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ABSTRACT

Hierarchical Modular Fault Recovery in

Discrete-Event Systems

Abdolmajid Moradi

This thesis studies the fault recovery problem in discrete-event systems using a
two-level modular hierarchical approach. We extend the switching modular solutions
for failure recovery problems for flat DESs in the framework of Ramadge and Wonham
(RW) for supervisory control, using a two-level hierarchical model for DESs. Although
in practice, modular design is found to be effective for a variety of systems, in the case of
large-scale systems the state sizes may become too large, and so may the computational
complexity of these systems for synthesis purposes. Therefore, a hierarchical approach

may largely reduce the complexity of practical systems.

We assume that the plant in our problem can be considered as a standard finite-state
automaton, describing both normal and faulty behaviors of the system. Specifications
of the system are divided into two main categories. The first category are those that
address local (subsystem-level) issues, and for which we design a supervisor at low-level
using a switching modular approach, while the second group of specifications address
global (system-level) issues. For this group we design a supervisor following a modular

hierarchical approach. In this thesis, we assume full events observation. After designing
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the low-level supervisors to enforce the low-level (subsystem) specifications for normal
and recovery modes, the plant under supervision is computed at the low-level. Following
this, an abstraction of the plant is computed and accordingly, the high-level supervisors

are designed to control the plant in the normal and recovery modes at the high-level.

To illustrate our design approach and also as a motivation for this work, we consider
the automatic control of an electrical power network in its normal operation and in
response to the faults occurring in the network. The different components of electrical
systems are modelled using DESs and the required supervisors will be designed to control

the network in both normal and faulty conditions.
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Chapter 1

Introduction

1.1 Preface

Discrete—eveﬁt systems (DESs) are a useful modelling tool for a variety of systems such
as manufacturing systems, electrical power networks, chemical processes and traffic sys-
tems. The main property of any DES is that at any time instaﬁt, it is recognized by a
symbolic state, which can change due to the occurrence of an event. Thus, the behavior
of a DES can be described by the sequences of events occurred in the system, and the
states visited. The supervisory control theory introduced by [19] is a general framework

for the synthesis of supervisors (controllers) for DESs.

Many industrial systems can be modelled as discrete-event systems, and systematic
ways are available for designing supervisors (controllers) using DES techniques. In this
thesis, we investigate the fault recovery problem using discrete-event models by intro-
ducing a two-level modular hierarchical solution to this problem. As a practical example,

we will apply our proposed method to the problem of fault recovery in electrical power



networks.

1.2 Fault Recovery Problem in Discrete-Event Sys-
tems

Failure recovery problem in large-scale industrial systems has been the subject of re-
search for decades. As the complexity of modern controlled systems grows rapidly, the
need for having more reliable controllers becomes more and more vital. In case of failure
in a system, the controllers (supervisors) should be able to take the necessary actions
for recovery. This results in a complex problem for designing recovery procedures. In
order to handle this problem in large-scale systems and decrease the complexity of the

controllers, a modular hierarchical approach could be used.

Fault recovery problem in discrete event systems has been studied by many re-
searchers (e.g., [2], [20], [5] , [13]). In [20], an integrated approach is proposed for both
control and diagnosis problems. Since in this method, the diagnosis and control prob-
lems are integrated, in the worst case scenario, we have exponential complexity in the

number of plant states.

In [2], DES model of the system is analyzed in order to design a fault tolerant
supervisor. Faults and failures are classified as different types of events. Failures are
described as the breakdown of a component of the system, while a fault is considered as
a malfunction of a component of the system and therefore is tolerable. A fault tolerant
supervisor is designed afterwards which can take the system from an initial state to a

marked state in the presence of fault. This approach fails to address some issues such

2



as changes in the specification after the occurrence of faults if it happens.

In recent works in this area, [5] discusses the fault recovery problem for a team of
robots using discrete-event models. The number of units in a robot team can decrease
resulting from failures or off-line commands, so the supervisor has to reconfigure the
controlled system in order to satisfy the design specifications. This approach proposes
a learning and repair method. When a unit switches to off-line mode, the learning tech-
nique deletes the events belonging to the failed units from the supervisor only, and then

a repair algorithm is used to reconfigure the control system.

Supervisory control of DES plants under partial observation in the presence of sen-
sor failure is considered in [9]. An algorithm is pfovided in order to reconfigure the
supervisor in response to sensor loss (or recovery) such that the plant under supervision
satisfies the design specifications. [9] assumes that any loss of sensor is known before

occurring of the next event in the plant.

In [13] and [14], the authors propose a modular switching technique for fault recov-
ery problem in DES, assuming permanent faults in the system. A diagnosis system is
assumed to be available with a bounded delay which detects and isolates faults. A finite-
state automaton is used to model the diagnosis system and it can be designed according
to any diagnosis technique, as long as the bounds for failure detection are available. In
this framework, the finite-state automaton can be assumed as an abstraction for the
underlying diagnosis system. With this approach, the diagnosis and control problems
can be separated with the advantage of having simpler solutions for both problems. The

system under control has three modes: normal, transient, and recovery. The specifica-



tion for each mode in general is different from the other ones. Using the supervisory
control theory introduced by [19], a modular switching supervisory control mechanism
is proposed to enforce the design specifications in each mode. The nonblocking and
admissibility of supervisors are discussed. The complexity of implementing this method
is high in normal mode for multiple failure scenarios, because all recovery supervisors
should be engaged in the control of the systems in the normal mode, even if there is no

detected fault.

Although the initial concepts of discrete-event models seem to be very easy, they
suffer from certain drawbacks in real-world applications. For example, the computa-
tional complexity is one major issue in systems modelled using DESs. The synthesis of
supervisor is polynomial in terms of number of states in a DES model, but the number
of states in a real model can be larger than 2?°. Modular control and hierarchical control
can be considered as great advancements to overcome the above mentioned problem. In

literature, on the hierarchical control of DESs, four major approaches are identified:
e Bottom-up design [25] [26]
e Top-down design [22]
e State aggregations [4] [6]

e Interface-based design [10]

In [25], the problem is studied by generating a hierarchically consistent abstraction
model of a low-level DES. This approach is generally called bottom-up design and is

further refined in [26] and [24]. A study which discusses the extension of this approach



to a multi-level hierarchical design, is later introduced in [17].

In [22], a top-down design for the hierarchical control of DESs is proposed. A simple
DES model is modelled using a hierarchical State Structure Tree, where the subsystems
can be refined gradually. State aggregation is another method similar to the bottom-up
design. In this method, hierarchy is introduced by aggregating states in the state par-
titions [4], [6]. Finally in [10], a new approach is introduced on the hierarchy control
of DESs. Unlike other approaches, the different levels of hierarchy model are strictly

decoupled using well-defined interfaces.

As will be discussed later in this chapter, in this thesis we use the framework of
[26] to extend the work of [13] to a hierarchical modular switching approach for fault
recovery. The reason for choosing the approach of [26] is that in our opinion, it fits
better with the method of [13]. Furthermore, some of the algorithms of [26] have been

implemented in TTCT [21].

1.3 Fault Recovery Problem in Electrical Power Net-
works

In the area of developing automated support tools for fault diagnosis and recovery in
electrical power networks, several attempts have been made. Most of these efforts differ
significantly in their technological approaches. Some of these approaches are: neural
networks (e.g. [18]), fuzzy logic systems (e.g. [15]), model based diagnosis, reasoning
techniques, and DES based techniques (e.g. Petri nets). Neural networks and fuzzy

logic systems are particularly suitable for diagnosing non-drastic failures (which require

3



detailed continuous signal analysis). DES models, on the other hand, are suitable for
diagnosing drastic failures since for the detection of these failures coarse models may be

enough.

We briefly review some of the DES approaches. Different theories based on discrete-
event systems, have been studied for fault diagnosis in power systems. In [11] a petri
nets based system is introduced and it is shown that by using the proposed method, the
processing time can be reduced, and accuracy can be increased. One major drawback

for these approaches is that the component models are usually not detailed.

[1] proposes a model-based technique for diagnosis of active large scale discrete-
event systems. Their approach was an extension to an earlier work done [12]. The
active system which is designed to react to the failure events, is modelled using com-
municating automata. Unlike other methods, which usually deal with the synchronous
product of events and building off-line model of the entire plant, the method proposed in
[1] considers the asynchronous events and an on-line reconstruction of the active system
using the available observation of the system. The proposed diagnosis technique is then

applied to a power transmission network.

[16] considers the designing of a controller for an electrical power transformer sta-
tion, using SIGNAL language, which has already been developed for precise description
of real time systems. They specify both, the physical model of the plant and the control
objectives, in SIGNAL language. The SIGNAL compiler translates the SIGNAL pro-
gram into a Polynomial Dynamical System (PDS). The control objectives can be verified

and synthesized by these polynomial relations and operations.



The designed controller should be able to respond to the electric faults on the lines.
For example, it has to be able to handle the power interruption, or redirect the supply
source in case of failure occurring in the system. The most important objectives of the
controller are: ensuring the safety of the equipment, and an uninterrupted electrical
power supply. These objectives can be achieved by opening or closing of different circuit
breakers in the transformer station, which automatically can be controlled by the con-
troller. Although the authors describe the physical model using a powerful environment,
they limit their work to a power transformer station and it is not clear how this method

can cope with the huge size of power networks of real-world applications.

In this thesis, we have chosen to use RW control theory of discrete-event systems
(DESs) [19], to design the local and global controllers for electrical power systems in
response to the electrical faults which could occur in these systems. We start by propos-
ing a modular hierarchical approach, partly motivated by the work of [13], for the fault
recovery problem in DESs. It is assumed that the system has two modes of operation:
normal and recovery. The design specifications for the operation of the plant in each
mode are categorized into two main groups. The first category of specifications are those
which address the local (subsystem-level) issues and for those we design a low-level (lo-
cal) supervisor, while the second group are those concerned with global (system-level)
issues for which we design a supervisor by proposing a switching modular hierarchi-
cal solution. After designing the relevant (local) supervisors for the first group of the
specifications for both normal and recovery modes in the low-level plant, we will use
a two-level hierarchical model, introduced by [26], to design the plant model and its

required controllers at the high-level to enforce the second group (global) specifications.



The main feature of this approach, in comparison with those we mentioned earlier,
is that it uses modular and hierarchical techniques to handle the complexity of the prob-
lems and solutions to both problems of failure recovery and automatic control of power
networks. The designed supervisor(s) control the plant as the main controller(s) in its
normal operation and handle the failures of the system. The modular design gives us
the opportunity to divide different tasks of the controller(s). Therefore, the designed
supervisor(s) in nofmal operation mode, can be thought of as supervisor(s) which handle
the task of automatic control of the plant whereas, the recovery controllers are involved
in controlling of the plant, only if a failure occurs in the system. In addition to mod-
ular design, the hierarchical feature also may enable us to overcome the complexity of

controller design for large-scale power systems.

1.4 Thesis Outline

An outline of the rest of thesis is as follows.
Chapter 2 gives a background on RW theory of supervisory control. In this chapter,
we also review some of the concepts in the hierarchical control of DESs introduced by

[26] and [24] with more emphasis.

Chapter 3 covers the problem formulation, modelling and the proposed hierarchical
switching modular approach. Specifications for each of the normal and recovery modes
are divided into two main groups. For each group we design the proper supervisors.
A two-level hierarchical modular switching solution is proposed for the fault recovery

problem in DESs. We discuss the issues of nonblocking properties of the system under



supervision and computational procedures.

To illustrate our approach to the fault recovery problem, in Chapter 4, we investigate
the application of method to the automatic control of a simple power generation and dis-
tribution network in the presence of electrical faults. In this chapter, we consider short
circuit failures. The automated control of a large scale power generation and distribution

network using a hierarchical setup, increases the reliability and efficiency of the network.

We consider an electrical power network, consisting of two generation groups, which
are located in two different plants. The goal is to redirect the supply sources using a
local controller, in order to have no interruption of power supply for the first plant. This
needs to be done in case of failure in one of the generating units of the first plant. The
global controller is engaged in controlling the network, when we have a total failure for
the second plant. Thus, the local controller takes care of the faults that can be dealt
with locally, whereas the high-level supervisor functions in case of having a high priority

failure in the system which, as we mentioned, can trigger a shut-down in one of the plants.

Finally in Chapter 5, we summarize our work and present some directions for future

research.



Chapter 2

Overview of Discrete-Event Systems

The purpose of this chapter is to give an overview of automaton theory and supervi-
sory control of discrete-event systems. In particular we present some basic concepts and
fundamental results in RW supervisory control theory, and briefly review the two-level

hierarchical control of DESs in [26].
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2.1 Languages and Automata

A Discrete-Event System (DES) can be modelled by a 5-tuple automaton:

G = (Q) E? 67 qo, Qm)

where Q is the set of states, & = ¥.U X, the set of events where ¥ and X, are
controllable and uncontrollable events. § : Q x X — @ is the partial transition function,

o € @ initial state, and Q,, C @ the set of marked states [19], [23].

A finite sequence over ¥ is a sequence of the form of o10203...0, where n > 1 and
o, €5,1=1,2,3,...,n. We use the notation §(q,o)! to show that ¢ is defined at state

q for event o.

The transition function § : @ x ¥ — @ is a partial transition function and can be
recursively extended to operate on ©* where % = £T U {€}. € is empty string and X+
is the set of all possible finite strings. ¢ can be extended from @ x ¥ to Q x X* by the

following rules:
5(g,e) =€
8(q, 50) = 6(8(g, 5),0)
where s € 0 € ¥ and ¢ € Q.

The behavior of a Discrete-Event System can be represented by languages. A lan-
guage over ¥ is any subset of £*, with the empty language shown as (. For DES G we

define the closed and marked behavior languages as follows:

e Closed behavior: The set of strings generated by G or the language generated

by G is called the closed behavior of G and can be shown by :

11



L(G) = {s € =* | 5(q0,)'}

e Marked behavior: The set of strings that can take DES G from an initial state go
to some marked state in Q,, or the language recognized by G is called the marked

behavior of G (as the language recognized by G):

Ln(G) = {s € ¥* | 6(q0, 5) € Qm}

It is obvious that @ C L,,(G) C L(G) and € € L(G).

Next, we define the reachable and coreachable state subsets of a DES G denoted
by @, and Q.
Qr={q€Q|3s €% 5(q,s) =g}
ch = {q € Q | ds e E*,5(q, 5) € Qm}
A DES G is reachable if @, = Q. Since unreachable states do not affect L(G)

or L,(G), and an equivalent reachable generator can always be constructed, we

assume that G is reachable.

A DES G is coreachable if Q.. = @. If a DES G both reachable and coreachable

we call the DES trim .

e Nonblocking: A deterministic DES G is said to be nonblocking if the following
holds:

Nonblocking means that the DES can always reach a marked state, in other words

every string in L(G) can be completed to a marked sequence in Lp,(G).

12



2.2 Operations on Languages and Automata

In this section we define some useful operations on languages and DES. First, we intro-

duce the cat operator.

e catenation : The catenation operator can put strings together according to the

following rules :

cat : X" x ¥ — X*
cat(s,e) = cat(e,s) =s, forse¥*

cat(s,t) = st and s,t € &

o Prefix Closure : If s = tu and s,t € ©* we say that ¢ is a prefix of u. The prefix

closure of a language L C ¥* can be shown by L :
L={seX|3teX(ste L)}

We call a language L C &* prefix closed if L = L. From this definition it is clear

that L(G) = L(G); the closed behavior of DES G is closed.
e M-Closure: For two languages, L, M C ¥*, L is M — closed if
L=LNM

e Natural Projection : Assuming that ¥, C X* we define the natural projection

F, : ¥* — X} according to :



and

P,(sc) = P,(s)P,(¢) foro€ X andseX*

Selfloop : Consider DES G = (Q, %, 4, go, @) defined over alphabet ¥. Let 3
be disjoint from ¥ : XN Y = . The G’ = selfloop(G,Y’) is formed from G by

attaching a transition ¢ —— ¢ at each state q of G, for each o € ¥'.

Parallel Product (meet) : Consider two DES G, and G, shown below :

Gy = (Q1,%1,01, 901, Qm1)

Gz = (Q2, 22, (52, do2, sz)

The meet product of G; and G5 (denoted by meet (G4, G,)) is the reachable

automaton:

Gl X G2 = (Qaz)& q07Qm)

where:

E = 21 022
Q=Q1 X Q2
Qo = (QOl,QOQ)

Qm = le X Qm?.

(51(Q1,0’),(52((]2,0’)) if (51(q1,0')! and (52((]2,0')!

not defined otherwise

(g1, @), 0) =

14



In other words, if event o € ¥; N X, is defined and enabled in both G and G it
can occur in meet (G, G>) and it will be disabled if o ¢ ¥; N ¥,. We can show

that:

L(G) = L(G1) N L(G>)

Lm(G) = Lm(G1) N Lin(Ga2)

e Synchronous Product (sync): Let G; and G be two DES defined over alpha-
bets ¥; and X :

G1 = (Q1,%1, 61,901, Qm1)

Gy = (Q2>E27527QO2>Qm2)

The synchronous product of G} and Gs, sync (G1,Gs) (or G1||Gs) is the

reachable sub-automaton of:

Gl ® G2 - (Q)2757 q0>Qm)

where:

E - 21 U Ez
Q=Q1 X Qs
Qo = ((10175102)

Qm = le X QmZ

15



and
4

(61(q1,0),02(ge,0)) if 0 € 1 Ny and 61(q1,0)!, 2(ga, o)!
: (61(q1,0), q2) if o € 1 — £y and 61 (g1, 0)!
6((q1,q2),0) = \
(Q1,52(QZ70)) ifoe 22 - 21 and 52((]2,0')!
| not defined otherwise

Both meet and Sync products are associative. Therefore, for example,
sync(Gl, Gz, Gg, AN ,Gn)

is well-defined. The meet and Sync operators are usually used to build models for

DES from models of their DES components.

2.3 Supervisory Control

Ramadge-Wonham [RW] supervisory control theory provides a framework for the con-
trol of discrete-event systems (DES). These systems are modelled as automata which

can generate formal languages.

Given a DES G = (@, %,, g, Qm) as plant, the legal marked behavior is specified
by a language Lim(E) C Ln(G). DES G satisfies the specification of the desired behavior
if Lin(E) C Lim(G), otherwise we have to modify the system using supervisor so that the

closed loop system satisfies the specification. The system under control will be denoted

by: S/G.

In the RW framework, the supervisor monitors the sequences of events generated
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by the plant and by disabling a subset of controllable events at each point may restrict

the system behavior so that the system under supervision satisfies the specification:
Lin(S/G) C Lm(E)

Figure 2.1 shows the closed-loop system. As plant G' generates the string s =
0105 . .. On, the supervisor S tells the plant what (controllable) events are allowed in the
next step, and in this way the plant behavior is restricted by S. As mentioned earlier,

the plant under supervision will be shown by: S/G.

S(S) - plantG S = 01...0p

SUPETVISOT S | o

Figure 2.1: Closed Loop System

The supervisor S can be regarded as a map S : L(G) — 2%, such that for s € L(G),
S(s) is the set of events permitted by the supervisor S to happen generated by the plant
G. For the system under supervision, L(S/G) the language generated by the system

under supervision (S/G) will be defined as follows:
e ¢ c L(S/G)
e s L(S/Q), so € L(G) and o € S(s) = so € L(S/G)
e no other string belongs to L(S/G).

It is obvious that L(S/G) C L(G), and according to above definition we can easily
show that L(S/G) is closed:
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L(S/G) = L(S/Q)
The marked behavior of S/G is defined according to:
Ln(S/G) = Ln(G) N L(S/G).

L.(S/G) consists of those sequences in the marked behavior of plant G that survive

after supervision by .S.

A supervisor S is called a nonblocking supervisor if the following holds:

LS/ = L(S/G).

If a supervisor does not attempt to disable any uncontrollable event, it will be called
an admissible supervisor. It can be shown that S is admissible if and only if L(S/G)

(or L(S)) is controllable.

¢ Controllability: Consider a DES G = (Q,%,4, g0, @m) With event set X parti-
tioned into controllable and uncontrollable events: ¥ = ¥, U X,.. Let K C X*,

language K is said to be controllable with respect to the plant G if:
K¥,.NL(G)C K

Given a DES G = (@, %, 6, ¢, @m) as plant and legal marked behavior E we define

Cin(E) to be the set of all sublanguages of E which are controllable with respect to G:
Cin(E) = {K C E | K is controllable wrt. G}

The supremal controllable sublanguage of E exists and is the union of all controllable

sublanguages of E [19]:
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supCin(E) = U{K | K € Cin(E)}

Assuming E is L, (G)-closed and regular, a trim DES S that marks supCi(E) is
the realization of a (minimally restrictive) supervisor and the system under supervision

S/G is represented by meet(S,G).

Modular Control

In designing controllers using supervisory control theory, a modular approach is
chosen mainly for the following advantages: a modular approach is usually easier for
design and implementation purposes compared to a centralized approach; modules may
easily be modified; and a modular approach can reduce the computational complexity

significantly.

Given a DES G (with m states) as plant and legal marked behavior E (with n
states), the computational complexity of designing an admissible supervisor based on
SupCin(E) will be O(mn). This complexity can be reduced using a modular approach

and it can be justified as follows.

The modular control is referred to the situation where the control action of a super-
visor S is given by some combination of the control actions of two or more SUpervisors.
Given admissible supervisors S; and S, each defined for DES G (with m states), we

define S as the joint product of S; and Sy:
S=meet (S5, 52)

If we consider design specifications as SPEC1 (n; states) and SPEC2 (n, states), for

S, and S,, then the computational complexity for the synthesis of 51 and S, will be
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O(nym) and O(nym), respectively. Therefore we will have computational complexity
of O(max(n,,ny)m) following a modular approach for synthesis of S. This compu-
tational complexity for supervisor synthesis using the monolithic approach would be
O(ningm)[3]. If S; and S, have p; and p; states respectively, implementing S5 and
S, in a modular form requires computer memory for storing p; + p, states (and their

transitions), whereas implementing S would require p;p; states.

2.4 TTCT Program

TTCT is a program which is used for the synthesis of supervisory controls for DES. The
TTCT procedures which are used in this thesis will be explained during the discussions.
For a complete list of procedures, the reader is referred to [21]. Here we give only a brief

review of this program. In this program, generators are represented by a five tuple:
[size, init, mark, voc, trans]

Size is the number of states (state set is 0, ..., size-1), init is the initial state (always
0), mark is the set of marked states, voc is the set of vocal states, and trans is the transi-
tions. Vocal states will be pairs shown by [q,t] meaning that we have output t (positive
integer) at state q. A transition is a triple [j,e k] representing a transition from state
7 (exit) to state “k”(entrance) and having “e” as event label. Depending on whether

the event is controllable or uncontrollable, “e” will be an odd or even nonnegative integer

number respectively.
¢ Computation of Supervisor

Consider a DES G = (Q,%,6,q,Qm) as plant, and the design specification in

the form of a language L(SP) = L,(SP) C ¥* where SP is an automaton F =
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(Y, 2,n,%,Y). According to RW supervisory control theory, the proper supervisor can
be obtained by finding the supremal controllable sublanguage of the marked legal lan-
guage: Ly, (G) N Ly (SP) = L (E).

In TTCT this can be computed using the supcon procedure of this program. Let:

= supcon (G, E), the supcon procedure forms a trim recognizer S such that:

Lin(S) = supCin(Lin(G) N Ly (SP))

and

e Verification of Supervisor

Given a DES G = (Q,%,6,9,@m) as plant and its corresponding supervisor S =
(Y,%,n,10,Y), we like to know if S is a proper supervisor or not. For a supervisor S to

be proper the following conditions should hold:
(1) Admissability

This condition holds if S does not attempt to disable any uncontrollable event. In other

words, we need to check if Ln(S) = L(S) is controllable with respect to L(G) and Zye.

In TTCT this can be verified by using the condat procedure. condat returns
control data DAT for the supervisor S of the controlled system. The condat will display

a list of events that must be disabled at each state of S.
SDAT=condat(G,S)
If all events to be disabled are controllable, L(S) is controllable, and S admissible.
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(i) Nonblocking

For this property to hold we need to show that the supervisor S is a nonblocking super-
visor. In other words we have to check the nonblocking property of the plant under the

supervision (S/G).This can be verified in TTCT using nonconflict procedure:
nonconflict(G,S)=true

If the above equation holds S will be a nonblocking supervisor, and the plant under

supervision (S/G) is nonblocking.
(iii) Trim

For S to be a trim supervisor it needs to be both reachable and coreachable. This can
be checked in TTCT by using two procedures: trim and isomorph. By applying trim
procedure to S, we get a trim generator for S. If trim (5) and S are identical up to
renumbering of states verified by isomorph procedure, then we call S a trim supervisor.

This can be shown by following:

TRIMS=trim(S)
isomorph(TRIMS,S)=identical
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2.5 Hierarchical Control of DESs

In this section, we briefly review the hierarchical control of DESs introduced in [25] and
[26] and later developed in [24]. A two-level hierarchical control structure is studied and

some important results relevant to our later discussions will be discussed.

2.5.1 Two-Level Controlled DES

A two-level model is shown in Figure 2.2. A low-level plant G¥ is controlled by a high-
level supervisor S and a low-level operator S*. The abstraction of plant is called G™,

which is controlled by a high-level supervisor called S™.

T*

Ghi ghi | ------- high-level

el
Imfioni
Compsio Jioh 0

E*

glo =TT Qlo | —-oooo- low-level
ctrl.

Figure 2.2: two-level hierarchical control structure

The events at the high level are reported through an information channel from low-
level plant. In this hierarchical structure the control of S? is virtual, since G is an
abstract model driven from low-level plant via information channel (In fio;). The con-
trol commands of S™ is transmitted to S* through command channel (Comp,), while
Gle is actually controlled by S%. The behavior of GM is controlled by 5™ via control

channel, and the behavior of G" is determined by the behavior of G* through informa-
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tion channel (Infion).

The plant at the low level can be thought of as a standard DES: G* = (Q, %, §, g0, @m),
where ¥ = X, U X,, . The set of events at the high-level is denoted by T', which is a
nonempty set of labels of “significant” events. T can be considered as events which are

entered into the description of the high-level plant model G,

The high-level plant G* is defined using a causal map 6 : L(G*) — T*, with the

following properties:
B(e) = e,

0(s0) = either 0(s)

or 6(s)r, for some T €T

where s € ©* and 7 € T and ¢ denotes the empty string.

The high-level plant can be visualized if we consider a wocalized state set for G%.
Let 79 ¢ T denote “silent” event symbol and Ty = {7} UT. To this end, now we are
ready to define the output function map w : Q — Tp such that w(gy) = 7o and for any

other state ¢ reachable via the string so we will have the following:
w(q) =7 if 8(s0) = 0(s)T, w(q) = 7o if O(sa) = O(s).

In other words w outputs the silent output 79 if 6 outputs nothing new, and outputs
fresh symbol 7 otherwise. Events which are not silent are called “vocal” events. In
simple words we can say that each state of G'° contains a high-level event which is sent
to output when the state is reached. Figure 2.3 shows a simple low-level plant G along

with its high level realization using above method. The silent event 7y is ignored by the
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high-level plant.

Figure 2.3: Low-level plant G* (a), and its derived high level model G™ (b). States of

G' are shown by the output of function w(q).

At this point we can denote the low-level plant with the following unified description:
Glo = (Q) 27 TOa 57 W, o, Qm)

with Q.. = Q.

The closed behavior of high-level system G™ is shown by L(G™) and it will be the

image of the low-level language L(G") under 6 :

L(G¥) = §(L(G¥)) C T*
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2.5.2 High-Level Control Structure

In order to define a supervisor for the high-level system we need to partition the high-
level alphabet T' to controllable and uncontrollable events: T = T, UT,.. However, it
may not be possible to derive this information easily from the low-level alphabet %. For

example consider the high and low-level plants shown in Figure 2.4.

(@ ) ~O=-C

Figure 2.4: (a) Gl with T, = {8,0}, and &, = {@,7}; (b) G*

It is clear from this example that event 75 in high-level alphabet T', can be considered

as both controllable and uncontrollable event.

To overcome the above-mentioned problem the notion of output control consistency
is introduced: (G%, ) is output control consistent if for any 7 € T, it will be unambigu-

ous if 7 is controllable or uncontrollable.

If a hierarchical system (G, §) is not output control consistent, it can be converted
to an output control consistent DES over a possibly new alphabet from T [26], [23]. For
this any ambiguous event T will be replace with new controllable 7. and uncontrollable 7,
events, and 6§ will be adjusted accordingly and as a result, the system becomes output
control consistent. In TTCT the vocalize procedure is used to vocalize a low-level

system and procedure outconsis will be used to compute an output control consistent
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system from a low-level system®.  The equivalent high-level system can be computed
using higen procedure. The following result, describes the effect of the hierarchical

control scheme.

Theorem 2.5.1 [26] Consider the high-level system Gh; and a prefiz closed specifica-
tion language shown by EM C L(GM), assumed to be controllable with respect to L(GM).
Let E = =Y(E™) and assume that the low-level system G is output control consis-
tent. Then there exists a high-level supervisor S hi awhere implementation in the low-level

system by a supervisor S% will result in having: L(S*/G") = supCipn(EP). O

It can be shown that 8(supCin(E®)) C E™. In other words, only a subset of high
level specifications can be realized in the low-level plant due to the low-level control.
If the (virtual) specifications in the high-level can be achieved in the low-level plant,
the system is called hierarchically consistent, i.e., 0(supCin(E®)) = EM. Strict output
control consistency is a sufficient condition for having hierarchical consistency. The
low-level system is strictly output control consistent if it is output control consistent
and it allows us to enable or disable any controllable high-level event without affecting
other high-level events. In TTCT the procedures hiconsis and higen directly compute

low-level and high-level systems which are hierarchically consistent.

17f G has n states and m transitions, the complexity of the combined algorithms (for output-control

consistency and for strict output-control consistency) is O(n*m + n?m2)[23].
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Chapter 3

A Modular Hierarchichal Approach
to the Fault Recovery Problem in
DESs

In this chapter, we study the synthesis of fault recovery procedures using discrete-event
models. The problem will be formalized and a hierarchical modular solution will be pre-
sented. Specifications for each mode (normal, recovery), will be divided into two main
groups depending on the scope of the specifications. In each mode, we consider the first
group of the specifications as those for which we can find a solution at low-level, while
the second group are those for which we can design a supervisor following a hierarchical
approach. For each category of specifications, the appropriate supervisors will be de-

signed to satisfy the design requirements.

For designing the low-level supervisors, a modular approach, similar to the one in-

troduced by [13] for the fault recovery problem, will be followed. Here we assume full

28



event observation. Therefore, failure events are considered observable and no diagnosis
system is included in modelling of the plant. Following this, a two-level modular hier-
archical solution for the fault recovery problem in DESs will be proposed in order to
design the high-level supervisors of the plant. Throughout this chapter examples will be

accompanied with the discussions to illustrate the ideas.

3.1 Introduction

As modern control systems become more and more complex, the need for having more
reliable supervisors (controllers) has been increased significantly, especially in the event
of failures happening in the systems. The supervisors are required to take the neces-
sary actions for the system’s safe operation in the presence of failures. Therefore, the
controllers may need to take some recovery actions and this clearly shows why failure

recovery is considered as an important issue for any control system.

For example, consider an electrical generator which supplies a power network through
a circuit breaker. If for any reason a fault occurs for the generator, the breaker should
be opened by its controlling relay. In case of having this failure in the system, the super-
visor may decide to take the recovery action of redirecting the supply from a different
generating unit by closing another circuit breaker. As a result of this recovery action,

there will not be any shortage of electrical power in the related network.

We assume the system which needs to be controlled can be modelled as a finite-state
automaton (G) and the failure recovery problem can be considered as a control problem

in the RW supervisory control framework. The supervisors’ design will be discussed for
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plant’s normal operation and also for recovery from the failures in both low-level and

high-level models.

The plant model includes failure events. We assume any failure in the system can be
modelled as an uncontrollable, but observable event. If a fault occurs in the plant, with-
out any delay or considerably small delay (ignorable), the system will enter a faulty-state
and recovery actions are to be initiated (recovery mode). The state transition graph of

the plant is shown in Figure 3.1.

Figure 3.1: State transition graph of the plant to be controlled.

The specifications of each mode (normal, recovery), as mentioned earlier, can be
classified into two main categories according to their scopes. The first category are con-
sidered as those for which we can design a low-level supervisor. Intuitively, these spec-
ifications concern local issues. On the contrary, the second category of specifications
are considered as those depending on their scope, for which we can find a simplified
high-level solution; thus a hierarchical solution. Intuitively, these specifications concern
system-wide (global) issues. In extreme cases one mode may only have specifications

from one category only.

By following the above mentioned approach, the second group of the specifications
can be dealt with in a higher level using an abstracted model of the plant, in order to

simplify the synthesis of the required supervisors. The main reason for this simplic-
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ity of controllers’ design at high-level is the filtering of the irrelevant information from
low-level plant, which are not needed and used in the high-level system model. This
results in a much simpler problem at high-level. In other words, an abstraction of the

plant at high-level can largely decrease the behavior complexity for designing supervisors.

As mentioned before, the plant under supervision can operate in two modes: normal
and recovery. For each mode of operation we can categorize the spéciﬁcations into two
groups such that each group can be dealt with using a low or high-level supervisor. For'
the first category of the design specifications, we propose a modular switching super-
visory scheme (5%°) to enforce the desired specifications in both normal and recovery
modes at low-level. In this case, if a fault occurs, the system will enter the recovery
mode and a low-level recovery supervisor will be in charge of taking ﬁecessary actions.
After computing the plant under supervision at low-level (G'), the high-level model
of the supervised plant (G") and also the high-level versions of the second category of
the specifications will be derived. Accordingly, normal and recovery supervisors will be
designed and a modular switching supervisory control scheme (S* along with low-level
operator S%), will be developed for G (and G%). Therefore, the conjunction of S'°
and SM (along with S$%), from two feedback loops, with S in the inner loop and S™

in the outer loop. The plant and supervisors are shown in Figure 3.2.

Therefore, a two-level modular switching supervisory control scheme is proposed for
the total system under supervision. In general modular control is preferred to monolithic

supervisory control because:

1. Supervisor’s design in a modular fashion is usually easier, compared to the cen-

tralized case.
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Figure 3.2: (a) Inner feedback loop; (b) Outer feedback loop.

2. Modular design are usually easier to maintain and modify.

3. For the problem of fault recovery, where the number of recovery modes could be

high, a modular approach can reduce the computing requirements for implemen-

tation significantly.

The only problem with modular approach , is the problem of interference among dif-
ferent supervisors, which needs to be taken into the account. Specifically the overall

system under supervision may fail to be nonblocking. This issue will be addressed later

in the chapter.

Moreover, a two-level hierarchical approach is chosen to reduce the complexity of
the controller design. This especially is noticeable in systems with a large number of
subsystems and failures, where even the conventional modular approach, may also fail
to deal adequately with the complexity and computational problems of control system
design. In other words, in addition to taking advantage of modular approach for flat

systems, the problem will be further broken down by proposing a solution which uses
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vertical modularity. It should be noted that nothing will stop us from extending this
two-level hierarchy to a multi-layer modular hierarchy model [17]. Therefore, giving
more flexibility to the designers to deal with the complexity of the control problems in

general.

3.2 Problem Formulation

We start this section by modelling the plant. Models of the plant for both normal and
recovery modes will be discussed and the system to be controlled will be introduced and

formalized. Following this, the control objectives will be specified.

3.2.1 Plant Model

We assume that the original plant can be modelled as a DES G = (Q,Zg, 6, do, @m),
where Q is the set of states, ¢ = Xg UX¢ .. the set of controllable and uncontrollable
events (U is disjoint union), § : @ X ¢ — Q is the partial transition function, go € @
initial state, and Q,, C Q is the subset of marked states. Both, normal and faulty
situations can be described by this model. The event set of the plant (Xg) can be
partitioned: g = T,US;. Xj is the set of failure events: Xy = {f1,...,fm}. The
failure events are uncontrollable. X, will contain the remaining events of the plant.
Thus there are m failure (recovery) modes: Ry,..., Rm, with m > 1. It is also assumed
that all failures in the system are permanent. In other words, in case of occurrence of
any failure in the plant, it will remain in the faulty condition. Furthermore, the single-
failure scenario is assumed, meaning that only one failure mode may occur during the
plant’s operation. Therefore, the plant can operate in m + 1 modes: N (normal), and

Ri,..., R as recovery (failure) modes. Accordingly, we can partition the state set of
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the plant: Q = QNUQr. Where, Qr further can be partitioned into the following:

Qr = Qr,U...UQg,,. * These blocks are shown in Figure 3.3.

fli
fm
)

Figure 3.3: State partition diagram of the plant to be controlled.

Finally in this part, we define different sub-generators of the system according to
the above partitions. Let Gy be the sub-generator of G correspond to Q%. Gy will
describe the plant’s behavior in its normal mode. Gng will correspond to QFUQS. Also
we define sub-generators G yg, to correspond to the states Q%UQ% (i=1,...,m). Note
that, Gy and Gy, are considered as low-level models of the plant, for which a low-level

supervisor can be designed to enforce the relevant low-level specifications.

3.2.2 Fault Recovery Problem

It is assumed that design specifications are available in the form of legal languages

En C L(Gy) and Eg, € Ly(Gneg,) for the modes N, Ry,..., Ry The specifications

1Tn this thesis full event observation is assumed; therefore upon occurrence of a failure, the failure
~ event is immediately observed and the system can enter recovery mode. If events were unobservable
failure and we considered a bounded detection delay for failure events, we would have to include a
transient mode for our model as well. In that case, the system would enter the recovery mode with a

bounded delay.
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for each mode can further be categorized into two groups according to: Ey = EWUEYR
and Ep, = EUEY for (i = 1,...,m). The first group are those for which we can
design a supervisor at the low-level, whereas the second group are those specifications
for which a hierarchical solution can significantly simplify the design procedures to ob-
tain a high-level supervisor. Low-level specifications Efe and E’l" typically are related
to subsystems (local) issues and the second group of specifications (EY and E) for
which we design high-level supervisors, describe system-level (global) behaviors. (In
extreme cases, one mode may have specifications from one group of specification only.)
The reason for this partitioning will be discussed in details in the next section. The
normal specification (Ey) does not include any failure events, (Exy € X}3). For recovery

specifications we have: Egr, C (ZpU{fi})*.

Given the DES G and the set of specifications in the form of legal languages En
and Eg,, for i = 1,...,m, we like to design an admissible supervisor .S such that it can
enforce the required design specifications for normal and recovery modes and the system
under supervision (closed-loop system) is nonblocking in both modes. Specifically, the

following conditions should hold:

(1&) Lm(S/GN) C EN

(1b) S/GNRI) C ER‘L (Z: 1,...,m)

(28) L (S/Gw) = L(S/Gn)

(2b) L(S/Gnr,) = L(S/GnR) - (i=1,...,m)

Note that during recovery procedure, the supervisor knows which fault has occurred

and for each failure mode a different recovery strategy may be adopted. In the follow-
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ing section we will propose a hierarchical modular switching solution to solve the fault
recovery problem. First, we design the required supervisors at low-level to enforce the
first group of the specifications (Eff, E¥) by using a modular switching scheme. A
two-level modular hierarchical solution will be presented to enforce the second group of

the specifications (E%, E¥ ) afterwards.

3.3 Supervisor and Recovery Procedure Design

The design procedures and proposed solution for the fault recovery problem will be
described in this section. First, we consider a plant with only one permanent failure
event. The multiple failure case will be discussed later in the section. A computational
procedure for the general case of fault recovery problem using proposed solution will

also be presented. Finally, we will finish this chapter by an illustrative example.

3.3.1 Plant with one Permanent Failure Event

Figure 3.4 shows a plant with one permanent failure mode. f; is considered as the only

failure event of the system (m = 1).

fi
e
-
GN
-
GNR,

Figure 3.4: Plant G with one failure event f; .

Note that for simplicity we have dropped the superscript G in state sets. Let

Ex = E°UEY denote the specification for normal mode and Eg, = EUEE, the de-
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sign specifications for the recovery mode R;. We propose a two-step solution for the
problem of supervisor design. First we design a supervisor (denoted by Si¥s,) to enforce
E}? and Ef°. Next, we construct the closed-loop plant Gi, = Si6r,/G. Following this,
we use a hierarchical approach to design a high-level controller S™ to enforce the second
group of the specifications E% and E% . For the low-level plant, we design the following

supervisors to enforce the first group of the specifications Ej? and E’l"

(1a) S¥: a nonblocking supervisor designed for G to enforce Elte;

1b) S{: a nonblocking superv1sor designed for Gg, to enforce Ef.
1

In the proposed solution, initially in the normal mode, both S and S%° are in the
feedback loop. The reason for involving S”l" in controlling of the plant from beginning
is that (in case of failure) to be able to meet recovery specifications, since some control
actions may be required from the normal mode. Once failure f, occurs, the normal
supervisor S%° is taken out of the loop and the recovery supervisor S’l" takes control

of the plant G (Figure 3.5). A simple method to capture the switching of S is as follows.

®®

N R
1
SSVD Silo
Sgo Ry
1

Figure 3.5: Low-level supervisors S% and S% used in controlling of the plant G.

zlo . : :
We construct a supervisor $'y with the following method: we will add a marked
dump state z4 to S4; from every state ¢ in S%°, we add a transition (g, f1,%4) to the

dump state 4. We also attach a transition (z4, 0, z4) for all ¢ € ¥;,. The control action
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of S”l:, will be identical to S% during the normal mode and once f; occurs, 5,2 enters
state z4) and will be effectively disabled and therefore it will be out of the control loop.

Figure 3.6 shows the modified supervisor 5’?3.

Figure 3.6: Modified supervisor 5”?3.

~ 1 .. . &yl
Let S, =meet(S'y, Si). Si%, models the joint operation of S’ ~ and S% at
low-level. The system under supervision of the low-level supervisors will be: Glo=S\%, /

Gnr,=meet( S\ ,Gnr,). This completes the first step of the design.

Next we design a hierarchical control system to enforce the specification Ef C %%
and E% C (SpU{fi})*, for (i = 1,...,m), with G** as the low-level plant. The first step

is to vocalize G and eventually, build the high-level model G™.

The vocalization procedure may vary depending on the problem and specified de-
sign requirements. We consider all important events in the low-level which need to
be signalled to the high-level plant model as “significant” events. Some general rules
which can be considered in selecting these events in the low-level, used in our proposed

hierarchical solution, are as follows:
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1. We consider all failure events of the plant (at low-level) as “significant” events,
which have to be signalled to the high-level model. This means that for each
failure event at low-level, we have at least a corresponding output which needs to

be considered in our hierarchical model.

9. The rest of the “significant” events of the plant, which need to be signalled to the
high-level model, are chosen according to the second group of the specifications

expected to be satisfied.

According to the above-mentioned vocalization rules, for the case of the plant with
only one failure event (f)), all states of the low-level plant which are the destination of

a fi transition, are vocalized by a high-level event, say 7;.

In general, if we have Xp = {f1,..., fm} as the set of failure events of the sys-
tem, then we define the following high-level alphabet set: T = {71,...,Tm, -+, T} (
n > m ), with T = TpUTr where Tp = {Tms1,...,7a} and Tp = {71,..., 7} (high-level
vocalized failure events). With the above sets of alphabet, we have: E¥ C Tf and
El C (TpU{n:})* (i = 1,...,m). Each failure scenario has a different recovery proce-
dure and therefore, we may have a different recovery specification in each mode. Note
that the target states of f; transitions may have to be split in cases where the state is

the destination of non-f; transitions. This process is shown in Figure 3.7.
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Figure 3.7: Vocalization of a target state with f; and non-f; transitions.
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Going back to our discussion of the case with single failure, suppose G has been
vocalized. This will be our starting point for the hierarchical control design. Accord-
ingly, the output-control-consistent high-level model G" and sub-generators, G and
Ghiy , are constructed by applying the proper algorithm ([23] and [25]) to get a high-
level consistent model. These high-level sub-generators (Gh and Ghip ) are shown in

Figure 3.8.

hi) 71
(a)

—-—
hi
GN

Giir,
Figure 3.8: High-level plant G™ with one failure event 7 (f1).

Given EX and EY¥, the high-level specifications Eff = 6(EY) and Ef, = 9(E%)
can be computed using high-level alphabet T and causal map 6. Finally the following

supervisors will be designed for the high-level plant model:

(2a)S™: a nonblocking supervisor designed for G4 to enforce EYf;

(2b)S% : a nonblocking supervisor designed for Gjp, to enforce E¥.

Figure 3.9 shows the control sequence of the plant from a high-level point of view.
Initially, the conjunction of S¥ and S% controls the plant. If a failure event f; (corre-
sponding to the high-level event 1) occurs, S¥ will be disabled and S, will be engaged
in controlling of the plant (in addition to S}°). Note that 5K and S are high-level su-
pervisors which are designed to satisfy the second group of the specifications for normal

and recovery modes (N and R;).
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Figure 3.9: Supervisors S% and S% used in controlling of plant G™.

The control mechanism for the high level will be the same as what we had for
the low-level. Similar to the low-level controllers, with some modifications to S¥, we
can construct a single automaton to represent the modular switching control at the
high-level. First, we construct S’J}{} by using a process similar to that shown in Figure
3.6. S¥ will behave similar to S during normal mode. We define the joint supervisor

Ship =meet (SW, SK ).

3.3.2 Plant with Multiple Failure Events

For the general case (m > 1), we will have m failure modes for the system, as shown in

Figure 3.3. In this case, the required controller design procedure will be as follows:

Low-level: A nonblocking supervisor S% will be designed similar to the case of

m = 1 to enforce E%¥. We also design m different recovery supervisors S}_%‘i, L SE

for the low-level recovery modes to enforce the recovery specifications E}é‘l’, N E”‘:n, re-

spectively, and to satisfy the nonblocking. Specifically, we can say that SE’ (1 <@ < m)

is a supervisor designed for Gypg, to enforce E}é‘i’, while satisfying the nonblocking re-

quirement of S% /Gyr,. In the normal mode, Si%, =meet(Sy, S%°), will control the
flo__ flo

plant, where Si=meet(S%,...,S% ). If a failure event f; occurs, plant will enter

the recovery mode R; and only Sﬁ‘i’ will remain in the feedback loop. Similar to the
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case of one failure, we can modify S% and SE (i = 1,...,m) to obtain St and S’}%"
such that the single generator S¥p=meet( 3%, S%°) with Sfe=meet(S%,...,5%),
represent the low-level supervisor. The procedures to obtain S}fﬁ and S’}é‘j are shown in
Figures 3.10 and 3.11. Plant under supervision will be G°=meet (S5, G) at low-level.
By computing the closed loop system (G%) at low-level, we will be ready to apply our

hierarchical approach to control the plant.

Figure 3.11: S’ﬁg

High-level: We start modelling of our high-level system with G as our starting
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point for the hierarchy control. We define the vocal states, using our proposed method
for vocalization procedure and by selecting “significant” events of the plant. A consistent
high-level model of the system will be derived by applying the proper algorithm pro-
posed in [26] and as explained in Chapter 2. Similar to the case with one failure mode,
given E' the high-level version of this specification Ef = §(E%) will be computed using
a proper causal map. It should be noted that initially the design specifications may be
given in their high-level forms (E%, Ef), in terms of sequences in T*. Accordingly, we

design S% to enforce E¥.

The second category of the design specifications, E%,..., E¥ | for all recovery
modes are those for which the high-level recovery supervisors?, S ... Sk | are de-
signed to enforce the corresponding high-level recovery specifications Eff ,..., E¥ , and
also to satisfy the nonblocking requirements of each case. Ep,...,Ef will be the
high-level versions of the low-level specifications: E¥ ,..., Ef , which can be computed
using a proper causal map § (E¥ = 0(EY)). Thus S is a supervisor designed for G},

to enforce Ef, while ensuring the nonblocking property of S /GRig, (1 <1< m).

To have a single generator to represent the high-level switching controller, we apply
a procedure similar to that depicted in Figures 3.10 and 3.11 to construct S and S%
(1<i<m). Let Si=meet(S,...,S% ), and Skip=meet( S¥, S¥). Thus iy rep-
resent the modular switching high-level controller.The combined operation of low-level

and high-level supervisors can be described as follows.

In the normal mode, the joint operation of S7% and S¥ (and its low-level operator

2m, number of high-level recovery supervisors
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Ster ) will control the plant. If a failure event f; corresponding to the high-level event
7; occurs, the plant will enter the recovery mode R; and a high-level supervisor S 1’}& (and
its low-level operator S ), along with S%’, will be the only supervisors which control

the plant during the recovery procedures.

3.3.3 Computational Procedure Using TTCT

We conclude this section by discussing a computational procedure for implementation
in TTCT which summarizes our proposed solution. The following algorithm lists all
steps required to be taken, in order to apply our design methodology for the problem
of the fault recovery using DES models. It should be mentioned that each problem has
its unique features and following computational method may require to be considered
by some adjustments for different problems and also specific design requirements. The

idea is to list all general procedures which have been motivated by our proposed solution.

It is assumed that the plant has m permanent failure modes. We also assume
that the design specifications are available in the form of legal languages and can be
partitioned into two groups for normal and all recovery modes. The algorithm is stated

in the following:

1. We obtain models of the different components of the plant. We refer to these
components as Gy, ...,Gn. They will represent the basic description of system’s

components in both normal and faulty conditions.

2. The complete plant model (to be controlled) can be constructed using the syn-

chronous product of plant and a single-failure scenario (SFS) generator. The SF'S
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for the general case is shown in Figure 3.12. SFS enforces the single failure as-
sumption.
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Figure 3.12: Single-failure scenario (SFS).

Using the sync procedure, we will obtain the general description of the plant

G=sync(Gy,...,G,, SFS) and also sub-generators Gn,GNR,,- -+ GNRp-

. Using the supcon procedure, we compute low-level supervisors Sy and S}%‘i o .,S}%‘jﬂ
to enforce the design specifications E and E}é‘i, RN ﬁn respectively, for (G
lo lo
7GNR1 IR GNRm)'

. Using the edit procedure, modified supervisor generators 5'}\‘,’ and S}gi are con-

structed (as shown in Fig. 3.10 and 3.11 in Sec. 3.3.2).

. The closed loop system will be computed at low-level: GLO=S¥,/G=meet(G,

Sito). Here Sip=meet (S, S%), and S=meet(SY,..., 5% ).

. After defining vocal states using vocalize procedure, closed loop system will be
vocalized according to the proposed vocalization procedure and by selecting “sig-

nificant” events of the system: VGLO=vocalize(GLO).

. By applying the hiconsis and higen procedures, a high level consistent model of

the plant is constructed: GHI=higen(hiconsis(VGLO)). Note that, if the plant
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10.

11.

is already a strictly output-control-consistent plant then, we can directly use higen

command of TTCT: GHI=higen(VGLO).

. The high-level versions of the design specifications, E¥ and E% ..., E , will be
derived by using a causal output map §. E} and EF,... E% are considered as

high-level specifications for the normal and recovery modes. In some problems,
the high-level specifications are available from the start and the mapping (6) may

not be required.

. Using the supcon procedure, we compute S% and S,’?l, . ,Sﬁiﬂ, to enforce the
desired specifications Eff and B ..., E¥ for G, G¥ ... ,G% | respectively.
The modified recovery supervisors Sy and SE (k = 1,...,m) are constructed,

using the edit procedure.

The closed loop high-level system will be computed: CGHI=S¥,/GHI=meet(GHI,

Skip). Here, Stiz=meet(S}, Sk}, and Sk=meet(SE ..., S ).
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3.4 Nonblocking Property

In this section, we address the issue of nonblocking property of the plant under the

supervision of the designed controllers.

The system under supervision should satisfy the design specifications in both levels.
In addition, we need the plant under supervision to satisfy the nonblocking property as
well. In other words, the system should be nonblocking in normal mode and in case of
any failure, remain nonblocking during the recovery procedures. By assumption, S flo and
5% are considered nonblocking for G% and G, respectively. It is also assumed that 5’%‘2’

is nonblocking for Gyg, (i = 1,...,m), and S is nonblocking for Ghig, (i=1,...,m).

In the normal mode at the low-level, the plant is controlled by S¥%,=meet(S%,
k), where Sie=meet (34, ..., Sk ). If S for (i =1,...,m) and S are admissible
and nonblocking supervisors for Gy and Gyg, and Ly(S ’l"/ Gy) and L, (S%/Gy) are
nonconflicting languages, then meet(S%, S%)/Gx will be nonblocking [23]. This will
guarantee that plant under supervision of the low-level supervisor Silo. in normal mode

(G'%) will be nonblocking.

To investigate the nonblocking property in the recovery mode, first we consider
the low-level plant and the case of one failure event in the system (m = 1). Let
St =meet(Sie, S¥). If we consider Si%, as the supervisor which controls the plant
from normal to recovery mode at the low-level in the inner feedback loop, then the non-
blocking condition for the recovery mode will be equal to have: S¥% /Gnr, a nonblocking

system. This condition can be formulated as: Ly, (Sy%s,/Gnr,) = L(S¥r,/GNr,)-
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Proposition 3.4.1 Assume 5’}%‘1 is a nonblocking supervisor for Gng,. If the system
under supervision of meet(S%, ’l") or S¥, 1s nonblocking in normal mode, then the

system under supervision of ij,"Rl will be nonblocking in recovery mode, i.e., Ly, (S}(,“R1 /

GNr, )= L(S¥%, /GNry)-

Proof. The sequences in L(S¥%,/ Gwr,) can be divided into two groups: (i) the
sequences that keep the plant in the normal mode, and (ii) the sequences that take the

plant to the recovery mode and therefore contain at least one failure event.

(1) Normal mode: By assumption the system under supervision in normal low-level
mode is nonblocking, in other words S¥% ,/Gn is nonblocking. Therefore, from any nor-
mal state in Si¢p ./GNr,, there will be a sequence which could take the plant to some

marked state in the normal mode.

(ii) Recovery mode: Note that the following condition holds: L(S/% /Gyr,) C
L(S IIO/GNRI) Now, assume that “s” is a string which includes at least one fail-
ure event and therefore, it will take the plant to the recovery mode. In other words
s € L(S¥%,/GNr,). Since L(S¥% /Gyr,) C L( ’l"/GNRl) we can conclude that
s € L(S’;@g /Gng,). By assumption, 5% . /Gnr, is nonblocking and therefore, there exist
s' such that the sequence ss’ leads to some marked state. But since in recovery mode R,
the supervisory action of S}%_" and Si%, are the same, s is also defined in S¥% /Gnr,.
This means that S¥% /Gnr, must be nonblocking in the recovery mode as well. From
(i) and (ii) we can conclude that Sy%, is a nonblocking supervisor for Gyg,. In other

WOrds, L (S¥, /Gnry) = L(S¥, /Grry). O

For the multiple failure case (m > 1), consider failure mode k. Consider the
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combined low-level supervisor Si%=meet(S%, S, ..., 5% ). By this formulation the

nonblocking condition for recovery mode Ry at low-level will be: L, (S%%/Gnr,) =

L(S¥%/Gnr,)- The following will be an extension of the previous proposition.

Proposition 3.4.2 Assume S%: is a nonblocking supervisor for G%Rk A<k<m) If
the system under supervision of St =meet(S}?, S'}f)j, e ,S}éfn) s nonblocking in normal

mode, then the system under supervision of SWg will be nonblocking in all recovery modes.

The above proposition guarantees that G is nonblocking in both normal and all
recovery modes. Note that the important property is the nonblocking property of the
plant under supervision of the conjunction of the low-level and high-level supervisors.
Nevertheless the nonblocking property of inner loop (i.e., G*) may be desirable since
dealing with blocking in the low-level (subsystem) using the high-level (system-level)

controllers may not be desirable.

Our staring point for vocalization and hierarchical design, is the plant under the
supervision at low-level (G%). Up to this point, we have proved that the supervised plant
will satisfy the nonblocking property at low-level. Assuming that we design admissible
nonblocking supervisors for the high-level plant in the normal and recovery modes, we

investigate the nonblocking issue at the high-level in the following.

In case of having one permanent failure f; , we need to satisfy the following condi-

tions at the high-level:

Suppose E} and EY¥ are the design specifications of the plant G™ for the normal

and recovery modes at high-level and let the required supervisors to enforce this be-

49



haviors will be S% and S¥ for Gi and Ghiy,, respectively. Therefore, if S¥ and SE
to be designed as nonblocking supervisors for their relevant high-level sub-generators
Gh and GRig, , then by following an approach similar to what we discussed for the low-
level plant, they can guarantee our nonblocking requirements at the high-level. Namely,
if nonblocking property holds for normal mode, it will be guaranteed for the recovery

modes.

Extension for multiple failures is similar to the case of low-level and omitted here

for brevity.

Finally the important question is that whether the plant G' under the supervision
of the conjunction of the low-level supervisor S¥% and the implementation of the high-
level supervisor S%, (through its low-level operator Si) is nonblocking. Let KRy =
L(S%,/GM) denote the high-level closed behavior of the plant under supervision. By
assumption, G% is output-control-consistent and therefore by Theorem 2.5.1, the closed
behavior of the plant under supervision of the conjunction of the low-level and high-level

supervisor, S, will be:
Ko = SupCin (071 (K™)) = L(5/G)
Then the nonblocking properties for normal and recovery modes will be:

Ln(S/Gn) = KN Ly(Gn) = K*° N L(Gw) = L(S/Gw)

L_m—(S/GNRz) = Klon Lm(GNRi) = KloﬂL(GNRi) = L(S/GNRl) (1 <3< m)

In the following section we illustrate our hierarchical approach by applying it to an

example,
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3.5 Example

To illustrate our proposed method, we provide an example in which, we have a plant
with two permanent failures. In the following discussions, first we design the required
supervisors for the low-level specifications. After computing the plant under supervision
in the low-level and obtaining the high-level versions of the specifications, we use the
high-level abstraction of the plant to design the normal and recovery supervisors for the

high-level model.

o
@2 2= 6 ) ~D)-2~(®)
ool
@fl@,’)’ 10

() |

Figure 3.13: G = Gnr

Consider a plant with two permanent failures f; and f,. Figure 3.13 shows the
plant to be controlled G = Gyg. We assume Yg = %,U%;, where 3, = {«,5,7,0},
S ={f1,f2}, e = {B,7}, and Tgue = {, O, f1, f2}. The state sets of interest in the
plant are: QF = Qn = {0,1,2,3}, Q%, = Qr, = {9,10,11}, QF, = Qr, = {4,5,6,7,8},
and QF = Q% UQE, . Finally, the marked states of the plant are: @, = {0,1,7,10}.

Specifications for the normal mode is given by Ey = EWPUEY. For the recovery
modes R, and Ry, we will have: Eg, = Ef?UEY and Er, = ER2UEY, as the desired

behaviors of the plant, respectively. Figure 3.14 shows generators for the design specifica-
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tions SP°, SPi°, SPi. The corresponding legal behaviors are Ejf=meet(Gy, SPy°),
Efr=meet(Gyr,, SP{°), and Ef?=meet(Gyr,, SP{). We assume that E¥ = L,,,(G%)
and E¥ = L, (G%g,). Sometimes it is more convenient to express the second group
of the specifications directly at high-level using generators defined over the high-level
alphabet. In this example, the high-level version of E}gz, normally, Eﬁz will be provided

later in the discussion of high-level supervisors.

z={f} @ ¢
(b)SPY (c)SPi2

Figure 3.14: (a) SP{, (b) SP;%‘I’, and (c) SP2.

In order to enforce the design specifications at low-level, S%°, SE°, and S% are

designed for sub-generators of the plant in normal mode (Gy) and in recovery modes
(GNr, and Gyg, ), respectively. We use a modular approach to design the supervi-
sors. First, we consider the plant without any failure, and design S%°. Following that,
considering Gng, and Gyrg,, we design the recovery supervisors S and S%2. Supcon

procedure of TTCT can be used to compute all three supervisors.
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Se, Sk, and S¥ are shown in Figure 3.15. Note that, Si, S%° and S% are all
nonblocking supervisors for Gy, Gyr,, and Gyg,. S¥ disables «y at state 0 of the plant
G and prevents it from entering the forbidden state 1 of the plant G. Moreover, the
recovery supervisor (S’l") disables event ~y at state 10, therefore preventing it from en-
tering the deadlock 11. While S%? Lo will only follow the plant’s operation in both normal
and recovery modes, since the specification SP}’%;’ does not put any restriction on plant

behavior.

@ Q \Q S
5 () v 3 L) @
o *

(a)Sfe (v)se

( ) S/lo

Figure 3.15: (a) S¥¢, (b) S, (c) Si.

As shown in Figure 3.15, it is obvious that S¥% is identical with E}’. The plant

under supervision of S, 5%, and SE (i.e., Sip= meet (5%, S, S% ) is denoted by:
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Gl (G' = S¥%%,/G). G¥ is shown in Figure 3.16. It can be seen that the system under

supervision (S%/@) is nonblocking in normal and recovery modes and supervisors do

not attempt to disable any uncontrollable event.
o
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!

Figure 3.16: System under supervision in the low-level: Gl = (549, /G).

v

At this point, we are ready to develop our hierarchical controllers to enforce the
second group of specifications. The starting point for our hierarchy design will be G'.
In the following we will discuss different procedures used for designing the required su-

pervisors for both normal and recovery modes, step by step.

As first step of the hierarchical design, we define the vocal states of the plant at
low-level G%. This process starts by choosing the “significant” events at the low-level
to be signalled to the high-level. To this end, the states that are the destinations of
failure events f; and f; are given outputs 7; and 7. The rest of the low-level events
which need to be signalled to the high-level model will be ® and [, corresponding to
high-level events 73 and 74. This can be done in TTCT by using vocalize procedure.
The vocalized plant is shown in Figure 3.17. All silent states are assigned the silent

event 7.
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Figure 3.17: Vocalized G%.

A hierarchically consistent plant can be computed directly by using hiconsis pro-
cedure of TTCT, if the plant is not already output control consistent. We can also
compute an output consistent low-level plant and then by applying higen command,
an abstraction of the plant can be realized. The reason for applying this procedure is
the requirement of having a hierarchically consistent structure for the high-level plant
model, as mentioned in the theory of hierarchy control. Therefore, the extra vocal
state(s) may need to be created and the causal map (refer to Chapter 2) may need to be

adjusted, accordingly. As we discussed earlier, this can be done automatically by TTCT.

By inspection it can be seen that all vocal events in the vocalized plant model (Figure
3.17) are unambiguously controllable or uncontrollable. Therefore, G' is output-control-
consistent, and we can compute the high-level plant by applying higen procedure and
applying to the output-control-consistent model of G*. The resulting plant is displayed

in Figure 3.18(b). Figure 3.18(a) shows the normal part of model.

The required specifications for both normal and normal-recovery models at high-

level are given by their corresponding generators: SP¥, SPh

i and SPE as shown in
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(b)Ghi = G%R
Figure 3.18: High level consistent models Gk and G" = Gt

Figure 3.19. The specifications SP% and SPJ (corresponding to legal behaviors EX
and E% ) do not restrict the behavior of plant G*. Therefore we do not require to design

any supervisor for them.

As we discussed earlier, sometimes it is more convenient if the required specifica-
tions for the high-level modei directly shown by a high-level generator over the high-level
alphabet T. A possible high-level specification for recovery mode R, can be SP}%Z as
displayed. SP]% may be interpreted as follows: “if two consecutive event 73 occur af-
ter having a failure 7, (fs), allow event 74 to occur only once”. The legal behavior is

Eﬁi:meet(GNRz, SPEZ)
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(c)SPg,

Figure 3.19: Specifications: (a)SP¥, (b)SPE

1?

and (c)SPE.

The resulting supervisor for high-level model can be computed using supcon pro-

cedure. We will have the following:
Sty =supcon( Gli,, B

The high level supervisor is sown in Figure 3.20. Note that, S,’?'z is a nonblock-
ing supervisors for Gp,. Sﬁi disables high-level event 7, at state 5 in the high-
level plant GM. The system under supervision of S% Sk /GM, can be computed as
SE /Ghi=meet(GM, Sip.), and is displayed in Figure 3.21. It can be seen that, the
system under supervision at high-level (S% /G™) is nonblocking in both normal and

recovery modes.

Now let us compute the low-level implementation of the entire plant under the su-

pervision of the high and low-level supervisors. The result is shown in Figure 3.22.
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Figure 3.20: high level supervisors: Sk .
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Figure 3.21: High level system under supervision: (Sig,/ Ghip).

Comparing the plant under supervision with the original plant G, we can see that for-
bidden transitions 0 —— 1, 10 2511, and 7 ., 6 are now disabled, resulting in the

satisfaction of all design specifications.

For the purpose of comparison, we also compute the low-level equivalent of the de-

signed high-level controller S% . Figure 3.23 shows the low-level equivalent of SE

if we
had considered only the low-level plant G' in designing the supervisor. By comparing
S% and Sk, we notice that number of states of Shi is 5 less than its low-level imple-

mentation which has 8 states. It is not difficult to verify that in G (Figure 3.13) we had
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Figure 3.22: The entire plant under the supervision of the low-level and high-level su-

pervisors.

[{3 3

n” consecutive transitions from state 6 to 7, then the high-level supervisor S would
still have 5 states, whereas the equivalent low-level S}gz (Figure 3.23) would have 8+n
states. This difference in the number of states is the result of the abstraction that takes
place in constructing high-level model G* resulting in reduction in the complexity of
the controller design procedure which could be important in large-scale systems. This

was the main motivation of this work and the proposed solution.

Figure 3.23: 5% .

In this example, for a plant with two permanent failures, we designed low and high-

level supervisors to enforce the required specifications. In addition, we showed that by
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choosing a hierarchical approach, we can have a much simpler plant model to control,
and therefore we have less complexity for design procedures. As this example shows, the

state set in high-level model may be considerably smaller than its low-level counterpart.

3.6 Conclusions

In this chapter, we developed our switching modular hierarchical approach of the fault
recovery problem in DESs. We started with an introduction to the problem. Then, we
formulated the problem by categorizing the specifications of the system into two main
groups for each of the normal and recovery modes. After designing the required supervi-
sors for the first category of the specifications, we computed an abstraction of the plant
under supervision at the low-level. For our high-level models, a modular hierarchical
solution for designing the supervisors for the second class of the specifications have been
proposed. For each level, we considered normal and recovery modes. A modular switch-
ing supervisory control scheme was proposed for designing the required supervisors at

each level to control the plant in fault recovery problems.

We developed our method for the case in which we had only one failure mode in the
system. We proposed our solution for the general case by considering multiple failure
events in the plant. A computational procedure for the general case of the fault recovery
problem in DESs using modular hierarchical method was introduced, and we discussed

the nonblocking issue.

We provided a simple example with two permanent failures to show the different

procedures of the proposed solution. In the following chapter, we will investigate the

60



effectiveness of our proposed solution for a failure recovery problem in electrical power

networks.
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Chapter 4

Fault Recovery in Electrical Power

Networks

In this chapter, we apply our proposed approach for failure recovery problem using hier-
archical DESs to the automatic control of a power generation and distribution network.
We design local and global controllers to respond to electrical failures which could occur
in the system. The controllers (supervisors) may redirect a supply source, in case of loss
of supply from a generating unit, or simply to isolate a faulty part of the network from

the rest, so that the network will be able to operate in a safe condition.

After a brief description of power generation and distribution networks, we model
a typical power plant and its different components using DES models. We compute
the automata representing the individual models and also the entire model of the plant
in normal and faulty conditions. We also design the required supervisors to satisfy the
specifications in both normal and recovery modes. To illustrate our modular hierarchical

solution to the fault recovery problem, we consider a simpler model of the network
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just to simplify our computations and illustrations. Finally, we design local and global
controllers to respond to the failures in the network. We start by giving an introduction

to these systems.

4.1 Introduction

In order to avoid service interruptions resulting from failures in any power generation
and distribution network, we need to separate and isolate the faulty parts and compo-
nents as soon as possible. For this purpose, a number of protection components are
distributed over the network. These protection systems are in charge of disconnecting
a component such as a line, a transformer, or a generation unit from other parts of
the network in case of having them in a dangerous condition (short circuit). They also
have to keep other non-faulty components in operation, in order to avoid a black-out for
the whole system. This can be achieved by controlling different circuit-breakers, each

associated with one of the protection systems [12].

Currently protective relays shut down the power lines or generating groups by trig-
gering a related circuit-breaker if a fault, say a short circuit, occurs and possibly causes
overheat. This relays rely only on local information and may disconnect a line or compo-
nent by mistake. For example, a local sensor failure may result in disconnection of a line
unnecessarily. Therefore, a comprehensive control system which is capable of detecting
sensor failures can significantly increase the reliability of the power systems. A bet-
ter communication between different parts of the whole network and specifically among
protection systems also needed to have a more reliable and stable power distribution

network. Ideally, a master controller capable of detecting important failures of the sys-
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tem could also serve as a global supervisor (controller) for the failure recovery purposes.
In fact, this requires an improved control method especially designed to automatically
isolate the faulty spots from rest of the network, and also to make a balance between
the amount of electricity generation and consumption. Many attempts have been made

in the area of developing automated support tools for electrical power networks [8], [18],

[15], [1], and [16].

The main objectives for having such an automatic control method for the power
networks are very simple: best uninterrupted power supply service and safety of the
equipment. Safety of the equipment and material can be achieved by triggering different
circuit-breakers and isolating the troubled parts of the network, whereas the best unin-
terrupted and a more reliable power supply service can be achieved by minimizing the
number of consumers affected by a power outage and also by reestablishing the power as
soon as possible in case of a failure. The functionality of the proposed control method
is to handle the task of automatic control of the plant in normal mode, and also to be
able to perform appropriate actions so that the system can recover from failures. For
example, it has to be able to redirect the supply sources in plant’s normal operation or
in case of failure in the generation groups. It also needs to be able to reestablish the
power supply following an interruption in the system, or to isolate the faulty parts in

order to avoid a black-out in the entire network [16].

To this end, the requirement for having an automated control tool for normal oper-
ation and also for the failure recovery of electrical power networks, is considered as an
important need for these systems. We start our discussions by giving a brief description

of power distribution networks in the following section.
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4.2 Overview of Electrical Power Systems

In this section, we give a general overview of power generation and distribution networks

as well as different components of these systems.

Genearators

Transformers

Current Transformer

N g —

JI“‘B;: B J » J / J
T !

A Cell : Breaker + Relay

Figure 4.1: A typical model of an electrical power network.

Figure 4.1 shows a simplified diagram of a typical power generation and distribution
network. Any electrical power network consists of several high voltage stations. Gen-
eration groups of these stations are linked to medium voltage parts of the network via
transmission lines. In order to protect the equipment and also for maintenance purposes
circuit-breakers are used. Plants linked to each other through a central busbar and to-
gether they form the whole network. In the following, we will introduce some important

components of electrical power systems.

Electrical power systems are composed of three main components: the generation
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units, the transmission lines, and the distribution system. Generating stations are usu-
ally hydro stations, steam or nuclear powered stations. Transmission lines connect power
generation units and distribution system. They also could make the connections to other
power systems through interconnections to form larger networks. Distribution system
can deliver the power from transmission lines to the customers. Transformers are used

in different parts of the network to provide the desired levels of the voltage.

Generating stations are considered as the main sources of the power supply in elec-
trical systems. Usually after power is generated, the level of the generated voltage is
increased by using a step-up transformer. In order to reduce the loss of electrical energy
in long transmission lines, these step-up transformers are being placed in genérating

units immediately after the generators.

Distribution systems are usually divided into two main parts: primary and sec-
ondary. The primary part includes circuit and devices which carry a voltage higher than
average voltage of the system, whereas the secondary distribution system includes the
range of voltages at which the ultimate customers are able to use the electrical energy.
There are also distribution transformers between these two parts of the network. For
simplicity, we assume a single distribution systems in our plant model. Distribution
systems contain busbars, transformers, circuit-breakers, and different types of relays.
In our work, we study a simplified system and therefore, only discus those components

which are included in our model for the failure recovery problem.
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4.2.1 Power Network

We call a group of generating units together with their transmission lines and distribution
systems, an electrical power network. The local failures are considered as any type
of fault which can occur inside one of the individual plants of a network and they need
to be handled by using a local controller. For example, if a load becomes faulty it needs
to be isolated by its related breaker. The following components can be considered for a

typical power network.

Generator

Generators are considered as the main sources of electrical energy in power networks.
Different types of generators can be found in electrical systems: steam turbine genera-

tors, gas turbine generators, nuclear powered generators, and etc.
Transformer

Transformers are used in many parts of the electrical systems to generate different voltage
levels at different locations depending on the requirements of the network. Three main

groups of power transformers are: step-up, step-down, and isolating transformers.

Cell

In Figure 4.1, the combination of a circuit-breakers and a relay is called a cell. Circuit
breakers are considered as protection devices in power distribution systems. As we
mentioned earlier, in case of failure, they must separate the faulty parts of the network
from the rest of the system. They are usually controlled with relays (specifically, over-
current relays). In our problem, we consider the combination of a relay, and a circuit-

breaker as a single device of the system.
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Load

In electrical power systems load is considered as the customer. The ultimate goal of any
power system is to carry the electrical energy to the customers. Each load is protected

by combination of a breaker and an over current-relay (cell).

4.3 Modelling and Control of Electrical Power Net-
works Using DES Models: Local (Subsystem)
Supervision

Figure 4.2 shows the schematic diagram of a plant which we want to model using DES

models.

T Ty
I Iy
eT. /g Bs C.T.
o > connecion to the main network
: Bs : Bg /
_—)— =
Load Load

Figure 4.2: A simple electrical power network.

In the following section, we discuss the modelling and control of a simple power
network consisting of two generators. The modular switching supervisor designed will

address local (subsystem) specifications of the system. In Section 4.4. we consider a
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power system consisting of two power networks (subsystems). We will apply the modu-
lar switching hierarchical method proposed in this thesis to design supervisor to address

both subsystem-level and system-level design specifications.

In normal operation of the plant we consider only one of the generating groups of
the plant is in service (77 and G;). In this mode, the controller’s task is only to control
the start-up and shut-down sequences which can be triggered by operator’s commands.
In the recovery mode, we assume that, the current flowing in power line containing 73
and Bs; can reach to a value higher than its nominal value, due to the failure in trans-
former (T}). Therefore, for the recovery procedures, we need to isolate this section of the
network by opening Bz. For maintaining the functionality of the network, the recovery

supervisor also needs to close By, which initially is assumed to be in the open position.

We start by creating models for the individual components of the plant and their
interactions. After obtaining individual models, the resulting DES models are presented
for both normal and normal-recovery modes. Generators for the design specifications of
operation of the plant in normal and recovery modes will be discussed, and finally we
will design the required supervisors to control the plant using our modular approach for

the failure recovery problem in DESs.

4.3.1 Individual Models of the Plant in Normal Mode
Transformers

Each transformer of the plant shown in Figure 4.2 can be modelled in its normal mode

using a two state automaton (Figure 4.3(a)). The state of each transformer is related to
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its current. Events 0, i2 (i = 1,2) represent current changes and are uncontrollable.

Circuit-Breakers

Breakers are considered as protection devices and they have to separate their lines in
case of failures in them. They can be modelled by their status (open or close). We use
two controllable events for each breaker to show their open and close commands. In

Figure 4.3(b) DES model of breakers B; (j = 3,4,5,6) are shown in their normal mode.

i2 33
" 1 . . —
0% 1) Ti(i=1,2) 7 1) Bj(j=3,4,56)

0:I; =0 O=open

1:0<; <1 1=close

I,;=nominal current of T;
jl: close Bj
73 : open Bj

(2) (b)

Figure 4.3: DES models of the transformers and breakers in normal mode.

Operator
the operator can issue start-up or shut-down commands for the entire system at any

time. Operator’'s DES model (OP) is shown in Figure 4.4.

2,4
2: start-up
4: shut-down

OF

Figure 4.4: DES model of the operator.
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Interaction

In normal mode, interaction between different components of the plant will be modelled
by using (INTERN) automaton and which is shown in Figure 4.5. INTERN basically
describes how changes in the state of circuit breakers affect the current. For instance,
starting from initial state 0, upon the execution of the sequences 31 and 51 (breakers B
and Bs open), the event 10 (current flow through T; can occur). Note that, in normal

mode only T, Bs, Bs, and Bg will be in operation mode.

12 10

53
33 ST R
(1) ()

\/ o 63
31 12 X > 10 10

e 53 % QQQ
s 33
O ZNE

51

12

63

53

INTERN

Figure 4.5: Interaction in normal operation of the plant.

Following the convention of TTCT, all odd events are controllable and all even
events are uncontrollable. The alphabet set ¥={2,4,10,12,14,31,33,41,43,51,53,61,63}, is
considered for the plant in normal and normal-recovery modes. Event {14} is considered

as the failure event of the system.
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4.3.2 Component Models in Failure Mode

We consider the failure scenario in which the value of the current flowing through the
line containing T goes higher than the nominal value (I,1), due to an internal problem
of the transformer (T}). For example, this could be the result of an internal short-circuit
happened inside the transformer’s coils. The models of some of the plant components
will be affected from the failure. In our problem, these components are 77 and Bj.
Figure 4.6 shows the complete T} and B describing both normal and faulty operations.
In this figure, event 14 is compound event representing short-circuit followed by breaker

Bs tripping.

12
e T 14 .
O—; YD 14=fault (I > In1)+Bs trips

Tis

0: open

‘ 1: closed
_'177@'9 2: tripped

Figure 4.6: 11y and Ba.

We also need to model the new interaction between the components of the plant to
account for both normal and faulty modes. Therefore, a new interaction model is con-
structed. Figure 4.7 shows the complete model of interaction between the components
of the plant (INTERF). Note that, we consider I is the only current which can increase

in the network due to the failure in T}; in other words failure in T5 are not considered.

In the following, we will define the design specifications for the normal and recovery
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INTERF

Figure 4.7: Interaction in the failure mode.

operations of the plant.

4.3.3 Specifications for the Normal Operation

Assume that the plant is in normal mode. In this case the normal operation of the plant
are as follows:

(i) If the operator issues a start-up command (2), Bs must be closed followed by Bs
and Bg; The operator’s shut-down commands before completing start-up cycle (ENy)
are ignored.

(ii) If the operator issues a shut-down command (4), Bs and Bg have to be opened
before Bs is opened; The operator’s start-up commands before completing shut-down
cycle (EN,) are ignored.

(ili) The system under supervision should be nonblocking.

The above-mentioned requirements are captured by EN; and EN, shown in Figure

4.8.
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selfloop{10, 12, 61,63} selfloop{10,12, 51, 53}

Figure 4.8: Specifications for normal mode.

4.3.4 Specifications for the Recovery Mode

For the recovery mode (following the occurrence of failure for T and Bs; entering trip
state), we need to close By to maintain the network in operation. In this mode, we also
must satisfy the requirements for the safe operation of the plant in case of a shut-down

command. Therefore, we have the following design specifications for this mode:

(i) If Bs goes to the tripped state, By needs to be closed by controller; Bs also needs
to be opened before By, upon receiving a shut-down command (ER,).

(ii) If B; goes to the tripped state, By needs to be closed by controller; Bg has to
be opened before By, upon receiving a shut-down command (ERy).

(iif) The system under supervision must be nonblocking.

Figure 4.9 shows the generators of the required specifications in the recovery mode.

4.3.5 Supervisor Design

Finally we design the required supervisors for controlling the plant in normal and recov-
ery modes to enforce all specifications, while satisfying the nonblocking property of the

plant under supervision.
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ERy selfloop ©-{2,4,14,41,43,63}

Figure 4.9: Specifications for the recovery mode.
Normal Supervisor

The following procedures of TTCT will be used to compute the supervisor in normal

mode and also to verify if it is a proper supervisor.

PLANTN=sync(T1, Bs, Bs, B, OP,INTERN); (16,88); Blocked events = None.
EN=meet(EN;, EN,); (18,90)

EN = CONDAT(PLANTN, EN) ; CONTROLLABLE.

true = Nonconflict(PLANTN, EN)

The results of condat and nonconflict procedures for EN show that EN is a proper
supervisor for the plant in normal mode. Therefore, we can consider the normal super-

visor as following:

SUPERN=EN=meet(EN;, EN-); (18,90)

The resulting supervisor has 18 states and 90 transitions.
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Recovery Supervisor

Similar to the normal case we can compute the recovery supervisor as described below:

PLANTR=sync(T\ s, Ba , Bs, Bs, Bs, OP, INTERF'); (40,254); Blocked events =
None .

ER=meet(ER;, ER); (7,63)

SUPERR=supcon(PLANTR, ER); (29,111); Blocked events = None.

SUPERR = Condat(PLANTR, SUPERR) ; Controllable.

true = Nonconflict(PLANTR, SUPERR)

As we can see, the recovery supervisor is a proper supervisors with 29 states and
111 transitions. Due to the large size of the computed supervisors and the plants under

supervision, we have not showed the diagrams of the supervisors and their related plants.
In the following section, we apply the switching modular hierarchical method pro-

posed in this thesis to a power network. The problem has been kept simple enough to

allow to display and describe the operation of the supervisor.
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4.4 Fault Recovery in Electrical Systems Uéing Hi-
erarchical Design: Local and Global Supervision

Figure 4.10 shows a simple power system consisting of two different plants linked together
using an interconnection (B3) and forming a network. Each plant has its own generation
group, transmission line, and distribution system. In normal operation of the plant, we
consider that only one generating unit of the plantl (P;) is in service, which supplies
the network via (B;). Also in this mode we assume that two separate power plants
are connected by the breaker Bs. If as a result of a failure in plantl (P;) (for example
the temperature in transformer 7; becomes higher than normal), and B; goes to a trip
mode, in order to isolate T} from rest of the network, then the local controller should
close B,, so that we could have one of the generating stations (7T3) still in service to

supply the network.

Figure 4.10: Simplified model.

If the sub-system (P) becomes faulty, to prevent a total black-out of the whole
network we need to separate P, from rest of the network. This needs to be done by
designing a global (system-level) controller, which will not interfere with the function-
ality of the local controllers of both plants P, and P,. In the following, we model the

components of plants using DES models. Generators for required specifications for the
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operation of the plant in both normal and recovery modes will be presented, and finally
we will design the supervisors for both low-level and high-level models. As in the pre-
vious section, controllable (resp. uncontrollable) events are designated by odd (resp.

even) numbers.

4.4.1 Component Models

We create models for individual components of the system, their interactions (if appli-

cable), and the resulting DES model.
Breakers

As we discussed, circuit-breakers are used as protection devices in electrical systems. We
model them by using DES having two controllable events for opening and closing. In
case of failure (short circuit) in their related lines, they go to a tripped state. Here for
simplicity, we only consider faulty mode for the line controlled by B;. Figure 4.11 shows
the DES model of the breakers of system in normal mode. Note that, B; could enter the

11 21

>
13 23
(a) (b)

31

—q_

33
(©)

Figure 4.11: Breakers: (a) By, (b) Bz, and (c) Bs shown in normal mode.

faulty mode only when it is closed. This is shown in Figure 4.12 using uncontrollable

event 10.
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Figure 4.12: Complete model of B;.

Plant P,

We consider an abstract model for the second plant P,. We assume that P, can enter
a failure mode f,, if an uncontrollable event (failure event 20) occurs in the system.
Failure f, (20) is by assumption a major failure which would require the isolation of P,
from the rest of network to prevent black-out in the entire network. Figure 4.13 shows

the model of P;.

20

=)=

Py

Figure 4.13: Plant B,.

At this stage, we will have the following sets of alphabet for the low level plant:
¥, = {11,13,21,23,31,33}, £ = {10,11,13,20,21,23,31,33}, with: Xg. = {11,13,
21,23, 31,33} and Xy = Xg . = {10,20}.

4.4.2 Local (Subsystem-Level) Supervisor

First we present the model of the system at the low-level and after discussing the spec-

ifications, we design the required subsystem-level (local) supervisors to enforce them.

System to be Controlled
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All of the individual models of the system can be generated in TTCT software. The
complete model of the plant can be obtained using the sync procedure. The system
which needs to be controlled has a normal and two recovery modes. The required models

GY, G%g,, GYr,, and Gyr are constructed as follows:

Gn=sync(B, Bz, B;)
GNR] :SynC(Bl,f7 B27 B3)
GNRZZSYDC(BI, B?) BS; Pz,f)

G= GNstync(Bl,f, Bg, B3, ngf, SFS)

For brevity, we will only show the diagram of the plant under supervision after the
design is complete. SF'S is a generator to enforce the single failure scenario assumption

(Figure 3.12, Section 3.3.3).
Specifications

For the entire plant, we have normal and recovery specifications. Specifications for the
normal mode are given by Ey = EWUES. For the recovery modes R; and Rs, we will

have: Ep, = EUER

and Eg, = Ef2UFE% as the desired behaviors of the plant, re-

spectively. The required specifications for operation of the plant in normal and recovery

modes in addition to nonblocking property are defined in the following:

(1) First group (subsystem-level) specifications:

(i) In normal operation of the plant we need Bj to be closed after B; is closed. It
is also required that Bs to be opened before B; is opened (E¥). The corresponding

generator SPJ° is shown in Figure 4.14(a). Thus E¥=meet(Gy, SPY).
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(ii) For recovery mode (Ry), in case of having a failure situation for By, the desired
action is to close By. The generator SPge (Figure 4.14(a)) represents this specifications:
Ef=meet(Gy, SPE).

(iii) In case of a failure in P, there is no subsystem-level specification. i.e., E}lg; =

L (GNg,)-
(2) Second group (system-level) specifications:

(i) Normal operation: no restrictions.
(i) Recovery mode (R;): no restrictions.
(iii) Recovery mode (R,): In case of a total failure in second plant P, this part of

the network is required to be separated from the rest of the system by opening Bs.

Sometimes it will be more convenient if the generators representing the second group
of the specifications directly computed at high-level using the high-level alphabet. In
this problem, the required generator for capturing Efé’z will be directly computed at

high-level.

11 31

— X p-
13 33

selfloop{21, 23}
(a)
£, — {21} 55— {21)

Q 10 21

{ {

(b)

Figure 4.14: Specifications for normal and recovery modes: (a) SPR°, (b) SP/2.
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Low-Level (Subsystem-Level) Supervisors

We design the required supervisors using the RW framework, to enforce the design
specifications for normal and recovery modes. Since in this thesis we assume all events
to be observable events, using the supcon procedure, we can compute the relevant

supervisors. Therefore we will have the following:

Ste=supcon(GY3, E°)

1o __ lo o
Ste=supcon(Glo, , B)

Figure 4.15 shows the resulting supervisors S%°, and S}é‘; for normal and recovery
modes. Note that, no low-level supervisor for recovery mode Ry is designed since Gy g, is

nonblocking and no low-level design specification has been stated in problem formulation.

Figure 4.15: Supervisors for normal and recovery modes: (a) S%, and (b) Si°.

The result of condat procedure for Si* and S%, shows that all supervisors are

controllable and therefore, they are admissible supervisors for plant in recovery and

82



normal modes. Also the result of nonconflict procedure is true and this shows that

they are nonblocking supervisors for their relevant sub-generators.
Supervised Plant

In normal mode plant will be controlled by: Sf%=meet(S7, S’}f{;) In recovery mode
Ry, S’}f," will be disabled and S’}%‘; will remain in the feedback loop. The system under
supervision in both modes (G* = S7%/G) is shown in Figure 4.16. Note G is non-

blocking in N, Ry, and Rs.

10

Figure 4.16: System under supervision at low-level: Glo.

4.4.3 Global (System-Level) Supervisor

At this point, we need to compute the model of the system at high-level in order to
apply our hierarchical design procedures for the fault recovery problem. Accordingly,
the required controllers will be designed to enforce the design specifications. First, we

explain how to obtain the high-level plant model.
System to be Controlled at High-Level

The starting point of the hierarchical control design is G** (Figure 4.16). Figure 4.17

shows the vocalized plant. Note that, the states of the plant which need to be vocalized
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are shown in this figure in terms of the high-level alphabet T = {7, 73,73}. The silent
states are shown by silent event 75. 7, and 7, signify failure events f; and f, and 73
signify opening of Bs (in Ry mode). The triples [x — 7], [ — 73, and [x —> 73]

have been considered as the triples which need to be vocalized.

70
)
13( |11
20 M3 10 ATT 21
1 @/ T
33( |31

Figure 4.17: Vocalized G'.

The foregoing adjustments can be made using edit and vocalize procedures of
TTCT program. Note that, state 4 has been split to new states 12 and 13. By applying
hiconsis and higen procedures to the vocalized model of G, as explained in the pro-
posed design algorithm, we can compute the high-level plant model. The result is shown
in Figure 4.18. The new high-level events (7., 7oy, 74, and 73), have been added to the
high-level alphabet T by hiconsis command in order to drive a hierarchically consistent

model.

Note that Figure 4.18 is displaying both normal and normal-recovery models of the
plant at high-level. Now that we have obtained the high-level models of the plant, we
are ready to define the required behaviors of the plant using our high-level specifications.
In the following after defining the specifications, we will design the relevant supervisors

of the plant to enforce the required behaviors.
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Figure 4.18: (a) G, and (b) G™.
High-Level Specifications and Supervisors

At this point we calculate the high-level versions of the second group of the specifica-
tions for the hierarchical solution. EX, is the high-level version of E',. As we already
mentioned E%, will be directly captured by a generator which uses only the high-level
alphabet set T. The required specifications for recovery models at high-level, is given

by the generators E%, shown in Figure 4.19.

T2u

T2c T
T4 73

Figure 4.19: High-level specification E} .

85



The resulting supervisors for high-level plant can be computed by using supcon

command of TTCT and is shown in Figure 4.20.

<725

T2¢ T
T4 3

Figure 4.20: High-level supervisor: Sf.

hi _ hi hi
Sg,=supcon( Gyp,, Eg,)

hi : . . hi
Note that, S R, 152 nonblocking supervisor for Gg,

System Under Supervision at High-Level

The high-level plant will be controlled by: S J’tfRzgﬁi. The system under supervision at

the high-level S¥./Gyg is shown in Figure 4.21.

It can be seen that, the system under supervision at high-level S¥5 /G is nonblock-
ing in both normal and normal-recovery modes. Also the supervisor does not attempt
to disable any uncontrollable event and therefore, S }’% is an admissible supervisor. This

results can also be verified using condat and nonconflict procedures of TTCT program.
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Figure 4.21: Sk, /GM.
4.5 Conclusions

In this chapter, we considered the modelling of electrical power systems using DES mod-
els for the failure recovery purposes. We started by giving an overview of these systems
and their main components. We showed that DES models can effectively be used as a
modelling device for analysis of these networks by designing controllers for normal and
recovery operations of the plant. Although our answer is not considered as a unique
solution for design procedures, but the main objective was to show that DESs can be
considered as an important modelling tool for supervisor design and synthesis for this

kind of industrial systems.

Following that, we illustrated our switching modular hierarchical approach to the
problem of fault recovery by applying this method to the automatic control of a simple
power plant. We designed the controllers for both low and high-level models to enforce

subsystem-level (local) and system-level (global) specifications.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

In this thesis we proposed a two-level hierarchical modular approach to the problem of
fault recovery in DESs. After giving a brief overview to the theory of discrete-event sys-
tems and also RW supervisory control theory in Chapter 2, basic concepts of a two-level
hierarchical DES have been reviewed to derive an abstraction of the plant and to design
a higher level supervisor. The modelling is carried out in a bottom-up fashion, while the

control is applied using a top-down approach.

A finite-state automaton is assumed to model the plant in both normal and re-
covery modes. We assume full events observation, and thus there is no delay in the
detection of failures in the system. Therefore, we model the entire plant in normal and
normal-recovery modes, without using any diagnosis system. This assumption is merely
to simplify the discussion. Extension of our setup to the case of control under partial

observation is not difficult. In the problem with partial observation, we have to consider
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diagnosis.

Specifications of the system are divided into two main categories for both normal and
recovery modes. The first category are those that address low-level (local, subsystem-
level) issues for which we design a supervisor at the low-level using a modular approach,
while the second group of specifications are those addressing global (system-level) issues
and for this group we design a supervisor following a modular hierarchical approach. In
our design methodology, faults are assumed to be permanent and that means if a fault
occurs in the system, the plant will remain in the faulty condition. Moreover we assume
not more than one failure in the system at any time of its operation (single-failure sce-
nario). First, we design the required controllers at the low-level to enforce the design
specifications of the plant for the first category of the specifications in both normal and
recovery modes. After designing the supervisors for both normal and recovery modes,

the system under supervision is computed at the low-level.

The starting point for applying hierarchical control theory is the system under su-
pervision at the low-level. After defining the “significant” events and the vocal outputs
for the plant at the low-level, we compute a consistent abstraction of the plant (high-
level model) for the higher level using the approach in [26]. For the high-level model
the required behaviors of the model are defined in the form of legal languages over the
high-level alphabet set. We design the required supervisors for both normal and re-
covery modes at the high-level to enforce the high-level specifications, and finally the
plant under supervision is computed at high-level. A computational design procedure,
presented in Chapter 3 for the general case, summarizes the whole design methodology.

We also investigate the nonblocking property of the plant under supervision.
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In our framework, a modular approach is chosen mainly for the following advantages:
a modular approach (divide and conquer) is usually easier for design and implementa-
tion purposes compared to a centralized approach; modules may easily be repaired or
modified; and for the fault recovery problem in particular, a modular approach can re-
duce the computational complexity significantly (where the number of the controllers

sometimes could be very high).

In addition to the modular design for the supervisors of the plant, we decided to
use a two-level hierarchical approach. Use of a hierarchical modular can be justified as
follows. Studies of real-world systems often show that the designers have to deal with
the large number of states which usually leads to complex models and supervisors for
these applications. An alternative way to manage complexity in these realistic systems
when faced with state explosion, is to use an abstraction of the plant (high-level model)

instead of the plant itself to simplify the complex behavior.

To illustrate the application of our design methodology for the failure recovery prob-
lem in Chapter 4, we considered the automatic control of an electrical power network in
normal and faulty modes. We started by briefly reviewing electrical power generation
and distribution networks. We described different components of these networks using
DES models. A simple electrical power network consisting of generators, transformers,
and different circuit-breakers was chosen to be modelled using DES models. We defined
the required behaviors of the power network in terms of legal languages and accordingly
the relevant supervisors were designed. We showed that DES models in general and

modular supervisory control can be used as a good modelling tool for synthesis of con-
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trollers in electrical power networks.

To simplify the design procedures for the failure recovery and automatic control of
electrical power networks, we further applied our hierarchical method to these networks
and designed supervisors to control the plant. By applying supervisory control theory
to the automatic control and fault recovery problem of power networks, we can combine
these two important tasks into an integrated problem and finally, solution. Therefore,
we will be able to give a compact solution to these problems. In the following section,

we outline some directions for future research.

5.2 Future Research

This research can be continued in many directions, including the following.

e In our design methodology, we did not consider simultaneous failures, and single
failure scenario was considered through-out the thesis. However, in practice it is
very common for failures to occur simultaneously. Therefore, a possible future

work is to extend our framework to deal with this problem using DES models.

e We used un-timed DES models to solve the supervisory control problem for the
failure recovery in our models. Timed DES can be used as another possible exten-

sion.

o We assumed that there was no delay in detecting the failures in the plant (failure
events were considered observable). Therefore we did not include any diagnosis
system in our model. Another possible extension is to include a diagnosis system

in our model. Furthermore, we may investigate recovery of the transient failures

91



of the system.

To construct our two-level hierarchical model, the full event observation was as-
sumed. However, we can extend our design methodology by considering unobserv-
able events of the system and then constructing the hierarchical model. In this
case, we may consider the H-observability concept in our hierarchical model to

ensure the consistency between low and high-level models [7].

Another interesting challenge is to extend the two-level hierarchical model to a
multi-level hierarchical approach. This may provide further simplifications for the

designers to deal with the complex behaviors of the real-world applications.

In our particular application of designing automatic controllers for the failure re-
covery problem in electrical power networks, we used an abstraction of the compo-
nents of the system. It will be more challenging if we use a more detailed model of
these components using DESs. Also, we considered only short circuits as the main
failures of these system. Another topic is to consider other types of faults which
can occur in these networks. To tackle more detailed model, we need to develop

more capable software to implement various hierarchical design algorithms.
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