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Abstract

MODE MATCHING TECHNIQUE FOR CALCULATING THE DISPERSION
CURVE OF ONE-DIMENSIONAL PERIODIC STRUCTURES

Hamid Reza Mohebbi

In this thesis, the rigorous Mode Matching (MM) technique is utilized to find the
dispersion curve of the traveling wave in one-dimensional planar periodic structures. The
structure consists of a homogenous dielectric substrate backed by a ground plane and
infinite number of periodic perfect strip conductors on the top. The thickness of the strips
is infinitely small. Such a structure is also known as Strip Grating in frequency selective
surface (FSS) applications. The technique is first applied to a shielded microstrip line,
and then to the 1-D printed periodic structure.

A general formulation for rigorous modeling of shielded microstrip line as well as strip
grating structures is introduced. The modeling is based on hybrid transverse electric (TE)
and transverse magnetic (TM) mode analysis. After matching the fields at the junction of
the air-dielectric, a set of equations on the area of interface is driven. Unlike the
conventional MM technique, a simple sub-domain orthogonal set is used to convert the
algebraic equations obtained from the boundary conditions into a matrix format. This
technique is similar to the well-known Point Matching (PM) technique which is
frequently used in Method of Moment (MoM). This homogenous matrix equation has all

information required for the calculation of dispersion curve.
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To find the singularities of the matrix, this research focuses on the use of the numerically
stable technique of the Singular Value Decomposition (SVD). Since the dimension of the
matrix depends on both the amount of truncation and the number of matching points, this
matrix is subject to ill-conditional behavior and convergence issue. Thus, we pay a
special attention and care to the convergence and conditional behavior of the matrix.

Based on the hybrid technique investigated in this thesis, numerical results are generated
and presented. Both dispersion curves of shielded microstrip line and strip grating are
depicted. The computed results are shown to be in excellent agreement with results
obtained from Singular Integral Equation (SIE) method and MoM in the spectral domain.
The advantage of this method is the simple derivation of the equations and the high speed

of the dispersion diagram’s calculation.
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Chapter 1

Introduction

For decades, planar periodic structures have been used in many microwave devices.
Continuous development in this area finally led to the remarkable finding of the band gap
in the1990’s. This simply shows that periodic structures have the possibility to create a
range of forbidden frequencies for electromagnetic waves called “Photonic Band Gap”
(PBG). The discovery of this fact caused rapid development in the technology of periodic
structures; consequently; tremendous efforts were carried out to find efficient, fast and
accurate simulation techniques on the characterization of dispersion curve of periodic
structures.

The focus of this thesis is to calculate the dispersion diagram of the traveling wave in two
planar structures: Shielded microstrip line and one-dimensional printed periodic structure
consisting of a homogenous dielectric substrate backed by a ground plane and infinite
number of periodic perfect strip conductors on the top. The thickness of the strips is
infinitely small. This periodic structure is sometimes called Grating Strip.

Mode Matching (MM) technique is used for full-wave analysis of these structures leading

to a set of algebraic equation. To convert this equation into the matrix format, the



conventional Point Matching (PM) technique is applied. To find the singularity of the
matrix, the numerically stable method of Singular Value Decomposition (SVD) is also

used.

1.1 Motivation

In 1960°s, periodic structures were encountered in a variety of applications in
Electromagnetic discipline such as traveling-wave slot, dipole arrays, log periodic
antennas, phased arrays and so on. They are also used in Frequency Selective Surface
(FSS) due to their good reflection properties. However, after developing the Photonic
Band Gap (PBQ) in dielectric materials in 1990’s, periodic media are well acknowledged
for their capability to control the propagation and emission of EM waves and have gained
a substantial attention as photonic crystals or photonic band gap (PBG) structures.

PBG materials are characterized by three parameters: the lattice topology, the spatial
period, and the dielectric constants of the constituent materials. By suitable selection of
these parameters, a gap in the EM dispersion relation can be created, within which the
linear propagation of EM waves is forbidden. This forbidden frequency range is called
photonic band gap. It is said that a photonic band gap is complete, if a forbidden band
gap exists for all polarizations and all propagation directions.

In the microwave and millimeter domain, photonic band gap materials usually are called
“Electromagnetic Band Gap” (EBG) or electromagnetic crystals. They usually consist of
some metallic components. Electromagnetic crystals are mainly used as antenna
substrates which have a number of applications [1]. For example, conventional integrated

circuit antennas on a semiconductor substrate with the £ dielectric constant have the



drawback that the power radiated into the substrate is a factor £°'* larger than the power
radiated in free-space. Thus, antenna on the typical substrate radiates only about 2% of its
power. By fabrication the antenna on an EBG structures with a driving frequency within
the band gap, no power should be transmitted into the substrate, if there are no
evanescent surface mode. Several successful antenna designs with improved directivity
and efficiency up to 70% have been reported [2]. To suppress the surface modes of an
antenna substrate an EBG material can be used as a high-impedance surface. Microwave
and millimeter wave filters, couplers, resonators, reflectors and guiding structures can
alsb be designed on the basis of EBG materials. Therefore, the dispersion relation for one
and two dimensional periodic structures with metallic elements has become of particular

interest which leads a number of research papers

1.2 Objectives

The goal of this research is to develop a new technique, which is called MM-PM, to find
the dispersion curves of millimeter planar structures particularly periodic structures. For
this purpose, this new technique which is a combination of two matching methods is
applied on shielded microstrip line and 1-D printed periodic structure in order to find
their dispersion curves. Derivation of MM is a simple and straightforward task, and also
numerical implementation of PM is an easy job. The results for microstrip line and 1-D
periodic structure should be verified by comparing with reported results of Singular

Integral Equation (SIE) and MoM in spectral domain, respectively.



1.3 Brief Review of this Thesis

As mentioned, the subject of this thesis is to develop a fast and simple electromagnetic
technique specialized for calculation and characterization of dispersion curves of various
planar periodic structures. In this thesis, in order to utilize the inherent flexibility,
accuracy, and efficiency of the Mode Matching (MM) technique for structures with
infinitely thin strips, a new approach for rapid implementation of MM is introduced
which is very similar to the well-known Point Matching (PM) technique in MoM.

In chapter two, some introductory materials which are needed to better understand the
MM-PM technique in analyzing periodic structures are discussed. The concept of the
mode and the technique of normalization are explained in this chapter. Also, a classical
example of MM technique is introduced. The Floquet theory which is the infrastructure
of the analysis of any periodic structure is presented. A brief but comprehensive review
about Field Analysis and the Boundary Conditions (BC) in EM is given. At the end of
this chapter, there is a useful subject about the ways to find the value of the parameters
which makes a matrix singular such as the Single Value Decomposition (SVD).

In chapter three, the formulation of full-wave analysis of a shielded microstrip line is
given. Then, it is extended to a one-dimensional periodic structure which is called “Strip
Grating”. This structure consists of a periodic array of infinitely long but infinitely thin
perfect conductor of strips on the interface of the substrate that is backed by a ground
plane. The goal of this formulation is to prepare the needed mathematical model to
calculate the dispersion curve for traveling wave in this structure.

After mathematical modeling of the structures in chapter three, a simple Matlab code is

written to generate numerical results in chapter four for either microstrip line or Strip



Grating. The results containing dispersion curves are compared with those from
published papers to verify the validity of this computational method.
In chapter five, after a brief summary of the thesis, some ideas for future stages of this

research are explored and new directions for future research are briefly discussed.



Chapter 2

Theoretical Framework

The goal of this chapter is to introduce the main mathematical tools and underlying
physics behind the theory of propagation of electromagnetic waves in planar structures
such as microstrip line and one-dimensional printed periodic structure. The chapter
consists of eight sections. In section 2.1, a general review of periodic structures, the
literature review and the EM techniques to calculate the dispersion curve of periodic
structures are presented. Also, the advantage and disadvantage of MM technique are
presented in this section. In section 2.2, and soon, the concept of mode which is widely
used in this thesis is explained. The general propertics of EM wave are presented in
section 2.3. The influence of the periodicity on the solution of Helmholtz equations is
given in section 2.4 in terms of Floquet theorem. The advantage of normalization and the
brief review of all necessary boundary conditions in planar structures are discussed in
sections 2.5 and 2.6. In section 2.7, a classical example of using MM technique in
waveguide discontinuities is given to get familiar with essential steps to implement MM
method. A useful discussion of finding singularities in the matrix extracted from MM is

discussed in section 2.8.



2.1 Literature Review

2.1.1 Periodic Structures

Historically, the concept of periodic structure first arose in the Solid State Physics under
the subject of crystals and electrons in crystals. When a crystal grows in a constant
environment, the form develops as if identical building blocks were added continuously.
Many concepts which is used today in periodic structure topic such as lattice, basis,
translation vector, reciprocal lattice, irreducible Brillouin zone, k-space, primitive lattice
cell, band gap, band structure and so on had been developed well in this field {3]. In
1990’s, the same approach was applied in periodic structures constructed of some
repeated dielectric materials in a dielectric background [4]. It was seen that such a
structure produces a very good band gap in its dispersion diagram [3], [4]. After that, the
same concept was extended into periodic arrays of metallic strips or patches in various
research [11.[2],[5]-[15]. Hence, recently a great interest has been shown to find the
dispersion curve of infinite arrays of strips or patches to see if they produce a good
forbidden frequency band or not [2],[9]-[13].

A periodic structure is an assembly of identical elements arranged in one, two or three
dimensional infinite arrays. Periodic structures were conceived to control the propagation
of electromagnetic waves, so periodic structures have found many applications. They are
used in photonic or electromagnetic band gap (PBG, EBG) materials, reflectarray
antennas, leaky wave antenna, frequency selective surfaces (FSS), microwave filters,
polarizers, artificial dielectric, radomes, harmonic tuning in power amplifier, active girds

in RF devices, metamaterials and TEM waveguides [4]-[16].



A good example of periodic structures is a photonic crystal which has a dielectric
material containing a periodicity in dielectric constant. A periodic structure can be
regarded as one, two or three periodic structure, as shown in Fig. 1.1, provided it has

periodicity in one, two or three direction respectively.

pertodic n perodic in periadic in
one direction two directions three directions

Fig. 2.1: Schematic depiction of a periodic structure in one, two, and three directions [4].

The periodicity in photonic crystals is proportional to the wavelength of light. The
periodic dielectric constant can create a range of forbidden frequencies for
electromagnetic waves called a photonic band gap. Sometimes metallic-dielectric
photonic band gap materials, which are for instance reserved to the centimeter and
millimeter wavelengths, are called electromagnetic band gap (EBG) materials. However,
some of these structures may be used at higher frequencies, in the infrared or sub-
millimetric domain, for example. Also purely dielectric structures may be used at lower
frequencies. Therefore, the distinction between PBG and EBG materials is not evident

[17].



gap

-n/a nfa -wfa nfa

k k

Fig. 2.2: Dispersion Curve (band diagram), frequency versus wavenumber £, of a uniform
structure (left) and one-dimensional periodic structure (right) [4].

In recent years, there has been a great interest in determining the electromagnetic band
gap structures, also known as dispersion curves, for electromagnetic waves propagating
in various planar periodic structures [7]-[15]. EBG structures are widely used for
improving the electromagnetic performance in microwave circuits and antennas [11}-
[13]. Structures operating in the microwave range commonly consist of periodic arrays of
metal patches patterned on a grounded dielectric substrate, and possibly connected to the
ground plane through metal pins or vias [2].

Although most of the PBG (dielectric periodic structure in dielectric background)
produce a good band gap as a wave suppression, only two types of the EBG (metallic
patch on a diclectric substrate) structures are reported to have a good EM wave
suppression and in-phase reflection: the mushroom-like EBG [2], and uniplanar compact’
EBG (UC-EBG) [2],[10]-[13]. Both of them have periodicity in two dimensions, so they

are considered as 2-D periodic structure and they are shown in Fig.2.3. The mushroom-



like EBG consists of a ground plane, a dielectric substrate, metallic patches, and
connecting vias as displayed in Fig.2.3 (a). A unit cell of the UC-EBG consists of

metallic patches with narrow inset lines on a dielectric ground as shown in Fig.2.3 (b).

Ground Plane (PEC)

(@) (®)

Fig. 2.3: (a) Mushroom-Like EBG {2] (b) Uniplanar Compact EBG [11].

When their geometrical properties are chosen properly, these structures exhibit two
different kinds of performance. On the other hand, they can be used to prevent the
propagation of substrate waves in a frequency band (EBG behavior). Thus, they reduce
the leakage in guided-wave circuits and improve the efficiency of patch antennas [16].
On the other hand, they can behave as an artificial perfect magnetic conductor (PMC),
reflecting an incident plane wave without phase reversal because of their in-phase
reflection features [18]. This permits the design of transverse electromagnetic TEM
waveguides and low-profile patch antennas [12].

Therefore, the analysis of electromagnetic band-gap structures should ideally provide two

kinds of information: the dispersion curve of the modes supported by the periodic

10



structure, and the phase of the reflection coefficient of the structure under a plane-wave
illumination. However, in many practical cases, the most useful information is the
frequency range where the propagation of electromagnetic waves is forbidden (bandgap).
This information can be retrieved by considering only the boundary of the irreducible

Brillouin zone [3].

2.1.2 Electromagnetic Methods in Dispersion Curve Calculation

In 1960°s and 1970’s, when microstrip lines were used in microwave integrated circuits
as essential elements, a large amount of research and interest were made bto analyze aﬁd
model these transmission lines. Thus a large number of publications exist in this topic
[19]. Among them, dispersion analysis of either shielded or open microstrip line devoted
significant effort which leads a number of research papers. The dispersion curve of a
microstrip line was of interest, because it was an easy task to find the effective
permittivity of the microstrip line from the study of dispersion characteristic of the

structure according to the following equation:

£y = [%] 2.1)

Various methods to this goal are listed [20]:

(1) Integral equation (with MoM)

(2) Method of lines

(3) Spectral domain method (with MoM such as Galerkin’s method)
(4) Singular integral equation

(5) Fourier analysis method

11



(6) Finite difference method

(7) Mode matching method (for finitely thick strip)

Also, there are a number of methods to numerically calculate the dispersion curve of a
periodic structure:

(1) Plane Wave Expansion Method [4],

(2) Finite Difference Time Domain, particularly Spectral FDTD [11], [21],

(3) Finite Element Method [2], [22]

(4) Method of Moment and Green’s function, either in space or spectral domain [9], {10].

All of these methods are very efficient and reveal highly accurate results when compared
to experimental results. However, depending on the problem tackled, they are not
equivalent. Plane Wave Expansion method is limited to dielectric period structures,
because it is based on expanding the periodic permittivity in an equation which is so-

called the master equation of photonic crystals.

VX VxH(r) = (-‘9) H(r) 2.2)
e(r) c

FDTD and FEM methods have a high flexibility in the geometry of components. In other
words, they can simulate any periodic structure, but due to the volume-by-volume
analysis they require large computer time and memory in addition to the lack of required
accuracy. Among them, MoM is very efficient and accurate but many factors such as
Green’s function, basis functions, integrations, singularities, and so on should be taken
into account [9], [14], [23]. Therefore, it is reasonable to use former computational

techniques such as those which had been used for microstrip line.

12



2.1.3 Mode Matching Technique

The Mode-matching technique is a computational method in EM which is commonly
used to solve electromagnetic problems. Indeed, this method is one of the most frequently
used methods to formulate boundary-value problems. This method has been applied to
solve the scattering problem due to various discontinuities in waveguides [23]-[25] and
microstrip lines [26], [27]. It has also been extended to analyze composite structures such
as E-plane filters, direct-coupled cavity filters, waveguide impedance transformers,
power dividers, and microstrip filters [23].

In addition to scattering problems, the mode-matching method is useful in solving
eigenvalue problems. It can be formulated to obtain the resonant frequency of a cavity,
the cutoff frequency of a waveguide, or the propagation constant of a transmission lines,
such as microstrip lines with final metal thickness. This method has already been used to
find dispersion curve of microstrip lines with finite metal thickness [24], but has never
been used to find dispersion curve of periodic structures. In this research an effort is
made to utilize this method in order to find the dispersion curve of a planar periodic
structure, because this method looks to be fast and simple in comparison with other
methods.

Generally speaking, this technique is useful when the geometry of the structure can be
identified as an interface of two or more regions, each belonging to a separable
coordinate system. In other words, in each region there exists a set of well-defined
solutions of Maxwell’s equations that satisfy all the boundary conditions except at the
interface. The electromagnetic fields traveling along an axially periodic structure as

guided waves are described by the Floquet theory.
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The first step in mode-matching procedure entails the expansion of unknown fields in the
individual regions in terms of their respective normal modes. Since the functional form of
the normal modes is known, the problem is reduced to that of determining the set of
modal coefficients associated with the field expansions in various regions. This prdcedure
in conjunction with orthogonality property of the normal modes, eventually leads to an
infinite set of linear simultaneous equations for the unknown modal coefficients.

After formulation, a simple programming code, for example by Matlab, should be written
to solve the problem numerically. In general, it is not possible to extract an exact solution
of this infinite system of equations, and one is forced to resort to approximation
techniques, such as truncation or iteration. The accuracy of the approximated results
should be verified carefully because of the relative convergence [28] problem found in
the evaluation of the mode-matching equations. Therefore, the results obtained from this
method must be verified with some other results that have already been published or

other commercial simulation software such as HFSS or ADS as a benchmark.

2.2 Modes

“Mode” is a term widely used in electromagnetic texts, particularly in dispersion curve
terminology, so in this section a brief review of the concept of mode has been performed.
Generally, a mode is a particular field configuration. For a given electromagnetic
boundary-value problem, many field configurations that satisfy both Maxwell’s equations
and the boundary conditions usually exist. All these different field configurations

(solutions) are usually referred to as modes [25].
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Moreover, a mode is a nontrivial solution of a homogenous differential equation with
homogenous boundary condition such as Sturm-Liouvelle problem. In such cases, a mode
has been recognized as an eigenfunction corresponding to an eigenvalue which is often
recognized as propagation constant. Thus, they are sometimes described as “eigenmodes”
[29]. This set of existing modes constitutes an orthogonal set, so sometimes they are
called as “normal modes™.

Sometimes, modes are physically interpreted as an electromagnetic wave; it is usually the
case when there are just peripheral boundary conditions, e.g. in waveguides. Such a mode
is capable of propagating through the medium surrounded by boundary conditions. The
source excitation of the problem can determine that each mode can propagate. Moreover,
the source excitation can specify the amplitude of that mode as well. However, if there is
another extra boundary condition, the superposition principle is invoked to meet the extra
boundary conditions, because each mode alone is not able to satisfy the BC, so we must
consider the summation of the modes as a solution of the differential equation to meet the
BCs at a junction. It is the reason that the solution of boundary value problem is shown
as a summation of modes with unknown amplitude coefficients. In this case, each mode
has no physical interpretation like electromagnetic wave; instead; it has just a
mathematical meaning [29].

Sometimes the term of mode is referred to those solutions which are found by setting the
determinant of a matrix into zero instead of a BV problem. This mostly happens in
moment method (MoM) and mode matching (MM) technique. In such a case, the.
calculated modes might not be orthogonal to each other. Furthermore, they have a

physical interpretation as propagating electromagnetic wave with particular propagation
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constant which is mostly the root of the determinant. Although they are not normal they
are also known as modes.

Moreover, in some problems spurious modes exist. When we are dealing with these
modes that often come from the roots of a determinant, it should be noted that due to the
nonlinearity of the functions available among the entries of the matrix, some spurious
modes may be found probably. They can be spurious propagation constant at particular
frequency. Spurious modes are not real, and they do not exist as an EM wave. Thus, we
should eliminate them from our results. One way that sometimes works is to draw the
dispersion curve, and consequently the spurious eigenvalues will be removed. The other
powerful test is to check if the tangential components of the fields corresponding to this
eigenvalue satisfy the boundary conditions or not. If they do, they are real modes;
otherwise; they are spurious modes.

The most widely known modes are those referred to as Transverse ElectroMagnetic

(TEM), Transverse Electric (TE) and Transverse Magnetic (TM) [30], [31].

2.3 Field Analysis in Mode Matching

An arbitrary field in a homogenous source-free region can be expressed as the sum of the
TM and TE field [31]. The total fields can be decomposed into TE and TM modes; then
we will analyze each of them separately, and finally we will end up with the total field
according to the superposition. Thus for such a problem we may decompose the fields
into TE (H-wave) and TM (E-wave) modes.

There is a variety of ways to calculate the fields of TE and TM wave inside of an

electromagnetic structure which has been described in different text books [24], [30],
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[31], and [32]. All are completely matched with each other. The difference is just in
notations and some calculations. As a brief, some of them take benefit from auxiliary
wave scalar function; some others used vector potentials and others express the fields in
terms of axial (longitudinal) E and H field. The first approach is a normalized version of
other methods which is widely used in IEEE papers such as [31], [32], {33]. The second
approach is mostly used in Antenna problems [30]. Both TE and TM modes can be
expressed with respect to the vector potentials and the vector potentials can be found by
forcing the Helmholtz equation. The third method id based on the simplification of
Maxwell’s equation by decomposing all fields into transverse and axial components [24].
Mostly, the direction of traveling wave, or the direction which medium has axial

symmetry around it is assumed as an axial direction.

2.4 Normalization

In field analysis of a structure, it is helpful to apply the idea of normalization. There are
two kinds of normalization: Amplitude normalization and frequency normalization. Since
the fields must satisfy the BCs, it doesn’t matter if they are multiplied by an expression in
order to be simplified. Hence, as long as this multiplier is constant for all fields in all
regions, we can multiply all fields by this factor. In other words, this multiplier must be
independent of region factor, but it can be expressed in terms of frequency, propagation

constants, phase constant, attenuation constant, free-space wavenumber, €,, 4, and any

other constant. If it is the case, the exact value of the amplitudes can be found by

excitation.
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The other kind of normalization is called frequency normalization. In this process, all
propagation constants are divided by free-space wavenumber, k; and all length variables
such as x, y and z are multiplied by &y in order to be converted into electrical length.
Hence, the affect of frequency just appears one time in kp, and there is no need to

consider the frequency in our implementation.

2.5 Floquet Theorem

2.5.1 Floquet Theorem Statement

The form of guided waves traveling along an axially periodic structure is significantly
described with the help of a representation commonly referred to as Floquet's
theorem. This theorem actually constitutes a generalization to linear partial
differential equations of a theorem in ordinary, linear differential equations with
periodic coefficients established by Floquet. Actually Floquet’s work dealt with
differential equation with periodic coefficients. The case of periodic boundary
conditions is an extension of that work. Such a generalization has been carried out by
Bloch, for the case of Schrddinger’s equation, in connection with propagation of
electron waves in large, but finite, crystals. However, this theorem has a lot of
applications in electromagnetic waves.

For the sake of simplicity, we discuss the Floquet theorem in periodic structures
having the periodicity just in one direction. It means that the structure consists of
infinite assembly of unit cell — a single period — in one specific direction. With the

axial direction denoted by z and the period by d, the unit cell will be expressed
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by (n—1)d £z<nd. Actually, Floquet's theorem may be stated in three equivalent
forms [32]:
I. A time-harmonic electromagnetic field E(x,y,z)or H(x,y,z)along an axially
periodic structure is described by the solution of the form of
E(x,y,2)=eFE (x,y,2) (2.3a)
H(x,y,z)=e¢"H ,(x,y,2) (2.3b)
where E  and H ,are periodic function of z with period d:
E (x,y,z+nd)=E , (x,y,2) (2.4a)
H,(x,y,z+nd)=H (x,y,z). (2.4b)

The above relation may be rephrased as follows, which is useful when dealing with

periodical boundary conditions.
II. 4 time-harmonic electromagnetic field E(x,y,z)or H(x,y,z)along an axially
periodic structure at any point in a unit cell will take on exactly the same value at a

similar point in any other unit cell except for a propagation factore™ from one cell to

the next. Thus, if the field in the unit cell between 0<z<dis E(x,y,z)
and H(x,y,z), the field in the unit cell located in the regiond <z <2d possess the
property

E(x,y,z+d)=e™E (x,y,2) (2.5a)

H(x,y,z+d)=e " H(x,y,z2). (2.5b)
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HI. The field in periodic a periodic structure can be presented as (The Spatial

Harmonic Expansion)

E(xy.2)= Y E,, (x,y)e 2.6)
21T
where B, = ,B+7. (2.7)

Each term in this expansion is called a spatial harmonic (or a Hartree harmonic)

and has a propagation phase constant 3, .

2.5.2 Partial Sums in Floquet Harmonic Expansion

Since Floquet theorem should be stated in Fourier series expansion, it would be a good
idea to investigate how they can be truncated. Generally, in complex Fourier series
expansion, the number of complex terms should be infinite. However, for computational
purpose they must be truncated. Therefore, this question may arise that how many
numbers is enough to have a good approximation. In follow, there is an investigation to
find out which partial sum has a good approximation for the exponential function

y=e" —T<X<T. (2.8)

This function can be expressed in Fourier series

smhﬂ'
Z() +1 . (2.9)

n=—oco

The corresponding truncated sum (partial sum) is

smhﬂ' Z( 1y 1-jn e (2.10)
T n’ +1

and we sketched the related graphs for different values of N in Fig. 1.2 and Fig.2.2.
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Fig 2.5: The graph of periodic y=e™ in —t<x<z when there are N=40 terms contributed in partial
summation.
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These graphs show this fact that by increasing the number of Fourier terms, we will
reach a good representation of the function. Roughly, the number of 35 or 40 term is
accurate enough. However, they has pronounced spikes near the discontinuities at
x =-r and x = 7. This overshooting by the partial sums from the functional values near
a point of discontinuity is known as Gibbs phenomenon. This phenomenon remains
fairly constant, if not worse, even when the value N is taken to be large. However, when

there is no discontinuity in the boundary of physical problem such as periodic structures

in EM, the Gibbs effect never happens.

2.6 Boundary Conditions for Planar Structures

A complete set of boundary conditions at the interface for planar structures such as

microstrip line, fin-lines, strip grating, FSS surfaces and array of patches consists of

following equations.

(LE,=E, on the interface
QE,=E, on the interface
0 on the strip
G)E, =
f(x) on the aperture
0 on the strip
WE, =
g(x) on the aperture

J.(x) on the strip
(S)Hxl -Hx2 = 0

on th eaperture

J.(x)  on the strip
(6) Hz] - H;.'Z =
0 on the aperture
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(7) Edge Condition
(8) Radiation Condition

(9) Periodical Boundary Condition

Edge Condition: Another situation, where the solution of Maxwell’s equations may not
be unique, arises when the configuration of the problem contains geometrical
singularities, such as sharp edge. The additional physical condition needed here, known
as an edge condition, is supplied by the requirement that the electric and magnetic
energies stored in any finite neighborhood of the edge must be finite [25]. It can be
simply stated that the component of surface J (the current on the strip or patch) which is
parallel to the edge should be infinity, and the component of surface J which is
perpendicular to the edge should be zero. Also, the component of tangential E (the
electric field on the aperture or slot) which is parallel to the edge should be zero, and the
component of tangential E which is perpendicular to the edge should be infinity.

Radiation Condition: In an unbounded space with all sources contained in a finite
region, the additional constraint that governs the behavior of the fields at infinity is stated
in terms of the radiation condition, which may be applied in one of two ways. If the
medium in the space is lossy, we require that the fields vanish at infinity. If the medium
is lossless and isotropic, the behavior of the fields at infinity is governed by the
Sommerfield radiation condition [25], [34]. When the fields in open direction are
expressed in terms of exponential or hyperbolic functions, most of the time this condition

has been met. In some structures, a shield of PEC is put on the top of the structure to
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meet this condition. In some situation, radiation condition can be involved as a proper
sign in square root that we will be explained in section 2.6.

Periodical Boundary Condition: When there is a periodicity in the structure, the
boundaries that are perpendicular to the direction of periodicity should be regarded as
periodical boundaries. It means that they must comply with Floquet theorem in that there
is a phase shift between electric or magnetic fields at such walls. If, in full wave
formulations, the fields have been written in terms of Floquet harmonics, this condition
has already been considered.

As a general rule, more BC’s we involve to match two fields in two media, more
accuracy we obtain in results. Since more BC’s get involved in MoM than those in MM,

the results of MoM are more accurate than those from MM.

2.7 Classical Example of Mode Matching Technique

Generally, the mode matching technique consists of three important steps: First the
electric and magnetic fields should be written as an expansion of normal modes in
each region, second the electric and magnetic fields should be matched through
proper boundary conditions which leads to some equations, and third the equations
which are resulted from boundary conditions should be transformed into an infinite set of
homogeneous simultaneous equations for unknown variables via the conventional
technique of taking a scalar product with a complete set of functions appropriate for the
various regions. The solution for phase constant may then be determined by seeking the

zeros of the determinant associated with the above matrix equation. However, the relative
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convergence should be taken care of by choosing appropriate truncation for the number
of modes.

The purpose of this section is to get familiar with classic modal analysis ( or mode
matching technique). Modal analysis is a rigorous and versatile technique that can be
applied to many coax, waveguide, and planar transmission line discontinuity
problems, and lends itself well to computer implementation. The instructive version of
mode matching method is typically applied to the problem of scattering into wave
guiding structures on both sides discontinuity. We will present the technique of modal
analysis by applying it to the problem containing an H-plane step (change in width) in
rectangular waveguide.

The geometry of the H-plane step is shown in the Fig.2.6. It is assumed that only the
dominant TE;o mode is propagating in the guide 1 (z < 0), and that such a mode is
incident on the junction from z < 0. Because there is no y variation introduced by this

discontinuity, TE, modes for m >0 are not excited, nor are any TM modes. A more

general discontinuity, however, may excite such modes.

YA

Guide
|

b

Guide
]

0 ¢ u X

—

Fig 2.6: H-plane discontinuty in a rectangular waveguide [24].
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The transverse fields in each region can be written; however; a care should be taken
in writing the fields in the guide region (1), because they consist of the

incident TE field in addition to reflected fields:

E® =sin%efﬂf”f +3 4, sm%eﬂfu‘”z (2.11a)
n=l
E® =Y B sin T oz 2.11b
¢ ; : - ( )
HO = -1 i ™ o~ A, I g, 211
2 =—gysin—e +Zﬁsm76 (2.11c)
1 n=l1 n
= B . B2
H® = Z%smﬂe’ﬁ” : (2.114d)
n=1 Zn c
o , (nz)’
B = [k} -] = (2.12a)
a .
2
B = k2 _(%j (2.12b)
k
Z0 = ,BO_Z’O (2.12¢)
k
7% = _gg% (2.12d)

where A, and B, are the unknown amplitude coefficient of the reflected and

transmitted TE,, mode in guide (1) and (2) respectively.

Now at z = 0, due to the boundary condition, the transverse fields £, and H, must be
continuous for 0 <x<c ; in addition, £, must be zero for c<x<a because of the

step. Enforcing these boundary conditions leads to the following equations:
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oo . nnx
E, =sin®™ + 3 4, sin M = | 2 Bysin == fx<e (2.13)
4 a 0 c<x<a

= B
H, = —Z—(l)-sm +Zz“> ””x—z v sinZZ g<x<c (2.14)

Equations (2.11) and (2.12) represent a doubly infinite set of linear equations for the
modal coefficients A, and B,. The next step is to eliminate the x dependence in above

equations. To do this, we use the orthogonality of sine functions. Here, we have two

orthogonal sets, the first is {sm—} which is called the wide set and the second is
a

{sin @} which is called the narrow set. As a general rule, we multiply the B.Cs for
c

E field with the orthogonal functions of the wider set and we multiply the B.Cs for H
field with the modes of the narrower set. Then, we can take integral from each equations
over the proper intervals at which they are orthogonal. Now, we have to truncate the
number of modes and equations to form a linear system of equations, so we choose N
modes and N equations for each equation. Finally, we will end up with 2N unknowns A,

and B, and 2N equations, and they can be solved by computer implementation [24].



2.8 Roots of Determinants

2.8.1 Matrix Equation

Many applications of existing numerical methods for analyzing electromagnetic
problems, particularly Method of Moment or Mode Matching technique, lead to a linear
homogenous system of equations which is denoted by a matrix notation as follows
A(f.BX=0 (2.15)
where X is the vector of the unknown coefficients (amplitudes in mode matching or
coefficients of the basis functions in moment method) and the entries of A can be real or
complex.
The electromagnetic problem is satisfied only if (2.15) presents a nontrivial solution, i.e.,
if the determinant of A vanishes. Therefore, the calculation of the dispersion curve is

based on the solution of equationdet(4(f,B))=0.

The most common strategy to solve this problem is based on the calculation of the
frequency points where the determinant of the matrix A vanishes. By considering a given
propagation constant (even in complex plane), the frequency range is scanned with a
given frequency step in order to find the zeros of determinant. However, if the

propagation constant 3 is real (traveling wave), it doesn’t matter we start from given f or
B and then seeking the roots of determinant in terms of other one. The nature of the
mode matching technique is based on giving the frequency and then finding the B such
that the pair (f, B) sets the determinant zero. There are three ways to find the solution of

singularity; we can set the determinant, the smallest eigenvalue or the smallest singular

value to zero.
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2.8.2 Logarithm of the Absolute Value of Determinant

This approach is the first one that looks straightforward to be done. It is common

practice to vary the unknown parameters until det(A( f,B)) = 0. However, this approach

doesn’t work well when we deal with a large matrix which it is the case in mode
matching technique. The case will be worse when we have a sparse matrix, i.e. only a
relatively small number of matrix’s elements are nonzero. If the dimension of a matrix
increase or the matrix has so many small value entries, it becomes more ill-conditional.

When the matrix of the numerical method is so badly conditioned such that its

determinant is so small, i.e.10™'”’, then we would never trust any results that we get from
that method. The meaning of “ill-condition™ will be discussed in section 2.8.4. Another
disadvantage of this approach is that the determinant is a rapidly changing function of the

parameter such that sometimes we are unable to find the notch in the determinant.

2.8.3 Smallest Eigenvalue in Magnitude

Since the product of eigenvalues of a matrix is equal to its determinant, when the
determinant is zero it means that at least one of the eigenvalues is deﬁnitely zero. As it is
zero, this eigenvalue is the smallest one in magnitude. Thus, instead of looking for when
the determinant becomes zero, we can look for when the smallest eigenvalue is zero. This
approach is more reliable because we get rid of so many eigenvalues which makes the

matrix more ill-conditioned.
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2.8.4 Smallest Singular Value

This method is based on singular value decomposition which is a powerful algorithm for
dealing with the ill-conditional matrix. Formally, the condition number of a matrix is
defined as the ratio of the largest singular value (in magnitude) to the smallest singular
value. A matrix is singular if its condition number is infinite, and it is ill-conditioned if its
condition number is too large.

It is demonstrated that by detecting the minima of the minimum singular value, instead
of the zeros of the system determinant, the accuracy of the calculation increases [35].
This procedure provides numerical stability than others and we will discuss it in the next
section.

SVD methods are based on the following theorem of linear algebra, whose proof is
beyond this work:

Any M x N matrix A with real or complex elements whose number of rows M is greater
than or equal to its number of columns N (M 2 N ), can be written as the product of an
M X N column-orthogonal matrix W, and N xX N diagonal matrix § with positive or zero
elements in decreasing order (the singular values), and the transpose conjugate of an

N X N orthogonal matrix V:

(AL =W [l V1" (2.16)
As a matter of fact, the square of the singular values of the matrix A are eigenvalues of
the matrix AAT where A is an arbitrary M x N matrix. Since AA" is a symmetric and
positive definite matrix, its eigenvlues are real and nonnegative. Thus, the singular values

of any square matrix are real and nonnegative [36].
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For a square matrix A which is the case for most numerical problems related to

microwave and electromagnetic, the singular values o, to o, are real. The algorithm
now searches for the minima of the last element o, of the diagonal matrix S according to
the following theorem:

oy, =0 & det(A)=0. 2.17)
Detecting the minima of o, is extremely simple and far more reliable than the search for
zeros of det(A) [35]. Moreover, if these equations 6, =0 or det(A)=0 satisfy, the last

column of [V] automatically contains the corresponding solution vector X in

homogenous equation of A.X=0. The comparison of these three methods will come later

in chapter 4.
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Chapter 3

Formulation of the Problem

This chapter contains three sections. The necessary assumptions to model the problem are
presented in section 3.1. In section 3.2, we explain the essential steps to derive
formulations pertaining to the simple shielded microstrip line, in addition to the
computational technique to obtain the final matrix by MM-PM technique in this structure.
Then, in section 3.3, the same procedure is extended for 1-D planar periodic structure

(strip grating).

3.1 Assumption

For both structures, it is assumed that the fields are time-harmonic with a
e’ dependence, and the wave is traveling along the +z direction with the objective to
find the dispersion curve along this direction. Furthermore, both structures are
assumed to be uniform and infinitely long in the z direction. By saying axial
uniformity we mean that cross-sectional shape and electrical properties do not vary along
the z axis. Also, the regions are homogenous and source-free. The strips are perfect
conductors with ignorable thickness. Moreover, the substrate is a lossless dielectric.
The geometry is well-expressed in rectangular coordinate, so we use rectangular

coordinate for this problem.
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3.2  Microstrip Line

The open microstrip line can be analyzed as a boundary-value problem using modal
solutions of the form used for the partially filled waveguide or dielectric covered ground
plane. In fact, the open microstrip line can be represented as a partially filled waveguide
with the addition of a center conductor placed along the air-dielectric interface, as shown
in Fig.3.1. This shielded configuration is considered a good model for the open microstrip
provided that the dimensions of /# and L of the waveguide are equal to or greater than
about 10 to 20 times the center conductor strip width. As the waveguide width and height
are chosen to be even greater, the results of the open and shielded microstrip lines agree

even better [30].

Fig.3.1: Shielded Microstrip Line
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3.2.1 Electromagnetic Fields in Microstrip Line

The field configurations of this structure that satisfy all the boundary conditions are
hybrid modes that are a superposition of 7E*and TM “ modes. Since the structure on the
study is homogeneous and source-free in each region, the waves can be decomposed into
TE* and TM* modes. It has been assumed that waves are traveling along z-direction.
Initially the auxiliary vector potentials which are mentioned in chapter 2 are used to

derive the EM fields. Because of the separation of variables and traveling wave in the z

direction, we can write,

TM: R =d.d,,(ny.2)=ap® (e 3.1

TE" : F. =a,F,(x..2)=apy" (xp)e (3.2)

where i refers to the two media; i=/ is for dielectric region and /=2 is for air region in

Fig. 3.1.
The scalar function of(x,z)must satisfy the transverse wave equation. This equation

has been obtained by letting the potential vectors of A and F in Helmholtz equations:

2. (e) 2.,.(e)
T™® [aa‘”; + aa"’; +(k2- B =0, i=1 2 (3.3)
x y
2. (h) 2. (h)
TE* (aa"’; + a;’; +k2 - ™ =0, i=1,2 (34)
x y

where k = JZ k, = w\€,€,1, (3.5a)

k, =k, = w\ €1, (3.5b)
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are wavenumbers in region 1 and 2, and k, is the free space wavenumber. The

superscripts of (e) and (h) above ¥ functions indicate the TM mode (E-wave) and TE
mode (H-wave) respectively.
Invoking separation of variables technique and some manipulations, w(x,y)functions

can be written as follows for region i=1 (dielectric) and region i=2 (air).

w9 =4 cos(B)x) + BE sin(B) 0)]|[C( cos(8),y) + D sin(B), )] (3.6)
P = 4% cos(BU x) + B sin(B )| cos(BE) ) + DI sin(B) )] 3.7)
Wi = A cos(BY) x)+ B sin(B), ) |CS cos(B), (- y))+ DL sin(B), (h - )] (3.8)

o _

p = 4P cos(B%)x) + B sin(BE ) ||CP cos(BE, (= »)) + DY sin(BY), (h— y))] (3.9)

The unknown eigenvalues of B,,, f,, andf_ must satisfy the below constraint

equation.
Bl + Bryy + B2 =kl ,i=1, 2 (3.10)

The fields can be written in terms of ¥, (x, y)[30}], and after normalizing by the factor

of — p. , they reduce to the expressions given in table 3.1:
W€,
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r{i)

Table 3.1: The Fields’ formulation in shielded microstrip line, i=1, 2 for dielectric and air region
respectively.

Now, we should force metallic periphery boundary conditions on E-fields for each T™M
and TE configuration separately to simplify the equations (3.6)-(3.9). Thus, the
tangential components of electric fields for each TM and TE modes should vanish over

metallic walls.

e TE mode in region 1 ("):

(h)
E)((?l)) y=0=0- ‘a“l/ﬁ—

=0 - D" =0
oy

y=0

aV/(h)
ES\(x=%L)=0—> —a;

0 A" sin(B) L)+ B" cos(BLL) =0
- — A" sin(B) L)+ B{” cos(S L) =0

X X
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Adding and subtracting above equations, two solutions can be found:

A" =0,cos(BL) =0 4" =0. 5, L=Qn-DZ = 4" =0, B}, =@n-1)2

w _ 7
(O T ”z

X

B" =0,sin(B\L)=0— B" =0,B),L=nx — B =0,

The parameter # is an integer which canben=1,2,3....

From the symmetry of the structure, it is clear that two orthogonal sets of modes exist,
one of which has a symmetric £, and an antisymmetric A, components ( £, -even, H_-
odd), while the other is characterized by E_-odd, H_-even. The dominant mode is the
lowest order E_-even, H_-odd which approaches the quasi-TEM solution for low
frequencies. Moreover, to reduce the complexity of the problem, in what follows we
consider only E,-even, H_-odd modes. This is the first solution mentioned above which

require the tangential magnetic field components to vanish along the symmetry plane of
this partially waveguide. However, the methods presented here are equally applicable to

the other types of modes as well.
E{) (v =0) =0 —Already satisfied

e TE mode in region 2 (y{"):

(m

Ei&()’:h):()%a—y/z— =0— D" =0
oy o
h ay/(h) e (2 , ) -
E;(;)(x=iL)=O_>—8_2 =0 B 4" =0, i(z))n:(2n—1)5—lj
X
y=tL

E{),(y = h)=0 — Already satisfied
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e TM mode in region 1(y/*):

()

d .
EQr=0=0>X1 —05¢@=0
ox 0
(&) oy Like (2) (© (e) 7
Ey(l)(x=iL)=O—> & =0 —== B” =0, o =(2n—l)Z
x=xL

E(fl)) (y=0)=0 - w9 (y =0) =0 — Automatically will be satisfied

e TM mode in region 2 (y."):

=0->CP =0

y=h

(e)
EQ(=n=0-2
ox

Like (2)

B9 (r=tn=020 =g BY =0, B9, = 2n-1)—=
y(2)(x"'— )— — =V ——"5, =Y, x(2)n—(n_ )—2_L

oy

x=*L
EQ (y=h)=0— 'l (y = h) = 0 — Automatically will be satisfied
z(2) V’z

By substitution the above results in equations (3.6)-(3.9), they function reduces to:

p =B sin(B%), 0 IC cos(B)] 3.11)
p =B sin(BY),»]lCs” cos(BL, (- y))] (3.12)
O =4 cos(8, 0D sin(B,»)] (3.13)
w =4 cos(BY,0)|IDY sin(BY, (h- ) (3.14)

The phase constants in x-direction are denoted by &, :
k=9 =@ g0 g0 —op NE =123, (3.15)
n x(Dn x(2)n x(hrn T Mx(2)n 21’3 s &y o .

Phase constants in y-direction are denoted by a'" and'”, and according to the equation

(10.3) they can be presented as follows:
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i=1:k, + B, + B =kl =€k,

2 2 2 2
B+ P =k >
Pio* Py + Bz =k, {I:z.kh Son T B =k =k

{ﬁy(l)n = k2 (kj +:Bzz) N y(jl))n = )(z!(ql))n = \/k12 _(kj +:Bz2) = J\/(kj +ﬁ22)_k12
Brow =k =k + B | B, = B, =k = (k7 + B2) = j(k + B2)— ;]

o = =B, = =B =k + B - £,k; (3.16a)
o) = =B = =il =k} + B~k (3.16b)

Why the negative sign was chosen for square root will come at the end of section 3.3.2.

Now, the total i functions are the summations ony/, in equations (3.11)-(3.14), so after

some rearrangements ultimately they can be written as:

y = Z A™ sin(k, x) cosh(a" y) (3.17)
p

i = Zl B sin(k,x)cosh(a® (h - »)) (3.18)

o = gAP cos(k, x)sinh(a" y) (3.18)

w = Z; B cos(k,x)sinh(ar'? (h— y)) (3.19)

Consequently, the total fields for each 7E and TM modes in each region are given by

equations (3.20a)-(3.21/). For the sake of simplicity, we can consider the new variables of

(h) (6)

— A" and 2o — A" instead of the previous 4" and 4.
€ £

r r
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TE fields

EQ) = OI? [ZAU”CZ(]) sin(k,, x)smh(a(l)y)j

E)(r?;) = _—%[Z Br(zh)ar(lz) Sin(knx) Slnh(aflz) (h _ y))Je—jﬁzz

p.

n=1

Ey) = "B@Uo (z APk cos(k,x)cosh(ar!” y)je‘fﬂ

n=l

EQ, = —_aauo(z Bk, cos(k,x)cosh(a® (h - y))je—/ﬁ,z

IB: n=1
n _
E 2ty T 0
(h) _
Ez(Z) =0

H) = (z A"k, cos(k,x)cosh(ar” y)Je‘f/’

=]

HS = (Z BPk cos(k,x)cosh(cr'® (h— y))Je"'/’

n=1

;}('1)) = (Z AP oV sin(k, x) smh(a“)y))

H;@) (z B(h)a(z) sln(k x)Slnh(a(2) (h- y))j -jB.z

=1

n=1

H(h) — -kl2 132 ZA(h) k h(a® -iB.z
y = J——— 7 sin(k, x)cosh(e,’ ) |e

HY = ﬁﬁ [ZB”’)sm(knx)cosh(a‘z)(h y))J

=1

40

(3.202)
(3.20b)
(3.20¢)

(3.20d)

(3.20¢)

(3.201)

(3.20g)
(3.20h)
(3.20i)
(3.20j)
(3.20k)

(3.200)



T™ fields

EQ), = —(Z Ak, sin(k,x)sinh(a y)je—mﬂ
n=1

Eifi) = ‘(Z Bk sin(k,x)sinh(a” (h— y))Je—A/ﬂzr
n=1

E@ = (2 Aa'V cos(k,x) cosh(ar') y)je"ﬁ”
n=]

¥ T

EY) = —[Z BYa'? cos(k,x)cosh(ar'> (h— y))je‘jﬁ”
n=1

FOR

n=l

2 @2 e |
Ey =] M(Z B,? cos(k,x)sinh(er? (7~ y))je_fﬂzz

B.

n=l

HO =% (z A9 cos(k,x) cosh(a,ﬁ”y)}e"m‘"‘"

x1) — ﬂ

n=l

= %(Z B,"a,” cos(k,x)cosh(a,” (h - y)))e--fﬁzz

p.

n=l

7 i —t (Z Ak, sin(k,x)sinh(cr.” y)je"’ﬁfz

y T ﬁ

n=1

HE =Z% (Z Bk, sin(k,x)sinh(cr\” (h - y))je"jﬁ’z

»2) IB

n=1
(e) _
HE =0
(e) _—
H5 =0
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E(e) — -klz—ﬂj - A(e) k inh(a® -JB.z
J_—-‘—ﬂ > A cos(k,x)sinh(ar” y) e

(3.21a)

(3.21b)

(3.21c)

(3.21d)

(3.21¢)

(3.219)

(3.21g)

(3.21h)

(3.21i)

(3.21j)

(3.21k)

(3.21))



As mentioned before [31], the final fields are the superposition of TE and TM fields:

E = [Z [— A%, + %‘i AP gV jsin(knx) sinh(ar!” y)je-fﬂzz (3.22a)

E, = [Z (— BYk - % B"a® j sin(k, x) sinh(a®® (- y))]e'fﬂzf (3.22b)
n=1

o = (Z[A'ge)a’gn ) a;lo Aﬁh)knj““(knx) cosh(a,S”yJe'm’z (3.22¢)
n=1 z
Eyo = [Z( BYa? —%Bsmknjcos(km cosh(a,i”(h—y))]e-fﬂzz (3.224)
n=l1 z
ﬂZ
E.q = JL ﬂ (Z A4, cos(k, x)smh(a(”y)J (3.22¢)
z =
2 '_,82 oo »
E, ., =j—2—="= (ZB,(,” cos(k, x)sinh(a® (h - y))]e“ﬂ’zz (3.22f)
n=1
H = (Z[ €, AP + AWk jcos(k x)cosh(a“)y)} -iB.z (3.229)
n=1 z

H,, = [Z(w‘% BYa'? + B,(,h)knjcos(knx) cosh(a'? (h— y))]e"’ﬁzz (3.22h)
n=1
H,, = (Z(-‘%’i A9% + AP gD ]sin(knx) sinh(ar y)Je-f’/’:Z (3.220)

H,, = [Z (—_ o Bk, - B,‘,h)a,ﬁz)jsin(knx) sinh(ar® (h— y))]e‘f/’z’ (3.22j)

n=l1 ﬁz
2
H.,=J ﬂﬂ (Z;A‘“ sin(k, x)cosh(a“’y)j (3.22k)
'ki_ﬁ? N RO @ -jB.z
H.y=] 5 z Z}Bn sin(k, x) cosh(a® (h— y)) |e™*: (3.221)
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The coefficients 4\, A" (for region 1 which is dielectric) , B! and B (for region 2
which is air) are yet unknowns, and their relations will be found by applying boundary
conditions along the air-dielectric interface.

3.2.2 Boundary Conditions in Microstrip Line

The next step is to apply the appropriate boundary conditions along the air-dielectric
interface including the center conductor. It should be stated again that the superposition
of the 7E and TM modes must satisfy the BCs along this interface. Considering the
symmetry with respect to the y axis, the appropriate boundary conditions along the
interface for x>0 that must be enforced are following four equations which are mutually

independent (the same apply for x<0):

M) E,=E, (x,z) e Whole area O<x<L (3.23)

@ E,=E, (x,z) e Whole area O<x<L (3.24)
(a) E,=0 (x,z) € Patch O<x<t

3) (3.25 a,b)
by H,=H_, (x,z)e Aperture t<x<lL
(a) E, =0 (x,z) € Patch O<x<t

4) (3.26 a,b)
(b) H,=H, (x,z) e Aperture r<x<lL

Applying these equations leads to the following algebraic equations. The details of proof
are given in Appendix 1.

oo

DA cos(k,x) =0 0<x<t
=i . (3.27a,b)
> 4k, P,(B,)cos(k,x) =Y A"k, T, (B,)cos(k,x) =0 t<x<lL

n=1

n=l
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ZA(e)k sin(k, x) — ZA(’”k sin(k,x) = 0 O<x<t

n=l (3.28 a,b)
ZAMQ (B.)sin(k,x) - ZA('”W (3.)sin(k,x) =0 t<x<lL
n=l1
where
A = 4 sinh(aMd) (3.29)
A = P & A“’) sinh(a"d) (3.30)
ﬂ;’ kn
B. = B./k (3.31)
0 _p2 <2> L _
P(B.)=¢, 0}; coth((x(])d)+ - ; kn ——coth(ar® (h— d)) + B* k(z) 11_ ;’2 coth(a? (h— d))
T .(B.)=p. ( s s —2coth(a® (h - d))J (3.33)
Vl an
1-
0, (,5)— (2) E coth(a(z)(h d)) (3.34)
W (B)= ——ﬁ—— Wy + —2 k, coth(er'? (h— d)) (3.35)
" - ﬁ (1) a® :
1) (e
Sine the functionsa!” coth(a!"d), COth(ﬁ{)" D nd N (2()h ) are even with
an an

respect to &' and '” in above expressions, the sign of @' and @'” in the equations

(3.16) and (3.17) never influences the value of the expressions in the equations (3.27 a,b)
and (3.28 a,b), so the sign of the square roots in 3.16a and 3.16b doesn’t matter to be plus

or minus.
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3.2.3 Matrix Presentation

By using point matching technique, the above equations can be reduced to a matrix
format. Equations (3.27 a,b) and (3.28 a,b) need an orthogonal set to be converted to a
matrix format. No entire domain orthogonal set can be found, so we resort to sub-domain

orthogonal sets, and delta functions are the simplest kind of sub-domain orthogonal set.

. . . 1 . .
If the ratio of r over Lis r, i.e.r = —L—, the final matrix resultant is

N N - .
rN points on the strip { m | [”0“‘] :
mn I Z(e)
(1-r)N points on the aperture { b1 | [e.] :
N | B L (3.36)
rN points on the strip { [d.1 | [e] :
mn l mn Z(h)
(1=7)N points on the aperture § (£ 1 | [g.] |t ]

N is an integer number which truncates the limit of summation in (3.27a,b) and (3.28a,b).
N, also, represents the number of matching points throughout the length Z, in order to

have a square matrix.

3.3 One-Dimensional Periodic Structure

The 1-D strip grating can be analyzed as a boundary-value problem using modal
solutions (mode-matching). This structure is confined between two shields. The
underneath shield is a ground plane. The right and left boundaries are the periodical
boundaries which comply with the Floquet theorem. This shielded configuration is
considered as a good model for the open structure provided that the dimensions of # of

the structure is equal to or greater than about 5 or 10 times the center conductor strip
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width. Moreover, when we enlarge the spatial period, we can reach to the microstrip line

structure,

2

Fig. 3.2: Shielded Grating Strip which consists of periodic microstrip lines.

3.3.1 Electromagnetic Fields in 1-D Printed Periodic Structure

Like a microstrip line, the full wave analysis of this structure is made up a number of
steps; however; because of the similarity to the microstrip line some steps have been
pointed out very quickly.

According to the Floquet theorem (section 2.3), a typical component of the field in a
periodic structure with one periodicity can be written by the summation of its Floquet
harmonics. For example the electric field in a media with one periodicity in x direction

can be written

E(x,y,z)= Y E,(y,2)e”"" (3.37)
2nm
where B, =p. +7L—’ n=..-2,-1,0 1, 2.. (3.38)

This field must satisfy the Helmholtz Equation, so

VE(,y, )+ K E(x,3,2)=0=V? 3 E,(y,2)e " +k* Y E,(y,2)e"" =0 =

n=—co N=—cc
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SV, (e +KE, (2)e )= 0 =

n=—oco

(i(szn (y,Z) +(k2 “ﬁnz)E,,(y,z)))e‘fﬂnx =0

Due to the orthogonally for the set of {e‘-"ﬁ""} in a unit cell, the coefficients should be
zero, so the following equation can be obtained:
V2E,(v,2)+ (k> — B2)E, (3.2) = 0. (3.39)
Thus, instead of satisfying the summation, we can satisfy each Floquet wave in the
Helmbholtz equation.
Now, using the separation of variables technique, we can write the z component of the
field in exponential format
E,(y.2)=E,(y)e”"”. (3.40)
Then, by satisfying this field into the Helmholtz equation, it reduces to:
VE,(n)+(k* ~ B2~ B2)E,(3) =0. (3.41)
The same can be applied for vector potential A. According to aforementioned discussion

and what we explained in microstrip line, the TM and TE modes can be written

TM: 4, =a.A,,(xyz)=ayl) (e e/ (3.42)
TEZ : E’(l) = sz;m(,)(x, be): &zl//r(lili))(y)e_jﬂnxe—jﬂzz (343)
2nr

where g, =[5, +7L— and index i refers to the two media in this way: i=I is for

dielectric region and i=2 is for air region; moreover, 2L is the periodicity along the x axis

and S, is the Floquet wave number in which # is an integer varying from —oo to +oo.
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The scalar function of () must satisfy the transverse wave equations which have been

obtained by substituting the potential vectors A and F in Helmholtz equations.

2,,.(e)
0 ‘//n(i) (e)

TMZ:W—+(k,?—ﬂj-ﬂj © =0, i=l,2 (3.44)
az )

TE* : — 20 4 (k2= B2 - B2 ™ =0, i=1 2 (3.45)
ay2 i n z n(f)

where k, = w\€,6,1, and k, = w\/€, 1, (equations (3.5 a,b))
Like a microstrip line, the scalar function of y(y) can be written as follows:

Region 1 (dielectric):

Vi, = 4,0 cos(B0») + B sin(B,0) ) (3.46)
Wi = A,y cos(By0 ¥) + B, sin(B4,v) (3.47)
Region 2 (air):
Wiy = A0 cos(B10, (h— ) + B, sin(By0, (h— »)) (3.48)
i, = AL, cos(By0, (h= )+ By, sin(BY3, (h = y)) (3.49)

The unknown eigenvalues of §,, 3, and 3, must satisfy the below constraint equation.

ﬁz(i) +,Bn2 +:Bzz = ki2 ,1=1, 2 (3.50)

y

The Floquet harmonic fields due to 7M “and TE* configuration and normalizing by the

- B.
L€,

factor can be obtained according to table 3.2 [30]:
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™" TE”

(h)
©) J:B (©) p=IBx y=ibe h oy, Wiy 5 —ib.z
Exn(i) l//n(l)e Ein()i) = — € Jﬁxe >
€0 €y dy
(e)
E®© —_— 1 al//"(') e P g Ib: EWM = JB,au, l//(h)e 1B o=JP:z
yn(i) a yu(i) ﬁ e n(i)
gr(/) y r(’)
.72
@ __J K —,B (&) ,=iBx ,—iB. n
Ezn(i) - l//n(l)e € E"n(l) 0
r(i) ﬂz
(e)
© _ W& aV/n(,) R E O - - JB, TPy it =iz
xn(i) ﬂ ay xn(i) e " n(i)
- r(i
. (h)
H® = —],B () p=iBx p-ib:z H® = 1 al//"(’) —/ﬁnx iz
o =g aZt iy = 3 ¢
z &y 9

. 2
Jj ki —,B () =IBo o =iB7

h _
H(e) - 0 Hzn(i) - l//n(l)e

zn(i)

Table 3.2: Floquet Harmonic Fields for 1-D periodic Structure.

By expanding the scalar wave function in spatial Fourier components, indeed, the
periodical peripheries have been taken into consideration, so there is no need to be
worried about that. However, we should enforce the E-filed to comply with metallic

boundary conditions on top and the bottom ground plane. Hence, the tangential

components of electric fields, i.e. £ and £,, for each TM and TE modes should vanish

over metallic walls.
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¢ TM mode in region 1(y,)):

=0 — 4% =0

y=0 n(l)

EgQ(y=0)=0 -y

EQ(y=0)=0 -y

y=0

e TM mode in region 2 (') ):

n(2)

=0 A4, =0

y=h n(2)

B 0=h=0 -y

E% (y=h=0- Wﬁf%

y=h

e TE mode in region 1 (l//,ﬁ'gl))):

dw'
Ef)(r=0)=0— =21

y

=0 - B\, =0

y=0
E.Eﬁ)) (¥ =0) =0 > Adlready satisfied

e TE mode in region 2 (') ):

n(2)
V0
=025 oL <o
y=h

E ;ﬁ;)( y=h)=0 — Already satisfied

By substitution the above results in {7 formulations, we have
'//;Eil)) = Blg‘(?l)) sin( ifl))J’)
l//ﬁfi) = 3,58) sin( ;2)(]” -¥))
l//;gl(ql)) = Ar(ltll)) cos(f )(1?1)).)/ )

h)y _ 4(h) (n
Vo = An(2) cos( 9(2) (h—-y))
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=0 — Automatically will be satisfied

= 0 = Automatically will be satisfied

(3.51)

(3.52)

(3.53)

(3.54)



Phase constants in x-direction according to the Floquet theorem can be expressed by

B, =B, +321;“—, n=..-2-10 1 2.

Similar to the microstrip line, phase constants in y-direction can be found by constraint

relation (3.50) as follows:

@ = =B = =B =B + B,k (3.552)

(2)_ Jﬂ(a)n: (Q)n '\/(IB +IB) k2 (355b)

k, = o e 1, . (3.56)

To satisfy the boundary conditions at the interface between the dielectric and air, the total

transverse scalar functions of y/,(x,y) must be written as the summation

ony, ., (y)e P, so after some rearrangements, for example the coefficient of A, is used

for the region 1 and B, is used for the region 2, they can be written as:

w' = ;Q A9 sinh(a®y)e P (3.57a)
p = n;B;E) sinh(ar!? (h— y))e P (3.57b)
p" = H_ZA(”) cosh(ar” y)e " (3.57¢)
" = 3 B cosh(@® (h- y)e P (3.57d)

H=—co

()

A A( ) .
Now, by introducing new variables —2— —> A" and~— — 4!, the TM and TE fields
£ £

2 r

for each region of the dielectric and air are:
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TM fields

Eg) = —j( 2.4, B, sinh(ar,” y)e je‘f’“

n=

E)(ca) = -—-]( z Blge)ﬁn sinh(aff) (h- y))e—jﬁnx Je—jﬁzz

n=—oo

E %) = ( Z A9 a® cosh(a" y)e P j o

n=—co

H=—co

EY) = _( > BYa? cosh(ar” (h— y))e ™™ je-fﬂﬂ

E© = k=< 49 g ) oy =B | —iB.z
z(l)—]—___—ﬂ Z . sinh(e,” y)e " je

n=—oo

E(E) — 5 k22 -ﬂzz N (e) o3 (2) —iBux | ,-iB.z
z(2) — J ZB}’I Slnh(an (h_y))e "le 7

p.

N=—oc0

; - e - ;
e [ZA;e>ay> cosh(@?y)e 5

g© =%, i B9 cosh(a® (h B | -iB.s
x(2) ﬁ n n 5 (an ( _y))e e :

n=—oo

e _jw N e : —Jb,x -jb,z
H;(i) = IB 1 [ZA;S )ﬁn smh(af,ﬁl)y)e By Je JB.z

N=-c0

. —JOE, [ > pee . - ;
i = ZHEL 550 s e

B.

n=—co

(e)
HY =0

H(B) —

2(2) T
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(3.58a)

(3.58b)

(3.58¢)

(3.58d)

(3.58¢)

(3.580)

(3.58g)

(3.58h)

(3.581)

(3.58))

(3.58k)

(3.581)



TE fields

EQ) = —ag‘) ( > 4" a sinh(a!” y)e A Je*”’:’ (3.59a)

EN = "% i BP o sinh(a® (h— y))e /A |e =P+ 3.59h
x(2) © IB n &y " y)e € 3. )
EQ) = ](glo ( > AP B, cosh(ar” y)e je_"ﬂ (3.59¢)

EL) = ](;u"(ZB(’”ﬁ cosh(ar!” (h— y))e ™ } ~ih (3.59d)
E{) =0 (3.59)

E{3 =0 (3.59f)

Hi’Z&-—J(ZA“’ﬂ cosh(er y)e f’“j e (3.59%)
H§f§>=-J(ZB“’)ﬂ cosh(ar? (h— y))e ) (3.59h)
e .59

Hiy = (ZB(%”’ sinh(a,” (h— y))e ™ j (3.59)
H" = k=B < AD cosh(a® vie A |o—Be K

2y = J B D A" cosh(a” y)e e (3.59k)
Hyy = j kb (ZB"” cosh(a,‘f)(h—y))e‘fﬁf'*Je"f/’z’ (3.591)
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Final fields are the superposition of TE and TM fields [31]:

Ey=|Y [a;l‘) 4 el ~ J‘Aﬁ”ﬁnjsinh(ai“y)e‘”}”" Je"”” (3.602)
E = [ D %’“—035")@2) — jB® ﬁn]sinh(a,g” (h=y))e P Je-fﬂzl (3.60b)
y - ﬂ n n n n n y .
i J@Uo B™B — B |cosh(a® (h— bux |,-ibiz 3.60d
By = e (3.60d)
K -p N
E.=Jj— 7 : (ZA,(,‘” sinh(a}” y)e " )e"”’zl (3.60e)
L | .
E.o=j— B : (ZBr(,e) sinh(ar? (h— y))e™?" Je“"ﬁ = (3.601)
H, = [ 2 (— JA" B, - %AP aﬁ‘)jcosh(aﬁ”y)e‘”’"" je‘”ff’ (3.60g)
H.o = [ Y [— jB B+ %Bﬁ”aﬁ”]eosh(aﬁ” (h=ye jeﬁ (3.60h)

H,, = ( 3 (A,Sh)a,ﬁl) - Jﬂﬁ 498 ] sinh(ar) y)e 4+ Je—fﬂzf (3.60i)

Hy, = { > (— BMa) — %)E—O-Bf) B, jsinh(af,z) (h—y))e P~ je"fﬂzz (3.60j)
B (< m W) o —iBx |, Bz
H,, = Ly /), ZA cosh(er}” y)e (3.60K)
H k2 ﬁ ZB(h) h (2) h— —jBux JB.z 3.60
oy =J B cosh(ex,” (h—y))e (3.60/)
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3.3.2 Boundary Conditions for 1-D Printed Periodic Structure
The coefficients 4, 4", B and B are yet unknowns, and their relations can be

found by applying proper boundary conditions along the air-dielectric interface. So, the
next step is to apply the appropriate boundary conditions along the air-dielectric interface
including the center conductor. It should be stated again that the superposition of the TE
and TM modes must satisfy the boundary along this interface. Considering the symmetry
with respect to the y axis, the appropriate boundary conditions along the interface for x>0

that must be enforced are following four equations which are mutually independent (the

same apply for x<0):

(HE,=E, (x,z) e Unit Cell O<x<L (3.61)

@ E,=EFE, (x,z) € Unit Cell O<x<L (3.62)

E =0 ,z) € Patch O<x<t

3y 1@ Ea (x,2) € Pate g (3.63 ab)
by H,=H,, (x,z)e Aperture r<x<lL
(@) E,=0 (x,z) € Patch O<x<t

4) (3.64 a,b)
(b) H,=H_, (x,z) e Aperture r<x<lL

Similar to the microstrip line case, the summary of resultant formulations are presented

below and the details are given in Appendix II.

izﬂme—fﬂnx -0 x| <t

n=°:°o_ | - . (365a,b)
ZA,fe),BnPn(ﬁz)e—jﬂ"x + ZA;’?)IB"T"(’BZ)@‘J'B"" =0 1< |x| <L

S AR+ AN Be =0 <

n:oa——oo— n=—co - | (366a,b)
S 390, (B)e " + 3 AW, (B)e " =0 1<lq<L
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P(B.)=¢, a,’ coth(a(”d)+a(2)( _szcoth(a(z)(h d))+ B2 L Py [ jcoth(a(z)(h d))

B, B, \ 1-p! o \1-p?

T.(B.)= p: (ﬁil) coth(a\"d) + ﬂm coth(er'? (h - d))} (3.68)
B, 1-¢, )

0.(B)= il coth(a” (h—d)) (3.69)
Wn(ﬁ)z(?_‘[_f;j ﬁl) coth(er{"d) + 0’52) coth(er,” (h—d)) (3.70)
A" = “’;‘) g) AP sinh(ax"d) (3.71)
A = A sinh("d) (3.72)
B. = B. [k, (3.73)

3.3.3 Matrix Presentation of 1-D Printed Periodic Structure
By using delta function as a testing function, the above equations can be reduced to a

matrix form. Moreover, the limit of summation should be truncated from —N to N, so

there are 2N+1 coefficients for each 4 and Zn(h) .To have a square matrix, 2N+ points

should be distributed throughout the unit cell by the ratio of » =¢/L for the aperture and

strip. The resultant matrix is given by equation (3.75).
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Fig. 3.3: The Unit Cell of the 1-D Periodic Structure.

- =

+ 2N+ — -
(1-r)(2N + 1)/2 points on the first apertute { [‘ ;N 1] | [bN 1] :
—_———— | _——— _
r(2N + 1)points on the strip { e 1 | [d.] A
- | —_——
(1-r)(2N + 1)/ 2 points on the first apertute { e 1 | [f] :
_______________________ o | T -===1=0 374
(1—r)(2N + 1)/ 2 points on the first apertute { (g1 | [k ]
SN P
r(2N + 1 )points on the first apertute { i1 1 U] An(h)
- | _——
(1-r)(2N + 1)/ 2 points on the first apertute { k1 1 .7 |L _

In equation (3.74) N is an integer number which truncates the limit of summation in
(3.65a,b)- (3.65a,b) in both minus and positive direction. N, also, determines the number
of matching points throughout (-L, L), in order to have a square matrix, in such a way that

there are 2N+1 points over the unit cell.
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Chapter 4

Numerical Results

The validity of the approach presented in chapter 3 to find the dispersion curve is
demonstrated in this chapter. Results including dispersion curves for both dominant mode
and high order modes are given in this chapter. It is demonstrated that the results for
shielded microstrip line are matched with those of SIE method. Some results are devoted
to show the good convergence of MM technique. Also the effect of changing the height
and distance of the side walls are illustrated. For one-dimensional periodic structures, the
dispersion curve for dominant mode is in good agreement with those from MoM in

spectral domain.

4.1 Microstrip Line

For the structure shown in Fig.3.1, the geometrical parameters are: L= 6.35mm, A=
12.7mm, d=1.27mm and =0.635mm. With &, =2.65 or & =20. Since the ratio of strip’s
width to aperture’s width is 0.1, the ratio of the points on strip to those on the aperture is
taken as 0.1.

The homogenous 2N-by-2N matrix equation (3.36) has the form of A (B,H)X=0, so
|det(A(B,1))|=0 to have a nontrivial solution. The dispersion curve is a graph of this

equation such that for certain frequency the value of B is sought. To find the solution for
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singularity, we can set the determinant, the smallest eigenvalue or the smallest singular
value to zero. In Fig.4.2 it is demonstrated that they are equivalent. In this work, the
smallest singular value is preferred, because it is more stable. The dominant mode is the
solution that has the biggest 8, in addition to the lowest cut-off frequency as shown in the
Fig.4.1. It should be also noted that dominant mode appears just before the spurious
dispersion characteristic of dielectric.

As mentioned in section 2.1.3 the convergence is a big concern when MM technique is
used. However, Fig.4.3 shows that for this structure there is a good convergence for the
dominant mode even for N=10, but for the higher order modes, more terms should be
included, 1.e. N=40, to meet the convergence condition. Hence, the MM-PM technique is

very efficient to generate the dispersion curve for the dominant mode.
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L  _ N el _ T ”TC | P U S U
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f_>5 05L--——- 4:__\___<__--w__,_-,__¢_._fOLdieIectric”-__// ________
- a :f\ — ] (e,=20) | :
s Ry \ Dominant | r 12 /‘
S L \ | 'mode | B=le) Xk, ya
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Fig. 4.1 Dominant and first higher order mode at the frequency 40GHz, £, = 20.
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Fig. 4.2: Values of B, based on three techniques for the singularity of the matrix equation,

=20GHz, ¢,=20.
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Fig. 4.3: The effect of truncation on the convergence of MM-PM method, =20GHz.
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In Fig.4.4, we changed the height of the shield from h=20t to h=5t and h=100t, but all
results (solid lines) are the same, so Fig.4.4 demonstrates that the height of the shield has
a minor influence on the structure, as long as the distance between PEC side-walls is
constant. However, by changing the distance between side walls from L=10t to L=5t,
L=20t and L=30t, the results differ (dashed lines). Therefore, this shielded configuration
is considered as a good model for the open microstrip lines, when the distance between
side walls has been fixed. Explaining the reason, by increasing the length L the ratio of
t/L has decreased and we have to increase N (number of points on the interface and terms

inside the sigma) such that the number of points on aperture and strip become reasonable.

0.7 : \ \ ; . . ; \
t=0.635mm, L=10t, h=20t
t=0.635mm, L=10t, h=5t
t=0.635mm, L=10t, h=100t | |
t=0.635mm, L=5t, h=20t
t=0.635mm, L=20t, h=20t |
t=0.635mm, L=30t, h=20t

Variation on h

+ % D> O %O

Variation on L

Smallest Singular Value

01r

LA L
e S e
| S A i N o
1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

B,(m™)

Fig. 4.4: The effect of changing different geometrical parameters on 8, f=20GHz.

As pointed out, the MM-PM works well even for the structures solved by conventional

classic MM techniques such as ordinary waveguides. The result for a typical air-filled
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waveguide is given in Fig.4.5. In this case, the width of the strip is set to zero and &, of

the dielectric to 1. Consequently, the matching points are laid all on the aperture.

It is evident that B in air-field rectangular waveguide satisfy the following equation [24]

B :\/H —<"”7”)2—<%>2 . (4.1)

Substituting geometrical parameters a=b=12.7mm at the frequency of f=30GHz, the
propagation constant for TE;, mode is f=297.3645 rad/m. Fig.5.4 gives the result from

MM-PM analysis for the waveguide which is completely matched with the equation

4.1).

1‘5 T T T T T T T T
b\\ o
\ / N
/
o /
s \ /
> \
g \
3 /
5 V)
£ 050 \ 1
(4]
B,=297.4m x
O 1 1 | ! IfI | 1 1

|
0 50 100 150 200 250 300 350 400 450 500
B, (m7)

Fig. 4.5: The B for TE,, mode in an air-filled rectangular waveguide at f=30GHz and with
parameters a=b=12.7mm, m=1, n=2.
The dispersion curves of a shielded microstrip line in Fig.4.6, Fig.4.7 and Fig.4.8 are

provided by scanning the frequency over a proper interval. Fig.4.5 and Fig.4.6 reveals

62



that the dispersion curve for the dominant mode is in quite good agreement with the
results from the singular integral equation (SIE) method [33]. The complete dispersion

graph containing higher order modes is depicted in Fig. 4.6 and Fig .4.8 for £, =20, and

£, = 2.65 respectively.

f(GHz)

Fig. 4.6: Dispersion curve for dominant and higher order mode, ¢, =20 and comparison with the

result in [33].
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4.2 One-Dimensional Periodic Structure

For the structure shown in Fig.3.2, the geometrical parameters are: ¢=1.27mm,
t=0.5d=0.635mm, L=5d= 6.35mm, h=20=12.7mm. With & =8.875. These parameters
are chosen from [14]. Since the ratio of strip’s width to aperture’s width is »=0.1, the ratio
of points on strip to those on the aperture is taken as 0.1.

In this research, it is assumed that Bx=0, as the dispersion curve along the z-axis (or I'-X
portion in Brillion zone) is of interest, since the variation on By has a slight effect on the
dispersion curve, according to the Fig.4.11.

Thus, the homogenous (2N-+1)-by-(2N+1) matrix equation (4.3) has the from of
A(B,, )X=0, so the matrix A must be singular to have a nontrivial solution. To find the
solution at singularity, we set the smallest singular value to zero because of its good
stability. The issue of the convergence is shown in Fig.4.9. This figure demonstrates that
if N is chosen more than 30, e.g. N=40, the result converges well.

The effect of the height of the PEC shield is given in Fig.4.10. This graph reveals the fact
that by increasing the height of the shield, it doesn’t influence the root of singularity at

all, so this shield doesn’t cause any concern.
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Fig. 4.10: The affect of changing the height of the PEC shield on B, at f
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As pointed out before, by changing B« up to f,=30k, no deviation will be observed on the

root of singularity. Fig.4.11 shows this fact, and it is quiet matched with the graphs

reported in [14].
Roots of determinant for N=50,f =18GHz,ko=377radlm
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Fig. 4.11: The effect of p, on B,.

The dispersion curve of the dominant mode for the traveling wave in the z-direction with
Bx=0 is sketched in Fig.4.12 for the normalized 3, with respect to the frequency. In this
figure the result from MM-PM technique which was developed in this paper is compared
with the MoM technique in spectral domain which is reported in [14], and they are in a

prefect agreement. The complete dispersion curve for even higher order modes are

plotted in Fig.4.13.
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results from MM-PM was compared with the results of MoM technique in Spectral Domain [14].
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Chapter 5

Conclusion

5.1 Conclusion

In this thesis, the rigorous Mode Matching (MM) technique is invoked to find the
dispersion curve of the traveling electromagnetic wave in one-dimensional periodic
structure. The structure consists of a homogenous dielectric substrate backed by a ground
plane and infinite number of perfect strip conductors on the top. These strips are repeated
periodically. Moreover, the thickness of the strips is infinitely small. To avoid radiation
condition’s issue, a perfect metallic shield is placed above the structure at reasonable
height. It is demonstrated in this thesis that if this shield is put quite far away from the
substrate, this kind of bounded structure is a good model of the open structure.

In a 1-D periodic structure, the Floquet theorem is used to write the fields in two media:
the substrate and air. Next, using the boundary conditions on the interface, a set of
algebraic equations is found. Then, these equations are converted into a proper matrix
form. This matrix has all information about the dispersion curve. Finally, a MATLAB
code is written to obtain the graphical representation of the complete dispersion curve for

the structure.
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Unlike the regular MM, a simple sub-domain orthogonal set is required in order to
convert the algebraic equations obtained from boundary conditions into a matrix form. A
set of delta functions is applied for this purpose, so this method of implementation is
similar to the Point Matching (PM) technique. Therefore, this technique can be called as a
hybrid “MM-PM”. The result for the dominant mode is compared well with published
results based on the MoM in spectral domain. To further examine the validity of this
method, first, a simple shielded microstrip line is investigated by MM technique. The
results for microstrip line are matched well with those from the Singular Integral
Equation method. Then, MM technique is applied to the aforementioned strip grating
structure.

Furthermore, as the matrix is badly ill-conditional, the Singular Value Decomposition
(SVD) technique is used to guarantee stable and reliable results. A major concern in
dealing with MM is its relative convergence. Fortunately; it is demonstrated in this work
that for both structures of microstrip line and strip grating MM-PM has a good
convergence. The results of this method are also compared with published results based

on the MoM in spectral domain and excellent agreement is obtained.

5.2 Future work

Key components of MM-PM have already been developed in this thesis. This opens up a
number of possibilities for future study.

e For one-dimensional periodic structure (strip grating) whose propagating wave is

investigated in this thesis, its leaky-wave behavior can be also explored [14]. We

assumed that the propagation constant S is real. However; the propagation
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constant can be complex in the formy = a + jf. By doing this, we can predict

which band gap (if any) is better, since we already have the information about the
attenuation constanta . The other advantage of this extension is to obtain some
information from the incident wave when the structure is considered as a
Frequency Selective Surface (FSS). There is a correlation between reflection
constant and dispersion curve for a traveling wave: the reflection coefficient will
be minimum, when we trace the dispersion curve.

The other future work is generalization to two-dimensional periodic structure. A
2-D structure consists of infinite number of periodic patches on the substrate.
However, its matrix conditional number should be addressed. If this method
works well for the simple shape of patches, the novel design of the shape of the
patches can also be investigated [9], [10]-[13].

Spectral Domain is another approach developed well for both microstrip lines and
FSS structures. Both MoM [23] and FDTD [21] in spectral domain have been
used. The calculation of the dispersion curve for periodic structures using one of
these methods is another potential future work.

The efficient Singular Integral Equations (SIE) in [33] can also be applied to

periodic structures, but it needs lots of math preparations.
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Appendix I

Microstrip Line’s Equations

In this appendix, the details of deriving algebraic microstrip line’s equations (3.27) -

(3.35) from boundary conditions (3.23) - (3.26) are described.
Conditions (3.23) and (3.24) are used to express B'” and B'" in terms of 4'” and 4" :

k12 "ﬂz

E,=E_,— DAY cos(k,x)sinh(er” y) = Y B\ cos(k,x)sinh(a” (h - y))

k22 _ﬁZZ n=1 n=l1

w72 _ p2
R ZB—Z% A sinh(a"d) - B sinh(a (h - d))}os(k"x) -
n= 2 z

Since the set of {cos(k,x)} with k, = (n —%)-E are a complete orthogonal set over the

interval of 0 < x < L, so the expression inside the bracket should be zero.

ki - B sinh(a;"d)
k; - 2 sinh(e” (h—d))

B = 4 (A1.1)

E,=E,— Z(— Ak, +—a;‘° A,g’“a,g”jsin(knx) sinh(er y) =
=1

oo

Z(— Bk ——agQ—Bf,h)af)jsin(k"x) sinh(a® (h-y)) —

S| (- a0k, + P gorgo | SN D g L W gorgor )| Gok =0
5. sinh(@® (h—d)) 5.
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Since the set of {sin(k,x)} with k, = (n— %)% are a complete orthogonal set over the

interval of 0 < x < L, so the expression inside the bracket should be zero, and by

substituting B in this equation, it reduces as follows:

2 2 o : M
B™ =| 4© knﬁz2 1- k12 IB2 4 anz : Smh(zan d) (A12)
apa,’ k, = p. o |sinh(er? (h—d))
Applying (3.25a) leads to:
k2 _ﬂ2 oo )
E,=0>E,,=j-" 7 = (Z A cos(knx)sinh(a;”d)je“f”ﬂ =0
z n=1

D" A cos(k,x)sinh(er"d) = 0 —
n=l

> AL cos(k,x)=0 (A1.3)

n=1
where A© = 49 sinh(aVd) . (A1.4)

Applying (3.25b) leads to:

}le=f{x2”—>

| A+ A,sh>knj°"5h<a,s‘>d> cos(k,x) =
n=1 z

3 “—;l BOa + B,g’”knjcosh(a;z) (h—d))cos(k,x)

By letting B! and B in terms of 4! and 4" from equations (A1.1) and (A1.2), we

can simplify the operand of the sigma in above relations as follows:

(——_;"’31 A9a + 4Pk, j cosh(ar"d) - (-“—;i BYa? + B"k, ] cosh(a? (h—d)) =
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a)el AW + A%k jcosh(a‘”d)

wE, A(C) k IB a(Z) +k A(e) k 13(2) (1_ klz _ﬂzi]_A)Sh)aL
B. B auor! K2 -

H

[ D fog0) 4 g0k jsmh(a“)d)coth(a“)d)

wgo (c)k /B a“@k{A(” k.B. (1

oua®

kz ,3,2 A(h)
k; ~ B

A% sinh(a"d)x

we,0? e, - B}

B M B
{")5_1 a"coth(a“)d)— n Zr B: coth(a®(h—d))—k, L (2)(1
e~ \ 1

B. ’ B. 1-B

m
A(h)smh(a(l)d){k coth(a\d) +—2-2— ,,0(,, coth(a® (h— d))}
a

n

— — (1 (2)
A9k | Z98 o (atay- 20" & =B oo (- ay) -
ﬂzkn ﬂ"k ]_ﬁ
()
+ kI’B APk coth(a(”d)+ coth(a(z)(h d)) |=
aPau, " a®

(1) (2)
Ak, o] 8% coth(od)- L
B.| K &,

n n

_ﬁ (2)
1—,b' ———=Zcoth(e,” (h—d)) -

APk, [coth(af,”d) + % coth(ar® (h— d))} =
[24

n

wgo knﬁz
ﬁz a(l)w Eolo

(1) (2) _ IB?-
— 04Ok, &% coth(a(l)d)+ =2 coth(e,
k, k, . ik
_ e, [0 o) o) (2) _
k coth(a d)+ coth(a/ (h=d))|;=
ﬂz 7(7 an

_ o™ a®
Ak, &% coth(a“)d)+ 2

o k
{ (h)kﬂ

o

&~ B
1

N

n

L coth(a(l)d )+ —L-

k” -coth(a” (h— d))}}
ot

n
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o®

(M)

n

D sinh(a"d) coth(a',(,z) (h—-d))=

1)

(2)

n

D sinh(a"d)coth(aP (h—d)) =

; ]coth(a‘z)(h d))}

z

by g(z) [11 _; 3 ] COth(ar(,z) (h— d))}

n

%0 Ik, P,
B

k f? 1-¢,
;ugoa(Z) 1 ﬂz

j coth(a@® (h—d ))]

ﬁ‘ Jcoth(a(z’(h d))}}

3 coth(a,” (h—d))+ u? '(Bz) [ ’g ]coth(a(z)(h d))}}

L5 T T,
B,



Therefore,

£

> Ak, P, (B.)cos(k,x)~ Y A"k,T,(B.)cos(k,x) =0 (AL5)
n=1 n=l
where An = @ %, A(h) sinh(ed) (A1.6)
ﬂl kn
o’ M e, - a @ k, 1- &
P(B.)=¢, K coth(ar,’d) + ——=— 5 k,, 2 coth(er'” (h—d)) + B’ 05(2)1 3 ——=—-coth(er,” (h—d))

n

T.(B.)=p. ( o coth(e’d) + km coth(a'? (h— d))J (A1.8)
o

and Bz = f3, [k, which is the normalized propagation constant.

Applying (3.26a) leads to:

E,=0— (Z (— A%, + %A;’”a;“jsin(knx) sinh(a,?)d)]e-fﬂzz =0 —

n=l] z

n=1

D (— A9k + %“—0 AP j sin(k, x)sinh(@d) = 0 —

z

M

Ak, sin(k,x) = > 4"k, sin(k,x) = 0. (A1.9)

n=1

3
i

Applying (3.26b) leads to:

2
H,=H, - j——+ il 7 (z AM sin(k, x) cosh(a(”d)] Bz _

n=l
.ki—ﬁz(

I=3 > B sin(k,x)cosh(a” (h— d))] P

n=1

(k2 - B (i AP sin(k, x) cosh(a;”d)j =(k2 - {i B sin(k,x) cosh(a\” (h — d)))

n=l1 n=1
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n=l

- 2 p2 M : m
{Z':A“) W8 (1 il 'Bz]—Af,’” 0’72)} _sinh(e, d) sin(knx)cosh(af,z)(h—d))J
an

= (k2 - g2 (Z A sin(k,x) cosh(af)d)j =

p ouo? k- f? sinh(a'? (h — d))

— (kf - B {i AP sin(k, x) cosh(a,ﬁ”d)} = (k22 - 2 )x

n=1

- 2 _ g2 )
(k3 - B2 {Z {Aff) AL & [,’: _Z‘z J -4, %} sinh(r}"d)sin(k, x) coth(a,i”(h—d»]
2 z

p o,

n

\

o 1)
ZAih)[(k ~ B2 )eosh(a"d) + (k2 - B )Zm sinh(et,"d) coth(e,,” (h - d))}m(k i

n

%
i A k.. 2 (k2 — k7 )}sinh(a,ﬂ”d)sin(knx)coth(af,z’(h—d))
o oua,
gz;h>[%(kf B2 )eoth(aVd) + 0]:(2) (k2 - g2 )coth(a,g”(h—d))}in(knx):
" n N
i{z,, "(2) (k2 — k2 )}sin(knx)coth(af,z)(h—d))
n=1 an
i h k 1 k 2
;A,f >[a("l) (e, - B2 Jcoth(aVd) + —=- 5 (1 - B2 )coth(a® (h — d)):lsm(k X)=
= n n —_
i [Zﬁ % (1-¢, )} sin(k, x) coth(er'? (h - d))
n=l1 an
N _(h)_ —,B (e8] k (2)
> 4| - coth(er,d) + —&=coth(er,” (h - d)) |sin(k,x) =
n=1 L& 1-pB? a,” N
N _(e)_ kn 1-¢€ (2)
;An = (1 7 ]coth(a (h- d))}In(k x)
i A0 (B.)sin(k,x) - ZA“"W (B.)sin(k,x) =0 (A1.10)

n=l
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1-
where Q,(B) = (2)1 & coth(a(z)(h d)), (A1.11)

n

W (B)= LB (1) —coth(a"d) + k(z)

5 ~ coth(a!?(h—d)). (Al1.12)
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Appendix 11

Strip Grating’s Equations

In this appendix, the details of deriving algebraic strip grating’s equations (3.65) - (3.73)
from boundary conditions (3.61) - (3.64) are described. The procedure is similar to

microstrip line in appendix L.

Conditions (3.61) and (3.62) are used to express B!” and B\ in terms of 4 and 4" :

z h=— n=—oo

2 2 oo
E,=E,— k =/ 2(2,4“) sinh(aMd)e j [ZB,Y) sinh(af,z)(h—-d))e”ﬁ""j

Z

_ﬁz A“) sinh(a"d) — B." sinh(a\” (h - d))}‘fﬁx =0

Since the set of {e‘f””n"} with 8, = f, +%ﬂ—zn—are a complete orthogonal set over the

interval of — L < x < L, so the expression inside the bracket should be zero.

B© = 4@ k!—p?  sinh(al"d)
’ " ky - p? sinh(a? (h-d))

(A2.1)

Exlex2% i[

H=—c0

Cl;lo A,Eh)a,(,” —jA,(,e)ﬂn]Sinh(a,(,”d)e_jﬂ"x -

n=—oc0

> [——_ ;’”" B a —fo,”ﬂ,,]sinhm,S”(h—d))e‘fﬂ"* =
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Z H_al)go AP —jAf,e)IB,,) sinh(a"d) + (_al)go BMa® + J'B,(f)ﬁn] sinh(ar® (h— d)):le_jﬂ"x _ 0

. el m
Since the set of {e 78 } with S, = [, +—L—are a complete orthogonal set over the

interval of — L <x< L, so the expression inside the bracket should be zero, and by

substituting B\’ in this equation, it reduces as follows:

(%0— APGD 4O j sinh(aVd) + E% BPa® + jB B j sinh(a® (h—d)) =0

—_

sinh(@’d) - e,
sin(a® (h-d)) .

0 ) 1) - g(e) m 4, (2) -p(e)
— A" a,’ — j4° ﬂnj B a,” - jB," B, —

au

B.
o sinh(ad)
sinh(ar'” (h— d))

0 g0 o) 4(©)
An an _JAn ﬁnj
B.

— i, BPa® - j4 ki = sinh(a’d)

%

B, K (@ ()
Do 4D a0 B, + j40 B, ki-pr ) sinha,d) _ -ou, B o —

B. ks = B! )sinh(er,? (h=d)) B,
ey B om0

ﬂz kZ - ﬁz Slnh(ar(r ) (h - d)) ﬁz

. 2 _p2 (1) : M
B = jﬁnﬁ(zz) k:; k12 4@ “?2) AP | smh((zz)xn d) (A2.2)
wluoan k2 - ﬁz an Slnh(an (h - d))

Applying (3.63a) simply leads to

> A4 =0 —t<x<t (A2.3)
where A = 49 sinh(aVd) . (A2.4)
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Applying (3.63b) leads to:

= H,, - Z[ AP B, - ﬁlAzﬂaﬁ“jcosh<ay>d>e-fﬂ~x=

n=—oco

Z( JB" 3, + ﬁo B(e’a(z)jcosh(a(z)(h d)e P —

- e |
2| A B, - TB—IA,SE)OQI) jcosh(af,l)d)e‘fﬁ"“ =

aEO A(e) k12 _ﬂz

i iy BB [k -k @ A(’” B+ -0 |y
I\ e\ -5 )" aff) B. " k-p"

: m
_S@, d) o (- dye | S
sinh(a\” (h— d))

3 ( jA" B, — ﬂl A(e)a(l)]cosh(a(')d)e 5 =

A=—oco

oo 2 2 _ g2 (2) 2 _ @2 O
Zi{ IBn ﬂ: (;{C; k] ]Ar(,e) + woﬁan ];12 zzz A}ge) +j ﬂnir): A(h)JX
2 = z 2 T M a,

TN B!
sinh(@"d) coth(@® (h—d))e " | -

D —JA" B, - e A" J sinh(a"d)coth(a"d)e P~ =

N BiB. (ki -k ) o we P k- f: () B’ h
|7z 40t o A A4, X
L @ann k2 _ﬂ: ﬂ-‘ k2 _ﬂ: an

sinh(aVd) coth(a® (h - d))e ** J N
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oo

Z ( JAY sinh(aVd) B, -

B

1- (2) _ 2 (1)
Z (2) £ 149 sinh(a0a)+ L% & =Pr 4o GonaWay+ 1% 4 sinh(a®d) |x
a)/uoa 1 ﬁz

L W/ sinh(ag”d)a;“jcoth(a;”d)e‘fﬁ"" =

B 1-p; ,”
coth(ar® (h— d))e " | -

3 . ﬂ ﬂl h WE (e 1 -Ji
|- LE AR, - AP |coth(ary d)e P =
= o, a, .

_9

w @ o _ 32 _ ) _

> B.P. (2) 5 ety & ~De gy i Bala’ B By o |om(a h-dye i

1=—00 w/’loa ﬂz 1_ﬂz a( ) a)#o I(I)

S ﬂ ﬁn < 1) ﬂ ﬂpf ;(11) ] (2) —jB.x

Z j P AP B coth(aVd)~ ] o A" coth(@? (h—d)) le™P" =

= —e | we,0? (e - B\~ e, — .
Z (2) 7 )" 2 r—L2 14 coth(ar? (h—d)) +— 47 ar” coth(ar"d) le ™"
H=—00 wﬂoa : ﬁz l_le ﬁl

> ( J PP tcoth(er d) + j———’B‘"’B'ZZ) coth(a (h — d))]Z,f”’ e P g
o U0

o _ (2) _f3? — .
) BBy [1=8 ), @B, (& =B oo (h-dy) + -2 o coth(ld) |4 B,e* =0
a),uoa( ) 1- ﬂ‘v ﬂzﬂn lgﬂz ﬂﬁn

2[1 Lo cotn@d) + j-Lcoth(al® (h - d))]A"“ e+
(24 al

n n

- _ @, _7A2 2 _ .
S| Lol 128 | @t [ £ B2 (o (- dyy + LLEEL 0 cotniad) [T 86 =0
He=—oo a;(;) 1_ﬂz ﬂzﬁn l_ﬁ” ﬂzﬂ"

jZ(aﬂ—( coth(a"d) + (52) coth(o:(z)(h—d))jf_I,f”),B"e'”’"" +

"

= 1-¢ a? (e - pB? g —© p —ipx
Z[(%(l_ﬁ’zj+ﬁé’ﬁ ( 1’_52“ coth(e® (h— d))+ﬁ’ é coth(a"d) |4 P =0

%

n

= n ﬂ"
jz B. [ o-coth(ard) + =4 b, --coth(a,” (7 - d))] AP G e B =
al

i[‘&"g’g]) coth(a‘“d)+“(2)[gl' "; choth(a‘z)(h d))+ﬂa by [ = ]coth( @ (- d))] A0 B, +

H=—oco

n
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Therefore,

ZA(e)ﬂnPn(,B Ye P4 j ZA(”’ﬂnTn(,B Ye P —L<x<—t or t<x<L (A2.5)
where
A = e o A(’”smh(a(”d) (A2.6)
B. B,
rar(ll) m 0’(2) £ _Bz @) ,B B, @
P(B.)= 5 coth(arVd) + —2— 5 [l—ﬁh jcoth(a (h—d))+ o l—ﬂ coth(ar™® (h— d))
T (B.)=p: (ﬂm coth(a"d) + Offz) coth(a” (h— d))} (A2.8)

and f3. = f3. [k, which is the normalized propagation constant.

Applying (3.64a) leads to

A=—oco0

E,=0- Y (“’;0 AP — j49 B, ]smh(a'(”d)e =0—

z[“;“) 5 T AP B — jAC B, ]smh(a(”d)e'fﬁ" =0 -

Z e B A”’),B sinh(a’d)e P — j 3 49 B, sish(a"d)e P =0 —

HN=—c0

S ABe P+ > AN B e =0 —t<x<t (A2.9)

n=—co N=—o0

Applying (3.64b) leads to:

H,=H, —>81 ['f (ZA(”) cosh(ary d)e ™" ] [ZB;’” cosh(a,(,z)(h—d))e_jﬂ""j

n=

H=—o0

n2 oo
‘91 ﬂ’% [ZA(”) cosh(a"d)e™" ] (ZB;’” cosh(a,52>(h—d))e—f/’~"] -

H=—00
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ﬁﬁ h 1 -iB.x | _
= 15_2 (Z i 4," coth(a, d)e & )_

n——mwo n N
i( jﬂnﬁ(z) ( Brz ]ere) _ ﬂ:ﬂn(z) erh)}coth(a’(f)(h _d))e—.lﬁnx
h=—o0 woa z aﬂoan
o 2
R ‘LB; ﬁ:ﬁ"l coth(a;‘>d)+——'3 b —coth(aP (h—d)) |4"e™"* =
A 1-87 ) oy’ o,
i -
IB ( J_(e) (2) ~JB.x
Z Er 7@ coth(a® (h - d))e "
(2) =2 | n
n——wawoa IB:

za(z)[l 7 JA(E) coth(ar? (h— d))e ™"

J i[(‘gr ___Bzzj B, coth(a(l)d) + aﬂ COth(a(Z)(h d))] AW eibx — g

1-B2 | @)

n

n=—00

ZA(‘”Q(,B)e’ﬂ”+JZA(h)W(,B)e_’ﬂX—O —L<x<~t or t<x<L (A2.10)

H=mco

where
B, [ 1-¢, @)
Q(,B)—T(l 2 Jcoth(a (h—d)) (A2.11)
8r__:2 1 B, 2
Wn(ﬁ)=( - B_’% j 0/;1) coth(r )d)+a£2) coth(e® (h—d)) (A2.12)
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