Efficient and Scalable Search for Similar Patterns in

Time Series Data

Srividya Kadiyala

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

March 2006

(© Srividya Kadiyala, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14323-1
Our file Notre référence
ISBN: 0-494-14323-1
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Efficient and Scalable Search for Similar Patterns in Time

Series Data

Srividya Kadiyala

Popularity of time series databases for predicting future events and trends in
applications such as market analysis and weather forecast require the development
of more reliable, fast, and memory efficient indexes. In this thesis, we consider
searching similar patterns in time series data for variable length queries. Recently
an indexing technique called Multi-Resolution Index (MRI) has been proposed to
solve this problem [Kah01, Kah04] which uses compression to reduce the index size.
However, the processor workload and memory curtails the opportunity of utiliz-
ing compression as an additional step. Motivated by the need and limitations of
existing techniques, the main objective of this thesis is to develop an alternative
multi-resolution index structure and algorithm, to which we refer as Compact MRI
(CMRI). This new technique takes advantage of an existing dimensionality reduc-
tion technique called Adaptive Piecewise Constant Approximation (APCA) [KeoO1].

Advantages of CMRI is that it utilizes less space without requiring any compression

iii

and gains high precision. We have implemented MRI and CMRI and performed
extensive experiments to compare them. To evaluate the precision and performance
of CMRI, we have used both real and synthetic data, and compared the results with
MRI. The experimental results indicate that CMRI improves precision, ranging from
0.75 to 0.89 on real data, and from 0.80 to 0.95 on synthetic data. Furthermore,
CMRI is superior over MRI in performance as the number of disk I/Os required by
CMRI is close to minimal. Compared to sequential scan, CMRI is 4 to 30 times

faster, observed on both real and synthetic data.

iv

Dedicated to my Parents, Brother and Husband

ACKNOWLEDGEMENTS

I wish to express my gratitude and indebtedness to my supervisor, Professor
Nematollaah Shiri for his care, encouragement, guidance, support, constant help
and devoting his valuable time for me always in spite of his busy schedule. I also
wish to express here that Dr. Shiri has been my constant source of inspiration for
the past two years with his ever ending enthusiasm to teach, learn and work on new

areas. I thank him for giving me the opportunity to work under him.

My sincere thanks to Professor Haarslev for his support and understanding. I am
thankful to Stan, a system analyst in the ENCS faculty, for his support in solving

my system related problems.

I would like to thank Ali Kiani for his constant help and involvement in discussions.
I also wish to thank Anand Thamildurai and Mihail Halachev, for their guidance
and help in gnome research. I thank every member of the database group for sup-
porting me during my experiments. I thank my friends Sri, Vasavi, and Naren for
their support. Last but not the least I show gratitude to my husband Prasad for his

understanding, involvement in discussions and constant motivation.

vi

TABLE OF CONTENTS

LIST OF FIGURES e

LIST OF ABBREVIATIONS e

1 Introduction

3

1.1 Thesis Contributionso
1.2 Thesis Outline o oo
Background
2.1 Dimensionality Reduction on Time Series
2.2 Introduction to DWT and DFT
2.2.1 DWT: Haar Wavelet Transform
2.2.2 Discrete Fourier Transform
2.3 APCA . . e
2.3.1 APCA Representation
2.3.2 Bounding Regions oL
Related Work
3.1 Similarity Matching o oo
3.2 Indexing Techniques on Time Series
3.3 R-Tree Index Structure
3.4 Multi-Resolution Index (MRI)

vii

15

15

17

19

20

25

30

3.4.1 Query Partitioning Lo oL 41

34.2 Range Query 43

3.4.3 Nearest Neighbour Query 44

3.4.4 Limitationsof MRI 44
3.5 Parameters Affecting Performance 45
Our Proposed Index 47
4.1 Reduced Multi-Resolution Index Structure 48
4.2 Construction of CMRI L. 52
4.3 Compact Multi-Resolution Index Structure 52

4.3.1 Range Query 94

432 KNNSearch0 56
4.4 Memory Calculation, 57
Experimental Results 59
51 Range Queries e e 64
5.2 Nearest Neighbours Queries 69
5.3 Memory Consumption 71
5.4 Performance on Variable Length Queries 72
5.5 Effect of Threshold 74
5.6 Effect of Mean Value Indexing 75
5.7 SUMIMATY .« . . o v v o e e e e e e e e e e e e e 76

viii

6 Conclusions and Future Work

6.1 ConcluSIonS . . .+ v v v v e e e e e e e e e e
6.2 Tuture Work o e e e e
Bibliography

ix

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

4.1

4.2

4.3

5.1

5.2

5.3

LIST OF FIGURES

Haar Wavelet Component o 10
Conjugate property of Fourier Wavelet [Wu 00] 12
10-day mMOVINE aVeTage v v v o v e e e e e 14
Time series with M = 4 and its APCA representation [Keo01] 20
Boundaries of a time series C [KeoO1] 25

(1) Query @ and APCA representation of C. (II) Query () segmented
with respect to the end points of C. (III) Drp as the square root

of sum of the product of squared length with length of the segments

they join [KeoO1].o v 28
Two dimensional representation of 7 regions [Mol02] 37
Relative R-Tree index to the 7 regions [Mol02] 37
Structure of MRI [Kah04] 40
Structure of Reduced MRI (RMRI) 50
Construction of CMRI 51
Structure of Compact MRI (CMRI), 53

Precision for Range queries on Real data (a) and Synthetic data (b) . 63
Precision for Range queries on Real data (a) and Synthetic data (b) . 63
Disk 1/Os for Range queries on Real data (a) and Synthetic data (b) 66

X

5.4 Disk 1/Os for Range queries on Real data (a) and Synthetic data (b) 66
5.5 Disk I/Os for nearest neighbour queries on Real data (a) and Syn-
theticdata ()« . 68
5.6 Memory occupied by index on stock market data at different dimensions 70
5.7 Disk I/Os for Range queries of variable lengths on Real data (a) and
Synthetic data (b) 71
5.8 Disk 1/Os for Range queries of variable lengths on AUSLAN data . . 73
5.9 Precision for Range queries on Real data for different thresholds . . . 74
5.10 Precision for Range queries on mean value Index 75

xi

LIST OF ABBREVIATIONS

TSD Time Series Data

DWT Discrete Wavelet Transform

DFT Discrete Fourier Transform

APCA Adaptive Piecewise Constant Approximation
MRI Multi-Resolution Index

RMRI Reduced MRI

CMRI Compact MRI

GDR Global Dimensionality Reduction
LDR Local Dimensionality Reduction
HwWT Haar Wavelet Transformation

PAA Piecewise Aggregate Approximation
SVD Singular Value Decomposition
MBR Minimum Bounding Rectangle
SBR Skyline Bounding Region

KNN K Nearest Neighbours

VBR Virtual Bounding Rectangle
CoMRI Compressed MRI

IN Internal Nodes

DP Data Points

xii

xiii

Chapter 1

Introduction

A time series is a sequence of real numbers, each of which represents a value, at a
particular time, of some attribute such as price, temperature, etc. Such time series
are normally very large as the data is stored at regular time intervals to preserve
the history. Each subsequence of a time series (TS) consisting of n values may be
viewed as a window of size n. Consequently, ﬁme series (TS) are often viewed and
treated as multi-dimensional. A collection of time series is called as Time Series
Database (TSDB). We may also refer to such data as time sequence or sequence
data. Pattern discovery algorithms have been developed to analyse the sequences
in a TSDB to identify patterns which are implicit in the data in order to predict
future events.

The popularity of time series databases for predicting future events and trends
is growing fast in many applications, such as agriculture, finance, sales, production,

industry, genomes, proteins, astronomy, chemistry, crime, transport, tourism, etc

[Raf97, Keo00, Keo01|. For example, crime databases are used to analyze the crime
rate or pattern in previous months or years, and to take necessary actions to reduce
crimes. Biological sequence data is used, when dealing with an unknown species,
to search for similar gene patterns to find the most relevant classification of the
species. Range queries and nearest neighbour queries are typical queries used to
search similar matches. These queries are studied in detail in Chapter 3.

When a TSDB is very large, traditional sequential scan of the database would
be inadequate to search for similar patterns in the database. The demand to support
efficient query processing over such data is increasing [Raf97, Keo00, Keo01]. Since
time series data is multi-dimensional, in order to support efficient searching, we need
multidimensional index structures. A preprocessing step to reduce the dimensions
of time series is required at this stage before creating an index over the database,
without which the size of the index becomes prohibitively large. For this, there has
been a number of techniques proposed to reduce the dimensions of the time series
in order to improve the index both in terms of its size and performance. The latter
is measured in terms of the the number of disk I/Os performed to process queries
as well as the precision/accuracy. These techniques, referred to in the literature
as dimensionality reduction techniques, are studied in Chapter 2. After applying
such a technique, only a few high magnitude dimensions are considered for creating
the index. There is a trade off between accuracy, speed, and memory consumed

depending on the number of dimensions chosen to create the index. As the number

of dimensions chosen increases, the memory and precision/accuracy of the index
increase while the speed decreases, and vice versa.

Given a query posed to TSDB, the index supports searching for similar matches
in the database. This becomes more complicated when the query length is variable.
An index over TSDB should then be flexible to support such queries. That is, the
index should be able to support varying length queries and thus providing the user
a better chance to identify events, trends, or similarity to decide/predict a future
event. Furthermore, a desired index to support such queries should occupy less
space, perform less number of disk I/O operations, and be fast in answering the
queries. This is our motivation in this research to study the aforementioned issues
and develop a desired index structure and technique to support variable length
queries on time series databases for pattern analysis and discovery. We refer to time

series also as time sequences, interchangeably.

1.1 Thesis Contributions

In order to develop an efficient index structure to support variable length queries
on TSDB, we first study existing techniques for dimensionality reduction of TSD,
and study their impact. An appropriate dimensionality reduction technique must
be chosen for the index, depending on the data. For this, the dimensionality re-
duction techniques we consider includes Discrete Wavelet Transform (DWT), Dis-

crete Fourier Transform (DFT), and Adaptive Piecewise Constant Approximation

(APCA). Of these, DWT and DFT are global dimensionality reduction techniques.
That is, for every sequence in the database, dimensionality reduction is performed in
the same way. APCA is a local dimensionality reduction technique that represents
each time series in a unique way on the basis of energy/values of the signal. Our
proposed index technique uses APCA as the dimensionality reduction technique be-
cause it gives the highest performance to the index [Keo01]. The gain in precision
of our indexing technique is due to the APCA representation, where precision is the
measure of accuracy of the index. We remark that precision is defined as the ratio
of sequences in the actual result to the candidate sequences obtained through the
index.

The next step in our research was to study alternative index structure that
could support variable length queries. For this, we study several multidimensional
indexing techniques such as R-tree (in Section 3.3), I-adaptive index [Fal94], and
Multi-Resolution index (MRI) (in Section 3.4). Of these, MRI is the most efficient
indexing technique for variable length queries till now. In our study, we noted that
MRI could be further improved in terms of its size and performance. To identify
opportunities for such improvements, we carried out a detailed analysis of MRI
and studied memory management and storage techniques for cases where the index
exceeds the size of available main memory.

We used the analysis results and developed an efficient and scalable index

structure, in two stages. First we propose Reduced MRI (RMRI for short) which has

a better performance than MRI. Then the structure of RMRI is further refined and
improved, to which we refer as Compact MRI (CMRI, Section 4.3). An optimized
search algorithm for exact search on the index has also been proposed (in Section
4.3.1). The study of memory utilization and optimization in the context of CMRI

has been done (in Section 4.4).

1.2 Thesis Outline

We study efficient and scalable index structure for variable length queries on TSDB
and introduce a new multi-resolution index structure. The rest of this report is
organized as follows. Chapter 2 gives the background knowledge of dimensionality
reduction on TSD in section 2.1. Global Dimensionality reduction techniques which
have similar performance are studied in section 2.2 (DFT and DWT). A local di-
mensionality reduction technique, APCA, used in our work is studied in section 2.3.
Chapter 3 explains the need of index, reviews the related indexing techniques. and
describe some indexing techniques in detail. Section 3.1 explains different types of
similarity matching queries and the need of index on time series data. Section 3.2
provides an overview of the existing indexing techniques. A detailed explanation
of R-tree structure is provided in section 3.3. As our proposed technique improves
MRI, a detailed study of the MRI strucﬁure, query partitioning and searching are
presented in section 3.4. Section 3.5 discusses the impact of different parameters

such as dimensions of index, threshold, and query length on the performance.

Chapter 4 introduces the structures of RMRI and CMRI, our proposed tech-
niques. Section 4.1 explains redundancy of insertions in MRI and shows the structure
obtained by avoiding this redundancy, known as RMRI. The purpose of RMRI is to
serve as an intermediate structure to support correctness of CMRI. The construc-
tion of our technique CMRI is introduced in section 4.2. We also describe why our
technique occupies less space compared to MRI. Section 4.3 introduces the modified
structure CMRI obtained from RMRI. We also provide a construction algorithm for
CMRI. This section also includes modified search algorithms for CMRI, obtained
from those proposed for MRI. In section 4.4, we study the memory utilization by
index.

In Chapter 5, we report our experimental results for range and nearest neigh-
bour queries on both real and synthetic data, obtained by changing various pa-
rameters such as dimensions, threshold, number of neighbours, and query lengths.
Section 5.1 presents our experimental results for range queries on index created
for different dimensions. In section 5.2, we discuss the results obtained for nearest
neighbour queries at dimension 8 of the index. Memory consumption of MRI and
CMRI on stock market data is shown in section 5.3. Section 5.4 explains the impact
of variable query lengths on the index at some particular dimension. Section 5.5
presents the results obtained by different threshold values. Section 5.6 shows the
results for range queries on mean value index.

Chapter 6 includes summarization of our work together with some suggestions

for future work.

Chapter 2

Background

In this chapter, we describe the background concepts and techniques used in the
development of an index on time series data. In section 3.1, we introduce several
concepts on TS and discuss the use of different dimensionality reduction techniques
on time series. Section 3.2 give details about the dimensionality reduction techniques
DWT and DFT. Even though we do not use DFT in our work, we discuss DF'T since
it has the same performance as DWT when the conjugate property is considered
[Raf98]. We also give detail explanation of APCA representation of time series,

since it is used in our work.

2.1 Dimensionality Reduction on Time Series

To scale up to higher dimensions for multi-dimensional TSD, a commonly used
technique is dimensionality reduction. A multi-dimensional index structure is then

created for the reduced space. The curse of dimensionality refers to the exponential

growth of hyper volume as a function of dimensionality [Bel61]. In other words this
curse makes it difficult to reduce/increase the dimensions, since reduction in the
number of dimensions will increase the candidate set, and increase in the dimensions
will increase the memory utilization by the index. Candidate set is defined as the
number of matches returned by the index.

Through dimensionality reduction, most of the information in the sequence
is reduced to few values (dimensions), and only some of the principal components
are used to build the index. There are several techniques proposed for reducing
dimensions of time series data. They can be divided into two categories Global
Dimensionality Reduction (GDR) techniques and Local Dimensionality Reduction
(LDR) techniques. If a Global Dimensionality Reduction technique [She80, Aga93,
Fal96, Fal95, Cha99] is used, every sequence in the database is reduced in the same
way. Such reduction techniques work well when the data is globally correlated.
However, this may not always be the case, in particular when correlation of data
varies. In such cases several Local Dimensionality Reduction (LDR) techniques
[Keo00, Keo01] proposed recently can be used instead, which improves efficiency of
search since the reduced sequences carry more information [Cha00, Keo01].

The dimensionality reduction techniques include Singular value decomposition
(SVD) [Fal96, Kan98, Keo00, Kan98|, Discrete Fourier transform (DFT) [Aga93],
Multi-dimensional scaling [She80], Fast Map and its variants [Fal95], Discrete Wavelet

Transform (DWT) [Cha99, Wu 00], Piecewise Aggregate approximation (PAA) [Keo00,

Figure 2.1: Haar Wavelet Component

Yi 00], and Adaptive Piecewise Constant Approximation (APCA) [Keo0O1]. The
practical aspects of an application and preferences of the user will decide selection
of an appropriate technique. Agrawal et al. [Aga93] used DFT to transform time
sequence into frequency domain, and considered only the first few coefficients to
reduce the dimensionality and built an R-tree index [Gut84]. DFT maps a one
dimensional time domain discrete function into a representation in frequency do-
main. Chan and Fu [Cha99] proposed Haar wavelet transformation (HWT) for
dimensionality reduction, used for image, speech and signal processing, and showed
its superiority over DFT. Haar wavelet component used for transforming a signal is
shown in Fig. 2.1 [Keo00, Wu 00]. This component is scaled and shifted to represent
the original signal. DWT gives time frequency localization of the signal while DFT
transforms it into different frequency parts. Their experiment results showed that

pruning power of index using DWT is more than DFT for dimensionality reduction.

10

They proved that DWT performs better than DFT. Later on, Rafiei and Mendel-
zon showed that DFT can be improved by considering the symmetry property of
the Fourier transforms, i.e., coefficients in the rear are complex conjugates of the
coefficients in the front [Raf98|. This indicates that energy is not only concentrated
on the first few coefficients but also on the last few, symmetrically. It suggests
that while creating an index, one must also consider the last M coefficients along
with the first M coefficients because most of the energy of the signal is preserved
in few initial and last coefficients. Fig. 2.2 [Wu 00] shows how complex conjugate
property of DFT helps in reconstructing the signal. The whole idea of selecting the
coefficients is that selecting highest magnitude coefficients is to minimize the error
involved in reconstruction of the signal. The complexity of DWT is O(n) whereas
for DFT it is O(n log n), where 1 is the number of values in the input sequence.
Wu et al. [Wu 00] performed several experiments to compare these trans-
formation techniques. Their results showed that none of these techniques is su-
perior if we consider the conjugate property of the Fourier transform but rather
their performance depends on the type of data in similarity search. That is any
one of these transformations can be used for dimensionality reduction of the data.
There are numerous methods such as edit distance, Euclidean distance, etc., to
measure similarity of two time sequences. FEuclidean distance is the most com-
monly used distance measure, defined as the straight line distance between two

points [Aga93, Cha99, Raf97]. In N dimensions, the Euclidean distance between

11

normalized stock data

150 T T T T T

original data —
reconstruet from first 8 DFT coef, -—-
reconstruct from first 8 DFT cosf. with conjugate property -—---

100

50 |

]
B0 +
100 -
A50] l i i 1 |
20 40 60 a0 100 120
tirme in days

Figure 2.2: Conjugate property of Fourier Wavelet [Wu 00]

12

two points p and ¢ is \/(7251 (pi — ¢;)?), where p; (or ¢;) is the coordinate of point p
(or g) in dimension 7. Non-Euclidean metrics have also been used to determine simi-
larity of time sequences. Smoothing techniques are employed to reduce irregularities
(random fluctuations) in time series data [Raf97]. They provide a more clear view of
the true underlying behavior of the series. The most common smoothing technique
is the moving average which replaces each element of the series by either the simple
or weighted average of n surrounding elements, where n is the width of the smooth-
ing "window". Since the type of seasonality in data varies in general from series to
series, so must the type of smoothing. Fig. 2.3 shows a simple graph for 10 day
moving average smoothing. In the graph, the smooth curve is obtained by applying
10 day moving average technique, showing the overall behavior of the original curve.
We explained this even though we don’t use this technique, to provide knowledge
about use of various techniques.

Mehrotra et al. [Cha00] introduced LDR through clustering. Keogh et al.
[Keo00] proposed to split the time sequence into equal sized windows. The average
of the values in each window is used to represent all the entries in the window. This
compression technique is called Piecewise Aggregate Approximation (PAA) [Keo00].
In their experimental results, they show that PAA can be computed faster than SVD,
Haar, and DFT. The pruning power of PAA is similar to that of DFT and Haar,
but is poor compared to Singular value decomposition (SVD) [Keo00]. The authors

also proposed subsequence searching by sequentially sliding the query sequence over

13

160 ¢
10-day Moving Average

185 . ’ Original Curve

150 4

145 +

o

140 ¥

e
s,
o
E*
=

Figure 2.3: 10-day moving average

all the database sequences. Later on they proposed a different technique for LDR,
known as Adaptive Piecewise Constant Approximation (APCA), which improves
the pruning power of the index [Keo01]. This is a modification of PAA by splitting
the time sequences into varying size windows [Keo01].

Popivanov and Miller [Pop02] later on show that PAA is poor in precision and
performance compared to DFT, Haar wavelets, and Daubechies wavelets, where
precision is measure of accuracy. According to this result, Daubechies wavelet gives
the best precision and require lowest number of disk accesses among the three tech-
niques. This implies that there is no clear winner among all global dimensionality
reduction techniques and the results of a particular technique depends on the type

of data used in the experiments. Details about DWT, DFT and APCA are given in

14

next two sections.

2.2 Introduction to DWT and DFT

In this section, we quickly review important commonly used dimensionality re-
duction techniques. Understanding these would help understand the preprocessing
phase of our index proposed in this research to support variable length queries on

time sequences.

2.2.1 DWT: Haar Wavelet Transform

Wavelets allow a time series to be viewed in multiple resolutions. Each resolution
reflects a different frequency. The wavelet technique takes averages and differences
of a signal, and breaks the signal down into a spectrum. To calculate the Haar
transform for a sequence of n elements, we first check if n is in power of 2 format.
If n is not in this format we pad the sequence with zeros and increase n until it is in
the required format (power of 2). Next we find the average of each pair of elements.
Then we find the difference between each of these n/2 averages and the elements it
was calculated from. This gives n/2 differences. We then consider an array whose
length is » and fill the first half of the array with averages and second half with
differences. This process is repeated on the first half of the array, averages, until the
array has only one average element. The following example illustrates this process

of computing DWT for a sequence.

15

Example:

Consider the following sequence s of eight elements

SUT|1116(6(3]-5]|4]2

Average / Difference

Two elements, [and 7, can be expressed as an average a and a difference d:
a=(+r)/2
d=a—-1l=r—a

This operation is reversible, that is:

l=a-d
r=a+d
Averages:

Calculate averages for each consecutive, non-overlapping pair.
(7+1)/2=4

(6+6)/2=6

(3+(-5)) /2= 1

4+2)/2=3

Differences:

(7T—-4)=(4-1)=3

6—-6)=(6—-6)=0

B-(-1))=(-1-(-5)=4

16

4-3)=(3-2)=1
Averages and differences are combined to give HWT of a sequence. The first
four elements are the averages, and the last four elements are the difference calcu-

lated above.

416|—-1{3|3[0|4]|1

This process is repeated on averages until we have one average element in the

array, as shown in Table. 2.1.

| Resolution | Average | Difference |
3 7,1,6,6,3,—5,4,2
2 16,—1.3 3041
1 5.1 1,9
0 3 2

Table 2.1: Haar wavelet transformation of sequence s

The Haar wavelet transform of sequence s is as follows, where 3 is the single
average element we got, and (2), (-1,-2), (3,0,4,1) are the difference values we got at

resolutions 0, 1, and 2 respectively.

3121-11-2]3(0}4]1

2.2.2 Discrete Fourier Transform

Performance of DFT when used with conjugate property is same as that of DWT.
They only differ in the complexity of transformation. Since DFT can be used as

alternative to DWT, more details about DF'T is given below.

17

A Fourier transform is an operation which converts signals from time to fre-
quency domain. The situation becomes more complicated if the data has an overall
non-constant trend or includes noise. DFT is a special case of Fourier Transform,
used in such cases where the data is not periodic i.e., DF'T is used when both the
time and frequency variables are discrete [Opp96]. In DFT the signal is considered
as a periodic signal over one period [Opp96]. The discrete Fourier transform changes
an N point input signal into two N/2 4+ 1 point output signals [Smi97]. The input
signal contains the signal being decomposed, while the two output signals contain
the amplitudes of the component sine and cosine waves. Moreover the first half of
the DFT is the complex conjugate of the second part i.e., first half of the trans-
formed signal is a mirror image of the second half. The term frequency domain is
used to describe the amplitudes of the sine and cosine waves.

In typical problems, one seeks a representation of the signal, valid for ¢ € [0, T
for period T for a sequence p of length N. Since there are N sample values, DFT gives
a set of N equations for the unknown coefficients . For N samples or N unknowns,
we want to determine N unknown coefficients Ag; A1, -+, An/e and By, -+, Byja—1
as:

F(8) = 1/240 + Y3 [Ap cos(wy,) + B, sin(wy, t)] (2.1)

where the angular frequencies A, and B, is given by:

18

A, =2/N Y\ y(n)cos(2n(p—)n/N); forp=1,2,--- ,N/2 (22)
B, =2/N ij:l y(n)sin(2n(p — 1)n/N); forp=1,2,--- ,N/2

The first sample Ay of the transformed series is the DC component, more

commonly known as the average of the input series.

N
Ao = 1/NZZ/(”)

N
Anpr =1/NY " y(n) cos(nr)
n=1
B() = BN/2 = 0

For more details, interested readers are referred to [Opp96, Smi97].

2.3 APCA

Global dimensionality reduction techniques cannot capture the entire information
of a time sequence in general since the intensity of a segment in a time series is
not always the same. The performance of an index can be improved if a local
dimensionality reduction is used instead. This is the key idea in using the APCA
reduction technique which allows representation of segments of different sizes with
minimized approximation error. To be more precise, given a time series C =<

c1," - ,Cq >, the APCA technique splits C into variable length segments, based on

19

the data values, and represents the series as a collection C’ of segments of the form
< cug, CT >, where cvy is the mean of values in the k" segment and cry, is the index

of the last value in that segment. That is,

C' = (< cvy,ery >, < cvgycrg >, -+, < cop,Cry >), crg=0 (2.3)

Length of the k* segment can be calculated as cry — crg_1. Fig. 2.4 taken
from [Keo01] shows an example of a time series represented by M APCA segments,
for (M = 4), in this example. Table. 2.2 gives the summary of notations used by

APCA representation [Keo01].

cry T3

1
?" N cry

v

Figure 2.4: Time series with M = 4 and its APCA representation [Keo01]

2.3.1 APCA Representation

The algorithm works by first applying the Haar wavelet transform to the sequences in
the database and converting the result to the APCA representation. The algorithm
computes Haar wavelet in O(n) time and sorts the coeflicients in decreasing order
of their normalized magnitude and truncates the smallest coefficients. These values

are used to reconstruct the signal and the segments may have approximate mean

20

[Symbols | Definition

n Length of time series

C=<cy - ,cp> Time series in the data base

N Dimensionality of the index struc-
ture,N<n

M No. of APCA segments, M =
L(N/2)]

C' = (< cv,erp >,< cvg,crg >, | C' is APCA representation of C

s < cup,ery >), crg =0 with cv; having the mean value of

segment and cr; has the index value
of the last element of the segment

D(Q,C) Euclidean distance

DLB(®',C") Lower bounding approximation of
Euclidean distance

cmazx;, cmin; Min and Max values of the it" seg-
ment of the APCA representation

C = ((« cminy,ery >, -+ ,< | MBR of a point C

cminyg, cry >), (< cmazy,ery >
e, < Cmaza, cry >))

R = (L,H) where L = |MBR associated with a node with

(li,l,--,In) and H = | Lower(L) and Higher(H) bound-

(h1,ha, - hy) aries

MINDIST(Q, R) Minimum distance between the
query time series Q and MBR R

MINDIST(Q, R, t) Minimum distance between MBR R

and query Q at time t

Table 2.2: Summary of the notations used by APCA representation [Keo01]

values. There are two more issues that should be considered for this approach:

1. DWT is defined only for time series whose length is 2 for any integer value
a. If the length of time series is not of this form, then the sequence is padded
with zeros and the corresponding segments are then truncated from HWT,

after the transformation.

2. Only the largest M coefficients are then retained after DWT is applied and

21

if the reconstructed signal has more than M segments, adjacent segments are
repeatedly merged until we get M segments. The segments are merged in such
a way that the increase in reconstruction error is minimal. This is explained

later.

APCA construction of a signal/series is performed after obtaining the HWT
of the signal. The following example illustrates the steps of computing the APCA
representation for the time series C =< 7,5,5,3,3,3,6,4 > of length n = 8 and
consider the index value starts with 1. Suppose M = 3 is the number of APCA
segments to be represented by this series. The APCA algorithm needs HW'T of C
to get the APCA representation. APCA representation of a sequence is obtained
through the following steps.

Example for Computing APCA(C):

| Resolution | Average | Difference | Normalization value |
3 7,5,5,3,3,3,6,4
2 6,4,3,5 1,1,0,1 1/2(1/v/2)?
1 5,4 1,-1 1/v/2(1/4/2)1
0 4.5 0.5 1(1/4/2)°

Table 2.3: Haar wavelet transform of C

1. Table. 2.3.1 shows the computation of DWT for the given C. The Haar coef-

ficients of C are He = (4.5,0.5,1, —1,1,1,0,1).

2. Multiply Normalization coefficients with Haar coefficients to get normalized
coefficients. He = (4.5,0.5,1/+/2,—1/4/2,1/2,1/2,0,1/2) are the normalized

22

| Resolution | Average | Difference |

0 45 0
1 45,45 1,-1
2 5.5,3.5,3.5,55 ‘

Table 2.4: Reconstruction of the signal

Haar coefficients of C. Without normalization, the output coefficients would
have successively greater energy and in case of a multi-resolution transform
(such as wavelets), transformation is done more than once which would lead

to much larger coefficients in the transform domain.

. By sorting the coefficients in decreasing order of the magnitude, we get Hpo =<
4.5,1/v/2,-1/+/2,0.5,1/2,1/2,1/2,0 >, in which the last N — M haar coeffi-

cients are replaced with zeros. This yields Ho =< 4.5,0,1,—1,0,0,0,0 >.

. Signal is reconstructed as shown in Table. 2.4. This reconstruction of signal
continues until the number of elements in the reconstructed signal is at least
M. In this case, we terminate the process at resolution 2 (resolution gives

power of 2 indicating the number of elements at that point).

. Approximated values of reconstructed signal <5.5, 3.5, 3.5, 5.5> are replaced
by the exact values <6, 4, 3, 5>. For this, either ceiling or floor of these values

is considered randomly.

. Merge the second and third segments since the difference between them is
minimum, with the mean value 3.5. We now obtained the 3 segments <6, 3.5,

23

7.

5>.

Represent each segment with its mean value and the index of the last element
in the segment. This gives ' =< 6,2 >,< 3.5,6 >,< 5,8 > as the APCA

representation of C.

The algorithm for creating APCA representation is provided as follows [Keo01]

Algorithm APCA Construction(C, M):

Input: Time Series C, Number of Dimensions M;

Output: APCA representation of C;

Si.

Sy.

Ss.

Sy.

Ss.

Se-

Verify the length of C' and if it is not a power of 2, pad C with zeros until its

length is of this form.

Compute Haar wavelet transform of C.

Sort the coefficients in the decreasing order of the normalized magnitude and

mark all the coefficients except the first M as zero.

Reconstruct APCA approximation of C' from the retained coefficients.

If reconstructed sequence C' is padded with zeros, truncate it to the original
length and replace the approximated values with exact values in the signal

resulted by reconstruction.

while the number of segments is greater than M.

24

Se.1- Merge adjacent segments whose difference is minimal

S7. endwhile

Sg. Find the mean values for each segment and store it with the index value of

the last element.

End APCA Construction;

2.3.2 Bounding Regions

While the APCA representation of a time series C is obtained and calculated as
described, the boundaries of this point is computed as follows. Fig. 2.5 [Keo01]
shows a time series with four segments. It also shows the minimum and maximum
values of the segments used to define the boundaries when creating the index. In the

figure, values cmin; and cmax; represent the minimum and maximum boundaries

LHGx..

Lo
cmgx e, 2 O

h-ﬂ % GIAS, i
/ o) cmin 1
i 2 il |
s -—;é ; ¢ — S})
coin
2

C

Figure 2.5: Boundaries of a time series C' [Keo01]

of the i segment in C. Then the minimum bounding region(MBR) of the sequence
is given by R = (L, H) where L = (I;,l5,- -+ ,{y) represents the lower boundary and

H = (h1, ha,- - , hy) represents higher boundary for a region/ point. The bounding

25

region of a point C' is defined as

C = ((< eming,cry >, , < cmingg, cry >), (2.4)

(< emazy,cry >, -+, < cmazy, cry >))

where cr; is the index value of the last element of the segment. Suppose R is the
MBR of a leaf node U. For every time series C' inserted into U, the bounding region

is computed as follows:

emin = min{", |, (Cy) (2.5)

cri
cmaz = max;_,. ., (Cy)

mingceycemingiyye if @15 odd

mingceycr;/s if i1s even

maXcoeyCmaz(it1y2 f 118 odd

mMaxceyCri/s if 11s even
\

The following example [Keo01] shows the computation of MBRs.

Example for Computing Bounding region

1. Let A=<4,6,1,0,2> and B =< 4,3,5,1,3 > be two time series.

2. 2-segment APCA representations of A and B are given by A = {< 5,2 >, <
1,5 >} and B ={< 4,3 >,< 2,5 >}, respectively.

26

3. Now the boundaries of A is given by A = ((< min{4,6},2 >, < min{1,0,2},5 >
),(< maz{4,6},2 >, < maz{1,0,2},5 >)) and
B = ((< min{4,3,5},3 >, < min{1,3},5 >), (< maz{4,3,5},3 >,
< maz{l,3},5 >))
That is, A = ((< 4,2 >,< 0,5 >), (< 6,2>,<2,5>)) and B = ((< 3,3 >

,<1,5>), (<5,3>,<3,5>)).

4. Assume that both A and B are in the same node. Then the MBR R of A and
B is the smallest rectangle that spatially contains A and B, and R is computed
as ((min(4,3),min(2,3), min(0, 1),min(5,5)),

(max(6,5), maz(2,3), max(2,3),maz(5,5)))

=((3,1,0,5), (6,3,3,5)).

They also define the distance measures Drp and MINDIST to support the new
representation [KeoO1|. Dy helps in finding the distance between the query Q and
APCA representation of a point in C. This measure finds the APCA representation
of) with respect to the end points of each segment of the APCA representation of
C. That is,) is segmented in the same way as C, and if both are similar, then the
distance will be close to zero. Fig. 2.6 shows the segmenting of () with respect to C

taken from [KeoO1]. Dyp defines the distance between these two points as follows:

M
Drp(@,C) = \}Z (ery — cri—1)(qu; — cv;)? (2.9)
=1

27

Q =< qui,qr1 >, < qUa, qra >, , < qUM, qTM > (2.10)

where qr; = cr;

11
Diet@ .03

S—

Figure 2.6: (I) Query @ and APCA representation of C. (II) Query @ segmented
with respect to the end points of C. (III) Dyp as the square root of sum of the
product of squared length with length of the segments they join [Keo0O1].

MINDIST is used to measure the distance between the query Q and MBR R
of an internal node. There are two types of MINDIST functions. The first one finds
the distance between () and R whereas the other one finds the distance between

and R at a particular instant of time. The MINDIST measures are defined as:

MINDIST(Q,R) = i MINDIST(Q, R, 1) (2.11)

i=1

f

Gl - @) if @ <G[]
MINDIST(Q,G,t) =4 ¢ —G[3])? if G[3] < g (2.12)

0 otherwise
\

28

where GF is the 2 dimensional rectangular region associated with R that fully con-

tains the 5** segment of all time series points in U.

G = o (2.13)
G2l = hia+1
GH3] = ha

Gﬁ [4:] == hgi

The proposed index structure uses the APCA approximation and the distance
measures proposed originally by Mehrotra et al. [Keo01]. As introduced earlier we
use these two distance measures Dyg and MIN DIST in our work, one to determine
the distance Dyp between the query and a data item in a leaf node in the index, and
the other to determine the distance MIN DIST between the query and minimum
bounding rectangles (MBR) of the tree, which is an internal node. For more details,

interested readers are referred to [Keo01].

29

Chapter 3

Related Work

In this chapter we review similarity matching and different indexing techniques on
time series data. For this we start with queries and need of index on time series
data in section 3.1. A brief description of use of similarity match is also given in
this section. In section 3.2 we present a review of available indexing techniques from
oldest to the newest, describing their benefits and limitations. R-tree is discussed
in detail (section 3.3) as it is part of our indexing technique. Our discussion of MRI
would also be in detail as our work enhances this index structure (section 3.4). The
impact of some parameters such as different dimensions, threshold and query length

on the index are also studied in this chapter.

3.1 Similarity Matching

It is a challenge in time series to find patterns which are similar to an input pattern.

These queries involve specification of both a query pattern and a range of allowable

30

similarity. The traditional sequential scan is inadequate for this purpose because of
the data size. The demand to support efficient query processing over such data is
growing fast [Keo00, Keo01], and a number of indexing techniques have been pro-
posed to address the challenge for efficiency. These techniques are discussed below.
A desired index should occupy less space and return the result with less number of
disk access (I/O operations) as this is the major factor that affects efficiency of the
index.

Range queries and nearest neighbour queries for whole matching and subse-
quence matching are principal queries of interest in time series data. Whole matching
corresponds to the case where the query sequence and the sequences in the database
are of the same length. Subsequence matching is a different but related problem,
where the query sequence in general is much shorter than the sequences in the
database. For example, consider the query: "Find the days in which stock X had
the same value as the value of X today(Closing price)". The solution to answer this
query is to check every sequence in the database.

The use of variable length queries to find similar patterns in the database
is obvious, however based on the performance of the index in terms of precision
and disk 1/O’s, there is no best solution for such queries till now [Kah04]. Multi-
resolution Index (MRI) solves this problem to some extent but has some drawbacks

such as memory requirement, low precision, and speed. Our goal in this work is

31

to increase the precision of MRI for variable length queries and improve its mem-
ory utilization by avoiding insertion of redundant subsequences into the index. In
our proposed indexing technique, we use APCA representation for dimensionality
reduction to create index. Furthermore, we suggest that using an R-tree/I-adaptive
index structure at every resolution is sufficient to get the result of a query, increase
precision and speed, and decrease memory requirement. However, unlike in MRI,
for this indexing technique, there is no need for any compression in our technique

as the index size is much less compared to MRI [Kah04].

3.2 Indexing Techniques on Time Series

Given a query sequence Q, problem is to find similar patterns from the database.
For accurate and efficient answering of these queries we need an index on time
series. Time series databases use high dimensional index structures such as Grid
files [Nie81, Nie84], R-Tree |Gut84|, R*-Tree [Bec90], I-adaptive Index [Fal94|, KD-
Tree [Den95], and VP-Tree [Tol99]. All these indexes partition either the data or
the space into regions in a way that makes it easier to restrict the search to only
those regions which potentially contain "good" matches.
Guttmann introduced R-tree structure to deal with multi-resolution data [Gut84].

Faloutsos et al. [Fal94] modified the insertion algorithm of R-tree to tightly pack
the nodes in order to solve the matching problem for fixed length queries. This

was called the I-adaptive index, which divides a given data sequence into sub-trails

32

based on a marginal cost, and represent each of these trails in a Minimum Bounding
Rectangles (MBRs). Marginal cost of the bounding regions is calculated as follows

before inserting a node:

1. Let L = Ly, Lo, ..., L, be the lengths of the bounding regions along the n-

dimensions.
2. A=3""(L; 4+ 0.5) gives the area of bounding region.
3. Marginal cost mc = A/k, where k is the number of points in the MBR.

Whether a node should be inserted into this MBR, or not is decided based on
the marginal cost value. They also proposed Prefix search and Multi-piece search
for variable length queries. Prefix search performs a database search using the prefix
of the query whose length is equal to the length of the sequences for which the index
is built. Multi-piece search splits the query sequence into non-overlapping subse-
quences of fixed length and performs fixed length queries for all these subsequences.

Li et al. |Li 00| proposed Skyline index structure to improve the performance
of dimensionality reduction techniques, such as APCA, by representing a group
of related time series data according to their collective shape, known as Skyline
Bounding Regions (SBR). They define tight lower bounding distance based on SBR,
and hence reduce the number of index pages accessed and the number of data objects
retrieved. Even with all these improvements, the performance of these indexes

degrades for variable length queries.

33

As a solution to this problem, Kahveci and Singh [Kah01, Kah04] proposed a
Multi-Resolution Index together with corresponding search methods to solve range
and nearest neighbour queries. This index is known as multi-resolution index (MRI)
because all the sequences in the database are stored in the index at different resolu-
tion levels. The MRI index is a grid structure with each row recording the sequences
at a particular resolution and each column recording a particular sequence at differ-
ent resolutions. This index is created using different window sizes for every sequence
and by picking the length of the sequence just greater than the highest resolution
in the index. As is the case in other indexes, the length of the sequence considered
at each row is a power of 2 (2%), for every integer i, where a < i < b.

The Search algorithms split the query into non-overlapping subqueries in such
a way that every subquery has its resolution present in the index. Range search
algorithm searches the index for every resolution of the subquery and refines the
threshold used after each search. The experiment results in [Kah04] indicate that
their method is 4 to 20 times faster than all other techniques. For K-Nearest neigh-
bour (KNN) search, they first find the approximate distance for the k** neighbour,
and then using this distance as the threshold, they perform exact range search to
find the K nearest neighbours (KNN).

Since the size of MRI index is large, they also used compression techniques to
reduce the index size. Sun et al. [Sun03] improved compression of MRI through

Virtual Bounding Rectangle (VBR), which they called it as Compressed MRI.

34

VBRs are index nodes containing and approximating MBRs, and can be represented
compactly. Their results show that VBRs save 80% — 93% on storage utilization
compared to MBRs. They also optimized the search algorithm which improves the
pruning power of the MRI index proposed in [Kah04]. In our experimental results,
we compare performance of their search algorithm on our CMRI.

The next two sections discuss R-tree and MRI in detail as our technique uses
R-tree/I-adaptive index and enhances MRI. Since the structure of I-adaptive index
is same as R-tree and optimization of I-adaptive index is explained above, it is not

discussed further.

3.3 R-Tree Index Structure

As a solution to handle multi dimensional data, Guttman proposed a multidimen-
sional index structure known as R-tree [Gut84]. An R-tree is a height-balanced tree
similar to a B-tree with index records in the leaf nodes containing pointers to data
objects. The structure of R-tree is designed so that a spatial search requires visiting
only a small number of nodes. It differs from B-tree in that each node in the R-tree
is multidimensional. The root of an R-tree is a node which covers the entire region of
the database and has pointers to sub regions or children. Each child in turn covers a
sub region that leads to a set of leaf nodes which contain pointers to specific regions.
The depth (or levels) of R-tree is not fixed and grows as the data grows. We remark

that while a hash index cannot handle range searches, a B-tree index handles range

35

searches only in a single dimension. On the other hand, R-trees can handle range
searches on multi-dimensional data.

For example, if an R-tree index is built on an attribute of type point, queries
such as "List all points within a bounding rectangle” can be answered more efficiently.

A spatial database consists of a collection of data representing spatial objects,
and each object has a unique identifier and a pointer which can be used to retrieve it.
Let M be the maximum number of entries that can fit in one node and let m = M/2
be a parameter specifying the minimum number of entries in each node. An R-tree

satisfies the following properties [Gut84]:

1. Every leaf node in the index contains between m and M index records unless

it is the root.

2. For each index record in a leaf node, I is the smallest rectangle that spatially

contains the n-dimensional data object represented by the indicated tuple.

3. Every non-leaf node in the index contains between m and M children unless

it is the root.

4. For each entry in a non-leaf node, I is the smallest rectangle that spatially

contains the rectangles in the child node.

5. The root node has at least two children unless the tree has only one node.

6. All leaf nodes appear on the same level.

36

Pipeline

Pipe
House2

Figure 3.1: Two dimensional representation of 7 regions [Mol02]

(]

o

£

[= 9

o

=}

£

Q

o

£

[T}

o

Q

[72]

3

-» T
~~

S 2

9 2

=3 >3]

[} w
—
p—
—~
o
a
o
o
=

-~ —

Q

W

3

I~ e
(o]
57
<

= 9

s 8

S &
N’
p—g

Roadl

Figure 3.2: Relative R-Tree index to the 7 regions [Mol02]

37

Fig. 3.1 shows 7 regions in a two dimensional space, and Fig. 3.2 shows how
these regions are grouped and indexed into an R-tree, both taken from [Mol02]. The
first figure also illustrates the containment and overlapping relationships among the
regions. The regions are grouped in such a way that there is minimal increase in
the area of an internal node, and splits the leaf node if there is no room. The
R-tree is a hierarchical tree structure with nodes at different levels of the tree.
Performance of an R-tree index structure for queries is roughly proportional to the
area and perimeter of the index nodes. The area covered at level 0 represents the
area occupied by the minimum bounding rectangles of the data geometries, the area
at level 1 indicates the area covered by leaf-level R-tree nodes, and so on. The
original ratio of the area at the root (top most level) to the area at level 0 can
change over time based on updates to the dataset. If there is a degradation in that
ratio (that is, if it increases significantly), restructuring the index may be required
to improve its performance. The only disadvantage of R-tree is that the bounding
regions of the nodes in the tree might overlap [Sub98]. Thus, the search on R-tree
might lead to different paths increasing the disk I1/Os.

For spatial data, there are two important types of basic queries:

1. Range query: Given a query region, find all objects which intersect this region.

2. Nearest neighbour query: Given an object, find its k-nearest neighbours.

We can use an R-tree index to answer these basic queries efficiently. A spatial
R-tree index can index spatial data and approximates each geometry by a single

38

rectangle, called the minimum bounding rectangle (MBR), that minimally encloses
the geometry. For a layer of geometries, an R-tree index structure consists of a
hierarchical index on the MBRs of the geometries in the layer. Let Q be the query
rectangular region. Then an R-tree search algorithm starts at root, finds the nodes
intersecting with Q, searches the subtrees of these nodes for intersecting nodes, and
returns the set of leaf nodes (regions) which intersects with the query rectangle.
These points are then extracted to find the exact match with the query.

Before closing this section, it should be mentioned that any column of a table
or relation can be used for indexing, if desired. For example, in stock market appli-
cation, for every stock data we have information on date, values of high, low, close,
and the volume. However, we build index only on the closing price, which is the key

attribute to discover the trends of time series.

3.4 Multi-Resolution Index (MRI)

MRI is a multi-dimensional index structure that supports range and nearest neigh-
bour searching for variable length queries originally proposed in [Kah04]. It uses
multi-dimensional indexes at several resolutions, which is constructed as follows.
For sequences (s1, 2, -+ ,$,), MRI stores a grid of trees T} ;, where ¢ ranges from
resolution a to b, and j ranges over the sequences s; to s,. For this, MRI stores
MBRs corresponding to database sequences at different resolutions. More precisely,

tree T; ; is the collection of MBRs for window size w = 2 corresponding to sequence

39

s;. The tree is an I-adaptive index, where each MBR is extended to tightly cover
the next transformed sequence of length w (= 2¢) until the marginal cost increases,
in which case a new MBR will be created. Fig. 3.3 shows the structure of the
MRI index, taken from [KahO4|. A separate tree T; ; is built for the MBRs of each
sequence s; at different resolutions 7. The ith row of the index is represented as the
collection R; = {T;1, - ,Tin}, and the j** column of the index is represented as

the collection C; = {T,;, -+ ,Tp;}-

Ta,l; Ta,Z Ta.n
w=2" |1]].. [00 10T - [[RowR,
Tae11 Ta+1,2 Taﬂ,n
aooe. oy (o0 NN
in,l Tp2 Ton
v=2 | oo g [oo.g] - [oo-O
Column Cy

Figure 3.3: Structure of MRI [Kah04]

40

3.4.1 Query Partitioning

Tamer and Singh also proposed the query partitioning algorithm to support variable
length queries on their index structure. Given a query @) of any arbitrary length,
the search algorithm partitions the query in a unique way into various subqueries
whose lengths match one of the resolutions in the index. The longest prefix of)
whose length is a multiple of minimum window size is considered if the length of
(@ is not already a multiple of minimum window size. For example, assume that
the length of @ is 250 and the minimum and maximum size of window in index is
4 to 8. Then in the search, the largest multiple of 16 (2%) less than 250, i.e., 240,
would be considered as the length of the prefix of Q). But before the search begins,
this query is partitioned in the increasing order of the length of subsequences as
q = q1,42,G3,qa, where ¢; = 16, g2 = 32, g3 = 64, and g4 = 128. Now the search is
performed on each of these subqueries at their respective resolutions on the index

and the results from each subquery are combined to give the final result of query Q.

Partition Algorithm(glen):
Input: Query length glen;

Output: Partition lengths of ¢1, ¢z, -;
Si. Take the largest multiple of 2% less than query length, call this as glen.

Sy. Let len = [glen/2%].

41

Ss. Get the binary representation of len.

Sy4. for every value of 1 in the binary representation, get a partition of length =

29+ where i is the position of 1 in the binary representation.

Sa1. if a +4 > b, replace 1 with two partitions of length 2%+¢~1; else replace 1
with a single partition of length 2%, Repeat this step while the length

of partition is still greater than 2°.
end for

End Partition Algorithm;

Let us consider the following example to illustrate this algorithm. Let @) be a query
of length 750. Assume the index has resolutions from 4 to 8. Then partition of
q is obtained as follows. We consider a prefix of length 736, since it is the largest
multiple of 16 (2%, where a is the lowest available resolution 4) less than 750. Since
we want the minimum length of each partition to be 16 (2% or 2%), we divide the
prefix length with 16, divide 736 with 16, which gives 46. Binary representation of

46 is 101110. The array given below shows the binary representation and positions.

Binary |[1{0|1]1|1]0

Position |5(4|3(2|1|0

The following partitions are obtained after the first iteration. Notice that each
partition is multiplied by 2%, which is the minimum length of the query.

42

Partition1 | 29| 27|26 25

Following the algorithm, the result after the second iteration of the partitioning is

Partition2 | 28 | 28 | 27 [26 | 25

Finally we partition the query into subqueries of lengths 32, 64, 128, 256, and 256.
Sum of length of all partitions must be equal to the prefix length, which in this case

is 736.

3.4.2 Range Query

Range query is the search for sequences that fall within a range (distance/threshold)
from the query sequence. For range query, a threshold value is provided to get close
enough sequences that match the query. In MRI, range search algorithm starts by
partitioning the query sequence () of any length into a number of subqueries as
¢ = qi¢2- - qi, where ¢’ is the prefix of ¢ whose length |¢/| is the largest integer
7 such that |g| > 27, and that |¢;| = 2%, fora < ¢ < b,and 1 < i < t at
different resolutions available in the index structure. A partial range query is then
performed on all the partitions of the query at the corresponding row of the index

structure. The threshold value is updated for range search on the next partition

43

after each partial range query. This process is repeated until the last partition and

the subsequences are retrieved based on the candidate set returned.

3.4.3 Nearest Neighbour Query

For a nearest neighbour query, we search for k closest subsequences to the query
sequence, where k is the number of neighbours given as input by the user. In MRI,
nearest neighbour search is performed in two phases. First, it takes the longest
prefix of ¢ whose resolution appears in the MRI index structure and finds the k
closest MBRs. The sequences are then read from these MBRs to find the actual
distance, and the k™ smallest distance (d) is considered as the threshold value for
the next phase. Only a small percentage of data is processed at this stage. In the
second phase, a range query is performed using the threshold value d on index for
query . It is guaranteed that k nearest neighbours are retrieved in this phase
because distance to actual k** neighbour is at most d. In our work, we use the same
algorithm for nearest neighbour search. A modification of these two algorithms is
given in next chapter. For more details about these search algorithms interested

readers are refered to [Kah04].

3.4.4 Limitations of MRI

Limitations of MRI are summarized as follows.

1. MRI is a complex grid structure.

44

2. The structure gets complicated as the number of sequences increases.

3. There are redundant sequences inserted into the index.

4. The search algorithm is time consuming as it goes through every sequence.
5. It needs compression to reduce the index size.

6. Precision/accuracy is good when compared to existing techniques, however it

is not the best and could be further improved.

3.5 Parameters Affecting Performance

The following are the parameters that play a vital role in the performance of an

index.

Dimensions

Number of dimensions used for the index plays an important role in improv-
ing performance of the index. The optimum number of dimensions needed for any
spatial multidimensional index on a particular database has to be experimented
considering the memory consumption, speed, and performance of the index. So be-
fore fixing the dimensions, one must experiment by creating the index at different
dimensions as the performance of the index is very much data dependent. In our

experiments, we evaluate the performance of the index at different dimensions.

45

Threshold

Threshold is the radius given for the range queries. The performance of the
index also depends on the threshold value of the input query. Given a query, a thresh-
old value is also provided by the user. As the threshold value increases, searching
through index results in accessing large amount of data. Large number of results
is not useful to predict events and so it is the responsibility of the user to provide

proper threshold value.

Query Length

Query length also plays an important role in finding similar patterns in time
series databases. As the query length increases, there is a higher chance of increase
in the distance between similar sequences and hence the threshold value should be
larger. Nearest neighbour queries are useful in finding K most similar patterns to
the query, if there is no proper result using range search. In case of range search,
if the query length is small, then a slight increase in the threshold might lead to
increase in the result set as it is more likely to find similar patterns for smaller length

queries.

46

Chapter 4

Our Proposed Index

In the previous chapter, we studied the MRI index structure proposed in [Kah04],
and discussed its drawbacks and limitations. One major drawback is the index size,
when the data is very large; the MRI index may not fit in the main memory and
hence compression techniques are required to reduce the index size. To address this,
the authors of MRI proposed compression techniques to reduce the index size while
preserving the information content. A question which arises at this point is that
whether we could redesign MRI such that we continue to enjoy its capabilities while
reducing its space utilization without requiring any compression?

In our investigation of this issue, we found the answer to be positive. In
what follows, we introduce a multi-resolution indexing technique as an alternative to
MRI which improves MRI in several aspects including precision/accuracy and speed,
in addition to the index size. We use APCA as a local dimensionality reduction

technique for our index structure, which is responsible for increase in precision. We

47

l Sequence } RMRI | MRI }
s1: 1,2,---,68 | 1-4,2-5,--- ,65-68 | 1-4,2-5,---,65-68

Sa: 2,3, -,69 66-69 (2-5,3-6,- - -),66-69
s3: 3,4,---,70 67-70 (3-6,4-7,--),67-70

Table 4.1: Indexing sequence file A using RMRI and MRI index structures

use an intermediate index structure called Reduced MRI (RMRI, for short) as a basis
to establish the correctness of our technique, called Compact MRI (CMRI) [Sri06].
Section 4.1 explains RMRI which avoids the redundancy of MRI and justifies that
a simple tree at every resolution is sufficient instead using multiple trees as in the
proposed MRI structure [Kah04]. CMRI uses a tree at every resolution and can be

directly constructed by the algorithm given in section 4.3.1.

4.1 Reduced Multi-Resolution Index Structure

Reduced MRI (RMRI) is a simplified structure obtained from MRI by avoiding the
redundant insertions of sequences done by MRI. We illustrate this redundancy by
an example. Consider a time series database with two datasets A and B, where A
includes integers from 1 to 1000 and B includes multiples of 10 from 10 to 10000.
Suppose the minimum length of query is 4 and the MRI index is created for reso-
lutions 4 to 64. Also suppose the sequence length is 68, which lies between 2% and
27,

Tables. 4.1 and 4.2 shows some nodes in the MRI and RMRI index structures

at resolution 4 for the datasets A and B, respectively. The first table shows the

48

} Sequence I RMRI I MRI l
st 10,20,---,680 | 10-40,20-50,- - - ,650-680 | 10-40,20-50,- - - ,650-680
Si+1: 20,30, --,690 660-690 (20-50,30-60,- - -),660-690
Si+3: 30,40, -+, 700 670-700 (30-60,40-70,- - -),670-700

Table 4.2: Indexing sequence file B using RMRI and MRI index structures

initial three subsequences s1, sz, s3 in A after being inserted, where x-y indicates the
values z to y. The second table shows this for the initial three values in B. Each
sequence inserted into the index is separated by comma. These tables show the
index after insertion of the first three subsequences in datasets A and B, with MRI
column showing the inserted nodes of MRI structure and RMRI column showing
the inserted nodes by eliminating the redundant subsequences.

As can be seen from these tables, MRI inserts some redundant sequences,
indicated in parentheses in the MRI column. Insertion of such sequences unnec-
essarily increases the size of the MRI index. In RMRI, we do not index repeated
sequences shown in parentheses, which improves space and time over MRI for stor-
ing and searching operations. This also explains the name RMRI for this technique.
As a result, RMRI essentially follows the structure of MRI in which, for every se-
quence, we have just one node at every resolution except for the first sequence in the
database as shown in the tables. Besides, RMRI uses a local dimensionality reduc-
tion technique, as opposed to a global dimensionality reduction technique employed
in MRI.

Construction of RMRI proceeds as follows. First we use APCA as the local

49

a
2 Sll S12 Sll Szi ni
v Y
a+1
2 Sit S12 Su 2j nj
5 b

Figure 4.1: Structure of Reduced MRI (RMRI)

dimensionality reduction technique, which maps a small subset of points in an M
dimensional space to points in 2M dimensional space. Similar to MRI, our index is
created for resolutions a to b, described as follows. Let s be the longest sequence
in the database, where 2° < |s| < 2°*! and the total number available sequences in
database are n. Each sequence from s; to s, have ¢, j, k subsequences of length
20 20+l and 2°. We use the minimum possible length of a query to be 2%, for
some integer a, where a < b. We apply Haar wavelet transformation (HWT) for

every sequence s in the database. The result of this transformation of sequence

50

s is the used to create the APCA representation of s, as suggested in [Keo01], to
find variable length segments. For each sequence s in each dataset, an I-adaptive
index is created for all the subsequences of s except the redundant subsequences
from resolutions a to b. The resulting index is the RMRI, whose structure is shown
in Fig. 4.1. The correctness of the RMRI index follows from the correctness of the

APCA representation, which is an established dimensionality reduction technique.

Time Series

Figure 4.2: Construction of CMRI

o1

4.2 Construction of CMRI

We use the background knowledge acquired from the techniques explained in previ-
ous chapter to construct our index CMRI. Fig. 4.2 shows the details of our construc-
tion technique. The figure clearly shows the steps performed on time series before
it is inserted into the index. APCA representation of the time series is obtained by
first applying Haar Wavelet Transform (HWT) on the time series. Bounding region
of each sequence is obtained from its APCA representation. These regions are now
inserted into the index at the corresponding resolution. This process is repeated

until all the sequences in the database are inserted into the index.

4.3 Compact Multi-Resolution Index Structure

In addition to using APCA representation in RMRI, we investigated other possible
ways to further improve the index features, including its size. From Tables. 4.1 and
4.2, we noted that the structure of the index nodes at every resolution for MRI
could be further reduced to just one node for all data sequences except for the first
sequence (as observed in tables), without loss of information. That is, the leaf nodes
of the I-adaptive index in RMRI will have the same information as those in MRI.
This ensures that there will be no false dismissals or false hits in using RMRI. We
further combined the nodes at each resolution in RMRI to form an I-adaptive index.
In other words, we have a single I-adaptive index at each resolution for the entire

time series data. The resulting index structure is called Compact MRI (CMRI, for

92

23

2a+ 1

Figure 4.3: Structure of Compact MRI (CMRI)

short) and is shown in Fig. 4.3. All the sequences are in the leaf nodes of the tree.
At resolution 2% an I-adaptive index is created for sequences s, s2,- -+ , s, where p is
the total number of sequences of length 2% in the database. In the same way ¢ and
r represent the total number of sequences in the database of length 29+! and 2°.
We reiterate that the introduction of RMRI was just conceptual, as a bridge to
establish correctness of CMRI with respect to MRI. Below we suggest a technique

to construct CMRI directly by inserting nodes in an I-adaptive index at various

23

resolutions. This is done in O(n) for the simple structure of CMRI as opposed to
the complex grid structure of MRI, where n is the number of sequences to be in-
dexed. The construction of CMRI is formally stated as follows, where the database
is the collection of the input time series data. Every sequence in the database is
transformed using APCA representation and inserted into the I-adaptive index at

every resolution.

Algorithm Create CMRI(D, a, b, M):
Input: Dataset D, resolution range a to b, and dimension M;

Output: M dimensional index structure for resolution a to b;
Sy. for all sequence s in D.

Sy.1. for all resolutions of sequence s from a to b.

’51,1,1. Apply APCA transformation on s.

S1.1.2. Insert s into 2M dimensional index tree at corresponding resolution
with pointer to location of s in D.

End Create CMRI;

4.3.1 Range Query

We propose a range search algorithm for CMRI by adopting the corresponding
algorithm proposed for MRI in [Kah04]. Instead of traversing the trees for each

o4

sequence as performed in MRI, CMRI traverses the I-adaptive index at a particular
resolution to find similar patterns with all sequences in the database. An important
consequence of the simple structure of CMRI is that its range search algorithm has
just a single loop whereas it is a double loop in MRI. The search algorithm in MRI
takes more time as the search proceeds to the next sequence after the current one is
complete, whereas in CMRI, a search is performed only at corresponding resolution.
Also, there is less chance to prune away a group of nodes at one time in MRI. In
our case, we do not have to examine sequence by sequence to find similar patterns
but rather we only need to traverse tree by tree based on the resolution. The above

steps are formalized as the following range search algorithm for CMRI.

Algorithm RangeQuery CMRI (g, €):
Input: Query ¢ and threshold ¢;

Output: Result set which includes the time sequences which match g;

Sy. Partition query ¢ of length |g|, where |g| > 2% into p parts as gi,¢2, " , ¢
in ascending order of their length such that |¢;| = 2%, for a < ¢; < b and

1<i<p;
Ss. Initialize €, = €, where € is threshold for range queries;
Ss. Fori:=1 to p:

Ss.1. Perform query ¢; on tree T at resolution k, where k = logs|q;|. Let Res;

99

be the result set for partition z;

Ssa. Set €41 := MaTperes,{\V/ € — d{qg;, B)?}, where d(g;, B) is the distance

between query subsequence ¢; and bounding region B;
Sy. Filter the results of each partition to find the match for ¢ of length |q|;

Ss. Access disk pages indicated in Res, and perform post-processing to eliminated

false retrievals.

End RangeQuery;

4.3.2 KNN Search

To find the k nearest neighbours to a query sequence, the longest prefix of the query
whose resolution appears in the index is taken and distance is computed for the k
closest MBRs to it. As in |[Kah04], this distance is used as the threshold to find
the exact k neighbours. The algorithm for KNN search proposed is given below by
[Kaho04].

Algorithm KNN-Search(Q k):

Input: Query ¢ and threshold ¢;

Output: Result set which includes the time sequences;

S1. Take the prefix of @) in ¢; whose length appears in the index. Find the set of

k closest MBRs to ¢; from the index.

S3. Read the sequences contained in these MBRs and record the distances.

96

Ss. Use the distance of k** neighbour as the threshold value to find the k neigh-

bours using exact range search algorithm.

End KNN-Search:

The precision/accuracy of CMRI is identical to that of RMRI, since the in-
formation prevailed in the R-tree is the same as those stored in RMRI. This is also
verified in our extensive experiments. On the other hand, the speed of CMRI is
significantly improved since it eliminates groups of nodes from consideration in the
search. The space utilization by RMRI and CMRI are almost the same, but much

smaller compared to MRI for the same time series databases.

4.4 Memory Calculation

Index size plays a major role in measuring the effectiveness of an index. Usually
the size of an index is greater than data size. Memory occupied by our index
is calculated in the following way. Since it uses an I-adaptive index structure to
insert M dimensional data, the tree needs 2 x 2M dimensions (2M: because of
APCA representation) for lower and higher boundaries of index entries, k bytes per
dimension, 4 bytes for node pointer. Therefore, a total of (4kM + 4n) bytes per
node of the tree is consumed, where n is the number of pointers for n children. For
each data entry, it needs (2kM + 4) bytes, where 2kM is the number of bytes for

APCA representation of the data entry and 4 bytes for each pointer to the data in

o7

the database. Hence the total size of the tree in bytes would be:

IN(4kM + 4n) + DP(2kM + 4) (4.1)

where IN is the total number of nodes in the index and DP is the number of data
points in the tree. The same equation applies for MRI too. IN and DP values for
MRI is higher when compared to CMRI because they insert redundant sequences
into the index which reflects in the increase in IN and DP values. Hence memory
consumed by MRI is more when compared to our technique.

When the space utilization is crucial, the index can also be created without
storing the APCA representation of the data point. The APCA representation of
the point can be obtained from the boundaries of the leaf node while processing.

This has an additional cost of processing for not storing APCA representation.

o8

Chapter 5

Experimental Results

In this chapter, we report our experimental results and illustrate the validity of our
CMRI index and show superiority of our approach over existing techniques such as
MRI and sequential scan for prefix search, multi-piece search, and CoMRI searching
strategy. These results are discussed in detail in this chapter. For this, we imple-
mented both CMRI and the MRI index in C++ as proposed in [Kah04]. We have
used a PC with a Pentium 4 processor running at 2.80 GHz, 1 GB RAM, 140 GB
disk space, on Windows XP. The buffer size considered for disk I/Os was 8 KB. We
used a template code for R-tree in C++ is written by G. Douglas and is available
at www.serious-code.net/moin.cgi/RTree. This is a modification or generaliza-
tion of original code proposed by Guttman to apply on any kind of data type (int,
char, float, user-defined class). Code for Haar and other wavelets is also available
at www.bearcave.com/misl/misl_tech/wavelets/packet/download.html. Code

for allocating memory blocks for the index is also obtained from the same package.

99

| Data Type | No.of Sequences | No.of Files | size |

Real 200, 000 201 1.563MB
Synthetic 200, 000 271 2.60MB
AUSLAN 1.4million 2090 20.4MB

Table 5.1: Details about TSD used in our experiments

APCA representation and MRI are implemented from the papers [Keo01, Kah04].
In these experiments we have studied and compared MRI and CMRI on preci-
sion/accuracy, efficiency, and memory utilization using real and synthetic time series
data. Details about the data collection we used in these experiments can be found
in Table 5.1.

For the real data, we collected stock market information from the Yahoo web
site at http://finance.yahoo.com. This data includes about 200,000 sequences in
201 collections/stocks with total size of 1.53 MB. Table. 5.2 shows the stocks for
which data is collected in alphabetical order. For the synthetic data, we generated
200,000 sequences in 271 collections/files with total size of 2.60 MB, where each file
is approximately 10KB. Synthetic data creation was done by generating, for each
collection, a random seed x = random(200), which was then altered by introducing
some noise to generate other values ' = = 4 random(5) in the collection.

A study of effectiveness of the index when the data size increases is performed
using AUSLAN data from http://kdd.ics.uci.edu/. The database have approx-
imately 1.5 million sequences. The dataset consists of sample Australian sign lan-

guage with 2565 signs of various lengths. Out of these 2090 files of size slightly more

60

| Alphabet | Stocks

|

a a, aa, aap, absp, acip, acmr, adam, aem, age, agup, ahcp,
amat, ambpm, aos, atgp, atp, atx

b b, ba, baxp, bb, ber, bdnpd, bfip, bfo, bgf, bkpe, blvp,
bmi, bmyp, bosc, bscpe, bscpf, bwep, bylp, bscpg

c ¢, cas, cc, ccbl, cde, cerp, cffi, chp, chrw, clppd, cmh, cof,
cpf, cpg, crepe, cxmp

d d, dd, ddpa, ddpb, ddrpf, ddrpg, dece, dhi, dkhr, dpa,
dpu, dxpd, dys

e e, ecmv, ee, eeln, egppd, eon, eoppg, epny, eqrpd, eqrpe,
et, exxa, exxb, ezm

f f, fbppd, fbppe, fcxpe, ff, fish, fmfc, fampf, fampg, fn-
mpm, fpa, fps, frepd, fun

g g, gabpd, gbppd, ge, gept, gg, giii, gis, glrpa, glrpb, gmtp,
grtpf, grtpg, gsupg

h hba, henpd, henpf, heppe, heppf, hh, hiwpd, hmepf,
hmtpe

i idsy, idtc, ibm, intc, intl, it

j jill

k k, kimpf, krbpa, krbpd, krbpe, krcpe, krtpe, kt

1 1, lehpd, lehpe, lehpf, 1g, Im, Imt, Irt, ltcpe, ltcpf

m mbt, merpe, mfw, mho, mmm, mrk, msft, mtm, mvt,
mwav, mlspe

n n, navpd, nt

0 ofcpe, ofcpf, ofcpg, ohipd, orcl, ovti

p paa, pcg, pdfs, pfcb, pfin, pg, pgl, pkypd, pp, psapf, pt,
pv

r rbspd, rbspe, rbspf, rbspm, riop, rfr

S s, sfipd, sfipe, shlm, shupd, sjm, sdopc, sdopb, sdopa,
sdoph, spgpf

t t, tdsc, tech, tom

v vnope, vcp

w wilef, wmt, wripe

y yhoo

Table 5.2: Stock market data used in our experiments

61

than 20MB are considered for the experiments. Several experiments are performed
to study the effect of MRI and CMRI for range queries on large datasets. Queries
of variable length from 16 to 1024 are considered for the experiments.

The lengths of queries are assumed to be evenly distributed. For all our ex-
periments on range queries, resolutions of the index considered were in the range
from 4 to 8. The experiments are limited to queries of varying lengths ranging from
16 to 1024. Each query sequence was generated by randomly selecting a sequence
from the database and modifying about 10% of the sequence. As in [Kah04], the
results considered are the average for 100 queries. These parameters and assump-
tions are considered for all our experiments on MRI, RMRI, and CMRI. We compare
CMRI with the basic MRI technique and with the search technique of compressed
MRI (CoMRI) proposed in [Sun03], which improves memory utilization of MRI at a
slight cost for precision and some overhead for compression. This chapter provides
details of these experiments and the results obtained. We also consider the prefix
search and compare the results with our range query experiments, which shows that
prefix search is not better than multi-piece search.

We have considered range and nearest neighbour queries of variable lengths
in our experiments, details of which are provided in the following sections. All
the graphs are accompanied with the tables showing the numerical values for each

technique.

62

08 °
/————‘/‘ 0.9 -/ L4
08
0.8

~ —s—MRI 07 —a#--Compact MRI
08 g COMpact MRI] ~#—MRI
I3 —s—Reduced MR! e 0.6 1 —o—Reducecf MRI
2 s o 4 Sequential Scan
H a4~ Sequential Scan 2 05+
a 0.4 9
’ o 0.4
03 0.3 4
02 0.2 4
01 0.1 4
[
. 0 T % ¥ % t 4
M M 8 1
4 8 Dimensions 8 10 4 6 0

Dimensions

(a) (b)

Figure 5.1: Precision for Range queries on Real data (a) and Synthetic data (b)

1 -

' 091
0.9 4 L
e 0.8 1
0.8 hd
= 07
0.7 o
06 4 5 06) ~g—Compact MRI
§ % o5 ¥ Prefix_MRI
§ 05 3 Compact MRl § st Prefix_CMRI
a 044 3— Prefix_MRI 04 -~ COMRi
0.3 i PrEfix _CMRI 0.3 1
02 ~w~COMRi 02
o -x"/’*——————*-""’/"* 011 b//"‘*
0 T + Y 1 [oF 3 ¥ 7 T T T 1
4 6 Dimensions 8 10 4 6 8 10
Dimensions

(a) (b)

Figure 5.2: Precision for Range queries on Real data (a) and Synthetic data (b)

63

Igim] MRI] CMRI | RMRI] Seq.scan | PrefixRI] PrefixCMRI I CoMRI |

4 1016 | 0.75 0.77 0.005 0.01 0.54 0.69
6 | 028 | 0.83 0.83 0.005 0.046 0.68 0.84
8 1032| 0.83 0.83 0.005 0.06 0.6 0.84
10 | 035 | 0.89 0.89 0.005 0.09 0.74 0.84
Table 5.3: Precision for Range Queries on Real Data
| Dim [MRI | CMRI | RMRI | Seq.scan | PrefixMRI | PrefixCMRI | CoMRI |
4 | 0.03 0.8 0.77 0.005 0.0002 0.56 0.69
6 | 034 093 0.83 0.005 0.015 0.82 0.84
8 038 093 0.83 0.005 0.02 0.86 0.84
10 | 0.65 | 0.95 0.89 0.005 0.07 0.9 0.84

Table 5.4: Precision for Range Queries on Synthetic Data

5.1 Range Queries

For range queries, we considered resolutions of the index ranging from 4 to 8
(4,5,6,7,8). The queries considered were also of varying lengths ranging from 16
values to 1024. For each query sequence, we randomly produced the radii in the
range [0.1, 1] as in MRI. The reason for choosing this range is in a way to standardize
the comparison of indexing techniques. We assume that the lengths of queries are
evenly distributed between 16 and 1024. As for the number of dimensions chosen
from the sequence to build the index, we have considered four different dimensions:
4, 6, 8, and 10. The aforementioned parameters, assumptions, and measures are
valid in all our experiments with MRI, RMRI, and CMRI. The assumptions and pa-
rameters are not required/made for sequential scan ~ a well-known query processing

technique. The experimental results show that precision and number of disk I/Os of

64

our techniques (RMRI and CMRI) are far better than MRI, precision is defined in
section 1.2. Precision is the ratio of number of actual matches to query in database
to the number of matches returned by index, another definition.

The graph in Fig. 5.1 shows precision for the four techniques, RMRI, CMRI,
MRI, and sequential scan at different dimensions on both real data (a) and synthetic
data (b). Since RMRI and CMRI have the same precision, their graphs in the figure
coincide, even the disk 1/O’s are same. Because of this, in the rest of this report, we
will only consider CMRI in our experimental results and comparisons. As shown in
Fig. 5.1, while the precision of MRI ranges from 0.16 to 0.34 on real data and 0.03
to 0.65 on synthetic data, the precision of CMRI is far better, ranging from 0.75 to
0.89 on real data and 0.80 to 0.95 on synthetic data. Sequential scan has the least

precision and most number of disk I/Os, as it scans the entire database.

[Dim | MRI | CMRI | RMRI | Seg.scan | PrefixMRI | PrefixCMRI | CoMRI |

4 11459 | 2.03 2.03 201 34 3.68 1.16
6 |[10.81 | 1.41 1.4 201 25.2 1.56 1.11
8 [1225| 1.7 1.68 201 28.48 1.73 1.21
10 |13.12 | 1.07 1.03 201 20.54 1.22 1.25

Table 5.5: Disk I/Os for Range Queries on Real Data

[Dim | MRI | CMRI | RMRI | Seq.scan | PrefixMRI | PrefixCMRI | CoMRI |

4 7.88 | 1.14 1.14 271 10.61 1.25 1.07
6 4.99 | 1.03 1.03 271 10.12 1.07 1.06
8 3 1.1 1 271 9.19 1.02 1.01
10 | 3.28 | 1.01 1 271 7.23 1 1.02

Table 5.6: Disk I1/0s for Range Queries on Synthetic Data

65

250 -

200 4 &
et M
150 4 R
é g Compact MRI
§ i SeQuUeEntial Scan
9100 1
50 4
W . ™
0 t % t % t %
4 8 10

Figure 5.3: Disk I/Os for

Dimensions

(a)

40 1
35 3
30
25
$
T 204
a
o
15 4
. COMpact MRI
10 1 ~¥— Prefix_MRI
—a— Prefix_CMRI
5 4 et COMRI
0 - & -
4 6 8 10
Dimensions

(a)

Disk VOs

300 -

250 4

200

150 4

100

50

o Sy

g Compact MRI

it MRI

—a— Sequential Scan

Disk I/0s

6

Dimensions

(b)

Range queries on Real data (a) and Synthetic data (b)

- Compact MRI
w3l Prefix_MRI
g PrEfiX_CMRI
s COMRI

o) @

8 10

Dimensions

(b)

Figure 5.4: Disk I/Os for Range queries on Real data (a) and Synthetic data (b)

66

The same set of experiments are performed on MRI and CMRI with prefix
search and optimized search method from CoMRI. The results are shown in Fig. 5.2.
The results for these experiments are shown in different graphs to have a more clear
presentation of their behavior. In the figure, prefix search over MRI and CMRI is
represented by Prefix MRI and Prefix CMRI. Prefix search on MRI yields poor
precision, almost close to zero, whereas with CMRI, precision of prefix search is
far greater than precision of multi-piece search with MRI. Precision of prefix search
on CMRI is close to precision of multi-piece search on CMRI. The CoMRI search
algorithm treats multi-piece search in descending order of the length of subqueries
and has almost the same performance as MRI’s search algorithm. The multi-piece
search is done in ascending order of the length of subqueries on our index CMRI.

Figs. 5.3 and 5.4 show the number of disk 1/Os performed by multi-piece
search and prefix search on CMRI and MRI, the search algorithm by CoMRI, and
sequential scan, at different dimensions for the same range queries. As we can see,
CMRI outperforms MRI by performing fewer disk accesses both on real data (a)
and synthetic data (b). The graphs also indicate that CMRI has noticeably greater
pruning power than MRI. In case of real data, the number of disk 1/Os for CMRI
is almost identical to the number of sequences in the query result. For synthetic
data, while the number of disk I/Os for MRI decreases as the number of dimensions
increases, CMRI consistently requires very few disk I/Os at every dimension. Since

sequential scan reads the entire database, the number of disk 1/Os remains high and

67

250 -‘

200 —b—h———h———h——h———h———A

150 4

Disk VOs

g Compact MRI
i MRI
—a— Sequential Scan

100 4

50-/\/—‘./\/.
Wm

W

. /
1 5 0 «

No. of neighbors

(a)

Disk I/Os

300

250

200

150

- MRI
g CoOmpact MRI
—a— Sequential Scan

No. of neighbors

(b)

Figure 5.5: Disk I/Os for nearest neighbour queries on Real data (a) and Synthetic

data (b)

equals to the number of pages read for the entire database. These figures clearly

show that multi-piece search has higher precision than prefix search. The number of

disk I/Q’s for CoMRI, prefix search on CMRI, and multi-piece search on CMRI are

similar as their graphs almost coincide. We thus exclude prefix search and CoMRI

in our experiment results and comparisons.

| K | MRI | CMRI | Seq.scan |

1| 4.09 | 33.55 201
5 1 13.1 | 79.05 201
10| 20.36 | 75.43 201
15 | 28.79 | 85.76 201
20 | 28.54 | 86.46 201
30 | 35.05 | 92.28 201
40 | 28.83 | 81.34 201
50 | 34.23 | 92.46 201

Table 5.7: Disk 1/Os for Nearest neighbour Queries on Real Data,

68

| K | MRI | CMRI | Seq.scan |
11206 | 14.71 271
5 131.37 | 68.67 271
10 | 20.36 | 69.44 271
15 [22.71 | 70.02 271
20 | 17.78 | 65.80 271
30 | 25.80 | 66.24 271
40 | 37 | 69.46 271
50 | 26.36 | 74.2 271

Table 5.8: Disk 1/Os for Nearest neighbour Queries on Synthetic Data

| Dimension | MRI | CMRI |

4 621 32
6 743 46
8 890 60
10 1276 73

Table 5.9: Memory occupied by index on stock market data at different dimensions

5.2 Nearest Neighbours Queries

Nearest neighbour queries are performed by varying the number of neighbours. Even
though both CMRI and MRI have highest precision at dimension 10, we consider
dimension 8 as optimal for search because the increase in performance from di-
mensions 8 to 10 is not much, considering the effect of the memory utilized and
the search speed. Hence we fixed the number of Haar coefficients to be 8, that
is, the number of dimensions considered for creating the index is 8. Experiments
are performed on the indexes MRI and CMRI at dimensionality 8 for number of
neighbours K = {1,5,10,15, 20, 30,40,50} on real and synthetic data. We also

considered sequential scan for the comparison. Number of disk 1/Os performed by

69

1400 -

1200 4

1000 4

800

e CMRI

600 3 i MRI

Memory in MB

400 4

200 4

=N
o 4e
-
=)

Dimensions

Figure 5.6: Memory occupied by index on stock market data at different dimensions

these techniques is used as a comparison basis. Fig. 5.5 shows the number of disk
I/0s by CMRI, MRI, and Sequential scan for nearest neighbour queries on real and
synthetic data. While the number of disk I/Os in MRI ranges from 33 to 92 for
real data (a), it ranges from 4 to 35 for CMRI. That is, ‘the maximum disk I/Os
consumed by CMRI is close to the minimum disk I/Os consumed by MRI. Also for
the synthetic data shown in (b), CMRI outperforms MRI significantly. On the syn-
thetic data, the number of disk I/Os for MRI ranges from 14 to 75, while it ranges
from 2 to 26 for CMRI. For the sequential scan, the number of disk I/Os required

is the same as the number of blocks occupied by real and synthetic data.

70

250 4 300

250

200 & ' 24 * A

it MR
200
150 -4 Compact MRI g Compact MRI
—u—MRI —a—Sequential Scan

Disk I/Os
Disk I/0s

—a— Sequential Scan

100

50 3
50
% -
. ’“‘W. o ; : .

16 82 64 128 256 52 16 32 64 128
Query Length Query Length

Q) i
-

[\]
[=]
(%))
pury
N

(a) (b)

Figure 5.7: Disk I/Os for Range queries of variable lengths on Real data (a) and
Synthetic data (b)

| Query Length | MRI | CMRI | Seq.scan |

16 95.76 | 13.04 201
32 42.01 | 3.64 201
64 36.13 | 2.66 201
128 2897 | 1.7 201
256 16.79 | 1.15 201
012 6.73 1 201

Table 5.10: Disk I/Os for variable length queries on Real Data

5.3 Memory Consumption

Reducing the memory occupied by the index is one of the goal in our research
work. We reduced the index size by avoiding the insertion of redundant sequences.
Figure. 5.6 and Table. 5.1 cleary shows the memory consumption of MRI and CMRI
for stock market data. In the graph every value is an average of total memory

occupied by the 5 indexes (from resolution 4 through 8) created for dimensions

71

| Query Length | MRI | CMRI | Seq. scan |

16 10.46 | 1.11 271
32 10.3 1.03 271
64 1097 1.1 271
128 1043 | 1.01 271
256 8.91 1.01 271
512 8.2 1.01 271

Table 5.11: Disk I/Os for variable length queries on Synthetic Data

| Query Length | MRI | CMRH

16 1215.65 | 504.38
32 1200 | 344.68
64 1159.14 | 197.1
128 1134.45 | 165.18
256 1125.65 | 59.12
512 104.4 1.76
1024 68.25 1.2

Table 5.12: Disk I/Os for variable length queries on AUSLAN Data,

{4,6,8,10}. The graph shows memory occupied by the index in Mega bytes on Y-

axis, and the corresponding dimension is shown on X-axis.

5.4 Performance on Variable Length Queries

We have also evaluated the effectiveness of CMRI, MRI, and Sequential scan for
variable length queries on real and synthetic data. For this set of experiments,
query length is limited to L = {16, 32,64,128,256,512} for all these techniques at
dimension 8. Figure 5.7 illustrate the results of these experiments. They show the
number of disk I/Os performed for each of these techniques on real and synthetic

data. Similar kind of experiments are performed on AUSLAN data and the results

72

1400 -
—a— MR

1200 —4--CMRI

1000 4

800 4

L
400 4
200 4 \
0 v v v v

16 32 64 128 256 512 1024

Disk VOs

Query Length

Figure 5.8: Disk I/Os for Range queries of variable lengths on AUSLAN data

are shown in Fig. 5.8. Effect of variable length range queries is studied on this data
for queries of length {16,32,64,128,256,512,1024}. As can be seen, CMRI outper-
forms MRI with at least one order of magnitude, and outperforms Sequential scan
with two order of magnitudes on both kinds of data. This indicates that the prun-
ing power of CMRI is significant. While performance of MRI is better on synthetic
data, our CMRI is one order of magnitude better than MRI. Moreover, as observed
in the above experiments, the performance of CMRI is consistent and similar on

both kinds of datasets — real and synthetic.

73

0.9 4

L
0.8
0.7
0.6 4 wnepos CMRI
it~ MRI
c 05
2
o
3 044
o
0.3 4
0.2 4 "~
0.1 4
.W
0 L} L) T T T 1
1 2 3 4 5 6 7

Threshold

Figure 5.9: Precision for Range queries on Real data for different thresholds

Threshold | CMRI | MRI |
1 0.84 | 0.08
2 0.561 | 0.09
3 0.32 | 0.07
4 0.3 0.08
9 0.25 | 0.08
6 0.16 | 0.06
7 0.17 | 0.05

Table 5.13: Effect of threshold on MRI and CMRI for Real Data

5.5 Effect of Threshold

The above experiments clearly showed that CMRI is superior to MRI. We conducted
a different set of experiments aimed at studying the behavior of the index at different
threshold values for range queries. Fig. 5.9 shows this for the threshold values
{1,2,3,4,5,6,7}. Results are obtained on indexes at dimension 8. >From the figure,

it is clear that performance of the index degrades as the threshold value increases.

74

0.9 4

0.8 4
0.7 4

S 05 g CMRI
% —a— MRI
2 04 4
a

0.3 4

N -//

0.1 &

o] r
4 6 8 10
Dimensions

Figure 5.10: Precision for Range queries on mean value Index

’ Dimensions] MRI | CMRI |

4 0.1 0.57
6 0.15 | 0.65
8 0.19 | 0.68
10 0.23 | 0.81

Table 5.14: Effect of mean value on MRI and CMRI for Real Data

Precision is high at threshold 1 and the least at threshold value 7. From the figure
we can observe that performance of MRI, compared to CMRI, is poor for every
threshold value. These results once again indicate superiority of the index structure,

CMRI, proposed in this work.

5.6 Effect of Mean Value Indexing

In addition to the above experiments, extensive experiments are conducted to study

the effect of mean value indexing on CMRI and MRI by removing the mean value

79

from each sequence including the query sequence. This strategy is helpful when
it is desired to invest in stocks having similar trends but may not have the same
values. Through this approach, the index helps to identify matching not only with
sequences having the same values but also with sequences having the same trend.
This approach is tested on real data. Fig. 5.10 shows the performance of our index
at different dimensions after removing the mean values from each sequence. The
graph shows the precision of CMRI and MRI at different dimensions {4,6,8,10}.
While the precision of CMRI ranges from 0.57 to 0.81, the precision of MRI ranges
from 0.1 to 0.23 for range queries. The graph clearly shows that CMRI outperforms

MRI

5.7 Summary

In this chapter we studied and compared the performance of CMRI on variable length
queries for range and nearest neighbours queries with MRI. We also compared the
performance of CMRI with prefix search and CoMRI search. We also studied effect
of varying parameters like dimensions, threshold and query length on CMRI and
MRI. We also studied behaviour of CMRI and MRI when the index is created by
removing the mean value from the sequences. The graphs clearly show that CMRI

performs better than MRI.

76

Chapter 6

Conclusions and Future Work

This chapter includes concluding remarks and possible future research directories.

6.1 Conclusions

We studied the problem of efficient indexing for variable length queries. Multi-
resolution Index (MRI) is proposed for the support of variable length queries on
TSDB. However it has a complex grid structure that occupies such a huge memory
which needs to be compressed. Even though MRI provides better solution than
previous indexing techniques, we identified different opportunities to improve MRI
in various aspects, including memory utilization and the index structure, both of
which effects its efficiency. The best precision achieved through MRI is 35%, which
provided more scope to improve MRI structure.

Considering all these aspects, we first implemented and examined the structure

and performance of MRI, and noticed that MRI introduces redundant sequences in

7

its index. It also has the limitation that the number of sequences inserted into the
index should be known. The same grid structure could be created by avoiding the
insertion of redundant sequences into the index structure. We called the result of
this first step of modification of MRI as Reduced MRI (RMRI). For this technique,
we also used APCA as local dimensionality reduction technique for the database.
Through this step we achieved memory reduction and increased precision. Further-
more, to improve the speed of index, the complex grid structure was replaced by
a simple I-adaptive index for every resolution. This resulted in our indexing tech-
nique, called Compact MRI (CMRI) as a better solution to support variable length
queries for time series data. We used RMRI as a basis for correctness of our CMRI,
RMRI (and hence CMRI) retain the essential MRI structure. Using this as a basis,
we introduced a direct construction of CMRI with a simple I-adaptive index tree at
every resolution as a far better alternative to the complex structure of MRI.
Unlike MRI which keeps track of the number of sequences, or the number of
trees (when compressed) in its index, and uses this information during a search, our
CMRI index does not record or use this information due to its simple structure.
An immediate consequence of this reduced size of CMRI is that it does not require
any compression. Dimensionality reduction technique plays an important role in
improving the precision of CMRI. Note that the APCA representation is used as a
dimensionality reduction technique for CMRI and RMRI, and uses 2M dimensions

for every M Haar coefficients considered. As a result, the precision of CMRI shown

78

in our experimental results ranges from 0.75 to 0.89 on real data, which is 2 to 3
times better than that of MRI. All these optimizations result in a much less space
utilization by CMRI which is 5% of the size as compared to MRI - a significant
reduction. This in turn resulted in increased efficiency, reduced number of disk
I/Os, and improved precision, as indicated by our experiment results. A summary
of advantages of CMRI over MRI is provided as follows.

Advantages of CMRI over MRI
1. CMRI has a simple structure compared to the complex grid structure of MRI.

2. Performance of MRI purely depends on the number of underlying sequences
and needs to track of the number of sequences in the database, whereas CMRI

does not record or use the number of sequences in the database.

3. The search algorithm in CMRI is faster than MRI as it searches resolution by

resolution rather than searching sequence by sequence done in MRI.

4. CMRI occupies much less memory compared to MRI. Size of CMRI is 5% of

the size of MRI, as proposed in [Kah04].

5. CMRI does not require compression.

6.2 Future Work

Our research has resolved the drawbacks of MRI. However there are other optimiza-
tion issues such as speed which could be further improved using more sophisticated

79

buffering schemes. This is useful and essential when handling huge volumes of data.
The basic indexing structure used by CMRI is T-adaptive index and improving it
might help in increasing the speed. Speed of the index can also be improved with a
new distance measure that tightly bounds the distance between query and a bound-
ing region. Such a distance measure would not only help in improving the speed but
also helps to improve the precision. Memory occupied by the index could be fur-
ther reduced by not storing the APCA representation of data points. Implementing
CMRI and some of the proposed improvements as components in modern DBMS
would revolutionize data management in near future.

Disk I/Os performed in KNN search can be reduced by deploying new searching
strategies. This can be achieved through a single phase search rather than with a

two phase search.

80

Bibliography

[Aga93]

[Bec90]

[Bel61]

[Cha99]

[Cha00]

Agarwal R., Faloutsos C., and Swami A. Efficient similarity search in se-
quence databases. In Proc. Int’l Conf. on Foundation of Data Organization

and Algorithms, pages 69-84, October 1993.

Beckman N., Kriegel H.P., Schneider R., and Fu W. The R*-tree: An
efficient and robust access method for points and retangles. In Proc. ACM

SIGMOD Int’l Conf. on Mangement of Data, pages 322-332, 1990.

Bellman R. E. Adaptive control process: A guided tour. Princeton Uni-

versity Press, 1961.

Chan K. and Fu W. Efficient time series matching by wavelets. In Proc.

15th Int’l Conf. on Data Engineering, pages 126-133, 1999.

Chakrabarti K. and Mehrotra S. Local dimensionality reduction: A new
approach to indexing high dimensional spaces. In Proc. 26th VL.DB Conf.,

2000.

81

[Den95|

[Fal94]

[Fal95]

[Falos]

[Gut84]

[Kah01]

[Kah04]

Deng K. and Moore A. Multiresolution instance-based learning. In Pro-
ceedings of the Twelfth International Joint Conference on Artificial Intellin-

gence, pages 1233-1239, San Francisco, 1995. Morgan Kaufmann.

Faloutsos C., Ranganathan M., and Manopolous Y. Fast subsequence
matching in time series databases. In Proc. ACM SIGMOD Int’l Conf.

on Management of Data, pages 419-429, 1994.

Faloutsos C. and Lin King-Ip (David). Fastmap: A fast algorithm for index-
ing, data mining and visualization of traditional and multimedia datasets.

In Proc. ACM SIGMOD Conf., pages 163-174, May 1995.

Faloutsos C. Searching Multimedia Databases by Content. Kluwer Aca-

demic Publishers, 1996.

Guttman A. R-trees: An efficient indexing structure for spatial searching.
In Proc. ACM SIGMOD Int’l Conf. on Management of Data, pages 47-57,

1984.

Kahveci T. and Singh A. K. Variable length queries for time series data.

In Proc. Int’l Conf. on Data Engineering, pages 273-282, 2001.

Kahveci T. and Singh A. K. Optimizing similarity search for arbitrary
length time series queries. IFEFE Transactions on Knowledge and Data

Engieering, 16(4):418-433, April 2004.

82

[Kan98] Kanth K.V.R., Agrawal D., and Singh A. Dimensionality reduction for

[Keo00]

[Keo01]

[Li 00]

[Mol02]

[Nie81]

[Nie&4]

similarity searching in dynamic databases. In Proc. ACM SIGMOD Int’l

Conf. on Management of Data, June 1998.

Keogh E., Chakrabarti K., Mehrotra S., and Pazzani M. Dimensionality
reduction for fast similarity search in large databases. In Proc. of Knowledge

and Information Systems, pages 263-286, 2000.

Keogh E., Chakrabarti K., Mehrotra S., and Pazzani M. Locally adaptive
dimensionallity reduction for indexing large time series databases. Journal

of the ACM, May 2001.

Li Q, Lopez I.LF.V., and Moon B. Skyline index for time series data. IEEFE
Transactions on Knowledge and Data Engineering (TKDE), 16:669-664,

2000.

Molina H. G., Ullman J. D., and Widom J. Database Systems: The Com-

plete Book, pages 697-700. Prentice Hall, 2002.

Nievergelt J., Hinterberger H. and Sevcik K. C. The grid file: An adaptable,

symmetric multi-key file structure. In FCI, pages 236-251, 1981.

Nievergelt J., Hinterberger H. and Sevcik K. C. The grid file: An adaptable,
symmetric multikey file structure. ACM Trans. Database Syst., 9(1):38-71,

1984.

83

[Opp96] Oppenheim A. V., Willsky A. S., and Nawab S. H. Signals & systems (2nd

|Pop02]

[Rafo7]

[Rafos]

[She80)

[Smig7]

[Sri06]

[Sub9g]

ed.), chapter 3,4,5. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

Popivanov 1. and Miller R.J. Similarity search over time series database
using wavelets. In Proc. 18th Int’l Conf. Data Engineering, pages 212-221,

2002.

Rafiei D. and Mendelzon A.O. Similarity-based queries for time series data.
In Proc. ACM SIGMOD Int’l Conf. on Management of Data, pages 13-25,

1997.

Rafiei D. and Mendelzon A.O. Efficient retrieval of similar time sequences.

In Proc. of FODO Conf., pages 249-256, 1998.

Shepard R.N. Multi dimensional scaling. Princeton University Press, 1980.

Steven W. Smith. The scientist and engineer’s quide to digital signal pro-
cessing, chapter 8, pages 141-160. California Technical Publishing, San

Diego, CA, USA, 1997.

Srividya K. and Shiri N. A compact multi-resolution index for variable
length queries on time series datasets, 2006. Submitted for evaluation for

Journal of Knowledge and Information Systems.

Subrahmanian V. S. . Principles of Multimedia Database Systems, pages

88-94. Morgan Kaufmann, 1998.

84

[Sun03] Sun H., Ozturk O, and Ferhatosmanoglu H. Comri: A compressed multi-
resolution index structure for sequence similarity queries. In IEEE Com-

puter Society Bioinformatics Conference (CSB’08), pages 553-558, 2003.

[Tol99] Tolga Bozkaya and Meral Ozsoyoglu. Indexing large metric spaces for

similarity search queries. ACM Trans. Database Syst., 24(3):361-404, 1999.

[Wu 00] Wu Y.L., Divyakant A., and Abbadi A.E. A comparision of dft and dwt
based similarity search in time series databases. In Proc. Int’l Conf. on

Information and Knowledge Management, pages 488-495, 2000.

[Yi00] Yi B. K. and Faloutsos C. Fast time sequence indexing for arbitrary lp

norms. In Proc. 26th Int’l Conf. on Very Large Databases(VLDB), 2000.

85

