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ABSTRACT

Aerodynamic Inverse Design of Turbomachinery Blading in Two-Dimensional

Viscous Flow

Kasra Daneshkhah, Ph.D.

Concordia Unviersity, 2006

An inverse blade design method, applicable to 2D and 3D flow in turboma-
chinery blading is developed and is implemented for the design of 2D cascades in
compressible viscous flow. The prescribed design quantities are either the pressure
distributions on the blade suction and pressure surfaces or the blade pressure load-
ing and its thickness distribution. The design scheme is based on a wall movement
approach where the blade walls are modified based on a virtual velocity distribution
that would make the current and target momentum fluxes balance on the blade suc-
tion and pressure surfaces. The virtual velocity is used to drive the blade geometry
towards a steady state shape corresponding to the prescribed quantities.

The design method is implemented in a consistent manner‘into the unsteady
Reynolds Averaged Navier-Stokes (RANS) equations, where an arbitrary Lagrangian-
Eulerian (ALE) formulation is used and the boundaries of the computational domain
can move and deform in any prescribed time-varying fashion to accommodate the
blade movement. A cell vertex finite volume method is used for discretizing the
governing equations in space and, at each physical time level, integration in pseudo-

time is performed using an explicit Runge-Kutta scheme, where local time stepping

iii



and residual smoothing are used for convergence acceleration. For design calcula-
tions, which are inherently unsteady due to blade movement, the time accuracy of
the solution is achieved by means of a dual time stepping scheme. An algebraic
Baldwin-Lomax model is used for turbulence closure. The flow analysis method is
applied to several test cases for steady state internal flow in linear cascades and the
results are compared to numerical and experimental data available in the literature.

The inverse design method is first validated for three different configurations,
namely a parabolic cascade, a subsonic compressor cascade and a transonic impulse
turbine cascade, where different choices of the prescribed design variables are used.
The usefulness, robustness, accuracy, and flexibility of this inverse method are then
demonstrated on the design of an ONERA transonic compressor cascade, a NACA
transonic compressor cascade, a highly cambered DFVLR subsonic turbine cascade,
and a VKI transonic turbine cascade geometries, which are typical of gas turbine

blades used in modern gas turbine engines.
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Chapter 1

Introduction

Aerodynamic analysis of the flow in blade row passages of modern gas turbine en-
gines has been routinely performed by means of Computational Fluid Dynamics
(CFD). However, aerodynamic design methods using main stream CFD techniques
have not progressed as fast as analysis methods and have not been used as a com-
mon tool in the engineering practice. Some designers still adopt a direct (analysis)
approach, evaluating the blade performance and modify the blade shape according
to empirical rules or their own experience to obtain a target performance. This
approach can be very time consuming, and even very inefficient in some cases.
More powerful design strategies for gas turbine blades can be obtained by
means of optimization methods and inverse design methods. Numerical optimiza-
tion methods [1, 2, 3] iteratively modify a set of geometrical parameters to achieve
a certain objective function. The latter is computed from a CFD flow simulation.
Numerical optimization methods can be combined with or implemented in any type
of flow solver, but have the disadvantage of being very expensive in terms of com-

putational time, because many flow analyses are usually required.



In situations where the detailed target performance is known, e.g., blade pres-
sure loading or pressure distributions, inverse methods are probably the best ap-
proach to use. In the inverse shape design problem, the flow governing equations
are recast such that the required detailed performance is prescribed and the cor-
responding blade shape and the flow field are obtained simultaneously as the part
of the solution. The implementation of these methods requires modifications of the
flow solver and/or boundary conditions. The computational time taken by the in-
verse methods is comparable with that taken by the analysis methods, which makes
inverse methods less time-consuming than almost all optimization methods.

The main objective of this work is to develop an inverse design method for
turbomachinery blading, which is applicable for 2D and 3D viscous flow. This
requires development of a CFD code to simulate viscous flow equations using an
accurate and efficient scheme and the development of an inverse method that can

be directly implemented into the viscous fluid flow solver.

1.1 Turbomachinery Flow Analysis

The development of modern gas turbine engines with increased efficiency and re-
duced weight has led to the design of highly loaded compressor and turbine blades.
The unsteady nature of the flow due to relative motion of the stator and rotor
blades, 3D effects and turbulence are some of the major aspects which contribute
to the flow analysis complexity. Figures 1.1 and 1.2 show the flow characteristics
in a compressor and a turbine passage, respectively. As it can be seen, a detailed
analysis of the flow requires a 3D viscous flow model, where the secondary flows,
tip flows, end-wall boundary layers, etc., are simulated using appropriate boundary

conditions.
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Figure 1.1: Flow characteristics in a compressor blade row
[taken form Lakshminarayana [4]]

Over the past few decades, with the rapid development of numerical meth-
ods and the availability of powerful computers, efficient codes are developed for
simulation of the flow in multi-stage compressors and turbines [5, 6, 7, 8]. These in-
vestigations use a time-accurate solution of the unsteady governing equation, where
the computational grid is divided into stationary parts for stator blades and mov-
ing parts for rotor blades. Special treatment of the interface of the stationary and
moving grids is required for the analysis of the subsequent blade rows interactions,
while ensuring the conservation of the computational procedure. The fluid flow gov-
erning equations can be extended to account for moving grids using an Arbitrary
Lagrangian-Eulerian formulation, originally developed for external flow aeroelastic-
ity analysis [9, 10]. For turbomachinery applications, this formulation is very useful
for any type of unsteady calculation on moving girds, such as rotor/stator inter-
action [7, 11], turbomachinery aeroelasticity [12], dynamic response predictions of

stall flutter [13, 14, 13] and mistuning effects [11, 15].

Most of the aerodynamic studies on gas turbine blades, including experimental
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Figure 1.2: Flow characteristics in a turbine blade row
[courtesy of NASA-Lewis Research Center]

as well as numerical approaches, are traditionally performed on blade cascades. A
compilation of experimental data for CFD validation can be found in Fottner [16].
Numerical simulations, in this regard, include the solution of Euler or Navier-Stokes
equations in 2D cascades 17, 18, 19, 20] and 3D cascades [21, 22, 23, 5]. While
3D cascade flow solvers are needed to obtain more realistic results and detailed flow
field solution, a 2D cascade solver is a desirable tool for many applications. They
provide fast and accurate results compared to their 3D counterparts. Hence, they
can be used for development and assessment of numerical schemes [17, 19, 24, 25].
The 2D cascade flow exhibit several flow phenomena typical of turbomachines, such
as coexistence of subsonic, transonic and supersonic flow, shock waves and their
interaction with boundary layers and wakes, and flow separation. Although the
viscous effects are confined to thin regions near the walls and wakes, the presence of

boundary layers can have a drastic influence on the flow pattern. In the transonic



regime, the viscous effects can cause the location of the shock to shift by as much
as 20% chord [26]. Depending on the strength of the shock wave, the interaction
between the shock and boundary layer can cause massive separation of the flow at
the shock foot with a subsequent rise in drag and pressure losses. Furthermore, the
characteristics of the blade at stall are entirely determined by viscous phenomena.
To properly simulate viscous flow details, special care should be given to both the

solver and the computational grid that are used.

1.1.1 Present Analysis Method

For the flow analysis in the present study, the compressible viscous flow in 2D cas-
cades are simulated by solving Reynolds-Averaged Navier-Stokes equation using a
cell-vertex finite volume method on fully unstructured triangular meshes. The code
that was originally developed by Ahmadi [27] for invicid flow in 2D cascades is mod-
ified to include the viscous effects. The method uses an explicit Runge-Kutta time-
marching procedure to obtain the steady state solution, where local time-stepping
and implicit residual smoothing are employed for convergence acceleration. The
non-linear artificial viscosity formulation advanced by Jameson et al. [28], com-
bined with the pseudo-Laplacian discretization introduced by Holmes and Connel
[25] are used for numerical stability and to capture discontinuities. The inflow and
outflow boundary conditions are based on a linearized one-dimensional characteris-
tic method [29]. Improvements in the flow analysis code include proper treatment
of the viscous and artificial dissipation terms on highly stretched meshes, which
are required for viscous flow simulation, and implementation of the Baldwin-Lomax
turbulence model [30] for the closure of the governing equations. In anticipation

for the proposed inverse method, developed in this thesis, the ALE formulation for



moving grids and the time accurate solution scheme using dual time stepping [31]
are also implemented. The numerical method used for discretization and solution
of the flow governing equations is presented in details in Appendix A. Validation of
the code for steady-state laminar and turbulent flow in turbomachinery cascades is
presented in Appendix C. The results show that the method is reliable and accurate

for the solution of viscous flow equations in 2D cascade flows.

1.1.2 Grid Generation Considerations

Although the external flow application is dominated by the unstructured grids
[32, 33], most turbomachinery methods use a structured mesh [34, 35]. While un-
structured grids provide flexibility for discretizing complex geometries, they have
the drawback of requiring more memory and more CPU time than their structured
counterparts. However, the requirement to include complex geometry features such
as thick LE/TE, high stagger angle blading, tip gaps, cooling holes, etc., suggests
the use of unstructured meshes as a suitable alternative for turbomachinery appli-
cations. They can also be easily and naturally coupled to mesh adaptation routines,
to increase the efficiency and accuracy of the solution scheme [20].

An unstructured grid is used in this work for discretization of the computa-
tional domain. These grids are relatively easy to generate and efficient for capturing
the inviscid features of the flow. However, the situation is more complicated for
viscous flow computations, where large aspect ratio cells are required for to capture
the details of the flow field in the boundary layers. The gradients of flow variables
normal to the wall are several order of magnitudes larger than those along the wall;
thus more grid points are required in the former direction than the latter. Hence

isotropic unstructured meshes with no preferred direction are not appropriate for



viscous flow computations.

In this work a hybrid grid is used for viscous flow computations, where the
boundary layers are filled with a structured mesh and the rest of the domain is filled
with triangular elements. Each quadrilateral element is divided into two triangles
and the mesh is represented to the solver as an edge-based data structure. Conse-
quently the solver has a unified data structure for which the nature of the hybrid
mesh is concealed from the main calculation loops. A similar approach can be ex-
tended to 3D flows. Figure 1.3 shows the computational domain and the hybrid grid

for a typical 2D subsonic turbine cascade.

1.2 Inverse Design Approach

In the analysis approach, the performance of a given blade geometry is obtained
from the solution of the flow governing equations. An alternative to this approach
is inverse shape design problem, where the blade performance is prescribed and the
corresponding geometry is obtained as part of the solution. The primary goal of
inverse design is to determine the blade shape that would achieve a target blade
pressure distribution or a target pressure loading, while the computational time is
comparable to analysis. Inverse techniques for turbomachine blades are used in
industry, but they are far from being at the sophistication level of the analysis

methods.

1.2.1 Previous Investigations

First generation of the inverse methods are analytical solutions of potential flow
equations, developed by Lighthill [36] and Sanz [37]. These methods are limited to

shock free irrotational flows and are difficult to extend to three dimensions. In the
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last two decades, inverse methods have been developed and implemented into CFD
codes that solves the Euler or Navier-Stokes equations. Some of these methods are
summarized in this section.

The inverse design method of Leonard and Van den Braembussche [38] and
Demeulenaere and Van den Braembussche {39, 40] solve the time-dependent Euler
equations in a computational domain, where some boundaries (the blade walls)
move during the transient part of the computation. The geometry modification
algorithm is based on a transpiration principle, where a normal velocity distribution
is computed from the difference of actual and prescribed pressure distributions, to
approximate the position of the two streamlines starting from the stagnation point.
These streamlines form the new blade profile. The method is successfully applied
to inviscid flow problems but when applied to viscous flow case, a representative
velocity at the edge of the boundary layer is required [41], which can be difficult to
identify in internal flow. Recently that method has been reworked for viscous flow
where a Navier-Stokes solver for the flow analysis is blended with a Euler solver for
the inverse design [42].

The inverse design method proposed by Hawthorne et al. [43] designs blade
with a prescribed mean average swirl distribution throughout the meridional section
of the machine. Dang [35] extended this method to transonic flows in radial and
mixed flow machines, such that the blade mass-averaged swirl schedule (which is
proportional to pressure jump across the blade) and thickness distribution are pre-
scribed. He implemented the method into Euler equations which he solved using a
cell-centered finite volume scheme and applied the method to 2D cascades [44] and
3D cascades [45] in transonic flow regime. Medd [46] and Medd and Dang [47] also

adapted this method for 2D and 3D blade design using viscous flow equations, where



a Baldwin-Lomax model was used for turbulence closure. Ahmadi and Ghaly imple-
mented a similar method for inviscid flow using a cell-vertex finite-volume method
on unstructured meshes [20] and applied the method to design transonic shock-free
compressor cascades [27]. Zangeneh [48] also used this method for 3D design of
centrifugal compressor cascade, where he introduced the viscous effects indirectly
by an inviscid/viscous interaction.

In the above mentioned inverse methods, the blade tangency condition, which
is true only for inviscid flow, is an integral part of the formulation. Therefore, these
methods are not directly applicable to viscous flows.

The inverse method proposed by Thompkins and Tong [49] uses the pressure
distributions on the blade surfaces, where a steady state time-marching solution
scheme with shock capturing technique is used for the solution of the Euler equations.
This method is based on a wall movement with a virtual velocity calculated from the
balance of momentum fluxes on the blades surfaces, which can be readily applied
to viscous flow equations as it does not invoke any tangency condition on the blade
surface. They applied the method to design 2D transonic compressor cascades [50)].
The only application of this method to viscous flow problems is reported by Yang
and Ntone [51]. They manually coupled the geometry modification technique with a
steady-state Navier-Stokes solver for the flow analysis and applied the method to a
nozzle design problem and a subsonic compressor cascade design. The results show
a closer approximation of the target pressure distribution after a limited number of

geometry modifications.

10



1.2.2 Present Inverse Design Method

In the present inverse design method, the wall movement concept originally proposed
by Thompkins and Tong [49, 50], is adopted and the unsteady flow associated with
the blade motion is simulated numerically by solving the Navier-Stokes equations
using a cell-vertex finite volume space discretization coupled with an ALE formula-
tion to account for the moving and deforming computational domain. Marching in
time is accomplished using a time-accurate implicit time stepping scheme. The de-
sign variables are specified as either the pressure distribution on the blades suction
and pressure sides, or the blades pressure loading and their thickness distribution.
The design method is validated and assessed for inviscid and viscous flow cascades,
and is then applied to the design of compressor and turbine cascades in 2D subsonic
and transonic flow regimes; these cascades are typical of those currently used in the

gas turbine industry.

1.3 Thesis Outline

This work is organized into five chapters, including this introduction. In the sec-
ond chapter, the RANS equations and the boundary condition for 2D cascade flow
are presented along with the description of the ALE formulation for moving grids
followed by Space Conservation Law which is used to compute the grid velocity field.

Details of the numerical method used for discretization and solution of the flow
governing equations are given in Appendix A. Validation of the code for steady-state
laminar and turbulent flow in turbomachinery cascades is presented in Appendix C.

Chapter three presents the inverse design formulation and implementation in
details and discusses the issues such as stability of the scheme and different choices

of design variables. The design method is validated and accessed for inviscid and
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viscous flow cases in the subsonic and transonic flow regimes, using different choices
of design variables.

In chapter four, the design method is applied to 2D compressor and turbine
blade cascades, which are typical of those currently used in the gas turbine indus-
try. The usefulness and practicality of the method are emphasized on a number of
difficult design cases available in the literature.

Finally chapter five presents the conclusion, where the main achievements and

findings of this work are summarized, followed by recommendations for future work.
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Chapter 2

Flow Simulation Method

In this chapter, the governing equations of compressible viscous flow are presented
using an arbitrary Lagrangian-Eulerian (ALE) formulation, where the domain bound-
aries can move and deform in any time-varying fashion. This formulation is used for
inverse design calculations, where the blade motion is enforced by the design scheme.
The steady state solution of the governing equations for a stationary computational
domain are simply recovered by neglecting the grid velocities.

Through out this work, the appellation ” Navier-Stokes” or ”Euler” equations
loosely refers to the flow governing equations, i.e, the system consisting of continuity,
momentum, and energy equations. In the limit of negligible viscosity, the Euler
equations are recovered and, in some cases, they are solved instead of the Navier-
Stokes equations, given their lower computational cost.

Details of the numerical method used for discretization and solution of the flow
governing equations are given in Appendix A. Description of the turbulence model
used for the closure of the Reynolds Averaged equations is given in Appendix B.
Validation of the code for steady-state laminar and turbulent flow in turbomachinery

cascades is presented in Appendix C.
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2.1 The Governing Equations

The motion of a compressible turbulent flow can be described by Reynolds Averaged
Navier-Stokes (RANS) equations. These equations can be cast in terms of absolute
velocity v but solved in a non-inertial relative reference frame, using an ALE for-
mulation for a domain with time-dependent boundaries. The integral form of the
RANS equations for an arbitrary control volume Q(t), bounded by the surface I'(¢),

written in vector notation is as follows:

5 weo :
e wdf) + F-ndl= — G ndl 2.1
ot JJa a9 Re Jaq 21

where n represent outward unit vector of the control volume boundary I'(%).

The solution vector of conservative variables w is given by

pe

and the inviscid flux vector F has the following components

0
F=wu+ | ps; |- (2.3)
v;p
Here d;; represent the Kronecker delta function and u = v — v, is the velocity in the
relative frame of reference. For an ideal gas, thermally and calorically, the pressure
p and the total enthalpy h are related to density p, absolute velocity v and internal

energy e

p=(7—1)p{e-—¥], h=e+§ (2.4)
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where «y is the constant specific heat ratio. The viscous flux vector G on the right
hand side of the Eq. 2.1 is scaled by the reference Reynolds number for Non-

dimensional purposes and has the following components:

0
G = 0 . (2.5)
or
v+ (B +He) 8

The viscous stress tensor o;; is expressed using the eddy viscosity concept which
assumes that, in analogy with viscous stress in laminar flows, the turbulent stresses

are proportional to mean velocity gradients:

N 81)1' 8vj
Ti5 = M (83:] + 81'1) + /\5”(V . V) (26)

where p; represents the molecular viscosity, y; denotes the turbulent eddy-viscosity,
which must be determined by a suitable turbulence model. Therefore, p = p; +
is the total viscosity of the fluid. The value of X is given by the Stokes relation
A = —2y, while the laminar Prandtl number Pr; is taken is 0.7 for air. The turbulent
Prandt] number, Pry, is taken as 0.9.

In this work, an algebraic Baldwin and Lomax model [30] is implemented for
the closure of the governing equations for its simplicity and success in simulating
turbomachinery flows [52, 53]. Description of the turbulence model and details of

implementation are given in Appendix B.

2.2 Arbitrary Lagrangian-Eulerian Formulation

The Arbitrary Lagrangian-Eulerian (ALE) form of the governing equations are de-

rived by replacing the partial derivative with respect to time of any quantity f with
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the ALE time derivative, given by:

of df

—— ==V, V 2.7

ot~ @ YoV 27)
where v, = ——‘fi’t‘ is the the grid velocity field. By taking v, = v, the Lagrangian

description of flow is obtained. On the other hand,v, = 0 on a stationary grid and
the Eulerian description of flow is recovered. In the Eulerian framework, on moving
meshes, the domain must be remeshed and the solution must be interpolated at
every time step to account for the deformation of the computational fluid domain
which conforms to the moving structure.

In the ALE formulation, the nodes on the body move at the speed of the
moving and deforming body, with the interior grid points moving in arbitrary fash-
ion, but is such a way as to prevent mesh tangling. Further, the flow variables are
advanced in time along the nodal trajectories without the need for an explicit inter-
polation step. In finite volume implementation, the new term v -V f is lumped with
the convective term V - (fv) to take the form V . [f(v — v,)] (f = p for continuity,
f = pv for momentum, f = pe for energy). Although a source term arises from
this formulation, this formulation is required for the conservation calculation of the
unsteady fluxes on the moving grids, with the fluid moving through the cell at a

relative convective velocity u = v — v,.

2.3 Space Conservation Law

The movement of the coordinate system results in an additional conservation equa-
tion, which has to be satisfied simultaneously with the other conservation equations.
This equation follows from the fact that the coordinate frame velocities have to con-

serve space at the local and global levels at all times and hence is called ”Space
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Conservation Law” (SCL). For a uniform flow with zero velocity, the integral form

of the continuity equations results in the SCL equation:

ﬁl—// dﬂ+% vgndl' =0 (2.8)
dt /J T

where v, = (ug,v,) is the cell face velocity and n = (ng,n,) is the cell face normal
vector. The grid velocities must therefore be defined in such a way that the integral
of vy.n equals the volume change of the control volume. If this relation is not
respected, artificial mass sources or sinks are introduced, leading to instabilities
[54, 55]. Further details on discretization of this equation and computation of the

grid velocities are presented in Appendix A.

2.4 Additional Driving Terms

As mentioned in Sec. 2.2, the ALE form of governing equations for a finite volume
method results in additional source terms which must be accounted for while in-
tegrating the equations in time. If the time derivative is split into two terms, the

discretized form of the mass conservation equations becomes:

AQN | At
— § : ‘- . — )= 2.
Ap - l:/ov n (pvg n+pAt>} Q ( 9)
The first right-hand side term is the residual for a fixed mesh, while the two

additional terms are due to the mesh movement. Their physical meaning is easily
explained. The convective fluxes must be measured using relative velocity, obtained
by subtracting the mesh velocity from fluid velocity, resulting in the first additional
term. The convective fluxes entering the control volume cause a variation of mass in
the control volume, which is the product of density x volume. In the case of moving

grids, both can change, which explains the presence of the second additional term.
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In the frame of inverse method, the two additional terms resulting from the
mesh movement converge to zero at steady state. Moreover, it is clear that the two
terms should compensate each other in smooth flows. It could be concluded from
this that the presence of those terms is not necessary for steady computations, as
proposed by Demirdzic and Peric [54]. However, experience has shown that these
additional terms are essential for obtaining a satisfying convergence rate of the

computations at transonic flow conditions with shocks [41].

2.5 Boundary Conditions

For a cascade problem, there are four types boundary condition, namely inflow/outflow
boundary conditions, periodic boundary conditions and solid wall boundary condi-
tions, which must be enforced along the boundaries of the computational domain.
Figure 2.1 shows the computational domain and the boundary conditions for a typ-
ical 2D turbine cascade.

The computation of inflow and outflow boundary conditions is based upon a
linearized characteristics method, described in [29]. The change in the incoming
characteristics are determined such as to satisfy specified boundary conditions. For
a subsonic inflow, there are three characteristics propagating into the domain and
only one outgoing. The flow angles, stagnation enthalpy and stagnation pressure are
specified at the inflow and the static pressure is extrapolated from inside the domain.
In some cases the reduced mass flow rate is specified at the inlet boundary. There are
four incoming waves for a supersonic inflow. The Mach number is also specified for a
supersonic inflow and subsequently the flow condition will be determined from these
variables using isentropic relations. For subsonic outflow, three outgoing waves are

calculated from the numerical solution, while the incoming wave is fixed by specifying
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the static back pressure. There are four outgoing waves for a supersonic outflow,
hence all the flow variables are extrapolated from inside the domain.

The flow periodicity for a linear cascade implies that all the variables are
the same at periodic pairs of nodes. To avoid interpolation and accompanying
inaccuracy, the grid generation provides the periodic nodes in pair, which are treated
as interior nodes by adding all the contributions at one periodic node to its periodic
counterpart.

Finally, the solid wall boundary conditions are modified to account for the
moving boundaries. For the Navier-Stokes equations, the no slip boundary condition
v = 0 at a wall becomes v = v,. For the Euler equations, the flow tangency condition
v-n = 0 becomes v-n = v, - n. Any deformation or motion of the structure is
thus reflected in the flow boundary conditions and will be accounted for in the flow

solution.
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Figure 2.1: Computational domain and boundary conditions
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Chapter 3

Inverse Design Method

In this chapter, the inverse design methodology is presented and is validated for 2D
inviscid and viscous flow in turbomachinery cascades. The inverse design scheme is
basically a time accurate solution of the RANS or Euler equations, where the blade
geometry is modified iteratively to accomplish the prescribed performance. The
governing equations, which are expressed in ALE form, allow for the movement and
deformation of the computational grid during the design process. The blade motion
is enforced by a virtual blade velocity that is derived from a balance of momentum
fluxes on the blade surfaces. The target performance is prescribed by specifying
either the pressure distribution on both surfaces, i.e. the blade pressure and suction
surfaces, or the pressure loading and blade thickness distribution. Several validation
cases are presented to demonstrate the flexibility and robustness of the scheme as

well as consistency of the design and analysis solutions.
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3.1 Choice of Design Variables

The present inverse design method allows for specification of either pressure distri-
butions on the blade pressure and suction surfaces or pressure loading and thickness
distribution of the blade as prescribed design variables. The specification of the
blade loading distribution as the aerodynamic design input is more convenient from
a designer’s point, particularly in 3D flows where the designer has a better knowledge
of a good choice of pressure loading compared to pressure distribution on the blade
surfaces. Moreover the prescription of the blade thickness distribution guarantees
that the blade shape is closed and provides more control over the blades structural
and manufacturing feasibility.

The design scheme requires a target pressure distribution pi on the blade
surfaces to derive the geometry modifications. In cases where a target pressure
loading Ap, is specified, the pressure distributions on the blade surfaces can be

computed at each time step as:

piit = Pavg + Apd (31)
where
1 -

and p* refer to the pressure on the & sides of the blade, as shown in Fig. 3.1, that
are computed from the time-accurate solution of the governing equations.

In some cases, Eq. 3.1 may result in a non-physical value (p} > 1) during the
design process. For such cases, given that the pressure distribution on the pressure

side is usually less sensitive to changes in geometry, the target pressure distributions
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can be taken as:

py = p¥
p; = pT—Apg (3.3)

where the target pressure distribution on the pressure side pJ is taken to be the
same as the one obtained from the time-accurate solution during the design process
and is used with the target loading Ap, to compute the target pressure distribution

on the suction side p; .

Bladed Region

Thickness T(x)

Camber line f(x)

Outlet

(Olout

Figure 3.1: Cascade notation and computational domain.
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3.2 Inverse Design Formulation

The wall movement approach is used to change the blade profile so as to satisfy the
prescribed blade pressure distributions. The blade motion is enforced by a virtual
velocity distribution, which is derived from the difference between the actual and
target pressure distributions on the blade surfaces. The virtual velocity distribution,
vE = (uf,v¥) on the £ sides of the blade, are derived such that the correspond-

ing virtual momentum flux on the blade + surfaces would be equal to a design

momentum flux, that is:

(puyuy +p¥)ni + (puivy) ni = pint
(puzvy) ny + (pvivy + p*)ny = pyng (3.4)

where n* = (n¥, ny:t) are the vectors normal to the & surfaces. Equation 3.4 implies
that there is a blade profile that would match the prescribed pressure distributions,
hence as the solution advances in time, the initial blade profile will be changed
gradually towards the sought blade profile and the virtual velocity will eventually
vanish.

The above equations can be solved directly to obtain the virtual velocity com-

ponents, which leads to:

1
+2 + 3
o N Rt
v nE? 4 n;tz p*
+
+ £+
uy = v -E-i— (3.5)

where the signs of u¥ and v} are chosen such that an excess predicted pressure is
balanced by a positive wall velocity. A virtual velocity distribution in the direction

normal to the wall can then be calculated from:

=vi.n* (3.6)



the wall displacement correction ds* is proportional to v¥, but in the opposite
direction since the no-penetration condition implies that relative velocity normal to

the wall is always zero, so that

sy = —w At vy, (3.7)

where §sF = (dzF, §y¥) is the displacement of each edge on the blade walls in normal
direction, At is the user defined physical time step, and w is a relaxation factor that
is determined based on stability requirements. The stability analysis [49], given in
Appendix D, shows that the wall update scheme should be strongly under-relaxed.
Typical values for the under-relaxation factor w are 0.2 for subsonic flows and 0.04
for transonic flows.

The modified blade geometry is constructed by applying the wall displacement

on discrete grid points on the blade surfaces, that is:

"t = 0% 4 St (3.8)

e

vt =yl oy

where superscripts n and o denote the new and old blade geometry. Figure 3.2 shows
the schematic of the wall movement. The resulting blade profile is scaled to preserve
the axial chord length, and the grid points on the blade surface are interpolated back
to the same axial location, hence the computational grid is essentially moving in y-
direction.

A smoothing of the resulting blade profile is also essential to provide a smooth

blade profile [49] and is given by:
vi =y T wsllyin — v (Wi — v + v — v, — v (3.9)

where j refers to discrete grid points on the blade surface. The correct wall ge-

ometry for arbitrary input pressure may not be as smooth as required by Eq.3.9,
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Figure 3.2: schematic of the wall movement

and a real position error may be introduced. A careful balance must be maintained
between smoothing out the profile and producing a geometry that does not satisfy
the specified pressure distribution but is as smooth as requested. The value of w; is
determined by numerical experimentation, a typical value that was used in all cases

presented in this work is w, = 0.2.

For the cases where the blade loading and thickness distributions are pre-
scribed, the average displacement of + surfaces is applied to the blade camberline
and the blade profile is constructed by combining the prescribed tangential thickness

distribution and the modified camberline as follows:

vt = f2)" & %T(m)o (3.10)
where
Fl@)" = F@) + 5(6y™ +6y7) (3.11)

The blade smoothness is achieved by smoothing the blade camberline, similar to Eq.
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3.9. To avoid unnecessary interpolations, the grid points on the blade surfaces are
positioned as pairs of nodes with the same axial locations on the & surfaces.

We note that the derivation is valid for inviscid and viscous flow. Although
the contributions of viscous terms to the flux balance Eq. 3.4 are neglected, the
results have suggested that a balance of convective terms is sufficient to drive the

wall towards a shape that satisfies the target blade pressure distribution.

3.3 Grid Displacement and Velocity

The grid displacement adjusts the computational grid such that it follows the de-
formation of the blade profile, given in Eqgs. 3.9 and 3.10, and is depicted in Fig.
3.3. A number of grid movement strategies are reported in the literature. The mesh
can be moved either using an algebraic mapping, a smoothing operator, or global
remeshing. In the present work, the grid movement is implemented through an al-
gebraic mapping namely transfinite interpolation. This method has the ability to
regenerate the new grid at relatively low computational cost.

From the calculated grid displacement, the grid velocity field v, is computed
from the Space Conservation Law (SCL) (see Eq. A.14. This grid velocity field is

then substituted into the flow governing equations, Eq. A.4.

3.4 Inverse Design Algorithm

The wall movement algorithm described in the previous section is implemented
into RANS equations using an ALE formulation, where a time accurate solution
is obtained on a time-varying blade geometry during the design calculation. Each

geometry modification step is considered to occur in a physical time step At.
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Figure 3.3: Grid movement

The design procedure starts from a steady state converged solution on a trial
geometry and either a target pressure distribution on the blade surfaces or the
blade pressure loading and its thickness distribution. Since a trial geometry does
not satisfy the prescribed pressure distribution, a virtual velocity distribution is
computed from the difference between the actual and target pressure distributions.
The blade profile is then modified using the normal component of the virtual velocity.

After the blade geometry is modified, the computational grid is adjusted to
accommodate the displacements of the domain boundaries. The grid velocity field
is computed from the SCL, which ensures the conservation of the space during the
solution.

The time accuracy of the solution is obtained by means of a dual time-stepping
scheme, described in details in Appendix A. The pressure distribution is obtained on
the modified blade geometry and the procedure is repeated until the target pressure
distribution is reached. The convergence of the inverse design problem is monitored

by the Ly norm of the mesh displacement. When this value decreases with time until
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it reaches the desired tolerance, then a steady state condition is practically reached
and the target pressure distribution is achieved on the latest blade geometry. The
results have suggested that convergence of the Ly, norm of the mesh displacement by
two to three orders of magnitude ensures that the pressure field is not affected by the
grid velocities, i.e. a steady state solution can be practically assumed. The overall
computational time for an inverse calculation depends on the number of geometry
modifications and the time required to obtain the time accurate solution after each
geometry modification. For most cases, the L, norm of the continuity equation
is decreased to 107° after each geometry modification. This level of convergence
is found to be sufficient for the time accuracy and stability of the design scheme.

Figure 3.4 shows the flow chart of the design algorithm.

Initial Geometry
Target Pressure/Loading Distribution

A 4

Time-accurate
2D Euler / RANS calculation

A 4

Calculated = Target Stop

Compute the wall virtual velocity
Modify the blade geometry

A 4
Adjust the computational mesh
Compute the grid velocities

Figure 3.4: Computation algorithm for inverse design
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3.5 Constraints

In a compressor or turbine design cycle, the detailed blade shapes are obtained
towards the end of the design however these shapes must satisfy several geometric
and non-geometric constraints. Some of these constraints can readily be satisfied in
the proposed inverse method, e.g. the blade chord, number of blades, blade shape
near the leading and trailing edges, the specific work or overall turning, inlet flow
angle, reduced mass flow rate (or inlet total pressure), inlet total temperature, and
exit static pressure.

All geometric constraints can be imposed directly through geometry construc-
tion. Prescribed LE/TE shapes extending between 1 and 3% chord at both blade
ends, can be obtained by imposing a specific geometry in the blade LE and/or
TE regions. This is accomplished by matching the blade thickness and camberline
with that obtained from the design calculation at the junction points, thus ensuring
that the blade LE/TE shapes are closely controlled. However, the specified blade
pressure distributions will not necessarily be achieved in these regions (that extend
between 1 and 3% chord).

The non-geometric constraints can be obtained through specification on the
inflow and outflow boundary conditions and the choice of the target blade pressure

distributions/loading.

3.6 Inverse Design Validation

In this section, the design method is validated for inviscid and viscous flow cases
ranging from subsonic to transonic regimes. The validation is carried out by ana-

lyzing the flow over two different cascade geometries and then prescribing the blade

30



pressure or loading distribution obtained for one of them as the target performance
for the other cascade. If the inverse design method is valid, it should recover the
corresponding cascade geometry and produce the prescribed pressure.

The validation cases are hypothetical geometries, which are generated using
analytical camberline and thickness distributions. However these geometries can
represent many features of the flow in turbomachinery cascades and are useful for
assessment of the numerical scheme. For all validation cases the initial and target
geometries are selected from the same family of blade profiles; i.e. they have the
same axial chord and spacing, inlet and exit blade angles and similar shape of
leading and trailing edges. For all these cases, the flow is subsonic at inlet and exit
and the inflow and outflow boundary conditions are similar. At inflow, the total
pressure, total temperature and flow angle are specified and, at outflow, the exit

static pressure is specified.

3.6.1 Parabolic Cascade

The first configuration used for validation of the design scheme, is that of a parabolic
cascade, where both camberline and thickness distributions assume a parabolic pro-

file given by:

f(z) = % (tan Bou — tan Biy) 22 + tan B,z (3.12)

and

T(2) = 6T mar(1 — ) (3.13)

where (;, and [, are the blade inlet and exit angles, respectively, and T}, is the
blade maximum thickness to chord ratio. This thickness distribution is symmetric

around mid-chord and implies sharp LE and TE.
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This configuration is used to validate the design method for viscous flow where
a target pressure distribution is prescribed and for inviscid flow where a target

pressure loading distribution is prescribed.

Viscous flow with p* Specified

For the first validation case, viscous flow in two different parabolic cascades is con-
sidered. The initial and target geometries have 8% and 4% maximum thickness to
chord ratio, respectively. For both cases, the spacing to chord ratio is 0.5, the inlet
and exit blade angles are 16° and —16°. The ratio of exit static to inlet total pres-
sure is 0.8 and the Reynolds number is 10°. The flow in these two cascades are first
analyzed by solving the RANS equations using the same code but in analysis mode.
Figure 3.5 shows the Mach contours for each configuration, where the maximum
Mach numbers are 0.89 and 0.85 for the initial and target geometries, respectively.
Figure 3.6 shows the streamlines near the trailing edge of the initial and target ge-
ometries. As can be seen in this figure, the flow separates at about 80% chord on
the suction side of the initial geometry, whereas for the target geometry, the flow
separates at about 90% chord.

The pressure distribution of the target geometry is then used as the target
(prescribed) for the initial geometry. Figure 3.7 shows the initial, target and in-
versely computed pressure distributions on the blade surfaces and Fig. 3.8 shows
the corresponding geometries. As can be seen, the computed pressure distribution
along the blade surfaces agrees fairly well with the target pressure distribution and
the target blade shape is also recovered accurately by the design method. Figure
3.9 shows that the Ly norm of the blade displacement decreases more than three
orders of magnitude after some 150 geometry modifications, which ensures that a

steady state solution is reached at convergence. The computation time is almost
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twice of that of an analysis calculation. This validation case shows that the inverse
method can be used for viscous flow problems at high Reynolds numbers typical of
turbomachinery flows to achieve a target pressure distribution corresponding to a
realistic geometry; it also shows that this inverse method can handle design cases

with mildly separated flow regions.

Inviscid Flow with Ap and AT Specified

The second validation case is that of an inviscid flow over two parabolic cascades
with the same thickness distribution, but having different camberlines. The primary
design variables are the blade pressure loading and thickness distributions rather
than the pressure distributions on the blade pressure and suction sides.

For both cases, the maximum thickness to chord ratio is 5%, the spacing to
chord ratio is 0.5, the inlet and exit blade angles are 10° and —10° and the ratio
of exit static to inlet total pressure is 0.8. The flow in these two cascades is first
analyzed by solving the Euler equations using the same code but in analysis mode.
Figure 3.10 shows the Mach number contours over the initial and target geometries.
The corresponding blade pressure loading and the pressure distribution along the
blade surfaces are given in Fig. 3.11.

The blade pressure loading corresponding to the target geometry is then used
as the target loading for the initial geometry. Figure 3.11 shows that the blade pres-
sure loading and the pressure distribution along the blade surfaces computed by the
inverse design method are in a rather good agreement with the target distributions,
while Fig. 3.12 shows that the target geometry is accurately recovered by the design
scheme. For this case, the design scheme converged to a solution after about 100
geometry modifications, where the L, norm of the blade displacement is reduced by

more than two orders of magnitude, as shown in Fig. 3.13.
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The time-accurate solution of the Euler equations, which is obtained after
each geometry modification step, requires between 50-150 iterations in pseudo-time
to converge the modified mass residual of the unsteady equations to 1076, This level
of convefgence was found to be sufficient for the accuracy and the stability of the
design calculations. The inverse design computational time for this case is almost

the twice of that taken by to analysis the same geometry.

3.6.2 Subsonic Compressor Cascade

The second configuration for validating the design scheme assumes a parabolic cam-
berline distribution, see Eq. 3.12, while the thickness distribution assumes the
following profile:
3
T(z) = §—2\/-—Tmz\/5 (1-2) (3.14)
which implies round LE and sharp TE.
This configuration is used to validate the design method for inviscid flow where

a target pressure distribution is prescribed and for viscous flow where a target pres-

sure loading distribution is prescribed.

Inviscid Flow with p+ specified

For this validation case, inviscid flow over two subsonic compressor cascades is con-
sidered. The blades have significantly different camber line and thickness distri-
bution. The maximum thickness to chord ratio is 5% and 10% and the camber
line distributions assume a third and second degree profile for the initial and tar-
get geometry, respectively. The initial geometry corresponds to an aft-loaded blade

whereas the target one corresponds to a mid-loaded blade. The spacing to chord
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ratio is 0.75 and exit static to inlet total pressure ratio is 0.8 and the inlet and exit
flow angles are 25° and —25°, respectively.

The flow in these two cascades is first analyzed using Euler equations by run-
ning the same code in analysis mode. Figure 3.14 shows the Mach contour resulting
from the analysis of two geometries, where the maximum Mach number in the do-
main are 0.87 and 0.90 for the initial and target geometry, respectively.

The pressure distribution of the target geometry is then used as the design
input. The inverse calculation starts from the initial geometry and its converged
solution and reaches the target pressure distribution after about 400 modifications
of the initial geometry. Figures 3.15 and 3.16 gives a comparison of initial, target
and inversely computed pressure distributions and corresponding geometries. The
agreement between target and computed geometries is rather excellent and the target
pressure distribution is also reached at convergence. Figure 3.17 shows that the mesh
velocities Ly norm has decreased by more than two orders of magnitude during the
design calculation. The computational time of the inverse design calculation is
almost twice that an analysis calculation of the same geometry with the same mesh.

This case shows the robustness of the scheme to recover a geometry corre-
sponding to a target pressure distribution which is significantly different from that
corresponding to the initial geometry; this case provides a good assessment of the
design scheme for large deformation of the computational domain through the de-
sign process. It also shows that the LE/TE treatment is capable of recovering the
target geometry in those regions as long as the initial and target geometries are from

the same family of blade shape.
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Viscous Flow with Ap and AT Specified

The second validation case is that of viscous flow in two subsonic compressor cas-
cade where the pressure loading and thickness distributions are prescribed. The
initial and target blade profiles assume the same thickness distribution, while the
camberline distributions are generated by third and second degree polynomials, re-
spectively. The maximum thickness to chord ratio is 5%, the spacing to chord ratio
is 0.5 and the inlet and exit flow angles are 25° and —10°, respectively.

The viscous flow in the initial and target geometries are first analyzed using
RANS equations by running the same code but in analysis mode. Figure 3.18 shows
the Mach number contours resulting from the analysis of each case. Further inspec-
tion of the flow field reveals that there are regions of slightly separated flow near
the trailing edge for both cases, which are clearly shown in Fig. 3.19. The pressure
loading and the pressure distribution on the blade resulting from the analysis of the
original and target geometry, which are given in Fig. 3.20, show that the initial
geometry has a negative loading distribution between 0 and 35% chord, while the
target loading has a positive loading on the whole blade. Let us note that the initial
geometry is not a realistic one because of the reverse loading, however it is used here
to demonstrate the robustness and ability of the method in handling large geometry
changes as well as mildly separated flow regions.

The design scheme is applied to this case to achieve the target loading dis-
tribution and recover the target blade geometry. The resulting blade loading and
pressure distribution along the blade obtained from the inverse design method show
a good agreement with the target distributions and the target blade geometry has
also been recovered fairly well, as shown in Fig. 3.21. The computed blade geom-

etry has been obtained after 200 modifications of the initial geometry. The design
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computations require about twice the time required to analyze the same geometry.
Figure 3.22 shows the convergence of the L, norm of the mesh displacement, which
ensures that a steady-state solution is reached on the latest geometry. This valida-
tion case shows that the design scheme can be applied to viscous and turbulent flow
with mild separation regions and can handle large deformation of the computational

domain through the design process.

3.6.3 Impulse Turbine Cascade

This validation case is that of an inviscid flow over transonic impulse turbine cas-
cades, where the blade camberline and thickness distribution assume a parabolic
distribution. The initial and target blade shapes are similar except for the maxi-
mum thickness to chord ratio T;,4., which differs by 3% chord. The inlet and exit
blade angles are —40.30° and 40.30°, the spacing to chord ratio is 0.526 and the exit
static to inlet total pressure ratio is 0.833. The initial and target geometries are
first analyzed by solving FEuler equations using the same code but in analysis mode.
Figure 3.23 shows the Mach contours resulting from the flow analysis of the initial
and target geometries, where a shock occurs around 60% chord on the suction side
of the original geometry. Although the initial and target geometries are very similar,
the resulting flow fields are clearly distinctive, where the corresponding maximum
Mach numbers are 1.5 and 1.0, respectively.

For the design calculations, the pressure distribution of the thinner cascade
surfaces (18.5%T 4.) is used as the prescribed (target) design input and the de-
sign scheme is executed starting from a converged solution on the original geometry
(21.5%T n4z). Figure 3.24 shows the initial, target and inversely computed pres-

sure distributions, whereas Fig. 3.25 shows the corresponding geometries. The
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design technique accurately reproduces the target geometry as well as the target
pressure distributions on the blade pressure and suction surfaces. The target ge-
ometry is reached after some 300 geometry modifications of the initial geometry.
The L, norm of the blade displacement is given in Fig. 3.26. For this case, the
inverse design computation time is almost the twice that of one analysis calculation.
Numerical experiments with this case suggest that a higher relaxation factor and
more smoothing of the blade shape are needed to obtain a converged solution. This
example shows the usefulness of the scheme to handle/control shock waves in the

transonic flow regime.

38



Figure 3.5: Mach contour field for viscous flow in parabolic cascades
(a) Initial blade T4, /c = 8% and (b) Target blade Trpe./c = 4%
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Figure 3.6: Streamlines near trailing edge of parabolic cascade
(a)Initial blade (b) Target blade
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Figure 3.7: Pressure distributions for viscous flow in parabolic cascades
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Figure 3.8: Initial, target and design geometry of parabolic cascade
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Figure 3.9: Convergence history of parabolic cascade design calculation
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Figure 3.10: Mach contour field for inviscid flow in parabolic cascades
(a) Initial blade Tinar/c = 5% and (b) Target blade Typur/c = 5%
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Figure 3.11: Pressure loading and pressure distributions for parabolic cascades
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Figure 3.12: Initial, target and design geometry of the parabolic cascades
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Figure 3.13: Convergence history of parabolic cascade design calculation
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Figure 3.14: Mach contour field for inviscid flow in subsonic compressor cascades
(a) Initial blade T}ne2/c = 5% and (b) Target blade Tru./c = 10%
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Figure 3.15: Pressure distributions for subsonic compressor cascades

Figure 3.16: Initial, target and design geometries of subsonic compressor cascade
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Figure 3.17: Convergence history of compressor cascade design calculation
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Figure 3.18: Mach contour field for viscous flow in subsonic compressor cascades
(a) Initial blade T;../c = 5% and (b) Target blade Tpne./c = 5%
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Figure 3.19: Stream lines near the trailing edge of subsonic compressor cascades
(a) Initial blade and (b) Target blade
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Figure 3.20: Pressure loading and pressure distributions for compressor cascades
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Figure 3.21: Original, target and design geometry of the compressor cascades
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Figure 3.22: Convergence history of compressor cascade design calculation
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Figure 3.23: Mach contour field for inviscid flow in transonic compressor cascades
(a) Initial blade T4, /c = 21.5% and (b) Target blade Tiy../c = 18.5%
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Figure 3.24: Pressure distributions for transonic impulse cascades

Figure 3.25: Initial, target and design blade profiles of impulse cascades
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Chapter 4

Application to Modern Gas
Turbine Blades

In this chapter the inverse design method is applied to compressor and turbiﬁe blades
typical of those used in modern gas turbine engines. The usefulness and flexibility
of the inverse method is demonstrated on the successful design of a number of
compressor and turbine blade cascades ranging from subsonic to transonic flow. The
prescribed design quantities assume a smooth distribution, which eliminates sudden
expansion or diffusion of the flow so as to remove/weaken shock waves in transonic
flow regime and/or reduce separation regions. In cases where a solution does not
exist for the prescribed design quantities, the inverse design scheme produces a

smooth blade shape that would give a close approximation of the target performance.

4.1 ONERA Transonic Compressor Cascade

The first design case is a highly loaded transonic compressor cascade that was tested

at ONERA [16]. This compressor cascade has been designed using a target pressure
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distribution to remove/weaken the passage shock. The inlet flow angle is 30° and
the flow turning is almost 50°. This cascade is first analyzed using RANS equations.
For the flow analysis the exit static pressure is 0.733 and the Reynolds number is
Re = 1.5 x 10%. For the design calculations, the inflow boundary conditions are
reduced mass flow rate, total temperature and flow angle, while the static pressure
is specified at the outflow boundary.

The resulting Mach number field, given in Fig. 4.1(a), shows the presence
of a detached shock that impinges on the suction side where the maximum Mach
number is around 1.34. The flow separates due to shock-boundary layer interaction
on the suction side but reattaches again and remains attached on the rest of the
blade. The corresponding pressure distribution on the blade surfaces is given in
Fig. 4.2. This cascade is then designed to achieve a smoother pressure distribution,
which is also shown in Fig. 4.2, so as to remove the detached shock wave. The total
blade loading (which is equal to the difference in prescribed pressure on the blade
surfaces, p* —p~) was increased by less than 1%, therefore the resulting blade shape
is expected to have almost the same global flow turning and the same tangential
force as the original blade. As mentioned earlier, the reduced mass flow rate, which
can be chosen as an input to the CFD simulation, is the same for both original and
designed blades.

The designed cascade is transonic shock-free with a maximum Mach number of
1.2, as can be seen form the Mach contour field given in Fig. 4.1(b). Figure 4.3 shows
a comparison of the original and design blade profiles. The inverse design solution
is obtained after some 75 geometry modifications. The computation time taken by
the inverse method is less than the time taken to analyze the flow over the same
geometry. This is due to the relatively small number of geometry modification, which

was required to achieve the target pressure distribution. A comparison of target
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and inversely computed pressure distributions shows a good agreement between the
target and the inversely computed pressure distributions. The results also indicate
that the pressure loss of the designed blade has been decreased about 20%, which can
be attributed to the shock wave removal. The cascade static pressure ratio has also
increased by 3%. Let us note that these improvements in aerodynamic performance
are not directly controlled in the inverse design, they are rather implications of

prescribing a ”good” pressure distribution.

4.2 DFVLR-T106 Subsonic Turbine Cascade

The case presented in this section is that of a blade cascade with a shape similar
to a subsonic turbine rotor blade that was tested at DFVLR [16]. For the original
blade, the flow inlet angle is 37.7°, and the flow turning is about 90°, the exit
static pressure is 0.789 and the Reynolds number is 5.10°. The inflow and outflow
boundary conditions, namely, inlet the total pressure, total temperature, flow angle,
and exit static pressure are given from experimental data and are kept the same for
the original and the designed blades.

For the original blade, the Mach contour field and the corresponding pressure
distribution on the blade surfaces are given in Figs. 4.4(a) and 4.5. Figure 4.5 shows
a rapid flow acceleration followed by high diffusion between 30% to 80% chord on
the blade suction side. This cascade is designed to achieve a smoother pressure
distribution on the suction side, keeping the same distribution on the pressure side,
see Fig. 4.5. The blade total loading was increased by less than 0.5%. Note that it
is possible to keep exactly the same total loading, as it is directly controlled by the
prescribed pressure distributions.

A comparison of the target and design pressure distributions, given in Fig.
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4.5, shows that the computed pressure distribution using the inverse method is
in good agreement with the target. A comparison of the original and designed
blade profiles is given in Fig. 4.6. The designed blade is obtained after almost
120 geometry modifications, which translates to a computational time similar to an
analysis calculation of the same geometry with the same mesh. The Mach contour
field for the the designed blade is also shown in Fig. 4.4(b), where the maximum
Mach number is 0.662. The total pressure loss of the designed blade has decreased by
14% compared to the original blade, while there is a 1.2% reduction of the reduced
mass flow rate. We note again that these are implications of prescribing the target

pressure distribution and are not directly controlled by the inverse method.

4.3 NACA Transonic Compressor Cascade

The case presented in this section is a NACA transonic compressor cascade [56].
For the original blade, the flow inlet angle is 59.9° and the flow turning is less than
10.0°. The resulting flow field, presented in Fig. 4.7(a), shows the presence of a bow
shock that impinges on the blade suction side at about 45% chord and results in
boundary layer separation at this location. The flow remains separated on the rest
of the blade suction side, as it can be seen by the flow stream lines, plotted in Fig.
4.8(a).

This cascade is then designed to achieve a target pressure loading distribution
while keeping the same thickness distribution as the original blade. The original
and target total pressure loading assume the same value. The target pressure load-
ing distribution is obtained by averaging the original loading distribution with a
parabolic one, with the same total loading. The resulting target loading also has

the same characteristics near the blade leading and trailing edges, which is important
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for a realistic target pressure loading distribution. The shock strength is expected to
be weaker and the loading be more uniformly distributed over the designed blade.
Since the flow is well-behaved on the blade pressure side, p* calculated from the
time-accurate solution and the prescribed loading were used to update p~, as given
in Egs. 3.3.

Given that this is a transonic flow case, the reduced mass flow rate computed
for the original blade is imposed as inflow boundary condition for the designed
blade, other boundary conditions being the same. The design solution satisfies the
target loading distribution fairly well, after about 250 geometry modifications, see
Fig. 4.9(a). The corresponding pressure distributions are also shown in Fig. 4.9(b),
where a good agreement between the target and the design distributions is obtained.
The computation time is almost three times that of an analysis calculation. The
flow field over the designed blade is presented in Fig. 4.7(b); the resulting stream
lines, shown in Fig. 4.8(b), indicate that the separation region has decreased from
50% to 10% chord, which is quite significant. The static pressure ratio of the cascade
has also increased by 10% and the total pressure loss has decreased by 15%.

Let us note again that the reduction of the separation region, as well as the
improvements in the blade aerodynamic performance, are implications of imposing
the target loading distribution, therefore an experienced designer can take advantage
of this method. Figure 4.10 shows a comparison of the original and the designed
blade profiles. The designed blade has an S-shape configuration, which has also been
observed by other researchers, in order to weaken the shock strength. It was found
that this choice of target pressure loading prevents shock-boundary layer separation,
as shown in Fig. 4.8.

This case shows that the design scheme can be effectively used for designing

blades in transonic flow regime in the presence of shock waves and relatively large
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(but bounded) separation regions.

4.4 VKI-LS89 Transonic Turbine Cascade

This case is that of a high pressure transonic turbine nozzle guide vane profile, tested
at the von Karman Institute [57]. The flow enters the blade axially and undergoes a
flow turning of about 80°. The spacing to chord ratio is 0.85. The Reynolds number
is 1.26 x 10° and exit isentropic Mach number My, is 0.875, which corresponds to an
exit back pressure ratio of about 0.6. The resulting Mach number field is presented
in Fig. 4.11(a), where the maximum Mach number is 1.14. The corresponding
pressure distribution for the original blade is given in Fig. 4.12.

A target pressure distribution is then constructed by smoothing the pressure
distribution on the blade suctioﬁ side. The smoothed pressure distribution results
in a 5% increase in the blade total loading.

Figure 4.12 shows that the pressure distribution obtained on the designed
profile agrees fairly well with the target pressure distribution. The designed blade
shape is obtained after 100 geometry modifications, which requires a computational
time similar to an analysis of the same geometry. Figure 4.11(b) shows the Mach
number field on the designed geometry, where the maximum Mach number in the
flow field is 1.12. Figure 4.13 shows a comparison of the original and designed
blade profiles. The results show that the total pressure loss is reduced by 8% as an
indirect result of imposing a smoother target pressure distribution, while there is

2.8% reduction in the reduced mass flow rate.
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Figure 4.1: Mach contours for the ONERA compressor cascade
(a)original blade M,,,, = 1.34, (b)designed blade M,,,, = 1.20
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Figure 4.2: Pressure distributions for ONERA compressor cascade
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Figure 4.3: Original and designed geometries of ONERA compressor cascade.

Figure 4.4: Mach contours for DFVLR turbine cascade
(a)original blade M,,,, = 0.68, (b)designed blade M,,q, = 0.66
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Figure 4.5: Pressure distributions for DFVLR cascade
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Figure 4.6: Original and design geometry of the DFVLR turbine cascade.
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Figure 4.7: Mach contours for NACA compressor cascade
(a)original blade M,,,, = 1.2, (b)designed blade M., = 1.2
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Figure 4.8: Stream lines for NACA compressor cascade.
(a)original blade, (b)designed blade
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Figure 4.9: Loading and pressure distributions for NACA compressor cascade
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Figure 4.10: Original and design geometry of NACA compressor cascade

Figure 4.11: Mach contours for VKI turbine cascade
(a)original blade M,,,, = 1.14, (b)designed blade M4, = 1.12
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Figure 4.12: Pressure distributions for VKI turbine cascade
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Figure 4.13: Original and designed geometry of VKI cascade
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Chapter 5

Conclusion and Recommendations

5.1 Summary

A new aerodynamic inverse shape design method, applicable to 2D and 3D com-
pressible viscous flow in turbomachinery blading, has been developed, validated and
applied to design linear cascades in 2D turbulent flow in the subsonic and transonic
flow regimes. The design variables are either the pressure distribution on the blade
suction and pressure surfaces or the blades pressure loading and their thickness dis-
tribution. Starting from an initial guess for the blades profile, they are iteratively
reshaped by moving their surfaces at a virtual velocity that would make the mo-
mentum flux on the blades equal to the flux that would result from the prescribed
pressure distribution. Since the flow is inherently unsteady due to the blade move-
ment, the inverse method is implemented in a consistent manner into the unsteady
RANS equations that are solved on a moving mesh using an ALE formulation. The
method is first validated for inviscid and viscous flows in cascades. The validation
results indicate that the method is rather robust and capable of recovering the target

geometry and performance. The usefulness of the inverse method in reshaping the
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blades to accomplish a given pressure loading distribution is then demonstrated on
the successful design of transonic compressor cascades to remove/weaken the shock,
and the design of a subsonic and a transonic turbine blade to achieve a smoother
pressure distribution. The results also show that the inverse design method is ca-
pable of handling relatively large (but bounded) separated flow regions and can be
effectively used to reduce such regions. The results also showed that an experi-
enced designer can indirectly improve the blade performance by properly tailoring

the target pressure distribution or loading.

5.2 Future Work

There are several possible extensions to the present work. Some have to do with
the CFD code development and some have to do with the design methodology and
implementation. Some examples are given below.

1. An important feature of this inverse formulation is the possible extension
to 3D flow fields. This extension is probably the primary goal of future research,
and is based on the full 3D RANS or Euler equations, where the virtual velocity
= = (uF,vF, wk).

v U’U’l)’w'l)

assumes the form v

2. For the cases, where the blade thickness distribution is prescribed as a
design input, a tangential thickness distribution (in y-direction) is used to construct
the blade geometry. In cases where the blades are highly staggered, formulation of
the inverse method in terms of normal thickness distribution would be advantageous
[46].

3. As for CFD development, extension of the code for 3D flow fields is desirable.
A higher order turbulence model, such as (K —¢) model, is recommended for 3D flow

since identification of turbulence stations required for algebraic turbulence models
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for unstructured grids becomes a cumbersome task in 3D flows.
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Appendix A

Numerical Implementation

The numerical method used for discretization and solution of viscous flow equations
on a moving mesh using the ALE formulation is presented in this chapter. Thé
spatial discretization of the governing equations is performed using a cell-vertex
finite volume method on a fully unstructured triangular mesh. Artificial viscosity
terms are modified to account for highly stretched elements which are required to
capture the details of the flow in the boundary layers and wakes. An explicit Runge-
Kutta time-stepping procedure is used to obtain the steady state solution where
local time-stepping and implicit residual smoothing are employed for convergence
acceleration. The time accurate solution for unsteady calculations is obtained by
means of a dual time stepping scheme. Validation of the finite volume method for

steady-state flow in 2D turbomachinery cascades is presented in Appendix C.
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A.1 Non-dimensionalization

The RANS equations are non-dimensionalized by introducing the dimensionless vari-

ables
z= z oy ‘= t
B lref V= l'ref v tref ’
T
p=-2- T= ;
Dref Tref
u v P
US —m— V= = =
RTref RTTef pref/RTTef
i k
h= k= , (A1)
MHref kref

where the characteristic length .. is equal to the axial chord length of the blade
and where the physical quantities pref, Tres, trey and k,ep are, respectively, the up-
stream stagnation pressure and stagnation temperature, the dynamic viscosity and

the thermal conductivity.

A.2 Space Discretization

A cell-vertex finite volume scheme is used for discretization of the governing equa-
tions on triangular unstructured mesh. The flow variables are stored at the vertices
of the triangles and each cell or control volume is formed by taking the union of all
triangles meeting at a vertex Fig. A.1l

The discretized form of the Eq. 2.1 can be written in this form

% (Z Qk> Wi + Z Qka = Z Dywy (AQ)
k k k

where Q, Q, Dy are respectively the cell area, convective flux balance and viscous

contribution for the kth cell surrounding vertex.
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The convective flux across an edge can be approximated as the average of the

values at its two end points.

1
Fup = ‘2-(FA+FB) (A3)

The net contribution of the convective fluxes for a control volume can then be

computed using the relative flow velocities on the cell faces, i.e.

Qlp)y = Z [p(u — ug)ne + p(v — vg)ny, (A.4)
k

Q(pu)p = Z [(pu(u - ug) + p)nz + pu(v - vg)ny]k (A.5)
k

Q(pv)p = Z [PU(U - ug)”x + (pv(v — Ug) + p)”y]k (A.6)

k

Qleely = D [(peu —ug) + pu)ng + (pe(v — v) + po)ny ], (A7)
k

where the summation is over all the outer edge of the control volume surrounding
vertex p in Fig. A.1 . The formulation amounts to a trapezoidal integration rule
around the boundaries of the control surface and is second order accurate.

For the viscous fluxes, an auxiliary control volume is formed by connecting
the cell centers, as shown in Fig. A.2. The discrete Gauss theorem is applied once
on the each triangle to obtain a numerical approximation to the stress tensor and
heat flux vector by computing the required first derivative of the flow variables at

the cell centers, i.e.

w +w
Wo =g // —dzdy = /Wdy =3 Z —‘k—tl*Q——k'(ka ~ Yk) (A.8)

Wiyl + W
Wy =g // —dzdy = /wdm =9 Z %(wkﬁ.l — xk) (A.9)
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where the summation over k refers to the three vertices of the triangle and €2 is the
area of the triangle. The divergence of the stress tensor and of the heat flux vector is
then obtained directly at the enclosed vertex by a second application of the theorem
to the auxiliary control volume which is scaled for consistency, to the computational
cell used in convective balance. The average value of the stress tensor ¢ and heat
flux vector q are used on the edges of the auxiliary control volume. The net viscous

contribution of i1s then recovered in this form

Q
D(pu), = oY Z [amn; + azyn;]k, (A.10)
k/
D _ 4 / / A1l
(pv)p - '(—2; Z [nynx + Uzyny] k! ( . )
k/
Q
D(pe)y = G Z [(uam + U0y — qu)ng + (U0zy + VOyy — Qy)n;]k/ (A.12)
k/

where the summation over k’ refers to all the outer edges the auxiliary control volume
', shown in Fig. A.2, and n’ = (n,n,) is the normal vector to the boundaries of
the auxiliary cell. The discretization formulas yields second order accuracy on grids

with a smooth variation in the distributions of points.

A.3 Space Conservation Law

By discritizating the space conservation Law, Eq. 2.8 over a moving control volume

shown in Fig. A.3, one gets

("~ 07) = >t (4.13)

where the summation is over all the outer edges of the control volume and 69 =

Q™ — Q° is the change of the cell volume during At, and superscript n,0 denote the
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Figure A.1: Domain of influence of node P for a cell-vertex scheme

Figure A.2: Auxiliary control volume for discretization of the viscous terms
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Figure A.3: A moving control volume at two time levels

new and old time levels respectively.

Following Demirdzic and Peric [54], the grid velocities are defined so that the
rate of change of the cell volume obtained from is exactly equal to its geometrical

rate of change, i.e.

n2 +n" 6z,
= % A A.14
U 2nn At ( )
ng + 1y 0y,
e — Al
Y 2ny At (A.15)

where dz. , dy. are the components of ér,, shown in Fig. A.3. We note that Eq.
A.14 is not unique, but rather the most logical way of calculating grid velocities to

satisfy SCL. The methodology can be readily applied to three-dimensional grids.
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A.4 Artificial Dissipation

In principle, the physical viscous terms of the Navier-Stokes equations are capable
of providing the numerical scheme with the dissipative property necessary for sta-
bility and capturing discontinuities. However, for high Reynolds-number flows, this
can only be achieved by resorting to extremely small mesh spacing throughout the
domain. Thus, in practice, it is necessary to introduce artificial dissipative terms
to maintain stability in the essentially inviscid portion of the flow field, and to effi-
ciently capture discontinuities. These additional dissipative terms must be carefully
constructed to ensure that the accuracy of the scheme is preserved both in the in-
viscid region of the flow field where the convective terms dominate, as well as in
the boundary layer and wake region where the artificial dissipation terms must be
much smaller than the physical viscous terms. Previous Navier-stokes solutions on
highly stretched meshes [[26, 58]] have demonstrated the need for different scaling
of the artificial dissipation terms in the streamwise and normal directions within
the regions of viscous flow. However, for unstructured meshes, directional scaling is
significantly more difficult to achieve since no mesh coordinate line exist. In fact, un-
structured meshes have traditionally been considered to be truly multi-dimensional
isotropic constructions with no preferred direction. However, as stated perviously,
the efficient solution of high-Reynolds-number viscous flows requires the meshes with
highly stretched elements in the boundary layer and wake region, since the physical
phenomena are highly directional in nature. For such meshes, even in the unstruc-
tured case, a direction and a magnitude of the stretching can be defined for each
mesh point, as shown in Fig. A.4. This stretching vector, denoted as s need not
necessarily line up with any of the mesh edges. If the mesh is directly derived from

structured quadrilateral mesh by splitting each quadrilateral into two triangles, the
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stretching magnitude and direction may be taken as the aspect ratio and the major
axis of the generating quadrilateral element for each triangular element respectively.
In more general cases, the generation of directionally stretched unstructured mesh
requires the definition of local stretching factors throughout the flow field. These
can in turn be used to scale the dissipation terms. It is important to note that these
stretching vectors represent grid metrics which do not depend on the flow solution.

The artificial dissipation operators on unstructured meshes has previously been
constructed as a blend of an undivided pseudo-Laplacian, proposed by Holmes and
Connel {25], and biharmonic operator in the flow field [27]. The pseudo-Laplacian

for a node is given by
Vi (w;) = Z Wi (W — W;) (A.16)
k=1

where k represent all neighbors of node ¢. The weights wy, are chosen such that
the pseudo-Laplacian of a linear function will be zero, as would be the case for true

Laplacian. These weights are defined as
Wg; = 1+ Aw;w (A17)
where Awj,; are computed as

Awgi = Xai(Te — i) + XUk — ¥) (A.18)

where

(I:ryRy - [nyw)i
(Imlyy - Ia%y)i

S (Izsz - ]:cz:Ry)i
. (Im]yy — 17 )z’

Ty

Xzi =

(A.19)

in the above equations R and I represents the first and second moment of inertia of
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the control volume in each coordinate direction, that is:

n

R.; = Z(CCk—JSi)

k=1
n

Ry = > (ue—w) (A.20)

k=1

and

Iw:c,i = i:(fl3k—$i)2

x
1l
s

I

Yyt

(yx — i)? (A.21)

M-

31

—

Lyi = Y (zx—z:)(ys — u1)

x
—

The biharmonic artificial viscosity term is formed by taking the pseudo-Laplacian
of Vwi
n
Viw; =Y (Vwy — Vw;) (A.22)
k=1
Since the biharmonic operator may be viewed as a Laplacian of a Laplacian, the

dissipation operator may be reformulated as a global undivided Laplacian operating

on a blend of flow variables and their differences
D(w) = Qa[U,, + Uy, (A.23)

where

U = kyw — k4 V3w (A.24)

In the above equations, §2 represent the area of the control volume, which is of
the order Az?, and V2w denotes the undivided Laplacian of w. The first term in
the above equation constitutes a relatively strong-order dissipation term which is

necessary to prevent un-physical oscillations in the vicinity of a shock. This term
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must be turned off in regions of smooth flow. This is accomplished by evaluating

k% at mesh point 7 as
(ky) = y k28— P (A.25)
> k=1Px + pi
Hence k) is proportional to an undivided Laplacian of the pressure, which is con-

structed as a summation of the pressure differences along all edges meeting at node
t, as depicted in Fig. A.4. This construction has the required property of being of
the order unity near a shock and small elsewhere. k5 is an empirically determined
coefficient which is taken as O for subcritical flows, and as 1/2 for transonic and
supersonic flows.

In Eq. A.23, the overall scaling of the dissipation is performed by the factor
o, which has previously taken as proportional to the maximum eigenvalue of the
Euler equations for inviscid flow calculation [27].
Directional scaling of the dissipation may thus be achieved by replacing Eq. A.23
by

D(w) = Qa1 Uge + 2o U,y (A.26)

where «; and ag represent different scalings in the £ and n directions respectively.
Here, ¢ denotes the direction of the mesh stretching and 7 the direction normal
to £. Appropriate expressions for a; and a; remain to be determined, as well as
the discretization procedure for the above operator on unstructured meshes. On
structured meshes, the dissipation is often scaled by the maximum eigenvalue of the

Euler equations in each coordinate direction, which is given by
e = [|u] + ]An (A.27)
Ap = [|v] + ]AE (A.28)

where u,v, A€ ,An represent the local fluid velocity components and the mesh spac-

ing respectively, in computational space, and ¢ denotes the speed of sound. However,
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a more even distribution of the dissipation can be achieved in the two mesh coordi-

nate directions,[26], by replacing the above scaling with

Ae = B(r)Ae (A.29)
Xy = B, (A.30)
where
o(r) =147*° (A.31)
and

Ae o lul+cAn
On unstructured meshes, an isotropic value of maximum eigenvalue at each

mesh point can be calculated as
A:/'wxdu+qm| (A.33)
50

where the integration is performed around the boundary of the control volume for
the particular mesh being considered. The discrete approximation of the above
integral yields the form for A
n
A= Z luaAyap — vapAzap| + cap\/ Azhg + Avip (A.34)
e=1
where Az ,p and Aysp represent the x and y increments along the outer edge of
AB of element e, as shown in Fig. A.1, and uap, vap and c4p represent the average
values along the edge AB. By considering the equivalent integration around the con-
trol volume on a structured quadrilateral mesh, it can be seen that A approximates

the sum of the eigenvalues in the two space dimensions, i.e.

A=A+ A (A.35)
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k=1 Sv

Figure A.4: Definition of local stretching vector for unstructured triangular mesh
and the coordinate system associated with stretching directions

Furthermore, the magnitude of the stretching vector s on the structured mesh can
be considered to be closely related to the cell aspect-ratio. Thus, by analogy with

the structured mesh case
A A
s~ A_f] ~ )\—Z (A.36)
where s represent the magnitude of s, and the second approximation assumes that
the magnitude of the speed ¢ is much greater than the streamwise and normal
velocities u and v in the viscous flow region. Thus, Eqgs. A.35 and A.36 permit an
estimate of the values of the maximum eigenvalues in the directions parallel and

normal to local stretching vector, given the values of A and s. From Egs. A.29

through A.32, the o; and a coefficients of the of Eq. A.26 are constructed as

1
Qq ¢(S)S 1 (A.37)
ay = ¢(s_1)8 1 (A.38)

Next, the discretization of the scaled Laplacian of Eq. A.26 on unstructured meshes
must be considered. Previously, for inviscid flows [27, 59], the scaled Laplacian of

Eq. A.23 was approximated as an accumulated edge difference in computational
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space, i.e.

1 n
Uee + Uy = 5 > Uk-Uy (A.39)
k=1

where k = 1,...,n represent the n neighbors of node i, and the difference is taken
along all edges meeting at node i. For a cartesian grid this reduces to the familiar
five point Laplacian finite difference formula. Equation A.26 can easily be approxi-
mated on a cartesian mesh aligned with the ¢ and n coordinate directions, simply by
multiplying the constructed second differences in the £ and 7 directions by «; and
oy respectively. Alternatively, this can be obtained by considering the finite-volume
approximation to a Laplacian on a cartesian mesh in a stretched computational
space, where /a7 stretching is applied to & direction, and /a3 stretching is applied
to n direction. By considering the equivalent stretching of computational space
for unstructured meshes, a finite-volume approximation to the Laplacian yields the
discretization formula for the directionally scaled dissipation operator

n
D(w;) = Qla;Uge + Uy = Y [Ui = U] [ cos® 6 + ansin® 6] (A.40)

k=1
where 0 represents the angle between the kth mesh edge at node i, and the principal
stretching direction &, as shown in Fig. A.4. From the above equation, it can be seen
that if the kth mesh edge coincides with the £ or 5 directions, then the difference
along that edge is multiplied by «y or a, respectively, and if oy = «y, then the above
discretization reduces to isotropic accumulated edge difference previously employed.

Since in practice a; and ay vary throughout the mesh, equation A.40 is replaced by

- Ak + Ai:l
D(w;) = U, -Uy} | —— A 41
() = 310~ U] |2 (A1)
where
Ay = aqy cos? O + agy sin’ 6 (A.42)
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and the 7 and k subscripts refer to variables evaluated at nodes 7 and k, thus ensuring

a conservative formulation of the dissipation operator.

A.5 Integration to Steady State

The discretization of the spatial derivatives transforms Eq. A.2 into the set of

coupled ordinary differential equations
dWi
' dt

where n is the number of mesh nodes. The residual Q(w) represent the discrete

Q +[Q(w;) = D(w;)] =0 ¢=1,2,3,...,n (A.43)

approximation to the convective fluxes. D(w) represents the dissipative terms, i.e.
the discrete approximation to the viscous fluxes, as well as the artificial dissipation
terms. These equations are integrated in pseudo-time using a five-stage hybrid time-

stepping scheme given by

w@® = w"
At
wl) = W(O)—a1ﬁ[Q(W(O)) DO]
At
w® = w(O)—ag—ﬁ [Q(W(l)) Dl]
WO = w0 a2 [Qw®) - D] (A4
At
wlt = W(O)~Oz4*'Q— [Q(W(S)) D3]
At
w® = wO _ s [Q(W(4)) - D4]
Wn+1 — W(S)
where
D, = D1=D(W(O))
D; = D3;=g4Dw®?) +(1-6)DWwY) (A.45)

D; = yD(w®¥)+(1-7)D(w®)
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w" represents the value of the solution vector at the nth time step and w(® represents
the values at the qth stage within a time step. The dissipative operator D(w) is
evaluated only at the first, third, and fifth stages of the scheme, and is employed
to construct the subscripted D, operator which represents a linear combination of
present and previous evaluation of D(w). This scheme represents a particular case of
a large class of multi-stage time-stepping schemes where the coefficients are chosen
in order to maintain good stability properties when the viscous terms are dominant,
and to ensure large damping of high-frequency errors. The values of these coefficients
are taken as

B=056 ~v=044

and

a1=1/4 012:1/6 a3=3/8 Oé4=1/2 Ol5=1

A.5.1 Local Time Stepping

Convergence to the steady-state solution may be accelerated by sacrificing the time
accuracy of the scheme, and advancing the equations at each mesh point in time by
the maximum permissible time step in that region, as determined by local stability
analysis. Stability limitation due to both convective and diffusive characters of
Navier-Stokes equations must be considered. The local time step is taken as

(A.46)

At = CFL( Al Aty )

At + Aty
where CFL is the Courant number of the particular time-stepping scheme, and At,
and Aty represent the individual convective and viscous time-step limits respectively,

the convective time-step limit for Euler equation on unstructured meshes is given
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by

where € denotes the area of the control volume and A, represents the maximum
eigenvalue of the inviscid equations averaged around the boundary of the control
volume, given by

A= ZluABAyAB —UABAiL’ABl +CABVAm2AB+Ay2AB (A.48)

e=]

The viscous time-step limit is taken as

Aty = K2 (A 49)
Ad

where K is an empirically determined coefficient which determines the relative
importance of the viscous and inviscid time-step limits in the final expressions, and
has taken as 0.25 in this work. A, and Ay represent the maximum eigenvalue of the
convective and diffusive operators, respectively, averaged about the boundary of the

control volume, which for an unstructured mesh in discrete form is given by

. g . HAB 2 2
M= RePro z::l g (\Tas T Aas] (A.50)

where pap and pap represent averaged values of viscosity and density along the

outer edge AB of each element e, as shown in Fig. A.1.

A.5.2 Implicit Residual Smoothing

The stability range of the basic time-stepping scheme can be increased by implicitly
smoothing the residuals. Thus, the original residuals R may be replaced by the

smoothed residuals R by solving the implicit equations:

ﬁi = Ri + Evzﬁi (AS].)
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at each mesh point ¢, where ¢ is the smoothing coefficient and VZR; represents the
undivided Laplacian of the residuals which has been previously computed using the
pseudo-Laplacian formulation and the geometrical weights [27], so that Eq. A.52

may be written as:

= Ri + € Z?:l ’wj’iﬁj
' 1+e€ Z?:l Wi

For highly stretched structured meshes, the use of individual smoothing co-

(A.52)

efficients in £ and 1 mesh coordinate directions which vary locally throughout the
mesh, has been found to improve significantly the convergence rate [26]. The use
of locally varying smoothing coefficients has the effect of making the scheme more
implicit in the direction normal to the boundary layers, or normal to mesh stretching
direction, and less implicit in the tangential direction. the implementation of the
implicit residual smoothing with locally varying coefficients on unstructured meshes

is accomplished by rewriting Eq. A.52 as:
—R—i = R.L + 55ﬁi55 + EWE’TU (A53)

where £ and 1 now represent the directions tangent and normal to the local mesh
stretching vector, as described in the Sec. A.4. By analogy with the structured

mesh [26], and making use of Eq. A.36, the smoothing coefficients are taken as:

1 [/cFL 1 2
€ = max |z L(Z‘FFS%— 1¢(s)> - 1} ,O} (A.54)
1 [/ cFL 2
677 = max Z (m/—*sil(b(sﬁl)) —1‘| ,O:| (A55)
(A.56)

where CFL and CFL* are the Courant numbers of the smoothed and unsmoothed

schemes, respectively, s denoted the magnitude of the stretching vector, and ¢ is
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given by Eq. A.31. Since Eq. A.53 now contains a directionally scaled Laplacian, it
can be discretized on an unstructured mesh in a manner analogous to that employed
for the directionally scaled dissipation operator, as given in Eq. A.40. For economy
the resulting set of algebraic equations are solved by performing only two Jacobi

iterations.

A.6 Time-Accurate Stepping Scheme

For unsteady flow calculations, the time accuracy of the solution is obtained by
means of a dual time stepping scheme, which is presented in this section. Equations

A.43 can be discretized implicitly in time as follows

% [w"H Q] + R(w™) =0 (A.57)

where R is the sum of the three flux contributions, and the superscripts denote
the time step of the calculation. If we discretize the time derivative term with the

implicit second order Gear scheme, we obtain:

3

'2_K£ [W"+1Qn+1] _ _g_ [WnQn] 4+ —

n—lon—1 n+1ly __
X SR [w" 1" + R(w™ ) =0 (A.58)

"+1 is non-linear due to the presence of the R(w™*!) term and

This equation for w
cannot be solved directly. One must therefore resort to iterative methods in order to
obtain the solution. The time integration of the discretized Navier-Stokes equations
at each time step can then be considered as a modified pseudo-time steady-state

problem with a slightly altered residual:

_ 3
T 2At

W] - 2w+ s W S R(w) (A59)

R*(w) OAt

In this case, the vector of flow variables w which satisfies the equation R*(w) = 0 is

the w1 vector we are looking for. In order to obtain this solution vector, we can
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reformulate the problem at each time step as the following modified steady-state

problem in a fictitious time, t*

dw
dt*

+ R*(w) =0 (A.60)

to which one can apply the fast convergence techniques used for steady-state cal-
culations. Applying this process repeatedly, one can advance the flow field solution
forward in time in a very efficient fashion.

The time discretization of Eq. A.58 is fully implicit. However, when solved by
marching in t*, stability problems can occur when the stepping in the fictitious time
t* exceeds the physical one. This generally occurs in viscous calculations where core

flow cells are much bigger than those close to solid walls. Based on a linear stability

analysis, the stepping in ¢* must be less than At} . where
. ) ., 2CFL*
Aty . = min [At ) SCFL At] (A.61)

*
max?

After limiting the time step to At the scheme becomes stable and the physical

time step At can be safely chosen solely on the basis of the accuracy requirement.
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Appendix B

Baldwin-Lomax Turbulence Model

The most widespread turbulence models in use currently are either of multiple field
equation type or the algebraic type. Field-equation turbulence models are, in princi-
pal more general than their algebraic counterparts, and appear well suited for use on
unstructured meshes; the additional field equations may be discretized and solved
on the unstructured mesh in the same fashion as the governing equations. However,
the solution of additional field equations can be quite expensive, especially in the
thin boundary layer region near the wall, where the equations can become very stiff.
Algebraic turbulence models, on the other hand, are relatively inexpensive to com-
pute, and have demonstrated generally superior accuracy and reliability for limited
classes of problems, such as high Reynolds number attached flow over streamlined
bodies.

In this work, an algebraic Baldwin and Lomax model [30] is implemented for
the closure of the governing equations for its simplicity and success in simulating tur-
bomachinery flows [52, 53]. Description of the model in its original form is presented
hereafter.

The model is based on a two layer eddy diffusivity formulation. The effective
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turbulent viscosity is taken as:

; inner y* < Zros
Mt u: — (:u’t) Y sover (Bl)

Href (/Jf:)(mter y:rossover < y*

where y* is the dimensionless normal distance to the wall and ¥}, ,,oper 15 the mini-
mum value of y* at which the inner and outer formulation match.

The inner formulation follows the Prandtl-Van Driest formula. Dropping su-
perscript * for clarity, the eddy viscosity coefficient in the inner layer is defined

as

(,Ut)inner = p12 ‘w| (B2)

where

l=ky [1—exp(—y*/A")] (B.3)

is the length scale of the turbulence in the inner region, & is a model constant and
|w| is the magnitude of the vorticity vector and y* is the dimensionless distance

form the wall consistent with the dimensionless form, defined as

+_ VPuTwlY (B.4)

y__
Huw

In the outer part of the boundary layer the following formula is employed

(,Uft)outer =K Ccp p Fmax Ymoax FKleb (B5)

where K and C., are model constants and quantities Fi,; and yYmq, are determined

by the value and corresponding location of the maximum of the function

F(y) = ylw| [1—exp(—y*/A")] (B.6)
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Due to the potential existence of spurious maxima in F(y), the search for finding
the maximum of the function is limited to within y* values of 100 and 4000. The

Klebanoff intermittency factor Fxep is given by the following formula

Criowy]%]
Frip= |1+5.5 {MH (B.7)

ymaa:

Also, transition to turbulence can be modeled by setting a cut off value for the

computed eddy viscosity. The suggested criterion is

Hy = 0 Zf Hmaz < Omutm (BS)

The following values for the model constants are employed

At =26 Cop =16 Ckiep =0.3 (B.9)

k=04 K=0.168 Chpum=14
The turbulence length scales, Eq. B.3, which are related to local boundary
layer or wake thickness, are determined by scanning the appropriate flow values
along specified streamwise locations, referred to as turbulence stations. For struc-
tured mesh these lines can be reasonably considered as grid-lines in stream-wise
direction. For unstructured meshes, mesh points do not naturally occur at regular
streamwise locations. Thus, additional mesh lines normal to the wall boundaries
must be constructed and flow variables are interpolated into these lines. The turbu-
lence model is executed on each turbulence mesh line and the resulting eddy-viscosity
is transferred back to the computational mesh. This approach is previously used
by Mavripilis [60] for external flow. A similar methodology is implemented in this
work, where a sheared H-mesh is used as a background mesh for turbulence model.
The weighting factors required for interpolation of flow variables and eddy viscosity
from one mesh to another are computed and stored in a separate pre-processing

routine.
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Appendix C

CFD Code Validation

C.1 Bicircular Arc Cascade

This case has been traditionally used for the validation of numerical schemes in two-
dimensional turbumachinery cascades. The maximum thickness to chord ratio is 0.2
and spacing to chord ratio is 2. The inviscid ,Jaminar and turbulent flow conditions
are investigated for this configuration and the result are compared to numerical data
available in the literature [61, 19, 17].

Fig. C.1(a) shows the sheared H-mesh type grid used for laminar flow calcu-
lation. This type of grid is easy to generate and is suitable for relatively thin blades
with sharp leading and trailing edges. The spacing between wall and the first vertex
is 1073 chord and 1.5 x 1072 is the minimum spacing in the streamwise direction. For
laminar flow calculations the exit Reynolds number Re, = 500 , the exit isentropic
Mach number M,;; = 0.5 and the angle of attack is zero degrees. The isentropic
Mach number is computed from the ratio of the local static pressure to the inlet
total pressure. Mach number contours for this case are given in Fig. C.2(a) where

the maximum Mach number in the domain is 0.754. The flow is separated at about
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90 percent chord location as shown in Fig. C.3.

For the transonic turbulent flow the isentropic exit Mach number is My;; =
0.675 and Reynolds number is Re = 10°. Figure C.1(b) displays the sheared H-mesh
used for the turbulent flow calculations. The minimum mesh spacing at the wall
boundary is 2 x 1074, and in the z direction a spacing about 1.5 x 1072 is used to
obtain a good representation of the shock wave. The Mach contours presented in
Fig. C.2(c), reveal a clean capturing of the shock wave at about 72 percent chord.
The flow exhibits separation after the shock wave and then reattaches at about 80
percent of the chord and remains attached on the rest of the blade, as can be seen in
Fig. C.3. Figure C.4 shows the convergence history of the L, norm of the continuity
equation for the inviscid and turbulent flow calculations. The surface variation
in the computed isentropic Mach number (M,;) for the inviscid and turbulent flow
calculations are given in Fig. C.5. The results are in good agreement with numerical

results obtained by other researchers [61, 19].

C.2 SNECMA Turbine Rotor Blade

The airfoil investigated in this section is a 2D rotor blade, that is designed and tested
at SNECNA [62]. The blade is characterized by a turning of about 110 degree, with
an inlet blade angle of 53.36° and an exit blade angle of —65° measured from axial
direction.

Figure C.6 shows the unstructured hybrid mesh used for this case with details
of the mesh at leading and trailing edges. The hybrid mesh is constructed with
20 layers of hyperbolic structured mesh around the profile, which is converted to
triangles and the rest of the domain is filled with Delauney triangular mesh. The

minimum normal spacing at the wall is set to 2 x 1074
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For the flow analysis, the nominal angle of attack is set to —5 degrees, the exit
isentropic Mach number is Ms;, = 0.844 and the Reynolds number is 10°. Figure
C.9 shows a comparison of surface isentropic Mach numbers with experimental data
[62]. The results agrees fairly well on the pressure side and suction side of the blade.

Figure C.7 shows the Mach number contours with a close-up near the leading
and trailing edge regions. The maximum Mach number in the domain is 1.04 on
the suction side of the blade. The streamlines near the leading and trailing edges of
the blade are presented in Fig. C.8, which clearly show the stagnation point at the

leading edge and the trailing edge vortices.

C.3 VKI-LS89 Transonic Turbine Cascade

This case is a high pressure turbine nozzle guide vane profile, tested at Von Karman
Institute [57]. The flow turning is about 70°, the inlet flow angle zero and the
spacing to chord ratio is 0.85.

Figure C.10 shows the unstructured hybrid mesh used for this case with details
of the mesh at leading and trailing edges. The hybrid mesh is constructed with
25 layers of hyperbolic structured mesh around the profile, which is converted to
triangles and the rest of the domain is filled with Delauney triangular mesh. The
minimum normal spacing at the wall is set to 1.2 x 1074,

For the flow analysis, the Reynolds number is 10° and exit isentropic Mach
numbers My;, of 0.875 and 1.02 are investigated. Blade isentropic Mach number
distributions are presented in Fig. C.13 as function of a reduced coordinate (s/c)
measured along the profile surface and are compared with the experimental results
[57]. The flow steeply accelerate along the suction side up to (s/c = 0.3). A small

plateau (s/c = 0.35-0.4) is followed by a re-acceleration. For the lower exit Mach
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number Ms;; = 0.875, the velocity distribution is then rather flat. For the higher
exit Mach number My;; = 1.02 , the flow accelerate up to (s/c = 0.85-0.95). A shock
is then observed s/c = 1.05. The velocity distribution along the pressure side varies
smoothly, with no existence of a velocity peak downstream of the leading edge. The
Mach contours for both cases are shown in Fig. C.11. The streamlines resulting
from the flow analysis at the lower exit isentropic Mach number My;; = 0.875, are
also shown in Fig. C.12 which clearly show the leading edge stagnation point and

the von Karman vortices at the trailing edge of the blade.
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Figure C.2: Mach number contours for bicircular cascade
(a)Inviscid flow My, = 0.675 (b) Laminar Flow My;, = 0.5, Re = 500, (c¢)Turbulent
flow M2is = 0675, Re = 106
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Figure C.3: Streamlines for bicircular cascade
(a)Laminar Flow (b) Turbulent flow
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Figure C.4: Convergence history for bicircular cascade
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Figure C.5: Isentropic Mach number distributions for bicircular cascade
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Figure C.7: Mach number contours for SNECMA cascade
MQ@'S = 0844,R6 = 106
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Figure C.8: Streamlines at leading and trailing edge of SNECMA cascade
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Figure C.9: Isentropic Mach number distribution for SNECMA cascade
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Figure C.10: The hybrid unstructured mesh for VKI cascade
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Figure C.12: Streamlines at near LE and TE regions of VKI cascade
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Figure C.13: Isentropic Mach number distributions for VKI cascade
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Appendix D

Stability Analysis

An analysis of the wall movement scheme stability shows that the predicted wall
velocity must be heavily under-relaxed in order to provide overall stability of the
algorithm. Consider for example the situation shown in Fig. D.1(a) where the
correct wall geometry has been obtained for all but one point, j. The calculated
wall slop at point j and its neighbors using central difference scheme is also shown
in Fig. D.1(a). After the next time step if the flow is supersonic, the new wall
pressure will be higher than specified at point j-1 and lower than specified at point
j+1. New wall positions will be assigned as in Fig. D.1(b). After the next time step,
the calculated wall pressure will become lower than specified, causing the point j to
move towards its correct position.

As may be seen, the assumed error at point j induces a position error at points
j-1 and j+1. For the solution process to converge, these induced errors must be
smaller than the original position error. Referring to Fig. D.1(a) and assuming

small deflections, the induced error will be :
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Ah; = At /%’3 < Ah (D.1)

where w is an under-relaxation factor.

Numerical experiment has shown that the relaxation factor itself should be
chosen to be proportional to 1/ a\/m for best convergence rate, where a is the
speed of sound. Choice of this relaxation parameter eliminated small geometry

oscillations which retard global convergence. We may now write Eq. D.1 as:

Atl® < A (D.2)
ap

For small deflection, linearized supersonic flow analysis gives

p M, M Ak (D.3)
P M2—1 /M?2-12Ax
Therefore the Eq. D.2 becomes:
2
At%%% < Ah (D.4)
or
At 1 M? -1 (D.5)

YAz 2P 1
If we set the CFL number, At/Az(u + a) equal to 1.0, we may rewrite this as :
M? -1

w < 2————-————-———M(M ey (D.6)

This analysis shows that the wall update scheme should be strongly under-relaxed
in order to provide overall stability when the flow is everywhere supersonic. w
approaches zero slowly as M goes to one, for example w < 0.19 for M = 1.02. A
similar discrete node stability analysis for subsonic flow shows that the wall update

scheme is also stable for subsonic flow.
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Figure D.1: Stability analysis of the wall movement
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