Architecture for Reactive Autonomic Systems:
AS-TRM Approach

Heng Kuang

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at Concordia
University
Montreal, Quebec, Canada

March 2006

© Heng Kuang, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14326-6
Our file Notre référence
ISBN: 0-494-14326-6
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract
Architecture for Reactive Autonomic System: AS-TRM Approach

Heng Kuang

Real-time reactive systems are some of the most complex systems, so the modeling and
development of real-time reactive systems becomes a very challenging and difficult task.
The TROMLAB framework makes this modeling and development easier and more
rigorous by integrating the Timed Reactive Object Model (TROM) formalism with a
practical development methodology. However, current TROM formalism does not have
the appropriate mechanism for specifying distributed autonomic reactive systems, which
systems can simplify and enhance the end-users experience by anticipating their needs in
a complex, dynamic, and uncertain environment.

This thesis is the first step towards extending TROM to Autonomic Systems Timed
Reactive Model (AS-TRM) for modeling and supporting distributed, autonomic, and
reactive behavior. The thesis presents the following: 1) extending TROM to AS-TRM for
supporting distributed autonomic behavior; 2) defining AS-TRM’s characteristics for
determining AS-TRM systems’ requirements, design, and implementation; 3) building
AS-TRM’s architecture and communication mechanism for implementing both
autonomic and real-time reactive functionalities; 4) modeling AS-TRM’s reliability

assessment for monitoring AS-TRM’s evolution.

iii

10 my grandfather.

iv

Acknowledgments

I really appreciate many people who help with my thesis work and provide valuable
support.

First, I would like to express my profound thanks to my esteemed supervisor, Dr.
Olga Ormandjieva, for her guidance, help, and support through the stages of this work as
well as my graduate study. Her good technical and financial support motivates me to
work hard and produce a high quality result.

I would like to thank all the members of TROMLAB and AS-TRM team for their
comments and support; a special thank goes to Emil Vassev, his supervisor Dr. Joey
Paquet, and Irina Croitoru.

In addition, a warm thank you goes to my examiner, Dr. Vangalur Alagar and Dr.
Juergen Rilling, for their precious time to review my thesis and give me helpful advice.

I also would like to thank Concordia University and Faculty of Computer Science for
offering me the precious opportunity and excellent academic environment to achieve this

work.

Finally, I would like to thank all my family members for their encouragement and

never ending support.

Table of Contents

LISt Of FRQUIES...ccievirrinircrenssunssiisensssessarssensseessesssessscssassinsssssnesansssnssssssssassassaossnsssassassn xi
Chapter 1: INtroductionceeueessessrensasessnssesserssasssasisns erossasssnsssntsantsasssnisaassaneanssasaes 1
| B S 070711 < S5OSO TP TSROSO OPRRPRPTPTRTP 1

1.2 ReSEarch GOalS ...ccceviiiirieniitenrcce ettt st s et e e ee et s esesneene 2

1.3 Major Contributionsccocvvvieiiieniiniiniiniciircn e 4

1.4 The Scope Of The THESIS ...ovvevevreerireerrerierinrererestereeeseereeresaseesessessessonesnenns 5
Chapter 2: Autonomic System N 6
2.1 Characteristics of AUtonomic SYStemcceovvrrirerenrererrrenieeinenrineeenes 6
2.1.1 Self-Configurationcc.ccoecmeiierrnencnininieeireecree st 8

2.1.2 Self-Healing.................... e, 9

2.1.3 Self-OptmizZation........cccccveveriiinncriininiinereeeee e csseeeesane 9

2.1.4 Self-Protectioncoceeververereniiniirirnrennnceeesrereeeeessensssesnsessessenne 10

2.1.5 Autonomic vs. USabilityc.ccceevreevieeirenieiiereecesreseneeenens S 10

2.1.6 Autonomic vs. Dependabilitycc.cccconinincniniiinnniniieeas 10

2.1.7 Autonomic vs. Smart Adaptive Computing.........cccevvvrveerrerreveruenes 10

2.1.8 Autonomic vs. Proactive Computing.........cccevevrevevrernceeeninceicnnncns 11

2.1.9 Autonomic vs. Introspective Computing.........cc.cceeeevreeveercvrrreneenne 12

2.2 Autonomic System Modeling.......c...cocceevieiiniininninnniiienneene 12
2.2.1 ATCHItECIUTE.....ceurerieierieriirerercenre ettt et e et sr e seneae 12

23

24

2.5

2.6

2.7

2.8

2.2.2 Intelligent Control LOOPccccovieriieeeineenneinnriennrieceresnnereeesreee e 14

Autonomic Manager Developmentococveeinminnienieniieeneinnnrecrieene 16
2.3.1 Policy Determinationcccevveriueerneieervecnineeseereueeseesssnssrnessosesnes 16
2.3.2 Solution Knowledge........ccovireiiroeeriiineeeniiienirnccnnressereeesceseeenens 17
2.3.3 Common System Administration.........ccceceevrveecreecreenceenieesieenrnerens 19
2.3.4 Problem Determination...........cccocevveercrieirenrieneereenreesseesisnseereessennne 20
2.3.5 Autonomic MONItOTINGcccceverereverirerrenrieerireeseesieessrsessreseesssessens 20
23.6 CompleX ANAlYSIS....ccocvirverienirineeiirinenieeereeereere e 21
2.3.7 Transaction Measurement........ccccvveereueineenerneeniennncrinerenneeeneeenenane 22

Evolutionary APPIOachccceeveeriieirierneesiereeireeseresseesaeessseesseesenesnsenses 22

Autonomic Computing Open Standards..........ccvevevviniicrecinninennnnnneennene 24

Related Work on Autonomic COMPULING.......cccereurrreeerreserererieerieneevennnns 26
2.6.1 UDIEY cotrvecieeenirreeecreeietenresese st aesestesnesneseessesressnesessuasseseeseenaesne 26
2.60.2 OCEANSIOTE....cveieecererieriieerieerseeeressenseceestaeseteeseesseesasressseesseassesanee 28
2.6.3 Recovery-Oriented COMPULING......ccovuvveerrrrerrrterrenieeereenrenreesresennnes 28
2,64 Anthill............. cetetere ettt oo s et st et et e se s e R e b senene s s e e e tenaenae s 28
2.6.5 J2EEML ..ottt ettt s 29
2.6.6 Autonomic Computing Infrastructure..........cccoevvcvvirieienrnienirirveennenn. 29

Issues and Directions in Open Autonomic Computingccecceevuervveeenenne 30

Metrics and Evaluation of Autonomic Computing..........ccccevvevevrevunnnnnnenne 31

SUINIMATY .eeeivieiiiiie ettt st eearecnte s e ssnessenteeessnessnnnecssan 32

Chapter 3: TROMLAB FrameworKcicnnicnnineieieinsimniseimecemssssssees 33

3.1 TROM MethOdOIOZYcccvevieriiiririentirireteieeenreseeeseessereteeeesneeseeeaeeae s 33
3.1.1 First Tier — Larch Formalism...........cccoceeiiniiniienicininnenicneeneeennenne 34
3.1.2 Second Tier — TROM FormaliSmcccoovrvriiniieevnienecnneeeneennenns 35
3.1.3 Second Tier - Composite Classesccoceerverrereecrenrererrieseresrenuenee 40
3.1.4 Third Tier — System Configuration Specification............cc.cocervenee 42

3.2 Design Refinement in TROMccccccoiniimiivinininentenenienreenceneesneesenes 44
3.2.1 Behavioral Inheritanceccccovveevernriecinnieneneeteeecceeerveeeene 46
3.2.2 Extensional INheritance.........ccocceveeveeverninnienrieniceninenenieeienneseeennens 47
3.2.3 Polymorphic INheritance........c.ccoevveriverenrenenereensinesensneeeseesenenes 48

3.3 TROMLAB — The Development Frameworkcccoccveveevincvenvcienninne. 49
3.3.1 Process Model.......cocooiioiireneeenininneneeee ettt 50
3.3.2 TROMLAB COmPOnents.......c.cccovruerrmeerrernensrreeseessrnereressneseesnessenens 51

3.4 SUDMIMATY ..ovvieeieirreireriireenisierteessnsresesossrneessssnessssssnessssssssasserssssassesssessssnssons 52

Chapter 4: Reactive, Distributed and Autonomic Aspects of AS-TRM 33

4.1 Purpose and ConteXt........cccrveerverreeerieerirrenrineeeseeeseeseeseseaesseesseressasensenns 53

42 Concept Of AS-TRMcoiviriiiiiriricincrieenteceseereneeee e s seeeeenessesnees 53

4.3 Rationale of AS-TRM ...ttt reeccsresreeree e e ee s e s s emenne 54

4.4 AS-TRM FOrmaliSm......cc.cccuevrruerierenenienenieirrentneesieestessesesseessessessessenes 55
441 ACTIET ettt et ab e s s 56
4,42 ACG TICT cooverreerereneeieerreneesiertsuenieseressesseneenessessessessessenessessssnensasnes 56

443 AS TIET oottt s 57

4.5 Characteristics 0f AS-TRM ...c.ccoiiiiriiiiinece et 58

4.6 SUIMINATY ..vovvvverieeririneeenetenseeseeessessseesssesessessesseeessseensenessresssesssessseessessanes 59
Chapter 5: Architecture of AS-TRMcuicrnrincrinsnseisnnissnssesssnsssessanessssssssnssceses 60
5.1 Related Work on Architectures for Autonomic Computing...........c.cecceuuee. 60
51,1 Multi-Agent SYSEIMS ..ccoieriirireririerrirrierererenreeseesireeeseesenesesssaessses 60

5.1.2 Architecture Design-Based Autonomic Systems...........cceevveervrenenns 61

5.2 Rationale for AS-TRM ArchiteCturecocecvvereeirrrmveneccinrrenenveneereeneens 63

53 AS-TRM AIChItECUTEcocueriiiiinriiririeeceire et ste e s esee e sresseaane 64

5.4 Communication Mechanism 0f AS-TRMccccocevimeriinnrincnennnnnenenenens 67
541 ATCHITECIUIE....ccuirieereriieieererieeitiresieeeseeseestessessesseasnessasaessesnsessessens 67
542 Functionalities.......c.ccoerirerireneninenenenienesreeeseeeereecreseesseeeeneessens 69

5.43 Architecture of ACS Component..........ccoccevveeriereeernessvinneeseenrensenens 70

544 Autonomic FEatures......c.ccoceeviriieriiecenieneietcncesieesreseeesee e ssreseenne 71

5.5 Reliability Assessment Of AS-TRMcoceveriririrvvenrcneeneeenreeneeenseerenns 72
5.5.1 Rationale of Reliability Assessmentc.ccccvveeveevereeeeeennricinneenens 72

5.5.2 Reliability Assessment 0f ACGc.cccovvieviecrerieeeeecirirrecreeneescrenenens 73

5.5.3 Reliability Assessment 0Of AS........ccciereiiiiirnire e 76

5.0 SUIMIMATY ..eooirrrirrireioiireeeiiinteeresrreeeesaseresssessntasssnsresssssssneessssssssaesssssssrassassras 77
Chapter 6: Conclusion and Future Work Directionsccocceceerceresvessucsecssssenesnees 78
6.1 FromTROM tO AS-TRM ...ccciiiiiiiiiiiiiiieieircirciriiisscseree e iseereceseneesnseseaenes 78

6.2 CharacteriStICS cooeeeeveeereeeieeeeee et eeeeeeeeeeereee e eetteaesesesesesaeseseraearasessaresreeennenes 79

6.3 ATCHITECTUIEocuieeririiireiree ettt ene s sbe s 79
6.4 Communication MechaniSm..........cccoreerreerierieinennecerrenreeee e 80
6.5 Reliability ASSESSIMENLcocueeieiieieierinieiictiiecee et sresrens 81
6.6 Future Work Dir€Ctionscccceeievirreiniriiinininieccnieniennesresnisscsnesnenes 82
References....ceiresnnersnecisaneesssansassencssnenssssnanans ... 84

List of Figures

Figure 1: AS Characteristics Identified as Quality Factors [LMLOS]......c.ccccvverieincen. 7
Figure 2: AS Characteristics Mapped to Quality Metrics Framework [LMLO05] 7
Figure 3: Self-Healing Algorithm [Cro06]cc.ccooerveniiieinienieiiiiicieccneeneene e 9
Figure 4: Relationship between Two Computing Paradigms [WPTO03]cccouenenee. 11
Figure 5: Autonomic Computing Control Loop [IBMO3]ccccoiirirvinnineninnennnene 12
Figure 6: Autonomic Computing Reference Architecture [IBMO04].........ccccevvevvrennnens 13
Figure 7: Intelligent Control Loop [IBMO3].......ccccociviiivienimininieieceereseneneeseseeones 14
Figure 8: Policy Management [Cro00]ccccovvivririreriniereenneniennieneesereonsessessasseenns 17
Figure 9: Autonomic Computing Maturity Index [IBMOS].......ccoccevveereniivinreenenneenne 23
Figure 10: Open Standards vs. Autonomic Capabilities [MurO4]............cccevvrvecrenene 25
Figure 11: Overview of TROM methodology [Ach95]c.cccovevenenennenivninerernenes 34
Figure 12: Set trait [Zha00].......c.ccoveiiiiiiiiieciictes et 35
Figure 13: Template for Class Specification [AAMO96].........ccocveeverrencnninrrerensvenenns 38
Figure 14: Generic Reactive Class: Pump [MohO4].......c.ccovirvenenenvnnrneinreneneenes 38
Figure 15: TROM Class Anatomy [Moh04]ccccooerninirnrinieicrcnnereereneeeecenens 39
Figure 16: Template for Composite Class Construction [AAMO96]........c.ccccvceeveuerunen 40
Figure 17: A Composite Class with Five Classes [AAMO96]c.cccvcereeerenrnccrercnenes 41
Figure 18: A Composite Class Specification [AAMO6]cccocvevivvvniienrcncinnnnns 42
Figure 19: Template for System Configuration Specification [AAM906]cccoc...... 43

xi

Figure 20: Arbiter System [AAMO6]......cooririiiieceereecc e 44

Figure 21: Template Extension for Inheritance Specification [AAM96] 45
Figure 22: A Basic Telephone Device [AAMO96].......ccccovivviiiciininicnenncniinns 46
Figure 23: Enhancement with Message Announcing Feature [AAM96]..................... 46
Figure 24: Process Model for Developing Complex Reactive System [AAMY96]....... 49
Figure 25: Concept of AS-TRM [Cro06].......ccceceeerirenerrevereririrersrenennesneeeeeeveneenes 54
Figure 26: AS-TRM Formalism [VKOPOG]ccccevvereneneininireirseereessenieeeeeseennens 55
Figure 27: An Autonomic Agent [MHO4]........cccoevivierrrnvernnnnas et e eaenes 61
Figure 28: Architecture model-based system [MHO4]........cccccoovvininviniveveenineenernennne 62
Figure 29: AS-TRM ATChiteCtUIec.covviriuiirienintireeeteceererrese st ere e sanes 64
Figure 30: Architecture of AS-TRM Component GIoup.........cocceeeverecrervcnneniniseecnenne 65
Figure 31: Anatomy of Global Manager and Autonomic Component...........cceceeveenees 66
Figure 32: Architecture of ACS [VKOPO6].....ccoivvirrrririiniinrineenesienaesneeseeeeesinennes 68
Figure 33: General Use Case 0f ACS [VKOPOG].......ccceveriireninieneneeriniensrereessesenene 70
Figure 34: Architecture of ACS Component [VKOPO6].......ccceevveriirveiinncnniieeeene 71

xii

Chapter 1: Introduction

This thesis presents the results of the research and practical work made towards the
nature of reactive autonomic systems, definition and implementation of architecture for
them, and monitoring their reliability. This thesis lays the grounds for the Autonomic
Systems Timed Reactive Model (AS-TRM) project, which provides rigorous
development and quality monitoring of reactive autonomic systems. This research builds
upon existing TROMLAB framework [AAMO96], and extends an architectural model
developed in the GIPSY project [PK0O] as the prototype of AS-TRM Communication
System.

1.1 Context

An Autonomic System is a system that can regulate itself much in the same way as our
autonomic nervous system regulates and protect our bodies. The autonomic system’s
components and the system as a whole should be capable of anticipating computer
system needs and resolving problems when they appear, without human intervention.
Examples of such systems are: IBM Trivoli Management Suite, SUN Microsystems — N1,
Hewlett-Packard’s Adaptive Enterprise, and Microsoft’s Dynamic Systems Initiative.

A reactive system is a system that continuously interacts with its environment
through stimulus and response. The reactive system’s stimulus-response behavior is
regulated by strict time constraints which concern real-time aspects. Examples of such
systems are: workshop automation like robotics, strategic defense systems like nuclear

power plants, and transportation like railroad-crossings. Generally, a reactive system’s

1

behavior is infinite and must satisfy two important requirements:

e Stimulus synchronization: processes are always able to react to a stimulus from
environment;

e Response synchronization: the time-lapse between a stimulus and its response is
acceptable to environmental relative dynamics so that the environment is still
receptive to the response.

1.2 Research Goals

Real-time reactive systems are some of the most complex systems. The complexity
involved comes from their real-time and reactive core characteristics: 1) involves
concurrency; 2) have strict timing requirements; 3) must be reliable; 4) involves software
and hardware components. Thus, the modeling and development of real-time reactive
systems becomes a very challenging and difficult task. The TROMLAB framework
makes this modeling and development easier and more rigorous by integrating the TROM
formalism with a practical development methodology; moreover, the TROMLAB
framework has an easy interface for modular design of system components, and this
framework is also a formal basis for rigorous analysis.

However, current TROM formalism does not have an appropriate mechanism to
specify distributed autonomic reactive systems, which systems are faster than regular
reactive systems to adapt environmental changes. In addition, a distributed autonomic
reactive system can simplify and enhance the end-users’ experience by anticipating their

needs in a complex, dynamic, and uncertain environment, which qualities are key

2

characteristics of a real-time environment.

Furthermore, recent real-time reactive systems have become increasingly
heterogeneous and increasingly intelligent; therefore, we need to extend the TROMLAB
framework to capture those new aspects. One of the ways to remove the complexity
barrier is to model and develop complex computer systems that are autonomic.
Autonomic computing is a new research area led by IBM Corporation, which area
concentrates on making complex computing systems smarter and easier to manage.
However, according to our knowledge, autonomic computing technology has not been
applied to model and develop real-time reactive systems, which systems have high
demand for autonomic computing technology to remove the complexity of modeling and
development. With autonomic behavior, real-time reactive systems will be more
self-managed to themselves and more adaptive to their environment.

As a result, our research work’s objective is to extend the TROMLAB framework to
have distributed autonomic behavior by adding two aspects: 1) the specification of |
distributed autonomic reactive components along with their relationships; 2) the
non-functional properties constraining systems’ behavior, such as reliability. In order to
achieve our research goal, we need: 1) to define AS-TRM’s characteristics to determine
AS-TRM systems’ requirements, design, and implementation; 2) to extend the TROM
formalism within the TROMLAB framework to support distributed autonomic behavior;
3) to build corresponding architecture along with communication mechanism to

implement distributed autonomic behavior; 4) to model a reliability assessment as one of

3

the non-functional properties because the reliability assessment is very important for

constraining autonomic reactive systems’ behavior. Our future work will include

modeling and assessment of other non-functional requirements, such as performance.

1.3 Major Contributions

The main contributions of this thesis are:

To build a five-tiers based architecture for the AS-TRM formalism’s
implementation in the future, which formalism is the formal foundation for
integrating distributed autonomic behavior into the TROM methodology;

To define AS-TRM’s characteristics which will determine the AS-TRM'’s
requirement specification, design, and implementation;

To build the AS-TRM’s architecture according to the five-tiers based architecture
of the AS-TRM formalism and AS-TRM’s characteristics. The AS-TRM’s
architecture is the backbone for implementing AS-TRM systems’ autonomic and
real-time reactive functionalities;

To model the AS-TRM’s reliability assessment which establishes the theoretical

foundation for monitoring the AS-TRM’s evolution;

To collaborate with the GIPSY research group for building the AS-TRM
Communication System’s architecture (Based on Demand Migration Framework
[VPO5]). The AS-TRM Communication System is the basis for implementing

the AS-TRM’s communication mechanism.

1.4

The Scope of The Thesis

Chapter 2: introduces autonomic computing technology’s background and
conceptual view. This chapter indicates some possible architecture perspectives
and corresponding requirement specification for our AS-TRM;

Chapter 3: introduces the TROM formalism and the TROMLAB framework’s
conceptual view. This chapter identifies the AS-TRM’s formalism foundation;
Chapter 4: provides a comprehensive conceptual view of the AS-TRM approach.
This chapter intends to capture and convey the significant architectural decisions
for further design and implementation;

Chapter 5: provides the AS-TRM’s architectural irhplementation. This chapter
begins with a brief review of autonomic computing systems’ software architecture
as the AS-TRM architecture’ rationale;

Chapter 6: presents conclusions to be drawn from this thesis work and offers

future work’ directions on the AS-TRM project.

Chapter 2: Autonomic System

This chapter introduces the background of modeling Autonomic System (AS), which was
introduced by Paul Horn at AGENDA 2001 Conference [Hor01]. The AS’s conceptual
view indicates several possible architecture perspectives and related requirements for
extending current TROM to AS-TRM.

2.1 Characteristics of Autonomic System

Autonomic System’s standardized definition and characteristics are established through
the application of the Quality Metrics Methodology (QMM) [IEEE98]. While following

QMM ’s steps, AS’s characteristics are identified as quality factors illustrated in Figure 1.

Anticipatory The AS must have a projection of the user needs and

actions in the future.

Context-awareness The AS must find and generate rules for how best to

interact with neighboring systems.

Openness The AS must function in a heterogeneous world and

implement open standards.

Self-awareness The AS must be aware of its internal state.

Self-configuring The AS must adapt automatically to the dynamically

changing environments.

Self-healing The AS must detect, diagnose, and recover from any

damage that occurs.

Self-management The AS must free system administrators from the

details of system operation and maintenance.

Self-optimizing The AS must monitor and tune resources
automatically.
Self-protection The AS must detect and guard itself against damage

from accidents, equipment failure, or outside attacks

by hackers and viruses.

Figure 1: AS Characteristics Identified as Quality Factors [LMLO5]

Then, AS’s characteristics can be mapped to Quality Metrics Framework (QMF)
[IEEE98] by applying the quality factors ﬁom Figure 1 to generic QMF as shown in
Figure 2. In this thesis work, we will focus on self-configuration, self-healing,
self-optimization, and self-protection as the core characteristics of AS-TRM.

L_as |

[Openness } [Anticipatory]
1 1
@elf—Awareness] [Context-Awareness] [Self-Management]

|
| 1 1 1
[Self-Configuration] [Self-Healing J @elf—Optimization] [Self—Protection]

Figure 2: AS Characteristics Mapped to Quality Metrics Framework [LMLO5]

2.1.1 Self-Configuration

Autonomic system can automate the installation and setup of its own software in a
manner responsive to the needs of platforms, users, peer groups, and enterprise [B03].
Personal computing often involves user-initiated configuration changes, and a
self-configuration system understands these changes’ implication and accommodates
them automatically.

Self-configuration includes the capability to contact external services if needed. This
capability spawns over autonomic components and autonomic system as a whole;
moreover, it follows high-level information technology policies. Self-configuring
components along with the system dynamically adapt to initial installation, configuration,
and subsequent maintenance. The maintenance addresses new components’ deployment
or existing ones’ removal, and increase or decrease in workload.

In an autonomic system that implements self-configuration, a common solution
knowledge capability eliminates complexities by capturing installation and configuration
information. Solutions are combination of platform capabilities and application elements
to solve a particular customer’s problem. For example, IBM Trivoli Configuration
Manager [LPPCO3] is an integrated inventory and software distribution solution where
self-configuration is possible by using software package reference models to match

desired software configuration.

2.1.2 Self-Healing

Autonomic system can monitor its own platform, detects errors or situations that may
later manifest themselves as errors, and automatically initiates remediation [B03].
Self-healing includes the capability to contact external services in case of new problems
and to learn those new problems as well as their resolutions. Figure 3 shows a systemic

approach to self-healing.

| Identify Problem |

[Determine Solutions or Alternatives |

<=

] Provide Services as Needed or no Demand |

I Install optimal Solution |

Figure 3: Self-Healing Algorithm [Cro06]

2.1.3 Self-Optimization
Autonomic system can automatically optimize its use of its own resources [B03]. This
optimization must be done with respect to criteria relevant to the needs of a specific user,
his or her peer group, and enterprise. Self-optimization translates itself into a high
standard of service and in the end into quality of service (QoS). According to
self-optimization’s definition, a self optimizing system is capable to:

e Assign a solution or additional resources in order to complete a user transaction

in a given time;
e Adapt to dynamically changing workload;

e Improve overall utilization of the system.

2.1.4 Self-Protection
Autonomic system can automatically configure and tune itself to achieve security,
privacy, function, and data protection goals [B03]. More specifically, this characteristic
protects against unauthorized access and use, worms, viruses, denial of service attacks, as
well as internal threats.
2.1.5 Autonomic vs. Usability
Autonomic systems concentrate on self~-management rather than the simplicity of user
interface. In addition, autonomic systems have the following advantages [T03]:

e Reducing the number of low-level system administrator tasks;

e Handling the exceptions which otherwise would result in wide alerts within

systems;

e Learning from the actions taken by administrators.
2.1.6 Autonomic vs. Dependability
Autonomic computing will increase dependability through the self-healing,
self-configuring, self-optimizing, and self-protecting [SB03].
2.1.7 Autonomic vs. Smart Adaptive Computing
Autonomic computing system and Smart Adaptive System (SAS) share required
self-adaptive behavior. The SAS has been classified into the following levels:

e Adaptation to a changing environment;

e Adaptation to a similar setting without explicitly being ported to it;

e Adaptation to a new or unknown application.

10

2.1.8 Autonomic vs. Proactive Computing
A true autonomic computing system may incorporate proactive computing for example
through evolutionary learning. The goals of proactive computing are described as the
following, and Figure 4 illustrates the relationship between proactive and autonomic
computing paradigms [WPT03].

e Connecting to the physical world;

e Real-time and closed loop operation;

o Techniques that allow computers to anticipate user needs;

e Addressing security and privacy concerns;

e Dealing with uncertainty;

e Planetary scale system;

e Deep networking,

Proactive Distributed System

Proactive Computing Autonomic Computing

Figure 4: Relationship between Two Computing Paradigms [WPTO03]

11

2.1.9 Autonomic vs. Introspective Computing
Autonomic computing implies a system reacting to events whereas introspective
computing involves both reactive and proactive behavior [WMKO03].
2.2 Autonomic System Modeling
The architectural concepts presented in this section will give a direction for achieving our
research goal. These concepts are mainly based on IBM Corporation’s blueprints and
on-going research for autonomic computing [IBMO03, IBM04, IBMO05].

The basis of the autonomic computing architecture is the autonomic computing

control loop as illustrated in Figure 5, and a more complex control loop is called an

Measure Control

Resource

Figure 5: Autonomic Computing Control Loop [IBM03]

intelligent control loop [IBMO03].

2.2.1 Architecture

The autonomic computing architecture is organized into two parts: layers corresponding
to decision-making contexts and parts with distributed infrastructure [IBM04]. The
decision-making contexts are used to clarify the purpose and role of a control loop within
the autonomic computing architecture. The distributed infrastructure can be visualized as
a service bus that integrates: managed resources, touchpoints, autonomic managers, and

an integrated solution console as illustrated in Figure 6.

12

Integrated Solution Console
(Tiers)

Orchestrating Autonomic Managers | - Self-Configuriny Sel-Confgurin Solf-Optimizing ~ Self-Healing
(Tierd)

Touchpoint Autonomic Managers Self-Conﬁg® sammn? Self-Optim@ Self-Protec@

Console

(Tier3)

A &

Touchpoint
(Tier2)
Managed Resources ‘ ‘ ‘ . ‘

(Tierl) Database/

atabase, Co
Servers Storage Nefwork Middlewae Application

Figure 6: Autonomic Computing Reference Architecture [IBM04]

The first layer contains managed resources that exist in the real-time environment or
in the Information Technology environment and that can be managed. The next layer
contains standard interfaces acting as touchpoints for the management of resources from
the first layer. Layer three contains autonomic managers each implementing a particular
control loop. The fourth layer provides the system wide autonomic capability because the
orchestrating managers have the broadest view of the overall IT infrastructure. The top
layer provides an interface for common system management as an integrated solution

console.

13

2.2.2 Intelligent Control Loop

As stated above, the basis of autonomic architecture is the control loop. Enhanced with
decision-making components that monitor, analyze, plan, and execute using shared
knowledge create an intelligent control loop. An intelligent control loop is also referred to
autonomic element or autonomic component. In an intelligent control loop, the
autonomic manager analyses, models and learns about managed elements; moreover, the
manager also plans and takes actions to achieve desired goals and objectives of the

managed elements [IBM03].

1 Sensors | | Effectors]

Eleinant.

Figure 7: Intelligent Control Loop [IBMO03]
The managed element is a controllable system component. It can be a single resource
(a server, a database server, etc) or a collection of resources (a pool of servers, cluster or
business application). It is controlled through its sensors and effectors.
The sensors provide the mechanisms to collect information about the state and state
transition of an element. They retrieve the information about current state or a set of
management events (unsolicited, asynchronous messages or notifications) that flow in

when the state of an element changes in a significant way.

14

The effectors are mechanisms which changes the state (configuration) of an element.
They are a collection of application programming interfaces which change the
configuration of managed resource in some important way.

The autonomic manager is.a component which implements the control loop. It is
broken down into the following distinct parts which share the knowledge, and the four
parts collaborates using asynchronous communication techniques, such as messaging bus.

e Monitor: provides the mechanisms which collect, aggregate, filter, manage and
report details (for example, metrics and topologies) collected from elements;

e Plan: provides the mechanism to correlate and model complex situation, such as
time-series forecasting and queuing models. Those mechanisms allow the
autonomic manager to learn about the IT environment and help to predict future
situation. The plan part also provides the mechanisms to structure the action
needed to guide its work. For an autonomic manager, it is responsible for
interpreting and translating policy details;

e Execute: provides the mechanisms which control the execution of a plan with the
consideration of on-the-fly updates;

e Analysis: it is responsible for determining if the autonomic manager can abide
by the policy, now and future.

Shared knowledge stores the data like metrics, commands, topology information,

events, logs, performance data, and policies. The data is collected by sensors and

effectors and analyzed in analysis phase.

15

Autonomic maﬁagers are required to work together, communicate and negotiate the
self-management of elements. The sensors and effectors provided by the autonomic
manager facilitate collaborative interaction with other autonomic managers. Furthermore,
autonomic managers can communicate with each other in both peer-to-peer and
hierarchical arrangements.

2.3 Autonomic Manager Development

There are seven core capabilities available for autonomic manager development: 1)
policy determination; 2) solution knowledge; 3) common system administration; 4)
problem determination; 5) autonomic monitoring; 6) complex analysis; 7) transaction
measurement [IBM04].

2.3.1 Policy Determination

Policies are basically the key part of the knowledge used by autonomic managers to make
decision, for they contain the criteria for achieving goals or determining the directions of
actions. Policies are essentially controlling the planning components of autonomic

managers. Figure 8 shows the policy management within the autonomic components.

16

o.oupyoata | | SESIIEIES
based on policies through
gheffectors
3. Analyze.
«(1)-analyze the-systemwith - 4. Plan
respect-to the policies {1y Asgigns tasks based.on
(2)-create repotts based on policies
policies (2) Asgions resources based on
policies '
: (3 Enables sensors .
2 Policies are gored’ {#) Addsimodified deletes
a5 Knowkedge policies:

5. Enabled/Disabled:
~ based on policies:

Figure 8: Policy Management [Cro06]

The IBM’s autonomic computing blueprints define the specifications and capabilities
for policy-based autonomic managers as the following [IBM04]:

e Specification of canonical configuration parameters for management elements;

e Format and schema used to specify user requirements or criteria;

e Mechanisms used, including wire formats, for sharing and distributing policies;

e Schema used to specify and share policy between autonomic managers.
2.3.2 Solution Knowledge
Solution knowledge contains many types of data from multiple resources, such as
operating system, application languages, system utilities, and performance data. It can be
used in all areas of autonomic computing like configuration, optimization, healing, and

protection.

17

Common solution knowledge removes the complexity introduced by differences in
formats and install tools; moreover, the knowledge acquired in a consistent way can be
used by autonomic managers in contexts other than configuration, such as problem
determination or optimization.

Solutions are the combination of platform capabilities (operating system as well as
middleware) and application elements. The idea is to get the information to support
install, configuration, and maintenance processes at the solution level instead of using
proprietary mechanisms.

The autonomic computing blueprint defines a set of constructs for composing
_ installable units and design patterns that make it possible to standardize solution
knowledge, and the following are three categories of them [IBMO03]:

e Smallest installable unit: contains one atomic artifact;

e Container installable unit: aggregates a set of artifacts for a particular container

type;

e Solution module installable unit: contains multiple instances of container

installable units.

Furthermore, the autonomic computing blueprint identifies a number of supporting
technology components for solution knowledge as the following:

e Dependency checker: determines whether the dependency of an artifact is

satisfied in the target hosting environment;

18

e Installer: knows how to extract the artifacts in the installable units and invoke
appropriate operations on the target hosting environment;
e Installable unit database: a library for installable units;
e Deploy logic: knows how to distribute an installable unit to an installer
component;
e Installed unit “instances” database: stores the configuration details about
installable units and the target hosting environments.
2.3.3 Common System Administration
Common system administration can be achieved by the common console approach which
consists of the framework for reuse and a set of console-specific components provided by
other product development groups [IBMO05]. The primary goal of a common console is to
provide the single platform, which can host all the administrative console functions in a
manner that allows users to manage solutions rather than managing an individual system
or product.
By enabling the increased consistency of presentations and the behaviors across the
administrative functions, ranging from setup and configuration to solution runtime
monitoring and control, the common console creates the familiar user interface which

promotes reusing learned interaction skills instead of learning new product interfaces

[IBMO5].

19

2.3.4 Problem Determination
In order to address the diversity of the data collected, the autonomic computing blueprint
defines the architecture of common problem determination aé the following:

e Normalizes the data collected in terms of format, content, organization, and
sufficiency by defining the base set of data which must be collected or created
when a problem or event occurs. This definition includes the information on
both data and the format that must be used for each field;

e Categorizes the data into a set of situations, such as start or stop;

e Accommodate legacy data sources like logs and traces by defining an
adapter/agent infrastructure which will provide: a) the ability to plug in adapters
to transform data from a component specific format to standard format; b)
sensors to control data collection, such as filtering and aggregating.

2.3.5 Autonomic Monitoring

Autonomic monitoring is a capability which provides the extensible runtime environment
for an autonomic manager to gather and filter data collected by sensors, and this
capability includes [IBMO03]:

e A common way to capture the information from managed elements by sensors;

e Built-in sensor data filtering functions;

e A set of pre-defined resource models (such as machine memory and connectivity)
as well as the mechanism for creating new models which enable the combination

of different pieces of sensor data to describe the state of a logical resource;

20

e The ability to incorporate policy knowledge;

e The ability to plug in analysis engines which can provide basic event isolation,
root cause analysis, server level correlation across multiple IT system, and the
automate initiation of corrective actions.

2.3.6 Complex Analysis

The autonomic computing blueprint defines the complex analysis building blocks which
autonomic managers can use to represent knowledge, perform analysis and planning;
moreover, the components and tools of complex analysis technology provide the power
and flexibility needed for building practical autonomic managers [IBMO03]. It is important
for an autonomic manager to quickly analyze the data which is dynamic and changing
continuously through the time.

Common data analysis tasks include classification, the clustering of data to
characterize complex states and detect similar situations, the prediction of workload as
well as throughput according to empirical data, and the reasoning for causal analysis,
problem determination and the optimization of resource configurations.

Complex analysis techniques use rule languages which supports reasoning by the
procedural and declarative rule-based processing of managed resource data. Application
classes can be directly imported into rule sets so that data can be accessed (using sensors)
and control actions can be directly invoke from rules (using effectors). Rule sets can
include multiple rule blocks so that the mix of procedural as well as inference methods

can be used to analyze data and define the behavior of autonomic managers [[BMO3].

21

2.3.7 Transaction Measurement
Transaction measurement represents the knowledge of transaction flow across an
autonomic architecture [IBMO03]. Autonomic managers need the transaction measurement
capability, which spans system boundaries to understand how heterogeneous systems’
resources combine to a distributed transaction execution environment. By monitoring the
measurements, autonomic managers can analyze and plan to change resource allocations,
for optimizing performance across the multiple systems based on policies, and determine
potential bottlenecks in systems.
2.4 Evolutionary Approach
To implement autonomic computing, IBM proposes an evolutionary approach to improve
current existing complex systems. This process will eventually implemented by every
enterprise by adoption of technologies as well as supporting processes. Figure 9 shows
the evolution toward more highly autonomic capabilities [IBMOS5].
e Basic level: every infrastructure element is independently managed by IT
professionals who set up, monitor and replace it;
e Managed level: systems management technologies can be used to collect
information from disparate systems onto fewer consoles;
e Predictive level: provide correlation among several infrastructure elements, and
these elements can recognize patterns, predict optimal configuration, and

provide the advice on what course of action the administrator should take;

22

e Adaptive levelzvpeople become more comfortable with the advice and predictive
power of these elements, and IT environment can automatically take the right
actions according to available information as well as the knowledge of what is
happening in the environment;

e Autonomic level: IT infrastructure operation is governed by business policies as

well as objectives, and users interact with autonomic technologies to monitor

business process or alter objectives.

Figure 9: Autonomic Computing Maturity Index [IBMO0S5]

23

2.5 Autonomic Computing Open Standards

Open standards are defined as interfaces of formats which are openly documented; they
have been accepted and freely adopted by industries. Industry standards are necessary to
support autonomic computing such that the following are ensured:

e Uniform approach to instrumentation and data collection: 1) enable the
intersystem exchange of instrumentation and control information; 2) create the
basis for collaboration and autonomic behavior between heterogeneous systems;

e Dynamic configuration;

e Operation.

The following are some proposed standards of interests to autonomic computing, and

Figure 10 gives the insights on the mapping of open standards to autonomic core

capabilities [Mur04].

No standard existing; to be developed

JSR168

CIM, SNMP, JSR3, JMX, BlueFin, OGSA, ARM

CIM, SNMP, JSR87, BlueFin, OGSA, ARM

24

RFC3060, JSR3, IMX

Complex Anslysis

JSR87, ARM

CIM, JSR3, IMX, JSR87, OGSA, ARM

Figure 10: Open Standards vs. Autonomic Capabilities [Mur04]
Java Portlet Specification (JSR168): an APIs specification for the Java
Enterprise Platform to enable interoperability between Java portlets and Web
portals. This specification defines a set of APIs for portal computing that address
the areas of aggregation, personalization, presentation, and security.
Common Information Model (CIM): the object-oriented information model
providing the conceptual view of physical and logical system components;
Distributed Management Task Force (DMTF): the industry organization which
is leading the development, adoption, and unification of management standards
as well as initiatives for desktop, enterprise and environments;
Policy Core Information Model (RFC3060): the standard which presents the
object-oriented information model for representing policy information developed

jointly in the IETF Policy Framework WG and as the extensions to CIM activity

in DMTF,;

25

e BlueFin: the proposed standard for data collection;

e Open Group Application Response Measurement (ARM): for application
instrumentation;

e Open Grid Service Architecture (OGSA): defines the standard mechanisms for
creating, naming, and discovering services as well as specifies various protocols
to support accessing services. It is the framework for distributed computing
according to Web protocols;

e Java Management Extensions (JSR3, JMX): provide the management
architecture, the API and services for building distributed, dynamic, and modular
solutions to manage Java-enabled resources;

e Java Agent Services (JSR87): a set of objects and service interfaces which
support the deployment and operation of autonomous communicative agents;

e Simple Network Management Protocol (SNMP): enables network administration
to manage network performance, find and solve network problems as well as
plan for network growth.

2.6 Related Work on Autonomic Computing

2.6.1 Unity

Unity is a multi agent systems approach to autonomic computing [T04]. The aim of Unity
is to develop an autonomic distributed computing system based on the interactions among
autonomous agents which are called autonomic elements. The components of the Unity

system are implemented as autonomic elements:

26

e Computing resource elements: databases, storage systems, servers, etc.;

e Application manager element: responsible for the internal management of
environment, for obtaining the resources needed by environment, and for the
communication with other elements depending on the needs of environment;

e Resource arbiter element: calculates the optimum resource based on the estimate
received from each application environment;

e Server element: responsible for publishing the address of server and capabilities
so that the possible users of the server can use them,;

e OSContainer: receives the requests from elements to start up the services or
autonomic elements;

e Registry element: enables the elements to locate other elements for their
communication. It corresponds to the registries in other multi-agent systems;

e Policy Repository element: provides the human-computer interfaces allowing
administrators to enter high-level policies that control the system operations;

e Sentinel element: monitors the functioning of an element on behalf of another
element. If the monitored element becomes unresponsive, the sentinel sends a
notification to the element which requests the monitoring about the situation.

Each autonomic element is responsible for its own internal autonomic behavior of

managing the resources which it controls, and managing its own internal operations, such
as self-configuration, self-optimization, self-protection, as well as self-healing. Each

element is also responsible for forming and managing the relationships which it enters

27

into for accomplishing its goals which is the external autonomic behavior that enables the
system as a whole to be self-managed.

2.6.2 OceanStore

OceanStore is a “global persistent data storage designed to scale up to billions of users”
[0S02]. Researchers at Berkeley University of California are studying systems that
perform continuous on-line adaptation called Introspective Computing through continuous
optimization to adapt to server failures, denial of service attacks and autonomic computing.
2.6.3 Recovery-Oriented Computing

Recovery Oriented Computing (ROC) is a project within Berkeley University of California
that explores autonomic computing techniques for building reliable Internet services [P02].
The researchers investigate recovery from failure techniques. ROC focuses on Mean Time
to Repair (MTTR) rather than on Mean Time to Failure (MTTF) in order to provide system
availability. The following techniques are mentioned in the report: 1) redundancy; 2)
failure containment; 3) fault insertion testing; 4) error diagnosis; 5) non-overwriting
storage systems; 6) enhanced availability.

2.6.4 Anthill

Researchers at University of Bologna, Italy are working on Anthill [Anthill01] project.
Anthill is a framework that leverages the design, implementation and verification of
peer-to-peer application. Those applications can be visualized as Complex Adaptive
Systems with inherent emergent behavior and interesting properties as resilience,

adaptation and self-organization. Architecturally an Anthill system is composed of

28

dynamic network of peer nodes, societies of adaptive agents (ants) that can travel over the
network interacting with nodes and cooperating with other agents.

2.6.5 J2EEML

In order to make development of autonomic application easier, researchers have developed
J2EEML: Applying Model Driven Development to Autonomic Enterprise Java Bean
Systems or J3 Process [WSGO35]. Their project has the following four components:

e A domain specific language J2EEML, for describing autonomic EJB systems,

their goals and their adaptation plans;

e A framework for Java called JFense;

e J2EEML model interpreter called Jadapt to make developing of autonomic

systems more feasible.

J2EEML is actually a model-driven development (MDD) tool that can formally
capture the design of EJB systems (EJB Structural Model), their quality of service (QoS)
requirements (Goal Model), and the autonomic properties that will be applied to the EJBs
(Goal-to-EJB Mapping). It supports quick development of autonomic EJB applications
via code generation, automatic checking of model correctness, visualization of complex
QoS and autonomic properties [WSGOS5].

2.6.6 Autonomic Computing Infrastructure
Autonomic Computing Infrastructure (MAACE) is a project conducted at Institute of
Artificial Intelligence, Zhejiang University, and aims to support the development and

deployment of intelligent applications. To date, the team of researchers has implemented a

29

prototype system that eﬁables self-configuring and self-optimizing of any networked
application. The architecture of MAACE is depicted in detail in [HGCO04)]. The authors
note that the architecture is based on previous works: An Infrastructure for Managing and
Controlling Agent Cooperation and An Infrastructure for Managing and Controlling the
Social Behavior of Agents.

2.7 Issues and Directions in Open Autonomic Computing

In this section, we state a few challenges which the current technologies do not address
yet [BO3].

e Security: There are many opportunities to apply autonomic computing
technologies to security problems such as: 1) the automatic updating of security
settings; 2) the secure recovery from software failures; 3) the discovery and
remediation of security exposures;

e Connectivity: there is a strong interaction between the autonomic behavior of
connectivity and security. Although the technology of secure sharing exists, the
policies and information for controlling that sharing are still generally lacking;

e Storage: the challenge in storage is how to abstract and manage both the physical
location of the data and the privacy as well as security requirements for the data;

e Peer group collaboration: 1) how to form a peer group; 2) identify the specific
collaboration type for the peer group; 3) determine the degree of trust which any
member puts in the information obtained from any other member within the peer

group;

30

e Virtualization: enhances isolation, containment, and security. It reduces the
domain of an autonomic manager to the contents of a virtual machine; moreover,
virtualization provides an effective way for legacy software systems to coexist
with current operating environments.

2.8 Metrics and Evaluation of Autonomic Computing
This section describes a set of metrics and measurements by which we can evaluate and
compare autonomic systems [MHO04].

e Quality of Service: it should reflect the degree to which the system is reaching
its primary goal, and it typically consists of metrics. It is a highly important
metric in autonomic systems because they are typically designed for improving
some aspects of a service. It can be measured as a global goal metric and at the
sub-service or component level;

e Granularity (Flexibility): an important issue when comparing autonomic systems
and it is important for the systems in which unbinding, loading, and rebinding a
component take a few seconds. These few seconds are tolerable in a
thick-grained component based architecture, but not in finer-grained
architectures where change is either more regular or the components smaller;

e Time to Adapt and Reaction Time: measurements concerning about the system
reconfiguration and adaptation. The time to adapt is the measurement of the time
that a system takes to adapt to the change in the environment. The reaction time

is the time between when an environmental element has changed and the system

31

recognizes that change, decides on which reconfiguration is necessary to react to
the change and get the system ready to adapt it;

e Sensitivity: a measurement of how well the self-adaptive systems fit with their

environment;

e Stabilization: the time taken for the system to learn its environment and stabilize

its operation.
2.9 Summary
In this chapter, we have briefly reviewed some concepts of Autonomic System, which
concepts can be applied to TROMLAB framework.

Autonomic System has the characteristics of self-configuration, self-healing,
self-optimization and self-protection. Autonomic computing control loop makes the
foundation of autonomic computing architecture. In order to implement those
characteristics, autonomic managers should have the capabilities of policy determination,
solution knowledge, common system administration, problem determination, autonomic
monitoring, complex analysis, and transaction measurement.

Finally, we have briefly described the following aspects on autonomic computing: 1)

evolutionary approach; 2) open standards; 3) related work; 4) issues and directions; 5)

metrics and evaluation.

32

Chapter 3: TROMLAB Framework
TROMLAB is a framework where in Time Reactive Object Model (TROM) formalism,
language and method, can be practiced in accordance with a process model that integrates
formal methods with several phases of the development life cycle. The process model
incorporates iterative development, incremental design, validation, and formal
verification of design models. The essential contribution of the TROMLAB framework is
the integration of the formalism with a practical development methodology. The benefits
include an easy-to-use interface for the modular design of the system components, and a
basis for rigorous analysis [AAM96].

This chapter introduces the TROM formalism; the conceptual view of TROM
identifies the architecture foundation on which we extend.
3.1 TROM Methodology
The TROM formalism is a three-tier formal model illustrated in Figure 11. As a layered
model, each lower tier communicates only with its immediate upper tier. The
independence bétween the tiers makes modularity, reuse, encapsulation, and hierarchical
decomposition possible. The three-tier structure describes the system configuration,
reactive classes, and relative Abstract Data Type. The upper-most tier is the subsystem
configuration specification. It specifies the object definition, their collaboration, and the
port links, which regulate the communication tunnels between objects. The middle tier is
the TROM class, which is a Generic Reactive Class (GRC) and is included in the

subsystem. The TROM class is a hierarchical finite state machine augmented with ports,

33

attributes, logical assertions on the attributes, and time constraints. The lowest tier is the

Larch Shared Language (LSL) trait that represents Abstract Data Type used in the TROM

classes [Ach95].
Animation N Reguircments spwiﬁéaﬁﬂn in . Larch
Taol Alei’s Temporal Logie(A TL) ; Provet
Validation Formal Vm*iﬁemmn
T T s et ot sy T et 5
! | i
1]]
! Subsystem |5 stom gg:ﬂ?mmﬂ {o] System Thoory: i
Cﬁmpmﬂﬁﬂﬁ I | &'w whan | , Synch, Axioms in ATL | |
! ! | 3
; 3 j !
i . \
‘ — Timed Reactive |1 1 | TROM theery:
. Cianmummm s Object Model - Axiomsin ATL ;
A !
I B
i 1
! 1
’ Diita Modet * First order
i o ! ! Logic |
g 2 ’ |
b i B : 1
ol L e G s }*Tigmdi’}cﬁign S B Y W W el R S 58 e g
‘Oporational Semimtics Specification Luglcai Semantics

Figure 11: Overview of TROM methodology [Ach95]
3.1.1 First Tier — Larch Formalism
This tier specifies the data abstractions used in the class definitions of the second tier by
means of Larch Shared Language (LSL). An abstract data type is defined as LSL trait,

and Figure 12 defines a trait that specifies a Set data type.

34

Trait: Set(e, S)
Include: Integer, Boolean
Introduce:
create; ->S;
insert: €, S->S;
delete: e, S->8;
size: S->Int;
member: e, S->Bool,
isEmpty: S->Bool;
belongto: e, S->Bool;
end

Figure 12: Set trait [Zha00]

3.12 Second Tier — TROM Formalism

A TROM object has a single thread of control. Communication mechanism among

TROMs is based on synchronous message passing, also known as rendezvous.

A message passing between a TROM and its environment is represented by an
interaction;

An interaction of a TROM with its environment occurs at port associated with
TROM. Each port has a unique port-type;

A state is an abstraction denoting environmental information or a system
information during a certain interval of time. A state can be either simple or
complex. A complex state has an initial state and a set of simple as well as
complex substates. A TROM class has a unique initial state;

An event denotes an instantaneous activity. The events are classified into three

types: Incoming, Outgoing, and Internal,

35

o The attributes of a TROM class are of two kinds: abstract data types imported
from the first tier and port types.

A formal definition of the different components of a reactive object described above

is presented as an §-tuple (I1, E, ®, B, A, @, A, Y). Figure 13 shows the template for a
class specification, and Figure 14 shows the example of describing a GRC.

e Il is a finite set of port-type with a finite set of ports associated with each
port-type, and the null-type p, whose only port is the null port o;

e E is a finite set of events and includes the silent-event tick. ¢, is the set of
input events, g, is the set of output events, and ¢, is the set of internal
events,

e Ois afinite set of states. 0, is the inifial state;

e = is finite set of typed attributes. The attributes can be: an abstract data type
specification of a data model or a port reference type;

e Ais afinite set of LSL traits introducing the abstract data type in &,

e @ is a function-vector (D, , @,) where:

- @.: ® ->2° associates with each state 0 a set of states, possibly empty, called
substates.
- @, : ® ->2% associates with each state 6 a set of attributes, possibly empty,

called the active attribute set.

36

A is a finite set of transaction specification including A A transition

init *
specification A € A - {X,,, }, is a three-tuple: < (6,80'); &(@ 4,); Pon = P o™
- 0,0 € O are the source and destination states of the transition.
- event ¢ € E labels the transition; ¢, is an assertion on the attributes in E and
a reserved variable pid, which signifies the identifier of the port at which an
interaction associated with the transition can occur.
- @, is an assertion on the attributes in = specifying the condition under which
the transition is enabled. ¢, is an assertion on the attributes in E, primed
attributes in @, (') as well as the variable pid and it implicitly specifies the data
computation associated with the transition.
Y is a finite set of time-constraints. A timing constraint v, € Y is a tuple (},,¢,’,

[, u], ®,) where:

- A;#\, is atransition specification.

e’ € (g, Ve,) is the constrained event.

out

[1, u] defines the minimum and maximum response times.

®, c O is the set of states wherein the timing constraint v, will be ignored.

37

Class < name >
Events:
States:
Attributes:
Traits:
Attribute-Function:
Transition-Specification:
Time-Constraints:

end

Figure 13: Template for Class Specification [AAM96]

Class Pump [@P]
Events: OpenPump?@P, ClosePump?@P, open
States: *closed, toopen, opened
Attributes:
Traits:
Attribute-Function:
closed -> {};toopen -> {}; opened > {};
Transition-Specifications:
R1: <closed, toopen>; OpenPump|](true); true => true;
R2: <closed, closed>; ClosePump[](true); true => true;
R3: <toopen, opened>; open[](true); true => true;
R4: <opened, closed>; ClosePump[](true); true => true;
RS: <opened, opened>; OpenPump[](true); true => true;
Time-Constraints:
TCvarl: R1, open, (0, 5), {};
end

Figure 14: Generic Reactive Class: Pump [Moh04]

The anatomy of a TROM shown in Figure 15 describes the dynamic behavior of a
well-formed generic reactive object (an instance of GRC). A message from an object to
another object in the system is called a signal and is represented by a tuple <e, P, t>,

denoting that the event e occurs at time ¢ and a port F. A computational step of a TROM

38

is an atomic step which takes TROM from one state to its succeeding state as defined by
the transition specifications. Each computational step is associated with an interaction

signal, internal signal, or silent signal.

pid

Attributes |Aif, Fung States Lavaaay

] x @ =
: Pu :
: \ :
: £
P ' : :
Cm?lirfion <-J" ," & B
‘l’m{ =|llllIlllI- ey A
E ‘ E |2
: | Disable
WGIO&!II clock
pid Outgoing
Interaction
Response

Figure 15: TROM Class Anatomy [Moh04]

39

3.1.3 Second Tier - Composite Classes

Composite class is introduced to minimize design complexity and to promote modularity
at subsystem level. A composite class is a macro-architecture type that may include
TROM classes (micro-architectures) as well as other macro-architectures. The
composition rule that determines the configuration of components in a macro-architecture
is based on port-type compatibility. An object instance of a composite class, called
composite object, can have multiple threads of control [AAM96].

TROM classes and composite classes can be composed to obtain a new composite
class by gluing the compatible port types. The port types of composite class are available
for external communication; the compatible port types which are glued together by
connectors become internal to the composite class and are not available for external
communication. The events that are associated with the glued port types of classes
become shared events for the objects, and all other external (internal) events become
external (internal) events of the composite class. The states, attributes, traits, attribute
functions, transition specifications, and timing constraints of the state machines
associated with classes are absorbed in the description of the composite class. Figure 16

shows the syntax for describing a composite class.

CompositeClass<identifier>[<listofprot - types>]
Incarnations:
Connectors:

end

Figure 16: Template for Composite Class Construction [AAM96]

40

The template includes the keyword CompositeClass introducing the name of the
composite class, and sections labeled with the keyword Incarnations, and Connectors. An
incarnation of a class is the class specification in which the port-type parameters may be
renamed. The incarnations’ section lists the incarnations of classes which participate as
independent components in a composition. The Connectors section lists the connectors
that glue compatible ports for internal communication between the components. The
protocol for communication along a connector is implicitly available in the signatures of
the ports glued by the connector. Figure 18 gives the specification of the composite class

shown in Figure 17.

Figure 17: A Composite Class with Five Classes [AAM96]

41

CompositeClass Class5[@ E, ,@ E, ,@F]

Incarnations:

s: Class1[{@D, @ E, for @E]

t: Class1{@D, @ E, for @E]

u: Class2[@A, @B, @F]
v, w : Class3[@C]
Connectors :

s.@D><u.@A
t@Dr<u@A
v.@ C><u.@B
w.@ C><u.@B

end

Figure 18: A Composite Class Specification [AAM96]

A composite class is a macro-architecture type that may include TROM classes
(micro-architectures) as well as other macro-architectures. The composition rule that
determines the configuration of components in a macro-architecture is based on port-type
compatibility. An object instance of a composite class, called composite object, can have
multiple threads of control, and a composite class type is not a TROM class type.

3.1.4 Third Tier — System Configuration Specification
A System Configuration Specification (SCS) describes the system architecture by
succinctly specifying the interaction relationship that can exist between the objects in a

system. The template in Figure 19 shows the syntax for SCS.

42

Subsystem < name >
Include:
Instantiate:
Configure:

end

Figure 19: Template for System Configuration Specification [AAM96]

The syntax includes the keyword Subsystem to introduce the identifiers for the
system, and sections labeled with the keyword Include, Instantiate, and Configure. The
Include clause is for importing other subsystems. The Instantiate clause defines reactive
objects by parametric substitutions to cardinality of ports for each port type, and
initializing the values of attributes in the initial state of the object. The Configure clause
defines a configuration obtained by composing objects specified in the Initiate clause and
the subsystem specifications imported through the Include clause.

Figure 20 shows a subsystem configuration for an arbiter system involving two users
and one arbiter. The Arbiter objects have two ports of type @U, and each User object has

one port of type @A.

43

Subsystem ArbiterSystem
Include:
Instantiate:

ar, :: Arbiter[@U : 2].Create();

us,, us, :: User[@A : 1].Create(),
Configure:

an .@u, <> us,.@a,;

an, @u, <-> us, @a,;
end

Figure 20: Arbiter Systemn [AAM96]

Communication links in a subsystem are external to objects in the system, whereas
connectors in a composite object are internal to the objects that are glued. Each
composite object behaves as a black-box, and their message exchanges are transparent,
but a subsystem behavior is illustrated through a message sequence chart.

3.2 Design Refinement in TROM

A design can be refined by adding more details, which may require adding more states,
transitions, and strengthening time constraints. However, the design obtained from an
unconstrained inheritance principle does not guarantee the preservation of properties in
the derived TROM. Towards remedying this, three forms of constrained inheritances
based on subtype are introduced in TROM [AAM96]. Figure 21 shows the syntax for

extended class specification:

44

Class: < identifier > [< porttypes >]
Inherits:
Events:
States:
Attributes:
Traits:
Attribute-Function:
Transition-Specifications:
Time-Constraints:

end

Figure 21: Template Extension for Inheritance Specification [AAM96]

In the section of inkerits, the name and port-type parameters of the inherited class is
introduced. Port type parameters may be omitted for behavior and extensional inheritance
specifications. The other sections (Events, States, Transition-Specifications, and
Time-Constraints) may list details of the inherited class according to the kind of
inheritance, and a class may inherit at most one class. Figure 22 shows the TROM class
specification of basic telephone, and Figure 23 shows the definition of the class

Answer-Phone derived from the class basic-phone.

45

Class Basic-Phone [@P, @Q]
Events: OnHook? P, OffHook?P, Ring!Q, Stop!Q
States: *idle, ringing, revCall, initCall
Transition-Specifications:

R,: <idle, initCall>, <ringing, revCall>; OffHook? (true);
true -> true,

R, : <initCall, idle>, <revCall, idle>; OnHook? (true);
true -> true;

R,: <idle, ringing>, Ring!(true); true -> true;

R,: <ringing, idle>, Stop!(true); true -> true;
end

Figure 22: A Basic Telephone Device [AAM96]

Class Answer-Phone [@P, @Q]
Inherits: Basic-Phone
Events: Start
States: ringing(*wait, answer)
Transition-Specifications:

R;: <wait, answer>; Start; true -> true;
Time-Constraints:
(R,, Start, [2,4], {revCall, idle})
end

Figure 23: Enhancément with Message Announcing Feature [AAMO96]

3.2.1 Behavioral Inheritance

A TROM class T obtained by refining a TROM class T' according to the refinement

mapping stated below is a behavioral subtype of T'. An object A of class T inherits the

behavior of an object A' of class T".

46

1. Attribute redefinition: the data model of an attribute may be redefined, provided
exist coercion functions for each attribute from the refined trait to the original
trait.

2. Transition redefinition: redefinition of an inherited transition specification may
be done such that:

e The post-condition may be strengthened;

e The port-condition of a transition involving any event € €g,, may be
strengthened,

e The enabling-condition of a transition involving any event e € g,,, may be
strengthened,

e The initial attribute-constraint ¢,, may be strengthened.

3. Time-constraint redefinition: the minimal time increased or the maximal time

delay may be decreased.
3.2.2 Extensional Inheritance
The goal of extensional inheritance is to provide design refinements that preserve
behavior. The TROM object A obtained by refining a TROM object A’ satisfying the
following constraints is an extensional inheritance of A’:

1. Possible Redefinitions:
e Any redefinition as permitted in Behavioral inheritance;
e The source state 6 of a transition may be redefined to any substate of 0;

e The enabling-condition of any inherited transition may be strengthened;

47

e The port-condition of any inherited fransition may be strengthened.
2. Possible Additions:
e Event addition: new events may be added, enriching inherited port-types;
e State addition:i a new state may be added only to make an existing simple
state as a complex state;
e Attribute addition: new attributes and traits may be added;
e Transition addition: an added transition can have only new events and new
states. The superstate of the source and destination state should be the same;
e Time-constraint addition: an added time-cons_traint can only constrain a new
event.
3.2.3 Polymorphic Inheritance
The TROM object A is a polymorphic inheritance of the TROM object A’ if the
following conditions are satisfied:
1. Possible Redefinitions: any redefinition as permitted in Behavioral inheritance.
2. Possible Additions:
e Port addition: new port-type may be added. This necessarily introduces new
events;
e State addition: new states may be added; refinement of an exiting state is
not permitted;
e Attribute addition: new attributes and traits may be added:

- An added transition can only involve new events.

48

- An added transition involving an event e € g, can only have newly added
states for both source and destination states.
o Time-constraint addition: an added time-constraint can only constrain a new

event and can only be triggered by a new transition.
3.3 TROMLAB — The Development Framework
TROMLAB is a framework built around the process model in which the rigorous
approach based on TROM methodology can be practiced to develop real-time reactive
systems [AAM96]. Figure 24 defines the series of software engineering stages which are
followed in TROMLAB towards developing real-time reactive systems. The primary
distinction between traditional and TORMLAB process models is in the integration of
formalism through the different stages of development. Tools have been developed to

support formalism at different levels of abstractions.

Figure 24: Process Model for Developing Complex Reactive System [AAM96]

49

3.3.1 Process Model

The process model requires the formal method of the environment to be produced and
integrated with system elements [AAM96]. Environmental objects are abstracted and
their interfaces to system elements are formally defined. System requirements that
include functional and timing requirements are identified and their formal descriptions
are produced. A reactive system model is composed of the software unit and the model of
the environment. Integration of Rational Rose with the initial states of model building
activities enables the construction of a visual model of a reactive system.

The formal model of the reactive unit is implemented by several design iterations.
Validation is done by animating the reactive system design. Simulatioh and reasoning are
the two techniques used to debug the design and predict its behavior. The validation and
simulation tools use the formal model, so they are independent from any implementation
constraints such as resource and process speed. If flaws due to incorrect functionalities or
inconsistent timing behavior are noticed during system simulation and reasoning, the
process model allows an iterative inner cycle for redefining and validating the formal
model of reactive unit.

System verification is the next step of the process model. Time critical properties are
formally verified at this step, such as safety properties. The system design is
mechanically translated to a set of PVS theories consisting of axioms describing the
timed behavior of the system [Pom99]. The desired properties are formalized and are

included as lemmas in PVS theories.

50

3.3.2 TROMLAB Components

The current TROMLAB environment includes the following components:

Rose-GRC Translator [Pop99]: allows reactive classes to be visually composed,
edited, refined, and automatically mapped to the TROM notation;

Interpreter [Ta096]: parses, syntactically checks a specification and constructs an
internal representation;

Simulator [Mut96, Liu03]: simulates a subsystem behavior at the design phase
before the implementation, and enables a systematic validation of the specified
system; the results are animated by the visualization tool [Moh04];

Browser for Reuse [Nag99]: an interface to a library, to help users navigate, query
and access various system components for reuse during the system development;
Graphical User Interface [Sri99]: a visual modeling and interaction facility for a
developer using the TROMLAB environment;

Reasoning System [Hai99]: provides a means for debugging the system during the
animation by facilitating interactive queries of hypothetical nature on system
behaviors;

Verification Assistant [Pom99]: an automated tool which enables mechanized
axiom extraction from real-time reactive systems;

Test Case Generator [Zhe02, Che02]: an automated tool for generating test cases
from specifications and for optimizing the test suite based on the test adequacy

measurement;

51

e Verification Tool [Mut00]: an automated tool that enables mechanized validation
for the safety and liveness properties, and it is based on PVS;

e TROM-SRMS (Software Reliability Measurement System) [Lee03]: a reliability
measurement module that predicts the level or reliability from the TROM
specifications of the system;

o TROM-SCMS (Software Complexity Measurement System) [Zhu03]: calculates
the architectural complexity from TROM specifications and displays the
maintenance profile of the system.

34 Summary

In this chapter, we have briefly described all the concepts of the TROMLAB environment
in which we make the extension. TROMLAB framework is the integration of the TROM
formalism with a practical development methodology for developing real-time reactive

systems. Our research achievements are introduced in the following chapter.

52

Chapter 4: Reactive, Distributed and Autonomic Aspects of
AS-TRM

This chapter provides the comprehensive conceptual view of the AS-TRM approach; it is
intended to capture and convey the significant architectural decisions which serve as a
foundation for the further design and implementation. We focus on the structural view,
the dynamic view, as well as the specific characteristics of the AS-TRM to discuss the
reactive, distributed and autonomic aspects of AS-TRM approach.

4.1 Purpose and Context

Real-time reactive systems are the some of the most complex systems, so the modeling
and development of real-time reactive systems becomes a very challenged and difficult
work; moreover, the current TROM formalism does not have the appropriate mechanism
for specifying autonomic distributed systems. On the other hand, autonomic computing is
the new research area which focuses on developing complex computing system smarter
and easier to manage. Thus, the goal of our work is to extend the current TROM
formalism to AS-TRM to include the specification of distributed reactive autonomic
components along with their relationships, and the non-functional properties constraining
the behavior of the system.

4.2 Concept of AS-TRM

AS-TRM is the formal framework for autonomic distributed real-time reactive systems
which leverages their modeling, development, integration, maintenance, and continuous

monitoring of their reliability [VKOP06], and Figure 25 shows the concept of AS-TRM.

53

Figure 25: Concept of AS-TRM [Cro06]
4.3 Rationale of AS-TRM
AS-TRM can be considered as TROM with extended autonomic behavior, and the
autonomic functionalities are those which create the autonomic behavior. Autonomic
functionalities can be implemented locally, using locally maintained measurements and
knowledge. The autonomic behavior can be implemented among the members within a
peer group through sharing measurements and knowledge of the group. It also can be
implemented by using globally available resources in which the measurements and
knowledge are maintained for all clients. Generally, autonomic functionalities are
implemented as the following categories [B03]:
e Local autonomic functionality: locally, autonomic decisions can be made by
using the knowledge which the personal computer stores or can get by itself.
Local functionalities include the automatic auditing of software configuration,
local backup, the survey of connectivity environment, as well as power

management, etc.

54

e Peer group autonomic functionality: requires the cooperation of a local
community, and it includes spontaneous computing service as well as knowledge
sharing, etc.

e Global autonomic functionality: enhances and extend the core autonomy of PCs;
it includes software updating, backup along with restore, virus update, and
mobility support service, etc.

44 AS-TRM Formalism

AS-TRM formalism is extending the TROM formalism [AAM96] by adding the
following tiers (see also Figure 26):

e A timed reactive autonomic component: Autonomic Component (AC);

e A group of synchronously interacting ACs: AS-TRM Component Group (ACG);

® A collection of asynchronously interacting ACGs: AS-TRM System (AS).

5-Tiered Design
Specification

Figure 26: AS-TRM Formalism [VKOP06]

55

AS Theory:
Compositional Rules
(axioms)
Autonomic System AS Configuration
Computation Specification
ACG Theory:
. Autonomic Component
Autonomic Component ACG Configuration e
Group Computation Specification Compositional Rules
AC Theory:
Autonomic Component AC Configuration Synchronization
Computation Specification Axioms
. Time Reactive Object TROM Theory:
TROM Computations Model Axioms
Larch Shared Language First Order
Data Model (LSL) Logic

4.4.1 AC Tier

This newly added tier encapsulates the TROM objects (the second tier of the TROM
formalism) into the AS-TRM autonomic components. The synchronous interactions
among the ACs allow them to perform reactive tasks, and the communication between
the AC and its upper tier ACG is asynchronous. An AC is responsible for undertaking a
complete or partial real-time reactive task as a worker within the system.

4.4.2 ACG Tier

ACG is a set of synchronously communicating ACs which cooperates in fulfillment of a
group task; each ACG can accomplish a complete real-time reactive task independently.
The self-monitoring behaviour at the ACG tier as well as the asynchronous interaction
between ACG and its ACs is implemented by an ACG Manager (AGM), and the
responsibilities of an AGM include the following:

e Monitors the ACG reliability level required by the evolving nature of the peer
group;

e Monitors the behavior of the synchronously communicating ACs within the
group, and analyzes the correctness of their functionalities according to the
policies;

o Receives the diagnostic messages from the ACs within the group, and then sends
back corresponding treatment messages to them.

e Removes the broken ACs from ACG and inserts them back when they are ready;

56

e Automates the initialization and maintenance according to evolving group

configuration and changes in the run time;

e Encapsulates any data under the control of the group and manages all the data

shared between ACs;

The reactive behavior within AS-TRM is modeled at the AC and ACG tiers;
moreover, we model the environmental objects communicating with the system as ACs,
and incorporate them into the ACG to fulfill corresponding reactive tasks. In the
meantime, the autonomic behavior of self-healing, self-optimizing, self-protecting, and
self-configuring can be implemented at the ACG tier which is the peer group level as the
following aspects:

e Automating the policy backup for the group;

e Knowledge, resource sharing within the group, and execution time optimizing

based on empirical data;

e . Automating event access support from the environment;

e Automating the configuration from the AS Tier and the unplanned changes from

the environment.
4.4.3 AS Tier
AS is a set of asynchronously communicating ACGs, and the self-managing behaviour as
well as the asynchronous interaction between the AS and the ACGs is implemented by
the Global Manager (GM). The responsibilities of the GM include the following:

e Monitors the AS reliability level required to endure the safety of the AS;

57

e Verifies the user access according to the security policies and different level
privileges defined among AS, ACGs, ACs, and environment;

e Monitors the behavior of the ACGs and analyzes whether they work correctly
according to the policies;

e Receives the diagnostic messages from the ACGs, and then sends back
corresponding treatment messages to them;

e Receives the requests for updating the compositional rules of ACGs as well as
the synchronization axioms among ACs from the user, and forwards these
requests to the AGMs.

e Encapsulates any data under the control of the AS and manages all the data
shared between ACGs;

As a result, the autonomic behaviour of self-protecting, self-configuring,
self-optimizing, and self-healing can be implemented as the following aspects at the AS
tier, which is the system level: 1) automating the user access support; 2) automating the
configuration for users; 3) knowledge and resource sharing within the system; 4)
Automating the policy backup for the whole system.

4.5 Characteristics of AS-TRM
From the formalism of AS-TRM, we can find that it has the following characteristics
[VKOPO06] in addition to real-time and reactive which is inherited from current TROM

formalism [AAM96]:

58

e AS-TRM is self-managed: it can monitor its components (internal knowledge)
and its environment (external knowledge) by checking the status from them, so
that it can adapt to changes that may occur, which may be known changes or
unexpected changes;

e AS-TRM is distributed: the components within AS-TRM can collaborate to
complete a common real-time reactive task distributedly;

e AS-TRM is proactive: it can initiate changes to the system,

e AS-TRM is evolving: a) the policies of each AC can be changed in the run time
according to the changes of requirements; b) the composition rules of the ACs
within corresponding péer group can be changed in the run time; c) the
synchronization axioms among the ACs within corresponding peer group can be
changed in the run time.

4.6 Summary

In this chapter, we have specified the concept of AS-TRM approach in which we
combine the advantages of both the formal representation of reactive components within
the TROM formalism, and the autonomy of components under the concept of autonomic
computing. The extension from current TROM formalism to AS-TRM formalism is
implemented by adding the new tiers of AC, ACG, and AS, so that the AS-TRM is
self-managed, distributed, proactive, and evolving in addition to the characteristics of

real-time along with reactive which are inherited from TROM.

59

Chapter 5: Architecture of AS-TRM

The scope of this chapter is to provide the architectural implementation of AS-TRM, and
we begin with a brief review of the software architectures for autonomic computing as
the rationale of AS-TRM architecture. Our architectural goal is to catch the functional
requirements as we stated in the chapter 4, and the most important AS system’s
non-functional property, namely reliability.

5.1 Related Work on Architectures for Autonomic Computing

At the software architectural level, a system is typically described as a collection of
interacting components. Components perform the primary computations within the
system, and the interactions between components include high level communication
abstractions, such as message passing, event broadcast, pipes, and procedural calls
[AAG93].

5.1.1 Multi-Agent Systems

The autonomic systems which are not composed of a single self-managing component
can be developed by using intelligent agents, and each agent has its own goals to make its
decisions. The agents within an autonomic system are proactive and possess social
abilities. Usually, there is a clean separation between the conventional components which
perform a task and the autonomic managers which implement self-management. On the
other hand, in some systems, the autonomic components are inseparable from the main

application logic within corresponding agents [MHO04].

60

Autonomic Element (agent)

Internal Repair plan
Monitor | effector

Adaptation planner o, System
- ¢ | Knowledge

é Managed Component

External |
Manitor

V

Figure 27: An Autonomic Agent [MHO04]

With no centralized monitoring mechanism, agents must monitor themselves
(internal monitor) and other agents (external monitor). External monitoring can be
proactively achieved by having every agent send its heartbeat or pulse regularly on the
autonomic signal channel which other agents send and listen on. The heartbeat provides a
summary of the state of an agent to other agents which are responsible for monitoring
that state [SBO3].

5.1.2 Architecture Design-Based Autonomic Systems

In the architecture-based approach, individual component is not autonomic. Instead, the
infrastructure which handles the autonomic behavior within the system uses the
architectural description model to monitor, reason about the running system, and

determine appropriate adaptive actions [MHO04].

61

An architecture model can be considered as a graph of interacting components,
which components are nodes within the graph. The arcs in the graph are called connectors;
they represent interaction paths between components. Many systems allow components
and connectors to be annotated with a property list as well as constraints; these properties
are updated while monitoring the running systems, and the constraints on them are used
to decide when an adaptation is necessary [GS02].

Figure 28 shows the diagram of the architecture model-based autonomic system,

which describes the monitoring infrastructure:

Architecture Manager

Arch. Model _|

Gauges

Raw monitoring data

/ Eﬁecﬂngﬁ

System Repair plan
. s execution
{effectors)

Figure 28: Architecture model-based system [MHO04]
e Probes: can be inserted into the running system to monitor it; they are usually

localized and deliver system-specific observation;

62

e Gauges: the intermediary components between the probes in the running system
and the architecture manager that controls the adaptation of the system at the
architecture model level,

e Repair plan: describes which components or connectors will be removed,
adjusted, and inserted; it is created based on predefined repair strategies.

5.2 Rationale for AS-TRM Architecture

Compared to the architecture design-based approach, adaptive multi-agent systems have
the inherent distributed architecture, which is one of the most important aspects we need
to implement within the AS-TRM architecture. As a result, we choose the Multi-Agent
architecture as the architecture of AS-TRM.

As we stated in the chapter 4, AS-TRM is not only a real-time reactive framework,
but also an autonomic framework. The key aspects of an autonomic framework are
autonomic manager and the element to be managed; moreover, the goal of an autonomic
framework is to specify the interfaces as well as protocols for those elements to exchange
information and data to implement autonomic behavior [B03].

e Every element needs an element-specific autonomic manager to monitor and
control it; the coupling between the element and specific manager represents the
lowest level of autonomic behavior;

e Element-specific autonomic managers report to the global autonomic manager
which is responsible for achieving end-user goals according to some established

policies.

63

5.3 AS-TRM Architecture

Based on the tiers of the AS-TRM formalism stated in the chapter 4, Figure 29 shows the

architecture of AS-TRM which consists of Autonomic Components (ACs), AS-TRM

Component Group Manager (AGM), and Global Manager (GM) which are connected to

each other at the local, peer group, and system levels.

Global Manager

Autonomic
Component2

Autonomic
Component]

Autonomic
Component3

AS-TRM Component Groupl] AS-TRM Component Group

Figure 29: AS-TRM Architecture

At the peer group level, which is also the AS-TRM Component Group (ACG) level,

every AGM interacts and shares knowledge as well as information with its ACs; it

receives information (policies) from its superior (Global Manager) and implements them

with its own resources. The autonomic behavior at this level is a result of peer

knowledge-sharing, getting local agreement, and acting locally on that knowledge.

Figure 30 depicts the architecture of an ACG, and Figure 31 illustrates the anatomy

of GM and AC.

64

~——AS-TRM Component Group w

~ACG Manage
Global Manager) Self-Configuring
Agent Mariaged Autonomic:
B ‘
Componets
Seli:eez:mg {7 Autonomic
{1 Component]

Scif#Optimizing

{suueyyy [puSis orouoiny

Global Repository Agont g
{Policies, Facts, Q
Rules /Self-Protecting E]
: : ‘ s : : 5
Agent L. 11 Autonomic B
‘ {17 ComponentZ
/ L o \] Y,
Replicator } '
\ J
Group Repositary (Policies,
Facts, Rules)
N ‘) 7

Figure 30: Architecture of AS-TRM Component Group

e Every ACG consists of an AGM and a set of managed ACs;

e An AGM consists of a collection of intelligent agents which is responsible for
the autonomic behavior of self-configuring, self-healing, self-optimizing, as well
as self-protecting, and a replicator for replicating the states of the ACs within the
ACG;

e The intelligent agents in the AGM can communicate one another through the
Autonomic Signal Channel;

e Each managed AC communicates its events and other measurements with AGM;

65

e According to the input received from the ACs, the AGM makes the decisions |
based on the policies, facts, and rules (stored in the ACG repository) and

communicates the instructions with corresponding ACs.

—Global Managex‘————————\ ——AS-TRM Component Group

elf-Configuring —Managed Autonomic Componets—
Agent

Autonomic Component]

Self-Healing

Self-Protecting
Agent

> N
Agent g \ ROM Object
3 .
5.
Self-Optimizing »
Agent 5
g E Group
Q Manager
:

Autonomic Component2

JusTIuONAUg

ROM Object:

| Portl | | Port2]

Replicator

o™
=D
=
D

Group
Repository
Global Repository (Policies, S)
(Policies, Facts, Rules) Facts, Rules)
\. /

Figure 31: Anatomy of Global Manager and Autonomic Component
e A GM consists of a set of intelligent agents which is responsible for the
autonomic behavior of self-configuring, self-healing, self-optimizing, as well as
self-protecting, and a replicator for replicating the states of the ACGs within the
AS-TRM system,;
e The intelligent agents in the GM can communicate each other through the
Autonomic Signal Channel;

e Every ACG communicates its events and other measurements with the GM;

66

e According to the input received from the ACGs, the GM makes the decisions
based on the policies, facts, and rules (stored in the AS repository) and
communicates the instructions with corresponding ACGs.

Both the interface between an AGM and its managed autonomic compdnents, and the
interface between a GM and an AGM are an important part of the architecture, which we
state in the following sections.

5.4 Communication Mechanism of AS-TRM

The communication mechanism of the AS-TRM is implemented by the AS-TRM
Communication System (ACS). ACS is the autonomic message system within AS-TRM,
which provides the interfaces for asynchronous and synchronous message-delivery
services [VKOPO06]. Particularly, ACS is an application of the Demand Migration
Framework (DMF) [VP05], which extends the DMF architecture by adding new features
to adapt autonomic behavior in the AS-TRM. The primary objective of this extension is
to transform the distributed asynchronous DMF into a distributed autonomic ACS.

5.4.1 Architecture

The architecture of ACS implies asynchronous and synchronous communication among
the AS-TRM nodes which are AC, AGM, as well as GM. The asynchronous
communication is inherited from DMF centralized message-persistent asynchronous
communication [VPO05], and the synchronous communication is a variant of peer-to-peer
communication [B02]. We define the former as AC <-> AGM <-> GM, and it occurs

between ACs and AGMs, as well as between AGMs and GM; the peer-to-peer

67

communication occurs between ACs, and it is called AC <-> AC communication

[VKOPO6]. Figure 32 shows the layered architecture of ACS which is derived from DMF.

TA
Interfac Interta
e e

Figure 32: Architecture of ACS [VKOPO06]

The architecture of ACS consists of four layers, which are Message Space (MS),
Message Space Proxies (MSP), Transport Agents (TA), and Peer-to-Peer Transport
Agents (P2PTA). MS, MSP, as well as TA are directly derived from DMF, and P2PTA is
DMEF’s extension which addresses synchronous communication issues.

e MS: incorporates a persistent storage mechanism for all the messages which are

exchanged asynchronously within the AS-TRM; moreover, it incorporates an

Object Query language (OQL) [EmmO0] to query the stored messages;

68

MSP: the presentation layer which takes the MS functionality to a more generic
level, there are single MS and multiple MSPs, and every MSP is associated with
aTA;

TA: the migration layer that transports messages asynchronously among ACs,
ACGs, and GM through the interface; TAs are the independent components
which can carry objects over the boundaries of machines; they provide a
transparent form of the migration, and every TA works independently as well as
concurrently with other TAs [VP05];

P2PTA: provides an alternative way for communication that is the synchronous
point-to-point communication. The ACs can establish a direct connection by

using P2PTAs with their interfaces.

5.4.2 Functionalities

There are two kinds of messages communicating via the ACS [VKOPO06]:

Heartbeat message: used for self-monitoring; it provides a summary of the
component state. The ACs send their state (heartbeat message) proactively and
regularly to corresponding AGM, and the AGMs also send their state to the GM;
Regular message: the message containing the information of AS-TRM work and

configuration.

In addition, each AS-TRM message has its priority which is recognizable by the

transport agents of TAs and P2PTAs. The priority mechanism guarantees that the message

with higher priority can be delivered first.

69

According to the functional perspective mentioned above, the ACS should implement
the following functionalities, and Figure 33 illustrates the use of ACS by the AS-TRM
processing nodes of ACs, AGMs, as well as GM.

e Asynchronously sending and receiving heartbeat as well as regular messages;

e Asynchronously sending regular messages to a specified receiver, and reading

regular messages from a specified reader;

e Asynchronously broadcasting regular messages to all ACs and AGMs;

e Synchronously sending and receiving heartbeat as well as regular messages.

Send message

AC Group Managar {AGNMN

' Read messape

[1 N

¥

-
'

1

Giobal Manager{GM) “- - - - o r s e s e s s e s -——

[S L Lt L R N A W

Figure 33: General Use Case of ACS [VKOP06]
5.4.3 Architecture of ACS Component
In order to implement the autonomic component within ACS, we extend the autonomous

architecture of DMF [VP05] by adding a management unit to each element in the DMF.

The Management Unit (MU) controls and monitors the corresponding units of ACS,
so every component of ACS is a peer of autonomic units which consists of a MU and the
work unit of ACS. The former performs the control functions over the work unit of ACS,
and the latter performs its work duty and proactively reports its state to the MU that can
decide to shutdown or restart the work unit of ACS [VKOPO06]. Figure 34 shows the

architecture of ACS Component.

ACS Component

Work flow

Management Unit < Control flow > Work Unit

Figure 34: Architecture of ACS Component [VKOP06]
5.4.4 Autonomic Features
The ACS extends the DMF by adding the autonomic features of self-protection,
self-optimization, self-configuration, and self-healing; some of them are already
addressed by the DMF architecture, such as the core components of MS, TAs which work
in the autonomous and independent mode [VPO5].
e Self-Protection: only communication-trusted end-points can communicate via

ACS, and the ACS provides the integrated security mechanism which can

71

prevent unauthorized access. This autonomic feature is derived from the DMF
architecture [Vas05];

e Self-Configuration: the ACS is the distributed system with hot-plugging features;
the TAs is capable of discovering available MS and then plugging into the ACS.
This autonomic feature is inherited from the DMF architecture [VP05];

e Seclf-Healing: the components of ACS are able to restart themselves because of
the embedded MU. The ACS inherently has the delivery semantics of at least
once that prevents the message lost when it is sent asynchronously [Vas05], and
this allows the components of ACS restart from the stop point.

5.5 Reliability Assessment of AS-TRM

The evolving nature of the AS-TRM requires the continuous monitoring of reliability
levels to evaluate the risk of deploying a change on the configuration of the AS-TRM
system and to identify potential safety hazards for the functionalities of the system.

5.5.1 Rationale of Reliability Assessment

Our reliability assessment methodology is concerned about the uncertainty of the
architecture-based model, which is suitable for large complex distributed systems and
applicable throughout the life cycle of software. The Markov model has been applied to
the model reliability prediction for TROM real-time reactive systems [Orm02]. Because
the AS-TRM formalism is an extension of the TROM formalism, the theoretical
foundation of our reliability prediction model is the Markov model. The Markov model

states that, given the current state of the system, the future evolution of the system is

72

independent of its history, which is also the main characteristic of reactive autonomic
components. Furthermore, the analysis of Markov model yields the results for both the
time-dependent evolution of the system, and the steady state properties of the system
[VKOPO06]. The reliability assessment of AS-TRM is performed at two levels which are
peer group (ACGs) and system (AS); it is continuously evaluated by the corresponding
AGMs and GM.

5.5.2 Reliability Assessment of ACG

In AS-TRM, the Markov model of an AC is the state diagram, where the states represent
the states in the AC which are observable to the environment, and the transactions
between states have assigned probabilities [VKOP06]. An algebraic representation of a
Markov model is a matrix, namely transition matrix in which the rows and columns
correspond to the states, and the entry p; in the i"™ row, j® column is the transition
probability for being in state j at the stage following state i. The probabilities p; are
calculated by the corresponding AGM as follows:

1. The initial probabilities for all the transitions in the state machine of an AC are
calculated. The algorithm for calculating those probabilities for a state is based
on the following assumptions:

e All external events which can occur at the state have the identical as well as
independent probability distributions;
o All internal events which can occur at the state have the same probability;

e These are in general different.

73

We assume the most common stochastic queuing model for the arrival time of
the external events, namely a Poisson distribution.

2. In case there are more than one transitions with the same type (external/internal)
from state i to state j, the transitions mentioned above are substituted by the one
whose probability is:

P=1- (1=P{Hi})x... (1-P{l,))
The following property holds for the calculated probabilities:
Zipi; = 1

We create the Markov model of ACG in three steps as the following:

e Create the Markov models for ACs;

e Create the Markov models for every pair of synchronously interacting ACs

within the ACG, where the interaction between two ACs is because of the shared
(external) events:
If all the transitions in a state are labelled by internal events, or if all of them are
labelled by shared events, the probabilities are obtained by normalizing the
probabilities in their respective machines. Nonetheless, if both internal events
and shared events occur at the state, the probabilities of shared events are
calculated first, and the remaining measure is distributed to the transitions
labelled by internal events;

e Create the Markov model for fully configured group of synchronously

interacting ACs:

74

If 01, ..., 0y are the ACs in an ACG and My, ..., M, are their corresponding
transition matrices, the transition matrix M of that ACG is calculated as the
following:
a) Calculate:
M = M, & M,
b) Forj=3 to n calculate:
M = MM,
Where ® indicate the direct product of two transition matrices.

The synchronous product machine dynamically changes when ACs join or leave their
ACG so the transition probability matrices also change, and they should be recalculated.
The detailed description of the algorithms for creating Markov matrices is given in
[Orm02].

We state that the reliability should be calculated from the steady state of the Markov
system, and a steady state or equilibrium state is the one in which the probability of being
in a state before and after transitions is the same as time progresses. We define the
reliability prediction for an ACG configuration which consists of k ACs at the level of

certainty quantified by the source excess-entropy as the following:

k
Reliability(Subsystem) = Y Hi— H

ff

Where

H= -3 vid.;pijlogpy

75

Is the level of uncertainty of the Markov model corresponding to an ACG; v; is the steady
state distribution vector for corresponding Markov system, and the values of p;j are the
transition probabilities. H; is the level of uncertainty in the Markov model corresponding
to an AC. For a transition matrix P, the steady state distribution vector v satisfies the
property of v¥P=v.

The level of uncertainty H is exponentially related to the number of paths which are
“statistically typical” of the Markov system. Therefore, higher entropy value implies that
more sequences must be created for accurately illustrating the asymptotic behaviour of
the Markov system.

5.5.3 Reliability Assessment of AS

The reliability prediction of an AS, which is calculated by its Global Manager, is defined

as the least reliability measure value among its m ACGs (subsystems) [VKOP06]:
Reliability(48) = min{ Reliability(ACG)}I"

Higher value of reliability measure implies less uncertainty within the model and thus

higher level of software reliability.

The Markov model of a configured AS changes when the AS-TRM architecture
evolves; the calculation of the Markov matrix for reconfigured AS allow the comparison
of their configurations based on reliability prediction. If the system configuration of AS;.
changes to AS;, we need to calculate the reliability of the configuration AS; and compare

it with the configuration of AS;;:

76

Reliability(AS;;) = min{Reliability(ACG;)}"
Where ACG; is a group of AS,-ﬂ.,, and

Reliability(AS;) = min{Reliability(ACG")}T"
Where ACG’; is a group of AS;, If

Reliability(AS;) > Reliabilitg;(AS;:1)
As a result, the uncertainty level of reconfigured AS is less than the one of current AS.
The reliability assessment at AS level allows reconfigured system to be deployed by

its GM if the minimum required level of reliability is reached.
5.6 Summary
In this chapter, we have specified AS-TRM’s architecture based on the architecture of
Multi-Agent systems. AS-TRM’s architecture consists of Autonomic Component,
AS-TRM Component Group Manager, and Global Manager. The intelligent agents within
the ACG Manager and Global Manager are responsible for implementing autonomic
behavior like self-configuring, self-healing, self-optimizing, and self-protecting. Then,
we have built the architecture of AS-TRM Communication System for implementing
communication among’AS-TRM’s elements. The AS-TRM Communication System has
been extended from the Demand Migration Framework. Finally, we have established

reliability assessment model of AS-TRM based on Markov Model for monitoring

AS-TRM’s evolution.

77

Chapter 6: Conclusion and Future Work Directions

This thesis work is our first step towards extending the TROMLAB framework by adding
the specification of distributed reactive autonor;lic components along with their
relationships, and the non-functional properties constraining the behavior of the system.
Particularly, it addresses: 1) extending TROM to AS-TRM for supporting distributed
autonomic behavior; 2) defining AS-TRM’s characteristics for determining AS-TRM
systems’ requirements, design, and implementation; 3) building AS-TRM’s architecture
and communication mechanism for implementing both autonomic and real-time reactive
functionalities; 4) modeling AS-TRM’s reliability assessment for monitoring AS-TRM’s
evolution.

6.1 From TROM to AS-TRM

We have built a five-tier based architecture for the AS-TRM formalism’s implementation
in the future, which formalism is the formal foundation for integrating distributed
autonomic behavior into the TROM methodology:

e The AC tier encapsulates the TROM objects into the AS-TRM autonomic
components. for undertaking a complete or partial real-time reactive task as a
worker within the system;

e The ACG tier is a set of synchronously communicating ACs, which can support
autonomic behaviour at the peer gfoup level and accomplish a complete
real-time reactive task independently. The self-monitoring behaviour at this tier

is implemented by the AGM which: 1) monitors the reliability level of ACG; 2)

78

verifies the behavior of ACs; 3) receives the diagnostic messages and sends the
treatment messages to ACs; 4) adds and removes the ACs from the ACG; 5)
automates the initialization and maintenance; 6) manages all the data shared
between ACs;

The AS tier is the abstracting a set of asynchronously communicating ACGs,
which can support autonomic behaviour at the system level. The self-monitoring
behaviour at this tier is implemented by the GM which: 1) monitors the
reliability level of AS; 2) verifies the behavior of the ACGs; 3) verifies user
access; 4) receives the diagnostic messages and sends the treatment messages to
ACGs; 5) forwards configuration changes to the AGMs; 6) manages all the data

shared between ACGs.

6.2 Characteristics

AS-TRM is the formal framework for autonomic distributed real-time reactive systems

which leverages their modeling, development, integration, maintenance, and continuous

monitoring of their reliability; AS-TRM is self-managed, distributed, proactive, and

evolving.

6.3 Architecture

The architecture of AS-TRM consists of ACs, AGMs, and GM which are connected to

each other at the local, peer group, and system levels.

Every ACG consists of an AGM and a set of managed ACs to implement the

autonomic behavior at the peer group level;

79

An AGM consists of a collection of intelligent agents for implementing
self-configuring, self-healing, self-optimizing, as well as self-protecting, and a
replicator for replicating the states of the ACs within the ACG;

According to the input received from the ACs, the corresponding AGM makes
the decisions based on the policies stored in the ACG repository;

A GM consists of a set of intelligent agents to implement self-configuring,
self-healing, self-optimizing, as well as self-protecting at the system level, and a
replicator for replicating the states of the ACGs within the AS.

According to the input received from the ACGs, the GM makes the decisions
based on the policies stored in the AS repository;

The intelligent agents in the AGMs and GM can communicate each other

through the Autonomic Signal Channel.

6.4 Communication Mechanism

ACS is the autonomic message system within AS-TRM, which provides the interfaces for

asynchronous and synchronous message-delivery services. It is an application of the

DMF, which extends the DMF architecture by adding new features to adapt autonomic

behavior in the AS-TRM.

The architecture of ACS consists of four layers which are MS, MSPs, TAs, and

P2PTAs. The layers of MS, MSPs, as well as TAs are directly derived from the DMF that

implement asynchronous communication, and the P2PTAs layer is the extension of DMF

that implement synchronous communication.

80

e MS incorporates a persistent storage mechanism for all the messages which are

exchanged asynchronously within the AS-TRM,;

e MSP is the presentation layer making the MS functionality more generic;

e TA is the migration layer that transports messages asynchronously among ACs,

ACGs, and GM through the interface;

e P2PTA provides an alternative way for communication that is the synchronous

point-to-point communication.

The functionalities consist of: 1) asynchronously sending and receiving heartbeat as
well as regular messages; 2) asynchronously sending regular messages to a specified
receiver, and reading regular messages from a specified reader; 3) asynchronous sending
regular messages to all ACs or AGMs within the AS-TRM (broadcasting); 4)
synchronously sending and receiving heartbeat as well as regular messages.

The ACS extends the DMF by adding the following autonomic features:

e Self-Protection: ACS provides the integrated security mechanism which can

prevent unauthorized access;

. Self-C‘onﬁguration: ACS is the distributed system with hot-plugging features;

e Self-Healing: the components of ACS are able to restart themselves because of

the embedded MU.
6.5 Reliability Assessment
Our reliability assessment methodology is concerned about the uncertainty of the

architecture-based model, which is suitable for large complex distributed systems and

81

applicable throughout the life cycle of software. The reliability assessment of AS-TRM is
based on the model reliability prediction for TROM real-time reactive systems, and
performed at two levels which are peer group (ACGs) as well as system (AS); it is
continuously evaluated by the corresponding AGMs and GM.

e We create the Markov model of ACG for: 1) ACs; 2) every pair of
synchronously interacting ACs within the ACG; 3) fully configured group of
synchronously interacting ACs;

e The reliability prediction of an AS, which is calculated by its GM, is defined as
the least reliability measure value among its m ACGs (subsystems).

Higher value of reliability measure implies less uncertainty within the model and
thus higher level of software reliability; moreover, the calculation of the Markov matrix
for reconfigured AS allows the comparison of their configurations based on reliability
prediction, and allows the reconfigured system to be deployed by its GM if the minimum
required level of reliability is reached.

6.6 Future Work Directions
Some of the future extensions to this thesis work include the following aspects:

e [Extends the animation tool for the validation of the TROM formalism to adapt

the AS-TRM formalism;

e Extends the Larch prover for the formal verification of the TROM formalism to

adapt the AS-TRM formalism;

82

Extends the operational and logical semantics of the TROM formalism to adapt
the AS-TRM formalism;

Implements the architecture of AS-TRM by using appropriate toolkits and
platforms for building multi-agent systems;

Extends the implementation model and automated code generation of the TROM
design model to adapt the AS-TRM design model;

Migrates the target implementation environment from Real-Time Java [Zha00]
to AspectAda [PCO05] because: 1) Ada was inherently designed for the concerns
of program reliability, maintenance, efficiency, flexibility, extensibility, and
additional control over storage management as well as synchronization which
are the key requirements for implementing autonomic real-time reactive systems;
2) AspectAda, which is extended from Ada95, provides the powerful language
elements to facilitate the aspect oriented programming that can catch the
crosscutting concerns within concurrent systems.

Builds a set of measurement and metrics to evaluate the quality of AS-TRM and

its evolution.

83

References

[AAG93]

[AAMOY6]

[Ach95]

[Anthill01]

[B02]

[B03]

[Che02]

[Cro06]

G. Abowd, R. Allen, and D. Garlan, “Using Style to Understand
Descriptions of Software Architecture”, In Proceedings of the SIGSOFT '93:
Symposium on the Foundations of Software Engineering, pp. 9-20,
December, 1993.

V. S. Alagar, R. Achuthan, and D. Muthiayen, “TROMLAB: An
Object-Oriented Framework for Real-Time Reactive System Development”,
Technical Report, Department of Computer Science, Concordia University,
Montreal, 1996 (first draft), June 2000 (revised).

R. Achuthan, “A Formal Model for Object-Oriented Development of
Real-Time Reactive Systems”, PhD thesis, Department of Computer
Science, Concordia University, Montreal, Canada, October 1995.
http://www.cs.unibo.it/projects/anthill

D. Brookshier et al, “JXTA: Java P2P programming”, Indianapolis, Sams
Publishing, 2002.

D. F. Bantz et al, “Autonomic personal computing”, IBM Systems Journal,
Vol. 42, No 1, pp. 165-176, 2003.

Chen M., “Implementation of Specification-Based Testing System for
Real-Time Reactive System in the TROMLAB Framework”, Master Major
Report, Department of Computer Science, Concordia University, 2002.

I. Croitoru, “Autonomic Systems Modeling Development: A Survey”,

84

[EmmO0]

[GS02]

[Hai99]

[HGC04]

[Hor01]

[IBMO3]

[IBMO04]

Master Major Report, Department of Computer Science, Concordia
University, April 2006.

W. Emmerich, “Engineering Distributed Objects”, Baffins Lane, Chichester,
Wiley, 2000.

D. Garlan., B. Schmerl, “Exploiting Architectural Design Knowledge to
Support Self-Repairing Systems”, In Proceedings of the 14™ International
Conference on Software Engineering and Knowledge Engineering, pp.
241-248, July 2002.

G. Haidar, “Simulated Reasoning and Debugging of TROMLAB
Environment”, Master Thesis, Department of Computer Science, Concordia
University, December 1999.

J. Hu, J. Gao, J. Chen, “Multi-Agent System based Autonomic Computing
Environment”, In Proceedings of the Third International Conference on
Machine Learning and Cybernetics, Shanghai, Volume 1, pp. 105-110,
26-29, August, 2004.

P. Horn, “Autonomic computing: IBM perspective on the state of
information technology”, IBM T. J. Watson Laboratories, NY, 15th October
2001, Presented at the AGENDA 2001 Conference, Scottsdale AR.

IBM Corporation, “An architectural blueprint for autonomic computing”, IBM
and autonomic computing, 2003.

IBM Corporation, “An architectural blueprint for autonomic computing”, IBM

85

[IBMOS]

[IEEE98]

[Lee03]

[Liu03]

[LMLOS5]

[LPPCO3]

[MHO04]

and autonomic computing, 2004.

IBM Corporation, “An architectural blueprint for autonomic computing”, IBM
and autonomic computing, 2005.

IEEE Std 1061-1998, “Software Quality Factor-Criteria-Metrics
Framework”, 1998.

Lee F. A., “Reliability Measurement Based on the Markov Model for
Real-Time Reactive Systems: Design and Implementation”, Master Major
Report, Department of Computer Science, Concordia University, 2003.

Liu S. H., “Simulated Validation of Real-Time Reactive Systems with
Parameterized Events”, Master Thesis, Department of Computer Science,
Concordia University, August 2003.

Paul Lin, Alexander MacArthur, John Leaney, “Defining Autonomic
Computing: A Software Engineering Perspective”, Proceedings of the 2005
Australian Software Engineering Conference (ASWEC’05), pp. 88-97,
2005.

G. Lafranchi, P. Della Peruta, A Perrone, and D. Calvanese, “Toward a new
landscape of systems management in an autonomic computing
environment”, IBM Systems Journal, Volume 42, No.1, pp. 119-128, 2003.
J. A. McCann, M. C. Huebscher, “Evaluation issues in autonomic
computing”, In Proceedings of the Grid and Cooperative Computing

Workshops (GCC), pp. 597-608, 2004.

86

[Moh04]

[Mur04]

[Mut96]

[Mut00]

[Nag99]

[0S02]

[OrmO02]

[PKO00]

M. Mohammad, “Visualization Animation for Real-Time Reactive Systems
Simulation”, Master thesis, Department of Computer Science, Concordia
University, Montreal, Canada, August 2004.

R. Murch, “Autonomic Computing”, Prentice Hall Professional Technical
Reference, IBM Press, pp. 119-132, 2004.

D. Muthiayen, “Animation and Formal Verification of Real-Time Reactive
Systems in An Object-Oriented Environment”, Master thesis, Department of
Computer Science, Concordia University, Montreal, Canada, October 1996.
D. Muthiayen, “Real-Time Reactive System Development — A Formal
Approach Based on UML and PVS”, Ph.D. Thesis, Department of
Computer Science, Concordia University, January 2000.

R. Nagarajan, “Vista — A Visual Interface for Software Reuse in
TROMLAB Environment”, Master Thesis, Department of Computer
Science, Concordia University, April 1999.
http://oceanstore.cs.berkeley.edu/

O. Ommandjieva, “Deriving New Measurements for Real-Time Reactive
Systems”, Ph.D. Thesis, Department of Computer Science, Concordia

University, April 2002.

- J. Paquet, P. G. Kropf, “The GIPSY Architecture”, LNCS, Vol. 1830, pp.

144-153, 2000.

87

[P02]

[Pom99]

[Pop99]

[SB03]

[Sri99]

[T03]

[T04]

D. Patterson et al, “Recovery Oriented Computing (RO>C): Motivation,
Definition, Techniques, and Case Studies”, Technical Report CSD-02-1175,
University of California-Berkeley, March 2002.

F. Pompeo, “A Verification Assistant for TROMLAB Environment”, Master
Thesis, Department of Computer Science, Concordia University, September
1999.

O. Popistas, “Rose-GRC Translator: Mapping UML Visual Models onto
Formal Specifications”, Master Thesis, Department of Computer Science,
Concordia University, April 1999.

R. Sterritt, David W. Bustard, “Towards an Autonomic Computing
Environment”, DEXA Workshops, pp. 699-703, 2003.

V. Srinivasan, “An Intelligent Graphical Interface System for TROMLAB?”,
Master Thesis, Department of Computer Science, Concordia University,
December 1999.

R. Telford et al, “Usability and design considerations for an autonomic
relational database management system”, IBM Systems Journal, Vol. 42, No
1, pp. 568-581, 2003.

G. Tesauro et al, “A Multi-Agent Systems Approach to Autonomic
Computing”, in Proceeding of the 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), pp. 464-471,

August 2004.

88

[Ta096]

[Vas05]

[VKOPO6]

[VPOS]

[WMKO03]

[WPTO03]

[WSGO05]

H. Tao, “Static Analyzer: A Design Tool for TROM”, Master Thesis,
Department of Computer Science, Concordia University, August 1996.

E. Vassev, “General Architecture for Demand Migration in the GIPSY
Demand-Driven Execution Engine”, Masters Thesis, Department of
Computer Science, Concordia University, June 2005.

E. Vassev, H. Kuang, O. Ormandjieva, J. Paquet, “Reactive, Distributed and
Autonomic Computing Aspects of AS-TRM: A Means of Achieving
Reliability”, Technical Report, Department of Computer Science, Concordia
University, Montreal, February 2006.

E. Vassev, J. Paquet, “A Generic Framework for Migrating Demands in the
GIPSY’ Demand-Driven Execution Engine”, In Proceedings of the 2005
International Conference on Programming Languages and Compilers (PLC
2005), Las Vegas, USA, pp. 29-35, June 2005.

H. Watherspoon, T. Moscovitz, J. Kubiatowicz, “Introspective Failure
Analysis: Avoiding Correlated Failures in Peer-to-Peer Systems”, In
Proceeding of the 21*. Symposium on Reliable Distributed System (SRDS
2002), pp. 362-, 2002.

R. Want, T. Pering, D. Tennenhouse, “Comparing autonomic and proactive
computing”, IBM Systems Journal, Volume 42, No.1, pp. 129-135, 2003.

J. White, D. Schmidt, A. Gokhale, “Simplifying the Development of

Autonomic Enterprise Java Bean Applications via Model Driven

89

[Zha00]

[Zhe02]

[Zhu03]

Development”, Department of Electrical Engineering and Computer
Science, Vanderbilt University, Nashville, 2005.

L. Zhang, “Impiementing Real-Time Reactive Systems from
Object-Oriented Design Specifications”, Master Thesis, Department of
Computer Science, Concordia University, 2000.

M. Zheng, “Automated Generation of Test Suits from Formal Specification
of Real-Time Reactive Systems”, Ph.D. Thesis, Department of Computer
Science, Concordia University, 2002.

M. Zhuo, “Real-Time Reactive System Measurement Tool TROM-QM:
Design and Implementation”, Master Major Report, Department of

Computer Science, Concordia University, 2003.

90

