widely thought to be the best candidate for a highly
computationally efficient solver. The present work, studies some of the recent state of the
art splitting techniques implemented with Taylor Hood and TH+Pbubble elements. The
errors related to type III stability issue are quantified. This work is directed towards a
solver whose accuracy is not compromised by additional terms such as artificial viscosity
while having a good robustness at high Reynolds numbers. Such solvers are in demand
for current applications such as Large Eddy Simulations (LES) and Direct Numerical

Simulations.



1.2 Overview of Splitting Methods

The Splitting Methods were, originally introduced by Chorin [10]. This class of solvers
exploits the fact that in incompressible flow regime, the pressure does not convey any
thermodynamic information and could be interpreted as a Lagrange multiplier for the
incompressibility constraint, the continuity equation. This fact enables a splitting and
separate solution of momentum and pressure/continuity equations of Navier-Stokes
system via solving Helmbholtz like equations and a Poission type equation respectively.
There are many variations of SM reported in the literature. Based on whether the
algorithm enforces the continuity by projecting the velocity fields into a solenoidal field
or not, Splitting Methods can be broadly divided into two main classes of Fractional
Splitting Method and Consistent Splitting Method. The Fractional Splitting Method in
turn could be divided into further two classes again based on how pressure is solved. If
pressure computations were based on the weak form formulation, we shall call them
classical pressure computation type. If an approximation of a pressure Poisson equation
was made to compute pressure, we shall call them approximate pressure solution type.

Less applied velocity correction schemes are not studied in this work.

Since Chorin’s original introduction in 1968, the splitting type methods have undergone a
proliferation of variants. Some notable developments were the modification by Temam
[37] that included a pressure like parameter in momentum equation and computing the
pressure correction or the incremental pressure method. This was done to solve the
problem of non-convergence of the pressure residue in the former method. Van Kan [41]
introduced rigorous analysis of a second order accurate, incremental pressure scheme.
The issue of the artificial Neumann boundary condition was tackled by Kim and Moin
[28] by introducing a Dirichlet boundary condition based on the gradient of the pressure
constraint parameter to the momentum equation. E and Liu introduced a novel technique
based on gauge method that also was second order accurate in pressure. The approach
adopted in Gauge method was also to use the boundary values in computing the gauge

scalar (solution to Poisson equation) to eliminate the numerical boundary layer in the



velocity field. Here the boundary conditions on the momentum equations contain both

temporal and spatial derivatives of the gauge variable ¢.

Guermond, Minev and Shen [22] showed that the Kim and Moin method is
mathematically equivalent to the Chorin-Temam method with rotational pressure update.
Further, the above authors were also able to show the mathematical equivalence of the

Gauge method to the Consistent Splitting Method introduced by the same authors.

Splitting Methods

Fractional Consistent
Splitting Methods Splitting Methods
1. Chorin’s method 1. Gauge method

2. Chorin-Temam method 2. Consistent Pressure
3. Kim and Moin Method Method
4. Chorin-Temam with
rotational pressure
update
Figure 01

The basic division of the splitting method and the examples considered in the present
work.



1.3 Thesis Scope

The current work studies splitting methods of pressure correction type implemented with
FEM Taylor-Hood and TH+Pbubble elements. Both classes of the two main divisions of
the methods, i.e., Fractional Splitting Method and Consistent Projection Method are
studied. In FSM both exact pressure and approximate pressure methods are considered.
The well-known classical methods as well as recent cutting edge work are presented in a
unified theoretical framework using ideas and symbolism of gauge fields. The notation
of gauge fields, though not always interpreted as such, were found to be particularly
suitable to generalize the ideas behind each scheme and write them in a compatible
manner with other methods. The present work will distinguish between the pressure

update parameter g, whose gradient appear in the momentum equation, and the pressure
constraint scalar ¢, which is the solution to the pressure Poisson equation. Once each

splitting method is represented in a unified symbolism and ideas, a correct classification
of them as well as further insights into the workings of the algorithms is presented. The
correct expression of pressure is presented. The equivalence of some of the methods will
be discussed. Finally, selected representative techniques are implemented in computer
codes and analyzed with the emphasis on type III spatial errors introduced in section 1.1.
The matrix forms are derived for all the techniques that were computer implemented.
The main issues of FEM solvers, i.e., stability, convergence and robustness are examined.

The pressure boundary condition is demonstrated.

The main schemes considered in this study are: on FSM,

i) Classical Chorin-Temam method with classical pressure computation. The use of
lumped mass matrix as well as a new method that uses mixed mass matrices is
presented.

ii) Chorin-Temam method with approximate pressure method and rotational
pressure update is investigated. By choice of a particular pressure update
parameter, its equivalence with other well-known method due to Kim and Moin

[22] is discussed.



Schemes considered on CSM,

i) Theoretical description of Gauge Method is presented.
it) Guermond’s consistent pressure method is presented. Its equivalence to Gauge

method is discussed.

Both two-dimensional and three-dimensional computer codes of the above FSM ii) and
CSM ii) methods are constructed. The effect of pressure bubbles was studied when they
could be implemented in a mathematically consistent manner, namely in classical

methods.

The main accomplishments of the present study are:

1.

The classification of existing methods with equivalence between some of them. A
general notation capable of representing each method considered is introduced.

A new splitting method with promising features is presented. This method is based
on classical Fractional Splitting method with advantages in accuracy, computational
efficiency and robustness over the original ones.

Properties of a novel type of element are investigated with promising results. The
properties of inserting bubble nodes in the pressure elements of the Taylor-Hood
elements are not widely discussed in the literature and the present work will present
the effects of the bubbles on type III spatial errors.

The numerical boundary layer, formed by the incorrect pressure boundary condition
is quantified both in terms of error in pressure and error on the continuity equation.
The effect of the Taylor-Hood elements enriched with pressure bubbles on the

numerical boundary layer is documented. A new finding is reported.



2. The Finite Element NS Solver

2.1 Strong and weak formulation of the Navier-Stokes Equations

The incompressible Navier-Stokes equations for homogeneous Dirichlet boundary

conditions can be given by

%%+ (- Vu+Vp=V. (V(Vu)+ (Vu)T)+ f for u(x,t)e Q u Ian =u,
(2.1
V-u=0 for ulx,t)e Q u lag =u, 2.2)

Let Q be an open bounded domain in R?, where d = 2 or 3 with
Lipschitz continuous boundary, I". the velocity u:Q — R? , the pressure p:Q — R

v is the kinematic viscosity and f the bulk external force that may act on fluid body.

The first equation (2.1) is the momentum equation where the conservation of momentum
of the fluid is described in the Eulerian sense. The second equation (2.2) is the continuity
equation where the conservation of mass is imposed. In an incompressible flow the
pressure p does not convey any thermodynamic quantities to the flow but rather acts as a
Lagrange constraint to the momentum equation. This fact is also reflected in the
continuity equation where there is no density term appearing in its definition. Since the

momentum equation determines the pressure p only up to an additive constant, we only
require pe I*(Q). This becomes apparent in the following weak form formulation of

the above equations.



The above equations (2.1) and (2.2) are in differential form also known as the strong
form. The integral form or the weak form can be considered equivalently as well. The
weak form of the equations is the starting point of the theory of Finite Element Method.
The weak form equations are considered to be mathematically more general as it relaxes

a few conditions required in the strong form.

In order to use the general framework of functional analysis we set the functional spaces

X =Hy(Q)', M =L(Q)=1{g¢ L,(Q)}

X is composed of test or weighting function and consist of all functions which are
square integrable and have square integrable first derivatives over the computational
domain Q. M is composed of square integrable functions over the domain. We now

introduce the following notation:

~(V-v,Veu)= [(V-u):v(V - v)dx

(v, Vq) =— I(V . v)qu

Q

(v, (- V)= [v-(u- Ve 2.3)

Q

(u,v)= Iuvdx

The weak form formulation of the above Navier-Stokes equation are obtained by
projection of the above (2.1) and (2.2) into onto the space of weight function ve X and

g€ M respectively.

(u,,v)+ (v, (- Vu)+ (v,Vp) =—(V-y,V. u)+ (f,v) (2.4)



~(V-u,q)=0

Where u, =%Lti

The Finite Element domain is characterized by the discretization of the domain Q into

element domains Q% such that
Q= Jo* and Q'(Q/=0 fori=#j
While Q% #0 and the boundary, 9Q ", is piecewise smooth.

The spatial discretization of the above weak form by means of Galerkin formulation

consist of defining two finite dimensional subspaces X", X} and M".
Xk ={v€ H'(Q) ‘v|ﬂe €P, (Qe)v’eand v=00n Fwa,,}

Xt ={ue H'(Q) |vQ, € Pp(Qe)Veand V=uyon Fwa”}

Where P, is the finite element interpolation space. X % is the space of test function and

X"is the space of the trial functions.

In FEM the projection of (2.4) is made onto X} space in each element. The solution is

approximated in X" space in each element. The interpolation functions are chosen such
that they ensure the continuity across the elements ensuring a topological assembly of
elements would result in solution space being in X . A co-ordinate transformation on to
a barycentric co-ordinate system is introduced to generalize the computations. A

topological assembly is then performed to obtain the global quantities in Q.



2.2 Time Integration

As in the case of space, the time needs to be discretized to perform for the numerical
. . . — D
computation. The general discrete time derivative operator could be represented by —

where.

Du =&u"+&u"+&u"" where & are factors of the integration scheme used

u" = u(t” )

In this study Backward Difference Formula of second order, BDF2, scheme is used

where
3

§=>

E=-2 2.5)
1

§=7

Furthermore, the advection terms are integrated by B
Bc(u";u",v)= ,Bl(u” -Vu",v)+ B, (u”_l -Vu”‘l,v)+ yia (u""2 ~Vu""2,v)

The Present study uses third order Adams-Bashforth (AB3) method with

8
:Bl = ':,:

7
132 - g (2-6)
ﬁa = 73"

The mixed method of time integration is chosen as it leads the symmetric positive
definite matrices enabling a wide choice of iterative solvers including Preconditioned

Conjugate Gradient solver that is used in the present work.
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2.3 Taylor-Hood and Taylor-Hood/P-bubble Finite Elements

The present study concentrates on the use of Taylor-Hood (TH) elements and a lesser-
known method of TH elements with bubble nodes on pressure elements. TH elements
consist of second order polynomial interpolation functions for velocity and first order
interpolation functions for the pressure. The elements used in the study are triangles for
2-D code and tetrahedrons for 3-D case. The bubble nodes, by their nature, are higher
order.

The effect of the bubble nodes (TH+P bubble), though not widely studied, is reported in
the literature [25]. The main effect of the bubbles are said to be in the imposition of the
continuity condition. The present study reports on the effect of bubble nodes on

continuity as well as on accuracy and robustness of the solvers.

Consider a mapping form tetrahedral element, Q*in global Cartesian co-ordinates

x=(x,x,,x,) into a reference element,  whose barycentric co-ordinate system

(€,€,,£,) is defined as

£ = (vol (x,2,3,4))

vol(1,2,3,4)

_(vol(x,1,3,4)
b= (vol(1,2,3,4)) 2.7)

-f volx124
> vol(1,2,3,4)

vol(1,2,3,4)

iise)
£ = (volx123)
)i

where vol (x 1,2,3) is the volume of the tetrahedron with vertices 1, 2, 3 and x.

11



Note that 0< ¢, <1 for n=123,4 and & +¢&,+&,+ &, =1.

The affine transformation of the Cartesian co-ordinates to the barycentric co-ordinates

could be written as

&,=Ci+) Diyx, where @=1234and n=3 for 3-D.

=1

where

1 xl[a+1] x2[a+l] x3[nt+l]
k, -

= m——— X X
a dCt(J) xl[a+2] 2[a+2] 3[a+2]
xl[n+3] xz[nt+3] x3[a+3]

( 1)a+1 1 x2[a+|] x3[.m]
~ =
Dal - 1 x2[a+2] x3[a+2]

1 x2[a+3] x3[a+3]

. (_l)am xl[,m] 1 x3[a+l]
= e e L Pt (2.8)
xl[a+3] 1 x3[a+3]

n (_ 1)a+1 xl[m] x2[a+1] 1

5[3 = Xy Xy 1
det( J) [ar+2] [a+2]

1

xl[a+3] x2[a+3]

where [a]=«_,, and %,,,18 the co-ordinate of the local node « of the element Q* in

i co-ordinate.
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The co-ordinate transformation to barycentric to natural co-ordinates could now be given
by

x, =Dk ) e - (D5 ) cl a=1.3, f=1.3. 2.9)

Note that the last row of C*and D" has been excluded since £,is not an independent

variable,

The Jacobian of the transformations (determinant of it) is given by

det(/) = || = det(D* )" (2.10)
For transformation

4
x=) %5, (2.11)

a=1

where x is the position vector of local node & of element Q

13



The elemental basis functions for h,(£,£,,£), a=1,..,4for linear P, tetrahedron

elements are

In 2D P, +P bubble

h=4

h, =&, (2.12)
hy=1-¢,-¢,

and the bubble element

hy ::Bé:l‘fz(l—gl - gz)

Where [ is a parameter that could be adjusted to facilitate a desired solution process.

Smaller f leads to ill-conditioned matrices to be solved to obtain pressure.

In 3D P, +P bubble

h=¢,

h =6,

h=¢, (2.13)
hy=1-§ -6~

the bubble function is

hy =ﬂ§1§2§3 (1“4:1 ~-&, "53)
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The second order basis functions can be derived for tetrahedrons with mid-point nodes on

the edges. The local elemental basis functions in bayricentric co-ordinates are

2D P, interpolation function

hy=&(-1+24)

h, =&,(-1+2&)

hy=(1-&-&)1-26-24,) (2.14)
hy =444,

hy=4&,1-6-¢,)

h =4 1-¢4-2,)

In 3D P, interpolation function
=26 -1)4

h, = (26, -1)¢,

hy = (26, -1)¢,

h, = (2&,-1)¢, (2.14)
hy =456,

hs = 48,6

hy, =468,

hy =466,

hy = 48,6,

ho = 46,54
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Pressure.Shape Functions

e
PR i

L H5)
RN

Figure 02
2D pressure shape functions of the Taylor-Hood element with the bubble. Note that the
bubble function is scaled by B =27 to bring it to the same scale as the bilinear shape

functions.

Velocity Shape Functions

Figure 03
2D velocity shape functions of Taylor-Hood elements.
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2.4 Matrix assembly and Navier-Stokes system in matrix form

With the elements defined, the matrix equivalents of the weak form operators in

equations (2.3) can be obtained for each element.
The elemental stiffness matrix is derived as below
3 3 3
AII;,B l‘]‘zzz Danr’:m ofinn’ (215)

m=1 n=1 n’

where

.
Dy, =2
nm ax

m

as defined in equation (2.8)

and G

o 18 defined below

d¢,dé, (2.16)

The elemental mass matrix is given by

11‘521“'52“‘53
=[ [ [hhslldéag,as, 2.17)
00 0

Where

7] is given by (2.10)
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The elemental pressure constraint matrix is given by

3 —~
Difp =2 Dy H oo
n=1

3 o~
Djos =D DisH 5, (2.18)

n=1

3 —_
Dyip =1 DisH,

n=1

11-81-5,-4 a h

H . =
yon
? 0 0 0 ag

dédé,dg, (2.19)

where @ =1,..,10 and S =1,..,4 for the 3D TH elements and & =1,..,10 and f=1,..,5 for
the TH+bubble .

In2D a=1,.,6 and f=1,..,3 for the 2D TH elements and @ =1,..,6 and f=1,..,4 for
the TH+bubble.

Similarly for the advection term

laﬂr |J|Z D Czﬂny

Coopy =1 IZ Copmy (2.20)

n=1

Saﬁr Ile Dk Cffﬂnr

n=l

11-81-6,-¢,
aﬂnr ,[ J ﬁ a f

00

dé‘ldédfa (2.21)
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Comment 01: Note that the above pressure constraint matrix is where the bubble nodes
play a role. The bubble nodes are not typical normalized nodes on an element but that of
a “floating” nature. The weight of the bubble nodes could be adjusted by the scalar

parameter . The solution of the pressure constraint parameter, ¢, obtained at the

bubble nodes are generally not continuous with the solution obtained at other nodes. The

solution floats and depends on the value of . The adjustment of the B parameter

through the domain could be considered as a P-adaptation where the mesh stays the same
and the order of the interpolation function changes (See Lohner)[15]. The present work
does not consider the solutions of pressure obtained for bubble nodes but bubbles are

used as a device to improve continuity constraint.

The global matrices are obtained by assembling the elemental matrices. Assembly

operator A creates the global matrices corresponding to the domain Q by performing a

topological assembly. For example the global mass matrix is given by
M=PAeM" (2.22)

The global mass matrix corresponding to two spatial dimension space is defined by

_ [M Oil
M= (2.23)
0 M

And similarly for other matrices.

The matrix for of the weak form in equations (2.4) could now be written as

U,+C@)lU+DP=-KU +MF (2.24)
=0

|

U
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The Cartesian 2-dimentional form of the above matrix form can be written as

o R R W A I F N M

:
[B, B, [”l =0 With boundary conditions (2.25)

U,

When solving equations (2.25) numerically, a well-known technical difficulty is
encountered. The problem arises form the fact that no explicit mathematical expression
of the time evolution of the pressure is possible. This leads to additional, and often
artificial, boundary conditions that are either explicitly or implicitly imposed on pressure.
Let us examine this fact further by taking the divergence of the momentum equation; this

leads to the pressure-Poisson equation
Vip=-V-(u-Vu) (2.26)

The natural boundary condition for solving the above, obtained from the momentum

equation, is

dp
L (VW) 227)

The above is an elliptic Poisson equation with Neumann boundary condition. This
involves evaluating the viscous term at the boundary. A consistent method of solving the
pressure Poisson equation in a given discretization remains a difficult problem. Methods,
such as direct solution of above matrix equation, make an implicit, incorrect boundary
condition on pressure. It is clear from above that Dirichlet velocity boundary condition
alone is not sufficient to correctly enforce the correct Neumann type boundary condition
on pressure. The resulting error leads to a numerical boundary layer near the wall

boundaries.

20
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Pressure Emor Distribution Re = 1 Tend= 1.3255 h= 0.041667 psal type =4

mesh = 12x12 00

o =0.0241

Figure 04
The error in pressure solution computed using an exact solution (see section 5.2) to
Navier-Stokes equations

The solution process of the above two systems of equations, via single (see equation
3.39) matrix representation is know to be slow. There are various schemes proposed in
the literature ranging from a direct solve of the global matrix equation to
Uzawa[5][12][16][37] type iterative solvers. All of the reported iterative algorithms, so
far, are know to be slow in convergence. This fact, along with the large size of the global
matrix, makes the solution process computationally expensive. The slow convergence of
the pressure elliptic problem is identified to be the main cause behind iterative solver
needing more work. Decoupling and solving the pressure elliptic equation separately

would facilitate a computationally reduced method.

The Splitting type methods are currently thought to be the best candidate to solve both

issues of boundary condition and slow convergence/high expenses.
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3. Fractional Splitting Method

3.1 Theoretical framework of Splitting Methods

The basic principle of Splitting methods is to compute the velocity and pressure fields in
separate steps. The velocity and pressure computations are linked via an intermediate
velocity computed by solving the momentum equations. This intermediate velocity
solution is then used to compute a constraint scalar. In projection schemes the
intermediate velocity is then projected to a solenoidal (divergence free) vector field via
the computed pressure-like constraint scalar (see Temam [37]). The theoretical basis of
the splitting/projection, we shall call them Fractional Splitting Methods, is the theorem of
orthogonal decomposition due to Ladyzhenskaya (1969), which is based on Hodge-
Helmholtz decomposition principle, which states smooth vector fields can be

decomposed into rotational and solenoidal components.

The theorem states that any vector field #'in Qadmits a unique orthogonal

decomposition

u =u+Ve 3.1

where uis a solenoidal vector field with zero normal component on the boundary, i.e.,
V-u=0 and n-u=0 on 02 and ¢is a scalar function (call it constraint scalar).

Neither u"nor ¢ is unique (See Chorin—the text book)[11].

The vectors u and V¢ are orthogonal in function space:

,V9)= [u-Vodx =-[(V-ulpaxr =0. (3.2)
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The general approach to Fractional Splitting schemes is to use the following

approximation to the momentum equation.

aait+(u-\7)u+Vq=VVVu* (3.4)

where Vg is the pressure gradient approximation. In some Fractional Splitting methods it

can be zero (e.g. see Chorin method below). In others, it is a simple or combination of

lagging constraint scalar ¢. We shall call g the Pressure Parameter.

The u solution is advanced for some time interval ¢, <t <t,, and then projected to a

solenoidal vector field u. This is done via the Helmholtz-Hodge decomposition (3.1). In

order to use this equation for the purpose of projection, one still needs the scalar ¢. By

taking the divergence of (3.1) and continuity (2.2) we obtain,

Vg=V-u (3.5)

The solution of the above elliptic constraint equation will allow the projection of the
solution to the approximate momentum equation (3.4) i.e.,u to a solenoidal vector field

of u.

The correct pressure, at any time step, can be obtained by substituting #" in (3.1) to the

approximate momentum equation (3.4).

i(y;j@ﬁu-V)u+Vq=VVV(”+V¢) o
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After a simple manipulation, we obtain

Vp=V(g+4)+VV(Vy) (3.7)
or
p=q+@ +W(V§) up to aconstant. (3.8)

In the present work, we shall keep a separate label g for the pressure update term instead
of more common p. We shall do so without any loss of generality. From the above
relation (3.8), it is clear, that the total information about pressure is contained in both ¢
and in u via V¢. Now a general formula for pressure parameter update that are used in

splitting/projection methods can be presented as

g =q"+ Ll(¢"“) and updating formula
(3.9)

*

g =Llg"™.q")

Where L, and L, are general functions to be proposed for updating the pressure like

parameter each time iteration. We shall investigate four methods of updating the pressure

like parameter that are commonly reported in the literature.

The present work considers the explicit integration of the advection term, (u-V)u. We
also choose the projected vector field, u to compute the advection terms. In light of the
success of non-projected methods we recognize that the use of u”is also justified in using

to compute the advection term. In approximate pressure methods, " has the advantage of

not having the numerical boundary layer where as u satisfies continuity equation better.
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The existing methods and the method to be proposed in Section 3.5.2 (Mixed Mass

Method) could now be analysed using the notation of pressure parameter g and pressure

constraint parameter ¢.
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3.2 Chorin’s Method

The following scheme, originally proposed by Chorin in 1968[10] marks the beginning of
the splitting/projection type methods. The method has been implemented repeatedly in
Finite Difference Method, Finite Volume Method, Finite Element Method and Spectral

Methods. The fact that the residual of the pressure constraint scalar ¢ (Note that in this

case the pressure parameter is zero) does not vanish as solution approaches a steady state

was in the past considered to be a negative aspect of the method.

We shall use a symbolic representation of the algorithm using a first order time

integration for clarity without loss of generality.

3.2.1 General Algorithm of Chorin’s method

(a) Adjective/Diffusive prediction: u" —>u’

-V = (D = (3.10)

The superscript *outside the bracket for the advection term means that advection
term is evaluated appropriately with an integration scheme such as the one described

in Section 2.2.

Note that there is no qupdate as q is not used in the momentum equation.
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(b) Pressure Constraint Scalar

Solving the system

V _un+l =0

u n+l

—u* n
—At———‘+v¢’A-:l =0

(3.11)

o
here — =
v At Do

Above two equations lead to solving:

V2¢n+1 - V'u*

=— 3.12
= (3.12)

(c) Velocity correction

w™ = u’ - AV (3.13)

The Chorin Method is a pressure free method where the pressure-like parameter does not
appear in the momentum equation. There are several advantages to this type of method.
We make the observation that the numerical boundary layer (the error in the solution near
the walls) does not accumulate in the pressure like parameter in this type of method. In

that respect, the method is similar to Kim and Moin method described below. Previous

work refers to the pressure constraint parameter @ ,, as pressure. It is clear from equation

(3.8) that it is not the case and the non-convergence of the pressure constraint parameter
is what is reported in the literature [11]{15][37]. Present author speculates that non —

uniqueness of ¢, as a possible cause of the oscillations. By inserting a pressure
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parameter, ginto the momentum equation and computing a correction term forg,, , the

oscillations in the residual are removed.
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3.3 Chorin-Temam Method

The issue of the non-convergent pressure of the original Chorin method was solved by
introducing a pressure parameter into the momentum equation. Consequently, the
approximate pressure parameter computation is now replaced by the computation of the

pressure parameter difference, dg, for the lagging parameter to obtain the new update.

This is sometimes referred to as an incremental pressure method.

3.3.1 General Algorithm of Chorin-Temam Method

(a) Advection/Diffusive prediction u" — u’ :

[-Al_t_-wv} =+ (- V)™ Vg = VoW (3.14)

(b) Pressure Constraint Scalar

By solving the system

V. un+l =0
Wyt . (3.15)
+V ntl __¥n+l — 0
gl — g
Where qn+1 _ q*,n+1 — X;—l

Type I q update equation.

*n+2 _ *ntl n+l
g =q9"" + ¢y
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Type Il q update equation.

ntl __ *atl n+l
9" =q" 4y

a2 _

g™ =2q

nl

q’l
(3.16)
Type IIl g update equation.

q*,n+2 — q*,n+l +¢,Z':I —VV . u*

Type IV q update equation.

*

qn+1 =q*,n+1 +¢’:;1 —-W-u

q*,n+2 = 2qn+l __qn
Note: From equation (3.1) and continuity, equation (2.2), that V-u" =V -(u+V @)= V¢

Comment 02: Collapsing (summing) the momentum equation (3.14) and pressure
projection equation (3.15) motivates the W -u" term in type III and IV pressure updates.
In other words the rotational term is required for the system to be consistent. We shall
discuss this point further in the weak form formulation below. The discretization of the

time derivative of the constraint scalar ¢, is considered in most recent work of

Guermond et. al. in November 2005 [21].

The above two equations lead to solving:

V-u'
V2 n+l =
¢,At At

(3.17)

The weak form derivation of equation (3.17) has two distinct alternate forms, Classical

and Approximate Pressure. This will be discussed in section 3.2.2.
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(d) Velocity correction

:
u™ =u" - AV gy

This method forms the basis for modern Fractional Splitting type methods. Based on
how pressure is computed in the weak form, the above general algorithm splits into
approximate and classical pressure computation methods. The four pressure update
methods further generalize the method. The original Chorin-Temam method is an
approximate pressure computation with type I pressure update. The rotational pressure

update methods, type III and IV are more recent development [7][22][23][24].
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3.3.2 Weak form of Splitting Algorithms

The weak form for the Chorin-Temam equation is studied below. The implementation of
the weak form can be conducted in two distinct ways, namely, the classical splitting
method and the approximate pressure method. The difference between the two methods

stems from the different implementations of the pressure-Poisson equation.

(a) Adjective/Diffusive prediction: u" —u’

(Du* ,v)+B(u" -Vu",v)—(q",V-v)= (VVVu*,v) u 'aa =u, VvelX

At
(3.18)
Where D and B are time integration described in Section 2.2
(b) Pressure Constraint Scalar: solve for ¢ using the
Hodge-Helmholtz decomposition and continuity equation.
(V-u",q) =0 ul,=u, Vge M (3.19)
un+1 _ u*
(—At————,v)+(¢,N,V‘v)=O ul, =u, WweX (3.20)

The Classical Splitting methods solve (3.19) and (3.20).

The Approximate Pressure methods will solve a weak form equivalent to (3.17)

(V¢,'Z‘,V¢)=—%(V-u*,¢) W, =u,Voe M 3.21)

where &, is the first constant of the integration scheme. In the present study it is BDF2.
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Four update schemes for the pressure are considered in this work.

Type 1

(¢, 0)= g + 92", 0) (3.22)
Type II

(¢ 0)=(g"" +¢2.0) (3.23)
And

q*,n+2 = 2qn+l _qn

Type 111
(q*,n+2’¢)= (q*,n+1 +g —VV-u*,¢) (3.24)
Type IV
(qn+l’ ¢) — (q*,n+1 + ¢,r;1 Y.v4 'u*,(O) (3.25)
And

hnt2 2qn+l ~q"
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3.3.3 On rotational pressure update

The motivation behind the type III and IV pressure update formula could be seen by first,

testing the momentum equation(s) by a scalar gradient

(DAL;* ’W’J +Blu" - Vu" Vo)+ (Vg™ V)= (WV . u" ~WxVxu",Vp)

(3.26)
(V951 v0)=21(".v0) (3.27)
Note (VxVxu',Vg)=0 (3.28)

Simple collapse (by summing the equations) of equations (3.26) and (3.27) and

separating the pressure parameter terms, we obtain
(Vg"?,ve)= (Vg™ + Vo= =V 4",V ) (3.29)

The above equation is in H'norm. The equality holds for I* norm i.e., projecting onto @

instead of V¢
a2, 0)=lg" + 05" -7 -u",0) (3.30)

In the projection step the pressure constraint scalar, Q’;l is supposed to live in H'space

while satisfying Neumann boundary conditions but when computing the update for the
pressure parameter, g"" both are in I*space. The discritization of both are also to be

done with two different discrete spaces such that they comply with LBB criteria for

stability.
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The matrix version of the above involves the “pressure mass matrix” based on the shape

functions of the elements used in pressure computations.
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3.4 Kim and Moin Scheme

Kim and Moin recognized the difficulties associated with imposing the correct pressure

boundary condition and dealing with the so-called discretization error. Their solution

was to use the gradient of the constraint scalar V¢[F as the boundary value when solving

the Helmholtz equation for the unprojected initial velocity u°. The lagging time

constraint scalar was used for the computation of the gradient. This enabled the

cancellation of the errors at the walls from projected velocity u as (u* - V(zﬁlr =0

We shall present this method as a sub topic of the Chorin-Temam method based on the
work by Guremond, Minev and Shen [22]. The above authors were able to show that the
method originally proposed by Kim and Moin is in fact equivalent to the Chorin-Temam

method with a rotational form of the pressure update, types III or IV.

The method has been called pressure-free and in this respect, resembles the original
Chorin method. Kim and Moin recognised the advantages of the pressure-free method as
it avoids accumulating error in the pressure term. It has been shown that the above

boundary condition is a sufficient condition for the second order accuracy.

The weak form of the algorithm of Kim and Moin Scheme could be presented as below.

3
(flu* + z S )—szﬁ”” = g(r"“ ) with boundary condition u*‘r = % Vgt
i=2 1 r

1
At

flt_(unﬂ _u*)+V¢n+l =0

V‘Mn+1=0, un+1_nl =0

0 if r=0
P = 0" if r=1 where ris the order of the integration scheme used
20" - if r=2
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3.5 Matrix forms of Fractional Splitting Methods

The matrix representation of the Chorin-Temam method is presented below. Without the
loss of generality, we present the 2-dimentional cases. Three alternative methods of
classical splitting methods (that solves the matrix version of equations (3.19) and (3.20))
and one approximate pressure method (solves the matrix version equation (3.21)) is

presented.

3.5.1 Solution Algorithm in Matrix form

(a) Adjective/Diffusive prediction: U" —U"

[hiﬁ)zf _ ~%(§ZU" L EUT)+ DO +

At
(Bl + pelm =+ gl )+ M

(3.31)
In 2D we could write above equations as
51 M n-1 n-2
K+EM 0 {”:}=_ A—t(flbh +Eur?) 0 _{DIT 0 }{q*,m]
* T * e+l
0 K+2L M [L%e 0 %(&1"‘;_1 +§1u;_2) 0 D
JBCW it + B W + B 0 .
0 ACW s +5,CU hy + BiCU s
s M 0 f1n+1
O M 2n+1
(3.32)
And the continuity equation is given by
Uy
[D,,D, =0 (3.33)
U,
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The Dirichlet boundary conditions are imposed by removing corresponding rows and
columns from the vectors and matrices and building a RHS vector that is the matrix
boundary value vector multiplication. Note also that if the original Chorin method were

considered, the pressure parameter term in the momentum equation would not exist.
u, - |Dy 0
In 2D case U = and D =

u, 0 D,

The resulting Helmholtz type matrix is symmetric and the Conjugate Gradient (CG)

method could be used to solve it
(b) Pressure Constraint Scalar:
1-Classical methods

The Classical methods solve the matrix form of continuity (3.19) and pressure scalar

equations (3.20). The matrix form is obtained as below

M ooTu] M ol r i
‘|- ] == i o (339
0 Mju; 0 Mju,| 6|0 D, At

Moving the Mass matrix to RHS in the above we get
w | Au|_MfMT 0 DI 0 fey
] ) Ta& Lo M Lo prjen

u
By applying continuity, i.e., [DI,DZ{ 1}=0 to the LHS of above we get

2
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. .\ At _
~(Du; +D,u )=z—(D1M“D1T +D,M DI g

1

Call
E=(p,M™DF +D,M'D!)

Egi' = -% (Du +Du") where E=(DM™DF +D,M'DI) (3.35)

Solving the above gives the pressure constraint scalar, ¢,'j;'.

See section 3.5.2 for the alternate ways of handling the difficulties involved in dealing

with the inverse mass matrix, M ™.
2-Approximate pressure method

The Approximate pressure method directly discretizes the equation (3.21). The

corresponding matrix form can be written as

K¢\ = —%(Dlui‘ +Dyu;) (3.36)

Update of pressure like parameter.

g =q"+ 4y
Type I
= gm ang
Type Il
g™ =2g"™ — "
Type IV
Mg =M, (q*"‘+1 + Q’Zl)—v(D,u: + Dzu;) where M, pressure-mass matrix derived

from elements used for pressure.
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Type 111

*n+l _ _ n+l

q q

Type IV

*a+2

— 2qn+l ___qn

c¢) Velocity Projection step

Once ¢ is computed, the velocity field u” can be projected into a solenoidal field to

obtain u. From equation (3.34) we have the matrix form

u™t! B u; Y M7 0 |Df o ,'Zl
uyt u, | &1 0 M7'| 0o D ,'Z,“l

Note that the above expression does not force to invert the mass matrix as it can be

written as a explicit expression of the mass matrix. This fact allows solving the equation

to obtain the projected velocity as opposed to computing it via the inverse mass

Jormulation shown above. This is in contrast to E matrix, which has inverse mass matrix

implicitly in its definition thus needing the inverse mass matrix.
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3.5.2 Variation of Matrix implementations of Classical Methods

There are a few different possibilities when solving the above equation (3.34). We shall

consider three methods based on the degree of approximation made to the mass matrix.

1. Full Classical Method

The pressure constraint parameter is solved using
E=(DM™DF +D,M™D})

Where M "'is the inverse of the full mass matrix. There is no explicit expression
with mass, therefore mass matrix need to be inverted. The inverse of the banded
mass matrix obtained in TH elements result in a fully dense matrix as the inverse.
Due to computational cost involved in inverting and storing the mass matrix and
E , this method remains an academic one for Taylor-Hood elements. In spectral
method, where orthogonal shape functions are sometimes used, the full classical

method remains viable due to mass matrix being a diagonal matrix.

2. Lumped Mass Method
This method facilitates an easy inversion of the mass matrix by substituting a
lumped mass matrix, instead of the full mass matrix. The diagonal nature of the
lumped mass matrix affords an easy inversion of it.
E=(pM;' DT +D,M;'D!) (3.37)
Where M;' is the inverse of the lumped mass matrix.

The projected velocity is obtained by solving
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M, 0 u1"+1 M, 0 u{ _ M| Df OT Ai (3.38)
0 M, “;H‘ 0 M, |u, 51 0 D, At

The present study found mixing of the lumped and full mass matrices strategically
lead to an unstable scheme. Therefore one could not use M;' for the computation

of E matrix and then proceed to solve (3.38) with the full mass matrix.
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3. The mixed matrix method (M3).

Here, a novel way of mixing the full and lump matrices to obtain a stable, robust

scheme is developed. The method uses lumped mass matrix to compute the
pressure constraint scalar ¢ and the projected velocity field «""' just the same

way as above lump mass method using (3.37) and (3.38). But instead of using

¢ computed to obtain the pressure update parameter g, one uses (3.34)

DI 0 |¢ _iM 0l u™ —u/
0 DIj¢w'| A0 M|u —u,

to approximate the pressure gradient terms in the momentum equation. In other

words, the two velocity fields of u and u" are used to estimate D ¢ . This, in tern,
is used directly to approximate Dg which is used in the momentum equation.
Consequently, g is never explicitly computed and the computed ¢, is discarded

(only used as the initial guess in the CG solver for the proceeding step). The

imposition of the boundary conditions u

n+l *
[ul L j|

n+l *

Uy, —U,

=0 yields

r

0Q

43



3.6 On Equivalence to the Solving the Global Matrix

When studying the splitting methods, one of the interesting facts to note is the possibility
of arriving at identical algorithms to Algebraic techniques on matrices. The existence of
these algebraic equivalences shed a light in our understanding of so called splitting error.
In the literature often the splitting error is attributed to the decoupling of velocity and
pressure in the solution process. From the analysis below we could speculate that much
of the documented errors, such as the numerical boundary layer, could be attributed to

incorrect or incomplete boundary conditions and not in the split itself.

The matrix equations (3.32) and (3.33) representing Navier-Stokes equations yield a

global matrix of

XM 0 D! |- .
Re At u, fi
K M .
KM ol ol 3.39
TVERCH B f2 (3.39)
D, D, 0 |LP 0

where f,and f,are the explicit terms including the advection term.

It is interesting to note that, a method strongly resembling Fractional Splitting Method

could be obtained purely by considering inexact LU factorization.

First, the general matrix format of above is,

n+l

I? M T n+l MU’I n+l
—+= D [U }: o F (3.40)
b 0 0
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The inexact LU factorization method is based on the approximation

KM 5 [U] k.M 0 [i AtM_“BT}
0 I

The four steps of the solution process by inexact LU containing the approximate solution

arc

(5:%)&%1 =%U”+F”“ (3.41)
DM D o™ = iﬁ o™ (3.42)
U™ =0g™ - AtM DT ™! (3.43)
P = (4.44)

The incremental pressure scheme could be obtained by breaking down

£+M_ DT Ut B MUn+Fn+1_5Tpn
P -l At

to four steps below

£+£ {7 =M_Un+Fn+l_D_Tpn (4.45)
Re At At
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DM™'D'®™ = Aib" U™ (4.46)
t

U™ =™ — A ' DT o™ 4.47)
pn+1 - CI)"H + pn (448)

Note that the above equations do not explicitly employ any artificial boundary conditions.
Dirichlet boundary conditions could be imposed on (3.39) matrix equation. The above
equations (3.41) to (3.44) represent the Chorin’s original splitting method (see section
3.2.1) with Classical pressure computations and the equations (4.45) to (4.48) the Chorin-
Temam (see section 3.3.1) method (albeit without the rotational pressure update term
proposed by Guermond). The present study finds that the numerical boundary layer in
pressure solution is observed when equation (3.39) is, in its entirety, solved via a direct
solver as well as well as when solved using Chorin-Temam method. The matrix
equivalence of the direct solution to (3.39) to Chorin-Temam method strongly suggest
that the source of the numerical boundary layer is not the split itself but a more general

inadequacy in specification of the boundary conditions to the Navier-Stokes equations.
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4. Consistent Splitting Methods

The Consistent Splitting methods differ from Fractional Splitting methods in one
significant aspect where the former does not project the velocity field, computed via
solving the momentum equation, to a solenoidal vector field. The continuity is achieved
via the boundary conditions on the constraint scalar in case of the Gauge methods and via
the rotational term in Guermond’s Consistent Pressure method. Both methods are
reported to have second order convergence in pressure. These methods are often
implemented in higher order methods such as Spectral methods. Gauge method has been

implemented in Finite Difference Method [7].

4.1 The Gauge Method

The Gauge field method introduced by E and Liu [14] demonstrates that a second order
convergence of pressure could be attained via the gauge term that corrects the pressure
(or the gradient of the pressure) by taking into consideration both normal and tangent

boundary conditions. E and Liu were first to identify the gauge term,¢. Previous

methods that are studied in present work considered ¢ as being either the pressure at

time step n, p" or as a pressure correction term dp”. The relationship between the

gauge term and the correct pressure, equation (3.7) or (3.8) was obtained by the authors.
E and Liu [14] recognized that the gauge variable affords more general boundary
conditions than the pressure. They considered the Gauge method to be classified as a
consistent method not as a Fractional Splitting method of solving Navier-Stokes
equations. Guremond, Minev and Shen [22] showed that the Gauge method is
mathematically equivalent to the Consistent Pressure Method (CPM) proposed by
themselves which is described in section 4.2. The intermediate velocity computed ' is
called an auxiliary vector field a. There are two possible sets of unambiguous boundary

conditions.
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4.1)

d9
— 0 a-nl. =0 a7, =——
an 0 |aQ Ian afag
or
« ¢ .
¢lag=0 u 'n'aa =-é;asz u 'Tlan =0 4.2)

where 7 is the unit tangent vector at the boundary.

The general algorithm for the first set of boundary values is given below.

(a) solving the momentum equation for a™"

ntl n n—1 .
fla fZAat +§3a '"VVVdn+l +(u.vu).n+l — fn+1 (43)

with boundary conditions

. . a¢n a¢n—1
" n |r=o=0’ a™-z |r=o=_2 orT +—E)~;— “4.4)

(b) pressure constraint scalar
V2¢n+l = V . an+l

with natural boundary condition

a ¢n+l
=0
on

=0



(c) velocity update
un+1 —_ an+l _V¢n+l (45)

Similarly, the second set of boundary conditions also yields a consistent Gauge method as
well. We have derived the above algorithm as it is used in the proof of equivalence to the
Consistent Pressure method introduced in the next section by Guermons, Minev and
Shen[22].
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4.2 Guermond’s Consistent Pressure Method

Numerous works that either solve the pressure convergence problem or circumvent it has
been published. Guermond and Shen [24] proposed a “truly consistent “ splitting scheme.
This scheme is based on pressure Poisson equation (approximate pressure) but the
velocity is not projected to a solenoidal field. Similar to traditional splitting methods, for
each time step, a Helmholtz type equation is solved but the right hand side of the
equation is formulated such that it carries the rotational information of the flow. A
corrective term, via the divergence of the computed velocity, is introduced to the pressure
update (Type IV). The authors demonstrate the second order convergence of pressure on
a Dirichlet no-slip flow and graphically demonstrate the reduction of the numerical
boundary layer. An artificial flow solution that employed a forcing function on NS

equation is employed in the study.

In deriving the technique, the key idea that Guermond et.al. use is to test the momentum

equation against the gradients.

Take L*inner product of the momentum equation with respect to V¢

[Va-Vodx= [(f —u-Vu+VWWu)-Vaux (4.6)

Note (u,,Vp)=—(V-u,,¢)=0 4.7

The momentum equation is given by

[%L;_*’VgoJ‘*B(u"-Vu”,V¢)+(Vq*’"“aV¢)=(VVZM*,V(”) U=, 43

By imposing (u, ,Vo)=—(V. u, @) =0 and by the identity
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Viu=VV-u-VxVxu (4.9

note VxVxu=VxVxu".
(" - Vu", Vo)+ (Vg™ Vo) = (- WxVxVu™, V) (4.10)

Subtracting the above two (4.8) from (4.10) gives

(B o) (vl =g\ 0) v 7o)

Re writing the above with pressure constraint parameter ¢

(v, ve)= (—DAM V¢] (4.11)
Where
=g —g + W (4.12)

Re arranging, we obtain naturally, an update formula for the pressure like parameter.

ntl

g =q +¢ Wi

And final update that Guermond proposes is

n+l

q =29""-q"
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Note that continuity, V-u =0, is assumed a priori in the derivations and not imposed
during the solution process as in projection methods. The linchpin of this method is the
fact that this kind of an indirect imposition of divergence free condition on vector field

actually lead to accurate solutions in continuity, pressure and vorticity.

We have called the solution of the momentum equation #" to keep in common with our
mathematical symbolism. Since Consistent Splitting methods do not project the velocity

field onto a solenoidal field, the superscript * indicates the newly computed velocity field

and u’ where i <n are velocity solution fields of previous time steps.

4.2.1 Weak Form Description of Consistent Pressure Method (CPM)

The above developments could now be summarised in the general algorithm description
below.

(a) Adjective/Diffusive prediction: u" —u’

R R 0 S A P Qe

(b) Pressure Constraint Scalar:

(VQ’ZI,qu):—Al—t(Du*,(o) Wl =u, VeeM (4.14)

aQ

(c) Type IV pressure update
(™. 0)=(q" +o5' -W ', 0)

Note: no velocity projection is done.
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And

* ntl _ n

q =2q

4.2.2 Matrix Form of Consistent Pressure Method

The weak form momentum equation, presented by equation (4.13), could be written in

matrix form as

M n-] -
K+_%M O [MI*JZ— E(glul +u) 0 +[D1T 0 ][q}
: M - e |l o+
0 K+—§1—t-M u, 0 E(&”gl"'éuz 2) 0 DIl|gq
oo S bl
0 IBIC(En )"4; + ,BIC(ﬁn_l )u;"l + ﬂlc(ﬁn—z )u;_z

. [M 0 ]{flml:l
O M 2n+1

With boundary conditions

The the matrix equivalent of equation (4.14), the pressure Laplace equation, could be

solved to obtain the pressure constraint scalar by solving

K,p, = —i (DIT (éflul* +&Eu ™+ Eu? )+ D] (.flu; +EWT + Eul? )) (4.15)

The new pressure update formula could be found by first, solving for g™
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M,q" =M,lg" +¢2")- (D +D,u;)

and then the pressure parameter is updated by

q* — 2qn+l __qn

(4.16)
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5 The Splitting Methods Classified

Based on the theoretical considerations presented in the previous chapters, we shall
present the final classification of the Splitting methods and select the candidates for the
numerical studies. The well-known Kim and Moin method and Gauge method are
omitted in the numerical studies in favour of newer Chorin-Temam method with
rotational pressure update and Guremond’s Consistent Pressure methods respectively.
This choice is based on the recent publication of the mathematical equivalence of the
older methods to the newer methods. However it is noted that proof of mathematical
equivalence many not be the same as similar behaviour due to numerical and computer

implementation differences. The methods selected for the numerical studies are:

Classical method with full E
Classical method with lump mass E
Classical mixed mass method (M3)

Approximate pressure, Kp, with rotational (type III) pressure update.

A

Guremond’s Consistent Pressure method

Of the above methods, the first four falls under Fractional Splitting Method and the
last method, the Consistent Pressure Method, falls under the Consistent Splitting
Method. Once the equivalences are taken into consideration, the splitting methods

that we have considered can be classified as below.
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Splitting Methods

Consistent
Splitting Method

Gueremond’s
method and Gauge
method

Fractional
Splitting
Methods

Classical Approximate

Method Pressure Method

E full E M3 Chorin- Kp+rotat
lump Temam ional P
update
Figure 05

A chart of Splitting Methods that are considered in this study after the equivalences are
taken into account.
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6. Numerical Simulations

The numerical study is conducted on the schemes selected in Chapter 5 with the emphasis
on revealing effects of Type III spatial error introduced in cheaper 1. The three flow
fields selected for the study are the Taylor-Green flow, a forced vortical flow with
Dirichlet wall boundary condition and the Lid driven Cavity flow. The flows above are
selected to isolate and reveal the effects of main phenomena observed such as numerical
boundary layer and errors due to vortices. Taylor-Green vortex flow consists of decaying
vortices and does not contain any walls in its fully periodic domain. This flow isolates the
effects of vorticity from other effects since there are no boundary errors or errors related

to grid Reynolds number. In fact the solution is found to be stable at Reynolds number of
tens of millions when simulated with 12 x 12 mesh on a }- 7, z[> domain. The second

flow induced by a bulk forcing term to NS equations in a square wall bounded domain.
While the solution to this flow is independent of the Reynolds number, the forcing terms
are not. This flow is used to highlight the effects related to the numerical boundary layer
on pressure. The lid driven cavity flow is a more general flow with vortical region as

well as regions of high shear and boundary layers.

The time evolution of the normalized errors of velocity and pressure is presented in their

natural norm. The normalized errors are obtained by:

The errors in H, norm in velocity is normalized by

N

errOr(H )=[(u_uexr;¢:t)ll<<(u_uemct):| (51)
U 12

exact exact

Similarly, the L, norm for the pressure is normalized by
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N | —

error(L,) = {(q = Pega) M,(g— pemc,)} 5.2)
PexacM pPerac

The error in continuity equation is computed by

error = max|Du + D,v (5.3)

The spatial distribution of the continuity is computed by ploting

error =D+ D,v (5.4

The spatial pressure error distribution is computed by

error(Loo)z(q—pexact) (55)

The simulations are made with time steps substantially lower than maximum stable time

step ensuring that the errors observed are not due to the stability issues of the time

integration scheme. The iterative solver used to solve both the velocity and pressure is

the Conjugate Gradient (CG) solver preconditioned with the diagonal of the matrix

solved. The extrapolated value of ,2x" — x"™ | is used as the initial value of the solution.

The present study finds that the second order pressure update methods (Type II and IV)

lead to oscillating errors in pressure (Appendix A). This also reduced the robustness of

the solvers some flows. The numerical investigation that follows use type I for classical

pressure update methods and type III for the Kp +rotational method.
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6.1 Taylor-Green Flow

Taylor-Green flow is an exact solution to Navier-Stokes equations. The domain of the
flow is a Tours and in 2D, T2 =S§'xS". The domain considered is |- 7, 7z[*, square

domain. The numerical domain is constructed by making the square domain and by

making opposites edges periodic and the corners identical in the element connectivity.

The Taylor-Hood vortices are simulated by using the following initial solution

ulx, y,t)=— COS(x)sin(y)exp(_ %)

v(x, y,1)= Sin(x)cos(y)exp(_ % )

ple y,t)= _% (cos(2x)+cos(2y)) exp(— %)

Figure 06 Figure 07
The velocity vector field of Taylor-Green flow. The pressure contour field of the Taylor-Green flow

The Taylor-Green flow is self-similar and decays with time. Figures 06 and 07

graphically represent the solution.
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Note that this particular exact solution to the Navier-Stokes equations has an advantage
of not requiring a forcing function to be inserted into the solver thus eliminating the
possibility of tampering of the solution during the simulation. The built in orthogonality
(VXVXu,Vq)= 0 of the Taylor-Green flow, and the absence of wall boundary
conditions, makes it very special, particularly the former from the point of view of

splitting methods, thus may not capture all issues of the solution algorithms.
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6.1.1 Time Evolution of Taylor-Green Vortex Flow

The time evolution of the Taylor-Green flow is investigated by investigation the errors
defined by equations (5.1) to (5.5) for Reynolds numbers 5, 100 and 1000. The time step

size is selected to be well inside the CFL/ stability criteria.

Velocity Errors

Nonvalized H, Eivor of uvelodity Re=5 mesh 14x14 hbrvmlizadH‘ Ervor of uvelocity Re=100 mesh 14x14

O M:hikte
£ lurp Masseuibdte
¢ M

| Mass.
N ",&’Mw M, lurp Mass, Kprot, Guemond
Guemond

*

ump Mass Kp rotsGuermond

H, error (normalized with exact solution)
3,
o

H, error (normalized with exact solution)
3

\ Iump Mass+oubde
a
16° . . ‘ : . " . 10° . L " . s 2 .
0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 08 07 08
time [ch=0.0007344} time o= 00097344
Figure 08 Figure 09
Re=5. Energy norm of normalized u error vs. time Re=100. Energy norm of normalized u error vs

time

Normalized H, Error of uvelocity Fie=1000mesh 14x14

H, error (normalized with exact solutian)

-2| £
10 & .. Moiubte
K Y kp Massstubde
§o LY
I & lumpMass
o  Kpuctatorad
" Guemmond
*

01 02 03 04 05 06 07 08
fime [ct=0.0097344]

Figure 10
Re=1000. Energy norm of normalized u error vs. time.
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From figures 08 to 10, it is observed that the error in velocity increased with increasing

Reynolds number. For the Taylor-Green vortex flow, the methods with bubble elements

show lower errors.

Pressure errors

Normalized L, Error of pressure Re=5 mesh 14x14
10 T T T T U T T

=)

L, error (normalized with exact solution)

10° o
luvp Mass skuttie o
a . Mdubdle
o ‘ lump Massstxede
LY}
a +  lurpMess
a Kpsotations)
o " Guamord
%
167! ' : ' : L : '
o 01 02 03 04 05 06 07 08

time [ck =0.0007344]

Figure 11

Re=5. The normalized L, error of pressure vs.

time.

Normalized L, Enor of pressure Re=1000 mesh 14x14
10 T v v T T T T
0 MBibudble
i luvp Massstxbtie
L)

& furpMass

& Kpwotationd

®_ Guemrond

L, eror (normalized with exact solution)

Y e ® o

1 O'G 1 1 1 1 I 1, 1.
0 01 02 03 04 05 08 07 08
time  [dh =0.0097344)

Figure 13

L, esor {normadized with exact solution)

Normalized L., Enor of pressire Re~100 mesh 14x14

10 v T T T T T T
0 MBsbuide
& hrpMess+bubde
Y
v+ lumpMess
A Kpwotaioral
¢ % Guamord
hump Mass, Kp Guemmond
L
10°
10"‘ L i ] ) I L L
0 o1 02 03 04 05 a6 07 08
time [t = 0000734}
Figure 12

Re=100. The normalized L, error of pressure vs
time.

Re=1000. The normalized L, error of pressure vs. time.
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The figures 11 to 13 indicate that the bubble elements increased the accuracy of the
pressure field just as in the case of velocity. M3 method performed better in higher
Reynolds numbers while Kp with rotational pressure update and Guermond’s CPM
method along with lump mass (no bubble) performed better in lower Reynolds numbers.
The oscillations observed in lump mass method (figures 12 and 13) with TH+Pbubble is
removed by adjusting the weight of the bubble nodes, /5, close to unity.

Continuity

The Finite Element Method satisfies the continuity on a global basis. Therefore the
global sum of the error in equation (5.4) is a very small number, in the order of the
machine epsilon. While present study verifies that this is to be so, a difference in the
spatial distribution error is observed for different schemes. For the time evolution of the
error of the continuity we shall pick the biggest variation from zero by computing the

maximum error by equation (5.3). The spatial distribution of the error is considered in

the next section.

. Ervor onconfiruity Re=5 mesh 14414 2 Eror oncontinity Re=100 mesh 4x14
1) T T T T 10 T T T T T T
/
" -4
16* | e, 1 10 %
g W \
A P Guannond 8
¢ Dnr N A o & &
10T e : 6 a1l 107 | iy e et
=
2 %
3w ot a1 Koot
o E3
= =} =
3 o Modudle a
£ 10 Iump Mass+ouoble ‘é 10
¢ 8
i Mess
107}

. L . L L L L . ) . : .
o o1 02 a3 04 05 06 a? 08 0 01 02 03 04 05 06 07 08
time [0t =00097344] fime [di =0.0097344]

Figure 14 Figure 15
Re=5. The maximum error in continuity vs. Re=100. The maximum error in continuity vs.
time. time.
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Envor oncontiruity Re=1000mash 14xt4

;jnmﬂ T Wownkde
-4 ; M
10 % 4 lurpMass
N & Kpirattiondd
. ¥ Guermond
10°F 4
10° fort

max{ 1D, u+D,vi)
S,

Iuvp Mass+ubide:

L L L L i L L
0 0.1 02 03 04 05 06 07 08
time [dk=0.0097344]

Figure 16
Re=1000. The maximum error on continuity vs. time.

Note from the figures 14 to 16 that the methods that used classical pressure computation
methods yield the smallest maximum error on imposing the continuity constraint.
Guermond’s CPM does not project the velocity onto a solenoidal field and therefore not
surprisingly, has the largest error in the continuity. The Kp method is observed o have

the second largest error on continuity for Taylor-Green flow.
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6.1.2 The Spatial Error Distribution

The spatial error distribution is computed for t=0.5. The values obtained by equation

(5.4) for the spatial error distribution for continuity and equation (5.5) for pressure is

presented for Reynolds numbers 1, 10 and 100 below.

Re=1
divJ Distibution e =5 Ternd= 0.5 h=0.2244 posl pe =3
s
S
o
16 -7 ! L \1\\
- PR ~
x10 . | L~ N ~
e e P B I
L7t (’/ RN \‘ N o~
- - ~
T S TS U YO 5
-r 7 I PR sy | 5
PR Lo T Iy T | o
> L/’/x P N r\\\ 2
o 0\
a -y L0 o
? 05 ! A Lo 2
- L s
a PRal | ~ -
ol - N )
1 N
05 Lo
I
5
1

Figure 17
Re=1. M3+bubble continuity spatial error.

divlJ Distribution Re = 1 Tord=0.6 h=0.2244 posl type =2

L Pressure emor

Figure 19
Re=1. lump Mass+bubble continuity spatial error.

Pressure Error Distribution Re =5 Tent=0.5 h= 02244 psol=3

I
PN

VAR S S A S |

Figure 18
Re=1. M3+bubble pressure spatial error.

Pressure Enor Distribuion Re = 1 Tend= 0.5 h= 02244 peol =2

;
/

e e 4
/
’

R AN ——

Figure 20

Re=1. lump Mass+bubble pressure spatial error.
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Figure 21
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1. lump Mass (no bubble) pressure error

1. lump Mass (no bubble) continuity error.
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Figure 23

+rot P pressure spatial error.

Re=

Re=1. Kp+rot P continuity spatial error.
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Re=10. Kp +rot continuity spatial error.
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Re=10. Guermond continuity spatial error.

L_ Pressure error

L_ Pressure error

L_ Pressure emor

Pressure Error Distribution Fle = IOTgﬂ:Q51&02244 psol=2

7
/

’
s
A

’
J

’

i
’

Pl St Al A a4
[ A

Figure 32

Pressure Enor Distibution Re = 10 Tend=0.5 h=0.2244 psol=4

0.03

’
/

0.02

/
’

001

/ ’
’ i
P AN S S A ——

e A e Ay e

Figure 34
Re=10. Kp +rot pressure spatial error.
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Re=10. Guermond pressure spatial error.
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Re=100. M3+bubble continuity spatial error. Re=100. M3+bubble pressure spatial error.
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Re=100. lump Mass+bubble continuity error. Re=100. lump Mass+bubble pressure error
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Re=100. lump mass (no bubble) continuity error. ~ Re=100. lump mass (no bubble) pressure error.
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Re=100. Guermond continuity spatial error. Re=100. Guermond, pressure spatial error.

For the range of the Reynolds numbers considered, the vortex flow results in the largest
errors in pressure at centres of the vortex and at the corners of the vortices with signs of
error positive and negative respectively (figures 22, 24, 26, 28, 30, 28, 34, 36, 38, 40, 42,
44, 46). At Re=100, M3 method with bubbles has pressure errors sign reversed (figure
38). The M3 method without bubbles and all the other methods considered however, do
not experience a sign reversal. The continuity error fields of all methods that use
classical method to update pressure (figures 17, 19, 21, 27, 29, 31, 37, 39, 41) reveal that

the error in continuity is substantially lower than that of approximate pressure methods
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(figures 23, 25, 33, 35, 43, 45). For the approximate pressure methods, the errors in
pressures (figures 24, 26, 34, 36, 44, 46) are reflected in the errors in continuity (figures
23, 25, 33, 35, 44, 45) and are much higher.
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6.2 Forced Flow with Wall Domain

The Taylor-Green flow in the previous section is studied on a fully periodic domain that

is topologically a torus. The effects of the wall boundary conditions are investigated on

square domain ]O,l[2 . The exact solution of
U(x, y,t)= 7 sin(¢)(sin(22y)sin* (70x) - sin(272x) sin® (2y)) (5.6)

p(x, y,t)= sin(t)cos(foc)sin(ﬂy) 6.7

is imposed via a bulk forcing function

2
F=U +U-VU-WU +Vp (5.8)
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Vector plot of field described by equation (5.6). Pressure contour plot of equation (5.7).

Note that velocity and pressure shown in figure 47 and 48 are scaled by sin of time and
thus becomes zero periodically. Furthermore, the solutions do not contain the Reynolds

number.
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6.2.1 Time Evolution of the solution

The time evolution of the Forced flow of type described by equations (5.6) to (5.8) is

investigated by investigation the errors defined by equations (5.1) to (5.5) for Reynolds

numbers 1, 10 and 100. The time step size is selected to be well inside the CFL/stability

criteria.
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Re=1. Time evolution of the velocity error.
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Re=100. Time evolution of the velocity error.

H, erroru

1, Emor of uvelocity Re=10 mesh 14x14

T
sanux] T Vorhite
ppn AN o hmpMasssiubile
il
o8 o M
ar® + fpMass
ot 5K
a‘ A Guarmond
*
N Guenmerd
2 .
10
umsmw”“"
a
&
" ’“
%
s
]
w0 e
§
10" it 1 1 L Iy 1 I 1. 1
0 005 01 015 02 025 03 035 04 046 05
time (k=001
.
Figure 50

Re=10. Time evolution of the velocity error.
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Pressure Errors
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Re=100. Time evolution of the pressure error.



Error in Continuity
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Re=1. Time evolution of continuity error. Re=10. Time evolution of the continuity error.
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Re=100. Time evolution of continuity error.

For the forced flow, for Reynolds number unity, the Guermond’s CPM shows remarkable
accuracy in velocity (figure 49). This is consistent with the original authors finding with

Stokes Flow [24]. As the Reynolds number is increased to 10 and 100, the other methods
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attain higher accuracy (figures 50 and 51). All methods, except for the Guermonds CPM,
showed similar errors for the velocity in this flow. For the pressure, the bubbles resulted
in slightly decreased accuracy (figures 52, 53, 54) for the Reynolds numbers considered.
The Kp method and lump mass method provided the highest accuracy for pressure. As
for the error on continuity, Guermond’s CPM performed poorly compared to the other

methods which has much lower errors of similar values (figures 55, 56, 57).
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6.2.2 On Spatial Distribution of Errors

The spatial error distribution is computed for t=0.5. The values obtained by equation
(5.4) for the spatial error distribution for continuity and equation (5.5) for pressure is

presented for Reynolds numbers 1, 10 and 100 below.
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Re=1. M3+bubble continuity spatial error Re=1. M3+bubble pressure spatial error.
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Re=1. lump Mass+bubble continuity spatial error. Re=1. lump Mass+bubble pressure spatial error.
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Re=1. Guermond continuity spatial error. Re=1. Guermond pressure spatial error.
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Re=10. lump Mass (no bubble) pressure error.
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Re=10. Guermond pressure spatial error.
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Re=100. M3+bubble continuity spatial error Re=100. M3+bubble pressure spatial error.
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Re=100. lump Mass-+bubble continuity error. Re=100. lump Mass+bubble pressure error.
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Re=100. lump Mass (no bubble) continuity error. Re=100. lump Mass (no bubble) pressure error.

81



W Distribution Pe = 100 Terv= 0.5 hw 0006744 ped typo = 4. Pressure Exrer Clskibution A = 100 Terria 0.5 h 0.006714 psol fypa =4

mesh = 14x14

mesh = 14«14

a=001

Figure 84 Figure 85
Re=100. Kp continuity spatial error. Re=100. Kp pressure spatial error.
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Re=100. Guermond continuity spatial error. Re=100. Guermond pressure spatial error.

The error on continuity for the classical methods are found to be highly accurate (figures
58, 60, 62, 68, 70, 72, 78, 80, 82) confirming the previous study of maximum error
revealed. There is a very small difference in the error of the pressure in M3 method as the
Reynolds number is increased (figure 59, 69, 79).

At Reynolds numbers 1 and 10 the lump mass method (TH without bubble) shows a
numerical boundary layer in pressure solution (figure 63, 73). The lump mass method
with bubble-enriched elements however, does not show any increase in the error of

pressure near the boundary (figure 61,71) although the overall L, error distributions of
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them are higher than their no bubble counterparts. As the Reynolds number increased,
the numerical boundary layer on lump mass method diminished and at Reynolds 100
altogether is disappeared (figure 81). The error due to the vortex flow however continues
to grow as the Reynolds number is increased and is visible as a hump centred on the
vortex.

The Kp method shows a numerical boundary layer in pressure as well as a corresponding
error in the continuity field at Reynolds numbers 1 and 10 (figure 64, 65 and 74, 75).
The numerical boundary layer disappears as the Reynolds number is increased to 100 yet
the boundary error at continuity field remains. Unlike the numerical boundary layer near
the walls, the error due to vortex remains in the pressure field and does not reflect in the
continuity.

While Guermond’s CPM shows no sign of the numerical boundary layer in the pressure
field, the error due to the vortex flow grows rapidly with the Reynolds number figure 67,
77, 87). The error due to vortex flow is also reflected in the continuity field and grows
with increasing Reynolds number (figures 76, 86). At Reynolds number of unity, the

error in the continuity does not correspond to the vortex flow.
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6.3 Lid Driven Cavity Flow

The Lid driven Cavity is defined by a domain [0,]]* with the Dirichlet boundary

condition at the top edge as u =1 . The remaining three edges are considered to be

anlram

walls. An analytical solution to this flow is not available. The present study focuses on
the imposition of the continuity on the flow solution. It is known that the robustness of
the flow solver is depended upon how well the continuity equation is satisfied in the flow
field.
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Figure 88 Figure 89
The velocity vector field of the Lid Driven Pressure field of the Lid Driven Cavity Flow at
Cavity flow at Reynolds number 150 Reynolds number 150 computed by M3 method.

Computed by M3 method.

The figure 88 and 89 shows an example vector field and a pressure field solution for the
Lid Driven Cavity (we shall also refer to this flow as Cavity Flow for brevity). Note the
singularities of the pressure solutions at the two edges that the driven lid makes with

stationary walls.
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6.3.1 Time evolution of Continuity error.

The time evolution of the error in continuity equation is conducted for the Lid Driven
Cavity Flow. The maximum error is computed by equation (5.3). The time integration is
performed with time step size well under the maximum allowed by the stability criteria of
the integration scheme. The Reynolds numbers 1,10 and 500 are chosen to highlight the

low Reynolds number effects and vorticity effects.
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Re=1. Maximum error on continuity Re=100. Maximum error on continuity
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Figure 92
Re=500. Maximum error on continuity.
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At Reynolds number of unity the Kp method and the Guermond’s CPM obtains higher
accuracy on the continuity constraint (figure 90) than the classical pressure methods. As
the Reynolds number is increased the classical Pressure methods, M3 followed by lump
mass, provides accurate continuity and the CPM provides the least accurate (figures 91,

92). The Kp method remains accurate through.

6.3.2 On Spatial Error Distribution

The spatial error analysis is performed for time t=9.9774, a sufficient time for the flow to
approach a stationary state and also to allow sufficient iteration of the numerical scheme

to enhance the cumulative spatial errors, namely the numerical boundary layer.
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Pressure parameter (q)
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figure 93 Figure 94
Re-1. M3 Continuity spatial error Re=1. M3 Pressure solution.
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Re=100. lump Guermond Pressure solution.
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As with the previous spatial error analysis of the continuity, the errors remain low for the
classical pressure computation methods (figures 93, 94, 101, 103, 109, 111). At Reynolds
number unity, the approximate pressure methods perform well in continuity as well
(figures 97, 99). At Reynolds number 100, both Kp method and CPM shows what
appears to be a numerical boundary layer on the continuity error field (figures 105, 107).
Both methods also show errors in continuity in the middle corresponding the vortex. At
Reynolds number 500, the errors in continuity of the Kp and CPM coincide with the
vortex flow (figures 113, 115).

The pressure fields (figures 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116)
show the pressure singularities in the lid-wall corners and the onset of a stronger vortex
(the dip in the pressure) as the Reynolds number is increased. The magnitude of the
pressure singularity decreased with increasing Reynolds Number. The magnitude of the

M3 pressure singularity is lower than that of the other methods.
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7 Analysis

7.1 Analysis and Conclusions

At high Reynolds numbers, methods that employ classical pressure computation
techniques are found to be more accurate, or at least as accurate, in velocity and in their
imposition of continuity than methods that employ approximate pressure computation
techniques. The bubble nodes that are applied in computing the classical pressure update
are found to be effective in improving the accuracy of the velocity and continuity. Both
positive and negative effects of bubble nodes on the accuracy of pressure are observed for
the Taylor-Green flow and in forced flow respectively. The bubble nodes eliminated the
numerical boundary layer of the pressure in lump mass methods, though, while doing so,
they increased the L, error of the pressure. The characteristic of the indirect pressure
computed by M3 method however, does not differ much by bubble elements and does not

contain a numerical boundary layer.

The approximate pressure methods are found to be less accurate in higher Reynolds
number flow. Guermond’s CPM shows promise in low Reynolds number flow and
Stokes flow, but is not suitable for high Reynolds number flow when implemented with
Taylor-Hood elements due to high error both in continuity and in pressure. CPM and Kp
method with rotational pressure update are found to have correlated errors in pressure and
in continuity in vortical flows. This attribute of the solvers could lead to difficulties
when simulation of separated flows where the vorticity as well as the pressure gradient
could reach to high values. The Kp method showed numerical boundary layer both in
pressure and in velocity. The CPM does not show any numerical boundary layer for the
forced flow, yet for the Driven Cavity Flow at Reynolds number 100, the continuity

(figure 107) shows a distinct change of error in the boundary layer. This leaves the
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possibility that for some flows CPM could have a numerical boundary layer. Further

investigations of CPM with different flow are needed.

Corner errors, a very high error at corners due to the mesh connectivity there, are
observed for the lump mass method with bubbles. By adjusting the bubble weight

parameter, /3 , close to unity, the corner errors were greatly diminished.

The second order updating for the pressure, Type II and IV are found to be leading to

instabilities and divergence.

Based on the above considerations, we shall conclude that, when implemented with
Taylor-Hood elements, the Fractional Splitting Methods of Classical Pressure
Computation type would yield more accurate solvers for high Reynolds number flows
than Consistent Splitting type or FSM with Approximate Pressure Computations type
would. The enrichment of the Taylor-Hood elements with pressure bubbles generally
increases to accuracy of the solvers and remove the pressure numerical boundary layer.
Due to generally higher accuracy and some observed advantages in robustness the
classical pressure update methods of FSM, lump mass method and Mixed Mass Matrix
(M3) method remains strong candidates for a highly accurate, robust and computationally
efficient solver for modern application such as Large Eddy Simulations. Guermond’s

CPM remains a good method for low Reynolds number flow or Stokes flow.
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7.2 Future Work

The present work motivates further investigation of enriching the Taylor-Hood elements
with pressure bubbles. The implication that bubble nodes can remove pressure boundary

layer and possibilities such as f/P-adaptation could lead to fruitful future investigations.

The success of classical pressure updating methods, such as the proposed M3 method,
would require further work into computing the correct pressure as well as the general

problem of correct implementation of the pressure boundary conditions.

The correct implementation of boundary conditions, including the inlet/exit boundary
conditions, has received attention recently [22] and work on this direction would yield a
code that is suitable for modern applications such as Large Eddy Simulations and Direct

Numerical Simulations of turbulent flow.
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Appendix A

On Pressure update types

The second order pressure update is investigated here. The Classical methods were

updated with Type II and Kp and CPM are updated by type IV. The M3 is left alone.

H, error (normalized with exact solution)
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The above are compared to figures 09, 12, 15 where first order pressure update is used.

The second order pressure update is observed to be leading to instability.
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Appendix B

Some Validations and Miscellaneous flow

Lid Driven Cavity

The Mixed Mass Method, introduced in current work is compared for the solutions of

Driven Cavity Problem obtained by Ghia et. al. [18]. The above authors used a 256x256

multigrid method to generate the solution field. The curves below are obtained by 30 x

30 TH elements (no bubble) using M3 method.
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A small difference between the published work of Ghia and present simulation is

observed at the peak velocities. This is due to coarseness of the mesh used in present

study.
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Cylinder in a Cross Flow

The robustness of the schemes is tested on the Cylinder in a Cross Flow simulation.

Figure 3B
The mesh used for the cylinder in a cross flow simulations.

Figure 4B
The solution obtained for Re=100 using M3 method.
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Mixed Mass Method (M3) in 3D

M3 is implemented in three dimensional computer program in C language.

s A

Figure 5B
Slice of flow field in 3D version of M3 code.

103



Appendix C
On Spatial Convergence
The forced flow with Reynolds number equal to 10 is re solved with a finer mesh of 20 x

20. This is in contrast to the studies on the main body of this work where mesh used is

14x14.

mesh = 200 o0 a=001 mesh = 2020 o0 a-00!
Figure 1C Figure 2C
Re=10, M3+bubble continuity spatial error Re=10, M3+bubble pressure error.
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Re=10, lump mass+ bubble continuity error Re=10, lump mass+bubble pressure error
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Pressure Emar Distribution Re = 10 Terd= 0.5 v 0.025 psd type =2
dvJ Distribution Re = 10 Tertd= 0.5 he 0.025 psdl type = 2

mesh = 20 A =001
mesi = 202D a=001
Figure 5C Fgure 6C
Re=10, lump mass continuity spatial error Re=10, lump mass pressure spatial error.
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Re=10, Kp continuity spatial error Re=10, Kp, pressure spatial error
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Figure 9C Figure 10C
Re=10. Guermond continuity spatial error. Re=10. Guermond pressure spatial error.
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The above plots, figures 1C to 10C (run with 20x20 mesh), in comparison with the plots
of the Reynolds number 10 runs in section 6.2.2 that is run with a mesh of 14x14 (figure
number 68 through 77) indicates that the characteristics of etrors observed are not that of

the mesh property but of the solver.
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