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ABSTRACT

Adaptive Neuro Energy Management Control Strategies
for HVAC Systems in Buildings

Maria Victoria Gémez Weiss

Energy consumption in buildings is either directly or indirectly related to HVAC systems. As
buildings increase in size their corresponding cooling loads also increase, which leads to the
necessity of having evermore efficient cooling systems. Control systems and energy management
strategies play an important role in improving the overall performance of the system, also
allowing the reduction of energy consumption with existing equipment. However the design and
implementation of these strategies is not trivial. It is the purpose of this study to develop and
implement a series of neural networks (NNs) for energy management control strategies (EMCS)
in a model. These Neuro EMCS are: start and stop lead times, temperature base economy cycle,
supply air and water temperature reset, and gain selector for the PI controller. To determine the
potential benefits and possible energy savings a comparison is made between the developed NNs
and a previously developed and tested EMCS algorithms (Base Case). The results show that the
adaptive NNs perform very well and as such they are considered as good candidates for

implementation in real building systems.
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NOMENCLATURE

Symbol Variable Represented
A Face area of the coil
Ay Area of the fins
Afo Ratio of the fin area to the total area
Ai Internal area of the tube
Ait Internal area of the tube per unit of length
Ao Total heat transfer area air side per unit of length
A, Area of the tube
Cfin Specific heat of the fin
corp Coefficient of performance of the system
COPmax Maximum coefficient of performance
Cpa Average specific heat constant pressure for the air
Cpw Average specific heat for water
Ct Specific heat of the tube
Cv Average specific heat constant volume for the air
d External diameter of the tube
Dh Hydraulic diameter
din Internal diameter of the tube
finthick Fin thickness
hit Heat transfer coefficient water side
ho Heat transfer coefficient air side
ht Heat transfer coefficient coil — air
J Design parameter
JP Design parameter
k, Thermal conductivity of air
kfin Thermal conductivity of the fin
k, Thermal conductivity of water
Le Length of the coil
Ma Mass flux of air
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Symbol Variable Represented
Ma, Mass flux of air for zone 1
Ma, Mass flux of air for zone 2
Maw Ratio of mass flux of air
mfin Mass of the fins per unit of length
mt Mass per unit of length
Mw Mass flux of water
Mwa Ratio of mass flux of water
p Neural Network input
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1 INTRODUCTION

1.1 Introduction

Modern way of life is contributing to tremendous strain on our natural resources. As the
time passes, this trend is growing rapidly. As a consequence, energy bills for buildings
both industrial and commercial, in general have become a very significant part of their
budget. This, combined with the general concern with other associated problems like
pollution, and the lack of alternative clean sources to supply actual power needs, is the
motivation for the development of strategies to diminish the energy consumption at all
levels. To this end, heating, ventilating and air conditioning (HVAC) systems in
buildings are the ideal candidates to focus for reducing the energy consumption without
compromising comfort and productivity.

The literature shows the generalized effort to reduce energy use. For example, energy
providers study peak hours to produce the power needed at all times of the day and not
over produce power (Wenzenberg and Dewe, 1995) while research is also conducted
about how, where and at which hour power should be used to save energy, aiming to
prevent energy interruptions and overloads, as well as reducing pollution.

Numerous studies exist in developing strategies to manage energy consumption of
HVAC systems in buildings. These strategies vary greatly in complexity and in subject of
study, for instance, neural networks for fault detection or energy management strategies
(EMS) like stop and start lead times, heating/cooling load prediction or logical rules to
predict the behaviour and proper response of the system (Fuzzy Rules). Yet, the main

objective is the same: to reduce energy bills as well as make equipment maintenance and



repair cheaper and more infrequent. An accepted and widely used method for testing
those strategies is by way of simulation and modeling of building’s dynamics (Mathews
and Botha, 2003). This method will be used in this thesis to combine several EMC
(Energy management control) functions in a two zone, variable air volume (VAV)
HVAC system. It is recognized that the EMC strategies are dependent on the cooling or
heating loads of the building, which result in complexities in developing efficient
algorithms for tuning of PI gain constants. The control performance deteriorates due to
ongoing dynamic changes of the system. In response to this need this research work
attempts to use the ability of neural networks (NNs) to generalize and adapt a set of
Neuro - EMS. The Neuro — EMS are developed in two stages, a non adaptive and an
adaptive group. Both will be implemented under the same conditions and compared with
Base Case EMCS (Huang, 2003), to evaluate the performance and energy reductions

obtained by the different systems.

1.2 Objectives

This thesis focuses in the development of neural networks for EMCS. The following

are the objectives:

1. Develop of a two zone VAV HVAC system model with four PI control loops for
the implementation of the different EMCS and Neuro EMCS.

2. Implement and simulate previously developed EMCS algorithms (Huang, 2003)
in the VAV HVAC system model to generate the Base Case results. This Base
Case is the point of reference in the energy consumption comparison between
different strategies. The EMC functions include:

»  Start Lead Time



= Stop Lead Time
= Temperature based economy cycle: Proportional Band
= Supply air and water temperature reset.
3. Develop and train a set of non adaptive neural networks for the individual control
loops, using data from the Base Case simulations. Integrate the individual Neuro
PI controllers and the Neuro EMCS, in order to compare the energy consumption
of this system with that of the Base Case.
4. Create and train online a set of adaptive neural networks for building an adaptive
Neuro EMCS, not dependent on the data generated by the Base Case algorithm.
5. Compare the three developed EMCS in terms of their performance and energy
consumption and suggest the best possible system according to the advantages

and capabilities of each system.

1.3  Thesis Organization

A literature review (Chapter 2) discuses previous work in the field of neural networks
related to EMCS and to PI controller gains. It is noted that there is lack of research that
attempt to combine more than two EMCS, or PI gain controller selection. A model is
established using the previously tested EMC algorithms described by Huang (2003),
generating what we call a Base Case (Chapter 3). Then in Chapter 4 the group of non
adaptive neural networks (NNs) are developed to replace the EMC algorithms and to
select the PI gains for the controllers. These two models will be compared in Chapter 5
with the second group of adaptive NNs, developed in the same chapter. The differences,
improvements, advantages and disadvantages of each of the above mentioned strategies

are discussed.



2 LITERATURE REVIEW

2.1 Introduction

Condition monitoring of HVAC systems plays an essential role in energy management
systems. Sophisticated control strategies are becoming easily available; these strategies
when implemented are expected to improve energy efficiency and comfort. The strategies
are beginning to be used worldwide and currently integrate different versions of several
diagnostic and control tools. Development of a new generation of EMS is underway and
is expected to provide additional system enhancements and combine the functions of the
existing tools. The new EMCS include the use of artificial intelligence to automate,
improve the quality of the analysis, provide timely alerts, and the use of an Internet link
for collaboration, remote operation and supervision. These enhancements are designed to
provide an intelligent system, which can do more of the prediction and decision making,
while continuing to support the depth of analysis currently available at existing
operations. This research work presents a development of a computational strategy in
energy management systems (EMS) that include the application of neural networks. To
this end, an efficient and effective global data need and control strategy must first be
defined, then an appropriate set of neural networks selected and specified to
accommodate that need. This must be performed to maximize the efficiency of the EMS
and overall performance of the system.

Consequently, in this section some of the research on the fields of modeling, EMCS
algorithms and neural networks correlated with control and prediction in HVAC systems

was reviewed.



2.2 Modeling and EMCS Algorithms
A series of research papers on the growing field of EMS and energy efficiency will help
to abreast this important technology. Strategies for Energy Efficient Plants and Intelligent
Buildings form a comprehensive knowledge base. These strategies can be used to reduce
operating costs and improve overall efficiency of any facility as well as maintain desired
levels of comfort for the users.

In order to generate data that is adequate for training the set of neural networks, it is
necessary to develop a model. Since the early 1980s there have been a lot of contributions
in this field. Roberts and Oak (1991) developed a model for a single zone heating system
based on energy and mass conservation principles. The model was subject of comparison
with data taken from the real system. The results were in general conformed with the
measured data.

Zaheeruddin and Zheng (1994) developed a series of coupled equations using the basic
principles of energy, momentum and mass balance in a VAV system for dynamic
modeling and control. Later on (2001), the same authors used a simplification of these
equations to implement a multistage optimal control strategy, based on the building’s
schedule, the utility rates according to the time of the day, the energy storage and the
building loads. Making a comparison between three different cases: constant volume
(CV), variable air volume with constant set points (VAV) and with variable set points
(VAVN), they were able to show optimal operation for the three cases, leading to savings
of up to 25% in the VAVN case compared with the CV case.

Further on, Huang (2003) developed and compared the performance of several EMC

strategies. The author proposed a set of improved algorithms. According to the compared



energy consumption with a base case, savings over 10% in energy consumption were
reported.

Virk, et al. (1994), used a stochastic multivariable technique to develop their model. The
main purpose of the research was to create a predictor for the humidity and temperature
inside an unfurnished zone. Using experimental data from a test zone they were able to
validate the ability of the model to cope with system changes and to predict short and
long term thermal and moisture behaviour. They suggested for further investigation that
in the modeling process a moisture absorbent material be included in the zone, in order to
include the effects as function of time. Further studies were made by Virk et al. (1994b)
by taking a building zone subject to natural environmental conditions. This was
compared to the already developed model with the addition of the energy management
predictive On/Off strategy. Further comparison was made between the standard On/Off
strategy with a hysteresis of + 1C and the model based On/Off strategy, obtaining a
superior regulation translated in 17% extra energy savings. However, the authors noted
that the model does not account for the number of occupants or the heat gains related to
open doors and other appliances, and as such the results would vary when these effects
are included.

House and Smith (1996), used the governing equations derived from mass and energy in
a two zone building HVAC system to compare three types of control strategies:
conventional, optimal and near optimal. The authors conclude that although the greatest
cost savings are achieved by means of optimal control, this strategy does not take into

account the comfort of the occupants and the energy efficiency that is desired. They also



state that the near optimal control strategy is easier to implement in real systems, with
satisfactory results.

Yoshida et al.(2002) centre their study on an optimal operation scheme for existing
HVAC systems in buildings. First they establish the mathematical models that will
represent the existing components and their energy consumption. This includes effects of
humidity changes in the environment. However no heat losses from pipes or ducts are
taken into account. Then they determined optimal set points based on energy
consumption of pumps, fans and the heat pump, while satisfying the cooling demand and
considering that the system operation and loads are in steady state. The modeling results
predicted up to 30% in savings while the real implementation, although successful only
rendered 13% energy savings. These results were measured on days when the cooling
load was small.

Semsar et al. (2003) also designed a nonlinear controller, but in this case for a non linear
model of a MIMO HVAC system. The nonlinear model is combined with the non linear
controller to obtain a linear system, then by the back stepping method the new system
feedback was designed. The simulations show good decoupling of the disturbances and
output regulation.

Haves et al. (2001) discuss the difficulties in creating accurate models that can be used to
quantify and compare the energy consumption of an actual building with the design
values for the same. Furthermore the related issues of communications between control
systems inside a building are evaluated with respect to feasibility and performance of

EMCS.



Arguello and Velez (1995) included in the modeling of their HVAC system a thermal
load estimator. The authors created a bilinear model for simulating the HVAC plant
dynamics, with the intention of improving the efficiency of the controller designed. Since
the design of the controller requires all states to be known, a reduced order observer to
estimate the thermal loads acting upon the system and the heat exchanger temperature
was developed. Also a Lyapunov — based disturbance rejector is designed and coupled
with the controller, showing better performance then the regulator without it. The results
obtained for the cost performance showed that the disturbance rejector is not only more
efficient at maintaining comfort conditions but also shows lower energy consumption in

the water pump.

2.3 PID Control in HVAC Systems

It is recognized that the most common way of controlling HVAC systems is by using a
PID controller. This is due to the relative low cost and easy tuning of this type of
controller. However the high nonlinearity of the HVAC systems and the increased
consciousness about energy consumption has rendered the necessity to improve or
replace this type of controller.

Geng and Geary (1993) generated an improved Ziegler-Nichols set of rules for the design
and selection of a PID controller for an HVAC system. Using load disturbances simulated
by means of a first order equation with transport delays, the authors were able to study
the effects of these disturbances on the overshoot and settling time of the closed loop
responses of the system. During some of the simulations Geang and Geary only use the
proportional gain to observe the range of operation of the system. They noted that the

Ziegler—Nichols tuning based on open loop parameters is valid for a small time delay,



and that these are less conservative than those based on ultimate sensitivity based
parameters.

Anderson et al. (2002), worked developing and testing a MIMO controller for an
experimental facility. After arranging in the canonical form the plant models a robust PI
control strategy is developed. Using data proportioned by the experimental system the
main variables (Mass flow rate of air, mass flow rate of water, temperature of the supply
water and temperature of the supply air) and the out door air temperature as a disturbance,
the authors compare three controller structures with the corresponding PI controller. A
minimal MIMO robust controller, a constrained MIMO robust controller and a full
MIMO robust controller showed improved results in the settling times and disturbance
rejection. Even though the best results were obtained with a design that has independent
water circuits for each of the air handling units, improvements in the settling times were
achieved with robust MIMO controllers that share the supply water with other air
handling units.

Nesler (1986) generated and tested in a seven zone HVAC system an adaptive PI
controller. The strategy includes a parameter estimation step (Recursive Least Squares), a
design calculation step, an automatic tuning and a performance monitor, which are
connected to both the PI controller and the process. To avoid abrupt changes in the
outputs while the change in the PI gain constants is made, the controller is modified to
provide bumpless changes in the process. One interesting aspect presented by this author
was the rules to avoid parameter estimation while expecting great changes in the system,

avoiding unnecessary computation and possible miss tuning of the controller. The results



obtained from the testing of the algorithm were satisfactory; nevertheless RLS algorithm
was limited by unmodeled process disturbances and the actuator hysteresis.

Wang, et al. (1999) developed and tested under experimental conditions an advanced PID
auto-tuner for both SISO and MIMO processes. For this purpose the process critical point
is determined experimentally by relay tests and later presented as a transfer function. The
number of iterative processes to find the transfer functions is proportional to the number
of variables that are used in the system. The system implemented in Java is accessible via
internet and allows three types of operation: PID control, Manual and Auto tuning,
ensuring a bumpless transition between the auto-tuning and the conventional PID with
manual control. Hailin and Broberg (2002) also developed Internet based HVAC
applications for remote control. Using an internet link up to all the control systems in the
building, monitoring and energy management strategies such as scheduling are easy to
manage from a distant location.

Wang, et al. (2001) developed a PID auto tuner. The authors assumed a second order plus
dead time model that represented the HVAC system dynamics. They used the relay tests
developed by Wang et al. (1999) to provide the constants to validate the model and
designed the PID controller. The strategy was tested in a HVAC pilot plant for the room
pressure loop and the supply air pressure loop. Improved results were obtained by using
the PID tuning rules.

He and Asada (2003) proposed a linear model for the evaporator, and a non linear
controller based on this model. By combining several of these models, the system can
simulate multiple zones. The authors state that for a wide range of operation the PI

controller will not need auto tuning due to the non linear compensation included in the
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controller. It is also mentioned that just by removing the equations corresponding to the
i" zone, the controller can change the input to the system allowing it to cope with on/off

EMS. The simulation showed that even with large estimation errors the control can still

produce the desired results.

2.4 Neural Networks and Control

The growing importance of HVAC systems and the need for improving load management,
economy and energy costs is a major feature of several references. HVAC design
techniques including the latest advances in equipment and controls are thoroughly
covered. Currently the research in control strategies using neural networks is really vast.
Countless researchers have explored the possibilities to enhance the performance of
controllers with the aid of predictive techniques by artificial neural networks (ANN).
However to the best of our knowledge, the work done to implement EMCS in HVAC
systems is considerably less. In this part of the literature review, we intent to check the
most relevant studies for this research project.

To begin, Miller and Seem (1991) developed a three layer feed forward neural network
with two input nodes (the zone temperature and the outdoor air temperature) and the start
or stop lead time as a result. Using a building simulation program, data for four cities was
generated, with different building materials and sizes. A comparison between the
different developed architectures (different number of neurons in the hidden layer,
different learning rates, initialization techniques, etc.) and a recursive least square

algorithm shown below:

11



rT=4a,+ (1 - W)(alT room,initial )"' Wa, T, ien
where
w - _ [(Troom,initial - Tvet,night )]
(T room, final ~ Tset,m‘ght )
T pomimiva = FOOM temperature at the beginning of the return period.
Trpom pma = FOOM temperature at the end of the return period.
T pgn = setpoint temperature during night or weekend setback.
T = return time.
a,,a,;,a, = coefficients determined with recursive least squares.

The results showed by the authors in terms of maximum error, standard deviation and
average error, showed almost no difference between the two methods. The reasoning
behind this similarity of performance was justified by the lack of diverse data in the 90
days of simulation. Nevertheless the level of expertise, computational power and time
required for the artificial network to work was higher for the ANN, rendering it a bit
impractical to implement. The authors also developed a new training strategy that
improved the training times of the network in 90% from the traditional training
algorithms.

Tudoroiu and Zaheeruddin (2004) developed a neural network for PID tuning for the
discharge air temperature control loop. After comparing the performance and
computational time of several MIMO and SISO functional blocks, the authors showed
that the standard deviation and the mean error on the MIMO-Neuro model were
significantly lower, however the SISO model give good enough predictions at a smaller
computational cost. The neural networks selected was a three layer feed forward neural
network, with the control loop error as the input, the differential and integral gains as the
hidden layer outputs and the estimated discharge air temperature and proportional gain as

targets. The data sets for the offline training were obtained with experimental data and

12



the NN retrains online to cope with disturbances during the simulation in the discharge
air temperature control loop. This architecture reduced the oscillations in the actuator and
gave good tracking performance.

Fargus and Chapman (1998) developed a hybrid PI-Neuro controller, considering the
HVAC system dynamic behaviour as a first order system. Using a closed loop
proportional controller combined with a feed forward NN that acts as a distributed
integrator, the authors showed that in approximately two days the network is capable of
online development of an inverse model to predict and provide a robust control. Since the
network was implemented based on a weighted radial basis function, with the basis
function uniformly distributed on a rectangular grid, it was recognized the limitation of
functioning of the network in the active domain, forcing constant changing between the
normal PI controller and the hybrid one. The simulation results showed that online
training is possible by stretching the active domain and after checking the data obtained
from the network for at least five independent periods of time the network can take over
the normal PI bumplessly.

Pingkang et al. (2002) developed a neural network control algorithm for replacing a PID
controller with a Genetic Algorithm integrated to optimize the learning rates for the NN.
The results were first simulated and then tested in a robot servomotor of a real HVAC
system with a sample time of 15 seconds. The neural network PID-like controller showed
robust control without the need of a model or parameter tuning.

Semsar et al. (2003) designed a control methodology where the main objective is to

reduce actuator repositioning. Combining the neural network with a conventionally
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designed PID controller the authors show that the use of the non linear element to chop
the oscillations of the actuator, to give better tracking performance and energy reduction.
Saboksayr, et al. (1995) designed a robust decentralized controller for a multizone space
heating to compare with a decentralized NN controller. A neural network produced
optimal results when the sensitivity of the cost function was included in each of the
corresponding feed back gains. The results showed that the NN performed better than the
robust decentralized controller, and that the best performance was observed while on
training mode. Nevertheless, the recall mode and the adaptive mode showed acceptable
results (Tudoroiu and Zaheeruddin, 2004; Roberts and Oak, 1991; Huang, 2003).

Ahmed et al. (1998, Part L, II and III) used a different approach taking advantage of the
properties of the general regression neural networks (GRNN) to capture the dynamics of
the cooling coil of a real HVAC system. They created a feed forward control strategy that
had satisfactory results when compared with the standard PID controller. Part of the
success was due to a supervisory controller that they implemented in order to ensure
smooth transitions whenever the adaptive system made the changes in both the pressure
and temperature control sequences. Nonetheless is good to note that in a real system both
controllers will have to interact at the same time, while in the simulations they were
tested independently.

To continue with the system identification and prediction, Chow and Teeter (1997), used
the conservation of energy and mass principles to develop an ANN model. Using a set of
5 normalized inputs, they compared their results by measuring the magnitude of the input
layer weights. This way of selecting the neural network called functional link, allows the

ANN to achieve excellent generalization properties while eliminating meaningless
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operation in the input layers. The same authors used their developed model (Zaheeruddin
and Zheng, 1994) in an attempt to minimize a given cost index, using the ability of this
particular type of neural network to determine the relevant inputs in the system while still
following the dynamic changes in the system. It is worth to note that the results obtained
were based on a single zone system.

Song et al. (2003) developed a model of a VAV system using an adaptive neural network,
mainly concentrating in the air flow and motor-fan dynamics for VAV control. Since the
behaviour inherent in these systems present high uncertainty and non linearity, the
implementation of an adaptive mechanism for the ANN with robust stability and
convergence was presented. Lower tracking errors were obtained with the robust tuning
algorithm compared to those from the standard back propagation, showing that this
strategy can deal with model uncertainty and system disturbances.

Curtiss et al.(1993) implemented two neural networks, one predictor one controller, based
on the experimental data provided by a real building. The research was subdivided in
local and global control of the HVAC system in a commercial building. For the local
control a comparison between the conventional PID controller response and the PID-
Neuro controller was made, showing stability and better time responses in the
temperature reset control EMCS. For the global control scheme, they concentrated in the
plant optimization and energy savings by prediction in heat loads when ANN predictor
was used in adapting the set points to the experienced loads.

The same authors (1994) using data again from a real system generated an optimized
plant operation through regression modeling and an ANN plant optimizer control. After

comparing the results by both methods, it was corroborated that the use of ANN is
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feasible for the system modeling and even better than the regression modeling. Then four
EMC methods were installed for comparison: Fixed set points, reset set points, ANN
optimizer, and ANN optimizer with duct pressure reset. The results showed that the worst
case scenario for energy consumption was related to the reset set points strategy while the
best was achieved by the ANN optimizer with duct pressure reset showing savings up to
15% compared to the standard fixed set point. The authors recommend further studies to
take into account the peak load, since the ANN optimizer tends to keep the water supply
temperature in the lowest possible through out the normal operation day.

Wezenberg and Dewe (1995) developed two adaptive recursive neural networks, for
forecasting the local tariff rates due to a plan to constantly change them depending on
local needs for energy. This project was developed as an effort to efficiently supply the
needs of hot water in a house based on the forecasted consumption for the next 30
minutes at the lowest rate possible. Using a hybrid 3 layer/2 layer neural network to
predict the amount of hot water required in the next three hours the system was able to
match the available profiles and determine the heating periods for the house hot water
cylinder with 336 data points for initial training. The authors state that this sort of
networks can be easily implemented in commercial buildings.

Daryainian and Norford (1994) developed a discrete time model of a house, and created
an online optimization procedure to match the requirements of energy of the building
taking into account the variable rates for the peak energy consumption. Although the
model is limited (SISO, linear and time invariant), the relative facility of implementation

is really appealing while savings up to 19% in energy consumption were obtained. Of
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course these results were also influenced by the size of the storage tanks, and external
factors, as outside temperature and occupancy while the experiments were accomplished.
Henze and Hindman (2003) developed clustering neural networks to control an air cooled
chiller - condenser. Comparing task-blind and task-specific training, the authors found
that the error from the task-blind is considerably higher; nevertheless, the training of
these networks can be unsupervised and relatively fast. The authors conclude in the paper
by suggesting the use of the task-blind neural network in the beginning and allowing the
clustering layers to train under task-specific conditions to improve the results.

Hepworth and Dexter (1994) proposed a neural control scheme that compensates for the
plant non-linear behaviour and degradation via an adaptive algorithm. The simulation
includes the set point set back EMC, with two schedules, to compare the performance of
the normal PID controller and the NN. Three inputs with 40 basis functions (radial basis
functions) were used as the architecture for these experiments. The results showed that
the neural control scheme have better overall results than those from the standard PID
controller, however careful choosing of the radial basis functions have to be made in
order to avoid estimation inaccuracies that can lead the neural network to higher errors.
Other useful papers for this research are referenced here.

Alessandri,et al. (1994), evaluated several network architectures in order to obtain a
balance between computational cost and precision of the predictions. The idea was to
implement an optimal control strategy in the conditioning of a green house heating
system, aided by the prediction of the outside air temperature. The results yielded that the
use of a simple ARMA (12, 2) was enough to forecast the outside temperatures and the

dynamic effects on the green house. The authors also advised that the training is more
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effective when the data is generated from a mathematical dynamic model than from the
“black box” approach.

Parlos et al. (2002) use NN to approximate the unknown dynamics of for an adaptive
state filtering. Creating separate NN models for each filter mapping, the authors obtained
acceptable results when Kalaman filters and Extended Kalaman Filters fail to converge.
Due to the inaccurate predictions of the network in the beginning, a two stage offline
training is used to provide an effective overall training. The NN provide an alternative to
constant measurement of some state parameters in the system that would be too
expensive to keep in constant track.

In respect of principal component analysis (PCA), Erguo and Jinshou (2002) presented a
non linear PCA for input training NN for fault detection, with the purpose of showing
that the linear PCA can omit valuable information. This is because of the lower portion in
the variability of the system from some of the nonlinear variables. Using data from a
continuous stir tank reactor, and a back propagation NN combined with the input training
network to estimate the non linear principal component scores online.

Confronting the computational inability to manage large data sets for the training of
neural networks Colmenares and Perez (1999), created a method to reduce the number of
observations and variables without compromising the reliability of the data set. The
authors used stratification on the original dataset and using samples from each stratum to
produce a new and reduced data set. Comparing the results obtained training the NN with
the data given by the stratification method, the stratification method combined with PCA
and the complete data set, it was shown that the stratified/PCA method yielded the best

results.
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Li, Vaezi-Nejad and Visier (1996) created a multilayer feed forward neural network for
fault detection. Using typical errors encountered in heating systems, the authors created a
discrimination tool to aid the operators to determine the source of degradation in the
system. The data was obtained by simulating the system under different conditions, faulty
and not faulty and later on tested with an unseen data set. The results demonstrated the
feasibility of using neural networks for fault detection and diagnosis, however it also
exposes the necessity to have a network that does not required retraining for each heating

system that is going to be applied to.

2.5 Fuzzy EMC and Control Systems

As mentioned before, artificial intelligence methods are beginning to be widely used for
improving the operation and performance of HVAC systems. It is necessary then to
review other methods than NN. In this case Fuzzy EMC and Control systems were
evaluated.

Egilegor, et al. (1997), combined a neural network with a fuzzy control system to provide
HVAC control of humidity and temperature in a three zone building. Simulation runs are
performed with different values for the fuzzy control parameters, and a neural network is
trained to select an optimal between these values to satisfy the HVAC system. The PID
control gain values are selected by means of linguistic variables in the Fuzzy control,
taking into account the humidity levels in the zones. With this data set the neural network
is trained offline to select the fuzzy variables. Different climate changes were tested
offline showing improvements mostly in the winter weather. However the
implementations required for the online training and testing have not been developed vet,

so there were no results available.
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Hawkings et al. (1990) used the ability of the fuzzy control rules to be combined, to
achieve a better control strategy for the outdoor air dampers.

It is expected to have better control in the zone temperature, by just improving the
performance in the supply air ducts. Further experiments were conducted in a full scale
building facility by Dexter et al.(1990) . The authors implemented jacketing rules for the
PID controller in order to supervise the behaviour when transport delays are significant.
The fuzzy rules were implemented and tested with the supply air temperature produced
by an air handling unit obtaining good results when compared to those of a self tuning PI
controller.

Cooper and Warwick (1994) use a two level fuzzy logic controller to produce expert
control in different systems and environments. The second level of control uses three
mini controllers to minimize the overshoot, the rising time and the plant usage (turn on
and off of the cooling plant). Combining these by means of fuzzy rules, the overall
performance of the system is improved, while the first level is in charge of reaching
operational temperatures after the night setback. Changes in the plant in extended periods
of time take into account by the adaptive algorithm, however since the original rule base
is kept, they infer that the future adaptations are expected to decrease the chances of
instability.

Pargfrieder and Jorgl (2002) generated an integrated system to control the HVAC system
along with the blinds and artificial illumination by means of fuzzy control. Using ANN
predictions of the external conditions of the zone are given. Records of changes provided
by the users, and comfort ratios are used to optimize energy consumption without

compromising the human comfort. A MIMO system with partial cross coupling is used to
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adapt the fuzzy inputs to the heat profile, blind positioning and solar radiation of the
system. An optimization algorithm runs after some time of operation, with the stored data
from the different data channels to reduce the energy required by the system.

Using the generalized predictive control algorithm combined with the optimization of the
energy input to the system is showed that the comfort of the occupants can be improved,
while still achieving energy consumption savings.

Kuntze and Bernard (1998) responding to the increase demand in real systems to react to
occupancy and event responsive systems, created fuzzy controller for the system for
ventilation control and temperature control. Taking into account the user requirement by
means of a “comfort economy slider”, the system is capable of determining the adequate
energy consumption for the desired control levels of the occupants. Choosing the zone
temperature, relative humidity and the levels of CO, as control parameters, the authors
created a quasi static model with only two parameters for optimization. Creating a fuzzy
model of the comfort criteria outlined in the ASHRAE “Ventilation for acceptable indoor
air quality” (1982), and a membership function describing the required heating power, the
reference temperature is statically optimized. The Air exchange rate is optimized by
means of a dynamic feedback optimization, using a predictive model to relate the relative
humidity and the CO, levels. The two optimal values are combined by the economy
factor provided by the user. The authors conclude that this strategy can be combined with
other EMS, and that further study is needed to be able to include this system in
commercial buildings, rather than in homes.

Huaguang and Cai (2002) constructed a decentralized non linear adaptive controller to

cope with different load conditions in a HVAC system. Dividing the system in a fuzzy
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logic inner loop and in a Fourier integral based control outer loop, the authors ensure that
the system output vector tracks the desired trajectory, while guaranteeing a zero steady
state error.

Lea et al. (1996), also took into account the relative humidity in the zone as well as the
desired temperature and evaluated the performance of their fuzzy control strategy in a test
House. The data collected from the system was used to evaluate the performance, for
tuning and further design. The multiple zones are controlled by four variables, the
compressor speed, the fan speed, the required mode (heating, cooling or neither) and the
damper position. Three Fuzzy variables were used with five fuzzy decision making rules.
The results showed good comfort control, temperature wise and humidity wise, for the
six zones. However no energy consumption comparisons were made so further studies
and testing is required.

Kiff and Warwick (1996) studied the interactions between different zones, in a group of
offices. Using the microprocessors of relative low power that are distributed in the nodes
in each room, the processor deals with fuzzified data, and deals with the defuzzification
locally, avoiding having one central system dealing with all the fuzzy data, and
permitting future enhancements in newly added nodes. Three fuzzy control variables are
chosen at each node, with trapezoidal and triangular functions to ease calculations. Two
layers of fuzzy associative memory are used to close the control loop, and fuzzy
singletons are used to defuzzify the data and give it as a percentage with a sample time of
5 minutes. However no results of the effect of the controller have been reported, since the

controller is still in trial stage. Additional information transmitted from the rooms to a
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centralized controller would allow better decisions in set point selection and heat input
when having different zones interacting.

Arima et al. (1995) also showed temperature and humidity control, by means of fuzzy
logic controller. In this case, the HVAC system uses two fuzzy logical variables,
temperature and humidity, and control them by means of the hot water valve, the damper
positioning and the mass flow rate of water in the humidifier. A set of seven fuzzy rules
with triangular functions is decided for the humidity control while seven fuzzy rules were
used for temperature control. The two sets of rules are combined and applied in an
experimental site composed of 4 rooms, showing better performance for both humidity
and temperature control, when compared to the rough set method, providing well control
environment. However further improvement can be achieved when trying the system with
VAV.

Rahmati, et al. (2003), create a hybrid fuzzy and PID controller for a MIMO VAV-
HVAC system. Using Sugeno’s fuzzy rules, generalized forms of Ifs and THENs were
employed to control both the temperature and the humidity of the zone. It was shown that
the Fuzzy PID controller had better tracking speed and robustness than that showed by
the regular PID.

Ying-guo et al. (1998) compared the results obtained for a single zone SISO system with
a PID controller, a fuzzy PID and adaptive Fuzzy controller. The research showed that
the adaptive control method based on fuzzy sliding mode control, is able to cope with the
frequent changes and disturbances in the zone, using a simplified fuzzy control, handling
the fact that some linguistic rules are difficult to collect in some situations. The

simulations based on a swimming room showed satisfactory results, while exhibiting
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simplicity and applicability. Hamidi and Lachivier (1998) approach the indoor control
problem by means of a fuzzy control system that maintains a constant indoor air comfort
instead of a constant indoor air temperature. The control parameters being part of human
preferences are subjective and imprecise, presenting a perfect opportunity to implement a
fuzzy controller. Using six inputs regulated by means of seven fuzzy rules, the HVAC
system receives the air velocity, the set point for the supply air temperature, and the
expected thermal comfort level in the zone. Although the simulation results show positive
results and simplification of otherwise a long iterative process, the implementation of
such system in real buildings would require sensors for data acquisition for air velocity,
relative humidity and interactive panels to receive feedback from the users. Angelov et al.
(2000) created a methodology for modeling HVAC components by using an encoding
mechanism that evolves the fuzzy rules base structure and parameters from the training
data. The use of just a few rules to control generated by means of NN and Genetic
Algorithms, the system gives the possibility to follow up easily the system outputs, as
compared with other black box approaches for modeling components. The authors also
emphasise in the ability of the system to acquire expert knowledge, during creation and
use of the model, while decreasing the computational requirement to obtain the outputs
from the model. Jian and Wenjian (2000) compared the results obtained by a normal PID
controller, a Fuzzy logic controller and an adaptive neuro-fuzzy controller in regulating
the supply air pressure. Using three/six Takagi and Sugeno basic fuzzy rules adjusted by
a five layer adaptive neural network, the system is able to update the rules to current
conditions while still keeping the last set of rules. The system performs comparably to a

well tuned PID system, however the experiment shows a limited capacity to deal with the
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steady state error. The authors solved this limitation by adding a second integrator loop
that can be switched on or off according to the change in the error with the set point.
Furthermore the controller shows its strength when dealing with conditions farther from
the design point. Mathews and Botha (2003) used simulation as a tool for improved
thermal building management. Taking data from a real building to corroborate the
developed model good results for the predicted zone temperature and the energy
consumption were obtained. By including system degradation and change in conditions,
the authors are able to detect the fouling and investigate alternative control strategies that
would allow the real system to operate relatively efficient while the HVAC system is
back in to proper operation. The authors conclude from their study that this type of
simulation tools can aid the operation and maintenance departments to enhance
scheduling and general energy management in the building. Wen and Smith (2001)
studied the effect of the thermostat time constant in the energy consumption. Comparing
four thermostats with different time constants in an interior zone of a VAV HVAC
system, the authors were able to show that although the difference in time constant does
not alter the stability of the temperature control, a slow thermostat causes higher energy
consumption and slight discomfort to the occupants in the zone.

From this literature review we can conclude that many efforts have been made in
improving the performance of controllers without compromising the occupant’s comfort.
However, these efforts seem to be separated one from another, or having just one or two
EMC functions combined at a time. We intend in this work to include at least four Neuro
— EMC functions combined and evaluate the potential energy savings obtained by their

combination by means of comparing it with a base case model with the EMC algorithms.
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3 DEVELOPMENT AND IMPLEMENTATION OF THE PLANT
MODEL AND OF THE ENERGY MANAGEMENT CONTROL
SYSTEM (EMCS): BASE CASE

3.1 Introduction

The objective of this Chapter is to describe the components of the Base case. ‘Base Case’
refers here to the two — zone variable air volume HAVC system model (i.e. plant) with
selected EMC strategies (Huang, 2003). Firstly, the equations that comprise the three
components or submodels of the plant are presented. These submodels consist of the
storage tank dynamics (i.e. water supply temperature), followed by the cooling coil
model (which is composed by the return water temperature, the tube temperature and the
supply air temperature), and the zone temperature model. Since the cooling coil forms the
interface between the zone models and the storage tank dynamics a section in this chapter
was dedicated to summarize the design and constant selection of the cooling coil.
Secondly, the implementation of the plant (all three submodels) in Simulink ®
(Mathworks, 2002) is done. The results obtained from the implementation are divided in
three main categories: open loop simulations, closed loop simulations, and finally the
Base Case, in which the EMC strategies are implemented. Lastly, the conclusions related

to this chapter are presented.

3.2 VAV HVAC System Model Components

In this subsection a model to simulate the dynamics of a two zone VAV, HVAC systems

is described. A set of differential equations based on energy balance principles, are used
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to describe the dynamics of the four independent control loops. This plant was used to
implement Energy Management Control (EMC) functions developed by Huang, 2003. In
the following part the physical model and the model equations are described. All

variables related to the equations used in this work can be found in Appendix 1.

3.2.1 VAV System Layout:

Figure 3.1 depicts the physical layout of the VAV, HVAC system that comprises the

plant model, and its correspondent control loops, based on two office rooms.

~h

S | B

Figure 3.1. System’s Layout (Hung, 2003)

The system is composed of two zones (Z; and Z5), each having independent temperature
set points (7z1set, Tz2set). Both zones are 3.3m in length, 3m in width and 2.8m in height.
They both have one external wall facing south. The rest of the walls are considered to be

interior. Z, is considered to have a higher cooling load than Z;. The system was designed
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to provide two refrigeration tons of cooling, using a VAV HVAC system. The heat pump
(HP) provides refrigeration to the storage tank (ST) where the chilled water that supplies
the cooling coil is stored. The air from the mixing box is cooled in the coil and then
circulated to the zones. The supply air temperature (SA) is modulated by means of
regulating the mass flow rate of water that goes through the coil. The Variable air volume
boxes (VAV) are used to supply appropriate mass flow rate of air to each zone in order to
maintain their respective set points. The air that returns (RA) is partially exhausted (EA)
and partially mixed with outdoor air (OA) in the mixing box, completing in this way the

air circulation cycle.

3.2.2 Water Storage Tank Model:

The variable of interest in this submodel is the supply water temperature, Tws. The water

that is supplied to the cooling coil, is provided from a tank of volume Vtark, density, pw,

and specific heat, Cpw. An energy balance on the chilled water tank yields Equation 1:

dT ws _ 1

a ow-Cpw - Vtank {— Mw- pr(Tws - Twr)— Uhp -Uhpmax-COP + a,, (Too,t - Tws)}

(D

The energy extracted by the heat pump is determined by the multiplication of the
percentage of power input, Uhp, times the maximum power input for the heat pump,
Uhpmax. The coefficient of performance (COP) of the heat pump is modeled according

to Equation 2:

2)

To — Tws__]
AT max

cop =(cop max{l i
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Where COPmax is the design coefficient of performance of the system and AT max
represents the maximum difference of temperature between the water and the air in the
cooling tower. 7o is the outside temperature and it is modeled with a cosine profile. Since
all the submodels will depend on the predicted outside air temperature profile, its model

equations and a sample profile will be described in detail below.

3.2.2.1 Outdoor Air Temperature Profile

The outdoor air temperature profile is dependent on the expected maximum (7}) and
minimum (77) temperature values, and their corresponding time of occurrence (Cho,S.
and Zaheeruddin, M., 2003). If the time of the day is less than the time of the lowest

temperature occurrence then the outside temperature is modeled by Equation 3.

T
To=Tv-Td. cosl:(ém tl))(t -1, )} when t<t, 3)

If the time of the day is in between the times of occurrence of the lowest and highest

temperatures expected on that day, then Equation 4 is to be used.

To=Tv-Td. cos{[-”}(t 7 )} when t, <t<i, “)

(th "tz)

Finally if the time of the day passes the time of the highest temperature, then Equation 5

shown below will be applicable.

To=Tv-Td.cos|| — % — _|(t—t hen t, <t 5

l:(24_(th_tl))( h)J w h (5)
rv=l1atT ra =110

Where, 2 2 (6)
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Ty and 7 are the maximum and minimum outdoor temperatures respectively for the 24 —
hour period; ¢ is the current time, #, is the time of occurrence of the maximum
temperature, and # is the time of occurrence of he minimum temperature.

Although most of the simulations shown in this work are made for summer conditions the
same equations were used for winter, autumn and spring season by matching minimum

and maximum temperatures to produce the appropriate temperature profiles.

3.2.3 Cooling Coil Model:

The cooling coil is of the typical counter — cross flow type with continuous plate fins on
its tubes. The model equations are adapted from (Huang, 2003). The first equation
describes the water return temperature Twr, the second equation describes the tube

temperature 77, and the third equation describes the supply air temperature Tsa:

dlwr _ it Ait (T t—Tw )+ Mw_ (Tws - Twr) @)
dt mw-Cw mwlLc
g_tf:ﬁ Lt/ Cpa-Ma (Tsa—Ta,in)— hit - Ait (Tt—Tw)+
dt s+ % mt-Ct | p-A-Lc mfin- Cfin(l - ns)

mfin - Cfn (8

(T ) R 7&{404_ nso - he - Ao
p-Cv-4  mfin- Cfn(l 77s)

dea _ht-no-Ao (T Tt)——v 7=§p ©)
dt p-Cv-A p-A-L Cv

Tt, Tw and Ta represent mean bulk temperatures of the tube, the water and the air within

the coil. The reason why these temperatures are considered as 'mean bulk' is to avoid the
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transient effects of the change in the temperature along the length of the tube. Ta and Tw
are described in Equation 12 and Equation 13.

Ma-Cpa

Maw = — (10)
Ma-Cpa + Mw-Cpw

Mwa = - M- Cpw - (1D
Ma-Cpa + Mw-Cpw

Ta = Maw-Ta,in+ Mwa-Tsa (12)

Tw = Maw-Twr + Mwa - Tws (13)

These equations do not take into account the effect of conduction between the tube, water
and air of the coil due to the small contribution of this effect as compared to the
convection effect, and also because it simplifies the model and allows for faster
calculations.

The temperature at the entrance of the coil ( Ta,in ) results from the mixture of the
outdoor air temperature (7o) and the return air temperature (7). The variable xv refers to
the proportion of outdoor air that is admitted in to the building.
Ta,in=xv-T0+(1—xv)Tz (14)
The heat transfer coefficients (hit, ht, hc), the overall efficiencies used for these set of

equations (70 , 75, 7s0) as well as the dimensions and properties of the coil (dit, Ao, A,

Lc, mfin, Cfin, mt, Ct) were calculated using the methods outlined in reference

(McQuiston, 2000); a summary of these calculations is presented in section 3.2.5.
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3.2.4 Zone Model:

A two zone model was developed. An energy balance on both zones yields the following
equation:

dTZ SR {Ma Cpa(Tsa T z) +gs+ az(T o-T: z)} (15)
dt pa Cpa-Vz

Since the two zones have the same volume and similar characteristics (but different
loads), the same equation can be used to describe both zones, with the appropriate

variables to accommodate the characteristics of each zone, as shown by Equations 16 and

17.

dT: 1

O oy M Crultsa=T2) vas clro- 1) a6
a1z, R S {Ma, - Cpa(Tsa - Tz,)+gs, -az az(To - Tz, ) (17)

For estimating the cooling loads acting on each zone, profiles similar to those for the
outside temperature were created, again based on the maximum and minimum expected

loads and their corresponding times of occurrence, as depicted in Equations 18, 19 and 20.

= qv—qd. N < 18
a5, = v~ gd.cos| 1 ,)J( ,)} for 1<y, (18)
gs, = qv—qd.cos ﬂj(t—t,)} Jor 1 <t=y, (19)
L (th "’1)
-
qsi=qv—qd.cos_(24‘T:t—1)](t th)} Jor t, <t (20)
Where,
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Qh I QI qh ql
y="". 0 d=-"_>, 21
q 5 q 2 21

g and g; are the maximum and minimum cooling loads respectively during the 24h —

period. The parameters used in all of the equations are summarized in Appendix 1.

3.2.5 Cooling Coil Design:

In order to implement the model of the VAV HVAC system it is necessary to design a
cooling coil that will meet the specified cooling load. To satisfy this requirement a
cooling coil was designed using the steady state techniques described by McQuiston
(2000). The first step is to determine the cooling capacity of the coil. According to the
design cooling loads of the zone, the peak load could be satisfied with 1.5 tons of
refrigeration (5280W). Therefore a coil capable of sustaining 2 Tons of refrigeration was

selected. The following mass flow rate of air was found to match the cooling load of the 2

Tons.
madot
qload 7040 | W
Delta T 12 | K
madot 0.584 | kg/s

Table 3-1. Design Air Mass Flow Rate

A Delta T of 12 degrees is used since the desired set point for the zones was chosen to be
25 C and the temperature of the supply air to the zones was set at 13 C. Based on these
assumptions, the average values of the heat transfer coefficients inside the tube (kir), and
in the surface in contact with the air (k0), were computed using the recommended values
for velocities of the air and water (McQuiston, 2000). The results of these calculations are

depicted in Table 3-2.
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hit
Vw 1|{m/s
Redin 9531.25
hit 3137.345 | W/ m*K
ho
Sigma 0.54
Va 4.57 | m/s
Gfr 5.49 | kg/m’.s
Ge 10.19 | kg/m’.s
Red 9008.03
Dh 0.0026 | m
A/At 14.47
Jp 0.0175
J 0.0068 | Fig. 14-14 (McQuiston, 2000)
ho 88.073

Table 3-2. Coil Design Heat Transfer Coefficients

Once these values were calculated, the efficiencies, 7s (fins) and 7o (overall), were

determined (Table 3-3) for a four row triangular fin configuration:

ns
dim1 0.015875 | m
dim2 0.01588015 { m
1 0.01588015 | m
m 0.015875 | m
Psi 1.99685535
Beta 1.00032443
Re/r 2.12226672
Fi 1.41783772
m 75.2712334
Ns 0.81355515

no
Afo 0.942 | Afin/A
No 0.82436895

Table 3-3. Coil Design, Overall Efficiency of Fins and System

The overall heat transfer coefficient Uo and the effectiveness of the system were then
computed and listed in Table 3-4 and Table 3-5. The size and specifications of the coil

are summarized in Table 3-6.
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Uo
Alpha 800.0 [ M
Ai/Ve 43.88375689 | 1/m
Ai/Ao 0.054854696
1/hono 0.013709129 | m> K/W
1/hit(4i/Ao) 0.005810648 | m°.K/W
Uo 51.23009135 | W/ m>K

Table 3-4. Coil Design, Overall Heat Transfer Coefficient

NTU
Tws 71C
Twr 11]C
Tain 251 C
Tsa 13]C
Ca 591.59 | W/K
Cw 1760 | W/K
Cmin/Cmax 0.336
Epsilon 0.6648
NTU 1.34 | Fig. 14-18 (McQuiston, 2000)

Table 3-5. Coil Design, Number of Transfer Units

Coil Dimensions
Ao 16.52 | m”
Ve 0.0207 | m’
Vol air/s 0.4865 | m’/s
Afr 0.1073 | m’
We 0.1925 | m
Hc 0.127 | m
Lc 0.8448 { m
Nr 6.575 7

N tubes per row
mwdot 0.45 | kg/s
Aw 0.00045 | m’
Ntr 3.826 4

Table 3-6. Coil Design, Dimensions of the Coil and Mass Flow Rate of Water

The first design was made with the assumption of 4 rows of tubes. A second iteration
with 7 rows of tubes followed. Both results were very close with only minor changes in
the design values. The coil design parameters in each case were very similar. These

parameters are summarized in Table 3-7:
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X 0.03175 | m Prube 8522 | Kg/m’
X 0.0275082 [ m Ait 1.073 | m“/m
D 0.0159 | m Mfin 3.68 | Kg/m
Din 0.0122 | m Mt 38.97 | Kg/m
Cpa 1005 | J/kgK Ao 20.24 | m°/m
pw 1000 | kg/m’ A 0.107 | m*
Cpw 4189 | J/kg K Lc 0.845 | m
Kfin 204 | W/m.K We 0.1925 | m
Finthick | 0.0001524 | m Hc 0.127 | m
fin pitch 47244 | 1/m Ntr 4

Pfin 2707 | kg/m’ Nr 7

Table 3-7. Coil Design, Chosen Parameters for the Equations

In order to simulate the operation of VAV HVAC systems with the designed coil, several
properties of air and water are required (e.g. density, conductivity). These were modeled
as functions of temperature. The functions were determined by fitting polynomial
equations to the property data by Incropera (1996), and these equations are listed in Table
3-8.

The equations for water are valid for temperatures between 0C and 92C. Those for air are

valid over a temperature range of -73C to 127C.

Property Equation R’
Water Viscosity 1w =—0.0025-Tws’ +0.5496 - Tws* —44.673-Tws +1711.8 0.9988
Water Conductivity | kw = —0.0072-Tws’ +1.84 - Tws +569.29 0.9991
Air density p, =355.12-Ta,in "% 1
Air Viscosity pa=2-107 -Ta,in""" 0.9996
Air Conductivity ka =0.0002 - Taqi*** 0.9997
Jp vs. j4 j4=0.2737-JP +0.0014 0.9988

Table 3-8. Functions for Variable Parameters of Air and Water
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3.3 Model Implementation Using SIMULINK®

To facilitate the implementation of EMC functions, it was convenient to simulate the
EMC algorithms in Simulink ® (Matlab). In this manner we will be able to couple the
different elements of EMC system in an easier manner. By selecting the start and end
dates as input arguments to the algorithm, it is possible to simulate several days of the
plant operation, and to continuously monitor the outputs of the system. The use of this
particular program environment might also facilitate the use of real data or real time

implementation of the program.

3.3.1 Open Loop Simulation:

The VAV system model equations are known to be stiff. The first step taken in order to
implement and visualize the response of the model was the open loop simulation. These
open loop responses were obtained using the design values for the mass flow rates of
water and air in each zone and only 50% of the maximum capacity in the coil (Uhp =
0.5). The results of this first simulation run (open loop) for the Zone temperatures,
compared to the outside temperature, are depicted in Figure 3.2. Since the main
disturbances in the system are 7o and the cooling loads, and those have cosine profiles it
is expected that the open loop responses of the simulated temperatures also display the
same behaviour.

The open loop responses of the supply and return water temperatures and are shown in

Figure 3.3, while the tube and supply air temperatures are depicted in Figure 3.4.
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Outdoor Air Temperature and Zone Temperatures

----- T22

K
!
28

Time (h)

Figure 3.2. Open Loop Outdoor Air and Zone Temperatures

Water Supply Temperature

Water Return Temperature

Time (h)

Figure 3.3. Open Loop Water Supply (Tws) and Return Water (Twr) Temperatures
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Tube Temperature

Tt (C)

Tsa (C)

Time (h)

Figure 3.4. Open Loop Temperature of theTtube (Tt) and Temperature of Air Supply (Tsa)

3.3.2 Closed Loop Simulation:

In the two zone VAV system, the following control loops were simulated: Zone 1 and
Zone 2 Temperature control loop, Discharge air temperature control loop, and Chilled
water temperature control loop. In Table 3-9 a list of the control variables chosen for

regulating the control outputs is given.

Control variable Symbeol Sensor Symbeol

Power input to the Uhp Supply water Tws
heat pump temperature

Mass flow rate of Mw Air supply Tsa
water in the coil temperature

Air mass flow rate Ma, Zone 1 1z1
of zone 1 temperature

Air mass flow rate Ma; Zone 2 122
of zone 2 temperature

Table 3-9. Control Variables for the HVAC — System
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The PI control was selected due to its wide use in the HVAC system industry. The
controller gains were chosen through trial and error. Once the desired response was
obtained, simulation runs were made using the following set points: Twsset = 7C, Tsaset
= 13C, Tz;set = 24C and Tzyset = 22C.

The selected controller gains are displayed in Table 3-10.

Pl
Variable | Integral | Proportional
Mal 0.007 1.2
Ma2 0.008 1.2
Mw 0.0001 0.009
Uhp 0.0009 1.2

Table 3-10. PI Control Gains

A typical set of output response for the supply and the return water temperature are
depicted in Figure 3.5. Figure 3.6 shows the response for the tube (7¥) and supply air
(Tsa) temperatures. It is noticeable that although the supply air temperature set point was
reached, the overall control of this variable is not completely satisfactory. Between 12h
and 18h, when the greatest divergence of the supply air temperature from its set point is
presented (1.3C), the mass flow rate of water reached its maximum, yet the heat pump
only works at full capacity while the HVAC — system is in the start up phase (Figure 3.8).
This explains the reason why the supply air temperature (See Figure 3.6) does not
maintain its set point and could be corrected by changing the set point of supply water
temperature (7Twssef) according to the requirements of the zones. Furthermore the
stiffness inherent to the model allows only a small range of values for kp and ki for this
control loop, affecting the reaction of the controller to sudden changes in the system.

The responses for the control variables Uhp, Mw and Ma are depicted in Figure 3.8.
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Supply Water Temperature
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Figure 3.5. Closed Loop Responses for the Water Supply (Tws) and Water Return (Twr)
Temperatures

Tube Temperature
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Figure 3.6. Closed Loop Response for the Tube (Tt) and Supply Air (Tsa) Temperatures
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Figure 3.7. Closed Loop Responses for the Temperature of Zone 1 (Tz;) and Zone 2 (Tzy)
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Figure 3.8. Closed Loop Control Variables: Heat Pump Power Input (Uhp), Mass Flow

Rate of Water (Mw), Mass Flow Rate of Air (Ma)
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In the lower part of the figure (Figure 3.8), the individual mass flow of air rates for each
zone are depicted as well as the total mass flow rate of air handled by the cooling coil.
Table 3-11 displays the summary of the maximum and average errors for the closed loop
simulation. These values are expected to be improved by changing the controller gain

values by means of a group of Neuro PI controller gain selectors in later chapters.

Error
Variable | Maximum | Average
Tz, 1.07 -0.0027
1z, 1.93 -0.0045
Tsa 10.00 -0.0015
Tws 5.25 -0.017

Table 3-11. Close Loop Error Summary.

Different initial conditions in the system produce different responses with the same PI
controller gains. As a result the response times and overshoot values may vary greatly.
From Figure 3.5 is clear that the longest settling time is that of the supply water
temperature control loop. This is due the size of the tank and the greater temperature
difference from its initial condition that this system has to attain. Nearly an hour and forty
minutes is required for the supply water temperature to reach its set point of 7C. The
settling time for the zone temperature is close to 30 minutes (Figure 3.7). For these
simulations all the temperatures were considered to start at 28C. Figure 3.9 and Figure
3.10 shows the settling times for the same model, initializing all the variables with three
different temperatures. It is noted that by changing the initial Temperature by just 3C the
settling time was reduced to almost a third for the zone temperatures, and the set point of

the water supply temperature (7ws) can be reached in about an hour.
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3.4 EMCS Implementation

In this section several energy management control functions are implemented in the
simulation model discussed in section 3.3. The following EMC functions were
considered.

1. Outdoor air Economy Cycle: Proportional Band

2. Supply air and water temperature reset (set point selection via 70)

3. Seasonal Operating Mode

4. Start and Stop Lead Time Algorithms

3.4.1 Outdoor Air Economy Cycle: Proportional Band

The Proportional band control is implemented to regulate the outside mass flow rate of
air admitted in the building. The objective is to take advantage of the cool outdoor air,
during the times when its temperature is lower than the temperature of the zone. Also it
will restrain the amount of outdoor air admitted into the building to the minimum in the
hours that it would produce higher energy consumption. This minimum value was chosen
to be 2L/s.m?, following the recommendation of Model National Energy Code of Canada
for Buildings (MNECCB in Canada, 1997). This value is close to 15% of the total mass
flow rate that should be provided in the room (minimum xv in the system). The strategy
used was the proportional band control, which is described in detail in reference (Hung,

2003), is depicted by Equation 22:
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Where 7 is the proportional band, 7o is the outdoor air temperature, 77 is the temperature
of the zone, considered the same return air temperature (no losses in the ducts are
considered), x,:» is the minimum amount of outdoor air that should admitted in the
building, and x, is the actual percentage of outdoor air admitted in the system.

The purpose of the proportional band strategy is to provide a greater amount of outdoor
air inside the zones (improving air quality) while decreasing the energy consumption of
the HVAC system. This is accomplished by using a linear relation to determine the
proportion of outdoor air, when the zone temperature and the outside temperature are
close in value (£ 2C). If the outside air temperature is lower than the minimum of this
range (7z — 2) then only outside air will be brought into the system, providing what is
called free cooling. If the outside air is higher than the maximum of the range (7z + 2)
then only the required minimum (2L/s.m?) will be allowed into the building, ensuring that
temperature difference between the coil and the air is the lowest without compromising
the indoor air quality. This strategy is not used during the winter operation. It is assumed
that during this season, the air inside is going to be warmer than the outside air, so

admitting more than the minimum in the building would be a waste of energy.
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3.4.2 Supply Air and Water Temperature Reset (Set Point Selection Via 70)

Optimal set point selection is always a good way to economize energy; if the set points
correspond to the loads acting on the system and requirements of the users, then the
system will run at adequate capacity and the operation cost will be less.

The method implemented in reference (Huang, 2003) was the alternate supply air

temperature set point described by Equation (23):

e 3\
_ qs max ( 2 ( ))
Tz,l < Tz < Tz,h Tsase! = Tzset - —A} o alTo + aZT() + a, + a, Tzset - Toﬁmean
amaxcpa
saser = ) Iz< Tz,l ; Tsaset = Tsaset,max g
TZ 2 Tz,h 5 Ttvaset = Tsaset min

@3)
Where T, T, T, are the actual temperature, the lowest temperature and the highest
temperature of the zone respectively. T is the zone set point. Since there is more than
one zone, the temperature chosen for the algorithm is that of the zone with the highest
temperature. Tuser, Tsasetmax> Lsasermin are the actual, the maximum and the minimum
supply air temperature set points. gsmay, is the maximum sensible cooling load, Mgy is
the maximum mass flow rate of air in the zones, and ¢, is the specific heat of the air. 7,
and T mean refer to the actual and the expected mean of the outdoor air temperature. a;, ay,
a; and ay are coefficients that vary with the peak and the amplitude of the outdoor air
temperature. This algorithm selects the set point of air according to the temperature of the
zone. The maximum supply air temperature achievable is used when the temperature of
the zone is beneath the chosen low limit. When the zone temperature is higher than the

chosen upper limit the minimum supply air temperature possible is used. In between, a

linear relationship is used, which is based on the zone sensible heat balance equation. The
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algorithm depends on the cooling load in the zones and on a prediction of the outdoor air
temperature, which leads to difficulties when implementing in real systems (Appendix 2.).
A polynomial relationship was implemented between the supply air temperature set point,
the temperature of supply water and the actual outdoor air temperature, with the observed
performance of the model under different conditions monitored in a variety of 24 — hour
simulation runs. The data is included in Appendix 2. Table 3-12 shows the summary of

the corresponding set points while Equations (24a) and (24b) illustrate the functional

relationship.
Tsaset = -0.2-To+17.8746 (24a)
Twsset = —0.18-To +13.6487 (24b)
Summer

To Tsaset Twsset

30 11 7

25 12 8

20 13 9

15 14 10

Table 3-12. Estimation of the Set Points as Function of the Outdoor Temperature

The results obtained from both algorithms were similar. However, the equations based on
To gave better results in view of the fact that the outdoor air temperature influences most
of the dynamic behaviour of the system, and will be an input variable for the purpose of
training neural networks. For the energy comparison between these two algorithms,

please refer to Figures Al through A.9 in Appendix 2.

3.4.3 Seasonal Operating Mode

The objective of this algorithm is to select the operating mode of the system based on the

expected outside conditions according to the season and date. Using the month of the
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simulated date, the algorithm places the operation in between three seasons: summer,
winter and spring/autumn combined. The spring and autumn are under one category due
the similar need of the buildings during these seasons (cooling, heating or just
ventilation). Another important issue in selecting the appropriate operational mode is if
the simulated date is a national or local holiday and/or if it is part of the weekend.
Knowing this data, the program proceeds to generate suitable profiles for outside
temperature and heating or cooling loads for each zone. This allows the simulation to run
continuously if required. The algorithm proceeds with the selection of the set points for
the zone during unoccupied hours.

For autumn/spring, where heating or cooling might be required, a range of acceptable
outdoor air temperatures is generated based on the difference between this temperature
and that of the zone. If 7o is in this range then only ventilation is necessary. If the
outdoor air temperature surpasses the acceptable range, cooling is required, and the
system will interpret the need of the zone as summer. On the other hand if 7o is lower
than the acceptable range, then heating will be needed, like in winter. Combining this
information with the time of the day and with the knowledge of the simulated date (if it is
a holiday, weekend or occupied day) different operating modes are chosen in order to
provide the thermal comfort expected from the system. The algorithm also keeps track of
the simulated time, with the purpose of providing heating or cooling just during the
occupied times, where the loads reach their peak. In this way if the algorithm determines
that it is a holiday or a night in the winter (heating is required), a minimum set point of
15C will be kept and no external air will enter. If it is a night in the summer (cooling is

required), the heat pump will be shut down, the set point will be kept at 25C and the

49



outdoor air economy cycle will make use of the 7o which is lower than the zone
temperature during the night. Seemingly the outdoor air economy cycle plays an
important role during the holidays and weekends since the heat pump is turned off during
the length of the days. If the information provided to the algorithm renders that is a
spring/autumn holiday the outside temperature is good enough to keep the heating or the
cooling systems off and only the ventilation system is needed. The set points will be kept
at their last value. During occupied periods in summer or winter, the HVAC system will
be operational to reach the set points selected by the users, while in spring/autumn only
the outdoor air and the regulation of the mass flow rates of air, would be used in order to

reach the desired zone temperatures.

3.4.4 Start and Stop Lead Time Algorithms

Start/stop lead time algorithms are recognized as key elements in the energy savings
strategies, due the possibility of diminishing energy consumption during unoccupied
hours. But determining the appropriate start or stop lead time is not an easy task; the
complexity of the building’s distribution and heat and mass transfer, requires that the
dynamic behaviour is at some extend studied, measured or known. In the particular case
of the algorithm used for the base case, a set of equations and coefficients were
developed, to fit the data obtained from the reduce order dynamic model shown below.

ETng=Mac,m(Ta-Tz)+qs +a.(T,-T) (@)

The following equations (26) and (27), shows the algorithm to determine the start and
stop lead times used in the program.

ton =4 (T z-T: zset) +a, (T z-1I: zset)(T o-T. zset) +a,

= b, (Tzfin — Tz) - b, (Tzfin — Tz To — Tzset) (26)

tstap
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Where a; and b; are coefficients and 7zfin is the expected final temperature of the zone:
Tzfin = Tzset +2 (27)
These equations and set of coefficients were validated with a more detailed zone thermal
model, shown in Equation (28), where C, is the room thermal Capacity, and the five
terms in the right side correspond to the heat exchange in the room, the loads and the

infiltration and air changes.

€, M = ML, - T+ YUd(T,,,, ~T)+ Y uA(T, ~T)+q, +a,(T,~T.) (28)

z d a” pa
env window

The surface temperature of the enclosure element was modeled with Equation (29),
where the heat transfer of the node ‘i’ with the adjacent nodes j’ is represented.

(T T ) (29)

d‘T”_Z

R,
A building of medium construction according to the ASHRAE fundamentals Handbook
(1997) was chosen for the simulations. However the program can choose the appropriate
coefficients for the load and outside conditions simulated, according to the choice of
construction introduced by the user (Huang, 2003). Using the information from the
seasonal operational mode (previous section), the program is capable of determining the
proximity of the occupied/unoccupied periods. Using the settling times from Figure 3.9
and Figure 3.10 it is expected than the system will attain the desired set points within an
hour. Therefore during weekdays an hour before the expected occupied time (in this case
8am) the algorithm starts calculating based on the available information the possible start
lead times. When the simulated time is equal or greater than the start lead time, the
system becomes fully operational (winter occupied, summer occupied, spring/autumn

occupied). Seemingly, an hour before the expected leaving time (in this case 6pm) the
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program calculates the stop lead time. Once the simulated time is equal or greater than
the stop lead time the heat pump is turned off, however the water from the storage tank
will still be circulated through the coil, providing cooling or heating in the zones. Since in
the winter the heat pump is not turned off, even at unoccupied times, the set point is
lowered in order to decrease the energy consumption, while taking advantage of the
higher temperature of the water in the storage tank.

Table 3-13 depicts the values assigned by the program to each option. The values can be
introduced manually in case of need. As explained in the last section during normal

weekdays, the night or unoccupied time is considered as a holiday.

Season/Holiday Value
Summer Holiday 1
Winter Holiday 2
Spring/Autumn Holiday 3
Summer Occupied 4
Winter Occupied 5
Spring/Autumn Occupied 6
Summer Stop 7
Winter Stop 8

Table 3-13. Values of the Seasonal Operational Mode: Variable “Logic”

3.4.5 Base Case Simulation Results

The objective of this section is to carryout simulation runs involving all EMC functions
described before. This is referred as the base case simulation. The results for the base
case run for the zone temperatures are depicted in Figure 3.11. As we can see in the
figure the zone temperatures converge to their respective set points: Tzlset =23C and
Tz2set = 24C. The highest room temperature between the two zones is the one to
determine the percentage of outdoor air in the building, xv. From the temperature

responses it can be seen that during the unoccupied hours the heat pump is turned off, so
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only the fan is working, then during the start time, between 7am and 8 am the heat pump
is turned on at the start lead time and the zones are prepared for the occupied period.
Between 8am and 5 pm the system runs with the desired set points. Then, during the stop
time, we can observe a small jump in the zone temperature, due to the turning off of the
heat pump. Afterwards, the night cycle operation takes place.

In Figure 3.12 is clear that the water supply temperature follows the set points
determined in the algorithm explained in section 3.4.2. In Figure 3.13 the responses for

the tube and supply air temperatures are depicted.

Temperature of Zone 1
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Figure 3.11. Base Case Responses for Tz1 and Tz2
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Heat Pump Power Input

Uhp

Mw (Kg/s)

Figure 3.14. Base Case, Control Variables Uhp and mw

Figure 3.14 depicts the power input to the heat pump and the mass flow rate of water. It
is easier to appreciate the changes in the set point in the supply water temperature in this
figure, each time there is a change, it is translated in an increase in the power demand in
the heat pump (small peaks in the power input). Also the sluggish response of the
controller of the mass flow rate of water (air supply temperature control loop) is evident,
since the curve is really smooth even with the ongoing changes of the set point. Since the
control variable does not react fast enough, 7sa is unable to reach its set points. Part of
the reason is the small range of the controller gains in this particular loop; nonetheless a
revaluation on the set point algorithm might improve the performance of the system.
Figure 3.15 shows the percentage of outside air admitted in the building and the mass
flow rate of air in the zones; since the outdoor air algorithm states that during unoccupied

hours the building should profit of the lower outside temperatures, the xv tends to
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maintain itself at its maximum: 1. The variable Ma is the equivalent of the sum of the

individual mass flow rates of air for the individual zones, in other words the amount of

air handled by the cooling coil. The output from the logic algorithm that chooses the

season operational mode according to the time of the day is presented in Figure 3.16,

giving the exact EMC — strategy that was followed during the 24h simulation run.

xv (%)

Ma Ma1 Ma2 (Kg/s)
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Figure 3.15. Outdoor Air Intake and Mass Flow Rate of Air in the Zones.

Figure 3.17 depicts the total energy consumption and the hourly energy consumption.

This energy profiles will be used throughout this work in order to compare and quantify

the potential benefits of the different strategies developed. The energy consumption of

the closed loop simulation was 362.89 MJ and for the Base case was 214.05M], leading

to savings over 40%.
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Seasonal Operating Mode
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Figure 3.17. Total and Hourly Energy Consumption, Base Case
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3.5 Conclusions

1) The implemented model is suitable for simulating the dynamic performance of a
two zone VAV — HVAC system. However, under very low mass flow rates of
water, the model yields inaccurate results like very fast changes in the variables,
which are inconsistent with slow changes in real thermal systems. This could be a
consequence of the relation between the mean bulk temperatures in the coil and
the mass flow rate of water.

2) It was concluded that the free cooling associated with the outdoor temperature can
be easily implemented with the already existent sensors used in monitoring the
HVAC system of a building. The temperature based proportional band algorithm
was implemented to calculate the amount of outdoor air to be admitted into the
building.

3) The application of a design procedure to obtain the PI constants or the use of
adaptive control methods to determine the PI controller gains is recommended to
improve the overall performance of the system.

4) The energy consumption of the closed loop simulation was reduced by about 40%
by implementing four EMC strategies. There is room for even further
improvement not only in energy savings, but as well in the development and

implementation in existing buildings.
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4 ARTIFICIAL NEURAL NETWORK EMC STRATEGIES

4.1 Neural-EMC System

In this section the objective is to train and develop a set of non adaptive neural networks
(NNs with fixed weights and biases) that can be implemented in an overall Neural —
EMC System. To this end, first each EMC Function discussed in Chapter 3 is considered.
By using the algorithms given in that chapter, simulation runs were made to generate an

input — output data set. These data sets were used to train the EMC Neuro — functions.

4.1.1 Start and Stop Lead Time Neural Networks

4.1.1.1 Start Stop Lead Times Base Case and Data Acquisition

As described in section 3.4.4, the start and stop lead time algorithms are based on a
reduced order dynamic model of the zone, from which a simple relationship was
determined. The Lead time was found to correlate with the load in the room, the outside
temperature and the building thermal mass. These equations are:

ty =a,(Tz T zset )+ a,(Tz — Tzset \To - Tzset) +a,

start

26
Luop = by (T zfin — Tz)— b, (T zfin —T. z)(To — Tzset) (26)
Where Tzfin is the expected final temperature of the zone:
Tzfin = Tzset + 2 Q27)

and a; and b; are coefficients. These coefficients are functions of building thermal
characteristics. An exact determination of the coefficients in real buildings is not an easy
task. That is where the use of NNs can facilitate the implementation in real buildings

through off line training or online adaptation to reduce energy consumption in existing
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HVAC systems. In this section, individual non adaptive NNs were developed for each
algorithm, one for start lead time and the other for the stop lead time.

In order to obtain suitable data for training the networks fifteen sets of simulations runs
were made. In the simulation experiments conducted, the important operation parameters
were varied between a chosen high and low limits, generating a varied input profiles
while the impact in the lead time was recorded. From this data the first ten records were
used to generate and train the networks and the rest were used to see the ability of the
network to adapt to unseen data. The parameters to generate the input/output data set are

depicted in Table 4-1.

Data | To To | Osl | Osl | Os2 | Os2
No max | Min | max | min | max | min | Tzsetl | Tzset2 | Tsaset
1 30 151 1280 500! 1800 700 23 24 14
2 28 20| 1280 500( 1800 700 23 24 13
3 28 20| 1000| 500| 1200 900 22 23 15
4 30 27| 1150 700| 1700 800 22 22 12.5
5 22 15| 1150| 700| 1700( 800 25 24 14.5
6 23 18| 1223| 555 1567 780 20 22 15.5
7 29 22| 1223| 555| 1567| 780 24 22 13.5
8 25 19 700 500| 1000 700 23 21 12
9 25 19 700 500| 1000 700 24 24 11
10 30 21| 1280 800| 1800{ 1000 22 22 12
11 27 22 1122 600| 1800{ 1000 22 22 14
12 30 21| 1200| 900| 1432| 777 23 24 13
13 28 20| 1280| 800| 1800 1200 23 21 13
14 272 19.4( 1244| 560| 1210 880 23.5 24.2 12.8
15 28.5 183 1040| 6701 1300 990 233 25 14.4

Table 4-1. Input Parameter Range for Simulation Runs to Generate Data to Train the NN.

4.1.1.2 Start lead time Neural Network

For online implementation of NNjs, it is important to select a simple network
configuration and to choose the minimum number of inputs needed for training. To this

end, a question arises as to what impact each of the operating variables shown in 7able
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4-1 above have on the prediction of lead time. To address this issue, the well known
Principal Component Analysis (PCA) (Betta, G. and Pietrosanto, A, 1998) technique was
applied to the data set.

The result from PCA depicted in Table 4-2 shows that only four out of the six inputs
shown in Table 4-1 have significant impact on the start lead time. Therefore, these four
inputs: outdoor temperature (70), supply air temperature (7sa), the maximum between
the two zone temperatures (7z), and the corresponding expected set point for that zone
once the building is occupied (7zser), were used to train the Start Lead Time Neural
Network (SLTNN). To keep the data size manageable, a sampling time of 30 seconds
was used to carryout the principal component analysis. The minimum contribution
desired was set at 3%. Accordingly the obtained results showed that the effect of zone

loads gsI and gs2 on the prediction of the start lead time are insignificant (less than 3%).

Variable Fraction Variance

To 0.537
Tsa 0.1746
Tz 0.1501
Tzset 0.0993
qsl 0.0295
qs2 0.0095

Size Principal Component = 4

Minimum Contribution = 3%

Table 4-2. PCA Results for the Start Lead Time.

Consequently the input vector of the SLTNN consists of four parameters such as:

p =[To; Tsa; Tz; Tzset] 30)

Where p is the input vector of the SLTNN, 7o is the outside temperature, Tsa is the
temperature of supply air, 7z is the temperature of the zone, and 7zset is the expected set

point in the zones once the building is occupied.
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In the beginning the NNs were intended to be trained with the dynamic data obtained
from the 24 hour simulation runs. However such an amount of information was proved to
be unnecessary, when by just using the measured temperatures at the beginning (one hour
before) of the start period provided good enough results. Subsequently with the
simulation data acquired at the beginning of the start time, the network was able to
predict adequate start lead times for the prevailing conditions in the zone. This greatly
improved the chances of neural networks to be implemented in real systems, since the
data required can be obtained rather easily, and although in this particular case the data to
train the NNs was obtained from a simulation, the same data can be obtained from the
sensors monitoring the performance of HVAC systems.

The input/output data set that was chosen to train SLTNN is depicted in Table 4-3:

Day To Tsa Tz Tzset | Lead Time | Start Time | Lead Time
© © ©) © () (s) (min)
1 19.9 29.8 31.6 24 1785 26985 29.75
2 22.9 36.5 38.9 24 643 25843 10.72
3 24.5 35.1 37.0 23 979 26179 16.32
4 27.9 41.4 43.8 22 1346 26546 22.43
5 16.6 30.4 32.9 24 2058 27258 34.3
6 19.2 32.2 34.5 22 1800 27000 30
7 23.9 35.9 38.1 24 1406 26606 23.43
8 21.1 313 33.1 21 1725 26925 28.75
9 21.6 30.5 32.1 24 1897 27097 31.62
10 23.0 39.8 42.8 22 24 25224 0.4

Table 4-3. Initial Training Data for the Start Network.

4.1.1.3 SLTNN Architecture

Several architectures were tried to determine one that will give satisfactory results. All of
them were feed forward non adaptive NNs, created with the aid of the neural networks
toolbox from Matlab ®. Two and three layer networks ranging between 1 to 10 neurons

per layer and different transfer functions in the layers were tried. Although the difference
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in the training error was not very big, the capacity of the network to react to minor
changes in the inputs was the main selection criteria. The final network choice was: a
feed forward, three layer network, [4, 6, 1], with ‘purelin’ (linear transfer function in
Matlab NN tool box) as transfer function in all the layers and the Levenberg-Marquardt

training algorithm, as shown in Figure 4.1.

Start Neural Network Architecture

No Inputs = 4

No Layers =3

No Neurons per Layer=[4,B, 1]
Transfer Functions in Each Layer=
{'purelin’, ‘purelin’, ‘purelin’}

Figure 4.1. SLTNN Architecture

As the name of the neural network states, the lead time is generated, this means that the
neural network output will be subtracted to expected time of occupation, in this particular
case 8:00 am. The results from the initial training are shown in the upper part of Figure
4.2. The maximum error encountered compared to the start lead time given by the base
case algorithm in this initial training was of 11 minutes (643 seconds) and the average
error was about 5 minutes (313 seconds). The trained network was tested with the rest of
the data obtained from the simulations, to test the learning ability of the network in
response to an unseen data set. The results of the predictions for the SLTNN are

compared with the data from the base case in the lower part of Figure 4.2.

63



Comparison of Start Lead Time, Train Data

| I BC |- -

I NN

2000 -

1500 -

1000 -
500 -

(s) swn pee

Comparison of Start Lead Time, Unseen Data

500 - -

|
o
o
o
-

(s) w1y peary

1500 -~ - - - -

Data Set Number

Figure 4.2. Results for the Training SLTNN
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The maximum error for this trial run was of 9 minutes (544 seconds) and the average
error was 4.5 minutes (269 seconds). Figure 4.3 shows the results obtained with the Start
and Stop lead time NN integrated in the simulation. From the figure is clear that the
SLTNN properly selected the lead time in order to have the zone with the highest
temperature at the start time (7am), in this case 722, in its corresponding set point at the
beginning of the occupied period (8am).

It is worth to take into account, that since we use the same plant for two zones, one of the
two zones is most likely not going to achieve the set point in the moment that the
building is occupied. This is due the way that the algorithms for the base case were
selected (See Chapter 3). For control purposes, just one of the two zones is selected to
determine the heat pump input; in the winter it is the zone with the lowest temperature,
which will require the major energy input to reach its set point, and during the summer
the zone with the highest temperature, will be the one selected for the management of the
Tws. This will lead to minor discomfort to the occupants of the other zones. The time
difference for the second zone to achieve its set point is not big, and the temperature

difference is usually less than an acceptable 1.5 C from the desired set point in the zone.

4.1.1.4 Stop Lead Time Neural Network

For the Stop Lead Time Neural Network (STPNN) a similar analysis was used. The result
from the principal component analysis depicted in Table 4-4 showed that zone loads gs/
and gs2 do not influence the prediction of stop lead time.

As such the four inputs to the STPNN selected were:

p =1{To; Tsa; Tz, Tzset] (31
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Variable | Fraction Variance

To 0.4133
Tsa 0.3338
Tz 0.1692
Tzset 0.0601
gsl 0.0191
qs2 0.0045

Size Principal Component = 4

Minimum Contribution = 3%

Table 4-4. PCA Results for the Stop Lead Time

Stop Neural Network Architecture
No Inputs = 3

No Layers =3

No of Neurons per Layer = [3,6,1]
Transfer Function in each Layer =
{'purelin', 'purelin’, purelin'}

Figure 4.4. Stop Lead Time Neural Network Architecture

However, when trying different architectures for the stop lead time neural network, the

best results were obtained with a 3 layer network, [3, 6, 1], all transfer functions were

‘purelin’ , with the Levenberg-Marquardt training algorithm , but only with three inputs:

p = [7o; Tsa; Tz] (32)

The reason for this is fairly simple. The PCA was used with the dynamic data, but as we

explained in the later section, for training purposes it was more effective just to use the

initial condition when the algorithm is about to start. Since the zone is in a steady state
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due to the controllers for the zone temperatures, the value of Tzset was actually very close
to 7z, subtracting the contribution for the NN from that variable. The initial data set used

for the training and creation of the network is depicted in Table 4-5.

Day To Tsa Y 4 Stop Time | Lead Time | Lead Time
©) | © ©) (s) (s) (min)

1 27.2 12.9 24 63227 2027 33.8
2 26.5 12.9 24 63205 2005 33.4
3 25.6 14.9 23 62327 1127 18.8
4 29.7 12.4 22 62063 863 14.4
5 21.6 14.5 25 62100 900 15

6 219 15.5 22 61800 600 10

7 28.1 13.4 24 63172 1972 329
8 24.0 12.0 23 63581 2381 39.7
9 24.2 11.0 24 63062 1862 31.0
10 28.4 11.9 22 63500 2300 38.3

Table 4-5. Initial Training Data for the Stop Network.

In this case the stop lead time is calculated, again adding the initial stop time (61200
seconds) to the results obtained from the STPNN. Figure 4.5 displays the results of the
supervised training, obtained by simulating the data in Table 4-5. Once more the
maximum error encountered is about 15.2 minutes (912 seconds) and the average error is
9.5 minutes (570 seconds). The STPNN was also tested using the last five (unseen) data
sets. We can see that the maximum error decreased to 13.5 minutes (814 seconds) and
that the average error is also lower: 7 minutes (421 seconds). Although the maximum and
average error decreased during the testing, is expected to have high errors while
comparing with the base case algorithm. However, when using the SLTNN and STPNN
integrated with the simulation the zone temperatures are kept in the + 2C target range

from their respective set points. The lower part of Figure 4.3 shows the simulation run of
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the STPNN integrates in the simulation. There is noticeable change in the zone

temperature when the chiller is turned off at the selected stop lead time given by the NN.

Comparison of Stop Lead Time, Train Data

Lead Time (s)

Comparison of Stop Lead Time, Unseen Data
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T T T
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Figure 4.5. Results for the Training of STPNN

As explained in Section 3.4.5, during the rest of the stop time, the pump is left on to use
the energy stored in the water tank. This gives the system the possibility to the zones to
maintain close to the selected set points until the building is unoccupied, while reducing
the energy consumption in the system originated in the heat pump. Furthermore, as a
precaution an upper limit on the stop lead time was imposed using a saturation algorithm.
This will be helpful in real buildings to avoid accidental shutdown of the HVAC system

based in unreasonably high stop lead times.
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4.1.1.5 Discussion

The main objective of developing Neural — EMC functions is to be able to implement
them in real HVAC systems in buildings. Lacking this, on alternative method of testing
the performance of Neural — EMC networks was used. A dynamic model of two — zone
variable air volume HVAC system with four local control loops was developed. This
model was used to simulate 24 — hour operation of the building HVAC system.

To this end, the dynamic model acted like a virtual building — HVAC system. The
developed SLTNN and STPNN were integrated in this model and typical 24 — hour
operation was simulated. The results show that the integrated simulation model with
embedded NNs is performing satisfactorily in predicting the systems start and stop times.
The simulation results depicted in Figure 4.3, correspond to a warm day with maximum
outdoor air temperature of 29C and a minimum of 18C. The predicted start and stop times
from the respective neural networks, were 7:32 am (27105s) and 5:26pm (62735s)
respectively.

In real systems it is time consuming to determine the building coefficients that will
establish relationships for the building’s thermal behaviour. Furthermore, these
coefficients are dependent on the weather conditions and heat transfer coefficients inside
the zones that can and will change with the time, and thus influencing the prediction of
the base case algorithms (See Equations 26 and 27). On the other hand is possible to use
the knowledge of the building operators and some measurements during the normal
function of the system in order to produce the initial data needed to train these NNs.

The proposed NNs require just the measurements of outside temperature, the zone

temperature, the desired set point and the supply air temperature. This would make the

69



instrumentation of the energy management strategies, more accommodating for different
buildings. By determining the time that the HVAC system uses to reach the set points (for
the particular case of these simulations one hour was used), and monitoring the data for a
relatively short period of time (10 to 15 days) it may be possible to develop a rather

stable energy management strategy that will provide start and stop lead times with good

results.
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Figure 4.6. Comparison of the Total Hourly Energy Consumption of the NN with the
Base Case

Figure 4.6 shows the comparison of the energy consumption of a typical 24 — hour
simulation run, between the base case and the embedded SLTNN and the STPNN. As
expected the main differences in the energy consumption are after the start and stop times.

Although these differences seem apparent, comparing the total energy consumption, as
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shown in the lower part of the same figure, the total difference is almost negligible (1.3
MI less consumed by the simulation with the neural networks). However the relative
easiness in the implementation, still gives a potential advantage to the developed non
adaptive NNs. Another avenue to pursue is to develop these energy management
strategies using adaptive NNs. In the following chapter the application of adaptive neural

networks in EMC systems will be explored.

4.1.2 Outdoor Air Economy Cycle Neural Network

4.1.2.1 Outdoor Air Economy Cycle (Base Case)

The outdoor air economy cycle as explained in Chapter 3, is temperature based algorithm.
The objective is to maximize free cooling whenever the outdoor air temperature is close
to the supply air temperature. This particular algorithm is a vital component for the

energy savings during summer, spring and fall operations. During the summer, the
algorithm allows the system to use the lower outside air temperatures during the night to
maintain the building at reasonable temperatures with the heat pump turned off. This

“free cooling” is also used in the Spring and Autumn, when the outdoor temperatures can
be the same, or even lower as the required supply air temperature.

Equation 22 shows the proportional band control algorithm that is the one used in the

base case.
Tz-n<To<Tz+nm; X, =X, min +(1_xvmi,.){TZ_T0)
n
x, =yTo<Tz —n; x, =1 | o)
TOZTZ+n; xv =xvmin

\
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Where 7 is the proportional band, 7o is the outdoor air temperature, 7z is the temperature
of the zone, considered the same return air temperature (no temperature losses in the
ducts are considered), xym;, is the minimum amount of outdoor air that should admitted in
the building (MNECCB, 1997), and x, is the actual percentage of outdoor air admitted in
the system.

To create the neural network for this EMC — function, it is necessary to have a suitable
set of data. Since this algorithm works 24 — hours, with just one day simulation run we
acquire enough data to train the neural network. The main conditions for the data sets are

shown in Table 4-6.

Data| To | To | Qsl | Qsl | Qs2 | Qs2 |Tzsetl | Tzsetl | Tzset2 | Tzset2 | Tsaset | Tsaset
No [max |min | max| min | max |Min| max | min | max | min | max | min

1 30 | 15 |1280| 500 | 1800 | 700 | 25 18 25 18 14.5 10

2 28 | 20 {1280| 500 | 1800 | 700 | 25 18 25 18 14.5 10

Table 4-6. Principal Data Used to Create the Training Data Set for the Outdoor Air
Economy Cycle Neural Network.

To include changes in the temperatures of the zones and the temperature of supply air,
these variables’ set points were changed during the 24 — hour simulation run. This is to
avoid the neural -EMC to follow a certain pre - established pattern, that would limit the
generalization capabilities of the developed non adaptive NN. Also a different set of
conditions was generated to test the learning ability of the NN.

| From all the data seven variables were chosen according to the possible influence on the
outdoor air economy cycle: the outside temperature 7o, the zone temperature 7z, the set
point of the zone Tzset, the supply air temperature Tsa and it’s set point Tsaset, plus the

cooling load in the two zones gs/ and gs2.
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Figure 4.7 depicts the outside air temperature To, along with the zone temperatures, the
supply air temperature and the corresponding percentage of outdoor air admitted in the

building (xv).
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Figure 4.7. Data generated for the outdoor air economy cycle: xv

Variable Fraction Variance

To 0.4853
Tz 0.2562
Tsa 0.1342
Tzset 0.0773
Tsaset 0.0470
gs1 0.0000
gs2 0.0000

Size Principal Component = 3

Minimum Contribution = 10%

Table 4-7. PCA Results for the Outdoor Air Economy Cycle



The principal component analysis (PCA) was used for this data, to provide an appropriate
input vector for the outdoor air economy cycle neural network (xvnn) according to the
influence of each variable. A minimum of 10% influence was considered to include a
parameter in the input vector. Table 4-7 shows the results from the PCA for the selected
variables. With these results the first three of the seven variables were selected(7able 4-7).
The set points of the zone temperatures and the supply air temperature were not included
in the input vector for the network for two reasons: In the data set selected the set points
and the corresponding temperatures are almost the same through the selected simulation,
so its contribution is minimal. Also is worth to note that during the combined operation of
the EMC — functions this algorithm will work independently from the set point, this is
why it would be misleading information for the neural network when the combination of
the Neural - EMC — functions is completed. Then the input vector that is selected for
xvnn is shown in Equation (33).

p=1I[70; Tz; Tsa] (33)
Where p is the input of the neural network, 7o is the outside temperature, 7z is the

maximum zone temperature, and Tsa is the supply air temperature.

4.1.2.2 Outdoor Air Economy Neural Network: xvnn

After deciding the size of the input vector from the results of the principal component
analysis, a series of different architectures were tried, varying the number of layers, the
number of neurons per layer and the transfer functions used, starting from the simple
architectures to more complex ones. Taking in account the adaptability as well as the

performance of the neural network, a two layer [3, 1] feed forward neural network, with
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the Levenberg-Marquardt training algorithm was selected. As transfer function for both
layers ‘tansig’ the hyperbolic tangent sigmoid transfer function of the Matlab neural
network toolbox was used. This function calculates its output according to Equation (34).

2

S 34
1+exp(_2'")j (34

a=

Where a is the output and # is the input of the transfer function (Pingkang, L. et al., 2002).
Figure 4.8 depicts the general architecture of the outdoor air economy cycle neural

network (xvnn).

bt}
3 3 1
Qutdoor Air Economy Cycle
No of Inputs = 3

No of Layers = 2

No of Neurons per layer =[ 3, 1]

Transter Functions in each Layer =

{tansig' , tansig'}

Figure 4.8. Outdoor Air Economy Cycle Neural Network Architecture, xvnn

The training data set was a vector of 156,393 samples for each one of the selected input
variables. The xvnn surpasses the chosen training goal of 0.001 in fourteen epochs, which
is a reasonably fast training time. The error comparison between the data generated by
the base case and the NN was calculated by simply subtracting these results (base case —
NN). The maximum error found was 0.1379, and the average error was 0.0119.
Using a similar profile for the outdoor temperature and zone temperatures another data
set was generated to test the generalization capabilities of the NN. The error related to the

performance of the NN was very close to that encounter with the training data set, with a

maximum of 0.1197 and an average of 0.0121. While the maximum error was lower than
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the one in the original training the average error increased. This can be attributed to the
frequent changes in the set points of the variables included in the input vector for the
xvnn. Furthermore, the transfer function selected for the neural network, ‘tansig’
(Hyperbolic tangent sigmoid transfer function in the Matlab neural network toolbox) is
nonlinear, while part of the algorithm used for the base case is. This is clearly seen in the
error depicted in Figure 4.9, where the biggest differences are in the periods of time
where the zone temperature is close to the outdoor air temperature. During this time the
proportional band algorithm uses a linear relationship to determine the amount of outdoor
air admitted in the building. Figure 4.9 shows the comparison of the neural network
results with the results obtained from the Base Case algorithm, in a typical 24-hour
simulation run where only the EMC-function of outdoor air economy cycle is used, also
the error is depicted in the same graph. This second set of unseen data is generated with a
normal 24 — hour simulation run and, with the outdoor air temperature profiles from
chapter three and with only the outdoor economy cycle from the EMS. The maximum
error for this data was 0.2081 and the average error was 0.0108. Having a constant set
point during the 24 — hour simulation for these variables, the network only has to deal
with the changes associated to the outside temperature. Figure 4.10 shows the difference
between the energy consumption of the base case proportional band algorithm and the
energy consumption with the Neural — EMC function. This difference in energy

consumption is negligible.
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4.1.3 Temperature Reset Strategy

4.1.3.1 Reset Strategies for Supply Air Temperature and Water Supply Temperature

This algorithm changes the Supply air temperature set point, to reduce the energy
consumption. As explained in Chapter 3, three methods were evaluated. Equation 23

describes the method presented by Huang (2003).

_ qs max ( 2 ( ))
Tz,l <Tz <Tz,h Tsasel _Tzset - M alTa +a2Ta +a3 +a4 Tzset _To_mean
amaxcpa
T, saset — 1z < Tz,l 5 Tsasel = Tsaset,max r
TZ 2 Tz,h; Tsasel = 4 sa5et min
.
(23)

Where T, T, ; T 5 are the actual temperature, the lowest temperature and the highest
temperature of the zone respectively while 7, is the maximum set point in the zones.
Tsaset, Tsaset max> Tsasetmin @re the actual, the maximum and the minimum supply air
temperature set points. gumay, 1S the maximum sensible cooling load, My is the
maximum mass flow rate of air in the zones, and ¢, is the specific heat of the air. The
equation presented is a function of the cooling load in the building and a series of
constants that predict the outdoor air temperature. Since the data generated by this
method would show a high dependence on the cooling load in the zones and in the
prediction of the outdoor air temperature, it is most likely to obtain a NN also dependent
on the same variables if we use this data set to train it. For this reason, different
simulation runs were made with the objective of fitting data generating a polynomial

relationship to obtain the set points dependent on other variables.
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Equations 24a and 24b show the results of fitting the data for the outdoor air temperature

(Appendix 2).
Tsaset =-0.2-To +17.8746 (24a)
Twsset = —0.18-To +13.6487 (24b)

The Base Case used in this study uses Equations 24a and 24b for determining the changes
in the supply air temperature and water supply temperature set points. To avoid
dependencies on the outdoor air temperature profile of the training data set, simulation
runs were made changing the cooling loads and the outdoor air temperature every hour
and a half. Figure 4.11 shows the generated training data set for the both the supply air

temperature reset NN (¢sann) and the water supply temperature reset NN (twsnn).

Training Data Set, Outdoor Air Temperature

g ¥ ! } ! 1 ———
%30{ S N Y HNN O S R ,,T°]
‘5 | | _l | |
® 25 - e SRR I CEEE RS EEEIE S B S
2 .. [ S| | o ]
5 : L 1
= 15l . ! I ! ! [ |

0 3 6 9 12 15 18 21 24

Training Data Set, Zone Temperatures
o 30—~ \ | i T T
Y i | : ‘ ! ‘ i Tz1
2 s pk ey e o | e T2lset
[ |

§ ; i SR s BN L— ,,, ety U W A 22
g J | ; —l! Iv--‘ .......... Tzzset
oo 3 6 9 12 15 18 21 24

Training Data Set, Supply Air and Water Temperatures

Temperature (C)

Time (h)

Figure 4.11. Training Data Set for the Supply Air and Water Temperature Reset NN.
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With the generated data set Principal Component Analysis (PCA) was used to obtain an

adequate input vector for each of the NNs.

PCA for tsann PCA for twsnn
Variable Fraction Variance Variable | Fraction Variance
To 0.3594 To 0.3402
Tws 0.2265 Tz 0.2225
Ty 0.1561 Tsa 0.1696
mw 0.1366 Mw 0.1523
gsl 0.0621 gsl 0.0651
Taset 0.0520 Taset 0.0427
gs2 0.0073 gs2 0.0076
Size Principal Component = 4 Size Principal Component = 4
Minimum Contribution = 10% Minimum Contribution = 10%

Table 4-8. PCA Results for the Reset Supply Air Temperature and for the Reset Supply
Water Temperature

The selected variables for the zsann PCA shown in Table 4-8 were: the outside air
temperature (70), the cooling loads (gs/, gs2) the maximum zone temperature (7z) and its
corresponding set point (7zser), the mass flow rate of water (mw). For the Supply air
temperature set point the water supply temperature (7ws) was used, while for the water
supply temperature set point, also shown in Table 4-8, the supply air temperature (Tsa)
was employed. A minimum contribution of 10% was set from the selected variables to be
part of the input for both NNs. The resultant input vectors for the tsann and for the twsnn

are shown in Table 4-9.

Neural Network Input Vector
tsann p =170, Tws; Tz; mw] (35a)
fwsnn p=1[To; Tsa; Tz; mw] (35b)

Table 4-9. Input Vectors for tsann and twsnn from the PCA
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4.1.3.2 Reset Supply Air Temperature Neural Network: tsann

With the input vector for the NN determined form the PCA and the generated data set,
several architectures were tried to determine one that will give logical results, without
over fitting the data set. Varying the number of layers, the number of neurons per layer
and the transfer functions used, starting from the simple architectures to more complex
ones, the final architecture selected for the Supply air temperature set point neural
network was a three input, p = [ To,; Tws, Tz], three layer [3,6,1] feed forward neural
network, with the Levenberg-Marquardt training algorithm. As transfer function for all
the layers ‘purelin’ the linear transfer function of the Matlab neural network toolbox was
used.

Figure 4.12 depicts the general layout of this neural network. It is worth to note that the
final architecture uses only three of the four recommended outputs from the PCA. While
testing different architectures it was found that the selected one gave close results than
those generated by the four input, p = [To,; Tws; Tz; mw], three layer, [4,6,1], feed
forward neural network. Having more inputs the NN that includes mw requires more
epochs to train, while the difference in the error achieved by both neural networks is

negligible.

] 7] [
B Bl B4~
i ] EEN

3 3 -] 1

Supply Air Temperature Set Point
No of Inputs =3

Mo of Layers = 3

No of Neurons per Layer = [3, 6, 1]
Transfer Functions in each Layer =
{'purelin’, ‘purelin’, ‘purelin’}

Figure 4.12. Architecture for tsann.
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Due to the size of the generated training data (166,030 points) a sample time of 30
seconds was chosen to reduce the size of the input vector (5776 points). The results from
the supervised training are depicted in Figure 4.13. The maximum error between the
results obtained by the Base Case algorithm and the zsann was 3.14 C while the average
error was 0.15C. This error is expected to be reduced once the simulation is run under
normal conditions, since the changes in cooling loads and outdoor air temperature will be
gradual. The results obtained by the tsann with a set of unseen data are depicted in Figure
4.14. The maximum error between the Supply air set point calculated by the NN and by
the Base Case algorithm was 3.9C while the average error was 0.5C. It is important to
note that in most of the cases the set point of the zones was achieved and that the comfort

of the occupants was not compromised by the changes in the supply air temperature.

4.1.3.3 Reset Supply Water Temperature Neural Network: TwssetNN

After the comparison of the results from several architectures, the input vector for the NN
determined from the PCA proved to be correct, but unnecessarily large. The results for
the final architecture selected for the Supply water temperature set point neural network
(twsnn) was a three input, p =[ To, Tsa; 1z], three layer [3,6,1] feed forward NN, with
the Levenberg-Marquardt training algorithm. As transfer function for all the layers
‘purelin’ the linear transfer function of the Matlab neural network toolbox was used.
Figure 4.15 depicts the general layout of this neural network.

The final architecture uses only three of the four recommended outputs from the PCA. As

for the tsann the NN architectures that were tried with the four inputs, p = [7To, Tsa, 1z,
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mw], gave good results, but the computational cost of processing an extra input, is not

justifiable by the improvement in the performance of the NN.

Supply Water Temperature Set Point
No of Inputs =3

No of Layers =3

No of Neurons per Layer = [3, 6, 1]
Transfer Functions in each Layer =
{'purelin’, ‘purelin’, ‘purelin'}

Figure 4.15. Architecture for twsnn.
After the creation of the twsnn, the results are compared with those obtained by the base
case algorithm. This comparison is depicted above in Figure 4.13. The maximum error
between the results obtained from the base case algorithm and the twsnn was 3.67C and
the average error was 0.12C. As for the tsann an improvement in the performance of the
NN is expected once the changes in the outdoor air temperature are not so brusque.
Figure 4.14 depicts the results obtained with the rwsnn with a set of unseen data. The
maximum error between the results obtained from the base case algorithm and the NN for

the unseen data set was 3.4C and the average error was 0.75C.

4.1.3.4 Discussion

To compare the results from the NNs with the base case algorithm, a 24h - simulation run
was made using typical outdoor air temperature and the cooling load profiles. The results
obtained for both neural networks for the zone Temperatures are depicted in Figure 4.16.
As it is expected the neural networks provide adequate set points in order to maintain the

desired zone temperatures. The maximum error between tsann and the base case was
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2.65C and the average error was 0.083C. The maximum error encountered for twsnn was
1.55C and the average error was 0.02C. As expected the error for the generated set points
diminished with the use of a profile with the outdoor air temperature instead of the
random values. Furthermore the error can also be attributed to the slower change in the
set points for the base case algorithm. This is due the sole dependence of the polynomial
equations on this variable, which is only considered every 1200 seconds, while the NNs
are continuously changing to accommodate the change in the system. Figure 4.17 depicts
the energy consumption difference between the base case algorithm and the integrated
tsann and twsnn. From the figure it is clear that the difference is not significant, the
maximum error encountered was -0.1821 MJ and the average error was -0.0112MJ. The
ability of the network to accommodate changes opens the possibility of its use in real
systems with similar results as the base case algorithm. The question is how to implement
the NNs in a real HVAC system, for the selection of the adequate set points for the
supply air temperature and the supply water temperature. Since there is no need to
measure or to know the cooling load in the system, the knowledge of the operators of the
system and the information collected from the usual sensors to control and supervise the
HVAC system would allow the NN to be trained and possibly yield good results.
However the static nature of the weights of these particular NNs gives an opening to
explore the possibility of a set of adaptive NNs, which would learn and accommodate to

the needs of any new conditions or changes in the HVAC system.
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Training Data Set, Zone Temperatures
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Figure 4.16.Results of tsann and twsnn with Unseen Data.
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4.2 PI-Neuro-controllers

4.2.1 Introduction

As presented in Section 3.3.2, the system has four main control loops (7able 3-9). The
nonlinear nature of the HVAC systems always leads to problems when selecting the gain
constants for the PI controllers that regulate the system. It was shown in Chapter three
that a better method to select the gain values is required in order to improve the overall
performance. Since the design procedure to obtain these constants is dependent on the
initial conditions selected and is highly sensitive to any changes in the system dynamics,
the logical choice is to have the gain values change with time to accommodate the
different operating condition and requirements of the building. With this in mind a series
of NNs were developed in this chapter for the four main control loops in the system to
select and change with time the gain values of the corresponding PI controllers: Supply
Water Temperature Control Loop (uhpnn), Supply Air Temperature Control Loop
(mwnn), Zone 1 Temperature Control Loop (malnn) and Zone 2 Temperature Control
Loop (maZ2nn). These loops were separated to create the different NNs and after
corroborating the results obtained, the NNs were combined in one single model that is

presented in the last part of this section.

4.2.2 Constant Gain PI Controllers (Base Case)

To initiate the process of developing of the NNs to determine the PI gain constants for
these control loops it was necessary to use the data from a 24 — hour simulation run. For
this purpose, the data generated from the base case was used. The base case results

correspond to the typical responses subject to typical outdoor temperature profile and
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cooling loads. For this reason, random data for these variables was generated and
changed every hour and a half, to provide a data set for the training of the NN that has
sufficient variation and that will include the dynamic behaviour of the system, necessary
for the PI — Neuro controllers. The training data set is the same used for the training of
the tsann and twsnn, depicted in Figure 4.14. The initial PI controller gains used for this
loop were selected by trial and error and were presented in Table 3-10. The nature of the
non adaptive NN to be developed has some common characteristics. All of them should
predict the output from the plant for the control variable, and all of them have to provide
the gains for the PI controller. Tudoroiu, N. and Zaheeruddin, M. (2004) achieves to
predict the output from the plant by using a three layer, [5,2,2], feed forward tapped delay
NN, with the difference between the set point and the variable to be controlled as an input
and the hidden layer output used in the PID controller as gains. A NN similar in structure
to the one given by those authors, was trained online and the PID gains were tuned to
obtain good tracking performance with minimum number of neurons to avoid over fitting.
Figure 4.18 depicts the NN architecture from the same reference. In the following
sections a series of architectures are developed for each one of the control loops. Since
only PI controllers were used, the hidden layer would be used to obtain the two gains that
are required for the PI controller and the output layer is used to predict the desired
temperature.

-

“ 2 2

Newro - PID Tracking Control Ref [20])
No of Inputs = 1

No of delays =5

No of outputs = 4

No of layers = 3

No of Neurons per Layer = [5, 2, 2]

Figure 4.18. Neuro — PID tracking controller Architecture.
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4.2.3 Supply Water Temperature Control Loop: uhpnn

4.2.3.1 Neural Network Generation and Training Results

After obtaining the training data, several architectures were tried balancing the amount of
neurons with the results obtained avoiding over fitting while still getting good prediction
and adequate values for the controller gains. The architecture in Figure 4.19, a feed back
[10, 2, 20, 1] network, with transfer functions for each layer ‘purelin’, ‘logsig’, ‘purelin’,
‘purelin’ according to the Matlab NN Toolbox was used. A five sample time delay was
applied to the three inputs: the heat pump energy input (uhp), the supply water
temperature (7ws) and the corresponding set point (Twsset), p = [ uhp, Tws; Twsset]. The
output from the second layer was used to provide the controller with the proportional and
integral gains, while the output layer was trained to follow the difference between the
water supply temperature and its set point. Since the output of the NN is the input for the
controller, the NN is considered to be inverse network. This type of NN was also used by
Huaguang, Z. and Cai, L. (2002). Figure 4.20 shows the comparison of the difference

between Tws and Twsset obtained by the NN and the one from the training data set.

Tws-Twsset

Ly

Uh NN PI - Gain Selector
No inputs = 1

NoDelays = S

No of layers = 4

No of Feed back Loops =1
No of Neurons per layer = [10,2,20,1]
Transter Function in sach Laver =

{pureiin’, 'logsig, ‘pureiin’, ‘pureiin’}

Figure 4.19. Neuro — PID Tracking Controller Architecture uhpnn.
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Offline Training Error Comparison
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Figure 4.20. Results for Supervised Training for the Supply Water Temperature Loop.
The lower part of Figure 4.20 depicts the proportional and integral gains of the controller
that are given by the hidden layer of the uspnn NN. The integral gain tends to be very
small. This type of behaviour was found in most of the architectures tried for this control
loop. Consequently, simulation runs were made with the integral gain value fixed to the

one from the base case.

4.2.3.2 Response of uhpnn to an Unseen Data Set.

Following the supervised training of uhpnn, further testing was made with an unseen data
set, also using random input temperatures, cooling loads and set points. Figure 4.21
shows a comparison between the controller with the constant PI gains, the PI-Neuro

controller and the PI-Neuro controller with fixed ki.
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Unseen Data Set, Base Case
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Figure 4.21. Comparison for the Supply Water Temperature Loop with Unseen Data Set.

Unseen Data Set, NN

£ A L A ! _ A
O o o ; ‘
205 oo e coos o R p— )
E S S
3 l l ] \ 1
6 12 15 18 21 24
Unseen Data Set, NN
£ T (I T T T T
O 1 | | i | i | c— K
52 R S SRR e —
2 ' I i I I I :
gt i e
c ! I 1 \ I I I
8o ‘ ‘
0 3 6 9 12 15 18 21 24
Unseen Data Set, NN fixed Ki
2 I T T T T I T
= - A ~ .
(O] 05 [\’r ****** e [ [l - S
5 : | : | | | Kp
B : | : : | A i Ki
E I | | I I il T
[« 0 - . I . L L .
(&)
0 3 6 9 12 15 18 21 24

Time(h)
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It is clear from the Figure (Figure 4.21) that the controller reaches the desired set point in
each of the different conditions with a small tracking error. However this error is for most
of the 24 hours underneath a tolerable 0.5 C. To avoid unnecessary mechanical operation
of actuators a higher sample time could be applied. This not only lowers the
computational cost, but also proves to be beneficial when encountering real systems, due
to normal sampling times in the sensors.

Figure 4.22 shows the corresponding integral and proportional controller gains for the
24h simulation run with the unseen data set, for both the NN and the Fixed ki cases.

As mentioned above, other architectures and training procedures were tried, without great
improvements in the obtained results. Nevertheless superior data was obtained by just
keeping one of the gains constant. The lower part of Figure 4.21 shows results given by
the model just changing the proportional gain by means of uhpnn. The integral gain used
in this simulation run, was the same one that was determined by trial and error for the
base case model (kiuap = 0.0009). In the upper part of Figure 4.22 is easy to notice that
the integral controller gain tend to stay constant although the conditions of the simulation
are continuously changing. This conduct of the controller gains was observed in all the
architectures developed, and for all the PI controller loops. In the lower part of Figure
4.22 the controller gains for the fixed ki case are displayed.

In the final section of this chapter a comparison between 24 hour simulation runs is done.
A system with both controller gains changed by the NN and a system with just the
proportional gain changed by the NN are shown. For the purposes of the following
sections, the proportional and integral gains in the controller will be changed by the

corresponding NNss.
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42.4 Zone Temperature Control Loop

4.2.4.1 Neural Network Generation and Training Results

For the two Zone temperatures control loops the same architecture and training was used
due to the similar operation conditions. In Figure 4.23, a feed forward [5, 2, 1] NN, with
transfer functions for each layer ‘purelin’, ‘logsig’, ‘purelin’ according to the Matlab NN
Toolbox is depicted. Three delays were used for the five inputs: the supply air
temperature (7sa), the zone temperature (7z), the outdoor air temperature (7o), the
corresponding zone set point (7zset) and the mass flow rate of air entering the zone (ma),
pzl =[ Tsa;1z1; To; Tzlset; mal] and pz2 = [ Tsa,Tz2; To, Tz2set; ma2), were required
to achieve good results. The output from the hidden layer was used to provide the
controller with the proportional and integral gains, while the output layer was trained to

predict the zone temperature.

w2} ' Tz
Bt @/ ==
[ oy ] | op} ] R

1 5 2 1 .

Ma NN Pl - Gain Selector

No inputs = 1

No Delays = 3

No of layers = 3

No of Neurons per layer = [5,2,1]
Transter Function in sach Laver =
{purelin', 'logsig’, ‘purelin')

Figure 4.23. Zone Temperature Loops Architecture.
Since the number of layers and neurons for these loops is considerably lower, the training
time is lower than that of the supply water temperature loop. Nevertheless in these loops
the dynamics of the equations in the model are simpler, so also the requirements in the
NN are lower. Figure 4.24 depict the results for the supervised training of the

architecture with data from zone one while the lower part shows the related gain values
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given by the NN under these conditions. The NN prediction from the supervised training

revealed some small differences. The maximum error encountered was 0.36 C and the
average error was of 0.1 C. Furthermore the results for the controller gains from the NN
also show the same trend as the ones observed in the water supply control loop. The

integral gain tends to show a constant behaviour, while the proportional controller gain

adjusts to modulate the system.
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Figure 4.24. Results for Supervised Training for Tzlnn

4.2.4.2 Response of malnn and maZnn.

In this section, results from the combined NNs for the zone temperature control loops are

shown. Since both NNs have the same architecture, and used the same training data the

expected results do not vary greatly.

94



Unseen Data Set Zone 1 Temperature
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Figure 4.25. Results for the TzInn with Unseen Data Set.
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Figure 4.26. Error and Mass Flow Rate of Air for TzInn with Unseen Data Set.
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Figure 4.25 shows the comparison of the results obtained by the PI-neuro controller in
the zone one temperature control loop (7z/nn) with those of the base case. In the lower
part of the same figure, the controller gains given by the hidden layer of the NN are
displayed. Figure 4.26 shows the comparison of the error and mass flow rates of air
between TzInn and the Base Case (BC). The error is defined as the difference between
the zone temperature and the corresponding set point. The maximum error was 4.64C and
the average error was 0.22C. The same simulation run was used to obtain the results
depicted Figure 4.27, which shows the comparison of the zone 2 temperature between the
BC and the NN. The same figure also displays the controller gains selected by the Tz2nn.
The error and the mass flow rates of air comparisons between NN and the BC are shown
in Figure 4.28. The maximum error was 10.01C and the average error was 0.29C. It is
worth to note that for both zones the NNs do not achieve the required set points.
Nonetheless the small steady state error is still in an acceptable range of the required set
point. This error is attributed to the integral gain selected by the NNs. Both 7z/rnn and
Tz2nn select ki to be zero, giving lower undershoots but poor tracking performance. This
small steady state error resulted in energy savings in the water supply temperature control
loop (the higher the water supply temperature, the less energy consumption in the system),
yet is opposite in this case. During the development of the EMC functions in Chapter
Three, a penalty functions was included for the time periods in which the zone was not at
the required set point, to keep in mind that the energy savings have to be achieved with
the minimum discomfort to the occupants of the building. It is suggested to fix the value

of ki, while still varying kp with the NNs, in order to improve the steady state error.
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Unseen Data Set Zone 2 Temperature
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Figure 4.27. Comparison for the Zone 2 Temperature Loop with Unseen Data Set.
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Figure 4.28. Error Between of the Zone 2 Temperature Loop with Unseen Data Set.
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4.2.5 Supply Air Temperature Control Loop: mwnn

4.2.5.1 Neural Network Generation and Training Results

The neural network architecture for the supply air temperature is shown in Figure 4.29. It
is a feed back [5, 2, 10, 1] non adaptive NN. The inputs include, the mass flow rate of
water (mw), the supply air temperature (7sa), the corresponding set point (Zsaset) and the
supply water temperature (Tws), p = [ mw; Tsa; Tsaset; Tws]. The training time for this
particular network turned out to be quite short. The supervised training results along with

the controller gain constants given by the NN are displayed in Figure 4.30.

Mw NN Pl - Gain Selector

No Inputs =1

No Delays =5

No of layers = 4

No of Feed back Loops =1

No of Neurons per layer = (10,2,20,1]
Transfer Function in each Laver =
{'purelin’, 'logsig', ‘purelin’, ‘purelin'}

Figure 4.29. Air Supply Temperature Loop Architecture.

4.2.5.2 Response of mwnn to an Unseen Data Set.

In this section the results for the supply air temperature control loop are presented. Figure
4.31 depicts the comparison between the supply air temperature obtained with the NN

controller and the Supply air temperature from the BC with an unseen data set.
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Offline Training Error Comparison
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Figure 4.30. Results for Supervised Training for the Air Supply Temperature Loop.
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For this loop, the controller gains are very small, giving a very limited choice for the
selection. A scaling factor of 0.01 for kp and 0.001 for ki was used for the output of the
intermediate layer of the non adaptive NN to provide a wider range of operation. In this
fashion mwnn is able to provide values that vary accordingly to the conditions that the

system encounters.
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Figure 4.32. Results for the Tsa Loop with Unseen Data Set.
Figure 4.32 shows the error and mass flow rate of water comparison for the BC and the
NN. Again the error is considered as the difference between the supply air temperature
and its set point. The maximum error was -13.57C very close to the value obtained by the
BC, 14.31C. This high error is mainly encountered in the changes between set points. The
average error was -0.032C, again close to the value obtain in the BC, 0.029C. The
maximum steady state error was -1.458C, for both the NN and the BC, and was during

18h and 19.5h where the mass flow rate of water was 0.
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4.2.6 Integrated PI — Neuro — Controllers

This section is intended to compare the base case algorithm, the system with both gains

given by the NNs and the system with fixed integral gain and the proportional gain set by

the NNs. To start the results for the different control loops for the system with fixed
integral controller gain are presented. Figure 4.33 provides the results for the control

loops corresponding to the Zone 1 and Zone 2 temperatures, and the proportional gains

for each of these PI controllers. Mass flow rates of air for each zone along with the error

between the zone temperature and its correspondent set point are depicted in Figure 4.34.

Results for the supply water temperature and for the supply air temperature are shown in

Figure 4.35. Following, Figure 4.36 depicts the control variables for each one of these

control loops and the correspondent errors.
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Figure 4.33. Tz1 and Tz2 Loops with Unseen Data Set and Fixed Ki.
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Figure 4.34. Mass Flow Rate of Air and Zone Temperature Errors with Fixed Ki.
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Figure 4.35. Tws and Tsa Loops with Unseen Data Set and Fixed Ki.
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Base Case PI-NN P-NN Fixed ki
Max. (C) | Ave.(C) | Max. (C) | Ave.(C) | Max. (C) | Ave.(C)
Tzl 5.6 0.0 8.2 0.1 5.6 0.01
Tz2 7.1 0.1 7.2 0.1 7.4 0.1
Tws 21.0 -0.5 21.0 0.4 21.0 -0.9
Tsa 17.2 -0.2 13.0 0.3 15.4 -0.4
Energy 240.52 (MJ) 243.93 (MJ) 240.97 (MJ)

Table 4-10. Error Comparison for the BC, the Neuro- PI and the Fixed ki Cases.

Table 4-10 displays the maximum and average errors for the three cases under the same

conditions. It also displays the total energy consumption for each of the cases.
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Figure 4.36. Error for the Control Loops with Unseen Data Set and Fixed Ki.
Figure 4.37 shows the comparison between the three strategies: Base Case, PI-Neuro
Controller, P-Neuro Controller Fixed ki. The total energy consumption given by the three
strategies was very close. The results shown in these figures expose the better tracking
performance and energy consumption of the proportional-Neuro controllers with fixed

integral gain than those of the Neuro-PI. In general, the set points were reached with less
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undershoot and consequently in shorter periods of time with the fixed ki. Furthermore
unnecessary damper operation is avoided. Furthermore this strategy has almost the same
energy consumption than that of the BC. For the reasons exposed above the fixed ki

strategy was selected for the integrated system accounted in the next section.
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Figure 4.37. Energy Comparison for the BC, PINN, PNN Fixed KI and Combined System.

4.3 Neuro— EMC Integrated System

After the creation and testing of the NNss, it is necessary to combine them and create a
single model of the Neuro energy management control system (Neuro — EMC). One by
one, each NN was added to create the integrated system to be compared with the BC
algorithms. The following section shows the results and improvements of this integrated
Neuro- EMC system. Figure 4.38 shows the typical daily zone temperature profiles

obtained with the PI neuro controller holding the integral gain value constant, Kimal =
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0.007 and Kima2 = 0.008, which are displayed in the lower part of the figure shows the
corresponding controller gains for each of the zones. From this figure is clear that the set
points for each of the zones is reached and maintained during the occupied period. The
slight variation from the set point observed between five and six in the afternoon (17h
and 18 h) is due to the stopping of the heat pump given by the stop lead time algorithm.
Figure 4.39 shows the mass flow rates for each zone compared to those of the BC; the
lower part of the same figure displays the outdoor air intake for the system, xv, given by
the NN compared to the one by the BC. As expected the NN follows the required
behaviour for the outdoor air economy cycle. Figure 4.40 shows in the upper part the
comparison of the supply air temperature and its corresponding set point for both the
fixed ki and the BC. The lower part displays the controller gains given by the NN for this
loop. Figure 4.41 shows the comparison of the mass flow rate of water (mw) and power
intake (uhp) for the NN controlled system and the BC. Since the set point generated by
the tsann, from section 4.1.3, is lower by 0.1304C (in average) from that of the BC, the
mass flow rate of water of the system is increased during the operation. From this figure
is also clear that the start time given by the NN is earlier than that of the BC algorithm.
Figure 4.42 depicts the comparison between the NN and the BC for the supply water
temperature control loop, and Temperature reset algorithm. The lower part of the figure
shows the controller gains selected by the NN. The difference between the generated set
point by twsnn, from section 4.1.3 and the BC algorithm was 0.0263C, which is smaller
than the one for the Tsa loop. However the steady state error was higher, as shown in

both Table 4-11 and Figure 4.42.
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Integrated Neuro EMCS, Zone Temperatures
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Figure 4.38. Zone Temperature Profiles with Fixed KI.
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Figure 4.42. Comparison Supply Water Temperature Control loop.
The steady state error between the supply water temperature and its set point partly
explains the error encountered in the supply air temperature loop. However, since the
zone temperatures reached their set points the temperature regulation is not compromised.

A set of adaptive NNs is recommended in order to improve tracking performance.

Base Case P-NN Fixed ki
Max. (C) | Ave. (C) | Max. (C) | Ave. (C)

Tz1 - Tzlset -5.1 0.5 -3.8 0.4

1z2 - Tz2set -4.1 -0.1 -4.1 -0.1

Tws - Twsset -3.4 0.1 0.4 0.7

Tsa - Tsaset -8.3 0.2 -10.1 0.2
Start Time 28302 (s) 26272 (s)
Stop Time 63439 (s) 62943 (s)

Energy 219.1623 (MJ) 219.9697 (MJ)

Table 4-11. Error Comparison for the BC and the Fixed ki Cases.

Table 4-11 depicts the maximum and average errors for both the BC and the NN as well

as the start and stop times and total energy consumption. From these results it is evident
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that the group of NN perform as well as the algorithms. The undershoots are lower and
reach the set points within the tolerable errors. It is apparent that the energy consumption
of the group of NN is slightly greater that that of the BC. This is due to the earlier start
time that translates in more operational time, therefore more energy is consumed.
However this difference is compensated with an earlier stop time and with lower energy
consumption during operation due to the lack of tracking performance of the PI-Neuro
controller for the supply water temperature control loop. Figure 4.43 shows a close up of
the start and stop times with the zone temperatures. As mentioned before, the start time
given by the NN is 26,272 seconds, equivalent to 7:18 am, while the start time obtained
by the BC algorithm was 28,302 seconds, equal to 7:52 am. However the zone
temperatures from the BC are not in the desired range (plus or minus 2C form the
occupied set point). The selected time from the NN ensured the appropriate temperature
during the occupied time. Further training can be made to the NN to diminish the extra
twelve minutes gained due to the faster convergence time of the PI- neuro controllers.
This could be achieved by means of an adaptive NN. For the stop time, both the base case
and the Neuro EMC system, were underneath the acceptable threshold for the zone
temperature during the occupied time (plus or minus 2C from the set point). The NN
predicted a stop time of 62,943 seconds equivalent to 5:29 pm while the base case stop
algorithm prediction was 63,439 seconds equal to 5:37 pm. This is translated in higher
energy savings or the Neuro EMC system. However, it is worth to note that further
training is recommended, in order to accommodate to the PI- Neuro controllers, and
avoid the peaks displayed in the figure as soon as the heat pump is turned off (see Figure

4.43 between 17.4 and 17.6).
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Figure 4.43. Comparison of the Start and Stop Lead Times from the NN and the BC.
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In summary Figure 4.44 depicts the comparison of the energy consumption between the
Neuro EMC System and the BC algorithms. It is clear that the energy consumption of the
system with the NN is a bit higher than the one from the base case (0.81KJ) a merely
0.4%with a maximum of 35.2% when the NN system started. If the hourly energy
consumption is compared, it is evident that during normal operation the system would
consume an average 1.2% less energy than the base case. As mentioned above the total
energy consumption was mainly altered by the difference in start times, nevertheless the
results obtained with the neural networks appear to be reliable.

Further training is required to improve the performance of the Start and Stop lead time
NNs. Also for the selection of the PI- Controller gains is recommended a set of adaptive

NN to improve tracking performance.

4.4 Conclusions

1. The NNs are able to predict adequate start and stop lead times, without
compromising the temperature comfort of the occupants of the building.

2. The outdoor air economy cycle NN displays good performance, and a relative low
time of training. In the comparison of the energy consumption of the base case
outdoor air economy cycle algorithm and the NN, up to 80KJ were saved during a
24h simulation run. Further savings can be achieved, by forcing the NN to reach
maximum outdoor air intake.

3. The most common algorithms for the reset temperature strategy require the
knowledge or measurement of the heating or cooling load in the zones. Using data

available, the system dynamics are captured by the NNs obtaining adequate set
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points to reach the desired zone temperature while adapting to the constant
changing conditions in the system. Energy saving between the BC Algorithm and
the NN were not significant.

. The PI- Neuro controllers developed prove to have good prediction qualities, but
somewhat lacking in the tracking performance. From the results it was clear that
the integral controller gain generated by these NNs was maintained almost
constant throughout the whole simulation runs. Subsequently, a combined system
with the proportional gain selected by the NN and the integral gain remaining
fixed was developed, obtaining good tracking of the selected set points.

. Energy consumption of the integrated Neuro EMC system proves to be slightly
higher than the one form the BC. This was due to an earlier start time given by the
Start time NN. Nevertheless when the hourly consumption of the two systems is
compared, and the effects from this initial greater energy consumption are isolated,
the Neuro EMC slightly reduces the energy consumption on an average of 1.2%
per hour.

. Is recommended to create a set of Adaptive NNs. This could improve the tracking

performance and the overall energy consumption of the system.
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5 ADAPTIVE ARTIFICIAL NEURAL NETWORKS

5.1 Introduction

The aim in this chapter is to develop a group of adaptive NNs, to replace those created in
Chapter 4. This adaptive Neuro — Energy Management Control System (EMCS) will be
compared to both the base case strategies, and the non-adaptive Neuro —-EMCS with
respect to energy consumption and tracking performance. At the end of the chapter a
hybrid system, composed of the best performing EMS or Neuro-EMS algorithms will be

presented.

5.2 Adaptive Neural - EMC Function

5.2.1 Introduction

In the previous Chapter a series of non adaptive NNs were developed to facilitate the
implementation of energy management strategies in buildings while also improving the
overall performance of the HVAC system. Even though the NN performed well, there is
room for improvement. To this end, a group of adaptive NN is suggested to fully exploit

the advantage of generalization and prediction of NN.

5.2.2 Start Stop Lead Time Adaptive Neural Networks

As explained in Section 4.1.1, the selection of a start or stop lead time is highly
dependent in the room conditions, occupation, outdoor temperature, system dynamics, etc.
These factors change from day to day, requiring as well changes in the lead times. With

the purpose of improving the performance of the already existing non adaptive NN an
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algorithm to adapt the existent NN is implemented. During the first 10 days the algorithm
is in place, data is collected to ensure a good training set. After this time, the system
collects data every 3 days to continue the training process based on the data collected
during the 10 precedent days. This is expected to adapt the NN to the ongoing changes in
the zones in order to provide better start and stop lead times for the HVAC system. Table
5-1 displays the input and the desired output for training the start lead time NN collected

in 10 days of simulations, while Table 5-2 shows the data used for the stop lead time NN.

Day To Tsa Tz Tzset Lead time
©) ©) © ©) (s)
1 23.6 23.5 26.8 23.0 1340
2 20.8 20.8 24.1 21.0 1250
3 21.0 21.0 23.1 23.0 1355
4 20.4 20.4 22.7 22.0 1593
5 21.5 21.5 23.8 25.0 1171
6 22.0 219 239 22.5 825
7 21.6 21.6 23.9 21.5 1080
8 19.0 19.0 21.3 22.4 1003
9 22.2 223 24.2 21.5 1469
10 21.7 21.8 24.0 23.5 991

Table 5-1. Collected Data for the Online Training of the Start Lead Time NN

After this data was collected, the start and stop lead times of the newly adapted NN are
compared with those obtained by the BC algorithm and from the non adaptive NN. The
plant used for each of the cases has constant PI controllers with the purpose of comparing
the results under similar operating conditions. Later on in the chapter the other NNs will
be combined. Figure 5.1 displays the temperature profiles obtained after 11 days of
consecutive simulation for zone one, during the start and stop time, while Figure 5.2
displays the results for zone 2. Table 5-3 shows the correspondent start and stop lead

times for each strategy.
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Day To Tsa Y 4 Lead time
©) ©) © (s)
1 30.6 13.0 22.0 3177.0
2 235 14.9 23.0 3433.0
3 221 15.6 23.8 3457.0
4 16.4 16.4 24.2 3420.3
5 16.4 15.7 21.2 3590.0
6 33.4 12.1 21.2 1980.5
7 27.5 13.9 22.3 2610.3
8 247 14.5 22.3 2880.4
9 26.7 14.9 245 2700.8
10 334 13.2 23.5 1980.3

Table 5-2. Collected Data for the Online Training of the Stop Lead Time NN

Strategy Start Time Error at 8h Stop Time | Error at 18h
(h) Z1 72 (h) Z1 72

Base Case 7.9 1.7 1.8 17.7 0.7 1.4
NN 7.4 0.1 0 17.7 0.7 14
Adaptive NN 7.7 1.6 2.3 17.5 2.6 3.5

Table 5-3. Comparison of the Start and Stop Lead Times after Training

Figure 5.3 shows the comparison of the total and hourly energy consumption for the 24h

simulation run. The maximum energy consumption was 222 MJ, for the NN system,

followed by the BC with 218MJ. As expected the performance of the adaptive NN is

slightly better with 216 MJ. It is clear that the lowest energy consumption during the start

time is going to be the one of the BC, due to the late start time. However, as in chapter

four, the BC is not at the acceptable range of temperatures (7zset + 2) at 8am, when the

building is occupied, reaching the proper range 12 minutes later and the desired set point

at 8:23am.
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Figure 5.3. Hourly Energy Consumption for the BC, NN, Adaptive NN.
The adaptive NN (adNN) displays a better performance over the NN, starting 16 minutes
later, being in the range of acceptable temperatures point at 8am and reaching the set
point at 8:06am. The non adaptive NN consumed 15.2% more energy than the BC, while
the adNN consumed 6.4% more energy than the BC in the start case. For the stop time
the adNN strategy stopped the heat pump before the other two strategies, producing
savings of 15.5% in the energy consumption in respect to both the BC and the NN
strategies. Yet, the temperature of the zones is outside of the acceptable range at the time
when the building becomes vacant, 6:00 pm, hence the results from the adNN are
expected to improve with further training. It is suggested to keep a larger training data set,

of 80 to 90 days, to keep a wider record of the building and outdoor temperature
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behaviour. Nevertheless the training can still be made every 3 days, this will employ in a

better way the generalization capabilities of the NNs.

5.2.3 Reset Supply Air Temperature and Water Supply Temperature Adaptive Neural
Network

In the case of the reset water and air supply temperature, the development of the adNNs
is not directly based on the architecture showed in section 4.1.3. This is due to the
necessity of including more parameters to allow the adNN to learn from its own results.
The first thing that has to be bear in mind is that the modeled system has two zones, with
independent set points and only one coil to provide the supply air temperature to satisfy
the zones' cooling or heating requirements. The set point selection has to provide enough
cooling or heating to satisfy both zones, while maintaining the water supply set point as
high as possible, to diminish the energy consumption of the heat pump. The second point
is the time selection for the data acquisition for the training. It is necessary to provide an
initial online training to ensure that the adNNs will provide results that are logical. This
point will prove crucial when combining the strategy with the adNNs for the PI
controllers developed in later sections. Equation (36) describes the algorithm used during
the first 5400s for the online training data.

e =1z —Tzset
r= random(0,0.S) (36)
ol = {Tset =Tset+r e<050rma< 0.3}
Tset = Tset —r e>0.5

This simple algorithm has the purpose of teaching the adNNs the desired direction

(increase or decrease) of the set point.
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This will just allow the outputs from the NN to be in a desired range and it is expected
that the generalization capabilities of the adNN will use the random selected numbers as a
guide and improves the results over time. The architecture that displayed the best results
for both cases was a feed forward [8, 5, 1] with ‘purelin’, ‘purelin’ and ‘poslin’ as
transfer functions. The inputs for the supply air temperature set point was p = [7o; Tsa;
Tz1-Tzlset;, ma] and for the supply water temperature set point was p = [To; Tws; Tsa-
Tsaset, mw]. To avoid inconsistent results a minimum and a maximum was imposed for
the set points. Figure 5.4 displays the air and water supply temperatures and its respective
set points given by the adNNss in the upper part, while in the lower part the percentage of
power input Uhp and the mass flow rate of water mw are depicted. Figure 5.5 shows the
zone temperatures and its set points in the upper part while in the lower part the mass
flow rates of air are depicted. Another option that was considered was a single adNN,
providing both Tsaset and Twsset. A feed forward, five layer adNN, [8, 4, 5, 1, 1] with
‘purelin’ in the first three layers and ‘poslin’ in the last two as transfer function. This
adNN displayed similar results as the individual adNN, however the energy consumption
was higher than that of the individual adNN (39.62 MJ), rendering no real benefits in
combining the two adNN. Figure 5.6 shows the total energy consumption between the
BC, the non adaptive NN and the individual adNNs, while the lower part of the same
figure displays the comparison of the hourly energy consumption for the same strategies.
The maximum energy consumption is given by the non adaptive NNs, 267.58MJ,
followed by the BC with 246.61MJ. The adNNs show the best results with 244.32MJ.
Although the difference is not significant, the adNNs proved to improve the performance

of the non adaptive ones, with simple rules for the online training.
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Figure 5.6. Energy Comparison for the BC, NN, Adaptive NN and Single Adaptive NN.

5.3 Adaptive PI — Neural controllers

5.3.1 Introduction

In chapter 4 the performance of the NN in selecting proper proportional and integral
constants for the controllers proved not to be entirely satisfactory. The steady state error
encountered in the controller was higher than the one from the controller with the

constants selected by trial and error. The main reason for this greater error was the

tendency of the NNs to approach the integral constant to zero.
In this section it is our intention to develop a series of adaptive neural networks (adNNs)

to enhance performance. To start this section simplified individual loops were used to test
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the results of the adNNs in comparison with the BC loop and a non-adaptive NN; later on
the adNNs will be combined in order to test the results obtained by the three different

systems: Base Case, non-adaptive NNs and adNNs.

5.3.2 Water Supply Temperature Loop

For the water supply temperature control loop Figure 5.7 shows the behaviour of the PI
controller with constants selected by trial and error summer conditions. For this case,
maximum mass flow rate of water (mw = 0.468) was used; the water return temperature
was kept constant at 12C. The set point for the supply water was chosen according the
equation (24b) in Chapter 3.

Twsset =—0.18-To +13.6487 (24b)
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Figure 5.7. Single Loop Simulation for Fixed Kp and Ki.
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The set point is in most cases achieved (81% of the cases shown in Figure 5.7). Figure
5.7 displays error for the supply water temperatures. The maximum error for summer
simulation was 2.88C while the average error was 0.6789C.

The next step was implementing the non-adaptive NNs developed using the procedures in
chapter 4 in the single loop system. Using the data from the single loop base case above a
new NN, [5, 2, 15, 1], with transfer functions ‘tansig’, ‘poslin’, ‘tansig” and ‘purelin’, in
each of the corresponding layers was created. The same three inputs (heat pump energy
supply, uhp, supply water temperature, Tws and the supply water temperature set point,
Twsset) used in the selected NN from Chapter 4 with five time delays were employed,
and again the error between the supply water temperature and its set point was used as the
output, to allow the NN to produce changing values of kp and ki for the controller, from
one of the hidden layers. Figure 5.8 displays the supply water temperature results for
summer conditions as well as the controller gains. The average value for ki was 0.64 and
the average value for kp was 1.53. It is important to note that the oscillations presented in
the supply water temperature are acceptable in the single loop case. Since the models
used in the project are quite stiff, when integrating this type of controller with the rest of
the system tends to produce stability problems. In this case the set point was achieved by
the controller in all the cases. Part of these better results might be due the necessity of the
program to diminish the integration times in order to follow the changes given by the NN.
The maximum error for the non-adaptive NN was -6.84C, its average error being -0.09C.
To continue the procedure, an adNN is developed to compare with the previous two cases.
As a first attempt, the non-adaptive NN is converted into an adNN. The results depicted

in Figure 5.9. The first thing that call the attention in this figure, is the lack of direct
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visual improvement in the performance of the NN, however this is expected since the
non-adaptive NN was properly trained for this particular system, and the conditions have
not change dramatically. Nonetheless when comparing the values of kp and ki with those
given by the non-adaptive NN, there is a noticeable decrease in the integral and
proportional controller gains which leads to less oscillations in the response of the
controller. This is reflected when evaluating the error of each of the systems. The
maximum error encountered was -5.13C while the average error was 0.051C. In both
cases the average error decreased in comparison with the non-adaptive NN (45%) and
with the BC (92%). On the other hand, the maximum error was higher for the two types

of NNs (almost double) compared to the base case scenario.
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Figure 5.8. Single Loop Simulation for Non-Adaptive NN.
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Single Loop: Supply Water Temperature, AdNN
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Figure 5.9. Single Loop Simulation for adNN.
This is due to the higher over and under shoot of the controller. Seeing no further
advantage in the NN that was taken from the non-adaptive one, a new adNN with no
previous training is developed. Also to diminish the time of calculations and to simplify
the adNN architecture, the five step time delay for the same inputs is removed, as well as
one of the hidden layers. The new NN architecture is [10, 2, 1], with transfer functions
‘tansig’, ’poslin’, ‘purelin’. Figure 5.10 displays the results obtained for Tws. Again with
a visual check, the benefits do not seem evident; nonetheless the NN performs to the
same level as the pre-trained predecessors. Furthermore, the lack of tap delays ensures
that the adNN can be applied at any point in the system, giving a faster response. Another
advantage of this system is that it is not necessary to know in advance a set of controller
constants with the purpose of pre-training the NN. Under these conditions the adNN

showed an improvement in the under and over shoot, while maintaining the set point
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tracking in all the cases. The maximum error encountered for the summer conditions was
-5.13C, the average error being 0.014C. A comparison of the error of the supply water
temperature with its respective set point between the three systems under different
conditions is displayed in Figure 5.11. The maximum error for the constant Kp and Ki
system was -2.88C while the average error was 0.68. The maximum error for the non-
adaptive NN under these conditions was -0.13C while the average error was 0.11. The

maximum error for the adNN was -5.14C while the average error was 0.09.

Single Loop: Supply Water Temperature, ADNN New
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Figure 5.10. Single Loop Simulation for Adaptive NN New.
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Ermor Comaprison Between the BC, the Non adNN, the adNN and the New adNN
5 PR [
‘ Emor BC ‘

---------- Error non adNN

Temperature (C)
o

!
i 1
| |
[ |
| |
| |
1 |
L. L

0 5 10 15 20
Ermor = Tws-Twsset

Error adNN ' 7} !

---------- Eror new adNN |

Temperature (C)
o

I
|
|
|
|
|
|
I
1
|
|
|
|
|
|

10 15 20
Time (h)

o
P IR

Figure 5.11. Single Loop Simulation for Supply Water Temperature, Error Comparison.
From the results is evident that the artificial NNs perform poorly compared to a well
selected set of controller constants, however the adNN displayed an improvement in the
performance during the second simulation run. It has a higher under and over shoot with
some oscillatory behaviour, nonetheless the desired set point is achieved for most of the
cases within 25 minutes of the set point change, compared to the base case, which takes

around 40 minutes as it has a more damped performance.

5.3.3 Supply Air Temperature Loop

During the development of this particular adNN, a series of inconveniences were
encountered. The system equations for this particular loop are very stiff, a fact that was
evident even during the early stages of selecting the constant controller gains. The kp and

ki used were very small, 0.009 and 0.0001 respectively, rendering some difficulties for
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the NN to choose appropriate controller gains without reducing them to zero. As an
approach to this problem, one of the differential equations of the model was converted in

to a steady state equation, shown below.

a1 _
dt
Cpa-Ma (Tsa - Ta, in)+ (nso he-do 4B he: Ao Ja + A w
7o P A-Le p-Cv-4  mfin- Cﬁn(l -7s) mfin- Cﬁn(lj ns)
nso-hc-Ao+ nso-hc- Ao 4 hit - Ait
p-Cv-A4  mfin- Cﬁn(l - ns) mfin - Cﬁn(l - ns)

(35)
Where Tt is the average temperature of the tube and Tsa is the air supply temperature.
The rest of the variables are described in section 3.2.3. A comparison of the change in the
system response with the two different average tube temperature equations (Equation (20)
and Equation (35)) is made to corroborate if the change is feasible. Figure 5.12 shows a
24h simulation run comparing the system response for the average tube temperature in
the coil, under changing summer conditions. It also depicts the error comparison of this
simulation run. Figure 5.13 shows a close up of the simulation run for 10000 seconds (2h
45min). As it can be seen in the figures the differential equation (DE) tends to have
greater over and under shoots than the algebraic equation (AE) during a drastic change in
the supply air temperature set point. However when the changes are smaller the
difference between the two equations are negligible. Given that the supply air
temperature set point changes every 1200 seconds (20 minutes) according to the changes
in the outside air temperature in the base case and every simulation step with the NN, it

is safe to assume that these changes will not be noticeable for the rest of the algorithm.
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Comparison of Tube Temperatures
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Figure 5.12. Comparison of the System Dynamics with a Differential Equation and the

Algebraic Equation.
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Comparison of Tube Temperatures
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Figure 5.14. Error Comparison Between the Differential Equation and the Algebraic
Equation in a 24h Simulation Run.

Proof of this is depicted in Figure 5.14. The figure shows a close up of the mean bulk
tube temperature comparison of a 24h simulation run with the differential equation and
with the algebraic equation, corroborating with the low error encountered that the
difference between the two algorithms is insignificant, while the stiffness of the system is
reduced allowing the controller gains to take higher values. Using this equation also has
the advantage of reducing the computation time, allowing the adNNs to use this extra
computational time for the associated calculations with the online training and data
storage. By means of a system with the algebraic equation, the loop is simulated under
winter and summer conditions. Figure 5.15 shows in the top part the outdoor air
temperature profile used for the three systems for the simulation runs while the lower part

of the figure depicts the results obtained from the constant gain controller. Figure 5.16
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displays the supply air temperature and its respective set point for the non adaptive NN
while Figure 5.17 shows the results for the adNN. Both figures display the changes in the
controller gains in the lower part of them. Figure 5.18 compares the error of the three
systems.

For the non adaptive NN the same architecture used in section 4.2.5 is employed. A feed
back [5, 2, 10, 1] NN with five tap delays for the inputs. The inputs include, the mass
flow rate of water (mw), the supply air temperature (7sa), the corresponding set point
(Tsaset) and the supply water temperature (Tws), p = [ mw; Tsa, Tsaset; Tws]. The NN
was trained with the data obtained from the base case simulations. It is worth to note that
the hidden layer that calculates the controller gains was selected to have a range between
0 and 1 to facilitate the process of selecting the values. For the adNN a similar
architecture was used: a feed forward [5, 2, 6, 1] with the same inputs, but without the tap
delays. This reduction in the number of neurons proves beneficial for the reduction in
computational times for the online training process. This adNN is not pre-trained for after
being created it is just used in the system and trained online to supply an appropriate set
of controller gains. In this case the hidden layer that procures the controller gains limits
its values between 0 and 100. From the figures it is evident that both NNs perform to the
level of the selected kp and ki constants. In most of the cases the NNs reached the desired
set point in less than a quarter of the time than the case with the constant controller gains.

Still the shorter time for reaching the set points is penalized with higher over and under

shoot values at each change of set point.
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Figure 5.15.TSA Loop, Constant Kp and Ki.
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Single Loop: Supply Air Temperature, AANN
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It is worth to note that in all three cases there is a period of time in which neither of the
algorithms reached the required set point. This error is due to the selected integration
times in the program. In the period of time between 13.5h and 15h the algorithm reduces
the mass flow rate of water to 0 to force the supply air temperature to rise. Even so the set
point is not reached, and at the next change in the conditions the program takes full 30
minutes of the simulated time to change the requirements of mass flow rate of water to
satisfy the new conditions. In this period of time the temperature rises giving the high
error displayed in all the figures. The maximum error displayed in Figure 5.18 for the BC
algorithm was 4.51C while the average error was -0.67C. For the non adaptive NN the
maximum error was 3.11C, produced by the integration time error. The average error for
this case was 0.13C, considerably lower than that of the BC. The maximum error for the
adNN was again 3.11C, once more due to the integration time selected by the program.
The average error was 0.12C. The NN performed altogether better than the constant
controller gain system. However the difference between the non-adaptive and the
adaptive NN is not in performance, but in the easiness of implementation. The adNN
lacking the need for initial training data would be more adequate to generalize the need of

a real system.

5.3.4 Zone Temperature Loops

The zone temperature control loop was considered as a single case, since the two zones
are very similar in their dynamic behaviour. In order to compare the different results
obtained from the BC scenario, with constant kp and ki, from the non-adaptive NN with
variable controller gains and from the adNN also with variable kp and ki two cases were

considered. First the response of the three systems under summer conditions is presented.
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For the simulation runs the supply air temperature is fixed to the set point and provided
by equation (24a) (see Chapter three).

Tsaset =-0.2-To +17.8746 (24a)

The outdoor air temperature is changed randomly according to the desired season to
simulate. A similar procedure was employed to imitate the cooling loads in the zones.

In Figure 5.19 the outdoor air temperature is depicted, as well as the supply air
temperature selected by equation (24a). It is also shown in the same figure the results of
the simulation run under constant kp and ki for the controller. Figure 5.20 shows the
results for the non adaptive NN with variable kp and ki. The lower part of the figure
shows the values for the controller gains determined by the NN during the simulation run.
Figure 5.21 depicts the results for the adNN with variable controller gains while Figure
5.22 shows a comparison of the difference between the zone temperatures achieved by
each one of the systems with the respective set point. The non-adaptive NN architecture
that showed good results was a three inputs (7z, Tsa, ma) with five delays,[5,2,1], transfer
functions ‘tansig’, "poslin’, "purelin’. A simplified version of this NN was used for the
adaptive purposes, also three inputs (7z, Tsa, To), [3, 2, 1] with the same transfer
functions and no delays displayed good results. From Figure 5.22 is noticeable that the
three systems reach the desired set point; however, the non-adaptive and the adaptive
NN present some oscillation before reaching it. This is due to the change in the set point.
Nonetheless this also proved that both NNs perform to the level of the selected controller
gains. The change in the inputs was to improve the predictor capacity, allowing the adNN
to evolve according to the data presented from the system. It is worth to note that the non

adaptive NN was trained offline with data obtained from the BC, while the adNN was
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simply connected to the system and adapted to its requirements. Also it was proved that
the non adaptive NN will require new training when a drastic change in the conditions in
the system occurs, like from summer to winter. For the adNN, since the objective was to
find if it was able to cope with the system without previous training a new adNN was
used with the simulated winter conditions. Again the results proved to be adequate.
Nonetheless an improvement in the time response would be good, to avoid the actuators
from damage for over positioning. The maximum error for the BC (constant ki and kp)
was -3.08C while the average error was 0.026. For the non-adaptive NN with variable kp
and ki, the maximum error was the same as for the BC -3.08C, but the average error was
slightly higher 0.028. The maximum error for the adNN with variable kp and ki was again
the same (-3.08C), however the average error was 0.005, almost half of the other two

values, implying that the set point was reached faster than in the other two cases.
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Figure 5.19. Single Loop Simulation for Fixed Kp and Ki.
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Single Loop: Zone Temperature, non Adaptive NN
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Figure 5.20. Single Loop Simulation for Non-Adaptive NN.
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Figure 5.21. Single Loop Simulation for Adaptive NN.
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Error Comaprison Between the BC, the Non adNN and the New adN
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Figure 5.22. Zone Temperature Error Comparison.
The improvement in the overall performance of the adNN is not evident; however, it has
the advantage over the non adaptive system of not requiring any previous data to train
and possibly avoiding the need of manually selecting the controller gains while still

reaching the desired set points.

5.3.5 Integrated PI — Neuro — Controllers

After developing the adNNs for each one of the control loops, it is necessary to integrate
them in order to see the combined effect in the system. Figure 5.23 shows the supply
water temperature compared with the desired set point, Figure 5.24 displays the supply
air temperature, while Figure 5.25 and Figure 5.26 depicts the zone 1 and zone 2
temperatures. For each figure the value given by the hidden layer of the adNN to the

controller gain, this is depicted in the lower part of them. It is clear that the adNN are able
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to still produce good results when the dynamics of the system are changed. Once again, it
is worth to note that these adNNs had no previous training and consequently no need for
a training data set. Referring to the behaviour of the controller gains, it is evident that the
NN tend to keep the values of the integer controller gain constant, with some exceptions
in the zone temperature graphics, and the main change is generated by means of the
proportional gain, as in Chapter 4. All the figures were generated by the system with the
simplified dynamics explained in the section 5.3.3, where the differential equation for the
mean bulk tube temperature was replaced by the algebraic equation due to the small
range of values accepted as controller gains. A comparison between the errors of the

three integrated systems is made in Figure 5.27 and Figure 5.28.
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Figure 5.23.Supply Water Temperature Adaptive NN.
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Supply Air Temeprature
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Zone 2 Temeprature
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Error for the Supply Water Temperature
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Figure 5.28. Supply Air and Water Temperature Error Comparisons.
During the coupling of the adNN, certain difficulties were encountered. Since there is no
previous training involved, if one of the adNNs diverges from the desired behaviour, then
the whole system will diverge. This is expected due to the highly interactive nature of the
system, being the output of one adNN the input of the next and vice versa. This matter
can be solved in different ways. One of them can be to reinitialize the adNN's each time
the results are not satisfactory. This solution is highly viable in a simulation, but it might
be more complicated in a real system. Another possibility is to initialize the adNNs one
by one, giving the chance to the system to stabilize before the introduction of a new
adNN. Then again this possibility takes away the advantage that the adNNs did not
require previous training or knowledge of a working set of controller gains to be
implemented in the system. Here a single adNN is presented as a hypothetical alternative.

This adNN receives as an input the outdoor air temperature (70), the supply water
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temperature (Tws), the supply air temperature (7'sa), and the zone temperatures (7z/ and
Tz2), and has as an output the difference between the set points of the four control loops
(the two zones and the supply air and water temperatures); From the hidden layer the
controller gains for the four loops are obtained while keeping a simple three layer
architecture [10, 8, 4], with transfer functions ‘purelin’, ‘poslin’, and ‘purelin’. It is worth
to note that the hidden layer output has a limited range between 0.001 and 100.The
Figure 5.29 and Figure 5.30 displays the zone temperatures and the air and water supply
temperatures while Figure 5.31 and Figure 5.32 show the control variables and
controller gains provided by this single NN .The errors for all control loops are depicted

in Figure 5.33.
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Figure 5.29. Zone Temperatures, Single Adaptive NN.
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Single NN, Water Supply Temperature
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Figure 5.30.Supply Water and Air Temperatures, Single Adaptive NN.
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Figure 5.32. Uhp, mw, and Controller Gains, Single Adaptive NN.
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From the figures it is clear that the system could be manage by a single NN providing the
gains for the controllers. The single NN achieves the set point in 95% of the cases for the
supply water temperature, in 70% of the cases in the supply air temperature, in 75% of

the cases for the zone 1 and in all cases for the zone 2.

Loops (C) Tzl Tz2 Tws Tsa
Strategy Max | Ave | Max | Ave |Max| Ave Max Ave
Base Case 59 0.07 9.2 0.00 2.02 0.02 8.53 -0.03

NN 6.8 0.07 | 10.2 0.00 3.43 0.44 8.96 -0.03
Ad NN 93 0.01 10.8 0.01 2.81 0.01 14.71 -0.10
Single ANN | 7.3 0.05 11.0 0.01 231 | -0.02 14.50 -0.05

Table 5-4. Error Comparison of the Different Strategies for PI Controller Gain Selection

Table 5-4 summarizes the maximum error and the average error for each one of the
control loops, according to the strategy used.

It is evident from the results that all NNs have higher over shoots than the selected PI
controllers, however the performance of the adNN is better than the non adaptive ones in
the sense that the set point are reached with smaller steady state error. The difference
between the adNNs working separately and the single adNN is small; nonetheless it
proved to be easier to apply a single NN than to combine four different ones. Perhaps, it

would be reasonable to assume than in a real system would be also more convenient.

5.4 Integrated Adaptive Neural - EMC System

The purpose of this section is to combine the generated adNNs in a integrated adaptive
Neural EMC system. Three cases are compared in this section: the BC, the non adaptive
NNs and the adNNs hybrid system. For the adNNs hybrid system the PI gain controller
selector the single adNN was used due to its similar performance to the individual adNNs

yet using the advantage of the easiness in implementation.
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Zone Temepratures
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Figure 5.36.Supply Air and Water Set Point Reset Comparison.

Also the outdoor air intake non adaptive NN was used, since no adNN was developed.

Figure 5.34 shows the error for the zone temperatures, the controller gains and the mass

flow rate of air. Figure 5.35 displays the errors for the supply air and water temperatures,

the correspondent controller gains and the mass flow rate of water and power input.

Figure 5.36 displays the comparison of the supply air and water set points given by the

three cases.

Strategy BC NN AdNN
Loops (C) | Max Ave Max | Ave Max | Ave
Tz1-Tzlset -5.29 -0.001 -5.51 | -0.001 | -5.31 | 0.003
Tz2-Tz2set 839 0.000 8.49 0.000 3.65 0.002
Tws-Twsset | -3.49 0.016 -6.09 | 0.040 0.33 | 0.445
Tsa-Tsaset 9.5 0.274 -109 | 0.085 | -11.4 | 0.155
Start Time 28324 (s) 26977 (s) 27499(s)
Stop Time 64799 (s) 62885 (s) 62221(s)

Energy 219.1418 (MJ) | 215.7537 (MJ) | 201.5952 (MJ)

Table 5-5. Error Comparison of the Different Strategies
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Table 5-5 displays the error comparison between the three systems. While Figure 5.37
shows the total and hourly energy consumption comparison. From these results we can
conclude that the system performs as well as the BC algorithms, the tracking performance
was improved from that of the non adNNs and with the advantage of requiring hardly any
previous knowledge of the system, while still performing under the ongoing dynamic
changes in it. However there were no major improvements in the energy consumption
from the BC algorithm. It is suggested to create a series of predictors to feed and
optimizer to provide better results. Yet the computational cost of such a system will

render difficulties in implementing it in a real system.
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5.5 Conclusions

1.

The adNNss are able to compete with the results obtained by both the BC and the
non adaptive NNs. The tracking performance and the overall energy consumption
were improved; however no drastic enhancement was achieved.

There are two main advantages to the adaptive Neuro EMC system. The first is
the ability to cope with ongoing changes in the system, which includes seasonal
changes and in equipment. The second is related to the ease of implementation.
With hardly any previous knowledge of a system, the adNNs are able to learn and
generalize the dynamics of the system, providing good controller gains and EMS
with energy savings comparable to those given by the conventional algorithms.
The start and stop lead time NNs, once trained online, display good prediction in
the lead time values without compromising the comfort of the occupants. The
resultant savings are not evident due to the late start of the BC algorithm.
Nonetheless, the overall performance of these adNNs presents a significant
improvement from that of the non adaptive NNs. It was also noticeable that the
performance of the adNNs improved with the number of simulation runs and data
acquired. Thus the general performance of the system would also be expected to
improve with time.

The adaptive PI- Neuro controllers that were developed improved the tracking
performance. It was clear that the integral controller gain generated by the
individual adNNs was maintained almost constant throughout all of the simulation

runs, similar to results obtained in the non adaptive cases. Subsequently, when
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combining these adNNs, difficulties were encountered due to the presence of
some oscillations. This led to the use of a single adNN that provides the controller
gains for all the loops with similar results.

Energy consumption of the integrated Neuro EMC system proves to be slightly
lower than the BC. This was due to the pre-training sustained by the reset
temperature algorithms. The set points for both the supply air and water
temperatures were higher, lowering the demand in the heat pump and transferring
it to the pump and the fans. Further improvements are expected under continuous
simulation
In order to give a wider range of operation to the adNNs in the simulation studies,
a simpler algebraic equation for the tube temperature was used. This allowed the
systems to be compared on more similar grounds and to provide controller gains

without scaling factors.
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6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

1. Although the overall energy consumption of the system was not considerably
improved, the implementation of non adaptive and adaptive neural networks
could still be an excellent way of implementing EMC in real buildings. When
comparing the results obtained in this thesis between algorithms that require a
thorough knowledge of and measurements in the systems, and those of the NN, it
is clear that the amount of information required to implement the latter is greatly
reduced. Moreover, the information required by the NNs is all readily available
through the usual monitoring sensors installed in real buildings.

2. The start and stop lead time NN display good prediction in the times without
compromising the comfort of the occupants. The predictions were made using
only 10 days of observations in the settling times of the system. Operator
knowledge could also play a key component in achieving good selections of the
initial training data. The savings obtained are not conspicuous due to the late start
of the BC algorithm; nonetheless the over all performance of these NNs presents
them as a clear alternative to be considered when integrating this kind of system.
It was also noticeable that the performance of the adNNs improved with the
number of simulation runs and the amount of data acquired. Therefore the general
performance of the system would be expected to improve with time.

3. The reset temperature strategy implemented by means of adNNs gave good

energy savings with minimal knowledge of the system. A simple algorithm to
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provide an initial training data set is sufficient to produce sensible and reliable
results.

The Neuro PI gain selector did not produce the best results. The adaptive PI-
Neuro controllers developed improved the tracking performance from those of the
non adaptive NNs. However the system tended to keep the integral controller
gain constant which produced some undesired oscillatory behaviour. This may
have been translated into higher energy consumption. Due to difficulties
encountered in combining separate NNs, a single NN was used. The difficulties
could have been caused by the stiffness of the model equations. However the
simplification of the model did not greatly improve the performance of the NNs.
Comparing the Neuro PI gain selectors to the fixed controller gains, the results
obtained were not improved in tracking performance or in under or over shoots.
However when changing seasons, or initial conditions, the performance of the
fixed controller gains decays while the NNs does not vary. Still a detailed

designing process of the NN is suggested in order to improve these results.

6.2 Future Work

1.

It is recommended to implement online optimizers in key variables to improve the
ongoing training of the adNNs, producing nearly optimal solutions.

It is proposed for further studies to implement the Neuro — EMS developed in this
work first with data from the sensors of a real system to test and corroborate the
results obtained, and then real time implementation. This would be the software

testing stage.
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APPENDICES

Appendix 1. Nomenclature and Related Values

Symbol Variable Represented Value Units
A Face area of the coil 0.107 m’
Ay Area of the fins 16.1 m?

Afo Ratio of the fin area to the total area 0.942 m’
Ai Internal area of the tube 0.906 m?
Ait Internal area of the tube per unit of length 1.073 m’
Ao Total heat transfer area air side per unit of 2024 m
length
Ay Area of the tube 1.1816 m’
Cfin Specific heat of the fin 896 J/kg-K
COP Coefficient of performance of the system - ll)elsr:
COPmax Maximum coefficient of performance 3.5 lljel;:
Cpa Average specific heat ;:i(;nstant pressure for the 1005 Jke-K
Cpw Average specific heat for water 4189 Jkg-K
Ct Specific heat of the tube 385 Jkg-K
Cy Average specific heataci(r)nstant volume for the 717 Vke-K
d External diameter of the tube 0.01583 m
Dh Hydraulic diameter 0.0026 m
din Internal diameter of the tube 0.0122 m
finthick Fin thickness 0.0001524 m
2
hit Heat transfer coefficient water side 3137.34 W/Ién i
. .. W/ m’-
ho Heat transfer coefficient air side 88.07 K
2
ht Heat transfer coefficient coil — air 88.07 W/Km )
J Design parameter 0.0068 Il)elsnsl
JP Design parameter 0.01754 Il)elslg
k, Thermal conductivity of air 0.0257 W/m-k
K Thermal conductivity of the fin 2707 W/m-k
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Symbol Variable Represented Value Units
ky, Thermal conductivity of water 0.587 WI/(m'
Lc Length of the coil 0.84 m
Ma Mass flux of air 0.588 kg/s

Ma, Mass flux of air for zone 1 0.244 kg/s
Ma, Mass flux of air for zone 2 0.344 kg/s
Maw Ratio of mass flux of air - ]l)el;;l
mfin Mass of the fins per unit of length 3.68 Kg/m
mt Mass per unit of length 38.9 Kg/m
Mw Mass flux of water 0.468 kg/s
Mwa Ratio of mass flux of water - ll)ensrs
}4 Neural Network Input - -
Pr, Prandlt air 0.704 Il)lm
€8S
Pr, Prandlt water 9.134 ]l)““
ess
qsin Maximum zone 1 cooling load 1280 w
gsi Minimum zone 1 cooling load 750 W
Gs2n Maximum zone 2 cooling load 1800 w
qsa Minimum zone 2 cooling load 800 W
qz Cooling load for the zone 3080 w
qz; Cooling load for zone 1 1280 w
qz; Cooling load for zone2 1800 w
Re Reynolds of water 9008 ]l)elsr;l
Re din Reynolds of the internal diameter 9531 ll)els?
St Stanton number 0.00074 ]l)elsrg
t Actual time - h
t Neural Network Targets - -
Too,t Temperature of the mechanical room 25 °C
Ta Mean air temperature - °C
. . . 26 (design o
Ta in Temperature entering the coil Value) C
Th High temperature 30 °C
t Maximum temperature occurrence time 15 h
1l Low temperature 15 °C
4 Minimum temperature occurrence time 6 h
To Outside temperature 30 (max. °C
value)
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Symbol Variable Represented Value Units
. 13(design o
Tsa Temperature of supply air value) C
Tt Temperature of the tube - °C
Tw Mean water temperature - °C
Twr Temperature of water return I1(design °C
value)
Tws Temperature of water suppl 7 (design °C
P PPy value)
Tz Zone temperature - °C
1z, Temperature of the zone 1 24 (set °C
point)
1z, Temperature of the zone 2 22(set °C
point)
Tzfin Expected final temperature of the zone Tz +2 °C
ATma Delta of temperature maximum for the cooling 35 o
tower
. Dim
Uhp Power input for the heat pump - less
Uhpmax Maximum power input 5000 w
2
Uo Overall heat transfer coefficient 51.06 W/Km )
Viace Velocity of air 4 m/s
Viank Volume of the storage tank 0.1735 m’
Ve Water velocity 1 m/s
Vz Total volume of the Zones 55.44 m®
Vz, Volume of zone 1 27.72 m’
Vz, Volume of zone 2 27.72 m’
Xq Fin height 0.03175 m
Xp Fin width 0.0275 m
xv Percentage of outside air in the building 0.15 ]l)elsrg
o Ratio between the total heat transfer area and 200 N/m
the total volume of the coil
Y Specific heat ratio for air 1.4 ll)elsn;
Ho Overall efficiency 0.8243 Il)elsr:
s Fin efficiency 0.8135 %
Uy Water viscosity 0.00128 | N-s/m’
pw Density of water 1000 Kg/ m®
c Ratio of total face area to total area of the coil 0.54 Dim




Appendix 2. Set Point Selected Via Outside Temperature

These tables present the selected simulated values for determining the interrelated set

points. The set point temperature of the zones is the same, and maximum load is assumed.

18 18.65 0.244 18.38 0.344 8| 0.4999 12.5 125 | 1087 | 11.09 | 0.3859
19 19 0.2296 19 | 03092 8| 04811 12.5 1251 1099 | 11.17 | 0.3529
20 20 0.1964 20 [ 0.2653 8| 04613 12.5 125 ] 11.03 ] 11.13 0.3295
21 21 0.1709 21 0.2318 8| 04455 12.5 125 11.03 | 11.06 | 0.3142
18 18.65 0.244 18.38 0.344 7.5 0.5139 12.5 12.5 11.14 | 1147 [ 03042
19 19 0.2296 19 | 0.3092 7.5 0.4948 12.5 125 | 1127 11.58 | 0.2795
18 18.65 0.244 18.38 0.344 71 0.5285 12.5 125 | 11.31 11.77 {  0.2571
20 20 0.1964 20 | 0.2653 7.5 0.4746 12.5 125 1138 | 11.58 | 0.2566
18 18.65 0.244 18.38 0.344 6.5 0.5438 12.5 12.5 11.41 12.01 0.2256
19 19 0.2296 19 | 0.3092 7 0.509 12.5 125 | 1145 11.86 | 0.2369
18 18.65 0.244 18.38 0.344 6| 0.5598 12.5 125 | 1147 | 1221 0.2025
20 20 0.2104 20 | 0.2843 6.5 0.5072 13 13 12.3 1291 0.1738
21 21 0.1709 21 0.2318 7.5 0.4584 12.5 1251 1147 | 11.58 | 0.2394
20 20 0.2104 20 | 0.2843 71 04927 13 13 | 12.22 127 [ 0.1931
20 20 0.2266 20 | 0.3062 71 0.4977 13.5 13.5 | 1274 | 1341 0.1782
18 18.65 0.244 18.38 0.344 5.5 0.5766 12.5 12.5 115 | 1238 [ 0.1847
20 20 0.2194 20 | 0.2843 75| 04788 13 13 12.1 12.45 0.2194
20 20 0.2266 20 | 0.3062 7.5 0.4837 13.5 13.5 | 12.68 | 1321 0.1976
22 22 0.1508 22 | 0.2053 7.5 0.4451 12.5 125 | 1154 [ 1158 [ 0.2262
20 20 0.2104 20 | 0.2843 8 | 0.4655 13 13 119 | 12.14 | 0.2583
20 20 0.2266 20 | 03062 8§ | 04703 13.5 135 1257 | 1298 | 0.2236
20 20 0.2104 20 | 0.2843 8.5 0.4527 13 13 11.6 | 11.74 | 0.3254
20 20 0.2266 20 | 0.3062 8.5 0.4574 13.5 135 | 1241 12.69 | 0.2614
20 20 0.2116 20 | 0.2859 9 | 0.4408 13| 13.04 | 11.16 | 11.23 0.2393
20 20 0.2266 20 | 0.3062 9 0.445 13.5 13.5 ] 1215 1233 0.2042
19 19 0.2296 19 | 0.3092 6.5 | 0.5239 12.5 125 | 1156 | 12.11 0.2083
20 20 0.1964 20 | 0.2653 7 | 0.4883 12.5 12.5 | 11.61 11.91 0.2162
19 19 0.2296 19 | 0.3092 6| 0.539% 12.5 125 | 11.63 12.31 0.1872
21 21 0.1816 21 0.2463 7 0.4748 13 13 12.42 12.77 0.1771
21 21 0.1709 21 0.2318 71 04719 12.5 125 | 11.75 | 11.95 0.2001
20 20 0.1964 20 | 0.2653 6.5 0.5028 12.5 125 11.76 | 12.19 [ 0.1894
21 21 0.1816 21 0.2463 8| 0.4484 13 13 | 12.01 12.15 [ 0.2393
21 21 0.1937 21 0.2627 8| 04516 13.5 13.5 | 1275 [ 13.03 0.2042
21 21 0.2075 21 0.2814 8] 04553 14 14 | 13.34 13.8 | 0.1834
21 21 0.1816 21 0.2463 8.5 0.436 13 13 | 11.63 11.69 [ 0.3066
21 21 0.1937 21 0.2627 85| 0.4391 13.5 13.5 | 1254 | 1272 | 0.2401
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21 21 0.2075 21 0.2814 8.5 0.4427 14 14 [ 1323 | 13.56 | 0.2073
21 21 0.2235 21 0.3031 8.5 0.4469 14.5 145 | 13.79 | 1431 0.1876
21 21 0.2421 21 0.3284 851 04518 15 15| 1426 | 1498 | 0.1747
21 21 0.1937 21 0.2627 91 04271 13.5 135 | 1221 12.3 0.3019
21 21 0.2075 21 0.2814 9| 0.4307 14 14 | 13.05 13.27 0.242
21 21 0.2235 21 0.3031 91 04348 14.5 145 | 1369 | 1408 | 0.2113
21 21 0.2421 21 0.3284 9 | 0.4395 15 15 ] 1422 148 { 0.1926
20 20 0.1964 20 | 0.2653 6| 0.5178 12.5 125 11.86 | 1242 | 0.1701
22 22 0.1508 22 | 0.2053 71 0.4582 12.5 125 | 11.88 | 1198 | 0.1873
22 22 0.1592 22 | 02167 7 | 0.4603 13 13 126 | 1284 | 0.1643
21 21 0.1709 21 0.2318 6.5 | 0.4859 12.5 1251 1195 | 12.25 0.1715
22 22 0.1592 22 | 0.2167 7.5 0.4471 13 13 ] 1239 | 1253 0.188
22 22 0.1686 22| 02294 7.5 0.4494 13.5 13.5 | 13.08 | 1336 | 0.1661
21 21 0.244 21 0.2318 6 | 0.5006 12.5 125 | 12.08 12.5 0.1566
22 22 0.1592 22 | 02167 8| 0.4344 13 13 12.1 12.14 | 0.2245
22 22 0.1686 22 | 0.2294 8 | 0.4967 13.5 13.5 129 | 13.07 | 0.1891
22 22 0.1791 22 | 0.2438 8| 04392 14 14 | 13.54 | 1388 | 0.1684
22 22 0.1592 22 | 02167 8.5 0.4223 13 13 11.63 11.61 0.2942
22 22 0.1686 22 | 02294 85| 0.4245 13.5 13.5] 1264 | 1272 | 0.2239
22 22 0.1791 22 | 0.2438 8.5 0.4269 14 14 [ 1339 [ 13.61 0.1909
22 22 0.191 22 0.26 8.5 0.4297 14.5 14.5 14 | 1439 | 0.1711
22 22 0.1686 22 | 02294 9] 04128 13.5 13.5 [ 12.23 12.24 | 0.2865
22 22 0.1791 22 | 0.2438 9] 04152 14 14 | 13.17 | 1329 | 0.2241
22 22 0.191 22 0.26 9] 04179 14.5 14.5 13.87 | 14.14 | 0.1932
22 22 0.2047 22 | 0.2788 9 0.421 15 15 | 1445 149 | 0.1744
22 22 0.1508 22 | 0.2053 6.5 0.472 12.5 125 | 12.11 12.31 0.1629
23 23 0.1413 23 0.193 7 | 0.4481 13 13| 1276 | 12.89 | 0.1538

23 23 0.1487 23 0.2032 7.5 0.4367 13.5 13.5 | 13.25 13.42 [ 0.1549
23 23 0.1346 23 0.1838 6.5 0.4601 12.5 125 | 1227 [ 1235 0.153
23 23 0.157 23 | 0.2145 8 0.426 14 14 | 13.73 13.94 | 0.1464
23 23 0.157 23 0.2145 8.5 0.414 14 14 | 13.54 | 13.65 0.1778
23 23 0.1662 23 0.2271 8.5 0.4159 14.5 14.5 142 | 1446 | 0.1581
23 23 0.157 23 0.2145 91 0.4026 14 14| 1326 | 1329 | 02102
23 23 0.1662 23 | 0.2271 9| 0.4044 14.5 145 | 14.03 14.19 0.179
23 23 0.1766 23 0.2413 9 | 0.4065 15 15| 14.66 | 1498 | 0.1602
24 24 0.1266 24 | 0.1737 7| 04375 13 13 ] 1292 | 12.93 0.1449
24 24 0.1327 24 | 0.1819 7.5 0.4259 13.5 1351 13.41 13.47 | 0.1455
24 24 0.1393 24 0.191 8| 04149 14 14 13.9 14 | 0.1464
24 24 0.1393 24 0.191 85 | 0.4032 14 14| 1367 | 1368 | 0.1671
24 24 0.1466 24 | 0.2011 9] 0.3932 14.5 145 | 1418 | 14.23 0.1675
25 25 0.1144 25 | 0.1575 6.5 0.4413 13 13 13.3 13.3 0.1223
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From this data two algorithms were developed. The first one was the outdoor air temperature
based set point selector, showed in chapter 3, and the second one was a zone temperature based

set point selector, displayed in equations (23a) and (23b).

Tsaset = 0.214 - Tzset + 8.7746 (23a)
Twsset = 0.1598 - Tzset + 4.3687 (23b)
Tzone set Tsa set Tws set

18 12.63 7.25

19 12.84 7.41

20 13.06 7.57

21 13.27 7.73

22 13.48 7.88

23 13.70 8.04

24 13.91 8.20

25 14.13 8.36

Table A-1. Estimation of the set points as function of the Zone set point

For the energy comparison between the three algorithms: Outdoor air temperature based (7o
based), zone temperature based (7z based) and cooling or heating load based (gs based), two
cases were considered: Random conditions and a normal 24h simulation run. The first four
figures compare the performance under random set points and cooling loads. The following four
figures show the comparison of the three set point selection algorithms under normal 24h
simulation run. The performance of the algorithms diverges from condition to condition, and case
to case, however the To based algorithm, consistently produce lower energy consumption than the
Tz based algorithm, reason why this later was not chosen for the base case in this project.
Between the To based and the gs based, energy consumption was not the main reason for the
selection. Since one of the objectives of the BC in this project is to generate a suitable training
data set for the NN, the gs based was bound to be eliminated. To avoid generating a data set that
is dependent on the simulated outdoor air temperature profiles, the random case was often used in
this project for the NN training data sets, rendering a problem in implementing the gs based
algorithm. Furthermore, the difference in energy consumption between the 7o based and the gs

based were small enough to be omitted. The energy difference for both evaluated cases is
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displayed in Figure A.9. If this system is ever implemented in a real building, the operator will

play an important role in data acquisition for fitting the polynomial.
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Figure A.1. Set Point Selection Energy Comparison, Random Data .
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Figure A.4. Mass Flow Rates of Air and Water, Power Input.
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Figure A.9. Energy Difference Between the To based and qs based .
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