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ABSTRACT

Accurate Drag Prediction For Transitional External Flow over Airfoils

Wassim Basha

When analyzing the flow over airfoils at relatively low Reynolds numbers, tran-
sition from laminar to turbulent flow plays an important role in shaping the flow
features and in quantifying the airfoil performance such as lift and drag. In most
cases, laminar separation bubbles and transition zones that extend over a relatively
long portion of the airfoils surface are present. Hence the proper modeling of transi-
tion, including both the onset and extent of the transition region, will lead to a more
accurate drag prediction.

The onset of transition is related to the disturbances that propagate in the
laminar flow region. Analyzing such instabilities is carried out either by a full study
of the Tollmien-Schlichting waves or by the use of empirical correlations most of
which are based on results for two-dimensional incompressible flows. As for the
transition extent modeling, different intermittency functions of the linear, algebraic
or differential type have been developed.

The current work presents a transition model that combines existing methods
for predicting the onset and extent of the transition region. The transition onset is
predicted using Cebeci and Smith’s correlation which is based on Michel’s method
for incompressible two-dimensional flow while the extent of transition is quantified
by developing a linear model for the intermittency function. The proposed transition
model is implemented into the Spalart-Allmaras turbulence model available in the
commercial software, Fluent, using user defined functions (UDF). It is then used in

simulating transitional flow in different well documented experimental cases including

il



single-element and two-element airfoils under different free-stream conditions. Given
the experimental data, the results obtained with the developed transition model reflect
a consistent and significant improvement in drag prediction, when compared with the

drag predicted using a fully turbulent flow simulation.
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Chapter 1

Introduction

1.1. Accurate Drag Prediction

Accurate CFD-based drag prediction is considered as one of the important quality
measures in external flow simulation using computational fluid dynamics (CFD) due
to its sensitivity to all the details of the CFD simulation and its influence on the
aerodynamic performance of flying objects, airplanes in particular. As an example
of drag effect on aircraft design, a reduction of one drag count (ACp = 107*) on
a subsonic civil transport airplane means about 200 1b (1 person) more in payload.
Another study carried out on the Lockheed C-5 airplane showed that one drag count
at cruise conditions (0.4 % of the total drag on the aircraft) is equivalent to about
1000 1b in load [1]. Thus it is crucial that the drag values predicted from CFD flow
simulations would be as close as possible to the actual in-flight values in order to reflect
the actual performance of the aircraft and thus supply a more reliable performance
prediction.

Drag over a wing can be divided into three major components: viscous, induced
and wave drag. Induced drag is generated by the downwash velocity induced by the

wing tip vortices, wave drag is a result of the shock waves generated in transonic flows.



As for the viscous drag, it is mostly generated by skin friction and thus it is directly
related to the viscous flow behavior [1]. Induced and wave drag are generated by
normal forces and thus they can be well predicted using Euler equations simulations
provided that the viscous effects are confined to a thin layer near the wall. On the
other hand, viscous drag can only be predicted by solving the Navier-Stokes equations
since they are generated by tangential forces [1]. To concentrate on the accurate
prediction of viscous drag, incompressible transitional flow (M < 0.4) is simulated
over two-dimensional airfoils, where both wave drag and induced drag vanish.

With the maturity of CFD methods and the ever increasing computing power,
engineers are spending more time using CFD tools to design, analyze and predict
the aircraft aerodynamic performance. The main reason behind such a trend is the
improved effectiveness, accuracy and time-saving of current analytical /computational
tools. Given that wind tunnel testing is time consuming, very expensive and elabo-
rate, designers are also using CFD to reduce to a minimum the number of tests that
need to be performed so as to validate a given design hence reducing the cost of any
new design. Such a reputation acquired by CFD was made possible by decades of
work dedicated to improving CFD methodology, where it is becoming a more accurate
and reliable tool, and by the exponential growth of computer technology. Today’s
flow solvers are capable of predicting the different flow properties and variables with
high degree of accuracy such that most of the design and analysis procedures are
carried out in a reasonable run time. The CFD-based drag prediction is no exception
to the rule. However, and despite of all the advances that have been made in the CFD
discipline, there is still the need for more improvements particularly when it comes
to accurately predicting the aerodynamic drag. That is why accurate drag prediction

is a current area of active research.



During a CFD-based drag evaluation, several critical factors have to be consid-
ered. Those factors range from geometry fidelity, mesh quality, flow solver, conver-
gence level, laminar-to-turbulent flow transition model, turbulence model and drag
evaluation method [2]. The involvement of all these elements, whether in a positive
or negative way, makes it more difficult to accurately estimate the drag using CFD.

The focus of this work is on modeling the boundary layer flow transition from
laminar to turbulent flow. This is done while keeping in mind the other factors

mentioned earlier.

1.2. Transition Modeling

Laminar to turbulent transition modeling is one of the key factors affecting CFD-based
drag prediction using Reynolds Averaged Navier-Stokes (RANS) equations. Failing
to accurately predict the transition behavior in the boundary layer has an adverse
effect on the computed drag, as well as on other flow properties. This is due to the
large discrepancy particularly in shear stress between the laminar and the turbulent
regions. The flow behavior in these two zones differ significantly and thus all the flow
variables. Add to this the fact that the transition zone might, in some cases, extend
over a significant part of the airfoil surface. Thus in cases where the laminar and
the transition zones occupy a relatively large portion of the airfoil surface, neglecting
the effect of these two zones by assuming fully turbulent flow over the entire airfoil
will definitely result in numerically computed flow properties that diverge from the
actual ones. This will lead to an inaccurate evaluation of the viscous properties in
the boundary layer, and consequently an inaccurate drag prediction.

For about a century, a large number of studies focused on predicting the transi-
tion criteria. However, till today a complete understanding of this phenomenon and

what physically is happening in the transition region have not been fully understood.



In the next chapter, an attempt is made in order to explore the different aspects of
transition, the physics behind it and some of the methods being used in aerospace
related applications.

As it has been mentioned earlier, the current work will deal with the develop-
ment of a methodology that is capable of modeling transition in terms of its onset
and in terms of the extent of the transition region. When dealing with the subject,
several issues were taken into account. Firstly, such a model is intended for use with
solving the RANS equations and a turbulence model. Therefore it should be compat-
ible with the solver and the turbulence model to be used. Secondly, it must be easy
to implement and should require the Jeast processing time possible. All this should
be done without losing the credibility of the results to be obtained. Such a task was
performed in two steps, first the transition onset is predicted. This is followed by
introducing an intermittency function, I', that will represent the extent of the tran-
sition region. In a typical flow simulation using RANS solver coupled with a one- or

two-equation turbulence model, the effective viscosity ey is computed as:

Leff = L + it (1.1)

where py, and g, are the laminar and turbulent viscosity, respectively. One of the
methods of introducing the transition region in a fully turbulent boundary layer is
by multiplying the turbulent viscosity by the intermittency function I Then the

modified effective viscosity is equal to:

prefs = pr + (I * pr) (1.2)

Thus for I' equal to zero, the boundary layer is fully laminar and for T equal to one
the boundary layer is fully turbulent. For any value in between 0 and 1, the flow is

in the transition region.



1.3. Thesis Outline

A review of some of the previous methods developed for transition onset and extent
are given in Chapter 2. A complete description of the model, its implementation and
the CFD solver (in which it is implemented) is given in Chapter 3. Also a section
is included in the same chapter where an assessment of the CFD solver capabilities
was carried out (Sec. 3.7). This is followed by an assessment of the developed
free transition model where two cases, a single- and a two-element airfoil in two-
dimensional transitional flows, are tested under different flow conditions (Chapters
4 and 5). The last chapter summarizes the most salient points covered in the work,

this is followed by a layout of any future work.



Chapter 2

Transition: Onset And Extent

As mentioned in Chapter 1, transition plays an important role in estimating the
different flow characteristics, especially drag. Due to such a role and in order to
accurately predict transition, there is a significant body of literature on describing
some of the mechanism involved in transition and on quantifying it. This chapter gives
a brief description of previous work done on the two aspects of transition, namely
onset and extent, where an explanation of the different methods used in solving and
analyzing the problem with a description of some of the procedures developed for
predicting these two aspects with an emphasis on those that are related to external

flow analysis in aerospace applications.

2.1. Transition Onset

The first step in the transition analysis procedure» consists of the predittion of the
transition onset, due to the fact that most of the calculations to follow depend on
it. Transition onset is the point at which the transition region starts, the point
at which the disturbances in the laminar flow accumulaté to a certain degree such
that turbulent spots start to form and grow in the flow field. Going back to the

reason of which viscous flows undergo a transition from laminar into turbulent, a



wide range of parameters play a role in creating these disturbances. Those which
play a major role are free-stream turbulence, pressure gradient, surface curvature,
surface roughness, mass transfer and heat transfer. Studies concerning the prediction
of transition onset range from using empirical correlations, solutions of the unsteady
Navier-Stokes equations (direct numerical simulation), solving the linear stability
equations (LSE) or the parabolized stability equations (PSE). While it has been
proven that the direct numerical simulation (DNS) can predict the transition onset
for simple flows, the large computer requirements and the difficulty that it encounters
in the case of complex bodies makes it a hard choice to be implemented in engineering
applications in the near future [3, 4]. Regarding the PSE method, the concept is still

new and its direct application into engineering is still far from being realized [3].

2.1.1 Empirical Methods

A lot of effort has been spent on the development of empirical equations, that quantify
the flow behavior and are validated with experimental data, to predict the transition
onset. This could be due to the fact, that sophisticated theoretical approaches to
simulate transitional flow are difficult to implement and require a lot of computing
resources. However, most of the empirical methods are based on incompressible two-
dimensional flows. They are relatively accurate and are simple to implement. To
name some, there are the methods of Michel (1951), Granville (1953) Smith and
Gamberoni (1956), Van Ingen (1956), Crabtree (1958), and Van Driest and Blumer
(1963) [5, 6]. Of those that are widely recognized for their accuracy and ease of

implementation in engineering applications are Michel’s and Granville’s methods [5].

Michel Method:

Michel based his method on relating the transition momentum thickness Reynolds

number (Reg,,) to the local distance Reynolds number (Re,) at transition through a



universal relation given as [6]:

U(z)8(x)

Regy ~ ~ 2.9Re2;., 0.4x10° < Re, < 7% 10° (2.1)

z,ir?

Following Michel method, Cebeci and Smith [5] suggested later that the e® — method

that is discussed later, can be correlated using the following equation:
Reg,, = 1.174[1 + (22,400/Re;)] Re2*®, 0.1 % 10° < Re, < 40 % 10° (2.2)

Equation 2.2 is applicable for attached flows on airfoils for chord Reynolds numbers,

Re,, greater than 2 * 10°.

Granville Method:

Granville correlated the value of (Reg,, — Reg,,) to the mean Pohlhausen (Thwaites)
parameter A, _through a single curve [6]. Here again Rey,, is the Reynolds number
based on transition momentum thickness and Reg,, is the Reynolds number based on
the momentum thickness at the point of instability to Tollmien-Schlichting waves, z;.

The parameter ), is defined as [6]:

1 Tir
Am = o /m Mz)dzx (2.3)

(Zer —
where A\ = 62(dU/dz)/v. The transition onset is predicted through the curve defined
by Granville as [6]:
Reg (74,) = Reg (z;) + 450 + 4005 (2.4)

for A < 0.04. For an adverse gradient (A ~ —0.1), the last term is negligible and
transition is very near to x;. For a favorable gradient the last term is very large
and transition moves far downstream. In comparison with Michel method, an extra
computation of xz; is required. That is why the current method is known as the two

step method while Michel method is known as the one step method [6].



2.1.2 LSE Methods

The linear stability equations (LSE) analysis is based on the study of the disturbances
that occur in tfle laminar boundary layer flow. By analyzing the behavior and sta-
bility of these waves (disturbances), known.as the Tollmien-Schlichting instabilities,
transition is predicted. This is done by finding the solution of the wave equations
known as the Orr-Sommerfeld equation. For the case of two-dimensional incompress-
ible flows, the Orr-Sommerfeld equation can be written as a fourth;order ordinary

differential equation in the following manner [3]:

v (9" - 20°9" + a'¢) = i [(ou - w) (¢" - a%) — au"g] 29

Here primes denote differentiation with respect to y, u denotes the stream-wise veloc-
ity profile and ¢(y) denotes the complex amplitude of the disturbance stream function

1y’ defined by the fluctuating velocity components u’ and v’

W=y W

ay b - a‘r (2 '6)

The parameter «, the wave number of the disturbance, is related to A, the wave-length
of the disturbance, by A = 2II/a. w is the circular frequency. In a dimensionless form,

the Orr-Sommerfeld equation can be written in the following manner [3]‘:
¢" —207¢" + ol = iR [(auli — @) (¢" — o} §) — "] (2.7)

In Eq. 2.7, the primes denote differentiation with respect to § which is equal to y/L.
The parameter ¢ (7) is the complex amplitude of the disturbance stream function

V' (Z,y,7) and is defined as [3]:

¥ (2,9,7) = ¢ (y) expli (uZ — &7)] (2.8)

The dimensionless parameters are given by :

[
o = al, ﬂzﬂ—,d):@—uﬁ, R=2 (2.9)
Uo { v



The eigenvalues of the Orr-sommerfeld equation can be found, after applying the
correéponding boundary conditions, and thus the amplification rate o and frequency
w cah be calculated. Then the transition onset can be predictéd using the e”—method.
The procedure, which is famously known as the e™ —method, is based on the growth of
the Tollmien-Schlichting instabilities in the laminar flow. The analysis assumes that
when these disturbances in the boundary layer are amplified to a certain limit, usually
specified as the n factor, flow undergoes a transition from laminar into turbulent. Most
of the procedures use a value of n equal to 9 or € ~ 8100 and thus they are identified
as the €® — method. This factor, n, is defined as the logarithm of the maximum
amplification ratio (A/Ap) calculated using the o and w obtained from the solution
of the Orr-sommerfeld equation [3].

Smith and Gamberoni(1956) and independently van Ingen (1956) have esti-
mated that by using the temporal stability theory, the total growth ratio is equal

to
A jetag 9
— =exp owdt| =~ e (2.10)
Ap .
This will be known later as the e® — method [6]. In the spirit of that, Jaffe et al.
(1970) have proved later that by using the spatial stability theory a better results for
transition measurements can be achieved [6]. The growth ratio given by Jaffe et al.
is given as: :
A o 10
— = exp (—a)dz| =e (2.11)
Ay 2
Also based on the e® —method and the previous achievements in the field, Drela

and Giles have developed a transition prediction method that will be described below.

Drela and Giles:

What Drela and Giles did was the implementation of the spatial-amplification theory
based on the Orr-sommerfeld equation and the e® — method, that was developed by

Smith and Gamberoni and Ingen, in a transition prediction model [7}. By using the
j
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Falkner-Skan profile family for boundary layer flow description, the Orr-Sommerfled
equation has been solved for the spatial amplification rates of a range of shape pa-
rameters and unstable frequencies. Then based on the work done by Gleyzes et al.,
where they employed an incompressible integral boundary-layer formulation to calcu-
late the transitional bubble, the envelopes of the integrated rates are approximated

by straight lines which equation is given below [7]:

dn
dR(-lg

n = (Hk) {Reg - Reoo (Hk)] (2.12)'

Here, 7 is the logarithm of the maximum amplification ratio (same as n in the pre-
vious discussion). Hj is the kinematic shape parameter and it is defined with the
density taken constant across the boundary layer. The slope dfi/dReg and the criti-

cal Reynolds number Reg, are expressed by the following empirical equations {7]:

dn

= = 0.01{[24H, - 3.7+ 25tanh (L5Hy — 465) + 0.25}"* (2.13)
0

1.415 20 3.295
logioReg, = ( e 0.489) tanh ( e 12.9> S I LR CAL)

Equation 2.12 that describes the spatial amplification curves are plotted in Fig. 2.1, on
the next page, together with the actual amplification curves [7]. Then by integrating

Eq. 2.13 with respect to Rey, the growth ratio is defined as:

_ Reg d’fl
n—/ dReadReg (2.15)

However, Drela and Giles transform the coordinate system to the spatial co-
ordinate £ which is along the streamlines. Thus the integration of the amplification

rate is rewritten as [7]:

dn dn dR dn 1 du, U2 1
dn_ dn dRe,  dn 1€ duc ) peuct” 1 (2.16)
dé  dReg d€ dReg 2 \ u, d€ el 6
and by implementing the following empirical relations,
petict” _  6.54H, —14.07
= L(Hg) = 7 (2.17)
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¢ du, (Hp —4)? 1
= =m(Hy) = | 0.068——— —0.068 | ——— 2.18
. de = ) ( 0583 [(Hy) (2.18)
the new formula for the amplification rate, with respect to &, is written in terms of
Hy and 0 as:
dn dn m(Hg)+1 1
— = H [(Hy) = 2.19
Then the rate 7 can be expressed in the following manner:
Cdn
7 (€) = —dE€ (2.20)
o dg

where & is the point where Rey = Rey,.

2.2. Transition Extent

The second aspect of transition modeling is that of the transition extent prediction.
That is the zone over which the boundary layer undergoes a change from a fully lami-
nar flow to a fully turbulent flow. Such a region starts at the transition onset location
T, where turbulent spots start to form in the laminar boundary layer, and ends at the
point where the flow is fully (100 percent) turbulent. The region can be represented
quantitatively by using intermittency functions, generally known as I" functions. Such
functions are defined as the percentage of time in which the flow is turbulent. Thus
at the beginning of the transition zone, the I' function is 07 and it increases until
it approaches 17 at the end of the transition zone. A wide range of intermittency
functions have been developed. Those functions are classified under three types: the
linear-combination type, the algebraic type and the differential type functions which
are the most complex. In the case of linear-combination or algebraic model, the inter-
mittency distribution is needed as an input. For the case of a differential model, the
RANS equations of motion are solved with one- or two-equation turbulence closure.
Narasimha has performed a detailed survey of the different transition models that

have been proposed [8], here are some of these methods.
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Dhawan and Narasimha;

Dhawan and Narasimha [9] have correlated the experimental data collected and pro-
posed a generalized distribution function across the transition region. Such a function,
which is developed for two-dimensional incompressible flow along a flat plate, could
be based on the hypothesis of concentrated breakdown. The intermittency function
is defined as [8, 9]:

0 if r < ay, ‘

v = (2.21)

1—exp [—@“U—V”"-] —1—exp|-041€] if x> z,.

where x; is the transition onset location, U is the free stream velocity, n is the spot

formation rate (per unit time, per unit distance in the span-wise direction), o is a

spot propagation parameter and the parameter £ is defined as:

E=(x—z¢) /N (2.22)

which is a non-dimensional variable that describes the extent of transition and is a

function of A, the distance between the two stations where v = 0.25 and v = 0.75.

A= {33}7:0.75 - {$}7=0‘25 A (2.23)

It is to be noted, from Eq. 2.21, that transition is described by a universal intermit-
tency distribution. The same equation is plotted in comparison with experimental
data used by Dhawan and Narasimha [9] and as'it could be seen from Fig. 2.2 the
agreement between e_xperimental regults and the equation is obvicus.

Concerning the intermittency function distribution across the boundary layer,
that is in the direction normal to the wall surface, Dhawan and Narasimha suggests
that v varies from a constant maximum value close to the wall to zero towards the
edge of the boundary layer. However, it is noted by the authors that such a variation

has a secondary influence in determining the mean velocity profiles in transition [9].
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Dhawan and Narasimha also give a correlation between the local Reynolds number

at transition onset, x;, and the Reynolds number based on the parameter .
Rey = 5.0,1’%2@2;8 ’ (2.24)

Due to the universality of the intermittency funct(ion, such a relation is helpful in
linking the transition extent to the location of the transition onset. Other curves,
such as those given by Schubauer and Klebanoff (1955), Abu-Ghannam and Shaw
(1980), have also been suggested. However, what makes Eq. 2.21 more favorable is
the fact that it is directly related to the spot theory. Such a characteristic make it
possible to derive extensions to the equation based on data collected on spot behavior

for more complex cases [8].

Chen and Thyson:

Chen and Thyson [10] based their work on Emmons’ spot theory for predicting the
transition and they have suggested an intermittency function in order to achieve
a smooth transition from laminar into turbulent flow in the boundary layer. The
function, known as I'y, is defined as [10]:
" dr
Iy =1—exp [—G (x — :):tr)/ -——} (2.25)
Tgr €
where x;, is the location of the transition onset and the G factor is given empirically

by

3
_ B Uep 1
Cc2yp2

G (2.26)

where the transition Reynolds number Re,,, = (u.z/v), and C is a constant with
a recommended value of 60 [10]. This function, Iy, was derived for flows over blunt
bodies, where the flow experience a large variation of pressure gradient, as opposed
to the model given by Dhawan and Narasimha [9], which was based on flow over a

flat plate.

14



FEdwards et al.:

Edwards et al. [11] have developed a one-equation turbulence/ transition model that
is based on the Spalart-Allmaras one-equation turbulence model and a transition
model that was developed by Warren and Hassan [12]. The transport equation of
such a model is written as [11]:

Do

o = (1-D)i [cumm - + G (1-T) 50+

75

~ Ch1 7\ 2
fot-son- - 209

1 1
ngQ (VD) + V. <—u + —a) Vi (2.27)

o]l o

The intermittency function, I', developed by Edwards et al. consists of two com-
ponents, a surface-distance-dependent component I'y(s) which is based on the work
of Dhawan and Narasimha (Eq. 2.21) and a multidimensional component I'y(z,y)
developed by the authors that is used to calculate the transition distribution normal
to the surface [11]. Then the two components are combined together through the
following relation:

I(z,y) = 14 Tu(z,y) Cn(s) — 1 (2.28)

The surface-distance-dependent expression 'y is defined along the airfoil surface

starting from the stagnation point:

Tn(s) =1—exp(—0.412¢%) (2.29)
& =max (s— s,0) /A (2.30)
Rey = 9.0Re, "™ ' (2.31)

And the boundary-layer localization function I', (normal to the airfoil surface) is

defined as:
Ty(z,y) = tanh (n°) | (2.32)
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_ max [0, maz (ty, ta) — too)

- 2.33
g ts + too (233)
5000
b= (2.34)
VAR (2.35)
Cid
ts = \/C.Q (2.36)
2
too 1 % 10”7g93 (2.37)
Voo

I, approaches one near the wall and zero at the edge of the boundary. However
for simpler flows, the authors {11] suggest that the multidimensional component can
be omitted and thus only I'y can be used. So the intermittency function can be

simplified to the formula mentioned below with equivalent results.
I'(z,y) =Tnls) (2.38)

but in the case where calculations of transitional flow is performed on complex geome-
tries, and again according to the same paper, the multidimensional component T,
should not be neglected.

Concerning intermittency functions of the differential type, these models are
more complex and they either require the solution of an independent transport equa-
tion, or are integrated inside the turbulence model itself. Thus the solution of such
models would involve a considerable effort and time. To give a sample of this type of
functions, a brief introduction of two models, Steelant and Dick’s model plus that of

Cho and Chung, is given below.

Steelant and Dick:

Steelant and Dick transition model was develop'ed. in 1996 and it is to be used in con-
junction with conditioned Navier-Stokes equations [13]. Again this model is based on

the work of Dhawan and Narasimha. By differentiating Eq. 2.21 along the streamline
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direction, s, the following transport equation is obtained :

opy 4 dpuy n dpvy =(1—7) pvVu® + v28(s) (2.39)
ot Oz Oy

where (3 (s) = 2f (s) f' (s) represents the term 9”—?%)—27—‘5 in Eq. 2.21. The function

f(s) is to account for the distributed breakdown and is given by:

_ast+bs® +es?+ds' +e
N gs®+h

f(s) (2.40)

where the coefficients are

no no\ —0.5
a= /T b=—04906, c=0.204 (-U—) (2.41)

no\ ~1
d=0, e=0.04444 (-(7> Cg=10, h=10e (2.42)
and the streamline coordinate is defined as

s udz + vdy
Vu? + 2

and s’ = s — s;, where s; is the location of transition onset. The model was tested

(2.43)

by Steelant and Dick in conjunction with two proposed sets of conditioned averaged
Navier-Stokes equations for zero, adverse and favorable pressure gradient flows and

their results showed that the model performed well for all cases [13].

Cho and Chung;

Cho and Chung developed a k—e— turbulence model for free shear flows [14]. In the
model, the intermittency effect is incorporated into the conventional k — € turbulence
model equations explicitly by introducing a transport equation for the intermittency
factor v. The eddy viscosity is expressed in terms of k, ¢ and . The intermittency

equation is defined as :
O

17



where the diffusion term (D, ) and the source term (S,) are defined as :

_ 8 Uy 8’)/
Dy = o, [(1 -7) o 3%} | (2.45)
_ Pyo+ Pen k* 8y oy € .
Sy = Cy (1= 7) —=——"+ Co— Bz, 05, g7 (1=7) T (2.46)

and the terms and constants used in the above equations are:

ou; ,. , . ou,;

Pis= T, (i1 #J), Pon = —Utlj=, (i = j) (2.47)
J@wj ]8xj

K wg Qu Oy (2.48)

e (upuy)®® Oz Oz o

0, =10, Cp =16, Cp =015 Cp=0.16 (2.49)

As it can be noticed the development of a differential transition model would
require the modification of an existing turbulence model in order to incorporate the
new feature or the creation of an independent transport equation to solve for the

transition variable I". In both cases, a considerable effort and time is required.

Cebeci Transition Model:

The CFD solver developed by Cebeci is composed of an inviscid model coupled with
a boundary-layer equations model. In order to predict the transition onset, Cebeci
alternate between two methods. In the case of high Reynolds numbers, empirical
correlation described by Eq. 2.2 is used. And in the case of low Reynolds numbers,
the e™ — method is used [3]. Concerning the transition extent, Cebeci uses the inter-
mittency function I'y, suggested by Chen and Thyson (Eq. 2.25). However, in order
for the equation to cover the cases of two—dimensional low Reynolds number flows,
especially that separation bubbles increase in such domains, Cebeci has introduced
some modifications to the C parameter in Eq. 2.25. Tt was expressed as a function of
the Reynolds number based on onset of transition Re,,, [15]. Figure 2.3 is a plot of

such a variation which is compared to experimental data obtained for airfoils NACA
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66-0.28, ONERA-D, NACA 65-218, and LNV109A. The data obtained are for a range
of low Reynolds numbers that vary between Re. = 2.4 % 10° and 2 x 10°. These data

can be represented on a semilog scale by a straight line with the following form:
C? = 213 (logRe,,, — 4.7323) (2.50)

From the material presented in the current chapter, it is concluded that, by
using the empirical relations for predicting transition, a major time and effort could
be saved in comparison with the percentage accuracy to be gained by using more
complex procedures. This conclusion was instrumental in the choice of transition

model to use. This model is developed in the next chapter.

M= 500 401 350 2.86 Zﬂ

Figure 2.1: Orr-Sommerfeld spatial amplification curves,[Drela and Giles, [7]].
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Figure 2.2: Universal distribution of v vs. ¢ with transition due to different agents,
[Dhawan and Narasimha, [9]].
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Figure 2.3: Variation of C?/3 with Re,,, ,[Cebeci, {15]].
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Chapter 3

Numerical Analysis

Based on the information collected concerning transition analysis and the related
methods and procedures that are used in engineering applications, a model for free
transition is developed and implemented into the CFD solver, Fluent. After reviewing
the different procedures and methods developed to predict transition, let us make the
following observations. First, in order to correctly predict the drag coefficient, the
chosen method should be able to predict rather accurately the transition onset as
well as the intermittency function that would represent the transition zone for typical
airfoil sections used in transitional flow. While trying to achieve such an objective, the
simplicity and ease of implementing such a procedure in a CFD flow simulation was
taken into consideration. Moreover, the model must be inexpensive when it comes to
computing time and capabilities.

Fluent, the commercial CFD package, was used in this work to simulate the
flow. It includes the CFD solver Fluent 6.1 and the preprocessor Gambit 2.1.6.

The development and implementation of the free transition model is presented
in this chapter. This is followed by a parametric study of the effect of the CFD
parameters on the drag prediction. These parameters include type and size of mesh

used, the solution procedure of governing equations and their discretization, and the
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turbulence model used. The chapter is then concluded with a presentation of some
of the cases used to evaluate the solver behavior in order to better understand and

assess its capabilities.

3.1. Free Laminar to Turbulent Transition Model

Transition prediction procedure can be divided into two steps. The first task is to
predict the transition onset, and the second is to compute an intermittency function
that describes the transition distribution in the boundary layer. Then the procedure
is implemented into the flow solver Fluent, where the Spalart-Allmaras (SA) model

is used as the turbulence model.

3.1.1 Transition Onset Prediction

In order to predict the transition onset location, the correlation derived by Cebeci
and Smith, based on Michel’s method, is used. Cebeci and Smith suggested that the
following correlation, which is compatible with the e® — method, gives more accurate

results than the one given originally by Michel [5, 6]:
Reyp,, ~ 1.174[1 4 (22, 400/ Re, )] Re4® (3.1)

the Reynolds number based on the momentum thickness, Rey, and the local Reynolds

number, Re,, are defined as:

u.0

Reg = o : (3'2)
Ued

Re, = y (3.3)

where u, is the velocity at the boundary layer edge.
Equation 3.1 is derived for attached flows on airfoils for chord Reynolds numbers
greater than 2 * 10° and it is based on incompressible fluid flow properties. The

momentum thickness, 6, is calculated using Thwaites Method [16]. The equation
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derived by Thwaites, which he based on the integral momentum equation, is defined

as [16]:

6? ~ 0451// u>dr (3.4)
0

ub ¢
Using Eq. 3.4, Thwaites has proved that 6(z) can be predicted with an accuracy of
+3 % for most types of incompressible laminar boundary layer flows [6]. The inviscid

velocity profile along the wall, u., is computed by solving the Fuler equations using

Fluent.

3.1.2 Transition Zone Prediction

Now that the transition onset is known, the next step is to model the transition zone.
This is done by using an intermittency function that will divide the flow domain into
three zones: the laminar zone with a corresponding intermittency function value of
zero, the fully turbulent zone with a value of one and the transition zone that will
have a value ranging from zero at the beginning of transition to one where the flow
becomes fully turbulent.

The intermittency function used in the current work is a combination of two
components, a surface-distance-dependent one I', and a normal-distance-dependent

one I',. The two components are blended together through the following equation:
MNz,y) =1+T [ — 1] (3.5)

To evaluate I';, the function developed by Chen and Thyson [10], with taking
into account the modifications added later by Cebeci [15] to account for the separation
bubbles at lower Reynolds numbers, is used. Thus the function used to compute I,

is defined as [10]:

I,=1-exp [—G (x — xtr)/ @} (3.6)
Ztr ue
where the factor G is given as:
3w, 134
G= -CTz'Z'Z-Rex" (37)
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and the parameter C is replaced by the term suggested by Cebeci [15]:
C? = 213 (logRe,,, — 4.7323) (3.8)

where Re, ¢ is the Reynolds number at transition onset location (z;) and u., defined
as the velocity at the boundary layer edge, is replaced by inviscid velocity valges
computed by solving FEuler equations using Fluent.

On the other hand, the normal-distance-dependent term [, is evaluated based
on the work of Edwards et al. [11]. Thus the equations used in the current work are
[11]):

I’y = tanh (772) (3.9)

where 7 is defined as:

mazx [0, mazx (t1,ta) — to)
= 1
Ui ty + 1 (3.10)

The terms used in evaluating n are defined as:

500v
Q
ty = _.(_V_igi (3.12)
Cid

ts = /C,Q (3.13)

and

U2
too & 1% 107° -2 (3.14)

Voo
where C), is a model constant equal to 0.11. The values of C, and {,, have been
modified so as to match the CFD discreitzation method used in Fluent.

The transition model is then implemented into the flow solver, Fluent, where
the RANS equations are solved with the ‘Spalart—Allmaras turbulence model and
the intermittency function, I'(z,y), is introduced using the User-Defined-Function
(UDF) feature that is available in Fluent. This function gives access to different

variables in the flow solver and thus allows for modifying them [17]. The turbulent
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viscosity ps, computed using the fully turbulent Spalart-Allmaras turbulence model,
is multiplied by the intermittency function in order to reflect the introduction of the
laminar and the transition zones into the fully turbulent boundary layer. Thus the

modified effective viscosity Hess is computed as:

pegs = pr + (T * ) (3.15)

where py, is the laminar viscosity.

3.2. Description of The Computational Domain

The airfoil geometry, the computational domain and the mesh used for numerical flow
simulation were generated using Fluent preprocessor, Gambit. The software allows
the usage of rectangular and triangular elements. When analyzing external flow over
two-dimensional airfoils, the general routine is to use an O-type or a C-type compu-
tational domain where the airfoil is at the center of a circle that extends between 20c
and 50c¢ out, ¢ being the chord length. A sample of a structured O-type and C-type
meshes are shown in Figs. 3.1 and 3.2, respectively. Hybrid meshes are also used to
perform CFD analysis. A hybrid mesh is a combinations of both structured elements
(rectangular cells) that are usually constructed around the airfoil and unstructured
elements (triangular cells) that fill the remaining part of the computational domain.
Figure 3.3 shows a hybrid mesh constructed around the NLF-0416 airfoil. In the cur-
rent study, a variety of mesh types were used depending on the purpose of the analysis
to be carried out. Two boundary conditions are involved in this problem: The airfoil
surface is defined as a wall, and the outer boundary is defined as a characteristic
boundary. Wall boundary conditions are used to bound fluid and solid regions. In
inviscid simulations where the flow is assumed to slip along the wall surface, V.
= (. For viscous flows, the no-slip boundary condition is enforced at walls and thus

—
V = 0. Characteristic boundary condition, which are named in Fluent as pressure
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far-field boundary conditions, is a non-reflecting boundary condition that uses the
Riemann invariants to determine the flow variables at the boundaries. It is used to
model free-stream conditions at infinity, with free-stream Mach number and static
conditions being specified ([17]). For flow that is subsonic there are two Riemann

invariants, corresponding to incoming and outgoing waves:

20
vy—1

Ry = Vnoo — (3.16)
and
20@

Ri:vni+’y—1

(3.17)

where v, is the velocity magnitude normal to the boundary, ¢ is the local speed of
sound and v is the ratio of specific heats (ideal gas). The subscript oo refers to con-
ditions being applied at infinity (the boundary conditions), and the subscript ¢ refers
to conditions in the interior of the domain (i.e., in the cell adjacent to the boundary
face). These two invariants can be added and subtracted to give the following two
equations:

1
vn = 5(Ri+ Rw) (3.18)

and

e=17 R - R.) (3.19)

where v, and ¢ become the values of normal velocity and sound speed applied on the
boundary. At a face through which flow exits, the tangential velocity components
and entropy are extrapolated from the interior. At an inflow face, these are specified
as having free-stream values.

When performing numerical analysis, the grid used plays an important role in
the quality of the variables being computed. Such an effect is governed mainly by the

mesh’s density and concentration areas and the mesh’s quality.
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Mesh Quality:

The mesh quality has a significant impact on the numerical solution accuracy. The
quality can be measured by two major criteria, smoothness and element skewness.
Mesh smoothness is used to describe the change ratio in area for a two-dimensional
mesh. Such a change has to be gradual and any jumps in the size ratio have to be
avoided especially in areas where the flow undergoes critical changes or where the
flow gradients are high. The other aspect of mesh quality is the elements skewness.
Skewness can be measured, in Gambit, by the equiangle skewness check for two-
dimensional elements. Such properties compare the cells under examination to a
similar equilateral cell. A value of 0 indicates that the cell is equilateral and a value
of 1 is given for collapsed cells or in other words for cells with coplanar nodes. Even
though in some cases it is impossible to eliminate all the skewed elements in a mesh,

one must always try to lower the number of highly skewed elements.

Mesh Density:

It is obvious that the smaller the cells size is, the better the numerical results are.
However, this is accompanied by penalties that have to be carefully assessed in order
to optimize the output of the computations. First, the computational time is propor-
tional to the number of cells used and thus this would become increasingly expensive
as the number of cells increases. The second drawback is the increase in numerical
error associated with the discretization method and solver schemes used. On the
other hand and in order to fully capture the different flow phenomena a dense mesh
is a must. ‘So a compromise has to be done when building the mesh and choosing the
number of cells. One way to do this is to vary the mesh density along the computa-
tional domain. Thus one would have more cells where gradients are large, e.g. viscous
effects near the wall and would use a much coarser cell distribution where there is no

change in flow properties. Therefore, nodes are clustered in the vicinity of the leading
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and trailing edge where pressure gradients are relatively higher, downstream of the
trailing edge in order to capture the wake, and near the airfoil surface in order to fully
capture the boundary layer and the viscous properties associated with it. A coarser
mesh can be used at the outer boundary area and far away from the airfoil due to
the fact that flow properties are more uniform, property gradients are relatively low

and viscous effects are negligible.

Mesh Considerations For Turbulent Flow Simulations:

Due to the important role that turbulence plays in the transport of mean momentum
and other scalars, it is essential that the turbulence quantities be properly computed
so that high accuracy is achieved. This would involve the usage of a fine mesh that
would fully resolve the viscous-affected regions. The parameter y*, which is function
of the distance of the first cell away from the wall, is useful in checking if the mesh that
is used is capable of properly capturing the turbulent properties properly. However,
different turbulence models with different near-wall options within these models would
necessitate different mesh density near the wall region. Thus when constructing a
"viscous” mesh, it has to be kept in mind the turbulence model, and thus the wall
treatment functions, that will be used. This will put forward the distance of the first
cell from the wall to be used (A discussion of the suggested y* values to be used with
the Spalart-Allmaras turbulence model is given in Sec. 3.5). y* is a non-dimensional

parameter defined by the following equation:

yt = Hre (3.20)
L

where u, is the friction velocity, y, is the distance from point p, and p and u are the
fluid density and viscosity at point p, respectively.

In the results presented in the current work, mesh features such as quality,
density and distance from the wall are taken into account when generating the com-

putational domain. This will minimize the numerical error related to the grid been
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used and ensure that the solution is grid-independent.

3.3. Flow Solver Description

Fluent solver offers a wide variety of options to simulate the real flow conditions
as close as possible. The solver could be chosen to be segregated (implicit) or
coupled (explicit or implicit). The fluid can be simulated as 2D/3D, compress-
ible/incompressible, inviscid/viscous (Laminar and turbulent), with the choice be-
tween Spalart-Allmaras /K — e /K — w /Reynolds Stress as a turbulence model. In
the present study, the flow is an external compressible air flow which is represented
by the Navier-Stokes conservation equations described below. Simulations were per-
formed using the compressible, viscous flow properties and Spalart-Allmaras as the

turbulence model.

3.3.1 Navier-Stokes Equations

The compressible viscous flow can be described through a set of three equations known
as the conservation equations. Below is the general vectorial form of these equations

as it is implemented into Fluent [17].

The Mass Conservation Equation:

The equation for conservation of mass, or continuity equation, can be written as
follows:
Op

5 V- (07) = Sn (3.21)

The source term S, is the mass added to the continuous phase from the dispersed
second phase and/or any user-defined sources. The simplified form of the continuity
equation is given as:

—5% (puj) =0 (3.22)
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The Momentum Conservation Equation:

Conservation of momentum in an inertial (non-accelerating) reference frame is de-
scribed by:

0 _ —

5 (PU)+ V. (pUV) = =Vp+ V. (F) +p7 + F (3.23)

- ' —
where p is the static pressure, 7 is the stress tensor, and p¢ and F are the grav-

itational body force and external body forces respectively. F also contains other
model-dependent source terms such as user-defined sources. The stress tensor 7 is
given by:

7=V [(v? + V7T - %V.?I} (3.24)
where p is the molecular viscosity, I is the unit tensor, and the second term on the
right hand side is the effect of volume dilation. Again in the simplified format, the
momentum equation will become:

0 o, ——7
o (puiu;) = "o, + oz, (Ma—x] - P%-UJ) (3.25)

J

The Energy Equation:

The energy equation is given in the following form:

g—t (pE) + V. (7 (pE +p)) = V. (keffVT — Z h]ffj + (?eff.?)> + S, (3.26)

J

where kess is the effective conductivity ( & + k;, where k; is the turbulent thermal
conductivity, defined according to the turbulence model being used), and 7j is the
diffusion flux of species j. The first three terms on the right-hand side of Eq. 3.26
represent energy transfer due to conduction, species diffusion, and viscous dissipation,
respectively. S, includes the heat of chemical reaction, and any other volumetric heat

sources been defined. In Eq. 3.26

2

p v
E=h-%4+— 27
o132 (3.27)
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where enthalpy h is defined for ideal gases as

h=2 Y
J

and for incompressible flows as

p
h=Zth]-+/—)
J

In Eqgs. 3.28 and 3.29, Y} is the mass fraction of species j and

T
hj = / Cp’de

Tref
where T:..r is 298.15 K.

The simplified form of the energy equation is:
0 0 (wp orT ,
— (pTu;) = =— | =—=— — pbu;
Oz; (pTu;) 0x; <Pr 0z P uJ)

3.3.2 Euler Equations

(3.28)

(3.29)

(3.30)

(3.31)

For inviscid flow, a simplified form of the conservation equations, which is known as

the Euler equations, is solved. These equations neglect the viscous effect, and it is

usually used in cases where the viscous forces are not of interest or where these forces

are much less than those of the inertial ones. The mass conservation equation is the

same as for a viscous flow, but the momentum and energy conservation equations are

reduced due to the absence of molecular diffusion.

The Momentum Conservation Equation:

The conservation of momentum is described by:

8 -
5 (PT)+ V. (pTT) = —Vp+pg + F
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The Energy Equation:

Conservation of energy is described by:
0
g (pE) + V. (V (pE +p)) = =V. (Z thj) + Sh (3.33)
J

3.4. Discretization of The Governing Equations

Fluent is a control-volume solver that discretizes the governing flow equations, in the
conservative form, into algebraic equations in order to be solved numerically. In this
work, the implicit-coupled solver was used through out all the simulations performed.
The governing equations are solved simultaneously using the coupled solver where
flow variables are stored at the cell centers. The second-order upwind scheme was

used for solving the flow equations.

Governing Equations in Vector Form:

The system of governing equations, that describes a fluid entity in the computational
domain, are written for a control volume V with differential surface area dA in the

following form:

%/‘/WdV—{-]{[F—G].dA:/VHdV (3.34)

where the vectors W, F, and G are defined as

p pv 0
pu pvU + p/i\ Tri
W=\ po |, F= v + p}\ , G = Tyi (3.35)
pw pvw + p/lg Txi
pE pvE + pv TijV; + 4
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and the vector H contains source terms such as body forces and energy sources. Here
p, v, E, and p are the density, velocity, total energy per unit mass, and pressure,
respectively. 7 is the viscous stress tensor, and q is the heat flux vector.

The total energy E and total enthalpy H are related by the following formula:
E=H-p/p (3.36)

where H = h + |v]?/2.

In the case of low Mach number, the Navier-Stokes equations described above
(Eq. 3.34) become numerically stiff and will lead to poor convergence rates. Such
a problem is overcome by including time-derivative preconditioning in the coupled

solver.

3.5. The Turbulence Model

When random fluctuations occur in the velocity field, flow is said to be turbulent, or at
least it is starting to turn turbulent. Such a behavior in the velocity will definitely be
translated as fluctuations in the transported quantities such as momentum and energy.
These fluctuations are known to be of small scale and high frequency which make it
difficult to simulate through a system of equations that is easy and computationally
inexpensive to solve. Thus in order to overcome such a problem, the instantaneous
governing equations are modified through introducing a new set of variables and thus
turbulence models are needed in order to solve for those additional quantities.
However, when it comes to modelling turbulence, it is impossible to assign a
specific turbulence model as the one suitable for all kinds of flow problems. This
could be related to the fact that those models were developed for a specific type of
problems or with certain limitations. Thus when it comes to choosing a turbulence
model, a full understanding of the various models available with their potentials and

limitations is essential. Also the flow physics to be covered should be investigated.
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Such a knowledge is essential such that a better choice of turbulence model is made.
FLUENT provides the option to chose one of the following turbulence models

(for two-dimensional cases):
¢ Spalart-Allmaras model
e k — ¢ models

— Standard k& — € model
— Renormalization-group (RNG) k — ¢ model

— Realizable k& — € model
o k — w models

- Standard k£ — w model

— Shear-stress transport (SST) k — w model

e Reynolds stress model (RSM)

3.5.1 The Spalart-Allmaras Turbulence Model

The Spalart-Allmaras is a one equation turbulence model that solves a transport
equation for the turbulent (eddy) viscosity. It was based on empiricism and argu-
ments of dimensional analysis, Galilean invariance and selective dependence on the
molecular viscosity. It was developed specifically for aerospace applications involv-
ing wall-bounded flows and it gives good results for boundary layers with adverse
pressure gradients [18]. Even though the original model developed by Spalart and
Allmaras included a transition terms where the transition onset has to be specified by
the user, the model used by Fluent is fully turbulent. Another modification added by
Fluent is concerning the mesh resolution in the boundary layer region. In the original

model, it is essential that the viscous affected regions in the boundary layer to be
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resolved properly due to the fact that the model was developed as a low Reynolds
number model. However in Fluent, the model was adjusted to use wall functions in
case the mesh being used isn’t fine enough in such regions. Thus if the accuracy of

the turbulent flow computations is not critical, a coarser mesh could be used [17, 18].

The Transport Equation:

The actual variable solved by the Spalart-Allmaras transport equation is not the
turbulent viscosity itself but a modified form of it. This transported variable, 7, is
identical to the turbulent kinematic viscosity except in the near-wall region where

viscous effects become effective. The transport equation for ¥ is written as [17]:

5 s 1 T8 o o7\
E(pu)-l-axi (pvu;) = GV+;U:|:5;U;{('UJ+pV)5;;}+Ob2p (%)jl

=Y, + S5 (3.37)

where G, is the production term of the turbulent viscosity and Y, is the destruction
term that occurs in the near-wall region due to wall blocking and viscous damping,.
oyand Cyy are constants and v is the molecular kinematic viscosity. Sy is a user-

defined source term.

Modeling The Turbulent Viscosity:

The turbulent viscosity, u;, and the modified kinematic viscosity, 7, are related by

the following form [17]:

pe = pUfin (3.38)

where the viscous damping function, f,1, is given by:
3

X
Y] = .39
fo x*+CH (3:9)
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and

v
=Y 4
X == (3.40)
C,; is a constant.
Modeling The Turbulent Production:
The production term, G,, is modelled as [17):
G, = CpnpSv (3.41)
where
~ v
and
fo=1-—% (3.43)

B 1+Xfu1

Cy and x are constants, d is the distance from the wall, and S is a scalar measure of
the deformation tensor. By default in Fluent, as in the original model proposed by

Spalart and Allmaras, S is based on the magnitude of the vorticity [17, 18]:
where (2;; is the mean rate-of-rotation tensor and is defined by:

=3 (amj - 8xi> (3.45)

The justification for the default expression for S is that, for the wall-bounded

flows that were of most interest when the model was formulated, turbulence is found
only where vorticity is generated near walls. However, it has since been acknowledged
that one should also take into account the effect of mean strain on the turbulence
production, and a modification to the model has been proposed and incorporated into
Fluent. This modification combines measures of both rotation and strain tensors in
the definition of S:

S = |Qy] + Cproamin (0, S| — [$25]) (3.46)
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where Cprod = 20, Iﬂij| = \/29”‘91’]‘7 ISUI = \/251"31"

with the mean strain rate, S5;;, is defined as

Modeling The Turbulent Destruction:

The destruction term is modelled as [17]:

Y, = Cuw1pfuw @)2 (3.48)
where e
fu=9 B%%%ﬂ (3.49)
g=1+Cu (r®—r) (3.50)
_ §:2d2 (3.51)

Cuw1, Cuw2 and Cy3 are constants, and S is given by Eq. 3.42.

Model Constants:

The model constants Cy, Che, 05, Cu1, Cyui, Cus, Cus, and & have the following
default values {17]:

Co =0.1355, Cp=0622, op=3% C,=71

Cor =% + %2 0, =03, Cus=20, &=04187

Wall Boundary Conditions:

At walls the modified turbulent kinematic viscosity, 7, is set to zero. In the case of
a fine mesh where the laminar sub-layer is completely resolved, then the wall shear

stress is calculated using the laminar stress-strain relationship:

U pury

Ur 7

(3.52)
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On the other hand, if the laminar sub-layer isn’t resolved due to the usage of a
coarse mesh, then it is assumed that the centroid of the wall-adjacent cell falls within

the logarithmic region of the boundary layer, and the law-of-the-wall is used:

L _LlnE (M) (3.53)
Uy K 7

where u is the velocity parallel to the wall, u. is the shear velocity, y is the distance

from the wall, « is the von Karman constant (0.4187) and E = 9.793.

Near-Wall Mesh Guidelines for The Spalart- Allmaras Model:

In order to capture the laminar sublayer and the turbulent properties calculated by
the Spalart-Allmaras model, a mesh that comply with the guidelines suggested by
Fluent documentation is preferred. These directions are related to the distance of
the first cell center from the wall and they are defined by the parameter y*. These

suggestions can be summed up as [17):

e In order to resolve the laminar sublayer, y* at the wall-adjacent cell should be
on the order of y* &~ 1. However, a higher y* is acceptable as long as it is well

inside the viscous sublayer (y* < 4 to 5).

o At least 10 cells should be included within the viscosity-affected near-wall region
(Rey < 200) to be able to resolve the mean velocity and turbulent quantities in

that region.

But, and as it has been mentioned before, the original Spalart-Alimaras model
has been adjusted to accommodate coarser meshes by the introduction of wall func-

tions. So if a coarser mesh is used, then the subsequent guidelines can be followed

[17):

e The log-law is valid for values of y* between 30 and 60.
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e The upper bound of the log-layer depends on, among others, pressure gradients
and Reynolds number. As the Reynolds number increases, the upper bound
tends to also increase. y* values that are too large are not desirable, because

the wake component becomes substantially large above the log-layer.
e Ay value close to the lower bound (y* approx. 30) is most desirable.

e It is important to have at least a few cells inside the boundary layer.

3.6. Convergence to Steady State

The residual is an indicator of a solutions convergence. For a simulation to be fully
converged, the residuals have to be zero. The residual for the coupled solvers is
defined, in Fluent, as the time rate of change of the conserved variable (W). The
RMS residual is thus the square root of the average of the squares of the residuals in

each cell of the domain and is represented by the following equation [17]:

RW)=14/>_ (%?)2 (3.54)

However, this equation is the unscaled residual sum reported for all the coupled
equations solved by the coupled solver in Fluent {17]. This would make it difficult
to judge convergence. Thus a scaling option defined by the subsequent equation is

supplied.
R ( W )iteration N
R ( W)iteration 5

The denominator is the largest absolute value of the residual in the first five

(3.55)

iterations. Fluent also give the option of normalizing the residual value, which is
a measure of how much a residual has decreased during calculations [17]. Residual
scaling and normalization are better indicators of solution convergence than the stan-

dard equation (Eq. 3.54). Normalization is achieved by dividing the residual by the
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maximum residual value after M iterations:

—R (W )iteration N

3.56
R(W)iteration M ( )

After each iteration, the residual for each of the conserved variables is calculated.
On an ideal computer, these residuals are supposed to go to a zero value as the
solution converges. However on an actual computer, the residual decreases to a very
small value and then it levels out. For single precision computations, such a value
would be of six orders of magnitude drop, while on a double precision computations
it could reach up to twelve orders of magnitude drop. For the cases presented in
the current work, a double precision setup was used and the residual was monitored
until convergence is achieved. For most of the simulations presented in this work, the

residual would drop about eight to ten orders.

3.7. Numerical Assessment of Fluent for The

NACA-0012 Airfoil

Several simulations were carried out assuming fully turbulent flow to observe the be-
havior of the CFD solver, Fluent, under different conditions and thus achieve a better
understanding of the solver capabilities. In the cases considered, certain parameters
of the simulation problem were varied while keeping others fixed in order to assess the
solver sensitivity to such variables. Analysis can be categorized into three sections:
an assessment of the mesh type, an assessment of the turbulence model and a grid

sensitivity study.

3.7.1 Mesh Type Assessment

The first task was to evaluate the dependency of the results computed on the type of

mesh used. To do so, three different types of mesh were constructed on a NACA-0012
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airfoil, namely a structured O-mesh, a structured C-mesh and a hybrid mesh. Even
though great care was taken in order to make sure that all the three meshes have
exactly the same number of cells and characteristics, certain discrepancies could not
be avoided. This is due to the fact that each type of mesh has certain parameters
and constraints that have to be taken into account in order to achieve a smooth and
coherent computational grid. The number of nodes on the airfoil surface is sixty on
each side of the airfoil with a bell shape distribution of ratio equal to 0.65. Also the
distance of the first cell from the airfoil surface is equal to 10™* chord. It is to be
noted that when constructing the hybrid mesh, the structured boundary layer mesh
around the airfoil was extended for about 25 % of the chord length at the trailing
edge with a slope parallel to the trailing edge’s slope. Thus the airfoil is surrounded
by a structured C-mesh (see Fig. 3.3 for more details). This method is repeated for
all the hybrid meshes used in the current work. The reason behind such a choice was
to enable the solver to capture the viscous effects and the wake downstream of the
airfoil.

The experimental data used for the NACAQ012 case were obtained from a wind
tunnel experiment at the Langley Low-Turbulence Pressure Tunnel (NASA) [19]. The
data available in the report are those of the following free-stream conditions: Mach
number is equal to 0.15 and a set of Reynolds number equal to 2 * 108, 4 x 10°% and
6 * 105, The angle of attack varies between —4° and 16°. The numerical simulations
carried out using Fluent were performed for a Reynolds number equal to 2 * 108 and
a Mach number of 0.15 and over a range of angle of attacks varying between —4° and
20°. Table 3.1 gives a summary of the free-stream conditions of both the experimental
and numerical data. The turbulence model used is that of Spalart-Allmaras, the fully
turbulent version.

Figures 3.4 and 3.5 represent the variation in the lift and drag coefficients,

respectively, with the angle of attack. Comparing the lift values computed numerically
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and those obtained experimentally (Fig. 3.4), the following comments can be pointed
out. First, the lift coefficient predicted numerically, for the three different meshes
used, matches well the values given experimentally for @ < 8°. However, at higher
angles of attack the difference between experimental and numerical values reaches a
maximum of 8% at Cp q,. While the numerical model under-predicts Cp maz, the
location of the maximum lift is delayed by about two degrees and the stall region
is smoother than the one obtained experimentally. Comparing the numerical values
obtained by the three different meshes used, the agreement between the data obtained
is evident where the difference between the three curves is less than one percent
throughout the whole range of angles of attack considered.

Analyzing the drag coefficient variations with the angle of attack (Fig. 3.5), the
difference between the experimental and numerical data and also among the three
sets of numerical data is bigger than the differences observed in the lift coefficient
case (Fig. 3.4). Again at low angles of attack the corresponding data are closer than
those obtained at high angles of attack. The difference between experimental and
numerical data is as close as 0.5 % at an angle of attack of zero and it increases up to a
maximum of 25 % at higher angles of attack. By comparing the sets of data computed
numerically for each of the three meshes used, the difference between those sets is on
an average of 4 % at low angles of attack and about 10 % at high angles of attack with
those obtained by the hybrid mesh been the closet to the experimental data and the

ones obtained by the structured C-mesh been the farthest. The minimum difference

Experimental upstream flow | Numerical upstream flow
conditions conditions
Mach Number 0.15 0.15
Reynolds Number 2% 10%, 4 % 10° and 6 x 108 2 % 108
Alpha —4° to 16° —4° to 20°
Transition conditions Fixed at 0.07c Fully turbulent

Table 3.1: Experimental and numerical free-stream flow conditions for the NACA-
0012 case.
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between the numerical data computed using the hybrid mesh and the experimental
data is equal to 0.37% at angle of attack equal to 0° . And the maximum is at angle of
attack of 13° and it is about 13%. The discrepancy in numerical data obtained could
be related to the fact that when constructing the structured boundary layer mesh in
the hybrid mesh using Gambit, more control can be achieved on the quality of the
cells in the boundary layer domain. Thus the boundary layer flow and the related

viscous effects could be better resolved using such a mesh,

3.7.2 Turbulence Model Assessment

The next step was to assess the effectiveness of choosing the Spalart-Allmaras model
as the turbulence model. In order to do so, the two-equation turbulence model k£ — ¢
was used. Fluent offers the choice between the standard k& — e model and two modified
versions of the model, namely the Renormalization group (RNG) model and the
Realizable model. The mesh used in the current evaluation is the same hybrid O-mesh
used in the previous section (Sec. 3.7.1). Also the free-stream conditions are set with
the same conditions mentioned in Table 3.1. Figures 3.6 and 3.7 below compare the
lift and drag coefficient variation with respect to the angle of attack for the Spalart-
Allmaras, standard k—e and the RNG &k — e models beside those given experimentally.
From Fig. 3.6, the lift coefficient computed by the standard &£ —e model matches those
computed by the Spalart-Allmaras model. However, for a > 10°, the values obtained
using the Spalart-Allmaras model are closer to the experimental data from those
obtained by the other two models. On the other hand, the lift coefficient computed
by the RNG &k — ¢ model have the largest mismatch with the experimental values.
Plus the difference between the latter model and the other two sets of numerical data
is on the average of 5% at the low range of angles of attack and the it grows larger
near the stall angle. Concerning the drag coeflicient variations, the values computed

using the RNG k& — ¢ model matches the Spalart-Allmaras model at low angles of
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attack (o < 10°) while those obtained using the standard k — e model differ by about
10%. But at higher angles of attack, the two k — € models diverge rapidly from both
the Spalart-Allmaras and experimental values. As it can be concluded, the Spalart-
Allmaras turbulence model gives the closest results to the experimental data over a

wid range of angles of attack for both lift and drag coeflicients.

3.7.3 Grid Sensitivity Analysis

The third step evaluates the solution dependency on the y* value, and thus test the
different wall treatment functions used by the turbulence models. Five structured
O-mesh were used with the only difference among all was the distance of the first cell
from the wall. Such a distance was set as 5%1072, 1072, 5%10~4, 10~* and 5%1075 chord.
Also two turbulence models were used in the process, the Spalart-Allmaras model and
the standard k — ¢ model. As it has been menfcioned in Sec. 3.5.1, if a coarse mesh is
used and thus the laminar sublayer is not properly resolved, then the Spalart-Allmaras
turbulence model will automatically use wall functions in order to compute the fow
properties in the boundary layer. Concerning the k— e turbulence model, Fluent offers
the option between three different wall function treatments. Namely, the standard
wall treatment(SWT), the enhanced wall treatment(EWT) and the non-equilibrium
wall treatment(neqWT). The recommendations given by Fluent [17] concerning grid

construction for each of the wall function treatments are summarized in Table 3.2.

Turbulence Model | Wall Treatment | Recommended y™
Spalart-Allmaras Near wall 1 (up to 4-5)
wall functions { Between 30 and 60
k—e SWT Between 30 and 60
EWT 1 (up to 4-5)
neqWT more than 30

Table 3.2: Recommended y* values for different wall treatment functions.
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Simulations were performed on the five meshes with the free-stream conditions
been set at values of Mach number equal to 0.15, Reynolds number equal to 2 * 10°
and an angle of attack equal to 4°. Figures 3.8 and 3.9 plot the variation of lift and
drag coefficients with respect to y* for different wall treatment methods. Analyzing
the lift variations with the mesh density, it seems that for the Spalart-Allmaras model
and the k — e model with the EWT option, mesh independency is reached at the lower
end of the y* range with variations less than 0.5%. On the other hand, the k—e model
with the neqWT option has reached mesh independency at the high end of the y*
range with variations less than 0.2% while the k — ¢ model with the SWT option has
reached a peak at the recommended values of y*. By disregarding the lift coefficients
with y* values outside the recommended range given by Fluent (Table 3.2) , the
difference between the experimental lift coefficient and the numerical ones obtained
is on the average of 4% over-prediction with those obtained by the Spalart-Allmaras
model being the lowest at a value of about 3.5%.

Concerning the drag coeflicient behavior and by tracing the variation of drag
coefficient for the case of the Spalart-Allmaras turbulence model in Fig. 3.9, the
closet value to the experimental data corresponds to the case with the smallest y*
value. In other words, it corresponds to the mesh with the closest cell to the wall
where the laminar sublayer is fully resolved. This coincides with the recommendations
given by Fluent for the Spalart-Allmaras turbulence model (Sec. 3.5.1). Also mesh
independency is achieved for values of y* less than 10 which is in total agreement
with the behavior observed for the lift coefficient (Fig. 3.8). The same comments
can be made about the case of the k — € turbulence model with the enhanced wall
treatment option (EWT), where the same y* restrictions are applied.

When using the k — ¢ turbulence model with the standard and npn-equilibrium
wall treatment functions, the best drag coefficient values were obtained with higher

values of y* (20 < y* < 60), which again is in agreement with the recommended
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values given by Fluent manual and the conclusions drawn for the lift coefficient vari-
ations. This is also due to the fact that the law of the wall purpose is to bridge out
the gap between the wall and the outer layer of the boundary layer by using special
functions and thus a coarser mesh is required. Concerning the drag prediction, which
is highly dependent on the viscous effects in the boundary layer and thus require the
laminar sublayer to be fully resolved, it is clear from Fig. 3.9 that the closest match
with the experimental data belongs to the one computed by the Spalart-Allmaras
model. This is also in agreement with the conclusions drawn in the previous section
(Sec. 3.7.2). Also this is achieved with the finest mesh where the y* value is close to
1.

Going back to the points in the lift coefficient curve (Fig. 3.8) that are outside
the recommended range of y* and with values closer to the experimental lift coeffi-
cient, if the corresponding drag values are compared with the experimental one, it
could be noticed that the difference is much higher where it cross in some cases the 30
and 60% difference. Thus considering the price been paid, which is about 4% increase
in lift, at least 30% improvement in drag is achieved. From the discussion carried
out in this section, it could be clearly stated that the Spalart-Allmaras turbulence
model with a fine mesh, where y* values are less than 5, is a more desirable choice

for accurate drag prediction.
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b. A close view of the airfoil for an O-type mesh.

Figure 3.1: A sample of a structured O-type mesh of a NACA-0012 airfoil.

47



a. A complete view of the computational domain for a C-type mesh.

VAL
‘“ \X w\f\xﬂx{\ﬁq e \\Wr\\_“ﬁ\j%‘},' |

b. A close view of the airfoil for a C-type mesh.

Figure 3.2: A sample of a structured C-type mesh of a NACA-0012 airfoil.
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of the airfoil.

b. A close view of the Trailing Edge of the airfoil.
Figure 3.3: A sample of a hybrid mesh of a NLF-0416 airfoil.
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NACA-0012 (M = 0.15, Re = 2M, Fully Turbulent)
C, Vs Alpha
1.50
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Figure 3.4: Lift coefficient comparison between experimental and numerical data for
the Fully-Turbulent Spalart-Allmaras model on three different meshes for the NACA-
0012 airfoil.
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NACA-0012 (M = 0.15, Re = 2M, Fully Trubulent)
Cp Vs Alpha
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Figure 3.5: Drag coefficient comparison between experimental and numerical data
for the Fully-Turbulent Spalart-Allmaras model on three different meshes for the
NACA-0012 airfoil.
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NACA-0012 (M = 0.15, Re = 2M, Fully Turbulent)
C. Vs Alpha

1,50

T :
1.25 ’ 4%‘5&
1,00 7aaN

] L\J
0.75 .
0.50

C.
0.25
|
0.00
|

-0.25 ‘, —&— Experimental

1 ~E- Fluent S-A

—A— Fluent K-e-stand
-0.50 3~ Fluent K-e-RNG
075
Alpha

Figure 3.6: Lift coefficient comparison between experimental and numerical data for
different turbulence models for the NACA-0012 airfoil.
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NACA-0012 (M = 0.15, Re = 2M, Fully Turbulent)

Cp Vs Alpha
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Figure 3.7: Drag coefficient comparison between experimental and numerical data for
different turbulence models for the NACA-0012 airfoil.
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Figure 3.8: Lift coefficient variation with respect to y™ values for different wall treat-
ment functions on an O-type structured mesh for the NACA-0012 airfoil.
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Figure 3.9: Drag coefficient variation with respect to y* values for different wall
treatment functions on an O-type structured mesh for the NACA-0012 airfoil.
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Chapter 4

Transition Model Assessment for a

One-Element Airfoil

To test the transition model effectiveness and accuracy, flow simulations using the new
model were carried out for two well documented experimental cases: a single element
airfoil (NLF-0416) that is presented in this chapter and a two-element airfoil (NLR-
7301 with a trailing edge flap) that is presented in the next chapter. Even though a
single case is presented where the flow is compressible, the rest of the cases are for
incompressible flow conditions with Reynolds number greater than or equal to two
millions. Thus the test cases considered are chosen as to match the flow assumptions
under which the free transition model was developed. The results obtained with the
new transition model were also compared with those obtained with the fully turbulent

flow simulations.

4.1. NLF-0416 Airfoil (Incompressible Case)

The NLF-0416 is a Natural-Laminar-Flow airfoil designed for use in light, single;
engine, general aviation airplanes. It was developed and tested by D. Somers at

the NASA Langley Research center for the purpose of obtaining an airfoil with a low
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cruise drag coefficient while maintaining a high maximum lift [20]. The term Natural-
Laminar-Flow (NLF) airfoil refers to an airfoil which can achieve laminar flow over
a significant extent of its chord (> 30% chord) due to favorable pressure gradient
only. Such a fact makes it a good candidate for validating the free transition model.
The wind tunnel results published in [20] cover the following range of flow conditions:
free-stream Mach number varies between 0.1 and 0.4, free-stream Reynolds number
based on the airfoil chord varies between 1 and 9 millions, and the angle of attack
varies between —16° and 17°. Standard, low-speed, wind-tunnel boundary corrections
have been applied to the experimental data. However, the wake-rake total pressure
tube displacement corrections, a maximum increase of approximately 2 percent of the
measured profile-drag coefficients, has not been taken into account [20]. To maintain
the clarity of the data presented, error bars were not plotted in the figures shown in
the current work.

Numerical simulations were carried out using Fluent as the flow solver and the
Spalart-Allmaras turbulence model with and without the transition model, the orig-
inal fully turbulent SA version used by Fluent (referred to as the Fully-Turbulent
model) and the modified SA version where the free transition model is implemented
(referred to as the Free-Transition model). The test cases performed on the current
airfoil are divided into two groups, the incompressible test cases where free-stream
Mach number M., = 0.1 and the compressible subsonic test cases where the free-
stream Mach number My, = 0.4. The current section will deal with the incompressible
set while the compressible set will be discussed in Sec. 4.2. Thus for the incompress-
ible flow conditions, tests were carried out for two different Reynolds numbers (Re.
equal to 2 millions and 4 millions) and it covers a wide range of angles of attack.
Table 4.1 gives a summary of both experimental free-stream conditions available and
the numerical free-stream conditions used in numerical simulations.

Based on the simulations carried out on the NACA-0012 airfoil concerning the
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Mach Reynolds | Angles of Transition conditions
Number | Number Attack
Experimental | 0.1-04 | 1M to 9M | —16° to 17° Free transition*
Data
Numerical Data 0.1 AM —16° to 16° | a- Fully-Turbulent model
Case I b- Free-Transition model
Numerical Data 0.1 2M 0° to 16° | a- Fully-Turbulent model
Case I1 b- Free-Transition model
Numerical Data 0.4 6M —5° to 14° | a- Fully-Turbulent model
Case III b- Free-Transition model

Table 4.1: Experimental and numerical free-stream flow conditions for the NLF-0416
cases.(* Experimental data are only available for the following conditions: M = 0.1
and Re = 1M to 4M.)

mesh sensitivity (Sec. 3.7.1), where the hybrid mesh proved to give more reliable
results for the drag prediction, a hybrid mesh is used as the computational domain
for the current test cases. Thus a structured C-mesh is built around the airfoil so as
to control y* and the mesh stretching near the airfoil surface. The remaining part of
the computational domain is filled with unstructured triangular mesh. The distance
of the first cell adjacent to the airfoil surface was taken to be 107° chord with the
boundary layer structured mesh stretching for 35 cells in the direction normal to the
airfoil surface. This ensured an average y+ value that is about 1, in accordance with
the recommendations given in Fluent documentations [17]. Again when constructing
the structured boundary layer mesh around the airfoil, the structured domain was
extended for about 25% of the chord length at the trailing edge with a slope parallel to
the trailing edge slope. The whole mesh is composed of 157,250 cells that corresponds
to 92,173 nodes.

4.1.1 Case I: M, =0.1, Re = 4 % 10%

The free-stream conditions for the first group of test cases are : Mach number M, =

0.1, Reynolds number Re, = 4 millions and a range of angles of attack varying
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between —16° and 16°. The data obtained from the converged solutions were compiled
together in order to produce the characteristic curves presented in this section. Figure
4.1 compares the transition onset xz; predicted by the developed transition model, on
both the upper and lower sides of the airfoil, with that obtained from the experimental
data for different angles of attack. The transition onset is captured experimentally by
using microphone measurements. Such a method is based on the concept that laminar
flow is silent while a turbulent flow is noisy. Since the microphone is connected to
individual oriﬁceé on the model surface, the onset location can only be determined
as in between two adjacent orifices [20]. Thus the open symbols in Fig. 4 1 represent
orifice locations at which the flow is laminar and the solid symbols represent orifice
locations at which the flow is turbulent. Analyzing Fig. 4.1, it is to be noticed that the
transition onset on both sides of the airfoil are changing in the same direction as that
of the stagnation point. That is, with increasing the angle of attack, the location of the
transition onset on the upper surface is moving forward and the location of transition
onset on the lower surface is moving backward. Such a behavior is in accordance
with the one observed experimentally and expected physically. Quantitatively, the
predicted transition onset is in the vicinity of the limits given by the experimental
data for a large range of angles of attack.

Figures 4.2 and 4.3 compare the variation of the drag and lift coefficients with
the angle of attack («) for three sets of data, one set is given experimentally [20)
and the other two sets are obtained numerically by using the Fully-Turbulent and
Free-Transition models. Examining the drag coefficient for the three sets (Fig. 4.2),
the improvement achieved in numerical drag computations by switching from a Fully-
turbulent Spalart-Allmaras turbulence model to the developed Free-Transition one is
quite clear. As an example, for zero angle of attack the experimental drag coeflicient
is 59 drag counts (0.0059) while the value predicted using the Fully-Turbulent model

is 99.07 drag counts (0.009907) with a variation from the experimental value equal
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to 40 drag counts. On the other hand, the values predicted using the Free-Transition
model is equal to 59.34 drag counts (0.005934) with a difference that is less than one
drag count. Such results are repeated for other angles of attack, where the difference
between experimental and numerical data obtained using the Free-Transition model
is again less than one drag count for o = 1° and —6°. It is also less than 5 drag counts
for —8° < a < 2°. It is equal to 3.86 drag counts at & = 14°. The maximum difference
is obtained for angles of attack between 4° and 12° where it is at an average of 22 drag
counts. On the other hand, the difference between the drag values computed using
the Fully-Turbulent model and those given experimentally is much higher where it
is between 40 and 50 drag counts for 0° < a < 14° and on an average of 15 drag
counts for most of the negative angles of attack. Table 4.2 gives a comparison of the
predicted drag values at selected angles of attack.

As for the lift coefficient, the Free-Transition model over-predicts lift values for
angles of attack between —8° and 6° with an average equal to 0.04 while the difference
between the experimental values and those computed using the Fully-Turbulent model
is less than 0.01 for the same range of angles of attack. Such a difference would increase
rapidly for angles of attack outside the given range. Nonetheless, for o > 6° both
models under-predict lift. But the values computed by the Free-Transition model are
closer to the experimental ones where Cp, . is under-estimated by about 0.08 using
the Free-Transition model. Also the predicted location of Cj e, using numerical
simulations is delayed by about one degree. Such a behavior is similar to the one

observed in the case of the NACA-0012 airfoil presented in Sec. 3.7.

Pressure and Skin-Friction Coeflicients:

In order to acquire a better understanding of the flow properties and behavior under
the specified free-stream conditions, plots of the pressure and skin-friction coefficients

at two different angles of attack are presented in this section. Also figures that

60



Alpha | Experimental Data | Numerical Data Numerical Data
Fully-Turbulent S-A Free-Transition S-A
Cp (2% error) Difference in Cp Difference in Cp
—14° 0.0367 -86 drag count (-23.4%) | -9 drag count (-2.4%)
—6° 0.0093 16 drag count (+17%) | 0.825 drag count (+0.9%)
0° 0.0059 40 drag count (+68%) | 0.34 drag count (+0.6%)
8° 0.0107 46 drag count (+42.4%) | 25 drag count (+22.8%)
14° 0.0249 47 drag count (+18.6%) | 3.86 drag count (+1.6%)
- Difference in Cf, Difference in C},
—14° -1.134 0.1688 (+15%) 0.1440 (+12.7%)
—6° -0.269 0.0118 (+4.4%) 0.0320 (+11.9%)
0° 0.447 0.0053 (+1.2%) 0.0381 (+8.5%)
8° 1.317 -0.0233 (-1.8%) 0.0035 (+0.3%)
14° 1.765 -0.1396 (-7.9%) -0.0794 (-4.5%)

Table 4.2: Difference in the lift and drag coefficients between experimental and nu-
merical results for the Fully-Turbulent and Free-Transition models for the NLF-0416
airfoil Case I (My = 0.1, Re = 4 % 10°) |1 drag count = 1074].

symbolize contours of the Mach number are added for the two cases considered.
Figures 4.4, 4.6 and 4.8 represent the pressure coefficient, skin-friction coefficient and
the Mach number contours for the case of & = 0°. And the pressure coefficient,
skin-friction coefficient and the Mach number contours for the case of a = 8° are
given in Figs. 4.5, 4.7 and 4.9 respectively. The pressure coeflicient distribution
over the airfoils surface shown in Figs. 4.4 and 4.5 belong to three sets of data,
experimental, Fully-Turbulent and Free-Transition numerical models. As can be seen
from these figures, there is a fair agreement between all three sets of data. As for
the skin-friction coefficient distribution over the airfoils surface, due to the absence
of any experimental data, only numerical data obtained for the two models (Fully-
Turbulent and Free-Transition) are plotted in these figures. By comparing the two
corresponding sets of data, the effect of introducing the Free-transition model into
the computation is evident. The skin-friction coefficient distribution in the leading

part of the airfoil have changed in order to take into account the introduction of the
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Laminar-Transition zones by the Free-Transition model. As it can also be observed
by comparing Figs. 4.6 and 4.7, the difference in skin-friction distribution between
the two models is bigger for the one corresponding to 0° angle of attack than the
other case. This can explain the larger difference in predicted drag between the
Fully-Turbulent and Free-Transition models for the first case where it is about 70%
while it is about 20% for the second case. Looking at the Mach number contours
presented in Figs. 4.8 and 4.9, the maximum Mach number achieved is within the
limit of 0.138 and 0.189 for the angles of attack 0° and 8°, respectively. This confirms
that the flow is within the incompressible limits.

The main conclusion that can be drawn out from the C, and C} distributions is
that the pressure field is almost unaffected by introducing the Free-Transition model.
On the other hand, the skin friction distribution for the Fully-Turbulent and the
Free-Transition models reflects a strong dependency on transition. This emphasizes
the fact that, while lift is controlled by the inviscid flow for attached flows, drag is

controlled by the viscous boundary layer flow.

4.1.2 Mesh Sensitivity Analysis

Another two series of simulations were carried out in order to examine the mesh
sensitivity of the developed Free-Transition model. To perform such a task, a coarse
and a medium size meshes were constructed where the distance of the first cell from
the airfoil surface is 107* and 5 * 1075 chord, respectively. Free stream conditions
are the same as those simulated in Case I (i.e. My = 0.1, Re, = 4 millions and
0° < a < 16°.). Thus a comparison can be made with the mesh used previously
where the distance of the first cell from the wall was set as 107° chord (referred to
as the fine mesh). An important parameter to-be looked at is the y value obtained
using the three different meshes. For the fine mesh, the average y™ is equal to 1

compared to a value of 12 for the coarse mesh. Table 4.3 summarizes the average y*
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values obtained for each of the three meshes.

Mesh type Coarse | Medium | Fine
Distance from the wall | 10~* | 5% 107% | 107°
Average y* values 12 5 1

Table 4.3: y* variations with respect to the mesh first cell distance from the wall for
the NLF-0416 airfoil Case [ (M, = 0.1, Re = 4 x 10°).

Figures 4.10 and 4.11 compare the lift and drag coefficient variation with the
angle of attack obtained numerically for the three meshes and the experimental data
given. By examining these figures, a set of observations can be drawn. The lift
coefficients computed numerically using the three different meshes match each other
with a difference less than 1% at low angles of attack. At angles of attack higher than
6°, the difference between the coarse mesh and the other two meshes starts to increase
while it stays within the 1% limit between the fine and medium meshes. It also can
be added that the behavior observed previously concerning the delay in predicting
the stall angle and the under-prediction of the lift at high angles of attack is present
in this case also with the lift coefficients near Cy, 4, oObtained using the coarse mesh
are closer to the experimental values.

As for drag prediction, it is to be noticed that at low angles of attack the fine
and medium meshes are in total agreement where the difference between both sets
is less than one drag count. However, this is not the case for the coarse mesh where
the difference between the data obtained for this set and the other two sets starts at
about 3 drag counts for o = 0° and increases for angles of attack equal to 4° and
more. Such a difference would reach a maximum of 30 drag counts at o = 14°. This
is also the case between the fine and medium meshes for o > 8° with a maximum
difference of about 15 drag counts at angles of attack equal to 12° and 14°.

From the analysis carried out in the current section, it can be concluded that

viscous flow properties are clearly dependent on the y* values as well as the mesh
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quality. This is also in agreement with the recommendations given by Fluent which
suggest that when using the Spalart-Allmaras turbulence model the y* values should
fall between 1 and 5 (Sec. 3.5.1). The computed lift and drag values are quite sensitive
to y*. Thus the data computed using the fine mesh, with an average y* of 1, and the
medium mesh, with an average y* of 5, are in better harmony than the third mesh

which failed to achieve the suggested y* values.

Difference in Cp, | Coarse (y* = 12) | Medium (y* =~ 5) | Fine (y* ~ 1)
(in %)
Alpha = 0° +9.2 +8.3 +8.5
Alpha = 4° +5.8 +4.7 +4.7
Alpha = 8° +2.3 +0.4 +0.3
Alpha = 12° 1.6 -3.4 4.6
Alpha = 14° 1.7 3.9 45
Difference in Cp
(in %)
Alpha = 0° -7.8 +3.1 +0.6
Alpha = 4° +7.3 +23.2 +24.2
Alpha = 8° -0.9 +17.8 +22.8
Alpha = 12° -7.2 +5.1 +13.6
Alpha = 14° 144 5.1 +1.6
Difference in Cp
(in Drag Count)
Alpha = (0° -4.57 +1.82 +0.34
Alpha = 4° +4.9 +15.5 +16.24
Alpha = 8° -1 +19 +24.4
Alpha = 12° -12.8 -+9.12 +24.28
Alpha = 14° -35.9 -12.75 +3.86

Table 4.4: Difference in the lift and drag coefficients between experimental and numer-
ical results obtained for three different meshes used in evaluating the mesh sensitivity
of the Free-Transition model for the NLF-0416 airfoil Case I (M, = 0.1, Re = 4% 10°)
[1 drag count = 1074].

64



4.1.3 Case Il: M, = 0.1, Re = 2 % 106

The second group of simulations was carried out at the following free-stream condi-
tions: Mach number M, = 0.1, Reynolds number Re. = 2 millions and a range of
angles of attack that varies between 0° and 16°. The fine hybrid mesh (y}, ~ 1) is
used in the current simulations. Once again, the data obtained from the converged
solutions were used to compile together the same set of variables presented in case I.
Simulations were carried out using the Spalart-Allmaras turbulence model with and
without the free transition model.

Thus Fig. 4.12 compares the transition onset z; predicted by the Free-Transition
model, for both the upper and lower airfoil surfaces, with that obtained from the
experimental data for different angles of attack. Similar behavior to the one observed
in Case I, Sec. 4.1.1, is repeated in the current case. Here again the transition
onset, variation with the angle of attack is in complete harmony with those observed
experimentally and the values computed are in the vicinity of the limits given by the
experimental data for a large range of angles of attack. Nonetheless, the predicted
values on the airfoil lower side match better the experimental results compared with
the ones predicted on the upper side.

As for the drag and lift coefficients, the general trend is similar to the one ob-
served in the first group of simulations. Figs. 4.13 and 4.14 compare the variation of
drag and lift coefficients, respectively, with angle of attack () for three sets of data
(experimental, the Fully-Turbulent and Free-Transition numerical models). Examin-
ing the drag coeflicient for the three sets (Fig. 4.13), the improvement achieved in
numerical drag computations by switching from a Fully-Turbulent Spalart-Allmaras
turbulence model to the developed Free-Transition one is quite clear. For zero angle
of attack, the experimental drag coefficient is 69 drag counts while the value pre-
dicted using the Fully-Turbulent model is 110 drag counts with a variation from the

experimental value equal to 41 drag counts. On the other hand, the values predicted
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using the Free-Transition model is equal to 64 drag counts with a variation from the
experimental value equal to 5 drag counts. Thus the difference has dropped by about
8 times. For angles of attack between 4° and 10°, the difference in drag coefficients
given experimentally and those obtained using the Fully-Turbulent model is on the
average 50 drag counts. While the difference between the experimental values and
those obtained using the Free-Transition model is on the average of 26 drag counts.
And at angle of attack of 12°, where the experimental drag coefficient is equal to
214 drag counts, the difference in the value predicted by the Fully-Turbulent model
and the one given experimentally is equal to 37.5 drag counts while it is equal to 8.5
drag counts for the Free-Transition model case. A summary of some of the results

obtained for drag and lift coefficients is given in Table 4.5.

Alpha | Experimental Data | Numerical Data Numerical Data
Fully-Turbulent S-A Free-Transition S-A
Cp (2% error) Difference in Cp Difference in Cp
0° 0.0069 41 drag count (+59.5%) | -5 drag count (-7.2%)
6° 0.0094 51 drag count (+54.1%) | 26 drag count (+27.7%)
12° 0.0214 38 drag count (+17.5%) | 8.5 drag count (+4%)
Cr, Difference in Cf, Difference in Cy,
0° 0.430 0.010 (+2.3%) 0.049 (+11.4%)
6° 1.103 -0.013 (-1.9%) 0.012 (+1.1%)
12° 1.605 -0.079 (-4.9%) -0.061 (-3.8%)

Table 4.5: Difference in the lift and drag coefficients between experimental and nu-
merical results for the Fully-Turbulent and Free-Transition models for the NLF-0416
airfoil Case II (M, = 0.1, Re = 2 * 10%) [1 drag count = 1074].

As for the lift coefficient, the curves can be divided into two sections: one
corresponding to low values of angles of attack where oo < 6° and another one that
corresponds to high values of angles of attack where oo > 6°. For the first section, the
Free-Transition model again over-predicts the lift with a maximum difference of 0.045
at zero angle of attack and an average difference equal to 0.032 while the difference

between the experimental values and those predicted using the Fully-Turbulent model
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are less than 0.01. However, for higher angles of attack both models under-predict
the lift values with those obtained by the Free-Transition model being closer to the
experimental ones with a difference equal to 0.06 at an angle of attack equal to 12°.
Finally, Cf e predicted numerically is delayed by about 2 degrees for both models.
Nonetheless, these results are consistent with the ones obtained for the first group of

simulations where Reynolds number was equal to 4 millions.

4.2. NLF-0416 Airfoil (Compressible Case)

4.2.1 Case III: M, = 0.4, Re = 6 % 10°

In order to assess the performance of the developed transition model under compress-
ible flow conditions, simulations were carried out on the NLF-0416 airfoil with Mach
number My, = 0.4 and Re. = 6 millions. The angle of attack was varied between
—5° and 14°. Numerical simulations, as before, were performed using the Spalart-
Allmaras turbulence model with one of the two configurations, the Fully-Turbulent
model and the Free-Transition model. As for the computational domain, the same
fine hybrid mesh (y}, ~ 1) was used to perform the computations.

Figures 4.15 and 4.16 represent the Mach number contours at two different
angles of attack: 0° and 12°, respectively. The local Mach number in the boundary
layer reaches a maximum of 0.58 and 1.28 on the airfoils upper side for a = 0° and
12°, respectively. Thus the flow in the boundary layer is compressible and add to that
there is a shock near the leading edge for the last case (o = 12°). Actually, the shock
starts to appear in the flow for a > 11°. This is reflected in the results obtained using
the Free-Transition model.

Figure 4.17 provides the transition onset x; predicted by the developed tran-
sition model for different angles of attack. Due to the absence of any experimental

readings of the transition onset for the current case, only the numerical data are
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presented. For o < 11°, the variation of the transition onset location on both sides
of the airfoil is similar to the one obtained for the incompressible cases presented in
the previous sections (Figs. 4.1 and 4.12). However, for oo > 11°, there is a twist in
the direction of the predicted transition onset on the upper side of the airfoil. This
coincides with the location of the shock which appears on the airfoils upper side near
the leading edge for the same range of angles of attack. After reviewing these cases,
it was concluded that, by the current method used for transition onset prediction,
the location of the transition onset is delayed till after the shock. This is inconsistent,
with the physics of the problem and it is one of the current model’s limitations.

Figures 4.18 and 4.19 compare the variation of drag and lift coeflicients with
angle of attack (a) for three sets of data (experimental, Fully-Turbulent and Free-
Transition models). Figure 4.18 shows, as in the cases presented previously, an im-
provement in predicted drag values when the free transition model is implemented
in the turbulence model. For zero angle of attack, the experimental drag coefficient
is about 57 drag counts. The drag value computed by the Fully-Turbulent model is
equal to 97.6 drag counts with a difference equal to about 40 drag counts. On the
other hand, the drag coefficient predicted by the Free-Transition model is equal to
61.56 drag counts where the difference with the experimental value drops to about 4
drag counts. Thus for —5° < a < 1°, the difference in drag coeflicient between the
values given experimentally and the ones predicted using the Free-Transition model
is within the 5 drag counts limit. As the angle of attack is increased beyond the
1° limit, the difference in drag increases where it reaches a maximum of 65 drag
counts in difference at o = 11°. Such a difference is larger than the one observed in
the incompressible cases presented in the previous sections. This is also true for the
Fully-Turbulent model case where the difference between numerical and experimental
drag values also increases with increasing the angle of attack.

As for the lift coefficient, the trend followed by the numerical values is similar to
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the one observed in previous cases presented. Once again the Free-Transition model

over-predicts lift for a < 5° with an average difference equal to 0.03. And for o > 5°,

the model under-predicts lift by a difference that is about 0.07 at Cf ez, plus the

location of Cf may is delayed by about 1°. Table 4.6 summarizes some of the results

obtained for the current case.

The main conclusion that can be drawn from the current section is that as

the local Mach number increases beyond 0.85 (which occurs when the angle of attack

exceeds 8°), the discrepancy in drag coefficient between the Free-Transition model and

experimental data becomes too large and reaches a peak when the flow is transonic

when o > 11°. Such a behavior is expected since the Free-Transition model assumes

incompressible flow.

Alpha | Experimental Data | Numerical Data Numerical Data
Fully-Turbulent S-A Free-Transition S-A
Cp (2% error) Difference in Cp Difference in Cp
—5e 0.0081 18.3 drag count (+22.5%) | -2.80 drag count (-3.5%)
0° 0.0057 40.1 drag count (+69.9%) | 4.10 drag count (+7.2%)
5° 0.0077 56.5 drag count (+72.6%) | 27.0 drag count (+34.7%)
11° 0.0165 79.9 drag count (+48.4%) | 65.1 drag count (+39.4%)
CL Difference in Cf, Difference in Cp,
~5° -0.177 0.0282 (+16%) 0.0502 (+28.4%)
0° 0.4933 -0.0057 (-1.2%) 0.0315 (+6.4%)
5° 1.1316 -0.0431 (-3.8%) -0.0056 (-0.5%)
11° 1.8395 -0.1951 (-10.6%) -0.1857 (-10.1%)

Table 4.6: Difference in the lift and drag coefficients between experimental and nu-
merical results for the Fully-Turbulent and Free-Transition models for the NLF-0416
airfoil Case 111 (M, = 0.4, Re = 6 * 10%) [1 drag count = 1074},
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Figure 4.1: Model validation of the transition onset for the NLF-0416 airfoil Case I
(My = 0.1, Re = 4 % 10°). (The empty dots and squares represent laminar region
and the filled dots and squares represent turbulent regions. Solid lines correspond to
numerical calculations.)
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NLF-0416 (M = 0.1, Re = 4M)
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Figure 4.2: Drag coefficient comparison between experimental results and numerical
results for the Fully-Turbulent and Free-Transition models for the NLF-0416 airfoil
Case I (M, = 0.1, Re = 4 x 10°) [error in experimental drag coefficient is equal to a
maximum increase of 2%)].
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Figure 4.3: Lift coefficient comparison between experimental results and numerical
results for the Fully-Turbulent and Free-Transition models for the NLF-0416 airfoil
Case I (M., = 0.1, Re = 4 x 10°).
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Figure 4.4: Pressure coefficient comparison between experimental results and nu-
merical results for the Fully-Turbulent and Free-Transition models for the NLF-0416
airfoil at & = 0° (M, = 0.1, Re = 4 % 10°).
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Figure 4.5: Pressure coefficient comparison between experimental results and nu-
merical results for the Fully-Turbulent and Free-Transition models for the NLF-0416
airfoil at o = 8° (M, = 0.1, Re = 4 % 10°).
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NLF-0416 (M=0.1, Re=4M, Alpha = 0deg)
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Figure 4.6: Skin-Friction coefficient comparison between numerical results obtained
for the Fully-Turbulent and Free-Transition models for the NLF-0416 airfoil at o = 0°
(My = 0.1, Re = 4 % 109).
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Figure 4.7: Skin-Friction coefficient comparison between numerical results obtained
for the Fully-Turbulent and Free-Transition models for the NLF-0416 airfoil at o« = 8°
(M = 0.1, Re = 4 % 108).
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Figure 4.8: Mach number contours obtained using the Free-Transition model for the
NLF-0416 airfoil at a = 0° (M = 0.1, Re = 4 % 105).
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Figure 4.9: Mach number contours obtained using the Free-Transition model for the
NLF-0416 airfoil at o = 8° (M, = 0.1, Re = 4 % 10°).
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Figure 4.10: Lift coefficient comparison between experimental and numerical data for
the Free-Transition model on three different meshes for the NLF-0416 airfoil Case I
(My = 0.1, Re = 4 % 10°).
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Figure 4.11: Drag coefficient comparison between experimental and numerical data
for the Free-Transition model on three different meshes for the NLF-0416 airfoil Case
I (Ms = 0.1, Re = 4 % 10°) [error in experimental drag coefficient is equal to a
maximum increase of 2%].
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Figure 4.12: Model validation of the transition onset for the NLF-0416 airfoil Case
1 (My = 0.1, Re = 2 % 10%). (The empty dots and squares represent laminar region
and the filled dots and squares represent turbulent regions. Solid lines correspond to
numerical calculations.)
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NLF-0416 (M = 0.1, Re = 2M)
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Figure 4.13: Drag coefficient comparison between experimental results and numerical
results for the Fully-Turbulent and Free-Transition models for the NLF-0416 airfoil
Case Il (My = 0.1, Re = 2 % 10°) [error in experimental drag coefficient is equal to a
maximum increase of 2%].
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Figure 4.14: Lift coefficient comparison between experimental results and numerical
results for the Fully-Turbulent and Free-Transition models for the NLF-0416 airfoil
Case 11 (My, = 0.1, Re = 2 % 106).
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Figure 4.15: Mach number contours obtained using the Free-Transition model for the
NLF-0416 airfoil at o = 0° (M = 0.4, Re = 6 * 10°).
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Figure 4.16: Mach number contours obtained using the Free-Transition model for the
NLF-0416 airfoil at o = 12° (M = 0.4, Re = 6  10°).
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Figure 4.17: Model validation of the transition onset for the NLF-0416 airfoil Case
IIT (M, = 0.4, Re = 6 % 10°).
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Figure 4.18: Drag coefficient comparison between experimental results and numerical
results for the Fully-Turbulent and Free-Transition models for the NLF-0416 airfoil
Case 111 (M,, = 0.4, Re = 6 * 10°) [error in experimental drag coefficient is equal to
a maximum increase of 2%)].
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Figure 4.19: Lift coefficient comparison between experimental results and numerical
results for the Fully-Turbulent and Free-Transition models for the NLF-0416 airfoil
Case Il (Mg = 0.4, Re = 6 % 10°).
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Chapter 5

Transition Model Assessment for a

Two-Element Airfoil

5.1. NLR-7301 Airfoil With a Trailing Edge Flap

The current chapter will discuss the results obtained for a two-element airfoil that
is tested and well documented, the NLR-7301 airfoil with a trailing edge flap. This
case was identified as a good candidate to test the developed transition model. The
geometry and experimental data used for comparison are given in the AGARD AR-303
[21]. The experimental data available are for a free-stream Mach number My, = 0.185
and a Reynolds number Re, = 2.51 millions. Also the geometric configuration used
in this case is that of a trailing flap with a 2.6% gap. While the surface pressure
measurements are available for angles of attack between 0° and 16° at intervals of 1°,
wake traverses and boundary layer measurements have been done at three angles of
attack; 6°, 10.1° and 13.1°. The error margin in the experimental data is given as
+ 0.01 for the lift coefficient and % 2% for the drag coefficient [21]. Here also error
bars were not included in the corresponding figures to maintaining the clarity of the

presented data.
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The numerical simulations done in this work were carried out at selected angles
of attack for both, the original Fully-Turbulent turbulence model and the modified
Free-Transition model. Table 5.1 summarizes both the experimental and numerical
data for the free-stream conditions. The grid used to perform the numerical cal-
culations is a hybrid mesh with the first cell at a distance of 107° chord from the
wall. Both elements were surrounded by two separate structured C-type boundary
layer meshes that extend at the trailing edge for a distance equal to 25 % of each
element’s length in order to capture the wake downstream of these elements. The

mesh is composed of about 140K cells and 81K nodes.

Experimental upstream flow | Numerical upstream flow
Mach Number 0.185 0.185
Reynolds Number 2.51 % 10° 2.51 % 10°
Angles of attack 0° to 16.1° (Cy) 0°,3°,6°,10.1°, 13.1°,
6°,10.1°, and 13.1° (Cp) 14.1° and 15.1°
Transition conditions Free transition a- Fully turbulent model
b- Free transition model

Table 5.1: Experimental and numerical free-stream flow conditions for the NLR-7301
case.

Figures 5.1 and 5.2 show pressure coefficient distribution while Figs. 5.3 and 5.5
show the Mach number contours for two angles of attack; 6° and 13.1° respectively.
Also figures representing the static pressure contours at the same angles of attack
mentioned above are supplied (Figs. 5.4 and 5.6). Pressure coeflicient plots show a
good agreement between experimental results and the results obtained by the Free-
Transition model. Also from Mach number contours shown in the corresponding
figures, the maximum Mach number is about 0.582 and 0.811 for angles of attack 6°
and 13.1°, respectively. This indicates that the flow is compressible in the boundary
layer for some of the cases considered.

As in the results presented in previous cases, the three quantitative variables

to be used for analysis are the transition onset, the lift and the drag coefficients. In
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Fig. 5.7, the transition onset (x;) predicted using the Free-Transition model is plotted
along side with the experimental values for the three available angles of attack, namely
6°, 10.1° and 13.1°. The main observation that can be pointed out by examining Fig,.
5.7 is that the transition onset is well predicted on the main airfoil while it is lagging
the experimental values on the flap by almost one third of the flap length which is
about 9% of the main element chord. This can be related to the fact that while the
flow is smooth and attached in the boundary layer at the leading edge of the main
element, these conditions start to deteriorate downstream. Thus for the case of the
flap which is right behind the wake generated by the main element and is exposed
to the jet coming from the pressure side through the gap, the assumptions under
which the model was developed, namely incompressible attached flow, do not hold
anymore. Therefore the Free-Transition model predictions are expected to be off.
However, on the main airfoil, the predicted transition onset is in good agreement
with the experimental data where the difference is about 5 % of the chord for the
lower side of the main element and less than 1% of the chord for the upper side.
The drag and lift coefficients obtained from the simulations are compiled to-
gether with the experimental data and are given in Figs. 5.8 and 5.9, respectively.
Again the data are divided into three sets: one corresponding to the experimental
data given by the AGARD publication [21] and the other two are numerical results
obtained using the Fully-Turbulent and Free-Transition models simulated using Flu-
ent. Figure 5.8 shows a significant improvement in the drag values predicted using
the Free-Transition model as opposed to those obtained using the Fully-Turbulent
model. For an angle of attack o = 6°, the experimental drag coefficient is equal
to 229 (0.0229) drag counts. The difference between the numerical value computed
by the Fully-Turbulent model and the experimental one is equal to 78 (0.0078) drag
counts. This difference drops to 5 drag counts (0.0005) with the Free-Transition

model. The results obtained for the other two angles of attack (10.1° and 13.1°) show
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the same behavior. Table 5.2 summarizes the difference in lift and drag coefficients,
in reference to the experimental values, obtained using the two numerical models

mentioned above.

Alpha | Experimental Data | Numerical Data Numerical Data
Fully-Turbulent S-A Free-Transition S-A
Cp(£ 2% error) | Difference in Cp Difference in Cp
6° 0.0229 78 drag count (+34%) 5 drag count (+2.1%)
10.1° 0.0323 127 drag count (+40%) | -2 drag count (-0.6%)
13.1° 0.0445 208.5 drag count (+47%) | -41.5 drag count (-9.3%)
Cr(£ 0.01 error) | Difference in Cy, Difference in Cy,
6° 2.416 0.0312 (-1.29%) 0.1164 (+5.1%)
10.1° 2.877 0.1495 (-5.20%) 0.0362 (+1.3%)
13.1° 3.141 0.3127 (-10.0%) 0.0470 (-1.5%)

Table 5.2: Difference in the lift and drag coefficients between experimental and nu-
merical results for the Fully-Turbulent and Free-Transition models for the NLR-7301
airfoil with a trailing flap [1 drag count = 107].

As for the lift analysis, Fig. 5.9 shows that the variations in the lift coefficient
is similar to that of the single element airfoil. Thus for angles of attack o < 7.1°, the
Free-Transition model over-predicts the values given experimentally by an average
difference of 0.138 while the difference between the experimental values and those
predicted using the Fully-Turbulent model are on average difference of 0.015. For o« >
7.1°, the values predicted by the Free-Transition are closer to the experimental data
with an average difference equal to 0.05 while the difference between the experimental
data and those obtained by the Fully-Turbulent model increases as angle of attack is
increased. On a positive note, the Crnq., predicted by the Free-transition model is in
good agreement with the experimental data, in both value and location.

Drag and lift coefficients are also compiled together in a polar drag plot shown
in Fig. 5.10. The figure highlights the excellent agreement between experimental

data and those obtained numerically using the Free-Transition model compared to
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the poor agreement between experimental data and those obtained using the Fully-
Turbulent model. This clearly demonstrates the value of the current transition model

in rightfully predicting the airfoil aerodynamic performance in terms of lift and drag.
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Figure 5.1: Pressure coefficient comparison between experimental results and nu-
merical results for the Fully-Turbulent and Free-Transition models for the NLR-7301

airfoil with a trailing flap at o = 6°.
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Figure 5.2: Pressure coefficient comparison between experimental results and nu-
merical results for the Fully-Turbulent and Free-Transition models for the NLR-7301
airfoil with a trailing flap at o = 13.1°.
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Figure 5.3: Mach number contours obtained using the Free-Transition model for the

NLR-7301 airfoil with a trailing flap at o = 6°.
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Figure 5.4: Static pressure contours obtained using the Free-Transition model for the

NLR-7301 airfoil with a trailing flap at o = 6°.
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Figure 5.5: Mach number contours obtained using the Free-Transition model for the

NLR-7301 airfoil with a trailing flap at a = 13.1°.
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Figure 5.6: Static pressure contours obtained using the Free-Transition model for the

NLR-7301 airfoil with a trailing flap at o = 13.1°.
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NLR-7301 with a trailling Flap (M = 0.185, Re = 2.51M)
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Figure 5.7: Model validation of the transition onset for the NLR-7301 airfoil with a

trailing flap.
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NLR-7301 with a trailling Flap (M = 0.185, Re = 2.51M)
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Figure 5.8: Drag coefficient comparison between experimental results and numerical
results for the Fully-Turbulent and Free-Transition models for the NLR-7301 airfoil

with a trailing flap [experimental drag coefficient error margin is equal to £ 2%)].
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Figure 5.9: Lift coefficient comparison between experimental results and numerical
results for the Fully-Turbulent and Free-Transition models for the NLR-7301 airfoil

with a trailing flap [experimental lift coefficient error margin is equal to & 0.01].
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NLR-7301 with a trailling Flap (M = 0.185, Re = 2.51M)
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Figure 5.10: Polar drag plot representing experimental data and numerical data for
the Fully-Turbulent and Free-Transition models for the NLR-7301 airfoil with a trail-

ing flap.
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Chapter 6

Conclusion

6.1. Completed Work

The objective of the current work was to develop a simple yet robust and accurate
laminar to turbulent transition model that is capable of accurately predicting the
drag in transitional flow over two-dimensional airfoils used typically in aerospace
applications. This free transition model predicts both the onset and the extent of
the transition region; it is implemented into the fully turbulent Spalart-Allmaras
turbulence model available in Fluent where the RANS equations are solved. The
model was then used in Fluent to simulate the flow over a wide range of angles of
attack for two well documented experimental cases: a single-element airfoil (NLF-
0416) and a two-element airfoil (NLR-7301 with a trailing edge flap). In both cases
the drag values predicted using the developed free transition model are closer to the
experimental values when compared with those computed using the original fully
turbulent Spalart-Allmaras turbulence model. However, the accuracy in predicting
the lift coeflicient with the Free-Transition model deteriorates slightly for low angles
of attack. It is also to be noted that when the model was tested at different free stream

Mach numbers, the discrepancy between computed and experimental results increased
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as M, increased. This can be attributed to the fact that the transition model was
developed for incompressible fluid flows. Nonetheless, it can be concluded that the
Free-Transition model, presented in this work, resulted in a significant improvement

in drag prediction for airfoils in transitional flow.

6.2. Future Work

As for any future additions to the current work, there are several issues that can be
addressed. First, the empirical relations used for the transition onset prediction are
based on incompressible attached flow for Reynolds number higher than 2 millions.
Such restrictions have to be addressed so that the model would cover lower values of
Reynolds number, especially that large laminar bubbles start to form in such Reynolds
number ranges. Another topic to be tackled is the effect of compressibility on the
boundary layer flow, especially in cases where the flow is transonic. Such a concern
was reflected in the results obtained for the single-element airfoil case (NLF-0416)
under compressible flow conditions (M, = 0.4). Hence, the empirical equations used
to predict the transition onset can be adjusted such that the current transition model
will be able to cover not only lower Reynolds numbers but also higher Mach numbers,

Beside the cases tested in the current work (a single- and a two-element airfoil),
a more challenging case that would be interesting to study is that of a three-element
airfoil. 'However, due to the lack of experimental data for natural transition condi-
tions, a three-element case was not assessed in the current work.

Finally, this model can be extended to three-dimensional flows over wings. Two
aspects have to be considered: first, the physics of natural transition over a wing
have to be addressed, second the compatibility of the model with the geometry being

considered has to be accounted for.
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