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Abstract

Lucx: Lucid enriched with Context

KaiYu Wan, Ph.D.

Concordia University, 2006

Intensional logic is the mathematical foundation for Intensional Programming Languages
(IPL). Lucid, initially founded on the dataflow paradigm, embraced intensional logic, and
became a multi-dimensional intensional programming language. In all these developments
context was the core concept. In its becoming an IPL, Lucid implicitly absorbed the notion
of context, allowing expressions to be evaluated at different contexts. However, context
cannot be explicitly named and manipulated in the current versions of Lucid. This restricts
the ability of Lucid to be an effective programming language for programming diverse
applications.

This thesis discusses the extension of Lucid with contexts as a first class object. That
is, contexts can be defined, assigned values, used in expressions, and passed as function
parameters. The language thus extended, is called Lucx (Lucid extended with contexts)(the
x is used as the x in Latex). A context theory is developed to provide a semantic basis
for context manipulation in Lucx. That is, contexts, context operators, and a context cal-

culus are formally defined, and the formal syntax and semantics of Lucx are also given.
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The benefits achieved by such an extension are illustrated by applying the extended lan-
guage to program different applications including Timed Systems, Agent Communication,

Constraint Programming, and in the formal development of context-aware systems.
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Chapter 1

Introduction

Intensional logic is the mathematical foundation for Intensional Programming Languages
(IPL). Lucid, initially founded on the dataflow paradigm [67], embraced intensional logic,
and became a multi-dimensional intensional programming language [6]. In all these devel-
opments context was the core concept. In its becoming an IPL, Lucid implicitly absorbed
the notion of context, allowing expressions to be evaluated at different contexts. However,
context cannot be explicitly named in the current version of Lucid. This thesis discusses
an extension of Lucid with contexts as a first class object. The benefits achieved by such
an extension are illustrated by applying the extended language to program different appli-
cations. The goal in this chapter is to provide the background material and a motivation
for this work. We first review the role of context in Intensional Logic and the Intensional
Programming Paradigm. Next we trace the evolution of Lucid language from a dataflow
language to a multidimensional intensional programming language. Next, we discuss the

motivation of this thesis. Finally, we enumerate the significant contributions of the thesis.



1.1 Intensional Logic

Intensional Logic [22, 58] , a family of mathematical formal systems that permits expres-
sions whose value depends on hidden context, came into being from research in natural
language understanding. According to Carnap [16], the real meaning of a natural language
expression whose truth-value depends on the context in which it is uttered is its intension.
The extension of that expression is its actual truth-value in the different possible contexts
of utterance, where this expression can be evaluated. Basically, intensional logics add di-
mensions to logical expressions, and non-intensional logics can be viewed as constant in
all possible dimensions, i.e. their valuation does not vary according to their context of ut-
terance [46]. Intensional operators are defined to navigate in the context space. In order
to navigate, some dimension fags (or indexes) are required to provide placeholders along
dimensions. These dimension tags, along with the dimension names they belong to, are
used to define the context for evaluating intensional expressions. For example, we can have

an expression:

E: Beijing is now the capital of China.

This expression is intensional because the truth value of this expression depends on
the context in which it is evaluated. The intensional natural language operators in this
expression is now, which refers to the time dimension. Today it is certainly true, but there
existed time points in the past when China had a different capital. For example, before
1949, the capital of China was NanJing. Those different values (i.e. True or False) along
different time points are extensions of this expression. In other words, the evaluation of the

above expression is time-dependent.



Naturally one can conclude that an expression may depend on more than one dimen-

sions, such as time, space, audience, and so on. For example, the meaning of the expression

E': the average temperature this month here is greater than 0°C.

can be obtained by considering its extension along the dimensions month and location. The

table below gives partial extensions.

Ja Fe Mr Ap Ma Jn JI Au Se Oc No De

Montreal F F F F T T T T T F F F

Ottawa|F F F T T T T T T F F F

Toronto( F F T T T T T T T T F F

Vancouver| F T T T T T T T T T T T

1.2 Intensional Programming

The intensional programming paradigm has its foundations on intensional logic. It retains
two aspects from intensional logic: first, at the syntactic level, are context-switching op-
erators, called intensional operators; second, at the semantic level, is the use of possible
world semantics.

By differentiating between intensions and extensions, IPL provides two different levels
for programming. On the higher level, it allows us to represent/express problems in a
declarative manner; On the lower level, it solves problems without loss of accuracy. The

following is a list of some significant features of IPL:

e As IPL is based on solid mathematical foundations, i.e. intensional logic , it pro-
motes a purer and more declarative way of programming than traditional imperative
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languages.

o It deals with infinite entities of ordinary data values. Such entities could be a stream
of numbers, a two-dimensional table of characters, a tree of strings etc. These streams
are first class objects in intensional languages and functions can be applied to these

streams.

e Because of the infinite nature of IPL, it is specially appropriate for describing the
behavior of systems that change with time or physical phenomena that depend on

more than one parameters (such as time, space, temperature, etc).

e As we know, the output of IPL programs may be infinite entities. Hence, the tra-
ditional approach can not be applied to those entities because it requires an infinite
amount of time. However, the problem can be solved by using a computational model
known as eduction [53]. That is, an implementation can start by computing the first
element of the entity, then the second, and so on. This way, eduction deals with the

problem arising due to the infinite nature of IPL without loss of accuracy.

1.3 Lucid

In this section we review several variants of Lucid family of languages.

Lucid as a dataflow language Lucid was originally invented as a Program Verification
Language by Ashcroft and Wadge [4]. And later it evolved into a dataflow language [67].

The basic intensional operators are first, next, and fby. The four operators derived from the



basic ones are wvr, asa, upon, and prev, where wvr stands for whenever, asa stands
for as soon as, upon stands for advances upon, and prev stands for previous. Lucid is
a stream (i.e. infinite entity) manipulation language. All the above operators are applied
to streams to produce new streams. The definitions of these operators [46] are shown as

follows

Definition 1 If X = (xo,x1,...,%,...) and Y = (yo,¥1,-- -, Vi, - - -), then

(1) firstX 4—— (X0, %0, -y X0, - -)

(2) nextX % (xy,x0,... %ie1,...)

(3) X foy ¥ < (X0, Y0, Y15+ -+ Yicts -+ )

(4) XwvrY ef if first ¥ then X fby (next X wvr next Y)
else (next X wvr next Y)

(5) XasaY = first (Xuvr?)

(6) XuponY e X fby (if first ¥ then (next X upon next Y)

else ( X upon next Y))

(7) prevX o Xe(#-1) 1

Example 1 illustrates the definitions on a stream A whose elements are integers, and a
stream B whose elements are boolean. In a boolean stream the symbols 1 and O indicate

true and false respectively. The symbol #nil indicates an undefined value.



Example 1 :

A =1 23 4 5

B =0 01 0 1
first A =1 11 1 1

next A =2 34 5

prev A = nl 1 2 3 4 5
AfpyB =1 00 1 0 1
AwvwrB = 3 5

AasaB = 3 3 3

AuponB =1 1 1 3 3 5

Lucid as a Multidimensional Intensional Programming Language With the operators
defined above, Lucid only allows sequential access into streams. That is, the (i + 1)th
element in a stream is only computed once the ith element has been computed. To enable
subcomputations to take place in arbitrary dimensions and all indexical operators to be
parameterized by one or several dimensions, two basic intensional operators are added.
One is intensional navigation (@.d), which allows the values of a stream to vary along the
dimension d. Another is intensional query (#.d), which refers to the current position (i.e.
tag value) along the dimension d. This way, it is possible to access streams randomly.
Example 2 illustrates the definitions of these two operators [34] on two streams A and

B along the time dimension.



Example 2
A =12 4 8 16 32 64 128
B =12306 7 4 5

A@timeB = 2 4 8 1 64 128 16 32

#.time = 01234 5 6 7

Lucid has evolved into a multidimensional intensional programming language [6]. That
is, programs are written while thinking of large, multidimensional streams (intensions), and
yet the implementation deals only with small fragments (extensions). One of the character-
istics of the current Lucid is that multidimensional streams are manipulated in the language
with tuples of integers as tags and dimensions as first class values.

Although Lucid has gone through several stages in purpose and generality, the imple-
mentation technique of evaluation for the different Lucid versions is the interpreted mode
called eduction. Eduction can be described as tagged-token demand-driven dataflow, in
which data elements (tokens) are computed on demand following a dataflow network de-
fined in Lucid. Data elements flow in the normal flow direction (from producer to con-
sumer) and demands flow in the reverse order, both being tagged with their current context
of evaluation. Below, two examples are given to illustrate programming problems in Lucid.
The examples can be clearly understood from the syntax and semantics of Lucid, whose

in-depth descriptions are shown in Chapter 3.

Example 3 : The Natural Numbers
The following program extracts a value from the stream representing the natural numbers,

7



beginning from the ubiquitous number 42. We arbitrarily pick the third value of the stream,
which is assigned tag number two (indexes starting at 0). We also set the stream’s variance
in the d dimension.
N@d2
where
dimension d;
N = 42 fby.d (N+ 1);

end;

The program can also be represented as a dataflow graph shown in Figure 1. Intuitively,
we can expect the program to return the value 44. To see how the program is evaluated,
we use the translation rules presented in [46] and rewrite the program in terms of the basic

intensional operators @ and # as shown in Figure 2.

N@d2

[

+1

D

Figure 1: Dataflow graph for the natural numbers problem

In Figure 2, the evaluation takes place by generating successive demands for the appropriate

values of N in different contexts, until the final computation can be affected. The demand



N@d2
where
dimension d;
N = if (#.d < 0)then42else (N+1)@.d (#.d — 1);
end;

Figure 2: Translated program for the natural numbers problem
for N @.d 2 generates a demand for N @.d 1 which in turn generates a demand for
N @.d 0. The definition of the program explicitly states that the value of N @.d 0 is
42. Once this is found, the successive addition operations are made on the demand results,
as required by the equation N = 42 fby.d N+1, giving a final result of 44.
The most interesting feature of Lucid is its ability to naturally define and manipulate
multidimensional streams. We illustrate this feature with a problem modeling heat transfer

in a solid.

Example 4 : Lucid Program for Heat Transfer Problem
In this model the left end of a metal rod is touching a heat source with temperature 100.
Initially, the temperature of the rod is 0. As the heat is transferred, the temperature at
the various points of the rod changes. That is, the temperature depends on the time point
and the spatial position on the rod, measured from the left end. The following equations
compute the temperature of the rod as a function of time and space (where k is a small
constant related to the physical properties of the rod):

Tempyi1s41 = k X Tempys — (1 —2 X k) X Tempysq1 + k X Tempg oio

Tempyo = 100

Tempos+1 = O

The Lucid program that models the above equations and queries the temperature at the

9



space 10 and time 10 is the following:
temp @.time 10 @.space 10
where
dimension time, space,
result = temp;
temp = 100.0 fby.space (0.0 fby.time (k X temp—
(1.0 - 2.0 X k) X (next.space temp)
+k x (next.space next.space temp)));
k =03

end

From the above example, we can conclude the problem is expressed very concisely
and naturally in Lucid language. The solution of such a problem in a traditional imperative
language would most probably require the use of a bounded two-dimensional array together

with the use of for loops in order to fill the entries of the array.

Different Variants of Lucid Lucid has been extended in several ways. Its variants have
been used to specify 3D spreadsheets [23], attribute grammars [57], and database systems
[53]. Lustre, as variant of Lucid, is a real-time reactive language which has been applied
in developing commercial real-time systems, notably in aerospace [17]. GLU (Granular
Lucid) is an industrial Lucid-C hybrid system which illustrates how the multidimensional
structure of a problem expressed in Lucid can be harnessed to produce efficient paral-

lel implementations of problems [35]. Currently, we are in the process of implementing

10



the GIPSY (General Intensional Programming System), which is an investigation platform
(compiler, run-time environment, etc) for all members of the Lucid family of intensional
programming languages [44].

The intensional version control approach described in [51] has recently found applica-
tions in the evolving area of Internet diversity development. One example in this domain
is the development of the language IHTML (Intensional HTML), an extension of HTML
which allows a single piece of source to specify a whole family of pages [69]. How-
ever IHTML is not a programming language, which restricts the flexibility of developing
multi-version pages. Hence, ISE(Intensional Sequential Evaluator), a Perl-like scripting
language that incorporates a runtime parametric version system, was developed by Paul
Swoboda [55]. Based on that, IML(Internet Markup Language) was implemented as a

front end for ISE [68], which has been used to develop multi-version pages [69].

1.4 Motivation of the Thesis

We are primarily motivated by Guha’s work [29] on context, which according to him is a
rich concept and hard to define. The meaning of “context” was only tacitly understood and
used by researchers in several disciplines. In natural language processing [18], contexts
arise as situations for interpreting natural language constructs. In programming languages,
context is a meta-level concept to statically introduce constants, definitions, and constraints,

and dynamically describe the executable information for evaluating expressions. Context

11



plays an important role in specification and modeling. In [19], the signature part, CON-
STRAINTS, SETS, and CONSTANTS of a B component, is regarded as the static context of
the component [2]. Proof obligations for internal consistency as well as for compositions
of B components use context information. In modeling human-computer interaction [36],
the context includes the physical place of the user, the time constraints, and the system’s
assumption about users interests. In Ubiquitous computing [18], context is understood as
both situated and environmental. In Artificial Intelligence (AI), McCarthy [39] defined
the formalization of the the notion of context as one of the main problems in the field of
artificial intelligence (AI) and worked to formalize context and to develop a theory of in-
troducing context as formal objects [40]. Later Guha [29] used the notion of context as
a means of expressing assumptions made by natural language expressions. In particular,
Guha’s work addressed the limitations of the vocabulary and assumptions made within the
traditional model of AI and introduced contexts in the statement of the theory to indicate
explicitly that there is something left out. That is, contexts clearly extend known knowledge
representation formalisms.

Guha embedded a syntactic representation of context into first order logic, and based
on it developed a model theory and proof theory for contexts. An interesting part is the dis-
cussion and presentation of a general framework for lifting contextual knowledge. Lifting
enables using formulas in one context to deduce formulas in another context. The lifting
procedure involved performing a relative de-contextualization of the formula, i.e., the dif-
ferences between the original and target context had to be taken into account to obtain a

formula with the same truth conditions in both contexts. A set of axioms that act as lifting

12



rules are introduced.

The major distinction between contexts in Al and in IPL is that in the former case they
are rich objects that are not completely expressible and in the later case they are implic-
itly expressible. Hence it is possible to write an expression in Lucid whose evaluation is
context-dependent. However, a context in the current version of Lucid can not be explicitly
manipulated. This restricts the ability of Lucid to be an effective programming language
for programming diverse applications. So we have extended Lucid by adding the capability
to explicitly manipulate contexts. This is achieved by introducing context as a first class ob-
jectin the language. That is, contexts can be declared, assigned values, used in expressions,
and passed as function parameters. The language thus extended, is called as Lucx (Lucid
extended with contexts)(the x is used as the x in TeX). Thus, the rationale for introducing
context in Lucid is quite analogous to the introduction of context to enrich knowledge base
in Al. However, our notion of context differs significantly from McCarthy’s. In our study
context is both finite and concrete. It is finite in the sense that only a finite number of
dimensions are allowed in defining a context. However it does not impose any limitation
on handling infinite streams, because with every dimension an infinite rag set is introduced
in the language. Thus, not all contexts studied by Guha can be dealt within our language.
However, every context that we can define in Lucx is indeed a context in Guha’s sense, but
restricted to well-formed Lucx expressions. We define lifting as part of context theory. It

plays an important role in programming solutions to problems in Lucx.

13



1.5 Major Contributions and Thesis Outline

The thesis investigates the merits of Lucx for programming diverse application domains
by introducing context as first-class objects. In order to do that, a context theory is devel-
oped. This theory provides a semantic basis for context manipulation in Lucx. The major

contributions are as follows (the references are for the published papers):
e Introducing context as first class objects in the language [10].
e Providing the formal syntax and semantics of Lucx [10, 63].

e Defining context operators and context calculus [10, 59], thus enabling dynamic ma-

nipulation of contexts in Lucx.
e Providing context theory [63].

e Demonstrating the use of the extended language for writing programs in different
application domains including Programming Timed Systems [59], Agent Communi-
cation [10, 14], Constraint Programming [61], and in formal development of context-

aware systems [9, 62].
¢ An architecture for integrating Lucx programming environment into GIPSY [60].

The thesis is organized as follows: in Chapter 2, context, context operators, context
expressions, a set of contexts, Boxes, operators for a set of contexts and context set expres-
sions are formally defined. Formal syntax and semantics of Lucx are given in Chapter 3.

Chapter 4 discusses rules of evaluation for Lucx expression. The integration of Lucx into

14



GIPSY is shown in Chapter 5. Chapter 6 demonstrates the programming of timed sys-
tems in Lucx. The suitability of Lucx as an agent communication language is shown in
Chapter 7. Chapter 8 illustrates how the constraint satisfaction problem can be represented

and solved in Lucx. Chapter 9 concludes the thesis work and discusses the future research

directions.
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Chapter 2

A Formal Definition of Context

In this chapter, we give a formal definition of context and provide a context calculus so that
contexts can be dynamically constructed and manipulated in Lucx.

In intensional programming, context is a reference to the representation of the “possible
worlds” relevant to the current discussion. In Lucid, context cannot be defined; however,
dimensions are defined, and the tag set associated with each dimension is implicitly N, the
set of natural numbers. Lucx extends these concepts of Lucid by associating a universal
tag set to dimensions in a context defined in the language, and provides several context
operators. We formalize context as a relation, set of ordered pairs of (d,x) where d is a

dimension and x is a tag value.

Definition 2 Let DIM denote the set of all possible dimensions, and U denote the set of all
possible tags. A context c is a finite subset of the relation {(d,x) | d € DIM A x € U}.
The degree of the context ¢ is | dom ¢ |. The empty relation is a Null context. The degree
of a Null context is 0. 1
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Let G denote the set of all contexts that are defined according to Definition 2. A context
having only one (dimension,tag) pair is called a micro context (or m_context). The set of
micro contexts is M = {c | ¢ € G,| ¢ |= 1}. The set of simple contexts (or s_context) is
S ={c| ¢ € G,cis a function}. Clearly, a simple context ¢ of degree 1 is a micro context.
A context which is not simple is a non-simple context.

The basic functions dim and tag are to extract the set of dimensions and their associated

tag values from a set of contexts.

Definition 3 dim : G — PDIM tag : G — P U, such that for ¢ € G, dim(c) = dom c,

and tag(c) =ranc. 1

For the tuple m = (d, x) we use the functions dim,, and tag,, to extract the tuple compo-

nents: dim,,(m) = d and tag,(m) = x.

2.1 Context Calculus

In this section, context operators are discussed. A context being a relation we borrow the
notation and meaning of those relational operators that are available in mathematics. Rest
of them we define, using set theory notation. Using these context operators contexts can
be managed dynamically and flexibly. The syntax of context expressions are also formally
defined. In order to evaluate context expression correctly, precedence rules for context

operators are provided as well.
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2.1.1 Context Operators

Context operators are:override & , difference © , choice | , conjunction N , disjunction
U, undirected range = , directed range — , projection | , hiding | , substitution / ,
comparison =, 2, C . The difference ©, conjunction N, disjunction U, and comparison
=, C, D, operators are set operators. The rest of the operators are explained and formally

defined below.

Definition 4 Override @ This operator takes two contexts c; € G, and co € S and
returns a context ¢ € G, which is the result of the conflict-free union of ¢, and ¢y, as

defined below:

_B_:Gx8—G,

c=c @ca={m| (m € c A dim,(m)d&dim(c;)) Vmec} I

Definition 5 Choice | This operator accepts a finite number of ci, . . . ,c; of contexts and
nondeterministically returns one of the c;s. The definitionc = c¢1 | ¢2 | ...,| ¢, implies

that c is one of the ¢;, where 1 < i < k:

|-:GxGx...xG—G, 1

Definition 6 Projection. This operator takes a context ¢ € G and a set of dimensions
D C DIM as arguments and filters only those ordered pairs in ¢ that have their dimensions
in set D.

-1-:GxPDIM — G,

clD={m|méecAdim,(m)cD}. 1
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Example 5 :
Let ¢ ={(d,1),(e,4),(f,3)}, D={d e}

then ¢ | D = {(d,1),(e,4)}
Definition 7 Hiding. This operator enables a set of dimensions D C DIM to be applied on
a context ¢ € G to remove all the ordered pairs in ¢ whose dimensions are in D:
-1_:GxPDIM — G,

ctD={m|mée€cAdim,(m) ¢D}. 1

Using the precedence rules given in Figure 3 we can verify the properties for Projection

and Hiding operators:
ecIDNc|D=yg
eclDUc|D=c

ecID=co(c|D)

Example 6 :
Let ¢ = {(d,1),(e,4),(f,3)},D={d, e}
then ¢, 1D = {(f,3)}
Definition 8 Substitution. This operator produces a context for a given context, a dimen-
sion and a tag value belonging to that dimension:
_/-:Gx (DIM x U) — G,

c/(d,ty={m|mec A dim,(m)#d} U {(d,t)|d edim(c)}. 1
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Example 7 :
Let ¢ = {(d> 1)a (8’4)}; Co = {(6’4)7 (f? 3)}’

then ¢ /(d, 2) ={(d,2),(e,4)}; ca/(d, 2) = ¢

Definition 9 Undirected range. This operator takes two contexts ¢y, ca € G as arguments

and returns a set of simple contexts. The fixed total ordering <, as defined for naturals, is
assumed to be defined for the tag set U. We give a constructive definition here. In Chapter
6 the Lucid program implementing this operation is declarative.

_=_:GxG—-DPS,

Steps for constructing the final result are shown as follows:
1. Let §' be the set of simple contexts, which is the result of (¢; = co).

2. For each pair of my € ¢1, my € ¢, and dimy,(m,) = dim,,(m3), do the following:

(a) Define a = min{tag,(m),tagn(m2)} and b = max{tag,(my), tag,(mz)}
(b) Define the subrange > = a..b.

(c) Construct the set Y;:

Y, = {(dgvx) l dg = dimm(ml) = dimm(mg),x € lg}

3.Y = {I,Ys,...,Y,}, where Y(i = 1,...,p), are the sets of micro context s con-
structed in Step 2. Define for Y; € Y, first(Y;) = {dim,(m) | m € Y;}, and
second(Y;) = {tagm(m) | m € Y;}. If there exists Y;,Y; € Y such that first(Y;) =
first(Y;), for i # j, we replace the sets Y; and Y; by their union Y; UY;, and repeat this

process until the first(Y;)s for Y; € Y are distinct.
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4. ForY; € Y, construct the set Z of contexts: Z = {{(first(Y1),x1), (first(Y2),%x2), . . -,

(first(Y,), xp) } | (x1,%0,...,%,) € I1?_ second(Y;))}.
5. Define: X., = ¢1 T Uy, ¢y first(Yy).
6. Define: X, = ca T Uy, ¢ y first(Yy).

7. Construct §': §' = {{z£}UXaUXn|z€Z}. 1

Basically, the result consists of three parts:

1. For each pairm; € c;,ms € ¢, which share the same dimension, we construct a

set Y;. From the set of Y;s, constructed in step 2 and step 3, the set Z is computed.
2. All the other tuples of ¢; which have different dimensions are in X,;.

3. Similarly, all the other tuples of ¢, which have different dimensions are in X,o.

Example § :
Let ¢; = {(¢,3),(d, )}, ca = {(e,1),(d,3)}, e3 = {(e,3)} ea = {(F, )},
s = {(e,1),(f,4)}
then ¢y = ¢y ={{(e,1),(d,1)},{(e,1),(d,2)},{(e, 1), (d,3)},{(e, 2), (, 1)},
{(e:2),(d,2)},{(e,2),(d,3)}, {(e,3),(d, 1)}, {(e,3),(d, 2)},{(e,3),(d, 3)} }
cs = ca={{(e,3), (f,4)}}
cg = cs = {{(e; 1), (f, 4} {(e,2), (, D} {(e,3), (F, 9)} }

Definition 10 Directed Range. This operator takes two contexts ¢y, € Gandcs € S and

returns a set of contexts:
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_—=_:GxS— PG,
We change only Step 2 of the method described for the undirected range(Page 20) to obtain
the result:
(a) Define a = tag,(my), b = tagn(ms), if tag,(my) < tag,(ms), else we ignore the tag of
this pair in further calculation and denote it by ? (don’t care) and let Y, = (d,?). Hence
in step 4 (of Definition 9) we ignore the pair (first(Y), second(Y)) if second(Y) = ?.

(b) Define the subrange t° = a..b. 1

Example 9 :
Let ¢;={(d,1)}, e = {(d,3), (f,4)},
then ¢ = cy=c1 = o = {{(d,1),(f49)},{(d,2),/,4},{(d,3),(f,4)} }
e — e = {(f,4)}.

2.1.2 Context Expression

Informally, a context expression is an expression involving context variables and context
operators. Let ¢ ranges over contexts, D over dimension sets, and C over context expres-
sions. A formal syntax for context expression C is shown in Figure 3 (left column). A
context expression that satisfies those syntactic rules is a well-formed context expression.
In order to provide a precise meaning for a context expression, we define the prece-
dence rules for all the operators. Figure 3(right column) shows the operator precedence
from the highest (top row) to the lowest (bottom row). Parentheses will be used to over-
ride this precedence when needed. Operators having the same precedence will be applied

from left to right. The comparison operators =, C, D have lowest precedence. Expressions
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syntax | precedence |
C = ¢
J/, T’
| clc | c/dy Y
| cac | cec
| ¢cnC | CcucC ;’ Lé
| c=c | c=cC ©e
| clD | C1D =

Figure 3: Formal Syntax of Context Expressions and Precedence Rules for Context Oper-

ators

consisting of comparison operators are boolean expressions instead of context expressions.

Hence the syntax of these boolean expressions is not included in the above table.

Example 10 Let ¢y, ¢y, c3 be three contexts. The following equivalences hold according to

the precedence defined above.

L lA{d}|c=/{(al{d})|lec
2.c1 | L {di} =1 ] (e2 | {d1})
3ocileaNes = (a1 Nes)|lex N ocs)
4 ciNerles = (1 N e (e N cy)
5000 @ cMNcez =c1 @ (c2 N cs)

6. c1 Ncy @ cs = (c1 N c2) B cy

7.0 Dy = 3 = (c1 B c3) = c3
8. cp=cDcyg=c1 = (ca D c3)

9. C1|C2@C3 - (Cl @C3)|(C2@C3)
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10. c1 D C2|C3 = (C1 D C2)|(C1 D C3)

11. ci|cy = ¢35 = (¢ = ¢3)|(c2 = c3)
12. c1 — C2|C3 = (Cl = C2)|(C1 = C3)
13 ciNecy = ¢c3 = (¢ Nca) = ¢3

]4.C1\:‘CQQC3:C1¢(CQHC3)

Example 11 Given the context expression cz T D®cy | co, where c; = {(x,3), (v,4), (z,5)},

c; = {(y,5)}, and c3 = {(x,5),(»,6),(w,5)}, D = {w}, the evaluation steps are shown

as follows:
[Stepl]. c3 T D = {(x,5), (y,6)} [Definition 7, Page 19]
[Step2]. ¢1 | 2 = ¢1 07 ¢ [Definition 5, Page 18]

[Step3]. Suppose in Step2, c; is chosen,
3 T D®ci={(x3),»4),(z5)} [Definition 4, Page 18]
else if ¢, is chosen,

3 TD®cy={(x5),»5)} [Definition 4, Page 18]

2.2 Sets of Contexts

In this section we consider P S, where § is the set of simple contexts defined in Section
2.1, and define operators on it. We introduce the special notation Box to denote a subset
of P S such that all contexts in it have the same dimension set A C DIM, and the tags
at these dimensions satisfy a logical expression p. The Box notation may be viewed as
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analogous to schema notation in Z. Our motivation to introduce Box comes from analyzing
the requirements of a high level declarative language for programming timed systems and
constraint solving problems. Using Box construct Lucx programs for such problems can
be written in a precise and concise manner. This will become clear from the programming
examples in Chapters 6 and 8.

In Lucx, Boxes and other sets of contexts are also first class objects. They can be
assigned to variables. This will become clear when we discuss the syntax and semantics
of Lucx in Chapter 3. A special interest in constraint solving problems is to consider only
those operators that take Boxes as arguments and produce a Box as the result. In view of

this, we define three special operators on Boxes.

Non-simple Contexts and Sets of Contexts Intuitively, a non-simple context can be
viewed as a set of simple contexts. Definition 11 formalizes this point of view. In Lucx, an
@ expression is evaluated at a non-simple context by evaluating the expression at the simple
contexts in the set representation of the non-simple context. Hence, the result of evaluation

is a set. We discuss this aspect in the Chapter 3.

Definition 11 For a non-simple context ¢, we construct the set Y = {y; = ¢ | {d} | d €
dim(c)}. Denoting the elements of set Y as y, ... ,y,, we construct the set S (¢) of simple

contexts:

S(c):{ml@mg®...@mp|m1 €y1/\m26y2/\.../\mp Ey,,},

The non-simple context is viewed as the set S(c). It is easy to see that

S(c) ={s € § | dim(s) = dim(c) As Cc} N
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Example 12 :
Let ¢={(d,1),(d,2),(d,>5),(e2),(e6)} dim(c) = {d, e},

va=cl{d} ={(d,1),(d,2),(d,5)},
Ye=cl{e} ={(e,2),(¢,6)}.
then S(c) = {{(d,1),(e,2)},{(d, 1), (e,6)},{(d,2), (¢,2)},{(d, 2), (¢,6)},{(d,5), (¢, 2)},
{(d.5), (e, 6)}}.

Extending the above construction to a set of non-simple contexts we end up dealing
with higher-order sets. In Lucx we avoid higher-order sets of contexts, and allow only sets

of simple contexts. Hereafter, by “set of contexts” we refer only to “set of simple contexts”.

2.3 Context Set Operators

There are two kinds of such operators: lifting operators, and relational operators.

2.3.1 Lifting Operators

Definition 12 Projection. For s € P S, and D C DIM. the projection operator constructs
a set of contexts s' € PS, where s' is obtained by projecting each context from s on to the
dimension set D.
_l_:PSxPDIM —PS
s=s|D={c|D|ces} 1
Example 13 :
Let 51 ={{(x,1),(»2)},{(x, 1), (z,3)}, {(»4), (&, 3)}, {1}, D= {y,2}
Then 51| D ={{(»2)},{(z;3)}, {4, (2,3)}, {9 }}
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Definition 13 M Fors € PS, and D C DIM. The hiding operator constructs s' € Sy,
where §' is obtained by hiding each context in s on the dimension set D.
_1_:PSxPDIM —PS
s=stD={cTD|ces} 1
Example 14 :
Let 51 ={{(x,1),(»,2)},{(x,2),(z,3)},{(0,4),(z,3)},{(n4}}, D= {y.2}

Then s; 1D = {{(x,1)},{(x,2)}, NULL}

Definition 14 Substitution. This operator produces a set of contexts s', s' € P S, for a given
set of contexts s, s € P S, a dimension and a tag value belonging to that dimension:
_/-:PSx (DIM x U) — PS
s'=s/{d,t)y={c/{d,l)|ces} 1
Example 15 :
Let  s1={{(x,1),(»2)},{(x,2),(2,3)},{(,4), (z,3)} {(, H}}
Then s1/(x,2) = {{(x,2), (»,2)},{(,2),(z,3)},{(»4), (z,3)}, {(; 9)}}

Definition 15 Choice. This operator accepts two sets of contexts s,, so and nondetermin-
istically returns one of them. The definition s = s1 | so implies that s is either s; or s,.

_|_:PSxPS—PS 1

Definition 16 Override. For every pair of context sets si,53, s1,52 € PS this operator
returns a set of contexts s, s € P S, where every context ¢ € s is computed as ¢; D c,,
C1 € §1,C9 € S9.

_H_PSxPS—PS

s=51D0ss={c1®c2|c1Es1 A €52} 1
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Example 16 :
Let  s1={{(x1),(%2)},{(x2),(3)} {4, (z3)}: {0 4)}},

s2= {{(»2), (&:3)}, {(x,2), 0,3)}}
Then 1 ®s; = {{(x,1),(»,2),(z,3)},{(x,2),,2),(z,3)}, {(:2), (z.3)},
{(x,2),»,3)},{(x,2), (»,3), (,3)}}
Definition 17 Difference. For every pair of context sets s1,52, $1,52 € IPS this operator
returns a set of contexts s, s € P S, where every context ¢ € s is computed as ¢, © ¢y,
Cc1 € 81,C2 € Sa.
_O_:PSxPS—-PS

S:S1@S2={616C2|C1€S1/\CQES2} | |

Example 17 :
Let s = {{(x? 1)7 (y7 2)}7 {(x’ 2)) (Za 3)}7 {(y74)> (Z7 3)}v {(y74)}}!

2 ={H{(,2),(z,3)},{(x,2), (,3)}}
Then s1© s = {{(x, )}, {(x,2)}, {»» D} {(x 1), 3,2} {(z,3)}, {(»4), (. 3)}}
Lifting the undirected range = and directed range — to sets of contexts will produce
higher-order sets. So, we do not define lifting for these two operators. However, since
the results of applying these two operators are sets of contexts, the lifting operators can be

applied to the results.

2.3.2 Relational Operators

We define the three relational operations X (join), [(intersection), and H (union) for sets of

contexts. In the following definitions, ¢ denotes a context, s; € PSand A; = ..., dim(c’).

c'es;
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Definition 18 Join.
_XK_.PSxPS—PS
S=S1&SQZ{C1U()2|C1ESl/\CQESQ/\CllA;g:CQlAg}

where As = A1 N A, 1

Example 18 :
Let 51 ={{(x1),(»2)},{(x2),(z3)} {4, (23} {04} A= {x,y,2}

= {{(,2), 0, N}, {(»,5), (4,2}, {0, )}, { DI} A2 = {y,u}, Ag = {y}
Then 51 ®S2 = {{(x> 1)7 ()’72), (u? 1)}a {(Y7 4), <Z7 3)}7 {(ya 4)}}

Definition 19 Intersection.
O _:PSxPS—PS
s = 51005y = {c1Ncy | €1 € s1/Co € 52} We can prove that s = s10s, = (5:8s2) | Ag,

where A3 = A1 NN, 1

Example 19 :
Let s, = {{(x’ 1)’ (ya 2)}? {(x’ 2)7 (Zv 3)}7 {(%4), (Z : 3)}7{())’ 4)}}’ A= {x,y,z}

S2 = {{(y72)7 (u? 1)}7{())75)? (uvz)}7 {(y7 3)}7 {(y:4)}}’ A2 = {y?u}r AB = {y}
Then sy sy = {{(»,2)},{(v;4)}}

Definition 20 Union.
_H_PSXPS—PS
s = 51 H s is computed as follows:
Ay = ey, dim(c), Ay = ¢, dim(c), and Az = A; N A,
1. Compute X1: X1 = {c;Uc; T Az | ¢ €s1 A ¢ € 52}
2. Compute Xo: Xo = {¢;Uc; T Az | ¢ € 51 A¢j € 52}
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3. Theresultis: s =X, | JXo.

Example 20 :

Let 51 ={{(x1),(%,2)},{(x,2), (2.3)},{0,4),(z: 3)},{»4)}}, A = {x,,2}

52 = {{(3:2), (&, D}, {(3,5), (0, 2}, {3, 3) 1, {0 DI} Do = {y,u}, As = {y}
X={{(x 1), (0,2), (u, D}, {(x, 1), (5,2), (0,2)}1,{(x, 1), 0,2}, {(x,2), (2, 3), (w, 1)},
{(%,2),(z,3),(0,2)},{(x.2), (z,3)},{(4), (z,3), (v, N}, {(,4), (2,3), (w, 2)},
{049, (@3} A4, (, D} {0 4), ,2)}, {0, 4)}}

Xo ={{(x,1),(»2), (x, N}, {(x,2),(»,2), (z,3), (s, N}, {(1, 2), (0, 1), (2,3)}, {(, 2), (w, )},
{(x,1),3,5), (u,2)},{(x,2), (5,5). (z,3), (,2)}, {(%,5), (u, 2), (z.3)}, {(5, 5), (w, 2)},
{(x,2), (,3),(z.3)}1,{(,3), (2 3)} {(r, )} {(x 1), (0, 3)}, {(x, 2), (5, 4), (z,3)},
{(n1), 391 {(4), (31 {0, 4)}}

Then si sy = {{(u,1),(x,1),(»,2)},{(u,1),(x,2),(z,3)}, {(, 1), (:4), (z,3) },{(,;3)},
{(,1), (0,4}, {(,2), (x,2), (z,3)}, {(1,2), (5, 4), (2, 3)}, {(, 2), (v, 1)}
{(1,2),(x,1), (v, 2)},{(, 2), (x, 1), (%, 5)}, {(x, 1), (0, 3)}, {(x, 1), (v, 4)},

{(, 1), (x,2), (1,2), (2,3)},{(,2), (x,2), (,5), (z.3)}, {(x,2), (,3), (z,3) }
{(x,2), %,4), (23)},{(w1),(,2),(z,3)}, {4, 2), (,5), (2,3)},{(+,3), (z,3) },
{(14),(z3)}1{(x1), 5,2} {(x2),(z,3)}, {0 D} {3 2), (0, D}, {(2,5), (u, 2)}}

In Section 2.1, it is shown that the results of ¢; = ¢; and ¢; — ¢; are sets of contexts.
So the relational operators X (join), [J (intersection), and H (union) can also be applied to
the expressions ¢; = ¢; and ¢; — ¢;, where ¢; and ¢; are contexts. Example 21 illustrates

the procedure of applying those operators.
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Example 21 :
Letc; = {(d, 1)}, ca = {(d,3),(f,4)}, cs = {(d, 1), (e,4)}, and cs = {(d, 3), (,6)},

we calculate the sets s1 X 59, 51 [ 59, and s1 B 59, where

5=y — e A ={d,e}, andsy =1 — ¢ Ay = {d,f}, Then Ay = {d}

Hence s; = {{(d, 1), (e,4)},{(d, 1), (e,5)},{(d, 1), (e, 6)},{(d, 2), (e, 4)},
{(d,2),(e,5)},{(d,2),(e,6)},{(d, 3), (e, 4)},{(d, 3), (e,5)},{(d,3), (e, 6) } }

so = {{(d, 1), (f,4)},{(d, 2), (f, )},{(d,3), (f, 1) }}

51855 = {{(d,1), (e,4),(f, 4)},{(d, 1), (e,5), (f, 1)}, {(d, 1), (€, 6), (, 4)},
{(d,2),(e,4),(f,4)},{(d,2),(¢,5), (f,4)},{(d,2),(e,6), (f,4)},
{(d,3),(e,4), (f,4)},{(d,3),(e,5), (f,4)},{(d,3), (¢,6), (f,4) } }

st 2 = {{{d, )}, {(4,2)},{(d,3)}}

siB sy = {{(d,1),(e,4),(f, 4}, {(d, 1), (e,5), (f,4)},{(d, 1), (¢, 6), (f,4)},
{(d,2),(e,4),(f,4)},{(d,2), (e,5), (£, 4)},{(d,2), (e, 6), (f,4)},
{(d,3),(e,4),(f,1)},{(d,3), (e,5), (f,4)},{(d,3), (€,6), (f, 4) }}

2.3.3 Context Set Expressions

Informally, a context set expression is an expression involving sets of contexts and context
set operators. Let s ranges over a set of contexts, S over a context set expression and D over
a dimension set. A formal syntax for context set expression S is shown in Figure 4 (left
column).

In order to precisely calculate a context set expression, we define the precedence rules
for the context set operators. These are shown in Figure 4 (right column) (from the highest
precedence at the to row to the lowest precedence in the bottom row). Parentheses will be
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syntax “ precedence ]
= s | S|S
| Ses | Ses ‘l’T’/
| SID | ST1D
| oSS | SOS oo
| s@s | s/l -

Figure 4: Formal Syntax of Context Set Expressions and Precedence Rules for Context Set
Operators

used to override this precedence when needed. Operators having the same precedence will

be applied from left to right.

2.4 Box Notation

In many applications it is of special interest to consider a set of contexts, all of which have
the same dimension set and the tags corresponding to the dimensions in each context satisfy
a given constraint. We use the notation Box to denote such a set when the dimension set is
A = {dy,...,d} C DIM and p is a logical expression. Note that in p, we are allowing the
dimensions as variables, denoting the current tags. That is, if p(d;, d2) = di < d, it means

the current tag of d; is less than the current tag of d, in the context that has dimensions d;

and dy. A formal definition follows:

Definition 21 A Box set (or a Box for short) is a set of simple contexts with the same

domain. Let @ # {d,,...,d,} C DIM be a set of dimensions and p be an expression in

which the d; (1 < i < k) may occur as variables. Then Box[d,,...,d; | p] = {c € §|

dim(c) = {dy, ..., di} and p is true when, for each i, d; is assigned the value c(d;)}. The
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dimension A(b) of an nonempty box b is the dimension of any (all) its elements. 1

The set of Box sets (or Boxes for short) are all sets of simple contexts all of which have

the same domain. It is easy to show that anything defined by the Box notation is a Box.

Example 22 Let A = {X}, and prime(X) be the predicate that is true when the tag asso-

ciated with the dimension X is a prime number. Box[X | prime(X) N2 < X NX < 12] is the

set of contexts {{(X,2)},{(X,3)}, {(X,5)}, {(X, ")}, {(X, 1)} }.

Example 23
Let A = {U,X}.

Box[X,U | 7 + % < 1] = {{(X,0),(U,0)}, {(X,0), (U, 1)}, {(X,0),(U,2)},
{(X,0),(U,3)},{(X,0), (U, 9}, {(X,0), (U,5)}, {(X, 1), (U,0)}, {(X, 1), (U, 1)},
(X0, (U, 214X, 1), (U, 3)},{(X,2), (U,0)}, {(X,2), (U, 1)}, {(X,2), (U, 2)},
{(X,3), (U, 0)},{(X,3), (U, 1)}, {(X,4), (U, 0)}}

Since a Box is a special set of contexts, operators defined in Section 2.3 can be used on
Boxes. However, after applying those operators, the result of applying those operators may
not be a Box. The operators that gives Box as result are called Box operators. Let B denote

the set of Boxes introduced in Definition 21.

24.1 Box Operators

In this section we state lemmas on those context set operators that are Box operators.

Lemma 1 Projection. The result of projecting a Box b on D C DIM is a Boxb'. 1
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Proof : By definition 12% = b | D = {c | D | ¢ € b}. b’ is obviously a box because all
the elements have the dimension AND, and these elements are all simple contexts (because

the projection of a simple context is simple).
Lemma 2 Hiding. The result of hiding a Box b on a set of dimensions D is a Box. 1
Proof : Since | and | are complementary operations, b T D is also a Box.

Lemma 3 Choice. This operator accepts a finite number by, . .., by of Boxes and nonde-
terministically returns one of the b;s. The definition b = by | by | ... | by implies that b is

one of the b;, where 1 <i<k 1

Relational Operators

Let b; and b, be two Boxes. Since a Box is a set of contexts, the definitions [18, 19,
20] (Page 29) for relational operators for sets of contexts can be used in a straightforward
manner. However, it is natural to expect the result of applying relational operators to Box

operands is a Box. This is in fact true, as stated below.

Lemma 4 Join. Let by and by be two Boxes, A(by) = Ay, and A(by) = Ny by Wby = b

is a Box, where A(b) = Ay U A, 1

Proof : According to the Definition 18, if ¢; and ¢, are simple and they agree on A, their
union must be simple. And they all have domain A; U A,.
It is easy to show that the Join of the boxes Box[dy1,d12, . - .,d1, | p1] and Box| day, das,
cv.ydoy | pa]is Boxlei,ea,...,ex | p1 A pa), where {eq,es,... e} is the union of
{di1,d12,...,d1,} and {do1,da0, . .., dom}.
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Below we state the lemmas for intersection and union rules without proofs.

Lemma 5 Intersection. Let by and by be two Boxes, A(b1) = Ay, and A(by) = A,

by B3 by = b is a Box, where A(b) = A1 N A, B

It is easy to show that the Intersection of the boxes Box|di1,di2,...,d1, | pi1] and
BOX[dQl,dQQ, e ,dgm | pz] 18 BO)C[fl,fQ, e ,ﬁ | Ele € ((Al “AQ)U(AQ_AI)).(pl /\pg)],
where {f1,f2,...,fi} is the intersection of {d11, d12, . .. ,d1n} and {da1,daa, . .., dom}.

It is easy to prove by [1 by = by Kby | (A1 N A,).

Lemma 6 Union. Let by and by be two Boxes, A(by) = Ay, and A(by) = Ay. b= b, @b,

is a Box, where A(b) = AU A, 1

Itis easy to show that the Union of the boxes Box[d11, d12. . . ., d1n | p1] and Box|da;, das,
.+, dam | p2)is Boxley, ey, ... e | p1V o], where {e1,e,,. .., e} is the union of {d;,, dy,,
. dy}and {dy,dag, . .. dom }.
Example 24
Let DIM = {X,Y,Z}.
By =Box[X,Y | X+ Y =5].
By =Box]Y,Z|Y=Z°NZ < 3],
Then By = {{(X, 1), (Y,4)},{(X,2), (¥,3)}, {(X. 3), (¥, 2)}, {(X,4), (v, )}},
By = {{(v,1),(Z, )}, {(¥,4),(2,2)},{(¥,9),(Z,3)}}
Bi BBy =Box[X,Y,Z | X+Y=5V(Y=2Z*ANZ<3)]
= {&,1),(¥,4),(Z,1)},{(X,1),(¥,4),(2,2)},{(X,1),(¥,4),(Z,3)},
{(X,2),(¥,3),(Z2,)},{(X,2),(¥,3),(Z,2)},{(X,2),(¥,3),(Z,3)},
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{(x,3),(¥,2),(Z, D}, {(X,3),(¥,2),(Z,2)},{(X,3), (¥, 2), (Z,3)},
{(x,4),(¥,1),(z, D}, {(X,4), (¥,1),(Z,2)},{(X,4), (Y, 1),(Z,3)},
{(x,1),(¥,1),(z, D}, {(X,2),(¥,1),(Z, 1)}, {(X,3), (¥, 1), (2, 1)},
{(X,2),(¥,4),(,2)},{(X,3),(¥,4),(Z,2)},{(X,4), (Y,4),(Z,2)},
{(x,1),(1,9),(,3)},{(X,2),(¥,9),(Z,3)}, {(X,3), (Y,9),(Z,3)},
{(X,4),(Y,9),(Z,3)}}

B X By, =Box[X,Y,Z|X+Y=5A(Y=2Z*NZ < 3)

= {x,1),(¥,4),(Z,2)},{(X,4),(¥,1),(2,1)}}
BBy =Box[Y | X+Y=5A(Y=22NZ<3)

= {r, )L, 9}}
2.4.2 Box Expressions
A Box expression is an expression involving only Box variables and Box operators. A

formal syntax for Box expressions B is extracted from Figure 4 and is shown in Figure 5.

A Box expression satisfying these syntactic rules is a Box expression.

r syntax “ precedence |
B == b | B|B 01
| BEB | BKXB ”
| BHB | B|D
G, B X
. _B1D |

Figure 5: Formal Syntax of Box Expression and Precedence Rules for Box Operators

Example 25 Let by, by, bs be three Boxes. The following equivalences hold according to

the precedence defined above.
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1. by | Dy | by = (b1 | Di) | by
2.by | by | Dy = by | (b2 | Di)
3 by | by R by = (b1 ® by) | (b ® by)
4. by R by | by = (by ® by) | (by B by)
5.by L Dy R by = (by | Dy) R by

6. by Wby | Dy = by 8 (by | Dy)

2.5 Summary

In this chapter, context is formally defined as a relation over dimension and tag sets. To
manipulate contexts dynamically, context operators are introduced. Their formal defini-
tions are illustrated with examples. Precedence rules for context operators are provided.
The formal syntax of context expressions is introduced. Context expressions are evaluated
according to the precedence rules.

Sets of contexts are formally defined as well. It is shown that some of the context
operators can be lifted into context set operators. In addition, three relational operators are
defined formally. The short hand notation Box for special sets of contexts is introduced.

Some context set operators are refined into Box operators. They take Box operands and

return a Box as the result.

In the next chapter, we will use these concepts at the language level.
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Chapter 3

Formal Syntax and Semantics of Lucx

In this chapter, first the syntax and semantics of Lucid will be reviewed; second, the ex-
tended syntax and semantics of Lucx will be given; third various evaluation rules will be
given and illustrated; and finally we give a rigorous argument justifying Lucx as a conser-

vation extension of Lucid.

3.1 Syntax and Semantics of Lucid

In this section, we review the syntax and semantics of Lucid as defined by Paquet [46].
Lucid includes function application, conditional expressions, intensional navigation and
intensional query. The abstract syntax is shown in Figure 6.

The non-terminals E and Q respectively refer to expressions and definitions. This syntax
assumes that identifiers (id) can refer to constants, data operations, variables, functions or

dimensions. The data operations includes the standard data operators shown in Figure 7.
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E == id Q := dimensionid
| E(E.,....E) | id=E
| if E then E' else E” | id(idy,. .., id,) =E
E 00
1 ﬁ@ E/ E// |
| E where Q

Figure 6: Abstract Syntax for Lucid [46]

The iseod operation is added to test for the presence of a special end-of-data value.

convention-data-op = unary-op
| binary-op
unary-op == ! |- | iseod
binary-op = arith-op
| rel-op
| log-op
arith-op == +|-|*|/|%
rel-op = <|>|<=]|>=|==]!=
log-op == &&| ||

Figure 7: Standard data operations in Lucid

Paquet [46] has given a structural operational semantics of Lucid. Structural operational
semantics style was introduced by Plotkin [49]. Both structural operational semantics and
denotational semantics are among the different kinds of dynamic semantics discussed by
Mosses [41]. Lucid, being a multidimensional language dealing with infinite streams, can
only be implemented by interpreters, whose behaviors are more suitably described by dy-
namic semantics. Degano and Priami [20] have argued in favor of using operational se-
mantics because it is close to intuition, mathematically simple, and allows easy and early
prototyping. Motivated by these factors, we continue to use operational semantics to pro-
vide meaning for the new constructs in Lucx.

In an operational framework, the basic rule is in the format as follows: C—’;%, which

means whenever the premises occur (interpreting them as possible computational steps),

39



then the conclusion will occur as well [20]. The operational semantics of Lucid is shown
in Figure 8. In the semantic rules, the notation D, P - E : v, means that in the definition
environment D, and in the evaluation context P, expression E evaluates to a value v.

The definition environment D retains the definitions of all of the identifiers that appear

in a Lucid program shown in Table 1. It is therefore a partial function

D :1d — IdEntry

where Id is the set of all possible identifiers and IdEntry has five possible kinds of values.

These are :

1. Dimensions define the coordinates in which one can navigate with the # and @ oper-

ators. The IdEntry is (dim);

2. Constants are external entities that provide a single value, whatever the context is.

The IdEntry is (const, ¢), where c is the value of the constant;

3. Data operators are external entities that provide memoryless functions. The IdEntry

is (op,f), where f is the function itself;

4. Variables carry the multidimensional streams. The IdEntry is (var, E), where E is

the expression defining the variable;

5. Functions are non-recursive user-defined functions. The IdEntry is (func, id;, E),
where the id; are the formal parameters to the function and E is the body of the

function.
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D(id) = (const,c) =v D(id) = (dim) = v

Eeia D.Prid:v Baa = — 55Ty
E D(id) = (op,f) =V Eer - D(id) = (func,idj, E) = v
opid D,Prid:v fd D,Prid:v
E. D(id) = (var,E) D,PFE:v
vid D,Ptid:v
E D,PHE:id D(id) = (op,f) D,PFE;:v;
o D,Pr E(E1,...,Ep) :f(v1,.-.,vn)
E D,PFE:id D(id) = (func,id;, E') D,PrFElidi—E]:v
ft D,PrFE(E,...,Ey):v
E D,PFE:true D,PHE
o D,P+ if Ethen F' else E” : v/
E D, P+ E: false D,PHE":V
F D,Pt if E then E' else E" : v/
E D,PHE:id D(id) = (dim)
28 D, P+ #E : P(id)
E D,P+E:id D(id) = (dim) D,PFHE":V'"  DPtlid—V|FE:vy
at D,PrEGE E v
o . DPHQ D P DPLE:
v D,Pt EvwhereQ:v
Qi D,P I dimensionid : Dtlid — (dim)], Ptlid — 0]
Qi D,Prtid=E : Di[id — (var,E)],P
Qtia D, Pt id(idy,...,id,) = E : Dilid — (func, id;,E)], P
D,P }_ﬂ . D/,Pl D/,Pl l_ / : DN,P”
Q0 o Q

D,PFQQ : D', P"

Figure 8: Operational Semantic Rules for Lucid [46]

41



Table 1: Possible identifiers in the definition environment

type form
dimension | (dim)
constant | (const,c)
operator | (op,f)
variable (var,E)
function (func,id;, E)

The evaluation context P associates a tag to each relevant dimension. It is therefore a
partial function: P : Id — N. Each type of identifier can only be used in the appropriate
situations. Identifiers of type, op, func and dim respectively resolved by the Eqyia, Efia,
and Egq rules, evaluate to their respective semantic records, as listed in Table 1. Con-
stant identifiers (const), resolved by the Eq rule, evaluate to the corresponding constant
records, as listed in Table 1. Function calls, resolved by the Eg rule, require the renaming
of the formal parameters into the actual parameters (as represented by E'[id; — Ej)).

The rule for the navigation operator, E,¢, which corresponds to the syntactic expression
E @ E' E”, evaluates E in context E' E”, where E’ evaluates to a dimension and E” to a
value corresponding to a tag in E’. The function P’ = P1[id — V"] means that P’(x) is v
if x = id, and P(x) otherwise. The rule for the where clause, E,,, which corresponds to
the syntactic expression E where Q, evaluates E using the definitions (Q).

The additions to the definition environment and context of evaluation made by the Q
rules are local to the current where clause. This is represented by the fact that the E,,
rule returns neither D nor P. The Qgim rule adds a dimension to the definition environment
and, as a convention, adds this dimension to the context of evaluation with tag 0. The Q;q

and Qgg add variable and function identifiers along with their definition to the definition
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environment.
The initial definition environment D includes the predefined intensional operators, the
constants and the data operators, and P, defines initial context of evaluation, Hence

Do,'Po}‘EZV

represents the computation of any Lucid expression E, where v is the result.

3.2 Syntax and Semantics of Lucx

dimension id
id=FE

id(idy, . .. id,) = E
00

id 0
E(Ey,...,E,)

if E then E' else E”
#

EQFE

(Eq,...,Ey)id
select(E, E')
{E1,...,Ep}

Box[id,, ..., id, | E]
lidy : Eq, ..., id, : E]
E where Q

i

Figure 9: Abstract syntax for Lucx

The syntax of Lucx is shown in Figure 9. The syntactic rules presented in bold are
the proposed extensions to Lucid syntax. In order to achieve contexts as first class ob-
jects, the original syntax for the @ operator with the form E @ E'E” is changed to E @ E’.
According to the Lucid semantics, the construct E'E” evaluate to two separate semantic
entities, not contexts. In contrast, the E’ part of the new construct E @ E’ semantically eval-

uates to a context, thus introducing contexts as first class objects. The syntactic construct
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id; : Eq,...,id, : E,] introduces the syntax for explicit use of s_contexts in the language.
The syntactic rule {Ey, ...,E,} is to introduce a set of contexts and Box[idy, . . . ,id, | E]
syntax introduces a Box. Hence the E’ part of the new construct E @ E’ can be a simple
context, a set of simple contexts, or a Box. The syntax (Ey,...,E,)id introduces a tuple
(Ey,...,E,) whose dimension is indicated as id, and select (E, E’) is the syntactic rule for

selecting elements from a tuple.

E,

D,PH#.P
E D(id) = (dim) Ptlid — 0] D,PFE; v
“Ple D P (E,... E,)id: v, fby.id vy fby.id ... v, fby.id eod
E D,PFE:[d:V]D,PFE :(E,...,E)d D,Pt[d— V|F(E,. .. E,)dv
select - D,P I select(E E') : v
E D,PHE :P D,PtPFE :v
at(c) DPrEQE :v
E D,PHE : {P1,...,Pn} DPtPiymbFE v
at(s) D,PHEQRE :{vi,...,Vn}
D(id;) = (dim) D,PrE;:v; P =lidi :v1,...,idy: v
Econtext

D,P}“[idliEl, ey ianEn]SP/

D(id,) = (din), ..., D(id,) = (dim)

Epox - . . . ——
b D, P FBox{d:, .. id,| E] : Box|id,,. . . ,id,| D, Pt [idi— id1]. . I [idy— id,)F- E:true]

E D,P’—Elt'Pl, ceey D,'PI—EH:PH
o D, PF{E1,....E} : {P1,.., P}

£ D,PFE:id  D(id)= (cop,f) D,PEC;:v
cor D,PFE(Ci,...,Co) i f(v1,. . ,Vn)

E D,PHE:id  D(id)= (sop,f) D,PECi:{v,...,vj}
sop

D,PrFE(C,...,C,) :f({v},...,v,%l)},...,{(v}l,...,vﬁ")})

Figure 10: Changed Semantic Rules for Lucx
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Figure 10 shows the changes in the operational semantics of Lucid given in Figure 8.
Semantically speaking, the symbol # is a nullary operator, which evaluates to the current
evaluation context P. The definition of P is changed as follows : P : id — U, where U is
any enumerable tag set. The semantic rule Ey,piq €valuates a tuple as a finite stream whose
dimension is explicitly indicated as E in the corresponding syntax rule (E,... E,}id.
Accordingly, the semantic rule Egee¢ picks up one element indexed by E from the tuple E'.

The evaluation rule for the navigation operator, Ey(), which corresponds to the syntac-
tic expression E @ E/, evaluates E in context E’. The evaluation rule for the set navigation
operator E,s), which corresponds to the syntactic expression E @ E’, evaluates E in a set
of contexts E’. Hence, the evaluation result should be a collection of results of evaluating
E at each element of E’.

The semantic rule Econeexe €valuates [idy : Eq, ... id, : E,] to a context, as defined in
Section 2.1 (page 17). The semantic rule Eg evaluates {E;, ... ,Em} as a set of contexts.
And the semantic rule Eyoy evaluates a Lucx Box to the mathematical construct Box set
defined in Chapter 2 (Definition 21, page 32).

In [46], Paquet defined 5 types of identifiers listed as follows: dimension, constant,
operator, variable, and function. In practice, these entries are put into dictionary, i.e., def-
inition environment D. Similarly, two more types of identifiers should be added into this
table. That is, context operator and context set operator. The table is shown below:

Consequently, the semantic rule E,,,(Figure 10, Page 44) is added to evaluate context
operator and the semantic rule Ej,,(Figure 10, Page 44) is added to evaluate context set

operator. We use Lucx syntax for context and Box in examples and programs throughout
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Table 2: Possible identifiers in the definition environment
type form
dimension (dim)
constant (const,c)
operator (op,f)
variable (var,E)
function (func, id;, E)
context operator (cop,f)
context set operator | (sop,f)

the rest of the thesis.

3.3 Lucx - A Conservative Extension of Lucid

In mathematical logic [24], a logical theory, T5, is a conservative extension of theory, 77,
if any consequence of T,, involving symbols of 77 only, is already a consequence of T7.
Informally, the new theory may possibly be more convenient for proving theorems, but it
proves no new theorems about the old theory. The importance of this notion lies in the
theorem: If T5 is a conservative extension of Ty, and T, is consistent, then T, is consistent
as well.
Hence, conservative extensions do not bear the risk of introducing new inconsistencies.
This can also be seen as a methodology for writing and structuring large theories: start
with a theory, Tp, that is known (or assumed) to be consistent, and successively build con-
servative extensions 717, 15, ... of it.

The above notion has been applied to Larch [28] and algebraic specification languages
to construct a hierarchy of specifications. Each new level in the specification hierarchy

preserves any consequence of the previous level(s), and may contain a function symbol
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that does not occur in the specifications at the lower levels. Thus, conservative extensions
can be used to define properties of new symbols, but do not introduce inconsistencies or
additional properties of existing symbols. Based on this concept we argue why Lucx should
be considered as a conservative extension of Lucx.

Lucx is obtained from Lucid by making three kinds of extensions : (1) extensions done
on the definition environment (Table 2, Chapter 3), (2) the syntactic extensions (Figure 9,
Chapter 3), and (3) the semantic extensions (Figure 10, Chapter 3). We argue below that
each one of these extensions is conservative. The introduction of context as a first class
object in Lucx allows one to write A = [d : 1] in Lucx; this cannot be done in Lucid. That

is, there is some functionality that is new in Lucx.

Extension in the Definition Environment Table 2 (Chapter 3) shows the set ID’ of iden-
tifiers and the set IdEntry’ of possible values in the definition environment D’ of Lucx.

From this, we can infer that ID’ = ID U {context operator, context set operator}, and

Vid € ID o D'(id) = D(id)

The definitions of new identifiers do not interfere with the identifiers in the definition envi-
ronment of Lucid. To be convinced, we refer to the semantic rules Ecop, and Eg,p given in
Figure 10: they do not interfere with the semantic rules Egq, Eia, Eopia, Eyia, Efia. Hence

the function D’ is a consistent extension of the function D.

Syntactic Extensions The evaluation syntax EQE'E” in Lucid is changed to EQE’ in
Lucx. This is only a syntactic sugaring in the sense that
EQ[d: 1] =E@rd1
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E@ld, : 1,d, : 3] = E@d, 1@d, 3

The introduction of context as a first class object in Lucx only simplifies the Lucid syntax.

The semantic rule Ey (Figure 8) is rewritten as Eyy(¢) (Figure 10) as shown below:

D,PHE:id D(id) = (dim) D,PFE":V D,Ptlid —V'|FE:v

Fa D,PHEQRE E":v

D,PFE:P  DPtPFE :v
D,PFEQE :v

Eat(c)

Notice that Eu () and E,¢ have the same meaning. With this change in the syntax of the
semantic rule and by the default convention (syntactic sugaring) explained above, the rule
Eai(c) (Figure 10) in Lucx reduces to the Lucid rule E,¢ when ¢ is a micro-context.

The following five syntactic rules in Lucx are new:

E = (Eq ..., Eyid E := {E;,...,E.}
| select(E,E’) | Box[idy,...,id, | E]
| [idy : Eq,...,id, : Ej]

They do not exist in Lucid. Consequently, the syntactic extensions are conservative.

Semantic Extensions We have already explained that the rule Ea(cy (Figure 10) in Lucx
reduces to the Lucid rule E,, (Figure 8) when c is a micro-context. The semantics corre-
sponding to the new syntax rules (Figure 10 ) do not exist in Lucid and consequently do
not interfere with any of the rules in Lucid (by inspection). The rest of Lucx rules are iden-
tical with Lucid semantic rules. Consequently we can claim that the semantic extension is

conservative.
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Based on the above arguments we can claim, without offering a formal proof, that a Lucid
program executed (interpreted) in Lucx execution environment will have the same behavior
as if it was executed in Lucid execution environment. In this sense Lucx is a conservative

extension of Lucid.

34 Summary

In this chapter, the formal syntax and semantics of Lucx are given. In the previous version
of Lucid, namely Indexical Lucid, by making dimension as first class objects, evaluation of
@ expression can be arbitrarily done along the dimension that is defined. Similarly, in Lucx,
by making context as first class objects, evaluation of @ expression can be arbitrarily done
in different contexts. Moreover, being a first class object, context exists independently in
the language. That is, one context may be used to evaluate different @ expressions, at the
same time an @ expression can also be evaluated at different contexts. This justifies and
finally realizes the Intensional logic as providing the logical base of Lucid language. That
is, the intension of an @ expression E in Intensional logic, corresponding to the definition
of the @ expression E in Lucx, is separated from the extension of the @ expression E in
Intensional logic, corresponding to the evaluation of the @ expression E in Lucx. We can
claim that Lucx faithfully follows the Intensional logic and therefore is a genuine Inten-
sional language. This feature also distinguishes the language Lucx from other imperative
languages or functional languages, where index (for imperative languages) or evaluation

environment (for functional language) are always bound to statements or expressions.
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Chapter 4

Discussions on Issues Related To

Evaluation

In this chapter, we discuss some issues related to evaluation in Lucx. These discussions,
raised at an early stage of Lucx development, are meant to point out some interesting fea-

tures of Lucx.

4.1 Evaluation of @ Expressions

4.1.1 Rules for @ Expressions with Atomic Values

We define evaluation rules for context expressions, context set expressions, and Box ex-

pressions.
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Evaluation at Context Expressions

The evaluation of EQC at a context expression C may be done in the following way : First
evaluate the context expression C, then evaluate the expression EQC.

In the following discussion, general evaluation rules will be listed. In the following
rules E is an expression, C is a context expression, and ¢; and ¢, are context variables.
The semantic rule for E, .y given in Figure 10 (Page 44) can be applied to an evaluation
rule below and recursively expanded with other semantic rules to get the full semantic

interpretation for that rule.

1. Cis a micro context. E @ C, where C = [E' : E"], is evaluated using the semantics

Eay(c) along with Eggpeexe given in Figure 10 (Page 44).

2. Cisasimple context. E @ Cis evaluated using the semantics Ey¢(c) along with Eongext

given in Figure 10 (Page 44).

3. Cisanon-simple context. EQC = {EQs|s € S(C)}, S(C) is a set of simple

contexts constructed from a non-simple context C.

4.C:C1|CQ,

E@Cl, ifCl—':Cl I Co
EQC =

EQcy, ifca=1c1 |

5.C:C1ﬁC2.

e ¢; and ¢, are both micro contexts, ¢; # c¢s: the expression E @ C evaluates to E.
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e ¢, is a micro context and ¢, is not a micro context:

E@Cl, ifCl S (&)
EQC =

E, otherwise
e ¢, is a micro context and ¢ is not a micro context:

E@c,y, ifey € ¢
EeC =

E, otherwise

e ¢y and ¢, are both simple contexts: the intersection of two simple contexts is

either a simple context or NULL.

E@(Cl n Cg), c1MNcy 7é NULL
ERC =

E, otherwise

e FEither ¢; or ¢, is a non_simple context:

{E@c|ce{aand | €8(c)}}, c¢issimple
EeC=
{Eec|ce{cand | €8(c1)}}, cqissimple

e Both ¢; and ¢, are non_simple contexts. The expression EQC evaluates to

{EQc | c € S8(c;)NS(ca)}.

6. C = c; U co: Either C is a simple context or a non-simple context. The rule 2 or

the rule 3 applies to evaluate EQC.

7. C = c¢1 @ co: According to the set theory and the Definition 4(Page 18), the
expression EQC evaluates to EQcy U ¢; T (dim(cy) N dim(cz)). Once the result of

c1 1 (dim(c;) Ndim(cy)) is computed, the rule 6 applies to E.
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8. C = c¢; © co The context expression is evaluated using the definition of the

operator © and the expression EQC is evaluated.

9.C = ¢; = cy: The context expression is evaluated using the definition of the

operator = and the expression EQC is evaluated. The expression E@C is the set

{E@c | ¢ € S(c1,c2)}, where S(cq, c2) is the set of simple contexts of ¢; = c¢».

10. C = ¢; — ¢y The context expression is evaluated using the definition of the
operator — and the expression E is evaluated. The expression EQC is the set {E@c |

c € S(c1,¢2)}, where S(c1, ¢a) is the set of simple contexts of ¢; — ¢3.

Evaluation of Expressions at Context Set Expressions

The evaluation rule for E@s, where s = {c1,...,Cn}, i8:

E@s = E@{cy,...,cn} = {E@cy,...,EQcy},
where E@Qc;,1 < k < m, will be evaluated following the evaluation rules listed in the
previous section. For any other context set expression s defined in Figure 4 (Page 32), we
compute s using the rules for context set operators, and then evaluate the expression E on
every context expression in the result. As an example, if s; and s, are sets of contexts

E@s) D sy = {E@C,‘ D Cj | ¢ € 51,6 € SQ}

Evaluation rules at Boxes The Box operators join(X), intersection(-]), and union(H)
when applied to Box operands give Box as result. Hence the evaluation rules for set of
contexts apply to Box expressions. Let by, by be two Boxes, A(by) = Ay, P(b1) = ps,

A(bz) = AQ, and P(bQ) = Ppa.
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1. [join rule J:]
E@blﬁbg = {E@CiUCj | Ci Ebl,C]’ € bQ,CilA :leA}
= {E@C,‘@Cj | c € bl,Cj € bg}

The equality follows the Rule 6.2 introduced in the next section 4.1.1(Page 54).

2. [intersection rule |:]
E@b, by ={E@c|ce (b ®by) | A}
3. [union rule U:]
E@b; B by = {E@c | c € X1} U{ECc | ¢ € Xa},

where X; = {5;Us; T A | s; € b1 Asj € bo}and Xy = {s;Us; T A | 5; € by Asj € by}

Discussion on evaluation rules of special case of U

Rules for some special cases are stated below. They can be formally verified by invoking

the semantics of context operators and set theory results. We omit their proofs.

e [6.1] ¢; and ¢, are simple contexts, and dim(c;) N dim(cy) = &. Thatis, ¢; Ucy is a

simple context. EQC = (EQc;)@cy = (EQcy)@cy

e [6.2] ¢; and ¢, are simple contexts, dim(c;) # dim(cz), A = dim{cy)Ndim(c2) # &,
andc; | A = ¢y | A. Thatis, ¢; U ¢y is a simple context. E@C = (E@Qc1)Rcy =

(E@CQ)@Cl

e [6.3] ¢; and ¢, are simple contexts, and dim(c,) = dim(c2). Then ¢; U ¢, is not a
simple context.
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case 1 : In general, the evaluation of E at ¢ = ¢; U ¢3 is given by

EGc = E@S(c) = {EQc | €S(c)} 1

The proof follows from the definition of S(c) and the semantics of @.

case 2 : Let ¢; and c; be simple contexts satisfying the conditions
— A =dim(c1) Ndim(cq) # dim{c1 Nca) # @. Thatis,c1 | AFcx | A
—cs=c1 ] AUcy T Ais asimple context.

Then the evaluation of expression E at ¢ is given by

E@Qc = E@RS(c3)@cy = ERc4@S(c3),

where ¢ = ¢; | AUc¢; | A is a non-simple context and its intersection with ¢4 is

NULL &L
e [6.4] Let c; and ¢y be any two contexts satisfying the conditions

— A =dim(c1) Ndim(ce) # dim(cy N¢y) # @, Thatis,c1 | A # ¢y | A

—cs=c; T AUcy T A is anon-simple context.

Then the evaluation of expression E at c is given by

E@S(c) = E@S(c3)Q@S(cy) = EQS(cy)@S(c3)

where ¢3 = ¢; | AU ¢y | A is a non-simple context and its intersection with ¢, is

NULL &L

We introduce the symbol (X) to sum up the evaluation rules for union for contexts:
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Theorem 1 If ¢, and c, are contexts then for any expression E the evaluation of E@c sat-

isfies the equation

E@ci Uco = E@c; QE@c; = {E@c|c € S(c1Uc)},

where
( E@ci@cy, if c1 U co is a simple context  [Rule 6.1, 6.2]
E@S(c), if ¢1 and ¢4 are simple contexts
and dim{c,) = dim(c2) [Rule 6.3, case 1]
E@S(c3) ey, ifcy =c1 T AUcy T Alsasimple context and
E@c, Q E@cy = c3 =c1 | AUcy | Ais anon-simple context

[Rule 6.3, case 2]
E@S(c3)@S(cq), ifca=c1 1 AUcy T Aisanon-simple context

andcs =c1 | AUcy | A is a non-simple context

[Rule 6.4] 1

\

4.1.2 Rules for @ Expressions with Tuples as Values

When E is a tuple stream the join rule has some analogy to natural join operation in rela-

tional algebra, which we shall explore.

Tuples and Intensional Relations A tuple is a finite stream. The size of a tuple is the
number of components it has. Although the syntax of a tuple in Lucx is (E;,...,E,)E, in
the subsequent discussions, where the dimension name is not quite relevant, we omit the
reference to the dimension in tuple representation. If one or more component of a tuple
is not a constant we call it a tuple expression. The evaluation EQc may result in a tuple
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expression. We call a stream of tupe expressions as an relational expression, which we
call as Intensional Relations(IR). Evaluation of the relation IR at certain contexts may be
a stream of tuples. As an example, the stream (1,7,7),(3,0,0), (4,12,9) is the result of
evaluating the IR (1,54 x,2+y+x),(3,2—x,1 —y+x), (4,34 x%, 1+ y+x?) at certain
contexts.

There is some interplay between the Box relational operators and operators U (union), I1
(projection on components), and < (natural join) in relational algebra. Let us consider the
Join rule for Boxes (Section 4.1.1, Page 53). A naive calculation using the formula given
in the previous section will require the computation of all possible unions and projection
calculation for every pair of contexts chosen from the Boxes. Our goal is to reduce this
complexity by obtaining the extensions of the IRs E@b; and E@b, that will converge to the
IR E @ by X by. This is quite analogous to the natural join calculation in relational algebra,
where tuples from each relation are extended minimally while agreeing on certain attribute

names. Based on this observation we calculate E@b; X bs as follows:

e calculate the intensional relation R; = E@b;, which includes the evaluations of E for

every ¢; € by
e evaluate Ry atc; = ¢; | Az, where ¢; € by, and ¢; | Az = ¢; | As.

e calculate the intensional relation Ry = E@b, which includes the evaluations of E for

every ¢; € by
e evaluate Ry atc; = ¢; T Ag, where ¢; € by,and ¢; | As = ¢; | As.

e the intersection of these two extensions is a relation (if fully evaluated) or an IR; in
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the latter case the variables in the resulting IR cannot be evaluated by any context in

by orin by;
Based on the above argument, we write the join rule (J) as the following Theorem.

Theorem 2

E@by K b

Z{(E@bl)@—c-j|CijQ/\leA:CilA}ﬂ{(E@bg)@C_'i‘C,‘Ebl/\()le:CilA}

We use a short hand notation, that is consistent with the relational algebra analogy:

E@by X by = EQb; > EQby B
According to this rule, evaluation at the join of Boxes can be executed in parallel. Hence
the efficiency of evaluation can be improved. This rule will be used later in Chapter 8 to
improve the efficiency of constraint problem solving. The other two rules for Boxes are

related to relational algebra operations as given below:

e [intersectionrule I:] E @ by [ by = TIAE @ by @ IIAE @ by, where Il, is
the projection operator in relational algebra, and M is the intersection operator in

relational algebra.

o [unionrule U:]EQ b, H by = E@by U E @ by, where U is the union operator for

relations.

4.2 Context-Dependent Expression

Contexts are first class objects in Lucx, and hence should be usable as function parameters.
Contexts can also be used as switches (as in imperative programming). A switch selects
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one function definition from a list of alternatives. Depending on the actual context value
assumed by the context parameter, one out of several function definitions will be chosen
for activation.

An intensional expression E is a context-dependent expression because it is defined
differently in different contexts. As an example, let b; and b, be two boxes, and E be an
expression defined as E; for all contexts in b; © b,, defined as E, for all contexts in b, O b,
and E3 in by [J b,. Then we use the symbol A and p to respectively bind the expression
and context : \-E = (Ey,Ey,E3), u-E = (b1 © ba, by © by, by D by). The corresponding
components of the tuples A -E and p -E are bound. For a given context ¢, the evaluation of

expression E is done as follows:

(
Ei@e, c€bNcdby

E@CZJ Ey@c, c€byANcéEb

\ E3Qc, ceb by

Contexts may be used as parameters in a function definition. Let f : X x ¥ X Z x
C — W, where C is a set of contexts; and f(x,y,z,¢),x € X,y € Y,z € Z,c € C, be
defined such that for different context values, the function’s definitions are different. Let
by = Box[D,E,F | D*+E* < 2 A0 < F < 4],by = Box|D,E,F | D*+E*+F? <
9ANF >0],and pu-f = {b1Oby,bySby, b1 by}, and \ f = {2 +y—6,x+y% x> +y}.

The definition of the function f(x, y, z, ¢) is shown as a Lucx program in Example 26.

Example 26
f(x,y,2,c)
=if ¢ € by by, thenz®+y
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else if (¢ € by&&c ¢€by), then2x®+y—6
else x + y?
where
b, = Box|[D,E,F | D2+E>< Z A0< F < 4]
b, = Box[D,E,F | D2+ E2+F> <9 A F2>0]

end

A special case of context-dependent function is the function that produces a context as
the result. Based upon the context, we can activate a function. In turn, such an activation
can produce a new context. By repeating this two-step process we can program control sys-
tems with feedback loops. They are also fundamental in the development of self-adaptive

context-aware systems [62].

4.3 Summary

In this chapter we discussed some issues related to evaluation in Lucx. We provided rules
for evaluation of @ expressions and defined context-dependent functions. A more formal
treatment of issues related to evaluation rules are left for future work. A context dependent
function can have a context as a result. Thus, in a program contexts can play the role of
switches, enabling the dynamic selection and execution of different functions. This feature

is particularly necessary for control systems with feedback loops.
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Chapter S

Implementing Lucx in GIPSY

The GIPSY, an Intensional Programming investigation platform under development, allows
the automated generation of compiler components for the different variants of the Lucid
family of languages. It provides an execution environment allowing for these programs to
be executed in multi-threaded or distributed mode [44]. We discuss the translation rules for

Lucx operators into Lucid and provide an architecture for implementing Lucx programs in

the GIPSY. The GIPSY architecture is shown in Figure 11.

5.1 GIPSY Architecture

The Generic Intensional Programming Language (GIPL), consisting only of @ and # oper-
ators, is one of the members of the Lucid family of languages. As its name implies, it is
a generic language, i.e. all other languages of the family can be translated into it. All the

other members of the Lucid family of languages, such as Indexical Lucid and Lucx, are
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Figure 11: GISPY Architecture

called Specific Intensional Programming Languages (SIPL).

Using concrete language specifications, the GIPSY allows for the automated generation
of compiler components for all SIPLs. These specifications take the form of (1) specifica-
tion of the syntax of the language and (2) specification of the translation rules translating
the syntactic constructs into the generic GIPL constructs. For example, in [46], translation
rules are provided to translate Indexical Luéid operators such as first, next, fby into GIPL.

One of the main precepts of the GIPSY is that the General Execution Engine (GEE)
can execute programs written in any IPL that is part of the Lucid family of languages. This
is achievable through the generic nature of the GIPL, i.e. all SIPLs are translated into the
GIPL, and the GEE then executes the generic version of the program. For each SIPL, the
GIPC (General Intensional Programming Compiler) generates and uses a specific parser

(SIPL parser), which is automatically generated using the JavaCC tool, with a grammatical
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definition provided by the user. This parser generates an abstract syntax tree (SIPL. AST),
which has to be translated into its generic counterpart using an AST translator (SIPL-GIPL
AST translator). That translator is also automatically generated by the GIPC using the

translation rules of this SIPL as input. The GIPC architecture is shown in Figure 12.

Figure 12: GIPC Architecture

Currently, the compiler for Indexical Lucid has been implemented successfully in the
GIPSY. The parser for Indexical Lucid is generated using JavaCC, and the SIPL-GIPL

AST translator uses the translation rules translating Indexical Lucid operators into GIPL.
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According to the design of the GIPSY, a front end that provides the SIPL parser and SIPL-

GIPL AST translator is required to implement the compiler for a new SIPL.

5.2 Implementing Lucx in GIPSY

Lucx is a conservative extension of Lucid and is thus a SIPL. Lucx parser and Lucx-GIPL
AST translator as a Lucx front end to GIPC are to be provided in the GIPSY. Lucx parser
can also be automatically generated using the JavaCC tool. In this section, we provide the
translation rules for translating Lucx operators into Indexical Lucid operators. Combined
with the translation rules for Indexical Lucid operators provided in [46], we will achieve a
two-pass Lucx-GIPL AST translator. Once these two modules are integrated into GIPSY,

the programs written in Lucx can be compiled and run in GIPSY.

5.2.1 Translation Rules for Context Operators

Primitive Functions The following primitive functions should be hard coded, and hence

will be written in Java and incorporated into the GEE.
e dim,,(m) returns the dimension of a micro context m(Definition 3, Page 17).
e tag,(m) returns the tag of a micro context m(Definition 3, Page 17).

e dim(s) returns the set of dimensions of a context s(Definition 3, Page 17).

e tag(s) returns the set of tags of a context s(Definition 3, Page 17).

construct(d, t) constructs a micro context given dimension d and tag .
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e constructs(cy, . . ., Cy) constructs a set of contexts {c1, ..., cn} given simple contexts

Cly.+-3,Cm-
e constructy(dy, ..., d,) constructs a dimension set {di,...,d,} given dimensions
di, ... dn.

e add(c,S) adds the context ¢ into the set S if ¢ doesn’t exist in S.

o IsEmpty(s) checks whether the set s is an empty set.

Assumptions The assumptions we make are as follows:

e set operators, such as N, € used below, do not exist in Lucid; however for simplicity,
these operators are assumed to be hard coded in Java and incorporated into the GEE

as well. The symbol & denotes the empty set.

e Data operations such as &&, ==, | = are defined at atomic level and hence are
implementable in Java. The iseod operation has been added in [46] to test for the

presence of a special end — of — data(eod) value. Hence we use the same notation.

e In Lucx a simple context is represented by a finite stream of micro contexts in it, with
eod automatically added to the end of this stream. Representing a set by a sequence
does not cause any loss of generality, because all the functions that process the stream
are immune to the ordering in it. We also assume that all the functions below will

terminate automatically when they meet the symbol eod.
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Elementary Constructs The following Lucx constructs, which are heavily used in a
program, can be derived from Indexical Lucid. Many of these constructs are defined as
recursive functions. For those constructs, whose counterparts are formally defined in the

previous chapters, we attach the corresponding references.

o IsMember(m,E) function examines whether or not a micro context m is included in

a simple context E.
IsMember(m, E) = if(dim,(m) == dim,(first E)&&tag,(m) == tag,(first E))
then true else if(iseod(E)) then false
else IsMember(m,next E)
o IsPart(e, s) decides whether or not the dimension e is a member of the dimension
set s.
IsPart(e, s) = if(e == first s) then true

else if(iseod(s)) then false else IsPart(e,next s)

o InterEmpty(s, s') decides whether the intersection of dimension sets s and s’ is an

empty set or not.
InterEmpty(s, s’) = if(IsPart(first s,s’)) then false
else if(iseod(s)) then true else IsEmpty(next s, s')
e extract(E , E') generates a context whose elements are part of E, but the dimensions
of those elements are not included in dim(E').
extract(E,E') = if(IsPart(dim,(first E),dim(E')) == false)
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then first E fby extract(next E, E')

else extract(next E, E)

Override.(E, E') (Definition 4, Page 18) generates a new context, which is the conflict-

free union of £ and E’.

Override.(E,E') = E fby extract(E,E)

Difference.(E, E') returns the difference set of E and E'.

Difference.(E,E') = if(IsMember(firstE,E') == true)
then Difference.(next E, E')

else first E fby Difference.(next E, E')

Projection.(E, D) (Definition 6, Page 18) retrieves all the sub contexts in E whose

dimensions are in D.
Projection.(E,D) = if((IsPart(dim,(first E)),D) == true)
then first E fby Projection.(next E, D)
else Projection.(next E,D)
Hiding.(E, D) (Definition 7, Page 19) removes all the contexts in E whose dimen-

sions are in D. According to the rule ¢ T D = ¢ © (¢ | D) provided in Section 2.1

(Page 19), we implement Hiding.(E, D) as follows:

Hiding.(E,D) = Difference.(E, Projection.(E,D))
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o Substitution.(E, (d,t)) (Definition 8, Page 19) replaces all the micro contexts in E

whose dimension is d with the micro context [d : #].

Substitution.(E, (d,t)) = Union(construct(d,t), Hiding.(c, constructa(d)))

e DisUnion(c, E) produces the union of the context ¢ and each element ¢; of the context

set E, where ¢; € E. Each result will be added into the set S.

DisUnion( ¢,E) = add(Union(c, first E),S) fby DisUnion(c,next E)

o PairwiseUnion(S, Sy) for every context pairc; € Sy andcs € Ss, produce the union

of ¢, and ¢», and adds the result into the set S.
PairwiseUnion(S;,S;) = DisUnion(first Sy,Ss)
fby PairwiseUnion(next Sy, S,)
Translation Rules for Context Operators

e Intersection Function: Intersection(E,E')(N)

Intersection(E,E') = if (IsMember(first E,E') == true)
then first E fby Intersection(next E,E')

else Intersection(next E E)

e Union Function: Union(E, E')(U)

Union(E,E') = E' fby Difference.(E,E)

e Undirected Range Function : Range(E, E')(=, Definition 9, Page 20)
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In order to provide the Undirected Range Function, we provide several elementary

constructs as follows.

1. subrange(m;,my) guarantees that the construction is sorted increasingly ac-

cording to tag values, where rag,,(m;), tag,(mz) € N.(Definition 9, Page 20
: Step 2 (a, b))
subrange(m;,my) = if(tag.(m) < tagu(m))

then constructgy(dimy(m;), taga(m;), tags(ms))

else constructgy(dim,(m;), tagy(my), taga(m;))

2. constructy,(d, t1, ;) generates a set of contexts S,, whose elements have the

same dimension d and tag values ranging from #; to 5, where #1, 2 € N.(Definition 9,
Page 20 : Step 2 (¢))
constructg(d, t1,ta) = if(ty < ty)

then add(construct(d, t;),S,) fby constructsy(d, ty + 1, t,)

else S,

3. constructy(E,E', D) construct a set Y, each element of which is a set ¥;. ¥; is

constructed for each pair m; € E and m; € E’ which share the same dimension.

(Definition 9, Page 20 : Step 3).
constructy(E,E|D) =
subrange(Projection.(E,first D),Projection.(E’,first D))

fby constructy(E, E',next D)
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4. constructz(Y) constructs the set Z of contexts for each element in Y(Definition 9,
Page 20 : Step 4)
construct;(Y) = if (iseod(Z))
then Z = PairwiseUnion(first Y, first next Y)
fby constructy(next next Y)

else Z = PairwiseUnion(prev Z,first Y) fby construct;(next Y)

5. append,(c,ca,cs,S) unions the contexts c1, ¢z, c3 and adds the result to the set

S. (Definition 9, Page 20 : Step 7)
appends(cy, ¢a, €3, S)
= if(IsEmpty(S)) then S = constructs(Union(cy,Union(c,y,c3)))
else add(Union(cy, Union(cy, ¢3)),S)
Range(E,E') = §
where
S = if(InterEmpty(dim(E),dim(E')) then construct,(Union(E,E'))
else concatenate,(S,, Cy, Cc, S);

concatenate,(S,,Cy,Cc,S) = appends(first S,,Cy,C.,S)

fby concatenate,(next S, Cy, Cc, S) [Definition 9 : Step 7|
Sa = constructz(constructy(E,E',D)) [Definition 9 : Step 4]
C, = Hiding.(E,D) [Definition 9 : Step 5]
C. = Hiding.(E',D) [Definition 9 : Step 6]
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D = dim(E) N dim(E")

end

e Directed Range Function : DirRange(E, E')(—, Definition 10, Page 21)

According to the definitions, the only difference between Range(E, E') and DirRange(E, E')

is in the definition of function subrange(m,, ms), which is shown as follows.
subrange(m;, my) = if(tagy(m;) < tagn(ms))

then constructyy(dim,(m;), tag.(m;), tag.(my))

else return &
The rest of the constructions are as described above.

e Choice Function : Choice(E, Ey)(|, Definition 5, Page 18). This function may call

some random number generation function in Java to choose either E or E;.

o Subcontext Function : Subcontext(E, E')(C)

Subcontext(E,E')
= if(IsMember(first E E'))
then if (iseod(next E)) then true
else Subcontext(next E,E')

else false

o Supset Function : Supset(E E")(D)

Supcontext(E,E') = Subcontext(E,E)
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o Equality Function : Equality(E, E')(=)
Equality(E,E’) = if(Subcontext(E,E)&&Supcontext(E,E'))

then true else false

5.2.2 Translation Rules for Lifting Operators

Primitive Functions

e IsSet(E) is used to check whether E is a set of contexts or a context. If yes, then

return true, else false.

e IsBox(E) is used to check whether E is a Box or not. If yes, then return true, else
false. Since the lifted operators Override(®) and Difference(©) cannot be applied to
Box, the function IsBox(E) will be used in the translation rules of these two operators.
Other lifted operators and relational operators have the same semantic meaning both

for context sets and for Boxes, so there is no need to provide translation rules for

Boxes separately.

Translation Rules for Lifting Operators

e Projection Function: Projection(E, D)(|, Definition 12, Page 26)

Projection(E,D) = E,
where

E; = if (IsSet(E))
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then Projection.(first E,D) fby Projection(next E,D)
else Projectionc(E,D)

end

e Hiding Function: Hiding(E,D)(T, Definition 13, Page 27 )

Hiding(E,D) = E;

where

E; = if (IsSet(E))
then Hiding (first E,D) fby Hiding(next E,D)
else Hiding.(E,D)

end

o Substitution Function: Substitution(E, (d, t)) (/, Definition 14, Page 27)

Substitution(E,(d,t)) = E,

where

E; = if(IsSet(E))
then Substitution.(firstE, (d,t)) fby Substitution(next E,(d,t))
else Substitution(E, (d,t))

end

o Override Function: Override(E, E')(®, Definition 16, Page 27)

Override(E,E') = E;
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where

E, = if (IsBox(E)) then false else if (IsSet(E))
then Override.(first E,E') fby Override(next E, E')
else Override.(E,E)

end

Difference Function: Difference(E, E')(&, Definition 17, Page 28)

Difference(E,E') = E;

where

E; = if (IsBox(E)) then false else if(IsSet(E))
then Difference.(first E,E') fby Difference(next E,E')
else Difference.(E,E)

end

5.2.3 'Translation Rules for Relational Operators

Elementary Constructs

e compareSet(c,s, D) compares the context ¢ with each element ¢; € s. If the results of

the projection of ¢ and ¢; on D are the same, ¢ and ¢; will be combined. The combined

context will be added into the produced context set S.

compareSet(c,s,D) = 8
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where
if (Equality(Projection.(c,D),Projection.(first s,D)))
then add(Union(c,first s),S) fby compareSet(c,next s,D)
else compareSet(c,next s,D)

end

Translation Rules for Relational Operators

o Join Function: JoinSet(Sy, S2) (K, Definition 18, Page 29)
JoinSet(S;,S,) = compareSet(first S;,S,,D) fby JoinSet(next Sy, S,)
where
D = (dim(S;) N dim(S,))
end
o Set Intersection Function: InterSet(Sy,Ss) ([, Definition 19, Page 29)
InterSet(S;,Sy) =S
where
S = Projection(JoinSet(Sy,S,), (dim(8;) N dim(S,)))

end

e Set Union Function: UnionSet(Sy, S2)(H, Definition 20, Page 29)

UnionSet(S;,S;) = PairwiseUnion(Xy,X;) [Definition 20, Step 3|
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where

X; = PairwiseUnion(S;,Hiding(S,D)) [Definition 20, Step 1]
X, = PairwiseUnion(S,,Hiding(S;,D)) [Definition 20, Step 2]
D = (dim(S;) N dim(S,))

end

5.3 A Proof of Translation Rules

In this section, we show our approach of proving the equivalence between the formal defi-
nitions of context operators and the translation rules for them given in the previous section.
The translation rules are recursively defined. This suggests a proof by induction approach.
As an example of the proof approach, the proof of the override operator(®) is shown below.

The translation rule for override operator is : Override.(cy,c2) = ca fby extract(cy, ¢y).
In order to prove that this rule correctly translates the definition of override operator, we

need the following propositions.

Proposition 1 The function extract(cy,cq) constructs the set:

Y={m| (m € c Adim,(m) & dim(cy))}.

Proof We give an inductive proof based on the length of c;.
Base step ¢; = NULL
extract(NULL, c;) = NULL [Definition of extract]

Y =NULL [Set Theory]
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Hence, extract(ci,c) =Y = NULL .

Induction step ¢; # NULL. Let k be the length of ¢;, k > 1. Assume that extract(c;, c3)
constructs the set Y, for all streams ¢; of length k > 1. We prove that extract(c}, cz), where
c} is of length k + 1, will construct the set Y.

We write ¢, = first ¢} fby next ¢}. The length of next ¢/ is k.

Apply the function definition of extract(c, cz):

(1). If (IsPart(dimy(first ¢|), dim(cz)) == false), then we construct:

first(c}) fby extract(next ¢, c3)

By induction, extract(next ¢, co) constructs the set Yy,

Hence first(c}) fby extract(next ¢y, c2) constructs the set Y U {first(c})} = Yip1.

Proved.

(2). If (IsPart(dimy,(firstc}), dim(cy)) # false), then we construct:

extract(next c,cy). According to induction step, extract(next ¢}, cq) constructs the set
Y, correctly because next ¢ is a stream of length k. In this case Yy = Y41

Hence the result follows.

Proposition 2 ¢; @ c; = Override (c1, c2).

Proof

aa®ca={m|(mecy A dimy(m) & dim(cy)) V m € c3} [Definition 4]
={m|mec}tU{m|(méec, Adim,(m) ¢ dim(cy))} [Set Theory]
=y foy {m | (m € c1 Ndimy(m) & dim(cy))} [Definition 1]
= ¢g fby extract(cy, ca) [Proposition 1]
= Override (¢, c2) [Override, Definition]
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5.4 Applying Translation Rules for Program Development

Lucx programs contain context operators and context set operators. The translation rules
implement the definitions of these operators in Indexical Lucid. Provided with Java imple-
mentations of primitive functions, we claim that every Lucx program can be presented as
an Indexical Lucid program, and an equivalent dataflow diagram can be developed. Exam-
ple 27 shows the Indexical Lucid program developed from the Lucx program of Example 26
(Page 59). The corresponding dataflow diagram is shown in Figure 13. Since the GIPSY
has provided the tools transforming dataflow diagram into Indexical Lucid program, this
dataflow diagram can also be transformed into Indexical Lucid program and compiled on

the GIPSY platform.

oo dhel

Figure 13: Translated programs

Example 27 :
£(x,y,2,¢)

=if ¢ € by by, thenz®+y
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else if (¢ € b,&&c ¢€b,), then2x® +y — 6
else x + y?
where
b, = Box[D,E,F | D2+ E>< £ A0 F < 4
b, = Box[D,E,F | D2+ E*+F2 <9 A F > 0]
InterSet(by,by) = Projection(JoinSet(b,bs), (dim(bs) Ndim(bz)))
JoinSet(by,b,) = compareSet(first by, by, (dim(by) N dim(by)))
fby JoinSet(next by,b,)
Projection(JoinSet(by,by), (dim(bs) Ndim(by))) = if (IsSet(E))
then Projection (first E,D) fby Projection(next E,D)
else Projection.(E,D)

end

5.5 Summary

In this chapter, we have given one approach to integrating Lucx into the GIPSY. The trans-
lation rules for context operators, context set operators and Box operators are given. These
translation rules form a basis for Lucx-GIPL AST translator. The equivalence between
formal definitions of the operators and the translation rules requires a formal proof. We
have outlined an induction-based proof approach for proving the equivalence between the
formal definition and the translation rule of override operator. Providing proofs for the rest

of the rules will be taken up as part of future work.
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Another possible approach of integrating Lucx into GIPSY is to implement these op-
erators using Java functions and embed these Java functions into GEE. The approach that
we have taken, namely providing translation rules, is appropriate to formally show the

correctness of an implementation. Once we have established the equivalence between the
formal definitions and their translation rules, Java implementations for Lucx operators will

improve the evaluation efficiency while assuring the correctness of what is implemented.
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Chapter 6

Programming Timed Systems in Lucx

6.1 Introduction

In this chapter we discuss an approach to programming timed systems in Lucx language.
To program timed systems, specification and programming languages must have the ex-
pressive power to describe precisely what the actions are and when these actions must be
taken. Lucx language is declarative, and hence Lucx programs implementing the actions
are precise, abstract, and yet have sufficient details for understandability. As shown later
in the chapter, context in Lucx can be used to specify time constraints, either with a global
clock or with several local clocks. Time-dependent functionality can be programmed as
function evaluations at contexts. Stream processing in Lucx seems natural to programming
the asynchronous arrival of environmental events in reactive systems and hybrid systems,

the two important kinds of real-time systems.
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Reactive systems are systems that maintain a continual interaction with their environ-
ment. The two properties that characterize reactive systems are that the process always
reacts to a stimulus from its environment (stimulus synchronisation), and the time elapsed
between a stimulus and its response is acceptable to the relative dynamics of the environ-
ment, so that the environment is still receptive to the response (response synchronization).
Hybrid systems are systems that combine continuous and discrete behavior. The continu-
ous and discrete parts in the system interact at discrete points in time. The physical nature
of a component as well as its interaction with other hybrid system components are usually
expressed as algebraic and/or differential equations. Most reactive systems are message-
intensive, whereas hybrid systems are computation-intensive. The extent of synchroniza-
tion, due to data (function) computation, distinguishes hybrid systems from reactive sys-
tems. Yet, both reactive and hybrid systems are complex to model and analyze. Many of
the safety-critical systems are either reactive or hybrid.

The synchronous dataflow languages Lustre [17] and RLucid [48] have been applied
for reactive programming. Clocks were added to Lustre programs so that certain parts of
the programs need not always run. This enabled the introduction of constrained reaction.
In RLucid the operator before was introduced to deal with real time. That is, one can write
the expression E; before E, to determine whether the first value in the stream E; arrived at
time 7, < f, where #, is the time of arrival of the first value of E;. SIGNAL [42] language
manipulates signals that are timed sequences of typed values. In all these approaches time
is discrete, and streams implicitly have the time dimension, although clocks associated

with dimensions may be different. For hybrid system specification, hybrid [15] and timed
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automata [56] are the two main formalisms. Not much work has been reported in language
aspects for programming hybrid systems.

In the rest of this chapter we provide a detailed discussion on real-time reactive pro-
gramming. At the end of the chapter we point out the necessary extensions to program

hybrid systems in Lucx.

6.2 Abstract Models of Timed Systems

In this section we discuss a formal basis of timed systems on which Lucx programs are to
be written. Time, measured by one or more clocks, may be either discrete or continuous.
We denote a set of clocks by C. A clock valuation v is defined as a higher-order function
v:C — (£ — TI) such that the function v(c), ¢ € C is monotonically increasing function.
Moreover, for ¢,c’ € C, the functions v(c) and v(c’) increase at the same rate. For con-
tinuous time model, 2 = R, and the function v(c) is continuous for every ¢ € C. For

discrete time model, @ = N U {0}. For both time models, v(c)(0) = 0.

Global Clock Let C denote the global clock, N denote the set of nonnegative integers,
R denote the set of reals, and R=2° the set of nonnegative reals. We assume that continu-
ously varying time is modeled as I = {r |t € R2}. The model of discrete time is

I =NU{0} U {+c0}.

Multiple Clocks We let C denote the set of clocks in the system. Let us consider appli-

cations in which a clock ¢ is never compared with a time constant greater than m. Then,
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the actual clock valuation, once it exceeds m, is of no consequence in deciding the allowed
execution paths in the program. Hence every clock ¢ € C has a bounded support, which
we denote as Intv(c).

For continuous time model an equivalence relation for clock valuations is defined [56]:

v 2=V iff, forall ¢1, ¢o € C, x € R2":
1. Inv(c)) = Intv(cy)
2. [v(e)(®)] = [V(er)(x)] and (fract(v(c1)(x)) = 0 iff fract(v'(c1)(x)) = 0),
3. fract(v(c,)(x)) < fract(v(cs)(x)) iff fract(v (c1)(x)) < fract(V(c2)(x)).

If two clock valuations v and ' are equivalent, then v(c)(x)[6] = V'(¢)(x)[d] for any clock
predicate 9.

A clock region is an equivalence class of clock valuations induced by equivalence rela-
tion =2, We say that a clock region « satisfies a clock constraint ¢ iff every v € « satisfies 4.
Each region can be uniquely characterized by a (finite) set of clock constraints it satisfies.

Each region can be represented by specifying
(1) for every clock c, one clock constraint from the set {v(c)(x) =m |m =0,1,... ,m.}
U{m—-1<v(e)x) <m|m=1,... m}U{v(c)(x) > m.}, where m, is the

supremum of Intv(c), and x € R=°

(2) for every pair of clocks ¢; and ¢z such that m; — 1 < v(c1)(x) < myandmy — 1 <
v(c2)(x) < my appear in (1) for some my,m,, whether fract(v(c;)(x)) is less than,

equal to, or greater than fract(v(cz2)(y)).
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As an example, consider clocks ¢; and ¢, with m; = 4, and my = 6. This gives rise
to 59 clock regions, as shown in Figure 14. Each region is interpreted by the clock values
according to the equivalence relation definition. For instance, (open) regions a1 and «16
are defined by the inequalities

al: 0<v(c)(x) < 1,0 <v(c)(y) < v(c1)(x)

al6: 3 <v(c)(x) <4,v(cl)(x) —2 < v(e)(y) < 2

V)
6 .

@A7]

5 .

4 .

17|
alg, . . alg
o9 . . a5
o2 ad w6, 8
al | o3 w5 ea]  #°

058

1 2 3 4 vel)®

Figure 14: Clock Regions

A clock region o is a time-successor of a clock region « iff for each v € «, there exists
a positive ¢ € R such that v + ¢ € /. The time-successors of a clock region « are all the
clock regions that will be visited by a clock valuation v € « as time progresses. The time-
successors of a region a can be derived by moving along a line drawn from some point in
« in the diagonally upwards direction(parallel to the line x = y). For instance, in Figure

14, the successors of region a1 are : a4, all, al4, a21, a24, a3l, a53, a54, adb, abb.

Timed Systems The object-oriented (OO) formal approach [1, 43] is taken as the basis
for programming real-time reactive systems in Lucx. The main reason for this choice is
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that several tools exist in TROMLAB [1] for developing a timed system according to the
OO formalism, and an implementation of Lucx in GIPSY might provide a link between
these two frameworks.

The OO approach formalizes a reactive system as a composition of two parts:

e a formal model of the environment: the environmental objects are abstracted, their
interfaces to the system elements are defined, and their behavior models are devel-

oped;

e a formal model of the system elements: the reactive process is modeled and its func-

tional and timing requirements are specified.

For verification purposes, a formal statement of the desired properties of the system is
formulated; but it is not part of the OO model.

The behavior model for the objects in the OO approach is an extended state machine
(ESM) [43]. An ESM has a finite number of states. The states in an ESM roughly corre-
spond to different modes or situations of interest. A state may include one or more discrete
data type variables whose values change whenever the state is reached in the execution of
the object. State transitions are labeled with event (action) names, and specified in guard-
action paradigm. The guard g on a transition from state s; to s; is of the form var, A tc,
where var,, a conjunction of predicates on the variables in state s;, serves as a precondition
for enabling the transition and zc is a conjunction of time constraint predicates of the form
lower < tc < upper. The action a is a conjunction of two predicates, one on the vari-

ables in the post state s;, and the other on the clock variables that need to be initialized. The
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clock initialization predicate is optional. The state transition semantics is shown below(let

£ denote a finite non-empty set of events e):

si AN e €E(si) A varg(si) N te(t)

5 5 5 A varg(s;) A ric(t)

An execution is a sequence of transitions starting from an initial state. The behavior of
the ESM is the set of executions. The behavior model of a non-trivial system consists of
several ESMs, and they interact through messages. For all ESMs, in the initial state the
current time is 0, an unconstrained transition is instantaneous and hence does not change
clock values, a time constrained transition makes the time progress and the time passage is

additive.

6.3 Lucx Programs for Abstract Models

In this section we discuss the representation of events, variables, functions, and states of
timed systems as streams in Lucx. We discuss the representations for both discrete and
continuous time models. These stream representations are similar to the representations in
the functional model introduced by Alagar and Ramanathan [8].

With the dimension name (global clock reference) ¢ and the tag set €2, global clock
reference at an instance x is given by the micro_context [c : x]. If v is a clock evaluation
function, the expression v@[c : x| evaluates to the time shown in the global clock at instance
x. Because there is only one global clock, we can often ignore explicit reference to c.

The clock regions corresponding to a set of clocks is represented as a finite stream of
Box expressions. Every Box expression in the stream corresponds to one region. Each Box
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expression is defined by the dimension set A = {cy,...,¢}, and a constraint on the clock
valuations. For example, Box[A | p], where A = {c¢1,cp} and p; = 0 < v(c)(x) <
1,0 < v(ca)(y) < v(c1)(x) refers to the region «; in Figure 14.

In Lucx the time defined by the real-time clock of a computer is not the only possible
time that can be expressed. Any input event can define its own time by means of its repeated
occurrences. Replacing the v by TIME, and C by £ in the definition of clock valuation we
get the function TIME : £ — (2 — II), which is the time defined by the occurrences
of events in £. Lucx representations for these two kinds of times are different, and conse-
quently the program is capable of figuring out how the different times should be combined.
In the rest of this chapter, we consider only two types of time: 1. the time defined by the

global clock; and 2. the time defined by the event occurrences.

Event Streams Let £ denote a finite non-empty set of events in the formal model of the
system. An event e € &£ may occur any number of times within the system. The function
TIME : £ — (N — TI) defines for e € &, the function TIME(e), whose value atk € N
ist, = TIME(e)(k), t € TI, interpreted as the time of kzh occurrence of the event e. The
function TIME(e) = {(k, )} is represented in the language as a 1-dimensional stream &,
€, = #. In the language the representation for an event ¢ under continuous time model is
the stream e, and under discrete time model, the representation can be either € or a boolean
stream e such that e, is true.

The function COUNT : £ — (II — N) defines for e € £, the function COUNT (e),

whose value at t € Tlis k = COUNT(e)(t), k € N is the number of occurrences of the
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event ¢ up to and including the time ¢. That is, the function COUNT is a pseudo inverse of
TIME function. That is, TIME(e)(0) = 0; TIME(e)(+00) = +oo, and COUNT (e)(0) =

0; COUNT (e)(+00) = +00

Example 28 Let the times for 1%, 2", 37, 4™ . occurrences of an event e be 1,4,5,7, . ..

For discrete time, the representation of the event e is the stream

e = true false false true true false true false...

The representation of the stream € is

e=1 4 5 T7...

The representation of the stream COUNT{e) is

COUNT(¢)=1 1 1 2 3 3 4..

Let the times for 1%, 2™, 3/, 4" .. occurrences of an event f be 1.3,4.5,5.6,7.8, ..
in some clock valuation. The representation is the stream

f=13 45 56 78,...

The representation of the stream COUNT(f) is

COUNT(f)(1) =0, ... COUNT(f)(1.3) =1, ..., COUNT(f)(2) =1, ...

COUNT(f)(4.5) =2, ..., COUNT(f)(5) =2, ..., COUNT(f)(5.6) =3, ...

The following primitive functions defined in the language are useful to manipulate event
streams. Let now denote current clock valuation. The arguments to the following functions

are streams corresponding to events.

e The function includes(e,f) returns true if TIME(e) < TIME(f), otherwise it

returns false.
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e The function sum(e, f) returns the stream obtained by merging the two input streams.
The resulting stream represents the event e + f, which occurs whenever e occurs or f

occurs.

e The function last_time(€, t) returns the latest time £, < ¢t < now at which e

occurred.

e The function next_time(€, t) returns the most recent time #; >t < now at which

e occurred.

e The function extract(e,p), where p is a predicate, extracts the sub-stream f of
stream e such that the predicate p is true at every occurrence of f. For instance,
if the predicate is COUNT(e,t) = COUNT(g,t) the function extract(e,p) extracts
the sub-stream f of stream e such that COUNT(f,t) = k implying that there ex-
ists an increasing sequence 0 < # < fh < ... < 1 < 4K = t, such that

COUNT(g,t;) = COUNT(e,t;),fori = 1,...,k.

Variable Stream Let V denote a finite non-empty set of variables in the formal model of
the system. Whenever the variable v changes its value, the event ASSIGN(v) € & occurs.
The stream representation of ASSIGN(v) is as defined before for events. The function
TIME(ASSIGN(v)) : (N — TI) defines ty = TIME(ASSIGN(v))(k) for v € V and
k € N. The time ¢, is interpreted as the time of kth assignment for the variable v. The
function TIME(ASSIGN(v)) = {(k, )} is represented in the language as a 1-dimensional

stream Vv, v, = 1.
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The function VAL : V — (N —TI) defines for v € V), the function VAL(v), whose
value at k € Nis v, € II, the value at the k — th assignment. We represent VAL(v) as the

stream v. Thus, for time 7, V,_; < t < ¥y, the value of variable v remains as v;_1.

Example 29 Let the times for 1%, 2", 3 4™ . assignments of avariable vbe 0.5,1.0,1.5,-
2.0, ..., and the corresponding values of each assignment is 1,3.3,4.5,7.8, ..., So the rep-
resentation of the value v is the stream:

v = 1, 33, 45, 78,

Meanwhile, the representation of the stream V is

v = 05 10, 15, 20,

The following primitive functions defined in the language are useful to manipulate vari-

able streams.

1. The function last_assign(v,t) returns the latest time #; < ¢ < now at which the

variable v changed its value.

2. The function next_assign(v, t) returns the most recent time #; > ¢ < now at which

the variable v changes its value.

Function Call Streams A function call stream is a sequence of function calls that have
been defined in the program. The evaluations of the function call f(v1, ..., v,) at different
instances produce a stream vg of values. A predicate p is evaluated, as a function of its
free variables, whenever a free variable in p gets a new value in the system. The following
functions manipulate function streams: F is a function call, and now is the current clock

valuation.
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1. The function eval(F,w,t), evaluates the function call F at time ¢ by binding the
stream variables in F to the streams in the tuple w, in the order specified. For each
variable the latest assigned value is used in evaluating the function. The current value

of the function is stream vg,.

2. The function eval(F, w,p), evaluates the function call F whenever the predicate p on
a subset of the variables vy, ..., v, of the function f(v1,...,v,) becomes true. That

is, if at time ¢ the predicate p becomes true, the function eval(F, w, t) is invoked.

Streams for ESM Models

1. State transitions are modelled as a 3-dimensional stream tf, with state names as tags
along the dimensions STATEj,,, statc machine names as tags along the dimension
Machine, and transition numbers as tags along the dimension TRAN. The evaluation
tf @ [Machine : M,, STATE;,,,, : si;, TRAN : k] is the tuple (e,s; ), where s; is the
transited state and e is the event triggering the transition from s; to s; for that particular

state machine M,,.

2. The CNF parts of the guard p in a transition are represented by a 1-dimensional
stream varg. Its dimension is TRAN having transition numbers as tags. The evalu-
ation varg@[TRAN : k| is a tuple of clauses in the CNF for that transition. A tuple,
being a finite stream, has a selector function which retrieves a specific component
of the tuple for the given tag. We use the notation 1¥, 2" ... to denote the selector
functions. With this notation and the use of predefined functions a CNF is evalu-
ated. That is, the function evalc(varg@[TRAN : k], w, ) evaluates the conjunction of
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clauses in its first argument by binding the variables to the stream w at time t. It uses
the function evald(tu, w,t) that evaluates the disjunction of predicates in the tuple
tu. The function evald uses the function eval(p, w, t) that evaluates the predicate by

binding the variable in p to the value stream w at time z.

. The time constraint zc is represented as a 2-dimensional stream with one dimension
name TRAN having transition numbers as tags, and another dimension CLOCKVAR
having clock indices as tags. The evaluation tc @ [TRAN : k, CLOCKVAR : i} is a
tuple of integers (lowery, upper;), with the meaning that [lowery, upper;] is the time

interval specified as part of the specification of the transition whose number is k.

. The conjunction var, is represented as a 1-dimensional stream var, with the dimen-
sion TRAN having transition numbers as tags. The evaluation var, @ [TRAN : k] a

tuple of clauses in the CNF for that transition.

. The predicate rtc is represented as a 2-dimensional stream rtc with one dimension
name TRAN having transition numbers as tags, and another dimension CLOCKVAR
having clock indices as tags. The evaluation rtc @ [TRAN : k, CLOCKVAR : i] is a

boolean value indicating whether or not the i clock should be reset at the transion k.

Dynamic Behavior of ESM The dynamic behavior of ESM is the set of traces produced

according to the state transition semantics given in Section 6.2. We represent each trace

of a machine by a stream of tuples (s, v,) in the program, where s € &, a finite set of

states in the formal model, and v, is the set of variables in state s. An element of the trace
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is computed by applying the state transition semantics to the element that was generated at
the previous step. If event e occurs at time t, and is admissible for the current element in the
trace, the transition happens instantaneously; if it is not admissible in this state, transition

does not happen, but time is allowed to progress.

A timed system consists of several synchronously interacting state machines. The
Lucx representation of the timed system is a 2-dimensional stream P. One of its dimen-
sion MACHINE has tags corresponding to the machines in the system. The evaluation
PQ[MACHINE : i] is the stream M; for the state machine M; in the model. The other di-
mension of the stream P is TIME having discrete instances as tags. The justification is that
events in the system happen at discrete times. At instant k, the expression PQ[TIME : k]
evaluates to a 1-dimensional stream, showing the status of all the machines in the system
at time #, = . The system state changes if constraints are satisfied for the state in a tu-
ple on the rth column, otherwise time is allowed to progress. We calculate the function
progress(M, t, e) to determine the current state tuple M,y = (s, Vy,)(y. For all other
rows, there is no change in time #:

P, = <M1prev PRI ,M(i_l)pm o Mit, M(i+l) oM >

prev t’ ’ Tprev t

If the state machines M; and M; synchronize at time ¢ on an event, then the state changes
happen simultaneously in both machines, in rows i and j of the 2-dimensional stream while
no other row in the stream will change.

If no event occurs but the sampling time is up, time should progress. A 2-dimensional
stream C is also defined in the timed system. When time passes, the values of clocks are
recorded in the stream C, one dimension of which is TIME, where fyimg = N for discrete
time Or fgimiorag = R for continuous time. Another dimension of C is CLOCKVAR having
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clock indices as tags. The evaluation C @ [TIME : t, CLOCKVAR : i] is the value of the
clock variable i at time t. In Example 30, we define the function timePassage(C,t) to
describe the behavior of the timed system when the sampling time is up. For simplicity,
we use the discrete time. The program eventOccur(e, t) is to describe the system behavior
when the environmental event e occurs. We assume only one variable in var, and var, for
simplicity. We use the functions 1, 2md and 3" to select respectively the first, second and

third components of tuple streams.
Example 30

o timePassage(C,t) : when the sampling time is up, C = prev C + 1. In particular,

each value of the clock variables will be increased by 1.

first CE[TIME : t] = (first C @ [TIME : prev t| + 1) fby timePassage(next C,t)

o eventOccur(e,t) gets the environmental event e when it occurs and calls the function
progressMachine(M, e, 1).
M = P @[Time : prev t;

progressMachine(M, e, t);

e progressMachine(M, e, t) calls the function progress(M;, e, t) for every machine M;
which is in P @ [Time : prev 1.
progressMachine(M, e, t) = progress(first M, e, t)

fby progressMachine(next M, e, t);

o progress(M;, e, t) gets the previous state and variable in the stream P and calls the
function progressEvent(tfiom,, €, state, var).
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statesron = 1°%.(P @ [Machine : M;, Time : prev t]);
variable = 2°4.(P @ [Machine : M;, Time : prev t]);
tfiemp = tf @ [Machine : M;, STATE¢ op : statesron);

progressEvent(tf e, €, States on, variable);

o progressEvent(tfimp, €, state, var) calls the function IsAdmissible(tfyan, e, state, var)
for each transition in the transition stream tf.
progressEvent(tftemp, e, state, var) =
IsAdmissible(first tftemp,e,state,var)

fby progressEvent(next tftemp, e, state, var);

o IsAdmissible(tfyan, €, state,var) checks if the event e is included in tf @ [Machine :

M;, STATE,5, : Statesom, TRAN : k). It does the following:

1. Check if the event e is the one triggering the state transition;
2. Check if the guard condition is satisfied through the function evalc(varg @ [TRAN :
k], variable, t);
3. Check if the time constraint tc is satisfied through the function clockCheck;
4. If all the above conditions are satisfied, then the function IsAdmissible does the
following:
(a) the state in the stream P is changed to the state state,, in the stream tf.
(b) the variable in the stream P is changed to the variable v; in the stream varyg.
(c) the action var, is executed through the function eval(1".var, @ [TRAN :
k], 2" var, @ [TRAN : k], 1).
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(d) Clocks are also reset through the function clockReset.

5. Ifnot all the conditions stated in (1),(2), and (3) are satisfied, then the state and
the variable in P @ [Machine : M;, Time : 1] is the same as P @ [Machine : M;, Time :

prev tl.

K = tfiran TRAN;

1f(1%% .t ran @[TRAN : k| == e)&&(evalc(varg@[TRAN : k], variable, t))&&
clockCheck(C@[Time : t], tc@[TRAN : k])

then 1°*.(P@[Machine : M;, Time : t]) = 2°%.(tfsran @[TRAN : K])

fby 2°¢,(P@[Machine : M;, Time : t]) = 2°.(varg@[TRAN : k|)

fby eval(1®t.var, @ [TRAN : k], 2"%.var, @ [TRAN : k|, t)

fby clockReset(C@[Time : t|,rtc @ [TRAN : k]);

else P@Machine : M;, Time : t] = P@[Machine : M;, Time : prev t]

clockCheck(clockVar, timeConstraint): checks if the time constraints are satisfied for

each clock.

if(oneClockCheck(first clockVar, first timeConstraint)&&
clockCheck(next clockVar,next timeConstraint))

then true else false

where

oneClockCheck(clockvalue, timec) =
if(1%".timec < clockvalue < 2™ .timec) then true else false

end
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e clockReset(clockVar, timeConstraint):
clockReset(clockVar, timeConstraint) = if(first timeConstraint)
then first clockVar =0
fby clockReset(next clockVar,next timeConstraint)

else clockReset(next clockVar,next timeConstraint)

In the GIPSY environment [44] Lucx programs may call external functions written in Java,
the target language of our compiler. Hence, IsAdmissible and Reset functions may also be

implemented in Java, based on the above definitions.

6.4 Railroad Crossing Problem

In this section we provide a specification of the generalized railroad crossing problem, an
example studied in real-time systems community [30]. This is a real-time reactive system,
in which train, gate, and controller objects communicate through messages. There is no
data-intensive computation in the model. The version of the problem [30] is given a formal
object-oriented design by Muthiayen [43]. Only discrete time is required to model this

system.

6.4.1 Problem Statement

Several trains cross a gate controlled by a monitor. Trains may be running on several tracks,
and hence cross the gate simultaneously. When a train approaches the gate, it sends a

message to the corresponding controller, which then commands the gate to close. When the
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last train crossing a gate leaves the crossing, the controller commands the gate to open. The

safe operation of the controller depends on the satisfaction of certain timing constraints, so

that the gate is closed before the first train enters the crossing, and the gate is opened after

the last train leaves the crossing. The following time constraints are assumed [43].

1.

[C1] A train enters the crossing within an interval of 2 to 4 time units after having

indicated its presence to the controller.

[C2] The train informs the controller that it is leaving the crossing within 6 time

units of sending the approaching message.

[C3] The controller instructs the gate to close within 1 time unit of receiving an ap-
proaching message from the first train entering the crossing, and starts monitoring the
gate. The controller continues to monitor the closed gate if it receives an approaching

message from another train.

[C4] The controller instructs the gate to open within 1 time unit of receiving a mes-

sage from the last train to leave the crossing.

[C5] The gate must close within 1 time unit of receiving instructions from the con-

troller.

[C6] The gate must open within an interval of 1 to 2 time units of receiving instruc-

tions from the controller.
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6.4.2 Events and Streams for Problem Specification

In [43], a formal design of the railroad problem is given. It uses ESMs to formalize the
behavior of train-gate-controller objects. The formal object-oriented model thus obtained
is linked with PVS to formally verify the safety property in the modeled system. The ESMs

from [43] are reproduced in Figure 15, Figure 16 and Figure 17.

XL —————— Near / cr=pid && TCvar1=0 &
idle TCvar2=0 ~ toCross
[ ) '

S

Exit[ pid=cr && true &&
TCvar2<=6]

In[ true && true && TCvar1>=2 &
TCvar1<=4}

[ oave | out ™ oo )

Figure 15: ESM of The Train

We use the approach outlined in Section 6.3 to formally represent the above design in
Lucx. The Lucx program for a railroad crossing problem can be written down by simply
instantiating the different streams in Section 6.3 with the details shown in the Figure 15,
Figure 16 and Figure 17. So, we do not explicitly give the Lucx program. Instead, we give
a formal proof in Lucx that the safety property is satisfied in a design which includes the
above time constraints. Based on this proof, we claim that the constraints [C1], ..., C[6]
become verification conditions for the Lucx program. That is, for every instance of the

railroad problem, determined by the trains and the times they send Near? events, if the
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Lucx program satisfies the constraints [C1], ..., C[6] then the program satisfies the safety
property. As we show in Section 6.4.4 below, the safety property can itself be written down
purely in terms of the times of occurrences of observable events in the system. So, we

discuss below a Lucx specification of event streams and their constraints.

Lower / true && TCvar1=0 ( toClose

opened W

Up[ true && true && TCvar2 >1 AND TCvar2< 2 ]

Downf true && true && TCvar1>0 AND TCvar1 < 1)

toOpen L closed
Raise / true && TCvar2=0

Figure 16: ESM of The Gate

We use the approach outlined in Section 6.3 to formally represent the above design in
Lucx. The Lucx program for a railroad crossing problem can be written down by simply
instantiating the different streams in Section 6.3 with the details shown in the Figure 15,
Figure 16 and Figure 17. So, we do not explicitly give the Lucx program. Instead, we give
a formal proof in Lucx that the safety property is satisfied in a design which includes the
above time constraints. Based on this proof, we claim that the constraints [C1], ..., C[6]
become verification conditions for the Lucx program. That is, for every instance of the
railroad problem, determined by the trains and the times they send Near? events, if the

Lucx program satisfies the constraints [C1], ..., C[6] then the program satisfies the safety
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Near[ {{member(pid,inSet)) && true ]
/ inSet’=insert(pid,inSet)

Near / inSet'=insert(pid,inSet)
&&TCvarl=0 \(

activate

I
Lower| true && true && TCvari>=0 &
Raise[ true && true && TCvart<=1]
TCvar2>=0& TCvar2 <= 1]

Near[ (member(pid,inSet)) &&
true ] / inSet’ = insert(pid.inSet)

Exil[ member(pid,inSet) &&
size(inSet) > 1]/ inSet’ =
delete(pid,inSet)

deactivate

Exitl member(pid,inSet) &&
size(inSet) =1 ]/inSet’ =
delete(pid,inSet) && TCvar2 =0

Figure 17: ESM of The Controller

property. As we show in Section 6.4.4 below, the safety property can itself be written down
purely in terms of the times of occurrences of observable events in the system. So, we
discuss below a Lucx specification of event streams and their constraints.

The events Lower! and Raise! are sent by the controller to the gate. These events are
constrained. The events Near? and Exit? are received by the controller from a train. They
are unconstrained events. The gate closes using the event Down and opens using the event
Up. The events In and Out are used by trains respectively to indicate that they are inside the
crossing and outside the crossing respectively. Each event defines its own stream in Lucx.

Informally, a period is the duration in which several trains pass during one session of
gate closing. A period starts when the gate starts closing (occurrence of Down event) and
finishes when the gate opens again (occurrence of Up event). Since the duration for events

Down and Up are not part of the specification we assume that the gate opens at the instant
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Up occurs. Within a period, several trains may come, and hence the events Near, In, Out,
and Exit may occur several times. However, within a period, the controller events and gate

events occur just once. We represent the events by the following streams:

1. The streams Lower and Raise are shared representations for the synchronous occur-

rences of Lower!, Lower?, and Raise!, Raise?. Thus, Lower; and Raise; give the

times of occurrences of the events Lower and Raise in the k — A period.

2. The streams Down and Up represent the events Down and Up. That is, in the k — th

period, the events Down and Up occur at times Down,, and Up;.

3. We use a 3-dimensional stream ¢ to represent the events from trains, with the conven-
tion that the events Near, In, Out, and Exit are denoted by 1,2,3, and 4 respectively.
The justification is that for each train in the k — th period, these events are linearly

ordered:

TIME(Near)(k) < TIME(In)(k) < TIME(Out)(k) < TIME(Exit)(k).

The stream o has three effective dimensions, say TRAIN, EVE, and PER with tags N
for TRAIN and PER and the set {1,2,3,4} for EVE. The evaluation o @ [TRAIN :
i, EVE : j, PER : k|, denoted oy, is the time at which the event j occurred in i— th train
in the k — th period. For instance, 043 gives the time at which the event Exit occurred
in the second train in the 3rd — period. Notice that i increases with the arrival of a
new train in the system. The 1-dimensional stream o @[TRAIN : i, EVE : 1] gives the

times of arrivals of the ith train in all periods.
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6.4.3 Lucx Specification

Abstracting the problem we come up with the following specification of the event occur-

rences. For every period, events used by the gate are linearly ordered:

k € N, Lower, < Down; < Raise, < Upy
Within a period k, the events of each train are linearly ordered:

ok < 012k < 0i3k < Oigi.
For every period k, the time constraints C1, ..., C6 can be formally specified in Lucx as
follows:
[Cl1o QEVE : 1,PER : k]+2 < 0 REVE : 2,PER : k]| < 0 Q[EVE : 1,PER : k] + 4
[C210 @ [EVE: 1,PER : k| <o Q [EVE : 4,PER : k] < 0 @ [EVE : 1,PER : k| + 6

[C3] o111 < Lower, < o1 + 1

[C4] last_time(o R[EVE : 4, PER : k], Lower,1) < Raise;, < last_time(o Q[EVE : 4, PER :

k], Lower,. 1) + 1

[C5] Lower;, < Downy, < Lower, + 1
[C6] Raise;, + 1 < Up, < Raise, + 2
The specification is a set of assertions. They become the verification conditions for the
Lucx program, once we verify that the satisfy property is a logical consequence of the

above assertions.

6.4.4 Verification of Safety Property

Informally, a program that is consistent with the above requirements is safe, if in every
period k the following property is satisfied by the program: The gate closes before any
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train is in the crossing and opens only after the last train in the period has left the crossing.

Using our specification formalism, we formally rewrite the safety property as follows:

Down, < 01 < last_time(o @ [EVE : 4, PER : k], Loweriy1) < Upy (S)
To prove that the safety property, we use the assertions in the specification and Al below
as axioms and show that the predicate (S) is a consequence of these axioms:

o4 < last_time(o @ [EVE : 4, PER : k|, Lower; ) Al
The proof steps are as follows for any period k - the axioms used in deriving a step are

shown at the end of each step:

[Step 1] Down, < Lower, + 1 [C5]
[Step 2] Lower; + 1 < o1 + 2 [C3]
[Step 3l 11k + 2 < 01 [C1]
[Step 4] Downy, < 09 [Steps 1,2,3]
[Step 5] o1k < 014k [C1,C2]
[Step 6] 014x < last_time(o @ [EVE : 4, PER : k|, Lower,,) [A1]
[Step 7] o19x < last_time(o @ [EVE : 4, PER : k], Lower;1) [Steps 5,6]
[Step 8] last_time(o @ [EVE : 4, PER : k|, Lower,,1) < Raise; [C4]
[Step 9] last_time(o @ [EVE : 4, PER : k|, Lower,y;) + 1 < Raise; + 1 [Step 8]
[Step 10] Raise, + 1 < Up, [C6]
[Step 11] last_time(o @ [EVE : 4, PER : k], Lower;11) < Up [Steps 9,10]
[Step 12] Downy, < o9 < last_time(c Q[EVE : 4, PER : k], Loweri,1 < Upx [Steps
4,7,11]

We conclude that the ESMs for train, gate, and controller satisfy the constraints C1, ..., C6,Al
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and hence the design satisfies the predicate (S). In order to prove that the Lucx program

also satisfies the safety property we have to verify each stated axiom (constraint) in the

Lucx program.

6.5 Summary

An implementation of the verified design of the timed system must faithfully conform
to the design. The semantic gap between the language used for the formal design and
the programming language that implements the design is a barrier for a formal proof of
faithfulness of the implementation to the verified design. Our investigative effort in this
research is motivated to overcome this barrier. We fixed the formal model of the timed
system, and gave a representation of it in Lucx. The operational semantics of the formal
model is implemented as Lucx functions. For the railroad crossing problem [30] we gave
an abstract specification and stated the safety property in Lucx. Using Lucx representation,
we gave a formal proof that the specified solution satisfies the safety property. In fact,
this step can be automated in Lucx, because Lucid was demonstrated early on as program
verification language [5]. It remains to formally prove in Lucx that the design satisfies the
specification. This is one part of future work.

GIPSY [44] is an implementation platform for Lucid. As explained in Chapter 5, an
important part of future work is to implement Lucx programs in the same framework. So
we claim that there is a semantic continuity in our approach - specification, program devel-

opment, and implementation are all integrated.
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Environment

Process Interface

Control System

Figure 18: The Abstract Model for Hybrid Systems

The approach discussed in this chapter can be modified and applied to program hybrid

systems. The main factors to research are the following:

1. The abstract model of a hybrid system must include the physical properties expressed

as a set of mathematical equations. Usually these are algebraic and/or differential

equations involving the continuous variables in the system. To be consistent with the

OO approach, the mathematical equations can be encapsulated as an active object in

the model, as shown in Figure 18. The advantages are:

e The (system) controller model is separated from the physical model, the math-

ematical functions that characterize continuous change. This implies that the

same controller specification can be reused either as a black box or a glass box

for different physical models.

e GIPSY programs can be written as hybrid programs allowing Java functions to

be called by the Lucx part of the program. These Java functions can actually

be the implementation of the mathematical functions in different states of a

hybrid model. For numerical evaluation of mathematical functions there will
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be considerable speed up in performance.

2. Paquet [46] has extended Lucid to handle tensors and has applied the extended Lucid
(called TensorLucid) to physical problems. There is a need to look at these exten-

sions or similar representations for handling continuous constraints arising in hybrid
models.
3. The state transition semantics

si Ne € E(s;) N varg(s;) N te(t)

s; = 55 A varg(s;) A rec(t)

must be changed to reflect the evaluation of predicates in the expressions var,(s;) and

var,(s;) that involve continuous variables.
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Chapter 7

Programming Agent Communication in

Lucx

In this chapter, we illustrate the suitability of Lucx as an Agent Communication Lan-
guage(ACL). The ACL that we introduce in this chapter uses context expressions in mes-
sages exchanged between communicating agents. KQML [25] performatives and FIPA [26]
communicative acts form the basic structure for composing messages and communication
between agents. Performatives as well as communicative acts are fixed in the respective
languages, in the sense that they can not be dynamically changed. This restricts the com-
munication ability between agents when they are faced with fast evolution of their envi-
ronment. In this chapter, we show that context expressions in Lucx are good candidates
for representing dynamically changing performatives. We define message structure and

semantics of conversations in Lucx.
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7.1 Agent Communication Languages

Software agents, according to Chen et al [12], are personalized, continuously running and
semi-autonomous, driven by a set of beliefs, desires, and intentions (BDI). Agent tech-
nology is being standardized by FIPA [26] with the goal of seamlessly integrating their
architectures and languages with various commercial application systems such as nerwork
management, E-commerce, and mobile computing. In such applications agents should have
capabilities to exchange complex objects, their intentions, shared plans, specific strategies,
business and security policies. An ACL must be declarative and have a small number of
primitives that are necessary to construct the structures required for achieving the above
capabilities. An ACL must support interoperability in an agent community while provid-
ing the freedom for an agent to hide or reveal its internal details to other agents. The
two existing ACLs are Knowledge Query and Manipulation Language (KQML) [25] and
the FIPA [26] communication language. The FIPA language includes the basic concepts
of KQML, yet they have slightly different semantics. We summarize below the major
points of contrasts between KQML and FIPA ACL, from the work of Labrou, Finin, and

Peng [38].

KQML KQML is a high-level, message-oriented communication language used for pro-
tocol specification and information exchange between agents. A KQML message can be

considerred as consisting of three layers:

o The content layer bears the actual content of the message in the agent’s own repre-

sentation language.
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e The communication layer decribes the features of lower-level communication param-

eters, such as the identity of the sender and the receiver.

e The message layer, also called performative, illustrates the interactions between

agents.

A KQML message from agent Joe querying the price of a share of IBM stock is encoded

as “ask-one” performative in Example 31 [38]. Example 32 illustrates STOCK-SERVER's

reply to Joe’s query [38].

Example 31 Example 32 :
(ask — one (tell
sender Joe : sender STOCK — SERVER
: content (PRICE IBM7price) : content (PRICEIBM14)
: receiver STOCK — SERVER :receiver Joe
: reply — with IBM — STOCK :in — reply — to IBM — STOCK
: language LPROLOG : language LPROLOG
: ontology NYSE — TICKS) : ontology NYSE — TICKS)

KQML also provides a small number of performatives that the agents can use to define meta
data. A semantics of KQML in a style similar to Hoare logic is given in [37]. That is, the
semantics of KQML performatives is provided in terms of preconditions, postconditions,
and completion conditions. Precondition Pre(A) indicates the necessary state for an agent
A to send a performative, and Pre(B) is a precondition for the receiver agent B to accept
it and successfully process it. Postconditions Post(A) describes the state of the sender
agent A after sending the performative successfully. Similarly, the postcondition Post(B)
describes the state of the receiver after receiving and processing the message but before
a counterutterance is made. A completion condition, i.e. Completion, indicates the final
state. Preconditions, postconditions, and completion conditions involve action descriptors,
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such as PROC(A, M) and SENDMSG(A, B, M), and describe states of agents in a language
of mental attitudes such as belief, knowledge, want, and intention. As an example [38],
Figure 19 shows the semantics for fell performative. The semantics for zell suggests that an

agent cannot offer unsolicited information to another agent.

Example 33 :

tell(A,B,X)

Pre(A) : BEL(A,X) A KNOW(A,WANT(B,KNOW(B,S)))
Pre(B) : INT(B, KNOW(B, S))

where S may be any of BEL(B, X), or —(BEL(B, X)).

Post(A) : KNOW(A, KNOW(B, BEL(A, X)))

Post(B) : KNOW(B, BEL(A, X))

Completion : KNOW(B, BEL(4, X))

Figure 19: KQML semantics for tell.

Building on pre- and postcondition semantics conversation policies have been devised
for agent conversation. Conversation policies describe both the sequences of KQML per-
formatives and the constraints and dependencies on the values of the reserved parameters
of the performatives involved in the conversations.

KQML has a predefined set of reserved performatives. It is neither a minimal required
set nor a closed set. That is, an agent may use only those primitives that it needs in a
communication, and a community of agents may agree either to use the union of the sets
of primitives required by each one of them or use some additional performatives with a
consensus on the semantics and protocols for using them. In the latter case, it is not clear
as to how the agents will construct the additional performatives and how a semantics can
be dynamically worked out.
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FIPA ACL The syntax of the FIPA ACL resembles KQML, however its semantics is for-
mally given by a quantified multi-modal logic [65]. The communication primitives in FIPA
ACL are called communicative acts (CA), yet they are the same as KQML primitives [26].
As an example, we give below the communication between an arbitrator agent with two
other agents who are in dispute. The behaviour descriptions are given in [7].

1. Agent a contacts the arbitrator agent m requesting mediation between itself and agent b.
The agents disagree on the location where an e-mail has to be delivered. Agent a wants to
send the email to cs@scu.edu and agent b wishes to send the email to ee@scu. edu.
(request

:sender (agent-identifier :name a)

:receiver (set (agent-identifier :name m))

:content (action (agent-identifier: name a)

(I (send-email cs@scu.edu)

( arbitration-identifier 5)))

:language FIPA-SL)

2. The arbitrator agent m contacts agent b for its version of the dispute.
(inform

:sender (agent-identifier :name m)

:receiver (set (agent-identifier :name b))

:content

(inform
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(send-report (arbitration-identifier 5)))

:language FIPA-SL)

3. Agent m receives agent b’ s version of dispute.
(inform

:sender (agent-identifier :name b)

:receiver (set (agent-identifier :name m))
:content

(action agent-identifier :name b)

(I (send-email ee@scu.edu))

:language FIPA-SL)

4. Agent m analyzes and replies with a suggestion to both the agents.
(propose

:sender (agent-identifier :name m)

:receiver (set (agent-identifier :name a))

:content

(arbitration-identifier 5

(suggestion-number 1

(action (send-email cs @scu.edu ee @scu.edu))))
:language FIPA-SL)

5. The suggestion is rejected by one of the agents.
(reject proposal

:sender (agent-identifier :name a)
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:receiver (set (agent-identifier :name m))
:content

(arbitration-identifier 5
(suggestion-identifier 1))

:language FIPA-SL)

6. Both agents accept the suggestion.
(accept proposal

:sender (agent-identifier :name b)
:receiver (set (agent-identifier :name m))
:content

(arbitration-identifier 5
(suggestion-number 1))

:language FIPA-SL)

The semantics of FIPA ACL is given in the formal language SL, which provides the
modal operators for beliefs (B), desires (D), intentions (persistent goals PG), and uncertain
goals (U). Actions of objects, object descriptions, and propositions can be described in the
language. Each formula in SL defines a constraint that the sender of the message must
satisfy in order for the sender to conform to the FIPA ACL standard [65].

In order to achieve cooperation and interoperability, both KQML and FIPA ACL need
to predefine a set of performatives, which is neither a minimal required set nor a closed
one. This creates a big problem for maintaining and extending the agents to face the fast

evolution of performatives. However, if we design the communication language from a
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higher level and in a more abstract way in which the performatives become first class
objects, we will be able to create additional performatives as context expressions.

This can be done in Lucx by encapsulating performatives in contexts. Meanwhile op-
erators on contexts can be used to create new performatives from existing performatives.
Informally, when an agent A sends a communicative act x to an agent B, we view x as a
collection (may be a sequence) of objects, where each object is bound to some description
on its interpretation, evaluation criteria, temporal properties, constraints, and any other in-
formation that can be encoded in the language. We view this collection as a context. In our
approach, the name of a performative is considered as an expression, and the rest of the per-
formative constitute a context which can be understood as a communication context; each
field except the name in the message is a micro context. The communication context will
be evaluated by the receiver. In some cases, the receiver may combine the communication

context with its local context to generate a new context.

7.2 Message Structure and Evaluation in Lucx

The syntax of a message in Lucx is (E,E’), where E is the message name and E’ is a
context. The message name in a Communicative Act CA of FIPA ACL or the name of a
KQML performative is captured in Lucx by E. In an implementation, E corresponds to a
function. The context E’ includes all the information that an agent wants to convey in an
interaction to another agent. Thus, a query from an agent A to an agent B is of the form

(Ea, E}). A response from agent B to agent A will be of the form (Ej, Ep), where Ej will
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include the reference to the query for which this is a response, in addition to the contexts
in which the response should be understood.
The operational semantics in Lucx is the basis for query evaluation. The query from

agent A (E,, E},) to agent B is evaluated as follows:

e agent B obtains the context F3 = E), @ Lg, where Ly is the local context for B.
e agent B evaluates E4QFp

e agent B constructs the new context Ej that includes the evaluated result and informa-

tion suggesting the context in which it should be interpreted by agent A, and

e sends the response (Fg, E}) to agent A.

The query in Example 31 is represented in Lucx as the expression E4 @ E), shown in
Example 34. The reply in Example 31 is represented in Lucx as the expression Ep @ Ej

shown in Example 35.

Example 34 : Example 35
E, @ E:x Eg @ E]'3
where where
E, = "ask — one”; Ep = "tell”;
Ey=E ©®E OE ©®E ©FE ©E; Ep=E ©F, ® E; ® E, ® Ey © E;
E; = [sender : joe]; E} = [sender : STOCK — SERVER];
E, = [content : E;; E, = [content : E/|;
E; = [receiver : STOCK — SERVER]; receiver : joel;

E, =
E, = [reply — with : IBM — STOCK]; E, = [in — reply — to : IBM — STOCK];
Es = [language : LPROLOG]; E{ = [language : LPROLOG];
E¢ = [ontology : NYSE — TICKS]; Ey = [ontology : NYSE — TICKS];
E; = [PRICE : IBM]; E, = [PRICE : 14];
end end

The implementation will assure that the local context of B is sufficient to evaluate the query
and respond to A within an acceptable time delay. This is an important issue because we

117



want the agents to be reactive (responds within acceptable time limits) while the eduction
is allowed to continue. The choice operator helps in achieving such a goal. For example,
the query in Example 36 gives the receiver, depending on its local context, choose either
LPROLOG or STANDARD_PROLOG to ensure timeliness. The fields in the performative in
Example 31 can not be dynamically changed in either FIPA or KQML. In our language, we
form the context expression E = E4 | {language} & [language : Java] to dynamically
replace the language requirement and construct a new query. The meaning of the examples
shown in this section can be clearly understood from the semantics of the context calculus

presented in the Section 2.1.

Example 36 :

Ey CE,

where
E = "ask — one”;
E,=E ®E, ®QE; ®E, DE; | Eg B Ey;
E; = [sender : joe];
E, = [content : Eg);
Es = [receiver : STOCK — SERVER];
Es = [reply — with : IBM — STOCK];
Es = [language : LPROLOG;
E¢ = [language : STANDARD_PROLOG];
E7 = [ontology : NYSE — TICKS];
Eg = [PRICE : IBM];

end

7.3 Semantics of Conversation

We reviewed the semantics of KQML and FIPA ACL briefly in Section 7.1. Our approach

to semantics is different from these two approaches. We specify the pre conditions and
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post conditions for each query using contexts having four dimensions B(Belief), K(Know),
W(Want), and I(Intention). The tags along the dimension B are predicates, and the respec-
tive tags along the dimensions K, W, and [ are logic expressions. That is, each performative
is bound to a context ¢ = [B : ij,K : ip, W : i3,] : i4| over the dimensions B, K, W, I,
where c is suggested as the precondition to act upon the performative. If a dimension is not
specified in ¢ then it is equivalent to a “don’t care” condition.

We define a dialogue initiated by agent X with agent Y as a pair («, §), where « is
sent from X to ¥ and (3 is the response from Y to X. The agent X constructs the special
context Prey(My) for message My and sends the pair o = (Prey(My), My) to Y. The agent
Y evaluates its local state at Prey(My). The result of evaluation is a tuple (by, ky, wy, i1).
The tuple corresponding to an empty Prey is (NONE, NONE,NONE, NONE), interpreted
as true. That is, the agent X has not indicated any preference as to when agent Y should
evaluate the performative My. If at least one component of the tuple is not NULL, then the
special context Prey(My) is said to be satisfied at some local state of Y. If all components
of the tuple are NULL the context is not satisfiable at any local state of Y. If the outcome
of evaluation is either true or satisfied, the agent Y will act upon the performative My.
For instance, in Example 34, the agent X constructs thé special context E; = [I : i]
and attaches it to the performative in a conversation with Y. The agent Y evaluates its
local repository on its belief, desire, want and intentions, at the context E~. The result of
evaluation is the tuple (NONE, NONE,NONE, PROC(Y,M)), implying that the agent ¥
has the intention to process the message M.

The semantics of a dialogue initiated by X with Y is as follows:
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—

. Agent X creates a special context Prex(My), the weakest precondition that enables
to send a message to agent Y. When Prey(My) is true in its local state, it constructs

Prey(My), a precondition based on the information that it shares with agent Y.

[\

. Agent X sends oo = (Prey(My) & Mx)toY.

w

. Agent Y disassembles it into the message part M and the special context Prey(My).

This is done by computing Prey(My) = « | {B,K,W,I},and My =« | {B,K,W,I}.

EaN

. Agent Y evaluates its local state at Prey(My).

(9

. If satisfied it does the following:

(a) creates the post condition Posty(My) that satisfies the task completion;

(b) acts upon the message My;

(c) composes the reply as a performative My;

(d) creates Posty(My), the special context in which agent X should evaluate My
(e) composes 3 = (Postx(My), My);

(f) sends 3 to agent X.

6. If NOT satisfied, more than one semantics can be given:

e [l.] AgentY responds immediately to X: composes an “unable to act” per-
formative, constructs the special context (NONE,NONE, NONE, NONE), and

sends the pair to agent X.

120



e [2.] Agent Y delays the evaluation of My until the instant when the special

context Prey(My) is either satisfied or not satisfied in its local state.

e [3.] Agent Y abandons the message if the special context Prey(Mx) is either

satisfied or not satisfied within a certain amount of time.

The first semantics is preferred to ensure the deterministic progress in the system. Under
the first semantics of dialogue we can define the semantics of a conversation. A sequence
{(a1,B1); - (o, Bk),...,) of dialogues is a conversation if for every i, i > 1, there
exists at least one local state of X in which the postcondition Postx(My) in F; is satisfied.
In the language, a conversation can be represented as tuple streams, where each tuple is a

pair of contexts.

74 Summary

Lucx, as an ACL, has a number of advantages:

e In KQML and FIPA, performatives not defined in the language, can be agreed upon
by the community of agents involved in a collaboration. That is, interoperability is
possible. However, performatives are only static and not first class objects in the
language. As a consequence, performatives can not be changed dynamically, nor can
they be used as a vehicle to communicate local state information of agents. For a
large application, this necessarily demands the construction of all the performatives
required for communication in advance. This can be avoided in Lucx. In addition,
we can define functions on contexts and they can be used as parameters in programs.
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Thus, we have enhanced both interoperability and flexibility in agent communication.

e Lucx is declarative and has a formal semantics.

o Multiple formats of communication can be supported since intensional programming
language deals with any kind of ordinary data type. Even the multimedia streams

between agents become feasible.
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Chapter 8

Constraint Programming in Lucx

Constraint programming has been successfully applied in several domains including opera-
tions research, business application, code optimisation, and molecular biology. Constraints
may be regarded as a set of requirements to solve a problem, or a set of properties that
a solution to the problem must satisfy. A constraint programming language must provide
abstractions to represent constraints, a logic for reasoning with them, and constructs to ex-
press computations in the constraint solver. Constraint programming languages that are in

use can be classified into three kinds:

o [Modeling language] They are mainly used for modeling and solving combinatorial
and optimization problems. Examples include AMPL (A Modeling Language for
Mathematical Programming) [13], GAMS (General Algebraic Modeling System),

and OPL (Optimization Programming Language) [31].

e [Imperative programming] A constraint satisfaction problem is modeled as C++
classes. Constraint variables become objects manipulated by functions belonging
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to the given class. The ILOG solver [33], currently being developed, is an example.

e [Logic programming language] Constraint variables are modeled as logical vari-
ables. The unification mechanism of logic programming is replaced by constraint

solving and substitution is replaced by the constraint store [13].

In this chapter we discuss the suitability of Lucx as a constraint programming language
by modeling a constraint as a set of contexts. The motivation comes from the merits of

Lucx shown as follows:

o Lucx has the expressive power to represent and manipulate contexts, and hence con-

straints, in a declarative manner.
e Constraint reductions can be done using context calculus.

e Domain specific constraint solvers for optimization purposes can be implemented as

Java programs in GIPSY, a platform under development introduced in Chapter 5.

e CSPs (Constraint Solving Problem) can be dynamically composed and decomposed
in Lucx. Consequently the language is suitable as a Constraint Choice Language(CCL)

for coordinated problem solving in a multi-agent system.

8.1 Contexts and Constraint Programming

In this section, we discuss the representation of CSP in Lucx, and give an example.
A constraint CT on a finite sequence X := x1,X2,...,%, 0 < k < n, is a subset of
Dy X Dy ... x Dy, where Dy, ..., D, are value domains and x; € Dy, x5 € Dy, ..., x; € Dy.
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In this chapter we restrict to discrete domains. Each construct of the form x; € D; is called
a domain expression. Formally, a CSP is represented as a tuple (C7; DE), where DE is
the domain expression x; € Ds,...,x, € D, and C7 is a finite set of constraints, each
on a subsequence of x1, . . . , x,. Intuitively, a solution to a CSP is a sequence of legal values
for all of its variables such that all its constraints are satisfied. More precisely, a n-tuple
(vi,...,vn) € D1 x ... x D,is a solution to a constraint CT € C7 on the variables
Xil,- .- Xiws 1 < w < n, if the substitution [v;1 /X1, . . ., Viw/Xs] satisfies the constraint CT.
An n-tuple (vq,...,v,) € Dy X ... X D, is a solution to { CT; DE ) if it satisfies every
constraint CT € C7. If a CSP has a solution, it is called consistent otherwise it is called
inconsistent. Hence, the complete set of solutions for a consistent CSP is

Ry = {{vi,va,...,vn) | {Vv1,v2,..., v ) is a solution to CSP}.

8.1.1 CSP Representation in Lucx

Each constraint CT € C7T can be represented by a Box notation, provided we introduce
A(CT) as the set of dimensions {X; | x; € D;} and P(CT) is the constraint itself. For each
domain expression DE associated with CT, we construct Box, where A(DE) = A(CT) and
P(DE) is the DE itself. For example, corresponding to CT = x < u, DE = (x,u € N), we
introduce the dimensions X corresponding to the variable x and U corresponding to the vari-
able u. The corresponding Box expressions are By and By, where A(By) = A = {X, U},
P(B1) = CT, A(B;) = A = {X, U}, P(By) = DE. lt is a straightforward exercise to for-
malize this approach for all constraints in a CSP. We combine the Box expressions using the

Box operators, thus getting Box expression for CT and DE: Let CTy, CT,,...,CT,, € CT,
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and X3, ..., X, be the dimensions introduced, X, corresponding to the domain variable x;,
0 < k < n. Corresponding to the constraint CT; € C7 on the variables x;1, ..., x;,, we
define the Boxes B; and B;, where A(B;) = A;, P(B;) = CT;, A(B}) = A;, P(B}) = DE;
where A; = {X;1,..., X}, and DE; = x;; € Dy A ... Ax;, € D,,. The representation of
the CSP (CT; DE), in Lucx is the pair (E; B) where

E=B|X...XB),

B=B,XK...XB,
The justification for this representation is that the dimensions involved in all the Box ex-
pressions have to be taken together in obtaining the solution to CSP. We can interpret E as
a function, defined as E(x;, xs,...,%,) = (x1,X2,...,X,), %1 € D1,...,x, € D,.

From the above discussion and the semantics of evaluation of expressions in Lucx, we

derive the following conclusions:

e the solution space to the CSP (CT; DE) is Dy, X ... x Dy;

the domain of the Lucx expression E is D; x ... x D,;

e since every solution (vy, ..., v,) to the CSP satisfies all the constraints CT € C7, and

Brepresents CT in Lucx, there exists some context ¢ € B, where E@c = V1, .y v),

the complete solution setis E@B = {EGc | ¢ € B}, which is equal to R,,.

Example 37 illustrates the above procedure for a CSP.

Example 37 Problem Description: Consider the sequence of four variables x,y,z,u ranging
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over natural numbers and the following three constraints on them:

X+ + 2+ ud =100 (1)
x<u 2)
x+y=z (3)

With respect to the constraint (1), we construct Ay = {X,Y,Z, U}, where X,Y,Z, U are
respectively the dimensions associated with the variables x, y, z, and u. The predicate p; is
x*+y% + 72 +u® = 100. Since all the domains are N, the corresponding domain expression
is the predicate formulap| =x € NAy € NAz € N Au € N. Hence, corresponding to
(1) we get the Boxes shown in (4), and (7). Similarly, we construct the Boxes for the other
constraints.

CT, :B, =Box[X,Y,Z, U | X*+ Y* + Z* + U® = 100
NOSX<ANOLSY<4ANDLSZL<ANOSU <Y 4)
CTy:By; =Box[X,U| X<UANO<SX<4AN0< U< (5)

CTs: By =Box[X,Y,Z| X+Y=ZA0<X<4AN0<Y<4A0<Z<4] (6)

DE, : Dy = Box[X,Y,Z,U | X,Y,Z,U € N| @)
DE,: Dy = Box|X,U | X,U € N] ®)
DE; : Dy = Box[X,Y,Z | X,Y,Z € N] 9)

For the given constraint CT the constructed expression in Lucx is

B:Bl &BQ &Bg,and (10)
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corresponding to the domain expression DE the constructed expression in Lucx is

E:DlgngDgz[X,Y,Z,U\X,Y,Z,UGN]. (11)

The CSP representation in Lucx is the pair of expressions:

(E; B) (12)

The complete solution to the CSP is given by

E@B = {E@c | ¢ € B} (13)

8.1.2 Solving Constraint Problem in Lucx

Once the CSP is constructed in Lucx, solving the CSP in our approach is achieved through
evaluating Eat Box B: E@ B = {E @c|c € B}. Example 38 shows the Lucx program
for solving the problem in Example 37. Because of the nature of dataflow language, Lucx

program can be represented as a dataflow network.

Example 38 : The expression E has four dimensions (X, Y, Z, U) with tag values in N.
In the dataflow network, each domain of the expression E is expressed as an input node
in the graph. Each constraint, a Box expression, is also expressed as an input node. The
operator X is expressed as a function node. The solution of CSP is expressed as an output
node. Figure 20 shows the dataflow network corresponding to Lucx program describing
this CSP. Consequently, the output from the dataflow network in Figure 20 is the set of

solutions for the constraint satisfaction problem in the lexicographic order defined as:
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<v1,V2,V3,V4> S <v/1,vl2,Vé,V£1>
ifvi <V

orvi =V A vo <V

orvi=v| A vo=V) A vz <vj

orvi=vy A vo=vy Avg=vh A vy <V
Figure 21 shows the Lucx program for the dataflow network. Notice that the merge func-

tion is necessary to prune the backtrack solution tree and produce only distinct solutions.

Eval.B],BZ,B3(x,y,z.u)|

14000001

Figure 20: Dataflow Network for Example 52

Eval.B1,B2,B3 (x/,y’,2’,u') =N
where
N = merge (merge( merge(x,y), z), u)
@By X B, X Bs;
where
merge(x,y) = if (x <=y) thenx elsey;
By =Box [X,Y,Z,U| X*+Y*4 7%+ U3 = 100];
By =Box [X,U| X < U];
B3 =Box [X,Y,Z| X+ Y =72
end
end

Figure 21: Lucx Program for Example 52
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In Example 38, evaluation takes place by generating successive demands for the ap-
propriate values of x’ ,y’,z’,u’ in different contexts, until the final computation can
be effected.

Using Theorem 2 (Page 58), Example 39 shows an alternate method to solve the CSP

in Example 37.

Example 39 : We need to compute the righthand side expression in the following equa-
tion:

E@Bl X Bg X Bg = E@B] > E@BQ X E@Bg
The programming steps are as follows:

o Compute E,

By={[X:1,U:4],[X:2,U:4],X:3,U:4,[X:1,U:3],[X:2,U: 3,
X:1,U:2]}

The solution set to E@B, is the relational expression:

Ey={(1,y,2,4),(2,y,2,4),(3,5,2,4), (1,5,2,3),(2,5,2,3), (1,,2,2)}

where each tuple is to be regarded as an expression over the domain Dy X Dj.

o Compute E3

By={X:1,Y:1,Z:2],[X:1,Y:2,Z:3],[X:2,Y:1,Z:3],[X:1,Y:3,Z: 4],
X:2,Y:2,Z:4),[X:3,Y:1,Z: 4}

The solution set to EQBj gives the relational expression:

E3 = {<17 172) u)) <]‘72)3) u>’ (27 ]"3?u>? <17374? u>7 <27 274’ u>7 <37 1747 u>}

where each tuple is to be regarded as an expression over the domain Dy.
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o Compute Join Ey 1 E3 (Unify)

We use the result EQB; <t E@B; = E;2@Bs N E3@Bs, and get the relation Ejy:

Ey={(1,1,2,4),(1,2,3,4),(1,3,4,4), (2,1,3,4), (2,2,4,4), (3, 1,4,4),
(1,1,2,3),(1,2,3,3),(1,3,4,3),(2,1,3,3),(2,2,4,3),(1,1,2,2),
<1) 273’ 2>? <1’374? 2)}

Observe that this calculation is equivalent to finding extensions to the IRs E, and
E; so that their extensions have a non-empty intersection. Viewed differently, this
amounts to finding substitutions to the unknowns in the IRs so that the resulting

expressions are equal, which is a unification process.

o Compute Join with E1: E1 < Eo b1 E3

Since E, is a constant relation, its evaluation over B; must produce another constant
relation E5 which is a sub-relation of E4. The relation E; must equal E; > Ejy,
E, = E@B,. It s easy to check that E5 = {(1,2,3,4),(2,1,3,4)}. The tuples in Ej
satisfy all the three constraints By, By, and B;. Hence the complete solution to the

CSPis Es = {(1,2,3,4),(2,1,3,4),(1,3,4,2)}.

8.2 Lucx as a Constraint Choice Language (CCL)

Many problems that arise in day-to-day life requires defining and making choices. Choices
are usually expressed as constraints. Hence, solving these problems require natural rep-
resentation of choices and efficient algorithms for solving constraints. Since, the choices
are not in general fully known, they are not static. When problem solving takes place
among anonymous participants, the world of possibilities keep changing until reaching a
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consensus. That is, the domains associated with problem description, the domain values,
and constraints may all dynamically change. Consequently, both the language of represen-
tation and the solution methods should be designed to handle such a dynamic evolution of
constraints. Multi-agent systems is an emerging technology for solving constraint prob-
lems in a distributed environment. Agents require a communication language (ACL) to
communicate with each other and a content language to express information on constraints,
which is encapsulated as a field within performatives of ACL. FIPA Constraint Choice Lan-
guage(CCL) is one such content language [27]. CCL is designed to support agent problem
solving by providing explicit representations of choices and choice problems. In the previ-
ous chapter, we have shown the suitability of Lucx as an agent communication language.
In this section, we show the use of Lucx as a CCL for coordinated problem solving in a
multi-agent system.

We skip details on agent definitions and their collaboration, and illustrate how Lucx can
be used by the agent community. It is sufficient if we agree that a software agent, hereafter
referred only as agent, has sufficient knowledge and resources to perform actions attributed
to it.

According to the requirements stated in [66], it should be possible in CCL to represent
the sets of choices to be made, define operations that can be performed on the choices,
declaratively state the relationships among choices, and introduce simple propositional

statements. Lucx satisfies these requirements:

e Typically, the choice problem can be formulated as a CSP. In Lucx the CSP is rep-

resentable as a pair of Box expressions, and the CSP solution is representable as a
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stream of tuples;

e We have provided a context calculus for manipulating context expressions, and Box
expression evaluation rules for reducing Box expressions. Consequently, the CCL
actions for adding constraints, retracting domain values, and dynamically evaluating
constraints can be programmed in Lucx as stream modifiers. That is, Lucx has the

constructs and the mechanism for expressing and implementing actions.

In addition, Lucx has a formal semantics, whereas many of the CCLs that are in practice
today [66] do not have strict semantics.
Below we show how Lucx can be used for agent-based problem solving in the following

four aspects that are normally attributed to a CCL.

1. Modeling: Choice Problem is modeled as CSP in Lucx, say by an agent A;

2. Information Gathering: Agent A either sends the whole CSP to several other agents
or has the knowledge to decompose the CSP into several sub-CSPs, where each sub-
CSP is solvable by an agent; after decomposition it sends to those agents and gets

their feedback; Lucx, as ACL, can be used here;

3. Information Fusion: Agent A incorporates the feedbacks from other agents using

context calculus and Box operations.

4. Problem Solving: Agent A may run simple problem solving algorithm such as the
General CSP solver, or send the CSP components to problem solving agents, get

their solutions, and unify it.
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Below, we give an overview of how Lucx can be used in these steps for the travel planning

example taken from [66].

8.2.1 Travel Planning Example (TPE)

A general, but a partial, description of the problem is as follows: Caroline would like to
meet Liz in London for one of exhibition preview receptions at the Tate Gallery. These will
be held at the beginning of October. Both Liz and Caroline have other appointments around
that time, and will need to travel to London from their homes in Paris and New York.

We suppose that there is an agent-based system making choices on when Liz and Caro-
line meet. Several agents assist each participant: a Personal Travel Assistant Agent (PTA)
will communicate with Hotel Broker Agent(HBA), Air Travel Agent (ATA), and Diary
Agent(DA). That is, the PTA for Caroline (PTAC) will get the hotel information from HBA,
flight information from ATA, and meeting time from DA. After collecting and combining
the information, it sends the information to Problem Solving Agent(PSA). The PSA will
also receive the collected information from PTA for Liz(PTAIl). The PSA computes the
final solution and sends the solution to PTAs. As we remarked, the agents themselves are

not important, only their usage of Lucx is important.

8.2.2 Problem Modeling

According to [66], a choice problem can be represented as a CSP. So we first define a

choice problem as a CSP in Lucx as follows:

1. Each choice to be made is modeled as a dimension X;, so X = {X17X27 . ,Xm} is
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the set of m choices which need to be made to figure out the solution to the CSP.

2. For each choice, there is a domain which is the collection of all available options
for the choice. So for each choice X;, 1 < i < m, Dy, indicates the domain for X;.
Consequently, Box; = Box[X; | X; € Dy, is constructed as a domain expression DE;.

All the domain expressions DESs consist of the domain expression E.

3. Constraints are relationships between choice which express valid or invalid combi-
nation. So for each constraint in the problem, CT is constructed as a Box shown in

Section 8.1.1. Consequently, all the constraints CT's consist of the constraint set B.

4. The pair (E; B) is the constructed CSP in Lucx.

From the description of TPE, the choices corresponding domains and constraints are identi-
fied. For simplicity, we model only the following choices: Hotel information for Caroline(H,),
Hotel Information for Liz(H;), Flight Information from New York to London for Caroline(Fomc),
Flight Information from Paris to London for Liz(Fy,;), Flight Information from London to
New York for Caroline(F,.), Flight Information from London to Paris for Liz(F,,), Meet-

ing Time for Caroline(7,) and for Liz(T;). Thus the initial domains for the choices are as

follows:

e Dy_includes all the preferred hotels in London from Oct.1 to Oct.10 for Caroline to
stay; For example, Caroline may like to stay at “Marriott”, “Hilton”, or “Sheraton”.

In this case, Dy, is {Marriott, Hilton, Sheraton}.

e Dy, includes all the preferred hotels in London from Oct.1 to Oct.10 for Liz;
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e Df,,. includes all the preferred flights from NewYork to London from Oct.1 to

Oct.10 for Caroline;

e Dg, ., includes all the preferred flights from Paris to London from Oct.1 to Oct.10 for

Liz;
e Dy includes all the working time from Oct.1 to Oct.10 for Caroline;
e Dy, includes all the working time from Oct.1 to Oct.10 for Liz;

e Dy, includes all the preferred flights from London to NewYork on Oct.11 for Caro-
line;
e Dr,, includes all the preferred flights from London to Paris on Oct.11 for Liz;
The constraints which express valid combinations are time constraints in this example. In
Lucx, any part of the information can be obtained partially by applying the context operator
projection |. For example, the flight information for Caroline Fj,,. can be written as an
aggregation of micro-contexts [T : 10am] (departure time), [T}, : 13pm] (the arrival time),

and [F, : AC32] (the flight number). That is,

Fpyome = [T : 10am, Ty, : 13pm, F,, : AC32]
The different times related to Caroline’s schedule are
e 77, : the arrival time at London for Caroline;
e T : the time at which Caroline begins her stay at the Hotel;

e T3, : the time at which Caroline meets Liz;
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o T4 : the time when Caroline leaves the Hotel;

e T, : the departure time from London for Caroline;

The time constraints for both Caroline’s and Liz’s schedule are the following predicates:

Tie Ty < T3 < Ty < Tse [For Caroline]
Ty <Ty<T3 <Ty<Ty [For Liz]
T3, =13 [Both for Caroline and Liz]

Box expressions for domain expressions and constraints are next computed. For example,
DE, = B} = Box[H. | H, € Dy,\; DE; = By = Box[Ffiomc | Ffome € Dpg,,,]. The
domain expressions are combined to get the domain expression Erpg. Each constraint can
be constructed as a Box expression. For example, B; = Box([Ty, Toc, Ts¢, Tac, Tse | Tie <
Toc N Toe < Tae ANTse < Tye ATy < T, Bo = Box[T1y, Toy, Tap, Tug, Ty | Ty < Toy ATy <
T3y ATz < Ty ATy < Ts)), By = Box([Ts., Ts; | Ts, = T3] represent the time constraints
respectively for Caroline, Liz, and both Caroline and Liz. From these representations we
construct the constraint Brpg = By X B, X B;. Thus the pair (E7pg; Brpg) is constructed in

Lucx as the CSP for TPE.

8.2.3 Information Gathering

After modeling the problem, PTAC communicates with other agents to refine the CSP
model. The initial CSP representation may be decomposed into three parts, one corre-
sponding to hotel choices, one corresponding to air travel, and another corresponding to

meeting choices. In Lucx, such a decomposition is achieved by using projection (|) and/or
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hiding (1) operators on Box expressions. Each sub-CSP may be sent to separate experts
for requesting additional information to reduce the domain for each choice. In Lucx, agent
communication is modeled as performatives. The content field for each performative is

also represented as a context expression. Program in Figure 22 is a message from agent
PTAc to agent HBA asking for hotel information for Caroline, and Program in Figure 23
is a reply from agent HBA to agent PTAc. The query from PTAc to HBA is evaluated as

the expression E @ E), in Figure 22.

EQE,
where
E = "ask — one”;
Ey=E ©E, © Es ® E4 @ Es;
E, = [sender : PTAc];
E, = [content : B}];
where
B) = Box[H. | H. € {Marriott,Hilton, Sheraton}];
end
E; = [receiver : HBA|;
Eq = [reply — with : Hotel — Infor];
Es = [language : Lucx];
end

Figure 22: Agent Communication Performative: Ask

The reply from HBA to PTAc is the expression E' @ Ef, ] = E| @ E, B E; D E, ® E[
in Figure 23. (Suppose that the available hotels for Caroline are only “Marriott”, and
“Hilton”.)

In addition, the specialized agents (HBA etc;) may also add constraints for the CSP,
which can be easily done by using Box operator X in the performative. For example, HBA
may ask that the guests should check in after 14pm. So the reply from HBA to PTAc in

Figure 23 is changed as shown in Figure 24.
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E @ E,
where
E ="tell”;
El=E, ® E, @ E; ® E;, ® E;;
E, = [sender : HBA];
E, = [content : BY];
where
B/ = Box[H. | H. € {Marriott,Hilton}];
end
E, = [receiver : PTAc];
E, = [in — reply — to : Hotel — Infor];
E; = [language : Lucx];
end

Figure 23: Agent Communication Performative: Tell

E @ E,
where
E' ="tell”;
Ef=E, ®E, ® E; ® E, ® E[;
E; = [sender : HBA];
E, = [content : B] X B,];
where
B = Box[H. | H, € {Marriott,Hilton}];
By = Box[Ty. | Toc > 14pn];
end
E, = [receiver : PTAc];
E, = [in — reply — to : Hotel — Infor];
E; = [language : Lucx];
end

Figure 24: Agent Communication Performative: Tell - Add Constraint
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8.2.4 Information Fusion

The querying agent, in this case agent PTAC, fuses the information received from other
agents. In particular, the querying agent should fuse both the collected domain information
and the constraints. This is achieved with the use of Box algebra mentioned in Section 4.1.1
(Page 53). If the whole CSP was sent by PTAC to other agents which have knowledge on the
same domains, it will use the “intersection rule”([:]) or “union rule”(H) to fuse the collected
information. If the CSP was decomposed by PTAc, and sub-CSPs were communicated to
different agents, it will use the “join rule” (X)) to combine the collected information. For
the TPE, assume that PTAc decomposed the problem into hotel, travel, and meeting times
and had constructed the original contexts:

B} = Box[H, | H, € Dy],

B, = Box[Fyrome | Fprome € D],

B} = Box[Ts. | Ts. € Dr,),and

ETPEC - Bll & B/2 @ Bé

In reply to the query, let the responses received be

B = Box[H, | H, € {Hilton, Marriott}],

By = Box[Fpom, | Fpome € {[Ty : 10am, Ty, : 13pm, F,, : AC32],
[Ty : 16pm, Ty, : 19pm, F, : AC38]}], and

B3 = Box{Ts. | Ts. € {Oct.3 — 10am, Oct.6 — 14pm}]|.

Agent PTAC computes the expression:
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to fuse the domain information received from the agents. Similarly, E7p, is also constructed

for Liz. The final domain set should be :

/ — ! /
Efpp = Erpg, W Eppg;-

Meanwhile, if the agent HBA has added a new constraint B4, agent PTAC computes the
expression Bypr = Brpp X By to fuse the constraint received from agents HBA. The new

CSP constructed for the TPE is (Efpg; Bipg)-

8.2.5 Problem Solving

E/l @ EX
where
E” ="ask — one”;
Ef =E] © E; ® E] @ E; ® Eg;
E! = [sender : PTAc];
Ej = [content : B} X B, X B}];
where
B, = Box[H. | H. € {Marriott,Hilton}|;
B, = Box[Ftron, | Ferone € {[Ts1 : 10am, T¢, : 13pm, F,, : AC32],
[T¢y ¢ 16pm, Te, : 19pm, Fy, - AC38]}];
B, = Box|T3c | Tac € {Oct.3 — 10am,Oct.6 — 14pm}];
end
E; = [receiver : PSA];
E, = [reply — with : Meeting — Time];
E{ = [language : Lucx];
end

Figure 25: Agent Communication Performative: Ask for PSA

Problem Solving Agent(PSA) receives the CSPs from different agents and provides a
solution satisfying either all CSPs or at least one CSP. The PSA can either use a Domain
Specific CSP Solver or a General CSP Solver. A general CSP Solver may run a backtrack

algorithm to search for the full space. A Domain Specific CSP Solver will act as a unifier,
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discussed in Section 8.1.2. For the simplified TPE, Problem Solving Agent can use some
heuristics within a General CSP Solver. Such heuristics, which are meta constraints, may
reduce Box expressions dramatically and converge to a feasible solution. As an example,

if it is known that staying at Marriott hotel might enable one to agree for an early morning
meeting in October, then the availability of that hotel should first be evaluated. If the hotel
is not available for the requested dates, then without further search we can declare the CSP
to be inconsistent. To seek a consistent solution, the solver may weaken certain constraints
and recompute the Box expressions.
The query from PTAC to PSA is evaluated as the expression E” @ E in Figure 25.
The reply from PSA to PTAc is the expression E” @ E},EY = E| D E, ®E; D E, ® E

in Figure 26.

E/// @ E¥/
where
E" ="tell”;
B = B/ OB} 0B G E} B
EY" = [sender : PSA];
E; = [content : BY X Bj K Bj;
where
B] = Box[H. | H; € {Marriott}];
By = Box[Ftron, | Ferome € {[Ts1 : 10am, T¢, : 13pm, Fy, : AC32]};
B; = Box[Tsc | T3c € {Oct.3 — 10am}];
end
EY = [receiver : PTAc];
E} = [in — reply — to : Meeting — Time];
Ef’ = [language : Lucx];
end

Figure 26: Agent Communication Performative: Tell from PSA to PTAc

The figure 27 shows the scenario of message passing sequence diagram for TPE. The

message m; corresponds to the performative shown in Figure 22. Similarly, m, corresponds
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to Figure 23, m; corresponds to Figure 25, and mg corresponds to Figure 26.

PTAc HBA ATA DA PSA
1
UserAsk(MeetingTime) : : : i :
| ! i
l I
/: m1 : Ask(Hotetlnfor) | i ! :
— . | !
| m2: TelliHotellnfor) | | | |
| | t
mm3 1\ : m3 : Ask(Flightinfor) | | |
. ! ! I | I
5 are v
ot j mé - TellFightinior) i | |
parale ) | m5: Ask(AvalTime) | ! !
L ! ! N
| | | | :
! I mB: Tell(AvaiTime) 1 I I
K | 1 i |
| | | 1 |
| | | | |
| | | | |
| : m7 ; Ask{MeetingTime) : :
I I 1 i X
! ! m8 : Tell(MeetingTime) ! !
N T T 1
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InformUser(MeetingTime) | | : |
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Figure 27: Message Passing Sequence Diagram for TPE

8.3 Summary

We have discussed how Lucx may be used as a constraint programming language. One
of the distinct merits of Lucx is its ability to dynamically compose/decompose CSPs, and
consequently it is advantageous to use Lucx as CCL in agent-based systems where agents’

knowledge base changes dynamically. The following is the list of future research goals.
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e For a problem described in a natural language it is not an easy task to formalize it
and represent it in Lucx by the application developers. Even for a simplified TPE
the number of variables, domains, domain values, and constraints are too many to
comprehend and enumerate. A goal is to develop a graphical representation for CSP
modeling and a user interface to incrementally modify the representation. The repre-
sentation must allow composition from sub-CSPs and decomposition of a CSP into
sub-CSPs. We plan to have an automatic translator of the graphical representation of
the CSP into Lucx representation. The goal is to interactively create CSP representa-

tion in Lucx and automate its solution.

e Different constraint solvers have been announced, in particular, the ILog system
[33], which is implemented in C++. An interesting work would be to use ILog in
the background with the Lucx program translated from the graphical representation

providing a high-level CSP representation.

e Lucid, initially designed for program verification, is founded on Intensional logic.
The reasoning ability in Lucx is derived from this logical basis. Since contexts are
explicit in Lucx, we can formulate proof rules for constraint reduction, which in turn
will be a basis for formal reasoning with contexts in Lucx. Such a reasoning system
can be exported to agent-based systems for verifying the correctness of protocols for

agent conversations.
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Chapter 9

Conclusion and Future Work

The notion of context is the cornerstone of the intensional programming paradigm. The
previous versions of Lucid were merely using the notion of context of evaluation. They
provided a single operator for navigation along a dimension of the evaluation context, but
did not provide a mechanism to represent and manipulate contexts as first class objects. A
major contribution of this thesis is the introduction of context as a first class object and
semantics for the language Lucx : Lucid extended with context.

Contexts in Lucx have the following features:

o Contexts can be dynamically modified through operators defined for contexts. New

contexts can be dynamically created from those defined in a program.

e Context calculus provides compilation rules for calculating a context from a context

expression, and evaluation rules for expressions over context expressions.

o In previous version of Lucid, dimensions can be named explicitly. Hence stream can
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be extracted only along one dimension; Similarly, in Lucx, by making context as
first class objects, evaluation can be arbitrarily done in different contexts. Moreover,
being a first class object, context exists independently in the language. That is, one
context may be used to evaluate different expressions, at the same time an expres-
sion can also be evaluated at different contexts. In particular, subexpressions of an

expression may be evaluated independently at different contexts.

e Lucx allows the definition (infinite) streams of contexts, thus offering the mechanism

to program non-terminating continuous systems, such as timed systems.

By introducing contexts as first class objects in the language, the expressive power of
the language is increased by an order of magnitude. It allows the definition of aggregate
contexts, which are a key feature to achieve efficiency of evaluation through granularization
of the manipulated data. It also allows to use the paradigm for agent communication by
allowing the sharing and manipulation of multidimensional contextual information among
agents. It allows the use of the paradigm for programming timed system as well.

In addition to the future works mentioned in the summary sections of thesis chapters,

the following topics are to be investigated in future:

Implementing the Lucx compiler It is feasible to integrate Lucx into the GIPSY plat-
form using the approaches shown in Chapter 5. This way, the programs written in Lucx can
eventually run on the GIPSY. On the other hand, the generality of the GIPSY design will
also get validated. Meanwhile, GIPSY programs can be written as hybrid programs allow-

ing Java functions to be called by the Lucx part of the program. Hence as an investigation
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of how to divide the programs into Lucx and Java parts to get coarse-granular execution

and speed up the performance may also be interesting.

Reasoning and Formal Verification Lucid is founded on Intensional logic. The reason-
ing ability in Lucx is derived from this logical basis. Since contexts are explicit in Lucx, we
can formulate proof rules for constraint reduction, which in turn will be a basis for formal
reasoning with contexts in Lucx.

Lucid was originally invented as a program verification language. Naturally we can ex-
pect Lucx, a conservative extension of Lucid, to serve as a programming language verifica-
tion. It is desirable to integrate Lucx programs with a reasoning system built on intensional

logic. This way we will have a natural formal verifier for programs written in Lucx.

Context-aware Systems The context theory developed in this thesis will be applied to
a formal development of context-aware computing applications. Context-awareness, first
introduced by Schilit [54] has been generically characterized by Pascoe [52] as the ability
of a system sensing, interpreting, and adapting to different contexts. Context-awareness
was mainly studied for improving performances in user interface design. Today there is
a wide body of literature on pervasive computing, ubiquitous computing systems where
adaptation to context awareness seems essential. A common example of context-aware
application is the Anti-brake Locking System (ABS) available in most of the modern day
cars [36].

Context-awareness, as the ABS example suggests, consists of two parts: context con-

struction and context adaption. The contribution of the context theory to such applications
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will be mainly in formalizing the notion of context and providing a representation and
manipulation of contexts for dynamic allocation of services and resources [62]. The en-
vironmental contexts can be converted into micro_contexts. Applying the ¢ operation to
micro_contexts, simple contexts representing contextual situations can be constructed. The
stream of constructed contexts are steadily fed into the context adaptation process, which
will determine for each context in the stream the necessary action to be taken, and how the
context itself has to be modified externally. This can be achieved by introducing context-
dependent functions, discussed in Section 4.2(Page 58), at different adapter modes. If the
behavior of the adapter system could be described by an ESM, which is already embed-
ded in Lucx, it would become feasible to program context-aware applications in Lucx.
Combining the features of Lucx as a programming verification language and at the same
time, a development of context-aware applications, we can have a verification-driven de-

sign methodology in Lucx.
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