Design for Verification of a PCI-X Bus Model

Haja Moinudeen

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

February 2006

(© Haja Moinudeen, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14274-X
Our file Notre référence
ISBN: 0-494-14274-X
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Design for Verification of a PCI-X Bus Model

Haja Moinudeen

The importance of re-usable Intellectual Properties (IPs) cores and the system-level
design languages have been increasing due to the growing complexity of today’s
System-on-Chip (SoC) and the need for rapid prototyping. In this respect, the
SystemC language is becoming an industrial standard to be used as a modeling
language for SoCs at the system level. Nevertheless, it is of paramount importance to
have SystemC IPs in particular bus standards in order to facilitate SoC designs using
SystemC. PCI-X is the fastest and latest extension of PCI (Peripheral Component
Interconnect) technologies that is backward compéﬁible to previous PCI versions.
It plays a crucial role in today’s SoC since it helps to connect various on chip
IPs. In this thesis, we provide a design for verification approach for the PCI-X
bus. We use different modeling levels, namely UML, AsmL and SystemC to design
and verify the PCI-X. From informal specifications, we first represent the PCI-X
model in UML where a precise capture of design requirements is possible. From the
UML representation, we construct an Asml model of the bus and define various
properties using the Property Specification Language (PSL). Finally, we translate
the AsmL model to SystemC. The verification of the PCI-X models is conducted

using both model checking and model based testing (MBT). For the former, we

iii

use the AsmL model, which we check against the PSL properties. For MBT, we
use the SystemC model to generate finite state machines (FSMs) from which we
produce test cases. To do this, two new FSM generation algorithm are developed
in this thesis. Experimental results allowed us to explore the potential of MBT for

SystemC designs in contrast to model checking.

iv

To my parents, and sisters

ACKNOWLEDGEMENTS

First and foremost, I would like to put forward my sincere gratitude to my
research advisor, Dr. Sofiene Tahar for his support and encouragement throughout
my M.A.Sc. program. His expertise and competent advice have shaped the charac-
ter of my research.

This thesis would not have come into its entirety without the constant and
invaluable technical guidance of Dr. Ali Habibi, Research Associate, Hardware Ver-
ification Group (HVG), Concordia University. I extensively benefitted from his deep
knowledge and insight in the subject.

I would also like to thank all the members of the HVG for their help and sup-
port during my study at Concordia. Special acknowledgements to my examination

committee members, for reviewing my thesis and giving me feedbacks.

vi

TABLE OF CONTENTS

LIST OF TABLES e X
LIST OF FIGURES xi
LIST OF ACRONYMS o xiv
1 Introduction 1
1.1 Motivation 1

1.2 Methodology e 5

1.3 Related Work 7
1.4 Thesis Contributions o000 12

1.5 ThesisOutline. o oL 13

2 Preliminaries 14
2.1 Unified Modeling Language (UML) 14
2.1.1 Class Diagrams 16

2.1.2 Sequence Diagrams 17

2.2 Abstract State Machines (ASM)o 17
221 Functions 17

222 States e 18

223 Terms e 19

2.2.4 Locations and Updates 19

vii

2.3

24

2.5

225 Tramsition Rules
Abstract State Machine Language (AsmL)
Property Specification Language (PSL)

SystemC

PCI-X Bus Modeling

3.1

3.2

3.3

3.4

PCI-XBus. o e
UML Modeling
AsmL Modeling

Translation to SystemCo oL

Model Checking

4.1

4.2

4.3

44

Background
Model Checking Approach
Model Properties

Experimental Results L.

Generating FSM from SystemC

5.1

5.2

5.3

5.4

Background
SystemC Syntactical Domain
Collecting Inputs
FSM Generation Algorithm

54.1 Helper Functions

viil

28

28

32

36

40

44

44

45

46

51

53

5.4.2 Direct FSM Generation
5.4.3 Grouping FSM Generation
55 Experimental Results
56 Discussion e

6 Model-Based Testing
6.1 Background
6.2 Test Generation L L Lo
6.2.1 Chinese Postman Tour (CPT)
6.2.2 RandomWalk
6.2.3 Test Sequences e

6.3 Discussion

7 Conclusion

7.1 Summary

7.2 Discussion and Future Work

Bibliography

X

76

77

81

81

82

82

84

85

85

86

89

3.1

4.1

5.1

5.2

5.3

LIST OF TABLES

PCI-X Signals 30
Model Checking Results, .. 52

Link between SystemC Design and FSM Generation Algorithm Inputs. 57
FSM Generation: Direct Algorithm. 67

FSM Generation: Grouping Algorithm (using G1).

LIST OF FIGURES

1.1 Design for Verification Methodology of PCI-X. 5
2.1 SystemC Language Architecture [17]. 26
2.2 A Simplified SystemC MetaModel [35]. 27
3.1 General Architecture of PCI-X. 29
3.2 Class Diagram of PCI-X. 33
3.3 Sequence Diagram of Mode 1 Transaction. 34
3.4 Sequence Diagram of Mode 2 Transaction. 35
3.5 Sequence Diagram of Mode 2 Transaction (16 bit). 36
3.6 Used AsmL Enumeration Types.. 37
3.7 Arbiter Grant AsmL Method.00 38
3.8 Target Assert Asml, Method., .. 38
3.9 Initiator Termination AsmL Method. 39
3.10 Clock Update AsmL Method. 39
3.11 Data Phase AsmL Method. 40
3.12 Arbiter Class Declaration in SystemC. 42
4.1 Property P1. e 47
4.2 Property P2. 47
4.3 Property P8o 47

xi

44

4.5

4.6

4.7

4.8

4.9

4.10

411

4.12

5.1

5.2

5.3

54

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

Property P4. e 48
Property P5. e 48
Property P6. e 49
Property P7. e 49
Property P8 49
Property P9. e 50
Property PI10. o 50
Property P11. e 51
Property PI12. e 51
Direct FSM Generation Algorithm. 62
Grouping FSM Generation Algorithm. 65
Direct Algorithm Results. 68
Grouping Condition GI1. o 69
Grouped FSM Using G1. o e 69
Grouping Algorithm Results (GI)., 71
Grouping Condition G2. 72
Grouped FSM Using G2.« 72
Grouping Condition G3. oo 73
Grouped FSM Using G&. 73
Grouping Condition G4. 74
Grouped FSM Using G4. o v v it i 74

Xil

6.1

6.2

6.3

6.4

Test Sequences for Grouped FSM of GI using CPT.. 82
Test Sequences for Grouped FSM of G2 using Randomwalk. 83
Test Sequences for Grouped FSM of G8 using CPT.. 83

Test Sequences for Grouped FSM of G4 using CPT.. 83

xiii

AGP

ASIC

ASM

AsmL

BCA

CPP

CPT

ECC

EDA

EFSM

FSM

HDL

IC

IP

MBT

MC

00

PCI

PCI-X

LIST OF ACRONYMS

Accelerated Graphics Port
Application Specific Integrated Circuits
Abstract State Machines

Abstract State Machine Language
Bus Cycle Accurate

Chinese Postman Problem

Chinese Postman Tour

Error Correction Code

Electronic Design Automation
Extended Finite State Machine
Finite State Machine

Hardware Description Language
Integrated Circuit

Intellectual Property

Model Based Testing

Model Checking

Object Oriented

Peripheral Component Interconnect

Peripheral Component Interconnect-Extended

xiv

PSL Property Specification Language

RTL Register Transfer Level

SLL System Level Languages
SoC System-On-Chip

UML Unified Modeling Language
VLSI Very Large Scale Integration

XV

Chapter 1

Introduction

1.1 Motivation

With the rapid advances in semiconductor processing technologies, the density of
gates on the die increased in line with what Moore’s law predicted. This helped in the
realization of more complicated designs on the same Integrated Circuit (IC). Over
the last few years, with the advent of high technology applications, an increasingly
evident need has been that of incorporating the traditional microprocessor, memories
and peripherals or in other words the whole system on a single silicon. This is what
has marked the beginning of the System-on-Chip (SoC) era.

An SoC can be viewed as a collection of various Intellectual Property (IP)
cores, with interconnecting buses running among them. Since IPs are obtained from

different vendors, and are often meant to be re-used at various stages of the SoC

design, there is a dire need for standard buses to connect them. One such and latest
bus standard is PCI-X [40]. PCI-X is a high performance bus for interconnecting
chips, expansion boards, and processor/memory subsystems. It has the performance
to feed the most bandwidth-hungry applications and helps to alleviate the I/0O
bottleneck problem while at the same time maintaining complete hardware and
software backward compatibility to previous generations of PCI [40]. PCI-X was
adopted as an industrial standard administered by the PCI Special Interest Group
(PCI-SIG) [40]. Nevertheless, bus protocols in general are not easy to model and
verify correctly due to their complex nature and PCI-X is no exception.

Until recently, modeling IP architectures required pin-level hardware descrip-
tions, typically Register Transfer Level (RTL). Design and simulation at this level of
detail is tediously slow. Therefore, designers turned to the systerri level, where only
details needed for developing the system components and sub-system for a particu-
lar task in the development process are considered [17]. In other words, system and
sub-system communication and functionality can be developed and refined indepen-
dently. By modeling only the necessary details, design teams can realize huge gains
in modeling speed. Moreover, the benefits of adopting system level are derived from
early software development, early functional verification, and higher system quality.

In this thesis, we propose a design for verification of a PCI-X bus model at
the system level by partially using the top-down methodology presented by Habibi

in [19]. We start with an informal specification of PCI-X and model it with the

Unified Modeling Language (UML) [42] in order to have a clear view of the design
modules and their interactions. UML is a non-proprietary, object modeling and
specification language used in software engineering. UML includes a standardized
graphical notation that may be used to create an abstract model of a system: the
UML model. From the UML model, we manually construct an Abstract Machine
Language (AsmL) [18] model from the UML representation. AsmL is an object-
oriented, executable specification language developed at Microsoft Research [28]. It
can be used to capture the abstract structure and step-wise behavior of discrete
systems such as integrated circuits, software components, and devices that combine
both hardware and software.

We define a set of properties of the PCI-X in the Property Specification Lan-
guage (PSL) [1]. PSL is a language developed by Accellera for specifying properties
or assertions about hardware designs. PSL is an implementation independent lan-
guage to define properties and addresses the lack of information about properties
and design characteristics. PSL has become IEEE standard in September 2004.
The PSL properties can be simulated or formally verified using model checking. We
embed the defined properties with the AsmL model of the PCI-X model and run
model checking [9] against the properties defined.

Finally, we translate the AsmL model to SystemC [32]. SystemC is among a
group of system level languages (SLL) being proposed to raise the abstraction level

for embedded system design and verification. The SystemC library of classes and

simulation kernel extend C++ to include the support for concurrent behavior, a
notion of time sequential operations, data types for describing hardware, structure
hierarchy and simulations. It is expected to make an adverse effect in the arenas
of architecture, co-design and integration of hardware and software. As SystemC
is becoming a main player in SoC design, it is becoming mandatory to have large
collection of IPs in SystemC especially bus standards.

To validate the SystemC model of the PCI-X, we use model based technique
(MBT) [36]. MBT is an evolving technique in the area of testing. MBT is an
approach in which the behavior of a system is defined in terms of actions that change
the state of the system. Such a model of the system results in a well-defined Finite
State Machine (FSM) which helps understand and predict the systems behavior. For
this reason, it is inevitable to provide' an FSM generation algorithm from SystemC
that produces a correct FSM of the system. In this thesis, we extend two FSM
generation algorithms from SystemC that have been originally proposed for the
generation of FSMs from Abstract State Machines (ASM) [3]. Using existing graph
traversing techniques, test cases are obtained from the generated FSMs to validate

the PCI-X model.

Specifications
Textual Description, Timing Diagram

[

UML Level

g"’ Class Diagram, Sequence Diagram
o
B Translation ﬂ
oE
g: Asml Level AsmL Model PSL Properties

' _______________________ AsmL Tool

Translation ﬂ.

SystemcC Level

SystemC Model
Design Analysis ﬂ

FSM Generation Algorithms
FSMs U

Test Generation

Test Sequences

Figure 1.1: Design for Verification Methodology of PCI-X.

1.2 Methodology

Figure 1.1 depicts the methodology we want to adopt for the design for verification
of the PCI-X model. This methodology is partially derived from a top down ap-
proach for verifying SystemC designs proposed by Habibi [19]. At first the design
requirements are obtained from the specification in the from of textual description
and timing diagrams [40].

From the gathered design requirements, we model the PCI-X in UML using

class and sequence diagrams in order to capture all the design requirements effi-
ciently. Class diagrams are used to represent all the core components of the PCI-X
bus and the sequence diagrams are used to model all the sequences of various trans-
actions. The reason of this UML modeling is to represent the system graphically
and the ability to represent the notion of sequences of the bus transaction using
sequence diagrams. Besides, using our UML representation, any designer can be
able to model the bus in any Object Oriented languages.

Then, from the UML representation we design a PCI-X model in AsmL. The
translation from UML representation to AsmL is manual but straightforward. We
map the UML classes into AsmL classes and the sequence diagrams are used to
represent the order of method executions in AsmL. Unlike the UML model, the
AsmL model can be executed and validated.

The properties of the bus design are specified in PSL and embedded with the
AsmL model. They are basically extracted from the sequence diagrams and encoded
in the PSL syntax. Next, model checking is performed on the AsmL model using
AsmlL tester (Asmlt) [30]. The model checking process ends to: (1) a completion
either with success or failure of the property; or (2) a state explosion. In case of
failure, we correct the UML representation and redo the AsmL translation. This
procedure is repeated until all the properties pass with success or do not complete.
The model checking approach of the PCI-X and the results are vividly discussed in

Chapter 4. Once the model checking of AsmlL model is completed, we perform the

translation of AsmL to SystemC.

It is not always feasible to verify all the properties that we define due to state
explosion problem and also writing properties is time consuming that eventually hin-
ders the verification process. Also, the SystemC model has to be validated since the
translation of AsmL to SystemC can be erroneous. In order to address these issues,
we perform model based testing (MBT) of the PCI-X SystemC model. To accom-
plish this, we developed two algorithms to generate FSMs from SystemC models.
These algorithms have been originally proposed for abstract state machines (ASM)
in {15, 5]. The first algorithm (direct algorithm) performs a direct state exploration
procedure to generate an FSM and the second (grouping algorithm) involves a no-
tion of state grouping to group states in the FSM. The formalization of these two
A ’a.lgorithms is presented in Chapter 5. The generated FSMs are used to generate
test cases using available techniques such as Chinese Postman Tour (CPT) [36] and
RandomWalk [36]. Furthermore, the generated FSM can also be used for confor-
mance checking [2] between two design abstraction levels (AsmL and SystemC for
example). The MBT details and the experimental results of PCI-X are explained in

Chapter 6.

1.3 Related Work

In his PhD thesis, Habibi [19] proposed a combination of various techniques to verify

system level languages in particular SystemC. In [19], a top-down approach to verify

SystemC designs was proposed. In that approach, the verification was integrated as
part of the design process and an AsmI, model was first designed. The AsmL was
mapped from UML representations of the systems. From the AsmL model, model
checking was performed against some system properties. The verified AsmL model is
translated to SystemC. The SystemC model is also verified through assertion-based
verification.

Similar to the work of [19] described earlier, Habibi et al. proposed in [21]
a bottom-up verification methodology where starting from an existent Accelerated
Graphics Port (AGP) IP in SystemC, an AsmL model was developed. Like in [19],
an FSM was generated from the AsmL model and then the systems properties were
verified at the ASM level. Our work is an application of the top-down methodology
presented in [19] to model and verify the PCI-X bus standard. In addition, in our
work, we made an attempt to explore MBT to validate the PCI-X design when
model checking is not feasible due to state explosion. Furthermore, in [19], MBT
technique was not considered in the verification approach.

There exists some other related work to ours in the context of PCI technologies
design and verification environment. For instance, Shimizu et al. [39] presented a
specification of the PCI bus as a Verilog monitor. This approach, however, makes
any modification or refinement of the model complex since the level of specification
of the PCI is very low. Oumalou et al. [33] implemented the PCI bus in SystemC

[32]. First, they specified the bus in UML; then, mapped the UML representation

to AsmL and finally translated the AsmL code into SystemC. In [20], Habibi et al.
specified and implemented the Look-Aside Interface [29] using the same approach
as in [33]. Our approach is similar to the work of [33] and {20], but distinguishes
itself by correctly designing and verifying the latest high-speed bus standard (PCI-
X) including its very complex transaction rules and validating the PCI-X model
through MBT.

In [8], a bridge for PCI Express and PCI-X was designed in Verilog at RTL and
also verified and synthesized. Chang et al [6] proposed a simulation based PCI-X
verification environment using C and Verilog. Similarly, Wang et al. [43] proposed
a similar verification environment for PCI-X bus functional models using VERA. In
[44], Yu et al. extended the verification environment in [6] to support PCI, PCI-X
and PCI-Express in a single platform. In all the afore-mentioned work [6, 43, 44],
the authors defined some pseudo model of masters and slaves to substantiate their
approach. But, they failed to include some of the PCI-X specific transactions such
as Split transactions. The merit of our work is on the modeling of the PCI-X and
verifying using various techniques such as model checking and MBT.

For work related to FSM generation, we cite Grieskamp et al. [15], in which,
given a model in Asml, they provide an algorithm to generate an FSM. The state
transitions of the ASM are used to generate a link between hyperstates which is based
on single state groupings. The notion of hyperstates in here is analogous to data

abstraction. But, the drawback of this algorithm is the use of single state grouping,

which is not adequate to solve the state space explosion problem. Moreover, this
algorithm is specific for ASM based languages.

Campbell et al. [5] extended the work of [15] to lessen the number of states
in the generated FSM. The FSM generation algorithm from AsmL (or Spec# [27])
in [5] is based on multiple state groupings which is an extension of the concept
of hyperstates. Using this algorithm, there is a significant reduction of states and
transitions in the final FSM. This notion of multiple state groupings is synonymous
to predicate abstraction. The problem with this work is that it is only applicable
for AsmL and Spec# and is not directly applicable to SystemC or similar system
level languages.

Other related work concerns generating FSM from hardware description lan-
guages (HDL). For instance, in [7], a translation procedure from Verilog into timed
FSM model was proposed. The resulting timed FSM was used to verify the system
using model checkers. Lohse et al. presented in [24] an approach to generate BDD-
based FSMs from VHDL code. This is performed in two phases: (1) declarations
are annotated with BDDs and processes are compiled into control graphs; and (2)
the control graphs are then compiled into an FSM and optimization of the FSM
was performed. The generated FSM was mainly used as an input for the model
checking tool SMV [26]. However, the approach in both [7] and [24] is restricted to
a synthesizable subset of Verilog and VHDL, respectively.

The work of Vikram et al. [38] was more specific to SystemC, where the

10

design (in SystemC) is first translated to C, then, the FSM is generated from the
C code. This approach is problematic in the sense that translating SystemC to C
is not always feasible. All previously mentioned techniques could not be applied to
SystemC considering the object oriented nature of its library and that only a small
subset of SystemC is synthesizable. In [13], Ferrandi et al. proposed to use FSMs
to perform functional verification of SystemC designs. They constructed an FSM
directly from the code and then use it to guide the test generation. In that work,
the FSM generation algorithm was not precisely explained and does not consider
the semantics of the SystemC simulator.

Regarding the application of MBT, as far as we know, Dick et al. [11] were
the first to introduce automated techniques for extracting FSMs from model-based
specifications for the purpose of test case generation. The approach of [11] is based
on a finite partitioning of the state space of the model using full disjunctive normal
forms (DNF') of the conditions in the specification and is called the DNF approach.
Heuristics are used in the DNF approach as part of theorem proving, whereas, we
propose in this thesis to use heuristics (grouping conditions) to prune the search
space. The DNF approach suffers from two problems: (1) state explosion and (2)
the use of theorem proving (time-consuming).

FSM based testing was initially driven by problems arising in functional testing
of low level hardware circuits. The bulk of the work in this area has dealt with deter-

ministic FSMs [23, 34]. Then, Extended Finite State Machine (EFSM) approaches

11

have been introduced to cope with the state explosion problem [4]. More work re-
lated to FSM-based software testing can be found on the home page of Model-Based
Testing [36).

All the afore-mentioned work regarding FSM based testing do not consider
SystemC. We will show in this thesis how FSM based testing could be a promis-
ing techniques and well suitable for SystemC as it is meant to be used in higher

abstraction level.

1.4 Thesis Contributions

In light of the above related work review and discussions, we believe the contribution

of the thesis are as follows:

1. We model the PCI-X in UML, AsmlL and SystemC. Thus, providing a PCI-X

IP in SystemC to accommodate the dire need of bus standard IPs in SystemC.
2. We define properties in PSL and verify the PCI-X using model checking.
3. We derived and formalized two FSM generation algorithms from SystemC.

4, We perform model based testing of the PCI-X using the above FSM generation

algorithms.

5. We provide a better understanding of the problem of state explosion in model

checking and a good comparison with MBT.

12

1.5 Thesis Outline

The thesis is organized as follows: In Chapter 2, we provide an overview of UML,
ASM, AsmL, PSL and SystemC. This chapter lays a foundation for the better un-
derstanding of the thesis. Chapter 3 presents the PCI-X and included the modeling
of PCI-X in UML, AsmL and SystemC. In Chapter 4, we describe the verification
of PCI-X using model checking of the AsmL model against the properties defined in
PSL. In Chapter 5, we present the FSM generation algorithms from SystemC. It in-
cludes the formalization of the two (direct and grouped) FSM generation algorithms
and experimental results applied on a PCI-X model. Chapter 6 discusses the model
based testing of PCI-X model using the algorithms presented in Chapter 5. Chap-
ter 7 provides the summary of the thesis with some discussions regarding the FSM
generation algorithms and PCI-X IP. It also draws major conclusions and lessons
learned from this work. In addition, it highlights some future research directions

that can be stemmed from this thesis.

13

Chapter 2

Preliminaries

In this chapter, we give an insight on UML, ASM, AsmL, PSL and SystemC lan-
guage and its architecture. This chapter would provide a good foundation for the

understanding of the rest of thesis.

2.1 Unified Modeling Language (UML)

The Unified Modeling Language (UML) [42] is the standard visual modeling lan-
guage used for modeling businesses, software application, and system architecture.
In other words, it includes a standardized graphical notation that may be used to
create an abstract model of a system: the UML model [25].

While the UML is used to specify, visualize, construct, and document software-
intensive systems, it is not restricted to modeling software. It has its strengths at

higher, more architectural levels and has been used for modeling hardware and

14

is commonly used for business process modeling, systems engineering modeling,
and representing organizational structure. In UML, a diagram, is the layout and
visualization of different modeling elements as described within the UML. Each
UML diagram is used for specific purposes, typically to visualize a certain aspect of
your system.

The UML contains two different basic diagram types: structure diagrams and
behavior diagrams. Structure diagrams depict the static structure of the elements

in your system. The various structure diagrams are as follows [25]:

Class diagrams

¢ Component diagrams

Object diagrams

Deployment diagrams

Composite Structure

Package diagrams

Behavior diagrams depict the dynamic behavior the elements in your system.

The various behavior diagrams are as follows [25]:

o Activity diagrams

e Use case diagrams

15

Statechart diagrams

Collaboration diagrams

Sequence diagrams

Timing diagrams

Interaction overview diagrams

In our approach we mainly use class diagrams and sequence diagrams and they

are explained below.

2.1.1 Class Diagrams

Class diagrams are a type of static structure diagrams that describes the structure of
a system by the showing the system’s classes and the relationships between them. A
class in the software system is represented by a box with the name of the class written
inside it. A compartment below the class name can show the class’s attributes.
Each attribute is shown with at least its name, and optionally with its type, initial
value, and other properties. The class’s operations (i.e. its methods) can appear
in another compartment. Each operation is shown with at least its name, and
optionally also with its parameters and return type. Different types of associations

in a class diagram is used to show the relationship between classes.

16

2.1.2 Sequence Diagrams

In contrast to class diagrams, sequence diagrams can depict the dynamic behavioral
aspects of the system being modeled. It is used to show the processes that execute
in sequence. The sequence diagram shows the sequence of messages, which are
exchanged among roles that implement the behavior of the system, arranged in time.
It shows the flow of control across many objects that collaborate in the context of

a scenario.

2.2 Abstract State Machines (ASM)

Abstract State Machines (ASM) [3] is a specification method for software and hard-
ware modeling, where a system is modeled by a set of states and transition rules
which specifies the behavior of the system. Transition rules specify possible state
changes according to a certain condition. The notation of ASM is efficient for
modeling a wide range of systems and algorithms as the number of case studies

demonstrates [22].

2.2.1 Functions

The ASM notation includes static functions and dynamic functions. Static functions
have the same interpretation in every state, while dynamic functions may change

their interpretation during a run. There are also external functions which cannot

17

be changed by the system itself, but by the outer environment.

2.2.2 States

An ASM model consists of states and transition rules. States are given as many
sorted first-order structures, and are usually described in terms of functions. A
structure is given with respect to a signature. A signature is a finite collection of
function names, each of a fixed arity. The given structure fixes the syntax by naming
sorts and functions, and provides carrier sets and a suitable symbol interpretation
on the carrier sets, which assigns a meaning to the signature. So a state can be
defined as an algebra for a given signature with universes (domains or carrier sets)
and an interpretation for each function symbol.

States are usually described in terms of function‘sb. r.I‘he notion of ASM includes

static functions, dynamic functions and external functions.

e Static functions have a fixed interpretation in each computation state: that
is, static functions never change during a run. They represent primitive op-
erations of the system, such as operations of abstract data types (in software

specifications) or combinational logic blocks (in hardware specifications).

e Dynamic functions whose interpretation can be changed by the transition
occurring in a given computation step, that is, dynamic functions change dur-
ing a run as a result of the specified system’s behavior. They represent the

internal state of the system.

18

e External functions whose interpretation is determined in each state by the
environment. Changes in external functions which take place during a run are
not controlled by the system, rather they reflect environmental changes which

are considered uncontrollable for the system.

e Derived functions whose interpretation in each state is a function of the
interpretation of the dynamic and external function names in the same state.
Derived functions depend on the internal state and on the environmental sit-
uation (like the output of a Mealy machine). They represent the view of the

system state as accessible to an external observer.

2.2.3 Terms

Variables and terms are used over the signature as objects of the structure. The

syntax of terms is defined recursively, as in first-order logic:
o A variable is a term. If a variable is Boolean, the term is also Boolean,

o If f is an r— ary function name in a given vocabulary and ¢, ...t are terms,

then f(t,...¢.) is a term. The composed term is Boolean if f is relational.

2.2.4 Locations and Updates

States are described using functions and their current interpretations. The state

transition into the next state occurs when its function values change. Locations and

19

updates are used to capture this notion.

A location of a state is a pair of a dynamic function symbol and a tuple of
elements in the domain of the function. For changing values of locations the notion
of an update is used. An update of state is a pair of a location and a value. To fire an
update at the state, the update value is set to the new value of the location and the
dynamic function is redefined to map the location into the value. This redefinition
causes the state transition. The resulting state is a successor state of the current
state with respect to the update. All other locations in the next state are unaffected

and keep their value as in the current state.

2.2.5 Transition Rules

Transition rules define thé éhanges over time of the states of ASMs. While terms
denote values, transition rules denote update sets, and are used to define the dynamic
behavior of an ASM. ASM runs starting in a given initial state are determined by
a closed transition rule declared to be the program. Each next state is obtained by
firing the update sets at the current state. Basic transition rules are skip, update,
block, and conditional rules.

The skip rule is the simplest transition rule. This rule specifies an “empty

step”. No function value is changed. It is denoted as
skip

The update rule is an atomic rule denoted as

20

f(tl,tg, e ,tn) =1

It describes the change of interpretation of function f at the place given by (1,2, ... ,t5)
to the current state value of t.

A block rule is a group of sequence of transition rules. The execution of a block rule

is the simultaneous execution of the sequence of the transition rules. All transition
rules that specify the behavior of the ASM are grouped into a block indicating that

all of them are fired simultaneously.

block
Ry
Ry

endblock

In conditional rules a precondition for updating is specified.

if g
then Ry else Ry

endif

where g is a first order Boolean term. R; and Ry denote arbitrary transition rules.
The condition rule is executed in state S by evaluating the guard g, if true R, fires,

otherwise R fires.

21

2.3 Abstract State Machine Language (AsmL)

Abstract State Machine Language (AsmL) [18] is an executable specification lan-
guage based on the theory of ASM. It is fully object-oriented and has strong math-
ematical constructs in particular, sets, sequences, maps and tuples as well as set
comprehension, sequence comprehension and map comprehension. ASMs steps are
transactions, and in that send AsmL programming is transaction based. AsmL is
fully integrated into the .NET framework and Microsoft development tools providing
inter-operability with many languages and tools. Although the language features of
Asml, were chosen to give the user a familiar programming paradigm, the crucial
features of AsmL, intrinsic to ASMs are Iﬁassive synchronous parallelism and finite
_ ;:hoice. These features give rise to a cleaner programming style than is possible with
standard imperative programming languages. Synchronous parallelism and inher-
ently Asml provide a clean separation between the generation of new values and
the committal of those values into the persistent state.

Asml is integrated with Microsoft’s software development environment in-
cluding Visual Studio, MS Word, and Component Object Model (COM), where it
can be compiled and connected to the .NET framework. AsmL effectively supports
specification and rapid prototyping of different kinds of models. The AsmL tester

[30] can also be used for FSM generation or test case generation.

22

2.4 Property Specification Language (PSL)

Property Specification Language (PSL) [1] is an implementation independent lan-
guage to define properties (also called assertions). It does not replace, but comple-
ments existing verification methodologies like VHDL and Verilog test benches. PSL
presents a different view of the design and may imply FSMs in the implementation.
The syntax of PSL is very declarative and structural which leads to sustainable ver-
ification environments. Both VHDL and Verilog flavors are provided. PSL consists
of four layers based on the functionality:
The Boolean layer to build expressions which are used in other layers, specifically
the temporal layer. Boolean expressions are evaluated in a single evaluation cycle.
The temporal layer is used to describe properties of the design, in addition to
simple properties, this layer can describe properties that involve complex temporal
relations. Temporal expressions are evaluated over a series of evaluation cycles.
The verification layer is used to tell the verification tool what to do with the
properties described by the temporal layer.
The modeling layer is used to model behavior of design inputs for formal verifica-
tion tools, and to model auxiliary parts of the design that are needed for verification.
This layered approach allows the expressing of complex properties from simple
primitives. A property is built from three types of building blocks: Boolean expres-

sions, sequences, which are themselves built from Boolean expressions, and finally

23

subordinate properties. Sequences, referred to as SEREs (Sequential Extended Reg-
ular Expressions), are used to describe a single or multicycle behavior built from

Boolean expressions. In this thesis, we use only the first three layers of PSL.

2.5 SystemC

SystemC is an open standard controlled by a steering group composed of thirteen
major companies in the Electronic Design Automation (EDA) industries [32]. It
is one of the most promising system-level design languages and has been recently
standardized by IEEE (IEEE 1666) [41] for system-level chip design. It has evolved
in response to a pervasive need for a language that improves overall productivity
for designers of electronic systems. SystemC offers real productivity gains by letting
engineers design both the hardware and software components together at a high level
of abstraction. This gives the design team a fundamental understanding early in the
design process of the intricacies and interactions of the entire system and enables
better system trade-offs, better and earlier verification, and overall productivity
gains through reuse of early system models as executable specifications.

SystemC provides mechanisms crucial to modeling hardware while using a lan-
guage environment compatible with software development. It offers several hardware-
oriented constructs that are not normally available in a software language but are
required to model hardware. All of the constructs are implemented within the

context of the C++ language. The major hardware-oriented features implemented

24

within SystemC include:

e Timed models

Hardware data types

Module hierarchy to manage structure and connectivity
¢ Communications management between concurrent units of execution

¢ Concurrency models

The SystemC language architecture is shown in Figure 2.1. The language is
built on top of standard C++. The first layer of shaded gray blocks are part of 'the S0
called core layer (or layer 0) of the standard SystemC language. The second shaded
gray layer immediately after the kernel layer is the layer 1 of SystemC; it comes
with a predefined set of interfaces, ports and channels. Finally, the layers of design
libraries above the layer 1 are considered separate from the SystemC language. The
user may choose to use them or not. Over time other standard- or methodology-
specific libraries may be added and conceivably be incorporated into the standard
language.

Figure 2.2 depicts a simplified metamodel [35] of the main SystemC terms and
abstractions. SystemC has a notion of a container class, called module, that provides
the ability to encapsulate structure and functionality of hardware/software blocks for
partitioning system designs. A system is essentially broken down into a containment
hierarchy of modules. Each module may contain variables as simple data members,

25

Methodology-Specific Layered Libraries
Libraries Verification Library
Master/Stave Library, etc. Static Dataflow, efc.

imtilatio
C++ Language Standard

Figure 2.1: SystemC Language Architecture [17].

ports for communication with the outside environment and processes for performing
modules functionality and expressing concurrency in the system. Three kinds of
processes are available: method processes, thread processes, clocked thread processes.
They run concurrently in the design and may be sensitive to events which are notified
by channels. A port of a module is a proxy object through which the process accesses
a channel interface. The interface defines the set of access functions (methods) for a
channel, while the channel provides the implementation of these functions to serve
as a container to encapsulate the communication of blocks. There are two kinds
of channels: primitive channels and hierarchical channels. Primitive channels do
not exhibit any visible structure, do not contain processes, and cannot (directly)

access other primitive channels. A hierarchical channel is a module, i.e., it can have

26

structure, it can contain processes, and it can directly access other channels.

hinds o P
}; 0.7 chifd

variable | o Module 8.0 Pon parent
\
requires P> Interface
0.> Whinds to
/ 1.*
Process sensitive to | Event | *notifies Chanre! I implement P>
Method Thread ClockedTread PrimitiveChannel HierarchicalChannel

Figure 2.2: A Simplified SystemC MetaModel [35].

As mentioned earlier, SystemC permits to model a system at different levels
of abstraction: functional untimed, functional timed, transactional, behavioral, bus
cycle accurate (BCA) and register transfer level (RTL) [17]. These description levels
may be freely mixed in the same design, however, hardware modeling is made at
RTL or behavioral level. Typically, hardware modeling in SystemC is obtained by
restricting the description style to the following rules: (i) modeling the communica-~
tion by signals; (ii) modeling the functionality by processes sensitive to clocks and

signals; (iil) use of modules to describe hierarchical designs.

27

Chapter 3

PCI-X Bus Modeling

In this chapter, we elucidate the PCI-X architecture and its modeling using the
methodology that we presented in Chapter 1. It includes UML modeling, Asml

modeling and translation of AsmL to SystemC of the PCI-X.

3.1 PCI-X Bus

Improvements in processors and peripheral devices have caused conventional PCI
technology to become a bottleneck to performance scalability. The introduction of
the PCI-X technology [40] has provided the necessary bandwidth and bus perfor-
mance needed to avoid the I/O bottleneck, thus achieving optimal system perfor-
mance. For instance, version 2.0 of PCI-X specifies a 64-bit connection running at
speeds of 66, 133, 266, or 533 MHz, resulting in a peak bandwidth of 533, 1066,

2133 or 4266 MB/s, respectively.

28

PCI-X provides backward compatibility by allowing devices to operate at con-
ventional PCI frequencies and modes. Moreover, PCI-X peripheral cards can operate
in a conventional PCI slot, although only at PCI rates and may require a 3.3 V con-
ventional PCI slot. Similarly, a PCI peripheral card with a 3.3 V or universal card
edge connector can operate in a PCI-X slot, however the bus clock will remain at
a frequency acceptable to the PCI card. Figure 3.1 shows the general architecture
of PCI-X with one initiator (master) and target (slave) and in Table 3.1, we show
a list of PCI-X signals and it meanings. There is an arbiter that performs the bus
arbitration among multiple initiators and targets. Unlike the conventional PCI bus,
the arbiter in PCI-X systems monitors the bus in order to ensure good functioning

of the bus.

Y

ARBITER

A

[Y V.

GNTH REO# PCI-X Bus

RECH 4 GNT#

AD[31:0] { AD[63:0]
C/BE [3:0] / C/BE[7:0}

A
4

\

FRAME#
IRDY#

\ A J

TRDY#

DEVSEL#
STOP#

Mo

TOAP -~ =2~
A

4 A

IDSEL

A

B e e e S A B A !

Figure 3.1: General Architecture of PCI-X.

29

Table 3.1: PCI-X Signals

Signals Meanings
AD Address of the data read or write
C/BE Specifies the type of the command
FRAME# Transaction initiation
IRDY # Signals the readiness of initiators
TRDY# Signals the readiness of targets
DEVSEL# | Enables to allow minimum decoding speed
STOP+# Signals the termination of the transaction
IDSEL# Configuring transactions timing

Both PCI-X initiator and target have a pair of arbitration lines that are con-
nected to the arbiter. When an initiator requires the bus, it asserts REQ#. If the
arbiter decides to grant the bus to that initiator, it asserts GNT#. FRAME# and
IRDY# are used by the Arbiter to decide the granting of an initiator request for the
bus. Unlike PCI, the targets can only insert wait states by delaying the assertion
of TRDY+#. TRDY# and IRDY# have to be asserted for a valid data transfer.
An initiator can abort the transaction either before or after the completion of the
data transfer by de-asserting the FRAME# signal. In contrast, a target can termi-
nate a bus transaction by asserting STOP+#. If STOP # is asserted without any
data transfer, the target has issued a retry and if STOP# is asserted after one or
more data phases, the target has issued a disconnect. Unlike PCI, the target has

also REQ# and GNT+# that are connected to the arbiter. This facilitates the Split

30

Transaction of PCI-X which does not exist in conventional PCI. In Split Transac-
tion, the initiators and targets switch their roles. Split Transaction is very useful
if a target can not be able to continue the current transaction. In this case, the
target will memorize the transaction and signal a Split- telling the initiator not to
retry IO read. When the data is ready, the target will send the initiator a Split
Completion containing the data. The addition of PCI-X Split Completion frees up
the bus for other transactions, making PCI-X more efficient than PCI. This notion
of split transaction of PCI-X and its high bandwidth capacity makes the PCI-X bus
pretty complex.

PCI-X supports two modes of operations: Mode 1 and Mode 2. Mode 1
operates at either 66 or 133 MHz and uses a parity error checking scheme and Error
Correction Code (ECC) as optional. In Mode 1 operation, data transfers always use
common clock. The higher transfer rates (266 or 533 MHz) in PCI-X 2.0 are defined
in Mode 2, which uses ECC as its error correcting scheme. Mode 2 operation of
PCI-X also supports 16 bit bus interface which facilitates low cost interface. Split
Transactions in PCI-X replace Delayed Transactions in conventional PCI [40]. If a
target cannot complete the transaction within the target initial latency limit, the
target must complete that transaction as Split Transaction. If the target meets its
initial latency limits, it can optionally complete the transaction immediately. All
these aforementioned transactions’ sequences are described vividly using sequence

diagrams in Section 3.2.

31

3.2 UML Modeling

UML representation is helpful for programmers, who talk different languages. From
the specification of PCI-X, we identify the core components, i.e., initiators, targets,
and arbiters, which will be represented as classes, where specific instances of the
components are called as objects. In addition to these four components, we also
added another component, the Simulation Manager (SimManager), in order to have
a notion of updates. Figure 3.2 shows these five classes, where each has its own data
members and methods with their access types. It also shows the relationship among
each classes. For instance, the relationship between the arbiter and the initiators is
one-to-many (1 - *). It is because there can be only one arbiter which is connected
to many initiators. For another example, the relationship between the SimManager
and arbiter is one-to-one (1 - 1) as there can be only one SimManager and one
arbiter in the system.

In order to model the system’s architecture in UML, we had two options: (1)
class diagram, or (2) composite structure diagram [25]. This latter representation
offers more information about the object interaction. However, since our objective
at the UML level was to identify the main modules in the system, the class diagram
was enough expressive to answer our needs. For instance, we provide a complete
and formal definition of the modules interactions at the AsmL level.

We modeled different modes and types of operations of PCI-X using sequence

32

diagrams. Sequence diagrams enable us to model the bus in Asml easily and effi-
ciently. Also, they help to extract the properties of the system being modeled, which
can be used to verify using model checking. In addition, UML modeling helps to

close the gap between informal specification and formal models in AsmL.

PCIX_Initiator
YREQ : boo! - PCIX_Target
+GNT : bool PCIX_Arbiter YREQ bool
+FRAME : bool +Active_initiator . int +GNT : boo!
+IRDY : bool +REQ : bool +TRDY : bool
+IDSEL : bool +GNT : bool +DEVSEL : bool
+AD :int +CBE : int +STOP : bool
+CBE :int +FRAME : bool +AD @ int
+DEST : Int +IRDY : bool +CBE :int
+STOP : boo! +Arbiter(} +1D : int
+initiator_Req() +Arbiter_GNT_UPD() +TARGET_STOP : bool
+Initiator_FRAME_Assert() 1 [+Arbiter_Release() I |+Target()
+Attribute_Phase() +Arbiter_Park_lnitiator() +Target_DEVSEL _Assert()
+Initiator_IRDY_Assert() « |+Target_TRDY_Assert()
+Initiator_Termmination() 4 ~ |+Target_Abort()
+initiator_LastPhase() = +Target_Termination()
+initiator_Release() . + Target_Response()
+Initiator_Disconnect() -
+!nitiator_Abort(}

ZL e 111 1

l l
1 PCIX_Bus
+CLK : bool
SimManager HFRAME : bool

+CLK - boot HRDY : bool

WmManager() +TRDY : bool

+SimManager_Init() 1 L”-—*-DEVSELZbOOl

+SimManager_CLK_Update() 1 [*STOP : booi
+AD [int
+CBE : int
+PCIX_Bus()
+PCIX_Bus_DataPhase()

Figure 3.2: Class Diagram of PCI-X.

In Figure 3.3, we show the protocol sequence of a typical Mode 1 transaction
of the PCI-X using a sequence diagram. Figure 3.3 is a best case scenario of Mode
1 transactions, with one initiator and one target and without any wait states. In
the first clock cycle, the initiator asserts the REQ# signal to get the control of the
bus by executing the methods Initiator-Req(). The arbiter asserts the GNT# signal

to that initiator through Arbiter.GNT_-UPD/(). In the third clock cycle, the address

33

Initiator

PCI-X-Bus

Arbiter

Initiator_Reqy()
@CIkN

Y

A

A

Initiator_FRAME_Assert()

@clkN+2

1

L)
»)
-

Arbiter_GNT_UPD()

@clkN+1

A

AttributePhase()
@clkN+3

—] ——— e a—

|
|
]
|
I
»

| Target_DEVSEL_Assert()

|

@clkN+4 |

A

Initiator_IRDY_Assert()

@clkN+5

CIX_Bus_Data_Phase()

i Target_TRDY_Asser()

@cikN+5

y |

PCIX_Bus_Data_Phase()

A

@clkN+7

(Initiator Termination)

PCIX_Bus_Data_Phase()

|
|
|
|
Initiator_Termination() |
|
i
{

PCIX_Bus_Data_Phase()

Initiator_LastPhase()
@clkN+9

- el
gl
’

Initator_Disconnect(}

Target_Termination()
@clkN+9

Figure 3.3: Sequence Diagram of Mode 1 Transaction.

phase takes place and also the FRAME# signal is asserted by the initiator to signal
the start of the transaction using the method Initiator. FRAME_Assert(). In the
next clock cycle, the attribute phase takes place, where additional information in-
cluded with each transaction is added. In clock cycle N+4-4, the DEVSEL# signal is
asserted by the target using Target DEVSEL_Assert() and in the next clock cycle,
the data phase is started with the assertion of the IRDY# (Initiator_-IRDY_Assert())
and TRDY# (Target.TRDY _Assert()) signals by the initiator and the target, re-
spectively. Before the last data phase, the FRAME# signal is de-asserted using
Initiator_Termination() to signal the completion of the data transfer and in the
termination phase all the other signals are de-asserted. In order to represent the

clock constraints of the PCI-X transaction, we added an additional operator, "@”,

34

to specify at which clock cycle a particular action should occur.

Figure 3.4 shows the protocol sequence of a typical Mode 2 transaction of
PCI-X using a sequence diagram. Mode 2 transaction is pretty similar to Figure
3.3, except that there is an additional delay of one clock cycle (Target Response

Phase)and one additional idle clock between any two transactions.

Initiator PCi-X-Bus Arbiter | Target |

>l !
Initiator_Req() @ckN IA
[Arbiter_GNT_UPD()

@clkN+1

Initiator_FRAME _Asseri()
@clkN+2
(Address Phase)

A
y

Attribute_Phase()
@clkN+3

A
\J

Target_Response(}

@clkN+4
Target_DEVSEL_Assert()
@clkN+5 @clkN+5
Target_TRDY_Assert()
PCIX_Bus_DataPhase(} @cIkN+6

A

PCiIX_Bus_DataPhase()

A

Initiator_Termination() PCIX_Bus_DataPhase()

\‘ V‘ A\

-
bl
|
1
|
|
ol
>t
Initiator_IRDY_Assert() I
[
-
|
]
|
|
1
|

T T

@clkN+8

-t

PCIX_Bus_DataPhase() |
L > |

™ . -
] Inmato@reﬁ(nm%nect() | Termination Phase Target_Termination() |
| | @clkN+10 |
- o
h 1 One Idie Clock !
To Begin Next

Transaction

Figure 3.4: Sequence Diagram of Mode 2 Transaction.

In Figure 3.5, we show the transaction sequences of a 16 bit interface of Mode
2 transaction. In this transaction, the attribute phase takes two cycles unlike the
transaction types. Other signal activities of this transaction are the same as the
generic Mode 2 transaction. In the coming section, we present the Asml, modeling

of PCI-X from UML.

35

I PCI-X-Bus I | Arbiter J Target J

|

Initiator_Req() @clkN -

|
} |
| ™ Amiter GNT_UPDO)

I Tnitiator_FRAME Assert) T | GeikN+ | |
| @clkN+2 | | |
- (Address Phase} -
I 1 Altribute_Phase() | gl
t | @cikN+3 | i
< -
< >
| | AttributePhase() 1 !
| | @clkN+4 | |
l< | ! »l
| | Target_Response() | |
I | @clkN+5 I I

> T EVSEL

| initiator_IRDY_Assert() | | afge‘-D@c“(SN gAsse“O]

@clkN+6 . + \
| o < t |
| | PCIX_Bus_DataPhase() | |
< »
- Lt
! | pcix_Bus_DataPhase) | TargelTRDY. Asser(|

Cl
le _ — |] »!
| Iniator Terminaton) | pcix_Bus_DataPhase) |]
1o @clkN+9 { | |
o
| | PCIX_Bus_DataPhase() | |
| » la | |
Initiator_Disconnect() =~ o . Target_Termination
| @aN1 | Temmination Phase | Target_Termination() |
t [I @cikN+11 |
Ll .
" 1 Onelde Clock] g
To Begin Next
Transaction

Figure 3.5: Sequence Diagram of Mode 2 Transaction (16 bit).

3.3 AsmL Modeling

In this section, we show our approach of modeling the PCI-X in AsmlL from UML
representation by showing some of the important methods used. By having class
diagrams in UML, it is easy to implement the classes in any language. We use
AsmL’s class features to model all the five core components of PCI-X discussed in
the previous section. Each of these has its own data members (signals) and methods
(behavior) in addition to the constructors. We also use enumeration features (enum)
of Asml, to model different modes of PCI-X, different types of transaction phases,

the state of the system and the clock (see Figure 3.6).

36

enum SystemStatus enum Clock

CLK_UP INIT

CLK_DOWN STARTED

enum Transaction_Phase enum Transaction_Mode
IDLE_PHASE MODE_1

ADDR_PHASE MODE_2

ATTR_PHASE

TGT_RES_PHASE

DATA_PHASE

INR_TER_PHASE
TURN_ARQUND_PHASE

Figure 3.6: Used AsmL Enumeration Types.

»

In addition, we exhaustively use the require and ” :=" statements of AsmL in

our design approach. require is the pre-condition statement in AsmL used to check
if a certain condition is satisfied in order to enable a method, and the operator ” ;="
‘represents an update statement used to change the system state. Figure 3.7 shows
the AsmL model of the arbiter grant method (Arbiter_.GNT()). As the name of the
method says it acts as an arbiter for granting the bus to the requesting initiator.
In order to grant the bus to the requested initiator, this method has the following
pre-conditions (require) to be met: (1) there must be at least one initiator requesting
the bus and that initiator has not been granted the bus at the time of the request;
(2) the clock is on the rising edge; and (3) the mode can be either Mode 1 or Mode
2. If these pre-conditions are met, the arbiter updates the GNT# signal.

In Figure 3.8, we show how a target can signal its readiness using TRDY#

signal. We call this method as Target.TRDY_Assert(). The pre-conditions are the

37

public Arbiter_GNT()
require (exists x in Initiators where x.REQ = true and
x.GNT = false) and me.GNT = false and Smanager.CLK = CLK_UP

and (Mode = MODE_1 or Mode = MODE_2)

me.Active_Initiator := min y | y in Initiators_Range where
(Initiators(y).REQ = true)

me.GNT := true

Initiators(Active_Initiator).GNT := true

Figure 3.7: Arbiter Grant AsmL Method.

following: TRDY# is false, FRAME# and DEVSEL# are true, CLK is CLK_UP,
Phase is DATA.PHASE_FIRST and the AD of the Bus should be the ID of the

target. If the pre-conditions are true, then TRDY# will be asserted.

public Target_TRDY_Assert()

require me.TRDY = false and Bus.FRAME = true and
Bus.AD = me.ID and Bus.DEVSEL = true and
Smanager.CLK = CLK_UP and Phase = DATA_PHASE_FIRST

me.TRDY := true

me.AD := Bus.AD

Bus.TRDY := true

Phase := DATA_PHASE

Figure 3.8: Target Assert AsmL Method.

Figure 3.9 shows the initiator termination method (Initiator_Termination).
This method basically signals the end of a transaction if BYTECOUNT is less than
2. BYTECOUNT indicates the number of bytes of data transfer in a transaction.
This signaling is done by de-asserting the FRAME+# signal and updating the trans-

action phase to the initiator termination phase (INI. TER_PHASE). This method

38

has a specific pre-conditions that need to be true so that it can terminate the trans-
actions. The pre-conditions (regquire) are the following: initiator’s REQ#, GNT#,
FRAME#, IRDY#, DEVSEL#, TRDY# are asserted, BYTECOUNT is less than
2, and the clock is on the rising edge. If all the above pre-conditions are true, this
method updates the FRAME# signal to false and the phase to IN[_.TER_PHASE.
After this FRAME# signal de-assertion, the initiator’s last phase method (Initia-
tor_LastPhase()) is invoked.
public Initiator_Termination()
require me.GNT = true and me.REQ = true and me.FRAME = true and
me.IRDY = true and Bus.TRDY = true and Bus.DEVSEL = true
and BYTECOUNT < 2 and me.STOP = false and
Smanager.CLK = CLK_UP
me.FRAME := false

Bus.FRAME := false
Phase := INR_TER_PHASE

Figure 3.9: Initiator Termination AsmL Method.

Figure 3.10 shows the clock update method. It is a method of the SimManager

class, which checks if the system and simulation are started in order to update the

clock.

public SimManager_CLK_Update()
require SystemFlag = STARTED and SimStatus = RUNNING
if CLK = CLK_UP then
CLK := CLK_DOWN
else
CLK := CLK_UP

Figure 3.10: Clock Update AsmL Method.

39

public PCIX_BUS_DataPhase()
require SystemFlag = STARTED and SimStatus = ON_INIT and
Bus.IRDY = true and Bus.TRDY = true and Bus.DEVSEL = true
and Smanager.CLK = CLK_UP and Phase = DATA_PHASE
BYTECOUNT := BYTECOUNT - 1

Figure 3.11: Data Phase AsmI. Method.

Figure 3.11 shows the data phase method of the AsmL code. The method
decreases the BYTECOUNT by 1 based on the following pre-conditions: IRDY#,
DEVSEL#, TRDY# are asserted, the phase has the value DATA_PHASE, the clock

is on the rising edge, and the system started running.

3.4 Translation to SystemC

After the ASM model of PCI-X is verified against the PSL properties, we translate
it to SystemC as this is the ultimate goal. The verification of the Asml using model
checking is discussed in the next chapter. The transformation of AsmlL to SystemC

is syntactical based on a set of rules developed in [19] and summarized as follows:

e Basic types: AsmL basic types are mapped to their equivalent SystemC types

(e.g. Integer to int, Byte to unsigned char)

¢ Class members are translated into SystemC signals having the same basic type.

(e.g. var val as Integer to sc-signal <int> val)

e Class methods in AsmL contain two parts: first one defining the pre-/post

40

conditions for its invocation and the second is the method itself. The first
part is integrated in SystemC module’s constructor. The method itself is

integrated as is in the SystemC module.
¢ Global methods are integrated in the SystemC’s main procedure sc_main.

To illustrate the translation procedure, we show a sample code in Figure 3.12,
the Arbiter class of the PCI-X in SystemC. All classes in AsmL modeling are rep-
resented as module (SC_.MODULE) in SystemC and the data members in AsmL
are mapped as signals (sc_signal) in SystemC. It is also possible to represent them
as ports (sc_port). The methods in AsmL class are represented as SC_.METHOD.
SC_METHOD is one type of modeling process in SystemC. In some sense, it is sim-
ilar to the Verilog always@ block or the VHDL process. The SystemC simulation
engine usually calls the SCCMETHQOD process repeatedly based on the static or
dynamic sensitivity. Static sensitivity establishes the parameters during elaboration
(i.e., before simulation begins). It is established with a call to the sensitive() method
or the overload stream operator << that is placed just following the registration of
a process.

Dynamic sensitivity can also be used by means of the nezt_trigger() method.
It is somewhat similar to the traditional wait statement in HDLs. In our translation
procedure, we use the static sensitivity scheme and the stream operator << for
modeling the pre-condition statement (require) of AsmL. The method registration
with sensitivity list is done in the constructor method (SC.CTOR).

41

SC_MODULE (PCIX_Arbiter) {

sc_signal
sc_signal
sc_signal
sc_signal
sc_signal
sc_signal
sc_signal

<int> Active_Initiator
<bool> REQ;

<bool> GNT;

<int> CBE;

<bool> FRAME;

<bool> IRDY;

<bool> STOP;

SC_CTOR (PCIX_Arbiter) {

Active_Initator = O;
REQ = false;

GNT

FRAME =

false;
CBE = 0;

false;

IRDY = false;
STOP = false;

SC_METHOD(PCIX_Arbiter_REQ_UPD);
sensitive << Initiators.REQ << Initators.GNT

<< REQ << GNT << Smanager.CLK;

SC_METHOD (PCIX_Arbiter_GNT_UPD);

sensitive << REQ << GNT << Smanager.CLK;
SC_METHOD (PCIX_Arbiter_Release);

sensitive << Initiators(me.Active_Initiator).REQ

<< Initiators(me.Active_Initiator) .GNT
<< REQ << GNT << Smanager.CLK;

Figure 3.12: Arbiter Class Declaration in SystemC.

42

In Figure 3.12, we first show the data members of the class using sc.signal.
Then, we show the constructor definition of the class (SC.CTOR (PCIX_Arbiter)).
In the constructor, we first do the initialization of the data members which is one
of the purposes of having constructor in OO modeling. After that, we include the
method registration using SC_.METHOD with the use of static sensitivity (sensitive)
in order to fire that particular method.

The correctness of the above translation rules from AsmL to SystemC and vice

versa, has been provided in [19] using abstract interpretation [10].

43

Chapter 4

Model Checking

In the last chapter, we have seen the AsmL modeling of PCI-X. In this chapter, we
are going to define a set of properties in PSL in order to verify the AsmL model
through model checking. The properties are easy to obtain from the sequence di-
agrams of the UML representation and also from the specifications. This chapter

also includes the model checking results and its limitation.

4.1 Background

Model checking [9] is an FSM based formal verification technique that can be used to
determine the validity of the properties written in some temporal logic with respect
to a behavioral model of a system but it is impossible to determine whether the given
specification covers all the properties that the system should satisfy. Model checking

is based on the state space exploration technique, and uses the reachability state

44

graph as a Kripke structure, which encodes the set of all possible sequences of states
for a system over computation trees. Model checking tools are effective as debugging
aids for industrial designs, and since they are fully automated, minimal user effort
and knowledge about the underlying technology is required to be able to use them.
However, there are two drawbacks with model checking. The first drawback is the
state space explosion and how to avoid it, and the second is the difficulty of judging
whether the verified property completely characterizes the desired behavior of the

system.

4.2 Model Checking Approach

The way we perform model checking is different than the classical approach. In the
classical approach, the properties and the design being modeled are given separately
to the model checking tool. But, in our approach, once the modeling of PCI-X in
AsmlL is done, we include the defined PSL properties in the AsmL design. Then, the
AsmL design with the properties is fed to the Asmlt tester that generates an FSM
of the model. Using Asmlt, we perform state exploration which gives the notion of
model checking. We encode the properties evaluation in every state, which enables
checking its correctness on-the-fly while executing the FSM generation algorithm
[15] (part of the Asmlt). Any incorrect property detection halts the reachability
algorithms and outputs a sub-portion from the complete FSM, which can be used

to identify counter-examples.

45

Properties are embedded in every state in the FSM generated by the Asmlt
and is represented by two Boolean state variables P, and P, Peyu represents
whether a property can be evaluated or not and P,,; denotes the state of the property
in the current state. A violated property is detected if P.,q = true Py = false.
A correct verification process results on the generation of the system’s FSM. If the
property is not verified, then an error trace would be generated. In the case of state
explosion, the FSM generation will become unsuccessful. In the next section, we

show the properties that we defined.

4.3 Model Properties

We define various properties of the PCI-X bus in PSL. The properties are obtaiﬁed
from the sequence diagrams and the informal specification. Some of the properties
that we show are generic to any bus protocols and others are specific to PCI-X. The
first property P1 shown in Figure 4.1, is a common behavior for any bus standard.
It states that if an initiator is requesting the bus (/Initiator. REQ == true), it will
eventually be granted (/Initiator. GNT == true). This also makes sure the fact that
no initiator will be using the bus indefinitely. It is to be noted that all signals of
PCI-X are active-low.

Property P2 in Figure 4.2 is about the termination of a PCI-X transaction be
it Mode 1 or Mode 2. It means that if an initiator is terminating the bus by assert-

ing the STOP signal, then eventually the bus will be released by de-asserting the

46

Property P1:

forall Initiator in {Initiator0, ..., Initiator4}
if(1Initiator.REQ == true) then
eventually (!Initiator.GNT == true)

Figure 4.1: Property P1.

FRAME signal and targets will be released by de-asserting TRDY and DEVSEL.

Property P2:
forall Initiator in {Initiator0O, ..., Initiator4}
if ((!Initiator.STOP == true) and
(!Initiator.GNT == true)) then
eventually {(!Bus.FRAME == false) and

forall Target in {Target0O, ..., Target4}
(!Target .TRDY == false) and
(!Target .DEVSEL == false)}

Figure 4.2: Property P2.

Property P3:
forall Initiator in {InitiatorO, ..., Initiator4}
if(!Initiator.GNT == true) then
next[0] (!Initiator.FRAME == true)

Figure 4.3: Property P3.

Property P3 in Figure 4.3 is for the assertion of FRAMEF signals. This property
is important for the start of the transaction. If an initiator is granted to the bus,
then in the next clock cycle the FRAME signal has to be asserted.

Property P4 (Figure 4.4 is to check the phase (ADDR_PHASE, ATTR_PHASE,
IDLE_PHASE) of the transaction. If the initiator FRAME signal is asserted, then

in the next clock cycle, the phase of the transaction will be the attribute phase

(ATTR_PHASE).

47

Property P4:
forall Initiator in {Imnitiator0O, ..., Initiator4}
if(!Initiator.FRAME == true) then
next[0] (Transaction_Phase == ATTR_PHASE)

Figure 4.4: Property P/.

Property Pb:
forall Initiator in {InitiatorO, ..., Initiator4}
forall Target in {TargetO, ..., Target4}
if((!Target.GNT == true) and
(!Initiator.DEST == Target.ID)) then
eventually {(!Bus.FRAME == true) and
(!Initiator.TRDY == true) and
(!Target [ID] .TRDY == true) and
(!Target .GNT == false)}

Figure 4.5: Property P.

Property PS5 in Figure 4.5 is regarding the arbitration of the bus. If an ini-
tiator is selected by the arbiter, then it will be able to get access to the bus by
setting /Bus. FRAME. Then, its destination target will be activated by setting its

ITarget. TRDY and the initiator will release the bus once /Initiator. GNT is set to

Property P6 in Figure 4.6 is to check the initiation of a transaction termination
when data transfer is about to be completed. If BYTECOUNT is equal to one (data

transfer is in the penultimate cycle), then in the current cycle FRAME will be de-

Property P7 (Figure 4.7 is somewhat similar to P6. The property says that

if the data transfer is over (BYTECOUNT == 0), then in the next clock cycle,

initiator’s JRDY will be de-asserted.

48

Property P6:
forall Initiator in {Initiator0, ..., Initiator4}
always {if (BYTECOUNT == 1) then
next{0] (!Initiator.FRAME == false) }

Figure 4.6: Property P6.

Property P7:
forall Initiator in {InitiatorQ, ..., Initiator4}
always {if (BYTECOUNT == 0) then
next (!Initiator.IRDY == false) }

Figure 4.7: Property P7.

Property P8 in Figure 4.8 is to check the response of a target when it has
been selected as destination. This property is specific for Mode 1 transaction. The
property says that if the transaction mode is MODE_1 and the initiator’s FRAME
is asserted, then eventually the IRDY and TRDY of the initiator and target re-

spectively, will be asserted.

Property P8:
forall Inmitiator in {Initiator0O, ..., Initiatord}
forall Target in {TargetO, ..., Target4}
if ((!Initiator .FRAME == true) and
(Transaction_Mode == MODE_1)) then
eventually {(!Initiator.IRDY == true) and
(!Target .TRDY == true)}

Figure 4.8: Property PS8.

Property P9 in Figure 4.9 is similar to P8 but it is related to the Mode
2 transaction. If FRAME is asserted and transaction is Mode 2 then eventually

IRDY and DEVSEL will be asserted together.

Property P10 shown in Figure 4.10 is about the target response property of

49

Property P9:
forall Initiator in {Initiatoxr0, ..., Initiatord}
forall Target in {TargetO, ..., Target4}
if(!Initiator.FRAME == true) and
(Transaction_Mode == MODE_2) then
eventually {(!Initiator.IRDY == true) and
(!Target.TRDY == true)}

Figure 4.9: Property P4.

Mode 2 transaction. If FRAME, IRDY, DEVSEL are asserted and transaction is

Mode 2, then in the next clock cycle, TRDY will be asserted.

Property P10:
forall Initiator in {Initiator0, ..., Initiator4}
forall Target in {TargetO, ..., Target4}
if(!Initiator.FRAME == true) and

(tInitiator.IRDY == true) and
(!Target .DEVSEL == true) and
(Transaction_Mode == MODE_2) then
next (!Target.TRDY == true)

Figure 4.10: Property P10.

Property P11 in Figure 4.11 checks the idle phase of Mode 2 transaction after
a transaction has completed. It says that if IRDY, STOP, DEVSEL, TRDY are
de-asserted then in the next clock cycle, the phase of the transaction will be idle.
In other words, the bus will be idle.

Property P12 in Figure 4.12 is about the initiation of Split transaction. In
split transaction, the target can request for the bus (/Target. REQ == true) and it

can be eventually granted (/Target. GNT == true).

50

Property P1i:
forall Initiator in {InitiatorQ, ..., Initiator4}
forall Target in {TargetO, ..., Target4d}
if((*Initiator.IRDY == false) and
(!Initiator.STOP == false) and
(1Target .DEVSEL == false) and
(1Target.TRDY == false) and
(Transaction_Mode == MODE_2)) then
next (Transaction_Phase == IDLE_PHASE)

Figure 4.11: Property P11.

Property P12:
forall Target in {TargetO, ..., Target4d}
if(!Target.REQ == true) and
(Transaction_Mode == SPLIT) then
eventually (!Target.GNT == true)

Figure 4.12: Property P12

4.4 Experimental Results

Table 4.1 details the results of model checking of PCI-X model (5 initiators and 5
targets). In the table, we show the CPU time, number of states and transitions
for the PCI-X model with the various properties defined. The experiments were
performed on a Pentium IV processor (2.4 GHz) with 768 MB of memory. As can be
seen from the table, all properties have been verified except Property 6 and Property
7 due to a state explosion problem. This is due to the fact that these properties are
related to the successful completion of a data transfer. When the BYTECOUNT
is large, the action PCIX_BUS_DataPhase() will be enabled many times and would
lead to state explosion. This is a classical problem of model checking and many

techniques have been proposed in the recent past to alleviate this problem but not

51

Table 4.1: Model Checking Results

Property | CPU Time (s) | States { Transitions
P1 385.24 2169 3250
P2 194.23 1800 2563
P3 150.52 1578 2156
P4 130.45 1489 2096
P5 156.35 1478 2265
P6 - - -
pP7 - - -
P8 173.50 1925 2439
P9 174.47 2013 2698
P10 178.42 1873 2359

P11 256.63 2192 2980
P12 143.52 1356 1923

to eradicate it. Even though, the CPU time to verify the properties is relatively
shorter, we also have to consider the time spent to write the properties and to
learn the tool. It is also possible to model check the SystemC design but the state

space explosion will be worse considering the complexity of the SystemC simulation

semantics and the OO nature of the language.

92

Chapter 5

Generating FSM from SystemC

In the last chapter, the model checking of the PCI-X in AsmL model was shown.
Once the model checking of the AsmL model is done, we translate it to SystemC. In
order to the validate the SystemC model, we provide two FSM generation algorithms
from which MBT can be applied. In this chapter, we provide the formalization of

these two algorithms and the experimental results.

5.1 Background

The work in [15] derives an FSM from the ASM languages like AsmL. The FSM-
generating algorithm is a particular kind of graph reachability algorithm. It starts
from the initial state and builds up a labeled state transition graph by invoking
actions that are parts of the ASM. The FSM generation allows them to integrate

with the existing tools (Asmlt) to derive test suites to achieve model based testing.

53

In [5], the FSM generation algorithm is extended from [15] to have compact FSMs
using the notion of state groupings. The work in [5] considers both AsmL and
Spec# as the source language. Nevertheless, these two works can be only applicable
for ASM languages. For SystemC, these algorithms can not be used directly as its
/syntax is different and the notion of SystemC simulator has to be considered.

To tackle this issue, we provide a formalization of two algorithms to generate
FSM from SystemC. These two algorithms are extended from [15, 5]. We adapt the
work in [15, 5] based on the existing SystemC semantics [19, 14] to generate FSM
from SystemC. At first, the given SystemC design is analyzed to collect the necessary
inputs for the FSM generation. Then, we apply one of the two algorithms that we
propose to generate FSMs. We call the first Direct Algorithm and the second one
as Grouping Algorithm. Both algorithms perform a state exploration procedure in
order to discover all possible system’s state starting from a set of initial states. The
grouping algorithm’s exploration procedure is very similar to the direct one but it has
grouping conditions as an additional input. More details about grouping algorithm

will be discussed in Section 5.4.3. In the coming sections, we detail the SystemC

syntactical domains that are needed to collect the inputs for the algorithms.

5.2 SystemC Syntactical Domain

The SystemC language has a large number of syntactical domains. These, however,

are based on the single SC_Module domain [19]. Hence, the minimum representation

54

for a general SystemC design is a set of modules.

In SystemC, the structural decomposition is specified with modules, which
are the basic building blocks. A SystemC description consists of a set of connected
modules, each encapsulating some behavior or functionality. Modules can be hier-
archical, containing instances of other modules. The nesting of hierarchy can be
arbitrarily deep, which is an important requirement for structural design represen-

tation. The formal definition of an SC_Module is given in the following:

Definition 5.2.1. SystemC Module: (SC_Module)
A SystemC Module is a tuple (DMem, Ports, Chan, Mth, SC_Ctr), where DMen is a set
of the module data members, Ports is a set of ports, Chan a set of SystemC channels,

Mth is a set of methods (functions) definition and SC_Ctr the module constructor.

The simplest means of connecting together different SystemC modules is by
using ports (SC_Port) and signals. Formally, a SystemC port is a tuple (IF, N,
SC_In, SC_Out, SC_InOut), where IF is a set of the virtual methods declarations, N
is the number of interfaces that may be connected to the port, SC_In is an input
port (provides only a Read method), SC_Out is an output port (provides only a
Write method) and SC_InOut is an input/output port (provides Read and Write
functions).

In contrast to default class constructors for OO languages, the SystemC mod-
ule constructor SC_Ctr contains the information about the processes and threads
that will be executed during simulation, and their sensitivity lists, SC_SL, specifying

55

which events can affect their states. SC_Ctr is defined as a tuple (Name, Init, SC_Pr,
SC_SSt), where Name is a string specifying the module name, Init is a default class
constructor, SC_Pr a set of processes and SC_SSt is a set of sensitivity statements (to
set the process sensitivity list SC_SL). The following definition provides the formal

description of SC_Pr.

Definition 5.2.2. SystemC Process (SC_Pr)

A SystemC process is a tuple (PMth, PTh, PCTh), where PMth is a method process
(defined as a set (Mth, SC_SL) including the method and its sensitivity list), PTh is
a thread process (accepts a wait statement in comparison to the method process),

PTh is a clocked thread process (sensitive to the clock event).

A SystemC design is a connection of multiple modules (SC_Mod) [19]. Restrict-
ing our model to modules does not affect the validity of the results since modules
are the default syntactical domain for SystemC. All other domains are built on top

of it.

Definition 5.2.3. SystemC Design (SC_Design)
A SystemC design is a tuple (Lscmoq, SC-main), where Lscmoa is & set of SystemC
modules and SC.main is the main function in the program that performs the simu-

lator initialization and contains the modules declarations.

56

5.3 Collecting Inputs

The original SystemC design is analyzed to collect the needed components in order
to feed the algorithm with the information required for the FSM generation. Table
5.1 shows the relation between the SystemC design and our algorithms inputs. At
first, we collect the processes SC_Pr in the SystemC design and add to actions (A).
Then, data members and ports (SC_Port) are considered as state variables for the
FSM generation algorithm. Finally, actions pre-conditions (Ap.) are collected from
the sensitivity lists of the processes in SystemC designs. In addition to these three

entities, the grouping algorithm requires as input a set of grouping conditions (G¢).

Table 5.1: Link between SystemC Design and FSM Generation Algorithm Inputs.

Algorithm Inputs | SystemC Design: S8C Design

Actions: A Set of all the processes in SC_Design:
{sc_pr,sc.pr € SCDesign}.
State Set of all data members and ports in SC_Design
Variables: V {dmem, Isc_mod € SC_Design | dmem € sc_mod}
U {port | 3sc_mod € SCDesign | port € sc_mod}
Action’s Set of sensitivity lists of all the processes
preconditions: in SC Design:
Ape {sc_sl,3Iscmod € SCDesign |

Jdsc_pr € scmod | sc_sl € scpr}

57

5.4 FSM Generation Algorithm

The FSM generation algorithms need the following entities:

State Variables (V)

State Space (S)

Initial States (Sinit)

Actions (A)

Transition Relation (R)

V is a set of state variables and for each v; in V, there is a corresponding
domain d,; in D, where D is a set of domains for every type of state variables.
S = {s1,82,53...5n} is a total state space of the design being modelled where each
state s; in S is an instantaneous description of the system that captures the value
of state variables (V') at particular instant of time. Sy, C S is a set of initial states
from where the state exploration starts. A = {a1, as,as...an} is a set of actions in

the model defined as follows.

Definition 5.4.1. Action (a)

a is a four-tuple (a-M,a_Pre,a_Post,a.Cst) where,

e a_M is a method

e o_Pre is a set of pre-conditions

58

¢ a_Post is a set of post-conditions
o a_Cst is a set of constraints

a_Pre is a set of Boolean propositions that have to be true in the beginning of
an action a; € A execution, in a state s. a_Post is also a set of Boolean propositions
that must be true at the end of an action a; € A execution and a_Cst is a set
of Boolean propositions that must to be true at certain part of an action a; € A
execution. Next, we define the transition, R, from one state to another during the

action execution and it is defined as follows:

Definition 5.4.2. Transition Relation (R)
Let S be a set of states and Abe a set of actions then the transition relation R is
defined as
R:SxA—-S
(Scurrent; @) = Sneat
where Sgrrene 1S the current state and $,..¢ is the next state obtained after executing

the action a

During the exploration phase of the algorithm, relevant states are stored in Spgp.
Starting from S;,;:, new discovered states are added to Spgas together with the new
transition T. T = {t1,t3,13...t,} is a set of transitions included in the FSM where

ti isa three‘tul)le, (Scurrent’ a, 5next>-

99

5.4.1 Helper Functions

Some helper functions are needed for the FSM generation algorithms. They include:
¢ enabled - used to know for a specific state s if an action a € A is enabled in it
o nonFzrp - used to know if a state s is fully explored.

o Sort - used to sort the actions in A based on the the SystemC simulator

semantics

Definition 5.4.3. enabled

Let S be a set of states and A be a set of actions, then the enabled function is
defined as:

S x A — {true, false}

(s,a) — enabled(s, a)

where:

true, (a_Pre = true);
enabled(s,a) =

false, (a-Pre = false)

Definition 5.4.4. nonExp

Let S be a set of states and T be a set of transitions, then the nonFExp function is
defined as:

nonEzp(s):S - T xT x .. xT

s { (t1, ta, ... tn) | ((ti = (s,a,R(s,a))}) A (enabled(s,a) = true))}

60

Definition 5.4.5. Sort()

Let A be a set of actions, Sort(A) uses the SC_Simulator() given in [14] after
initializing the system with the values in the current system’s state. It extracts then
the list of actions to be considered in the exploration from the list of active processes

provided by the SystemC simulator.

Definition 5.4.6. Frontier (F)

Let S be a set of states and A be a set of actions, then the Frontier F = {s | s €
S | Ja enabled(s,a) = true} is a set of states that have not yet been fully explored
during the FSM generation process. The exploration of the state space stops, if

is empty. Initially, F' contains Sin;.

5.4.2 Direct FSM Generation

The direct FSM generation algorithm performs a state exploration procedure in
order to discover all possible system states starting from a set of initial states. It
starts from initial states and constructs a labelled state transition graph by invoking
actions that are parts of the design. If a new state is encountered, it is added to
the Frontier of unexplored states. The output of the algorithm are two sets that

correspond to states Sgpgpr and transition 7' which form the FSM.

In the direct algorithm of Figure 5.1, we first sort the actions A based on

the SystemC simulation semantics using the helper functions Sort (line 4). The

61

1: Srsy = {Sz'm‘t}

2. F= {Sinit}

3 T={0}

4: Sort(A)

5 while(F #0) {

6: current := F.Head

7. foreach a € A{

8: if(enabled(current,a)) {

9: neat := R(current,a)

10: if (next & Spsar) {

11: SFSM = SFSM U {next}

12: T := T U{(current,a, next)}
13: if (exists a in A where enabled(neat,a) = true) {
14: F = F U {next}

15: }

16: }

17: elseif ((current,a,next) ¢ T) {
18: T :=T U{(current, a, next)}
19: }

200 }}

21: F = F.Tal

22: Sort(A)

23 }

Figure 5.1: Direct FSM Generation Algorithm.

algorithm starts exploring the states if the Frontier (F) is not empty (line 5). In
the beginning, F' contains S;,;;. For each action a; € A, the algorithm checks if an
a; is enabled in the current state (current) using a helper function enabled (line 8).
Thereafter, the new state (next) is discovered using the transition relation R (line
9). If the new discovered state (next) is not in Spgys, it is added to Spsy and the
transition t (current,a,next) is added to T (lines 11 and 12). The new state next is
also added to F if there exists an action enabled in this new state. If next is already

in Sggar, t is still added to T if it does not exist in it. The algorithm terminates

62

once the F' becomes empty (line 5).

5.4.3 Grouping FSM Generation

We extend the algorithm presented in [5] to generate FSM using the notion of
state grouping for SystemC designs. State grouping is a technique for controlling
scenarios by selecting representative states with respect to an equivalent class. Also,
it is an efficient way to prune exploration to distinct cases of interest for testing,
in particular to avoid exploring symmetric configuration. Typically, the state space
is very large and it is always important to prune it as much as possible. The state
grouping technique is one of the potential candidates for this problem. It uses a
state-based grouping condition to group the states. The grouping condition G¢ is
a Boolean proposition that uses state variables (V) énd functions defined in the

design. It is defined as follows.

Definition 5.4.7. Grouping Condition (G¢)

Let vy, vq, ... v, be a set of state variables in V, then a grouping condition G¢ is
defined as:
Gc:V— B

(v1, V2, oy V) — Ge(vy, Vo, ..., Uy) € {true, false}

Having defined G¢, we need to define the grouped state s, which is a set of states

that are equivalent under one grouping condition G¢;, formally defined as follows.

63

Definition 5.4.8. Grouped State (sg)
Let S be a set of states, G¢ be a set of grouping condition then the grouped state
84 is defined as:

sg={s|se€S|Gg =true}

In order to group the states, we need to have a way to map the states s to grouped
state s;. This is achieved by a grouping function g. ¢ maps states of the model to
concrete values defined by a state-dependent grouping condition (G¢). The value
g(s) is called the g-label of s. Two states are g-equivalent if they have the same

g-label. g is defined as follows.

Definition 5.4.9. Grouping Function (g)

Let S be a set of states, Sg be a set of grouped states then grouping function g is
defined as:

g:S5— 5S¢

S Sy

R, is transition relation that provides the transition of one grouped state to another
during the action execution. Unlike R where it deals with individual state s, R,

deals with grouped state sy and is defined as follows.

Definition 5.4.10. Transition Relation in Grouped FSM (R,)
Let Sg be a set of grouped states and A be a set of actions then the transition

relation Rg is defined as:

64

RgISGXA—-MS'G

nexrt

current
(s a 9

g a) s
where s5*""*™ is the current grouped state and s}°** is the next grouped state ob-

tained after executing the action a.

The output of the grouping algorithm will be FSM that has two entities viz.,
SSenr and Tg. S¥g, is a set of grouped states that have been discovered and Ty is

a set of transitions among the grouped states in the generated FSM.

1 SEgy = {0}

2. F= {Sinit}

3: TG = {@}

4: g =1{91,92...gk}

5 Sort(A)

6: while(F # 0) {

7 current := F.Head

8 foreacha € A {

9: if (enabled (a, current)) {

10: next := R(current,a)

11: if (g(next) ¢ Sgsn) {

12: SEsn = Sfsu U {g(next)}

13: T := T U {(current, a, g(next))}
14: if (exists a in A where enabled(next,a) = true) {
15: F = F U {next}

16:

17: }

18: elseif ((current,a,next) ¢ T) {

19: T == Tg U {(current, a, g(next)}
20: }

21: 1}

22: F .= F Tail

23: Sort(A)

24: }

Figure 5.2: Grouping FSM Generation Algorithm.

65

Like the direct FSM generation algorithm in Figure 5.1, this grouping algorithm
starts with F' containing S;,;; and then explores all the possible actions in A that
can be enabled in the current state (current) (line 9). Then, the new state (next) is
discovered using the transition relation R (line 10). Thereafter, the new discovered
state is mapped to a grouped state based on the grouping function g which in turn
depends on the state-dependant grouping condition G¢. If the new grouped state
(g(next)) is not in S%,,, it is added to it and the transition (current,a,g(next)) is
added to T. The new state next is also added to F to explore further. At last, the

algorithm terminates when F' is empty.

5.5 Experimental Results

At first, we use the direct algorithm to generate the FSM of the PCI-X design. We
generate the FSM for various combinations of initiators and targets to show the
robustness of our approach.

Table 5.2 shows the CPU time, states and number of transitions in the gen-
erated F'SM. From the table, we notice that as the number of initiators and targets
increases, the states and the transitions increase and the CPU time too. In order to
infer more on the results we have plotted a 3-D graph in Figure 5.3 involving CPU
time, initiators and targets. From the graph, it can be inferred that the increase in
CPU time is more for the increase in the number of targets than the increase in the

number of initiators. This is due the fact that as the number of targets is larger,

66

Table 5.2: FSM Generation: Direct Algorithm.

Number of CPU States | Transitions
Initiators | Targets || Time (s)
1 2 8.75 96 103
1 3 13.60 142 153
1 4 19.21 188 203
1 5 27.95 234 253
2 2 19.42 190 205
2 3 30.98 282 305
2 4 44.93 374 405
2 5 59.50 466 505
3 2 33.43 284 307
3 3 54.90 422 457
3 4 78.21 560 607
3 5 108.04 698 757
4 2 50.25 378 409
4 3 85.54 562 609
4 4 123.01 746 809
4 5 171.73 930 1009
5 2 69.89 472 511
5 3 118.20 702 761
5 4 204.93 932 1011
5 5 254.82 1162 1261
10 10 2925.31 4622 5021

the choice of selecting a target is many and this will lead to the exploration of many

paths.

Using the grouping algorithm, we define some grouping conditions in order to
group the states. This approach enables us to group the states and test a particular

part of the system. We apply these grouping algorithm for various numbers of

initiators and targets of the PCI-X model.

67

CPU Time {s)

Number of Initiators

Number of Targets

Figure 5.3: Direct Algorithm Results.

Grouping Conditions

In the following, we show some grouping conditions that are used to group the states
using the grouping algorithm. In Figure 5.4, a grouping condition is shown. G1()
groups the individual states based on the conjunction of the destination target and
the final status of the transaction (completed or stopped). The procedure GI()
returns an integer value in {0, 1, 2, 3} or -1 when an error happens. Each of
these values identifies a grouped state. Therefore, considering the definition of
G1(), the maximum number of grouped states is four. The variable Initiators in
Figure 5.4 refers to the set of the initiators connected to the bus. The integer data
member DEST identifies for the owner’s object (initiator) the target destination for

the current transaction. Finally, the Boolean data member STOP specifies if the

68

transaction can be stopped by the target before it is fully completed.

G1() as Integer
if ((exists x in Initiators where x.DEST = 1 and
x.STOP = true)= true) then return 0O
else
if ((exists x in Initiators where x.DEST = 1 and
x.STOP = false) = true) then
return 1
else
if ((exists x in Initiators where x.DEST = 2 and
x.STOP = true) = true) then return 2
else
if ((exists x in Initiators where x.DEST = 2 and
x.STOP = false) = true) then return 3
else return -1

Figure 5.4: Grouping Condition G1.

peixil. PCIX_itiato..) peixi0 PCIX_Initiato..
peixa0.PCIX. Arbiter ..
peixi0.PCIX_Initiato..

@ peixa0.PCIX_Arbiter ..

peixil PCIX Initiato..

ixi0:PCIX_nitiato.. peixil PCIX_Initiato..

@’ peixa0 PCIX_Arbiter_..

Figure 5.5: Grouped FSM Using G1.

Figure 5.5 shows the grouped FSM of the PCI-X using the grouping condition
G1 defined in Figure 5.4 for the case of two initiators and two slaves. For example,
group 0 (node GO in Figure 5.5) corresponds to the case when the destination
target is Target! and the transaction succeeds. In Table 5.3, we show the grouping

69

Table 5.3: FSM Generation: Grouping Algorithm (using G1).

Number of CPU | States | Transitions
Initiators | Targets {| Time (s)
1 2 9.37 4 10
1 3 15.12 6 14
1 4 20.56 8 18
1 5 28.65 10 26
2 2 21.18 4 10
2 3 32.35 6 14
2 4 46.02 8 18
2 5 51.69 10 26
3 2 34.78 4 10
3 3 56.01 6 14
3 4 79.35 8 14
3) 110.35 10 26
4 2 51.98 4 10
4 3 87.05 6 14
4 4 126.27 8 14
4 5 174.72 10 26
5 2 71.25 4 10
] 3 120.12 6 14
5 4 206.84 8 18
) 5 260.36 10 26
10 10 2952.56 20 58

algorithm results of PCI-X model using the grouping condition G1. From the table,
we note that an increasing trend in CPU time as we increase the number of targets
like in the direct algorithm. In addition, for all the cases, the value of CPU time of
grouping algorithm is relatively higher than the direct algorithm. This is because
the grouping algorithm has the notion of grouping conditions and this facilitates
the mapping of individual states to a grouped states. However, as expected the

grouped FSM is smaller than the original FSM in terms of number of states and

70

CPU Time (s)

Number of Initiators 1

Number of Targets

Figure 5.6: Grouping Algorithm Results (G1).

transitions. We also note that the number of states in the grouped FSM depends
on the grouping condition itself, that is why it is reduced to four when we have two
targets and two possible termination conditions for the transaction (succeeded or
stopped). Figure 5.6 shows a 3D-Plot involving initiators, targets, and the CPU
time of Grouped FSM generation results using G1. We can note that the CPU time
required for the FSM generation using the direct algorithm is shorter than the one
required for the grouping algorithm.

Next, we present another grouping condition (G2()) in Figure 5.7 that groups

the states based on the phase of the transaction. There are nine phases in a typical

71

G2() as Integer
if (Phase = IDLE_PHASE) then return O
else if (Phase = ADDR_PHASE) then return 1
else if (Phase = ATTR_PHASE) then return 2
else if (Phase = TGT_RES_PHASE) then return 3
else if (Phase = DATA_PHASE_FIRST) then return 4
else if (Phase = DATA_PHASE) then return 5
else if (Phase = INR_TER_PHASE) then return 6
else if (Phase = LAST_PHASE) then return 7
else if (Phase = TURN_AROUND_PH) then return 8
else return -1

Figure 5.7: Grouping Condition G2.

PCI-X transaction. As it can be seen in the Figure 5.7, the maximum number of

grouped states can be 10 including the error state.

peixi0.PCTX Initisto,

peixit PCIX_lnitiato..

peixad PCTX_Atbiter_..

peixil PCIX _Initialo..

peixil PCIX_nitiato..

peitl PCIX_Target_D..

G4)Y pisb0.PCTX_BUS_Data.

Figure 5.8: Grouped FSM Using G2.

Unlike the previous grouping condition, the one described in Figure 5.7 is

common for any number of initiators and targets. The grouped FSM using G2 is

72

shown in Figure 5.8.

G3() as Integer
if (MODE = 1) then

return O
else
if (MODE = 2) then
return 1
else
return -1

Figure 5.9: Grouping Condition G3.

Grouping Condition 3 (G3()) in Figure 5.9 groups the states based on the
mode of operation of PCI-X and the grouped FSM of this grouping condition is
shown in Figure 5.10. As it is mentioned earlier, PCI-X has two modes of operation
and eventually the grouped FSM will have three grouped states including an error

states.

Figure 5.10: Grouped FSM Using G3.

In Figure 5.11, we show a grouping condition that groups the states based on
the status of the SystemFlag variable. The system can be in one of the three states

73

(INIT, STARTED, IDLE). From this grouping condition, the maximum number of

states that we have is 3 and the grouped FSM is shown Figure 5.12.

G4() as Integer
if (SystemFlag = INIT) then
return O
else
if (SystemFlag = STARTED) then
return 1
else
if (SystemFlag = IDLE) then
return 2
else
return -1

Figure 5.11: Grouping Condition G4.

Figure 5.12: Grouped FSM Using G4.

5.6 Discussion

Both FSM generation algorithms provided perform an exploration of the state space.

The first one, considering the current state, explores all possible actions that can be

74

enabled. It collects all possible new states and links them to existing ones using the
actions as transition labels. The second one uses the same exploration procedure,
however, it maps the states into groups having the same value for a specific grouping
condition. For this reason, the second algorithm is more complex and requires little
more CPU execution time than the direct one.

The advantage of using the grouping algorithm in comparison to the direct one
is the reduction of the number of states in the final FSM. For instance, the number
of grouped states will depend on the grouping condition. For example, considering
a condition with five possible values will result in an FSM with at most five states.
This grouping notion of such an algorithm is suitable and important for SystemC in
particular when it comes to grouping all the actions for a specific SystemC module
(sc-module) [31]. This way the whole model of the module will be represented as a

single node in the final FSM.

75

Chapter 6

Model-Based Testing

In the last chapter, we showed the formalization of two FSM generation algorithm
in order to perform MBT of PCI-X model in SystemC. We also showed the FSM
generation results of the PCI-X model. In this chapter, we make an earnest attempt
to verify the PCI-X model using MBT technique. MBT is an evolving technique
mainly being used for software testing. But, it has as its roots in hardware testing
too. In order to facilitate the MBT technique, we use FSM as model of the system.
For this reason, we presented two FSM generation algorithms for SystemC and their
experimental results in the previous chapter. Using the generated FSM model, the
test cases are generated by traversing the FSM using available techniques such as

Chinese Postman Tour [36] and Randomwalk [36].

76

6.1 Background

Model-based testing (MBT) is a general term that signifies an approach that bases
common testing tasks such as test case generation and test result evaluation on a
model of the system under test. MBT has as its roots applications in hardware
testing, most notably telephone switches, and recently has spread to a wide variety
of software domains. The wealth of published work portraying case studies in both
academic and industrial settings is a sign of growing interest in this style of testing

[16]. Specific steps of the MBT are the following:
1. Build the model
2. Generate expected inputs
3. Generate expected outputs
4. Run tests
5. Compare actual outputs with expected outputs

6. Decide on further actions (whether to modify the model, generate more tests,

or stop testing)

Build the model:

Forming a mental representation of the systems functionality is a prerequisite
to building a model for testing purposes. Testers need to understand not only the
system, but also the environment in which it operates. The model should be a

77

depiction of the systems behavior, which can be described in terms of the input
sequences accepted by the system; the actions, conditions, and output logic; or the
flow of data through the applications, modules, and routines. There are many formal
modeling techniques (ways to depict behavior) from which to choose. A variety of
techniques/methods exist for expressing models of system behavior. These include,

but are not limited to [12]:

1. Decision Tables - Tables used to show sets of conditions and the actions

resulting from them

2. Finite State Machines - A computational model consisting of a finite num-

ber of states and transitions between those states, possibly with accompanying

actions
3. Grammars - describe the syntax of programming and other input languages

4. Markov Chains (Markov process)- A discrete, stochastic process in which
the probability that the process is in a given state at a certain time depends

only on the value of the immediately preceding state

5. Statecharts- Behavior diagrams specified as part of the Unified Modeling
Language (UML). A statechart depicts the states that a system or component
can assume, and shows the events or circumstances that cause or result from

a change from one state to another.

78

Finite State Machines and Markov chains are the two most popular techniques
in MBT for modeling system behavior [12]. Finite State Machines can ensure that
generated test cases cover the model, When a Markov chain model is used, a random
process generates test cases, making coverage criteria more difficult to ensure in
some specified number of test cases. The mathematics of Markov chains, however,
provides analytical formulas to determine expected values useful in test planning.

Generate expected inputs:

Using the model, we need to generate test cases, which consist primarily of
specifying the inputs and expected outputs. The difficulty of generating tests de-
pends on the nature of the model. In the case of finite state machines, it is a matter
of traversing the state transition diagram (a directed graph) [37]. Tests are, by
definition, the sequence of inputs along the generated paths. Thus, if the model is
well defined, the tests can be generated automatically.

Generate expected outputs:

MBT involves execution of a program under test using some fault-revealing
input data and examination of the output to determine success or failure. A funda-
mental assumption of this testing is that there is some mechanism, a test oracle, that
will determine whether or not the results of a test execution are correct, something
that defines/identifies the expected outputs. A test oracle is the criterion used to

check the correctness of the output.

79

Run tests:

Most MBT environments are supported with test generation tools that gener-
ate test cases which can easily be translated into executable test scripts, or produce
the test script directly from the test data contained within the tool. Although tests
can be run as soon as they are created, in most testing groups it is policy to run the
tests only after a complete suite that meets certain adequacy criteria is generated.
Typically, there is a coverage plan that is being addressed. In some instances, only
a small number of tests relating to a particular feature or component would be run,
even though the complete suite has been generated.

Compare actual with expected outputs:

In this step, the comparison of actual to expected outputs is performed, and
tester are alerted about the failures. This is dependent on the quality and com-
pleteness of the test oracle. MBT cannot make good information out of bad data.
It should provide an efficient means to drill down into the particular test cases that
failed.

In our approach, we first generate the FSM of the PCI-X model in SystemC
based on the algorithms that we formalized in the previous chapter. Once the FSM

is generated, we apply existing test generation techniques to generate test cases.

80

6.2 Test (Generation

Using the generated FSM, we can use various techniques to choose which paths we
want our tests to take through it. FSM traversing is the same as traversing the
directed graphs. There are several efficient graph traversing techniques in the open
literature. We don’t provide any new technique for traversing the FSM and it is
also not the scope of the thesis. In our approach, we consider the Chinese Postman

Tour (CPT) method and Randomwalk .

6.2.1 Chinese Postman Tour (CPT)

Finding the shortest route for a traveling salesman, who wishes to visit every city, is
a well known problem. The Chinese Postman Problem (CPP) is interesting because
it has many applications, is a simply-stated problem, but for which there is no simple
algorithm. There are many variations to the CPP, most notably whether the roads
are one-way (this is the Directed CPP or DPP) and whether the postman has to
return back to where they started (closed or open CPP). A postman delivering letters
in a village may wish to know a circuit that traverses each street (in the appropriate
direction if one-way streets), starting and returning to their office. This is a graph
theoretic problem: roads are directed edges (transitions), and road junctions are
vertices (states). The postman requires a Chinese Postman Tour(CPT). In summary,

CPT touches every action in the state model as efficiently as possible [37].

81

6.2.2 RandomWalk

Randomwalk produces test cases that consist of a single sequence of invocations
that start in the initial state. At each state one of the outgoing transition will be
randomly selected. Given enough time, these random walks can cover a good part
of the application. The random nature of such choices means that they tend to

produce unusual combinations of actions that testers would not bother to try.

6.2.3 Test Sequences

In Figure 6.1, we provide a possible test sequences using Chinese Postman Tour
(CPT) of the grouped FSM (see Figure 5.5) of PCI-X (2 initiators and 2 targets)
using the grouping condition G1 (Figure 5.4). The CPT technique tries to cover all

the possible transitions (actions).

From G1 to G! using InitSystem()

From G1 to G2 using PCIX_Initator_Req()

From G2 to G2 using PCIX_Arbiter GNT_UPD()

From G2 to G1 using PCIX_Initiator_Disconnect()
From G1 to G3 using PCIX_Initator_Req()

From G3 to G3 using PCIX_Arbiter GNT_UPD()

From G3 to G1 using PCIX_Initiator_Disconnect()
From G1 to GO using PCIX_Initator_Req()

From GO to GO using PCIX_Arbiter_ GNT_UPD()

From GO to G3 using PCIX_Initiator_Disconnect()

Figure 6.1: Test Sequences for Grouped FSM of G1 using CPT.

In Figure 6.2 we show possible test sequences of the same FSM but using
Randomwalk traversing. In this, we traversed 10 transitions randomly from the

initial state (G0). We choose this arbitrary number 10 for the sake of simplicity.

82

From
From
From
From
From
From
From
From
From
From

GO
GO
G8
G8
G7
G6
G5
G4
G4
G1

to
to
to
to
to
to
to
to
to
to

GO
G8
G8
G7
G6
G5
G4
G4
G1
G3

using
using
using
using
using
using
using
using
using
using

InitSystem()

PCIX_Initator_Req()

PCIX_Arbiter _GNT_UPD()
PCIX_Initiator_FRAME_ASSERT()
PCIX_Attribute_Phase()
PCIX_Target_DEVSEL_Assert()
PCIX_Initiator_IRDY_TRDY_ASSERT()
PCIX_Bus_DataPhase()
PCIX_Initiator_Disconnect()
PCIX_Initiator_Release()

Figure 6.2: Test Sequences for Grouped FSM of G2 using Randomwalk.

From
From
From
From
From
From
From

GO
GO
G2
G2
GO
G1
G1

to
to
to
to
to
to
to

GO
G2
G2
GO
G1
G1
GO

using
using
using
using
using
using
using

InitSystem()
PCIX_Initator_Req()
PCIX_Bus_DataPhase()
PCIX_Arbiter_Release()
PCIX_Initator_Req()
PCIX_Target_DEVSEL_Assert()
PCIX_Arbiter_Release()

Figure 6.3: Test Sequences for Grouped FSM of G3 using CPT.

Figure 6.3 provides possible test sequences using CPT of the grouped FSM
shown in Figure 5.10. These test sequences are regarding the mode of the PCI-X
transactions. Figure 6.4 provides possible test sequences using CPT of the grouped

FSM shown in Figure 5.12. These test sequences are concerning the system’s state.

They show the change in the system state from IDLE, INIT and STARTED.

From
From
From
From
From

G2
G1
GO
GO
G1

to
to
to
to
to

G1
GO
GO
G1
G1

using

InitSystem()

using PCIX_Initator_Req()
using PCIX_Target_DEVSEL_Assert()

using

PCIX_Initiator_Release()

using PCIX_Arbiter_Release()

Figure 6.4: Test Sequences for Grouped FSM of G4 using CPT.

83

6.3 Discussion

MBT is more suitable for SystemC designs due to the limitations of the classical
simulation. In our approach, using the system’s FSM, we generate test cases to
perform coverage evaluation. Furthermore, we can use conformance checking [2]
between different abstraction levels. This technique represents a very important
application for SystemC verification. For instance, the constructed state model
from the SystemC design can represent a golden model to validate lower levels
implementations (such as RTL). A specific execution can be performed where we
can check if actions are enabled and if they return correct values.

In MBT, choosing a correct method to represent a model for the system under
verification is not easy. In the case of finite state models, working knowledge of
the various forms of finite state machines and a basic familiarity with formal lan-
guages, automata theory, and perhaps graph theory and elementary statistics are
needed. Also, testers need to possess expertise in tools, scripting, and program-
ming languages necessary for various tasks. Nevertheless, MBT, in general, seems
to be gaining favor, particularly in domains where quality is essential and less-than-

adequate system is not an option.

84

Chapter 7

Conclusion

7.1 Summary

In this thesis, we provided a design for verification method applied on the latest
high speed PCI-X standard bus. The modeling was done at various levels: UML,
Asml, SystemC. At first, the UML representation of PCI-X was developed in terms
of class diagrams and sequence diagrams. Then, an AsmL model was designed from
the UML representation. In order to perform the model checking, we defined various
properties of the PCI-X standard in PSL and embedded them in the AsmL model
to be verified using model checking. Once the verification is done, the translation
of Asml. to SystemC was performed.

We also investigated the potential of the model based testing approach. To

accomplish this, we formalized two FSM generation algorithms from SystemC: a

85

direct algorithm and a grouping algorithm. The formalization of these algorithms
was done based on an existing SystemC semantics. The direct algorithm generates
an FSM and the grouping algorithm generates the grouped FSM which has the
notion of state groupings. State groupings is a good technique to reduce the size of
the FSM. It enables us to validate (test) a particular part of the system which is very
much applicable in the case of SystemC. The traversal of the FSM was performed to
generate test cases. We used existing traversal techniques such as Chinese Postman

Tour and Randomwalk to generate the test cases.

7.2 Discussion and Future Work

Model checking is a good technique but it is still immature to be used for complex
designs in particular SystemC designs. Model checking is reliable in catching bugs
as the correctness of a formally verified design implicitly involves all cases regardless
of the input values. Nevertheless, the state space explosion problem limits its wide
use for complex systems in industry.

On contrary, MBT is a good compromise between the blind simulation and
model checking. In MBT, a model serves as a unifying point of reference that
all teams and individuals involved in the development process can share, reuse, and
benefit from. It has an upper hand in terms of early bug detection, time savings, easy
test case maintenance, enhanced communication between developers and testers, etc.

However, MBT demands certain skills from the testers. Testers need to be familiar

86

with the model and its underlying mathematics and theories.

Work remains to be done for the foreseeable future is fitting specific models
(finite state machines, grammars or language-based models) to specific application
domains. Often this will require new inventions as menta\l models are transformed
into actual models. Perhaps, special purpose models will be made to satisfy very
specific testing requirements and more general models will be composed from any
number of pre-built special-purpose models.

Regarding the grouping algorithm, no proof of soundness has been given. This
means we need to prove that the FSM obtained from the grouping algorithm pre-
serves the original FSM. This may sound trivial but it is important to provide these
proofs to show the efficiency of our approach. In order to show the soundness of the

grouping algorithm, we would have to prove the following.

e For every state s in Spgar, there is a corresponding grouped state s; in SSens

with respect to a grouping condition.
e For every transition ¢ in T', there is a corresponding transition ¢4 in Tg

¢ For every path pin FSM, there is a corresponding path p, in grouped FSM¢

The proofs of the above steps could be a good future work of this thesis.
In addition to this, providing a complexity and performance evaluation of the two
algorithms could also be another future work. To be specific, we would have to

perform the space and time complexity analysis of both the algorithms.

87

The PCI-X IP we produced in SystemC is not synthesizable. It would be
a good future work to implement a synthesizable RTL design. Also, some of the
advanced but often not used transactions of PCI-X, such as split transaction using
the notion of bridges, can be subject to further extension of our model. Finally,
other future work that could be stemmed from this research is the investigation of
automatic generation of HDL from SystemC and automatic translation of AsmL to

SystemC.

88

Bibliography

[1] Accellera Organization. Accellera Property Specification Language Reference

Manual, version 1.1. www.accellera.org, 2005.

[2] M. Barnett, L. Nachmanson, and W. Schulte. Conformance Checking of Com-
ponents Against Their Non-deterministic Specifications. Technical report, Mi-

crosoft Research, MSR-TR-2001-56, June 2001.

[3] E. Boerger and R. Staerk. Abstract State Machines: A Method for High-Level

System Design and Analysis. Springer Verlag, 2003.

[4] C. Bourhfir, R. Dssouli, and E. M. Aboulhamid. Automatic Test Generation
for EFSM-based Systems. Technical report, Publication departementale 1043,

Departement IRO, Universite de Montreal, August 1996.

[6] C. Campbell and M. Veanes. State Exploration with Multiple State Groupings.
In Proc. International Workshop on Abstract State Machines, pages 119-130,

Paris, France, January 2005.

89

(6]

8]

(10]

[11]

[12)

K. H. Chang, Y. C. Su, W. T. Tu, Y. J. Yeh, and S. Y. Kuo. A PCI-X
Verification Environment Using C and Verilog. In Proc. VLSI Design/CAD

Symposium, Taiwan, 2003.

S. Cheng, R .K. Brayton, G. York, K. Yelick, and A. Saldanha. Compiling
Verilog into Timed Finite State Machines. In Proc. Jth International Verilog

HDL Conference, pages 32—44, Santa Cruz, USA, March 1995.

M. Chong. A PCI Express to PCI-X Bridge Optimized for Perfromance and
Area. Master’s thesis, Department of Electicial Engineering and Computer

Science, Massachussets Institute of Technology, March 2004.

E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, London,

England, 1999.

P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal of

Logic and Computation, 2(4):511-547, August 1992.

J. Dick and A. Faivre. Automating the Generation and Sequencing of Test
Cases from Model-Based Specifications. In First International Symposium of
Formal Methods Europe on Industrial-Strength Formal Methods, LNCS 670,

pages 268-284, London, UK, Springer Verlag, 1993.

I. K. El-Far and J. A. Whittaker. Model-based Software Testing. In Encyclo-

pedia of Software Engineering. Wiley, 2001,

90

[13]

[15)

[17]

[18]

[19]

F. Ferrandi, M. Rendine, and D. Scuito. Functional Verficiation for Systemc
Descriptions Using Constraint Solving. In Proc. Design Automation and Test

in Europe, pages 744-751, Paris, France, March 2002.

A. Gawanmeh, A. Habibi, and S. Tahar. Enabling SystemC Verification using
Abstract State Machines. In Proc. Forum on Specification and Design Lan-

quages, pages 306-421, Lille, France, September 2004.

W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating Finite
State Machines from Abstract State Machines. Software Fngineering Notes,

27(4):112-122, 2002.

I. Gronau, A. Hartman, A. Kirshin, K. Nagin, and S. Olvovsky. A Methodol-
ogy and Architecture for Automated Software Testing. Technical report, IBM

Research Laboratory, MATAM Advanced Technology Center, Haifa, 2000.

T. Grotker, S. Liao, G. Martin, and S. Swan. System Design with SystemC.

Kluwer Academic Publishers, 2004.

Y. Gurevich, B. Rossman, and W. Schulte. Semantic Essence of AsmL. Tech-

nical report, Microsoft Research, MSR-TR-2004-27, March 2004.

A. Habibi. A Framework for System Level Languages: The System(C Case.
PhD thesis, Dept of ECE, Concordia University, Montreal, Quebec, Canada,

December 2005.

91

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27)

[28]

A. Habibi, A.I. Ahmed, O. Ait-Mohamed, and S. Tahar. On the Design and
Verification of the Look-Aside Interface. In Proc. Design Automation and Test

in Europe, pages 290-295, Munich, Germany, March 2005.

A. Habibi and S. Tahar. An Approach for the Verification of SystemC Designs
using AsmL. In Automated Technology for Verification and Analysis, LNCS

3707, pages 69-83, Springer Verlag, 2005.

J.K. Huggins. Abstract state machines home page.

website: http://www.eecs.umich.edu/gasm/, 2005.

D. Lee and M. Yannakakis. Principles and Methods of Testing Finite State
Machines - A Survey. In Proceedings of IEEE Computer Society, volume 84,

pages 1090-1123, Berlin, Germany, August 1996.

J. Lohse, J. Bormann, M. Payer, and G. Venzl. VHDL-Translation for BDD-

based Formal Verification. Technical report, Siemens Corporate R&D, 1994.

R. A. Maksimchuk and E. J. Naiburg. UML for Mere Mortals. Addison-Wesley,

2005.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

Microsoft Corp. Spec#. http://research.microsoft.com/specsharp/, 2005.

Microsoft Research. http://www.research.microsoft.com.

92

[29] Network Processing Forum. Look-Aside (LA-1) Interface, Implementation

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

Agreement, Revision 1.1. Kluwer Academic Publishers, April 15, 2004.

Microsoft Research Foundations of Software Engineering. Asml for microsoft

NET. http://www.research.microsoft.com/foundations/asml, 2005.
Open SystemC Initiative. SystemC 2.0.1 Language Reference Manual. 2005.
Open SystemC Initiative. www.systemc.org, 2005.

K. Oumalou, A. Habibi, and S. Tahar. Design for Verification of a PCI Bus in

SystemC. In Proc. Symposium on System-on-Chip, pages 201-204, Tampere,

Finland, November 2004.

A. Petrenko. Fault Model-driven Test Derivation from Finite State Models:

Annotated Bibliography. pages 196-205, 2001.

E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A SoC Design Method-
ology Involving a UML 2.0 Profile for SystemC. In Proc. Design Automation

and Test in Europe, pages 704-709, Munich, Germany, March 2005,

H. Robinson. Model-based testing.

website: http://www.geocities.com/model_based_testing/, 2005.

H. Robinson. Graph Theory Techniques in Model-Based Testing. In Proc. In-
ternational Conference on Testing Computer Software, Washington, D.C, USA,

June 1999.

93

[38] V. S. Saun. FSM Derivation from SystemC. Technical report, CSE Dept.,

Indian Instititute of Technology, Delhi, May 2004.

[39] K. Shimizu, D. L. Dill, and A. J. Hu. Monitor-based formal specification of
PCIL. In Formal Methods in Computer-Aided Design, pages 335-353. LNCS

1954, Springer-Verlag, 2000.
[40] PCI Special Interest Group. www.pcisig.com, 2005.

[41] IEEE Standards. IEEE 1666 - SystemC Standardization.

http://standards.ieee.org/announcements/pr-p1666.html.
[42] Unified Modeling Language. http://www.uml.org, 2005.

[43] R. Wang and Z. Wen. A Verification Environment for PCI-X BFMs in VERA.

Technical report, Synopsys Inc., 2002.

[44] C. C. Yu, K. Chang, Y. Yeh, and S. Kuo. System Level Assertion-Based Verifica-
tion Environment for PCI/PCI-X and PCl-express. In Proc. VLSI Design/CAD

Symposium, Taiwan, 2004.

94

