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Multi contrast, and Multi illumination and Microwave
Imaging of 2D Inhomogeneous Scatterers.

Abstract
Md. Mosharrof Hossain

In this thesis, we consider the microwave imaging for reconstructing the material
properties of inhomogeneous lossy dielectric cylinders using scattered field data. The
scattered field is numerically computed using direct/forward method. The scatterer is an
inhomogeneous two-dimensional (2D) arbitrary-shaped cylindrical structure containing
impurities at any transverse location. The scatterer is immersed in a known dielectric
media (like air, water, saline-water etc). The known surrounding dielectric is used as an
observation domain whereas the complex scatterer is used as an investigation domain.
Unrelated multi sources are used to illuminate the scatterer at different angles for
reconstructing the less erroneous complex permittivity profile. Multi-frequency effect
with the noise is addressed during the reconstruction of the complex permittivity profile
using numerical simulations.

The objective function as well as the permittivity profile are computed using an
inverse scattering method from the corresponding scattered field. The two-dimensional
“Lippmann-Schwinger” integral equation for nonlinear inverse-scattering problem is
discretized by the method of moment (MoM). Uniform rectangular discretization and a
special proposed layered cylindrical discretization technique that provides better
reconstruction of the permittivity profile, are applied throughout. The resulting ill

condition matrix of the integral equation is solved by the pseudo-inversion algorithm.
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The numerical simulations show the effect of different high contrasts in the layered
scatterer (like human head, breast or whole human body) with complex permittivity on
the reconstruction of the desired profile. Extensive numerical simulations are carried out
to analyze the effect of contrast of different scatterers on the reconstruction of
permittivity profile, the effect of multi view illumination on the reconstruction of
scatterer’s permittivity profile, the effect of noise on the reconstruction of dielectric
profile and the effect of frequency on the reconstructed profile either for the transverse
magnetic (TM) or transverse electric (TE) case.

The total and scattered electromagnetic fields on the scatterer measured from the
numerical simulation using the proposed algorithm are validated by comparing with
published results. In the sequence of the validation, the simulated complex permittivity
profile is also compared with published results and with the Born approximation method
for weak scatterers. At last, the uncertainty of the algorithm is measured by satisfying the

boundary condition on the cross-section of the investigated dielectric object.
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CHAPTER-1

Introduction

1.1 Introduction:

Motivations, objectives and over views of this thesis are mainly described in this
chapter. Our main goal is to show the interaction of the electromagnetic fields with
scatterers including a human body for reconstructing their dielectric profiles. Various
effects on the reconstruction of the dielectric profile are discussed. At last, the over view

of different chapter of this thesis is described.

1.2 Motivation:

When microwave imaging was proposed as a noninvasive technique in medical
applications, the potential advantages of this technology seemed to allow great
developments with the early work in this area summarized in [1]. In the context of
medical diagnostics, microwave imaging was indicated as the future leading technique
for microwave decimetry [2]. Microwave imaging mammography has potential
advantage compared to X-ray mammography and Computed Tomography (CT) scanning
[3]. More than for any other cancers, breast tumors have electrical properties at
microwave frequencies that are significantly different than those of healthy breast tissues.

A normal breast tissue is also more transparent to microwave signals than many other



tissues, such as muscle or brain. A published report from U.S. Institute of Medicine
(IOM) reviews the current state of mammography and other technologies suggested for
breast cancer screening [4]. According to the report, there are some limitations of
mammography such as missing data of breast cancers up to 15%, difficulty in imaging
women with dense breasts and inconclusive results. Approximately 10% of
mammograms contain suspicious areas and less than 10% of these are diagnosed as
malignancies. Diagnosis often involves waiting for further imaging or biopsies. The
limitations of X-ray mammography provide a clear motivation for the development of
complementary breast-imaging tools to assist in detection and diagnosis. Magnetic
Resonance Imaging (MRI) is useful for examining women with implants but it is
expensive and currently unproven as a screening tool [4]. Microwave imaging for tumor
detection has the potential to be both sensitive and specific, to detect small tumors and to
be less expensive than MRI and nuclear medicine. The key to sensitivity, specificity and
the ability to detect small tumor is the electrical property (conductivity, permittivity etc)
contrast. The dielectric constant and conductivity for cancerous breast tissue is three or
more times greater than that of the host tissue [5]. The contrast between normal and
malignant breast tissue is closer to 1:2 [6]. The denomination of microwave imaging was
almost exclusively restricted to remote sensing or radar situation, corresponding to large-
range. Recently, microwave technology was used for Industrial, Scientific and Medical
(ISM) applications via microwave imaging and real time vision of imaging to provide
obstacle detection, precise navigation and route planning for transportation. Microwave

imaging involves the use of non-ionizing, low power radiation, and is thus less hazardous



than other forms of radiation. It has an advantage over ultrasound imaging in its ability to
penetrate air and bone. Limitations of existing systems for imaging dielectric objects

encourage implementation of microwave imaging system.

1.3 Objectives and Methodology:

The present thesis describes a simple algorithm to reconstruct the dielectric profile of
the cross section of the scatterer and to determine the portion of the target area that is
occupied by a scattering object, due to frequency varying incident fields. Also a special
discretization technique of the nonlinear and ill posed integral equation of the inverse
scattering problem is used to obtain more accurate results. In particular, we assume that
the scatterers have unknown cross-section, shape and dielectric properties. They are
located at unknown position inside a fixed area of interest. Moreover, the scatterers are
assumed to be characterized by dielectric parameters that do not vary along its axis. We
assume that the electromagnetic wave propagates in a direction perpendicular to the
cylindrical axis, with the incident electric field vector polarized and uniform along this
axis. Under the above assumptions, the problem becomes a two-dimensional inverse
scattering one. This assumption is effective for either weak or strong scatterer. The object
is illuminated by the known source in multi directions for a better-reconstructed profile.

To this end, the integral equation of the electromagnetic scattering is discretized by
the method of moment (MoM) [8]. It is expressed in terms of the total as well as
scattering fields and the distribution of the equivalent current density of the whole area.

The total field due to interaction of the known electromagnetic field on the dielectric



body is computed according to the Richmond theory [9]. A pseudoinverse algorithm [10],
[11] is used to solve this system owing to the ill conditioning of the problem. The
problem is then reduced to solving a linear algebraic system whose coefficients depend
only on the problem’s geometry, the physical properties of the propagating media and the
frequency. Our final goal is to deduce the distribution of the permittivity profile in the

area of interest by solving the related matrix equation.

1.4 Overview of the Thesis:

Chapter 2 reviews the literature for microwave imaging. Various previous methods
for microwave imaging are briefly presented and discussed.

Chapter 3 reviews formulation of total and scattered fields radiated by a dielectric
cylinder of arbitrary cross-section for the Transverse Magnetic (TM) case. The
mathematical formulation is derived in terms of equivalent current for all kinds of
scatterers. From the equivalent surface current as well as scattered field, the objective
function as well as the complex dielectric permittivity are derived. For numerical
simulation, the Maxwell’s equation and Helmholtz equation are discretized by the
method of moment using Dirac delta for both the basis and testing functions (point
matching method) to avoid the required number of integrations.

Mathematical expression of the total field as well as the scattering field are also
derived for the Transverse Electric (TE) case. Formulation of analytical solution for
scattered field is reported in appendix C.

In Chapter 4, we present numerical results to validate the proposed algorithm with



published work, exact solution (if available) and with well-recognized “Born
Approximation” for weak scatterers. There are two parts in the proposed algorithm:
direct/forward scattering and inverse scattering parts. The direct scattering-part is
validated with [12] and also with an exact analytical solution. In the inverse scattering-
part, the objective function as well as the permittivity is computed from the known total
field obtained in the direct scattering-part. The inverse scattering-part is validated with
[13]. Both the direct and inverse scattering parts are also validated with the well-known
“Born Approximation” in the case of the weak scatterers.

Chapter 5 describes an algorithm for finding the permittivity profile and shows
the effect of various parameters on the reconstruction of the dielectric permittivity
profile. In the proposed algorithm, the total electric field is computed from the known
incident field. Then the reconstructed permittivity profile is computed from the surface
current and the scattered field. The investigated domain is illuminated by a group of
unrelated plan waves in all direction around the object to achieve better results for the
reconstruction of the permittivity profile. The effect of varying the cell size on the
reconstruction of the complex permittivity is studied. Multi contrasts of multi layers-
inhomogeneous arbitrary shaped dielectric objects are also simulated to reconstruct the
complex permittivity profile. The noise effect on the reconstruction of the complex
permittivity is also considered. Multi frequency effect on the reconstruction of the

complex permittivity is also taken into consideration. If the scatterer changes its position
in the investigated domain, the error in the reconstruction of the complex permittivity

changes with the corresponding position either in the noisy simulation or in the noise free



simulation. TE case is also investigated briefly.
Chapter 6 describes overall conclusions of the thesis and future works. Results of
the numerical simulation prove the strength of the proposed algorithm by obtaining

qualitative dielectric reconstruction of 2D objects.



CHAPTER-2

Literature Review

In this chapter, various numerical techniques and microwave imaging methods
previously proposed by various researchers are briefly reviewed, together with a

discussion of their applications, advantages and limitations.

2.1 Classification of Numerical Techniques Domain:

There are several classification schemes for numerical techniques. One criterion for
classification is the domain in which the actual physical problem is defined. If the
problem is defined in the time domain, then the method is described as a time domain
method. In this case, the computational domain is both space and time dependent.
Alternatively, the frequency domain may be chosen, leading to the frequency domain
methods. In this case the computational domain is only space dependent as the problem is
solved at a single frequency. The time domain formulation is suitable for studying
transients or obtaining the response over a wide frequency range. The latter can be
obtained using Fourier transformation of the time domain information. The frequency
domain formulation is used for studying the steady state response at a single frequency.
The choice of the domain is usually based on the efficiency of particular problem.

To investigate electromagnetic field problem, techniques belonging to both the

frequency and time domain have been used. For most antenna application and radar



cross-section analysis, frequency domain results are usually required. For certain

electromagnetic compatibility (EMC) problems, the transient response may be required.

2.2 Classification of Numerical Techniques Formulation:

The starting point in modeling electromagnetic field problems is usually Maxwell’s
equations, which provide the basis for studying various electromagnetic phenomena. Two
kinds of mathematical formulations can be used to describe electromagnetic field
problems based on the form in which Maxwell’s equations are given. These are the

integral equation formulation and the differential equation formulation.

2.2.1 Integral Equation Formulation Based Techniques:

The integral equation formulation can be used to solve open problems and treat
complex geometries. The appropriate selection of a Green’s function for the problem
under consideration is the staring point for the integral equation formulation. The
formulation reduces the problem into an integral equation in terms of unknown constant
(such as scattered field, surface current) and these Green’s functions. This usually results
in a system with a dense matrix equation. Assuming a time harmonic variation, the
integral equation can be formulated in the frequency domain. The method of moments
(MoM) [8] and the geometrical theory of diffraction (GTD) [14] are considered the
leading methods in the integral equation frequency domain formulation. The method of
moments is used to discretize the integral equation thus allowing for a numerical solution
for the problem at single frequency. For frequencies above the resonance range, the

geometrical theory of diffraction may be used. The integral equation can also be



formulated in the time domain [15]. In such a case, it allows for study of transients in the
system. A detailed review of the numerical methods based on the integral equation

formulations can be found in [16].

2.2.2 Differential Equation Based Techniques:

The differential equation formulation can be used to solve closed inhomogeneous
problems more easily than the integral equation formulation. Also, as the complexity of
the problem increases, the differential equation based formulations become more
computationally efficient than the integral equation based formulation. The numerical
solution of the differential equation formulation can be obtained via such techniques as
the finite difference time domain (FDTD) [17] or the transmission line matrix method
(TLM) [18], both of them are time domain methods. The finite difference time domain is
based simply on the application of the central finite difference in both space and time to
Maxwell’s equations. Both approaches lead to systems of algebraic equations that must
be solved at each time step. They also require discretization of the entire simulation space
in which a non-zero field distribution exists. For open region problems, they require the
application of absorbing boundary conditions to truncate the simulation space to a
reasonable size. Both techniques can be used an electromagnetic modeling, simulation
and analysis tools. The differential equation form of Maxwell’s equations can also be
formulated in the frequency domain. The finite element (FE) method is widely used
technique that belongs to this category [19]. Because of the type of space discretization,

which is tetrahedral elements for three-dimensional problems, the method can handle a



wide range of geometry.

2.3 Microwave Imaging Techniques:

Various methods of microwave imaging proposed by various researchers in recent
years are described here with their advantages and limitations. These are: the microwave
tomography technique, the pseudoinverse method with equivalent current modeling, the
Born and distorted Born iterative methods, a Newton iterative method, an adaptive
iteration algorithm, Levenberg-Marquardt method, the conjugate gradient method, the
hybrid element method, the stochastic inversion method, the maximum entropy method,

the simulated annealing approach and the time domain method.

2.3.1 Microwave Tomography:

This approach is based on the Fourier diffraction projection theorem. It has been
applied to cross-sectional or two-dimensional and three-dimensional imaging [20] — [24].
Conventional microwave tomography systems are based on illuminating the body by a set
of plane waves. For each illumination, the forward scattered field is sampled along a
straight line, for the two-dimensional case, and on a plane for three-dimensional case.
Either Born or Rytov approximations are applied, thus forcing the assumption that the
inhomogeneities in the body are weak scatterers. The Fourier transform of the forward
scattered field gives the values of the two-dimensional Fourier transform of the object
along a circular arc in the two-dimensional Fourier spectral domain. According to the
Fourier diffraction project theorem, by illuminating the body from different directions

and repeating the same procedure the spectral domain can be filled with samples of the

10



body over an ensemble of circular arcs. Using Fourier inversion, the body can be
reconstructed. The main advantage of the microwave tomography is using an existing
efficient numerical algorithm, which is the fast Fourier Transform (FFT). This makes the
speed of the data processing fast enough to allow for real time imaging. However,
microwave tomography is subject to both mathematical and experimental limitations. The
mathematical limitations are imposed by Born and Rytov approximations. These
approximations are fundamental to the reconstruction process and limit the range of
objects that can be examined. The experimental limitations are due to the finite amount of
the collected data, which in turn limits the resolution of the permittivity distribution

reconstruction.

2.3.2 Pseudoinverse with Equivalent Current Modeling:

This thesis is based on this algorithm. Many researchers used this method. Its detail
theoretical formulation is described in the chapter-3. The background of this method is
only discussed briefly here.

Ney et al [25] was the first to propose the method of pseudoinverse
transformation to microwave imaging. In this method the linearized integral equations,
via equivalent current modeling, are first transformed into matrix equations using the
method of Moments (MoM). The complex permittivities are then derived using the
following procedure: first the equivalent current distribution is obtained from the
measured scattered field; second this current distribution is used to obtain the total field.

Knowing the total field and equivalent current, the object function is obtained and thus

11



the permittivity distribution. The first step involves the used of the pseudoinverse
transformation [25]-[26] to obtain the inverse of an ill-conditioned matrix. The
pseudoinverse transformation is a very powerful method in dealing with ill-conditioned
matrix equations. The solution obtained is a minimum norm least square solution. Coarsi
et al [27]-[31] and [13] have further developed the method and applied it to two and
three-dimensional electromagnetic imaging problems. To obtain acceptable result, the
method employs the use of multi-illumination together with the constraint that the
number of measurement points is larger than the number of discrertized cells.

As there are no iterations involved in this method, the computation time is small
compared to that of the iterative methods, which is the main advantage of the method. To
improve the quality of the reconstructed image, a priori information, regarding the
geometry and the dielectric properties, have been lately utilized in the reconstruction
process. Yet, the filtering effect inherent in this method limits the resolution of the

reconstruction especially for high noise levels in the measured scattered field.

2.3.3 Born and Distorted Born Iterative Methods:

Iterative methods with regularization in the space domain have become popular in recent
years. Wang and Chew [32] proposed the Born iterative method in which the total
electric field and the distribution of the electric parameters are updated by solving the
direct and inverse problem separately in each iteration. The outline of the approach can
be summarized as follows:

(1) The linearized inverse scattering problem is solved using the Born approximation.

12



(2) The scattering problem is solved for the field in the object and at the measuring
points using the object function obtained in the first step.

(3) The calculated fields in step (2) are used to solve the inverse problem and obtain
the next order object function.

(4) Repeat step (2) comparing the scattered field at the observation points, obtained
using the reconstructed object function, with measured fields at the same
observation points. When the difference is acceptable, the iteration terminates.

It should be noted that the Green’s function remains unchanged during the iteration
procedure (only the field in the scatterer is updated). One immediate extension of this
method is to update the Green’s function in each iteration together with the field in the
scatterer. This is known as the distorted Born iteration method [33]. The outline of this
method is almost the same as that of Born iterative method, except that in the second step
an updated Green’s function should be calculated using the last reconstructed permittivity
distribution. Both methods have been tested with two-dimensional object only.

The results obtained using these two methods show that, for noiseless cases, the
distorted Born iterative method is superior to the Born iterative method because of its
faster convergent speed. While for noisy cases, the Born iterative method is more robust
than the distorted Born iterative method. Also, it was shown [32] that The Born iterative

method could handle electrically large scatterer with low permittivity contrast.

2.3.4 The Newton Iterative Methods:

Joachimowicz et al [33] proposed a Newton iterative method to construct the

13



complex dielectric permittivity distribution. In this method, the integral equations are first
transformed into matrix equations using the method of Moments (MoM). Then an
iterative procedure is developed as follows:
(1) Starting from an initial guess of the permittivity distribution and hence the object
function, the total field inside the body is calculated.
(2) The forward scattering problem is then solved for the field at the measuring
points.
(3) The error between the scattered field computed in (2) and the measured field
(obtained through solving the forward scattering problem using the exact
permittivity distribution) is calculated.
(4) The first order estimation of the object function error is obtained and the object
function is updated using those errors.
The iterations go on until the error in the calculated scattered field is acceptable. In this
procedure, step (4) involves obtaining the inverse of an ill-conditioned matrix, so
standard Tikhonov regularization [34] is used to stabilize the results. Yet, the
regularization factor used in this process involves a parameter that can only be
determined empirically.

The main advantage of this technique is its flexibilities in considering a priori
information. It provides quantitative imaging even with strong diffraction effects.
However, it requires the use of a multi-illumination technique in order to obtain accurate

reconstructions. Also, the required computational time is extensive.

14



2.3.5 An Adaptive Iteration Algorithm:

Liu et al [35], [36] proposed an adaptive algorithm that optimizes the iterative process by
using, selectively, a different iterative technique for each iteration. The iterative
techniques involved are the Born iterative technique and the Newton iterative technique.
A decreasing ratio of error in the scattered field is used as a criterion for selecting more
suitable technique for each iteration. This algorithm requires the use of multi-view
illumination and Tikhonov regularization. It has been applied successfully to two-

dimension objects in the presence of noise in the measured field data.

2.3.6 Levenberg-Marquardt Method:

This method has been proposed lately by Franchois et al [37] to obtain a
quantitative reconstruction of the complex dielectric property distribution of biological
objects. The method is a modification of the Gauss-Newton iterative method and is
equivalent to the distorted Born iterative method. The method of Moment is applied to
discretize the nonlinear integral equation relating the scattered field data and the complex
permittivity. The resulting system of nonlinear equations is linearized in each iteration,
regularized, via Tikhonov regularization, and then solved for an updating correction of
the complex permittivity in the iterative procedure. The regularization parameter used can
either be obtained empirically, or using a generalized cross validation (GCV) method. In
fact, this method is very similar to Newton iterative method and its main modification
and advantage is using the GCV method to get the regularization parameter.

The Levenberg-Marquardt method requires the use of the multi-view illumination and
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imposes a priori bounds on the complex permittivity in order to accelerate the
convergence. The method has only been applied to two-dimensional objects immersed in
water. The use of the regularized cross validation method for choosing the regularization
parameter has proven to be successful in the case of weak homogeneous scatterers and
strong homogeneous scattterers with an initial guess in the neighborhood of the solution.

For strong scattering inhomogeneities, the reconstruction is of lesser quality.

2.3.7 Conjugate Gradient Method:

The conjugate gradient method was discussed in [38] as a tool to handle ill-posed
matrix equations resulting from the method of moments. This iterative method is similar
to the steepest descent method that involves the search for the minimum of a function in a
direction suggested by its negative gradient. It starts with an initial guess that generates
the first residual vector and the direction vector. Then, the system is solved iteratively.
The conjugate gradient method has the advantage of having a rate of convergence
practically insensitive to the initial guess, although a good initial guess reduces the
number of iterations. The method has been applied to two and three-dimensional

microwave imaging problems [38]-[39], and good reconstruction were obtained.

2.3.8 The Hybrid Element Method:

Meaney et al [40] proposed this method for two-dimensional image reconstruction
problems. The used computational methodology is a hybrid coupling of the finite element
and the boundary element methods. In calculating the electric fields from the current

estimates of the electrical properties, it seeks to take advantage of the strong points of the
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finite element method in the regions where the electrical properties are inhomogeneous or
not known. It also utilizes the strengths of the boundary element method in the region
where the medium is homogeneous, unbounded in nature and the electrical properties are
known. Coupling of these two methods occurs only at the boundary of the
inhomogeneous dielectric object. The method employs a Newton iterative procedure
together with multi-view excitation for image reconstruction. The reconstruction
technique is very similar to that used by Jaochimowich et al [33]. The regularization
employed is a blending of both Tikhonov and Marquardt approaches with regularization
coefficients being determined empirically. One of the advantages of this method is the
ability to use non-uniform meshing to handle available a priori information. The results
obtained show that it operates best for smaller objects with low contrast. For the case of

large objects and, or steep gradients, the method provides only qualitative images.

2.3.9 Stochastic Inversion Method:

The stochastic treatment of ill-posed problems has been successfully used in
image processing and recognition techniques and seismology studies. Qin et al [41]
applied the stochastic inversion of matrices to microwave imaging of two-dimensional
dielectric bodies. The method requires an initial accurate guess, as inappropriate guesses
can cause the algorithm to be slowly convergent or even divergent. The reconstruction
process can be summarized in the following steps:

The linearized integral equation is discretized using the method of Moments.

The next step is to use the Tikhonov regularization to solve the inverse problem,
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the solution obtained is used as a priori data.

Finally, using this a priori data, the stochastic inverse is applied to compute the
equivalent current distribution within the body and hence the complex permittivity
distribution.

The main advantage of this method is that it requires less computation time
compared to other iterative techniques. Also, various criteria for choosing the
regularization parameter [42]-[43] were proposed. Single-view illumination yields
accurate reconstruction only for simple objects with very small inhomogeneities. As the

number of inhomogeneities increases, this requires the use of multi-view illumination.

2.3.10 The Maximum Entropy Method:

Baribuad [44] applied the maximum entropy method to two-dimensional
microwave imaging problems. The method, which belongs to stochastic techniques, is
based on the information theory approach. It demands that one chooses from the available
data the solution, which uses the maximum information from the available data. In this
method, the method of moments is used to discretized the integral field equation. The
entropy is defined in terms of the current density distribution. The aim of the method is to
maximize the difference between the entropy and the Gaussian and excess noise. The
problem of maximization has no explicit solution and has to be solved iteratively. The
image obtained using this method uses more of the available data and is a regularized
solution. Also, the effect of the noise can be easily included in this method. Yet, the main

drawback is that although the method has only been applied to simple two-dimensional
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dielectric scatterer, the computational time needed is very long.

2.3.11 Simulated Annealing Approach:

This approach is based on stochastic techniques to search for the optimum state of
a system and to avoid iterative processes being trapped to a local minimum. The usage of
simulated annealing technique can bypass the need to invert large matrices and enables
one to obtain the solution using an iterative procedure. This approach has only been
applied to simple two-dimensional problems [45]-[46] and its main disadvantage is the

large computational time involved.
2.3.12 Time Domain Methods:

Moghaddam and Chew [32] proposed a method to solve a two-dimensional
problem in time domain. In their method, the time domain problem is transformed by
using Fourier transformation. The integral equation obtained in the time domain is
transformed into a set of integral equations in the spatial domain with different
frequencies and then solved using a Bom iterative technique. In the computation, the
dielectric distribution is assumed to be independent of frequency.

Batrakov et al [47] proposed an algorithm based on the Newton-Kantorovich
iterative procedure and Tikhonov regularization for solving two-dimensional inverse
problems in the time domain. In their algorithm, most of calculations are given in an
explicit form, thus reducing the computational time and making the algorithm suitable for
real time process. Yet, their analysis is restricted to cylindrical objects with permittivity

varying in the radial direction only. Later, they expanded their work [48] to handle
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objects with arbitrary complex permittivity distributions. In doing so, they introduced
complexity to the calculations compared to their earlier work.

The advantage of the time domain methods is that more information is available.
However, the computational cost is huge compared to spatial domain methods because

the fields or their spectrum have to be calculated at different times.
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CHAPTER-3

Formulation of Direct and Inverse Scattering Problems

3.1 Introduction:

In this chapter, the mathematical formulation of integral equation for
electromagnetic scattering is described for TM and TE cases. Either TM or TE case has
two parts: a direct and inverse scattering part. The scattering field is formulated in the
direct scattering part. The permittivity profile is computed from the inverse scattering

part. The mathematical formulation for Born approximation method is also briefly

described.

3.2 Transverse Magnetic (TM) case:

3.2.1 Direct Scattering Formulation:

Let us consider a harmonic EM plane wave incident in free space on a dielectric
cylinder of arbitrary cross section as shown in Fig. 3.1. The time harmonic e’* is
understood. It is assumed that the incident electric field intensity £’ has only a z
component independent of z, where the z-axis is parallel with the cylinder axis. S is the
investigated area in a plane orthogonal to Z. The incident electric field may be written as:

E'=ZE'(x,y)= ZE,e " = ZE /M (reosttrsing) (3.1

Where ¢, is the angle of incidence measured from x-axis of the coordinate system.
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Fig.3.1 Cross section of a dielectric object with the coordinate system

The dielectric cylinder is assumed to have the same permeability as free-space (u = 4,).

The dielectric material is assumed to be linear and isotropic, but it may be

inhomogeneous with respect to the transverse coordinates as follows:

F=e(x,y) =6, (x,y)- jL’;’y) (3.2)
= &(x,»)/ &y =&,(x,y)- j Gf;’y) (3.2.9)

Where £ represents the complex permittivity and @ represents the angular frequency
24 .

Under this assumption, the total electric field vector and the scattered electric field vector
are parallel to and uniform along the cylinder axis. Therefore, the vectorial problem is

transformed into a scalar one. The following scalar Helmholtz equations hold:

[V2 + 732 (x, y)]E(x, y) =0 (x, y) eS (3.3.a)

V2 + ke )EE)=0  (ny)es (3.3.)

where y, = a)w/,uogix,yi
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Let E represents the total field; i.e, the field set up by the source in the presence of the
dielectric cylinder. The scattered field is defined to be the difference between the total

and incident fields. Thus,
E=E+E° (3.3.0)
The scattered field E°may be generated by an equivalent electric current J that is

induced in the dielectric body. This field is radiating in unbounded free space, where

J(x,y) = jo(e —&)E = joe (s, -1)E = Z}L— [ -k JE=[ox»E (3.4

0
where, ¥ =’ uy8.6,(x,y)— jou,o(x,y) and ky = o\ ue, =27/, . The free-

space wavelength is given by 4,. O (x,y) is called the objective function. This equivalent

current density is often called the “polarization current”. The electric field due to an

electric current filament dI parallel with the z-axis in free space is given by,
dE* = —Z(au | H)H D (k,p)dl (3.5)
Where HO(Z) (k,p) is the Hankel function of order zero, pis the distance from the

current filament to the observation point. The increment of electric current, which

generates the scattered field, is given by,
dI = Jds = jw(e - &,)Eds (3.6)
Where ‘ds’ is the increment of surface area on the cross section of the dielectric cylinder.

From (3.5) and (3.6), the scattered field is given by
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E* (%,y) =~k 14) [[(e, ~DE(x', y)H, (ko p)edx'dy’

J(x', y)

=-(jky' 14) | j H,® (ko p)dx'dy’ (3.7)

where (X, y) and (x', y") are the coordinates of the observation point and the source point,

respectively , ¢, is the complex relative dielectric constant (&, = ¢/¢&,) and

p=y(x=x) +(y-y) (33)
The integration in (3.7) is to be performed over the cross section of the dielectric
cylinder. In the inhomogeneous case, the relative dielectric constant is considered to be a
function of the source coordinates ¢, = ¢,(x’,»") . Equation (3.7) is valid for the scattered
field at any point inside or outside the dielectric region. The integral equation for the total

field E is obtained from (3.3.c) and (3.7) in the following form:

E(x,y)+ ik, 14) [[(e, ~DE(', y)Hy? (ko p)dic'dy’

= £ y) + 22 [[TGH  hop)de'dy' = E' () (9)

Let us divide the cross section of the dielectric cylinder into small cells so that the
dielectric constant and the electric field intensity are essentially constant over each cell.

The division into cells is indicated in Fig.3.2.
4

2
1 3jy

-

Fig.3.2: The cross section of the dielectric cyli;der is divided into small cells
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If (3.9) & (3.7) is enforced at the center of cell m, the following expression is obtained

N — p— .
E, +(ik' 19 (s, -DE, [[  H,® (kypy,)dx'dy' = E, (3.10)
n=1

N
(—jk’ 19 (e, ~VE, [[  ~H,7(kop,,)dx'dy’
n=l

a, & o "7 s
oS TN [ O kop)dr ' =B @)
n=] celi—n

Where ¢, , J , and E‘n represent the complex dielectric constant, surface current and the

total electric field intensity at the center of cell n, respectively, and

p=yx' =2, +('~,) (3.12)
By taking m = 1,2,3...N, equation (3.10) yields a system of N linear equations, where N
represents the total number of cells. These can be solved to determine the total electric

field intensity at the center of each cell (EI,E2,E3,....,E v)- Having thus determined the

total field E(x,y) in the dielectric region, it is then possible to calculate the scattered

field of the dielectric cylinder at any point in the space by means of (3.11). The details of

the solution are described in the following section.

3.2.1.1 Formulation of the matrix equation:

The integration of (3.10) & (3.11) can be avoided using Dirac delta for both the
basis and testing functions [9]. A simple solution is available for the integral of the zero-

order Hankel function over a circular region. So, the discretized square cell can be
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replaced by a circular cell as shown in Fig.3.3.
Equivalent Circular cell

£.

f

L| Square cell

For Hangkel function, L x L = na’

Fig.3.3 Discretized square cell is converted into small circle having equal area

The simple solution of Hankel function is given by

2 a
J' cell njo HO(Z)(kop)p,dp,dwr

0
= (2/k, ) [rkoa H P (kya)-2, 1 m=n (3.13 .a)

= (2a7 1 ky)J (k@) H " (kopo ) if m # n (3.13.b)

A small error is incurred in approximating square cells with circular cells with same cross
section area to take an advantage of the simple expressions given in (3.13) .The distance

between the centers of the mth and nth cells is given by

Pon = = %,)? + (0 —3,)’ (3.14)
(3.10) can be written in the following form:
N
E,+Y(¢,-VE,(j/2)| nkyaH? (ka)-2j]=E, if m=n (3.10.0)
n=1

N
(e, —1)E (jrk,al2)J, (k,a HY (k,p, =E'" if m#n (3.10.b)
n n 0 1 0 0 n m

n=]
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The above two expressions are written in the general form:
N — — :
>C,E,=E, wherem=1234..N (3.15)

Details derivation of equation (3.15) and all relevant terms are given in appendix A.

If a, represents the radius of the equivalent nth circular cell, the coefficients Cr, are

given by,

C

mn

1+ (e, - 1)(-%—)[7rk0amH O (koa,)=27] i n=mG15a)

Cou = (&, - Jjmkoa, 12)J (kea,)H " (kyp,,) if n+m (3.15b)

mn

(3.15) can be represented in a matrix form:

[c] [E]=[E] (3.16.a)
[£]=-c I'[z'] (3.16.b)
Where,
C, Ciy _E(xcl,yc])T I Ei(xl,y,) ]
cl=| b e EBeaya) | oand Bl B |
Cur -+ Co _E(xUN',ycN)A _E“(xn;,yM)d

The scattered field can be found out using (3.16.b) and (3.3.c). Similarly, the system of

linear equations represented by (3.11) can be written in the following form:

N
>D,J,=E, withm=1234....N (3.17)

m
n=]
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Details derivation of (3.17) are given in appendix B. The coefficients Dy, are given by,

D,, =—(an,a,/2)J,(kya,)H " (kyp,.) ifmzn  (3.18.2)

1
D, = —( )[zzkoamH D (kja, ) - 2j]ifm=n (3.18.b)
2we
In a matrix form,
[D] [J]1=1[E"] (3.19.2)
[J1=-[D]'[E"] (3.195)
Where,
_j(xc,c)-\ 'Esx, )_
D, D,, 1 Vel (x>
pl=| L Pl i | ma [B)e| B |
D . D L o
M w __J(ch>ycN )_ _Es(xM b4 yM )_

We can then find out the equivalent surface current from the corresponding scattered

field using (3.19.b).

3.2.2 Inverse Scattering:

In this section, the procedure to reconstruct the complex permittivity profile of a
cylindrical object is outlined. Assuming that the scattered field is known, either through

measurements or analysis, one can discretize (3.4) and re-write in the matrix form:
7]=l0] [E] (3.20.a)
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(3.20.b)

where,
011 O rj(xc“yc})— —E (xcl’ycl)—
[O]: ’ [j]: j(xcn!ycn) and [E ]: E (xcn’ycn) '
0 .. 0 L B
" | (Xens Yen) ] LE (Xews Yon ) |

[O] represents a diagonal matrix whose nontrivial elements, according to (3.4), are given

by
Om= O (Xen Yeny= ———[12 (%00, y.) — k2|, n =1,2,3..N. (3.21)
WH

At this point, the dielectric parameters of any cell can be obtained using (3.22)

Onn = L Fe2Yen) n=123 . N (3.22)

- E(xcn>ycn) ’
In the above relation, £ and J can be solved by means of the pseudoinverse algorithm
from (3.16.b) and (3.19.b) respectively, which allows one to obtain, in a straightforward

way, the values of the dielectric characteristics for any sub-area of the region of interest.

The dielectric parameter can be written in the following form:

O s V) = wj{ 2o va) - 2]
0

/ [wzﬂogogr (xcn »Yen ) - ja)luoo-(xcn »Yen ) - wzluogo]

Wiy
_—j[a) 606,(xcn,ym)-—jo‘(xc,,,yw)—a) 80] (3'23)

If the dielectric is lossless then o(x,,,y,,)=0 and (3.23) can re-written in the following:
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O(xcn’ycn) = _j[a) gogr(xcn’ycn)—w 80]

For a lossless dielectric, one can get the permittivity profile in the following:

O(xcn 4 ycn )
W &,

8r(xcn’ycn)=1+j

If the dielectric is lossy, then the dielectric permittivity is complex.

For lossy dielectric, the permittivity profile can be written in the following:

)_ja(xcn’ycn) :1+j0(xcn’ycn)
WE, @ &,

8" (xcn > y cn

g’(xcn’ycn) = Re[5 /80]2 RC[I +JM£”_):]

® &,

O (Xeps Ven) = Im{l + J%.y—)jl
w &,

(3.24)

(3.24.3)

(3.24.0)

(3.25.2)

(3.25.)

Note that if both J(x_,,y,) and E(x,,y,) are too small, consequently Onn becomes

inaccurate.

3.2.3 Integral Equation with Born Approximation:

In this section, the formulation of the integral equation for Born approximation

method is outlined in order to measure the strength of Pseudoinverse algorithm. The Born

approximation is a widely accepted approximation for weak scatrterers and usually

applied in microwave tomography. For low contrast inhomogeneous scatterers, the

magnitude of the transmitted field in the object is very small compared to that of the

incident field. Thus the transmitted field inside the object can be neglected and the total
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field can be approximated by the incident field. Based on this approximation, the

scattered field (3.7) can be written as:
E*(x,y) = [G(x,,%,y)O(', y)E' (', y)dx'dy’

_ __% O(x',y’)Ei(x',y')Hz(k p)dx'dy' (326)
4 0 N0

If (3.26) is enforced at the center of cell m and discretized by moment method along with
Galerkin’s method using the available solution of integral of the zero-order Hankel

function over circular region, (3.26) can be expressed in a matrix form. If a, represents

the radius of the equivalent nth circular cell and for m=1,2,3...N then,

N .
Z—ij— £, —1)|:7rka H; (kya,,) Zj]E,’;, =E* if m=n (3.27.a)

n=l
Z(gn _1);]_22%‘]‘ (kOan)Hsz) (kOpmn)E:t = Ems l.f m#n (3'27b)
The above expressions are written in general form like appendix A:

ZD” E'=E°® withm=1,2,3..N, (3.28)

mn=——n m

The coefficients D?, are given by,
b —J [ (2) 1
D, —(8m—1)(——2——) mkya,H " (kya,)—-2] if n=m (3.29.3)

D, = (&, —1)-jrkea, /2)J (kea,)H " (kop,, ) if n=m(329b)
In matrix form,

[D°] [E']=1[E"] (3.30)
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Where D*=D,,’+D,,’

m

3.2.4 Ill-posed Problems of the algorithm:

The integral equation for nonlinear inverse-scattering problem of the proposed
method has been discretized by the method of moment and has been resulted an ill
condition matrix of the integral equation. A pseudoinversion algorithm has been applied
to address the problems related to the system’s ill condition. In this section, the general
characteristic of a well-posed problem is described briefly and also explained at a glance
how to overcome the ill-posed problem of the microwave imaging. Usually, many
problems of mathematical physics can be formulated in terms of an operator equation

Ax=y (3.31)
Generally, y denotes the system output, x denotes the unknown being sought and A is the
system operator. Given A and y, the objective is to determine x. According to the
Hadamard definitions [51], the problem is well posed if the following conditions are
satistied:
1) For each element y, there is solution x: That is the existence condition.
2) The solution x is unique for a given y: that is the uniqueness condition.
3) For small perturbations in y, there are small perturbations in x: that is the stability
condition.

The problem is said to be ill-posed if at lest one of the above conditions is

violated. There are three main reasons that cause this ill-posedness, namely,

incompleteness of the input data, numerical errors in the input data and /or the nature of
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the system operator A. In order to solve an ill-posed problem, special techniques have to
be employed to regularize the problem [52]. The solution to the regularized problem will
be well-behaved and will offer a reasonable approximation to the solution of the ill-posed
problem. In particular, an ill-posed problem may be regularized by:

a) Changing the definition of what is meant by an acceptable solution,

b) Changing the space to which the acceptable solution belongs,

c) Revising the problem statement,

d) Introducing regularization operator and

e) Using statistical techniques.

3.3 Transverse Electric (TE) case:

3.3.1 Direct and Inverse Scattering Formulation:

Consider a harmonic wave incident in free space on a dielectric cylinder of
arbitrary cross-section shape as indicated in Fig.3.4. For TE” case, the incident electric

field intensity E' hasnoz component and it may be written as:

E' = 3E,(x,y) + JE, (%, y) = Eo(§cos ¢, ~ Esing,)e 4= (3.32)

Where X and y represent unit vectors parallel with the x and y-axis and ¢,~ is the angle
of incidence with x-axis of the coordinate system. Similarly, The total field, Scattered

field and the electric current have x and y component. The total field ( E ) is generated by

the source ( E') in presence of the dielectric object and it can be written in the following:
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E=3E,(x,y)+JE,(x,y)=E'+E° =E,+E]+J[E,+E)]  (3.33)

The equivalent electric current (J ) is induced due to incident field (£') in the dielectric

object. The equivalent electric current is given by,
J =3, (%, )+ 3J (%, ) = jaxe = &)[RE, (%, y) + JE, (%, )] (3.34)

The field due to an electric current filament dI in free space is given by,
dE* = —(G+ y)%é‘-H52>(kop)d1 (3.35)

Where p is the distance from the current filament to the observation point.
The increment of electric current which generate the scattered field is given by,
dl = ja(e - £)[3E, (%, y) + JE, (x, y)lds (3.36)

Where ds is the increment of the surface area on the cross section of the dielectric object.

H Dielectric object

y | @

WX
Fig.3.4 The Cross-section of a dielectric object

From (3.35) and (3.36), one can find out the scattered field by integration over cross
sectional area. The integral equation of the scattered field is enforced at the center of cell
and discretized by moment method along with Galerkin’s method using the available
solution of integral of the zero-order Hankel function over circular region like TM case
(section-3.2.1.1). If harmonic electric current densities J, and J, are distributed uniformly

in circular cylinder of radius “a”, these currents generate a field in free space. The
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scattered field due to a single cell n from one circular cell centered at the origin with the

observation point located outside the cell is given by,

B (xy)= K oy HPokop) + (62 = 32 JH @1y ), 6
ST 4 92O (hy) - kol Pokop), |
(2) 2)
E;(x,y)— [k X H(z) Op ( x2 )H 1(kop)1] (338)
+012H P (ky ) — ko pH o (ky )1,
mal, (k) (3.39)
2we,p

The scattered field of the entire cylinder is, according to the superposition theorem, given

by a summation of such terms with x and y replaced by (x — x,) and (y — y,) in (3.37) and

(3.38) where x, and y, denote the coordinates of the center of cell n. If (3.33) is enforced

at the center of cell m, we obtain two scalar equations for entire cylinder in the following:

{kopmn(ym _yn)zH(Z)O(kopmn)+ :IJ
(5 =20 =0 =y H 1 kop,)

4 i a,J(kya,)

T+ (3, = %) = Y )RH Wk p,) ~ = E,, (3.40)
kopmnH(Z)O(kopmn )]Jy

2&)80 n=l pmn

\

r Ko P (%, _xn)zH(Z)O(kopmn)+ J
{((y,,, =) = (%, = %, JHP 1 (ko oy )}

1+ 0 =200 = 2 )RH D opr) = =B, (341)
koPunH Pollo P )V,

L )

NaJ(ka)
2

" 26080

With m=1,2,3...N and p,, = (7, = ¥,)? + (%, —%,)* .
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Equations (3.33), (3.34), (3.40) and (3.41) can be combined to obtain two linear relations

among the total fields in the various cells (similar to appendix A):

N

> (4E,, +B,,E,)=E,, (3.42)
n=1

N .

> (,E,+D,E,)=E,, (3.43)
n=1

where Off diagonal element of coefficient of the above matrix,

Amn =K’[k0pmn(ym —yn)zH(()Z)(kopmn)+ {(xm _‘xn)2 —(ym —yn)z}Hl(z)(kopmn)]

an = Cmn = K’(ym - yn )('xm - xn )[2H1(2) (kopmn) - k()pH(gZ) (kopmn )]

Dmn = K’[kopmn(‘xm —xn)zH(EZ)(kopmn)+ {(ym —yn)2 —(‘xm _'xn)z}Hl(Z)(kopmn)]

— janl (kOan )(gn B 1)

K'
2P’

The diagonal elements are found putting x = 0 and y = 0 in (3.37) and (3.38).
App =D, =1+ (&, =D[0.25j7k,a,H P (kya,) +1]

B, =C =0

mm mm

N represents the total number of cells and a,, represents the radius of the circular cell n.

From equation (3.42) & (3.43), the following matrix can be written:
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E;] A4, A, . . . Ay B, B, . . . By E,
E, 4, Ay, . . . Ay By By . .. By E,
E;N _ Ay, Ay, - - - Aw By By, - . . By E.y
E;l Ch G Cv Dy Dy, D,y Eyl
E;z Cu Cp Cov Dy Dy D,y || By
_E;N_ KoY Cyvi « « - Cw Dy Dy, . . . Dy LEyN_

Equations (3.42) and (3.43) represent a system of 2N linear equations.
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CHAPTER - 4

Validation and Accuracy Analysis

4.1 Introduction:

In this chapter, the numerical simulation for various geometrical dielectric objects
is validated with some journals and well-established Born Approximation due to measure

the strength of the proposed algorithm. The following formulas are used:

% Error of permittivity for nth cell, A, = Ern(Fep> ¥ C”() —Em ()xc,,,y o) x 100 (4.1)
’ grn xcn > ycn

% Error of permittivity for nth cell, A, = G218 c{’) =9, ey Von) x 100 (4.2)
Gn (xcn 3 ycn)

Where ¢,,(x,,y.,) and 0, (x,,v.,) are the original relative
dielectric permittivity and conductivity of nth cell having coordinate (Xcn.Yen)
respectively. On the other hand, ¢,,(x,,,y.,) and o, (x,,y.) are the numerically

simulated relative dielectric permittivity and conductivity of nth cell having the
respective coordinate (X¢n.Yen). In some simulations, the relative mean square error
formula [13] is used to measure the error of the reconstruction of the relative permittivity

and conductivity; these are given in below:
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%

[i (grn - g:n : }

Relative mean square error of relative permittivity, o, = 7 4.3)
N 2
n=1
N %
ey
Relative mean square error of conductivity, do = i (4.4)

g

4.2 Flow Chart of Numerical Technique:

The numerical technique is divided into two main parts, which are forward/ direct
scattering and inverse scattering problems. In the direct scattering part, the dielectric
object under investigation is illuminated by the known incident field that may either be
plane wave or a set of unrelated [54] plane waves. The method of moment (MoM) is
applied to discretize the desired problem having known complex permittivity using
Pseudoinverse algorithm. The total as well as scattered fields are calculated at each
measuring point in matrix form. The equivalent surface current due to the incident field is
computed from the scattered field by some mathematical operations.

In the inverse scattering problem, knowing the scattered field and respective surface
current obtained from direct scattering problem or by measurements, we use matrix
operations to arrive at a system that can be solved easily to obtain the required objective
function-diagonal matrix. From the diagonal matrix of the object function “O”, we can

calculate the permittivity as well as the conductivity by some simple mathematical
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operations. The following figure summarizes the steps used in the reconstruction process

of this algorithm.

Known complex permittivity
distribution matrix

i

Known unrelated incident field in
matrix form

I

Solve the direct scattering problem to
obtain the total field at the detector

{

Obtain the scattered field matrix by

mathematical operation

Obtain the surface current due to the

investigated object in matrix form

{

Through matrix operation obtain the

desired object function in diagonal

matrix form

4
Through mathematical operation,

reconstruct the permittivity profile of

the investigated domain

Fig.4.1 Flow chart of the reconstruction process of complex permittivity profile
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4.3 Discretization Technique:

The cross section of the layered circular cylindrical scatterer is shown in Fig.4.2.
Usually a cylinder can be approximated by equal discretization along the x and y-axes
(having square size cell). Suéh a cell can again be replaced by an elementary circle one
that has the same area of the discretized square cell to calculate the Green’s function. But
the conventional discretization technique is not adopted throughout the following
simulations.

For simplicity, we consider a circular dielectric cylinder. The dielectric circular
cylinder is divided into many layered circular cylindrical shells (shown in Fig.4.3) whose
radius is n x A where n =1,2,34...... and n is the number of the layered circular
cylindrical shell. Each circular cylindrical shell is divided into many square cells whose
area is A x A. The size of the cell near the center of the object is erroneous instead of the
square size. The number of square cells for each layered circular shell, N =2z (n x A -
0.5A)/A) and each square cell makes an angle “6” at the center of the object where 6 = 2n
/ N. A sample of discretization is shown in Fig.4.3. For the same size of a cylindrical
shaped dielectric scatterer, several discretization samples are shown in Fig.4.3 and
Fig.4.5. The proposed technique has a great advantage for cylindrical scatterer having
different types of layered dielectric (human head/body having skin, bone, Fate, Brain
etc.) to ease handling the Green’s function as well as the matrix of direct/ forward and

inverse methods. In this case, the radius of the cylinder is A¢/2 and each side of the small
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cell is A¢/18 and the number of the layered circular shells, n = 9. The number of the cells

for the discretization technique in [13] is 256; whereas this number is 254 for the

proposed technique used throughout the following simulations shown in Fig.4.5.

X ® 3" layer permittivity ®

2™ layer permittivity

1™ layer permittivity

y

Each side of small cell

1% circular shell

2™ circular shell

y

-
»

> h
4" circular shell

3" circular shell

Fig4.2 The Cross-section of layered Fig.4.3 The cell for layered discretization

dielectric cylinder showing the coordinate of the dielectric
system

The proposed discretization technique gives us more degree of linearity of the

reconstructed permittivity profile of the desired scatterer and gives less spiky values of

permittivity that can give false triggered reconstruction. The circular cylindrical scatterer

is assumed lossy homogeneous having the permittivity of 4-3i. The reconstructing

permittivity profile is shown in Fig.4.6 by the proposed algorithm using the above

mentioned both discretization techniques. In this simulation, there is no noise.
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4 Cellno.=266  Square discretization of [13] 1e=3  Cellno.=256  Square discretization of [13]

g =4 Cellno. = 254 g | 1 623 Cellno. = 254

Circular layered discretization b Circular layered discretization

Fig.4.6 Reconstructed profile of permittivity using the above both discretization

techniques
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4.4 Validation of total field:

The accuracy of the direct scattering procedure of this algorithm is established by
comparing the near field data to [12] and to its analytical solution. These field data are
obtained from simulating the dielectric cylinder having 1.0 circumference. In this
simulation, we consider cross sectional shape of homogeneous cylindrical dielectric
object divided into 256 sub areas (small square cell) shown in Fig.4.7. We use TM wave
illumination, in the sense of Richmond’s statement [9], the interrogating electromagnetic
wave has been assumed to be a uniform plane wave propagating along the x axis and with
the electric field polarized along the z axis, which is taken to be parallel to the scatterer
axis. The cylindrical scatterer has been assumed to be lossless homogeneous with relative
permittivity € =2.56. The values of total electric field at all measurement points have
been obtained by the use of a numerical program and as well as scattering electric field.
This circular cylindrical dielectric can be approximated by equal discretization along x

and y axis (small square cells shown in Fig.4.7).

— N ~ °" )

v

Fig.4.7 The cross-section of the cylindrical dielectric having 256 cells
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Such a cell can again be replaced by an elementary circle that has the same area of
the small square cell to calculate Bessel and Hankel functions. Relationship among
radius, wave-length and step size (delta, 256 cells) have been adopted as followings:
Circumference of the cylindrical object, cir= 2ma =1.0Ay where ‘a’ is radius. Operating
frequency for this simulation, f =230.84 MHz. 18 steps along x-axis central cut and 18

steps along y-axis central cut are shown in Fig.4.1. Let the number of cell, N=21, 101,

256............. etc. Generally,

cir
w/i47z]\/i

e.g. for 21 cells, 81 = cir /N (n x 84) = /N (n x 84),

5:x N=z x a*=7 x () ie 5=
2r

For 101 cells, 810; = cir/V ( x 404) = /N (1 x 404) and

For 256 cells, 8556 = cir /V (m x 1024) = A /N (1 x 1024).
For numerical solution, the equivalent radius ‘a’ of the elementary circle which has the
same area of a discretized cell, is ‘a’ = /N (n).
Unlike inverse scattering, the direct scattering has the analytical solution as well as the
numerical solution. The numerical solution is also validating with the exact/analytical
one. Magnitude of Et (total electric field) on the dielectric from [12] and from analytical

and numerical simulation is shown in Fig. 4.8 and 4.9 respectively.
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Fig.4.9 Et along central cut (along y =0) for analytical and numerical solution
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Being insignificantly different in magnitude, both numerical solution and exact
equation solution follow the same pattern of plots of E; as given in [12]. But numerical
solution and exact equation solution between themselves produce fantastically matched
results. Numerical technique involves calculation over discrete values and the
discretization errors in  dielectric or in the near field region are not balanced out. So the
difference in magnitude may occur. And the ‘exact’ equation solution adopted here does
not involve analog integration. Rather it contains summation over some finite numbers
(-Nmax to Nmax, truncation no.) for Bessel and Hankel functions. This is why the results
deviate very slightly from [12].

Total field due to different sizes of the cell are also computed in this simulation.
Table-I gives total field at the center of the homogeneous circular cylinder with
circumference of 0.5137)y and relative permittivity ¢ =10 for 21, 61, and 101 cell
numbers of this cylinder. The frequency is 230.84 MHz. Plane wave with unity
magnitude incident on the circular cylinder. The numerical results from these simulations
due to the mentioned cell size of Ay/5, A/9 and Ay/11 are compared with the
exact/analytical solution and also with table-2.11 of [12]. The cross-sectional area of the
models is scaled in order to equal that of the desired circular geometries. The phase and
magnitude of the total field at the center of this cylinder for the above mentioned
discretized cell numbers have good agreement with the exact solution and also with all
results of table-2.11 of [12] and accuracy of the numerical simulation is excellent. For
exact solution, the truncation number Ny.x= round (3*ks*r+10) where k4 is the wave

€69
T

number in dielectric and “r” is the radius of the dielectric cylinder and the summation of

the equation of the exact solution is done over range (— Npax t0 +Npax) instead of
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(— oo to +o0).

Total From Simulation Table 2.11 of [12]
Cell Exact Simulation Exact Simulation
no. | |E Pt |Ey| PEt |Ed| PEt |E| Pt

21 0.7798 | -94.8121 | 0.7688 | -94.7448 | 0.780 | -94.82 | 0.770 | -94.75

61 0.7798 | -94.8121 | 0.7785 | -94.6494 | 0.780 | -94.82 | 0.779 |-94.66

101 1 0.7798 | -94.8121 | 0.7785 | -94.7420 | 0.780 | -94.82 | 0.780 | -94.82

Table-4.1: Total field for different discretization at the center of the cylinder
From Table-4.1, we can see that higher discretization produces a more accurate
result for total field. However, computation time and memory requirement put a

restriction on the maximum number of discretization that can be used.

4.5 Validation with Born Approximation method:

This simulation is involved the use of the layered inhomogeneous lossy weak
scatterer. The near field distribution as well as the complex permittivity distribution is
computed using the well-known “Born Approximation” method and the proposed
algorithm. The diameter of the cylindrical cross section is A/2 and the discretized cell
number is 254. The object has three kinds of scatterer such as weak scatterer in the
central position, medium weak scatterer in middle position and more weak scatterer in the

out most position. There are 9 (nine) circular layers of the lossy dielectric cylindrical

object. The inner 3(three) layers have actual complex permittivity, € =¢,¢, —j g €0
@
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(3.5 -j0.9/gpm). The middle 3 (three) layers have actual complex permittivity, &= gy (2.5-

j0.5/ gow). And the outer 3 (three) layers have actual complex permittivity, €= gy (1.5-
j0.2/ goo). We use TM wave illumination, in the sense of Richmond’s statement [9], the
interrogating electromagnetic wave has been assumed to be a uniform plane wave
propagating along the x axis and with the electric field polarized along the z axis, which

is taken to be parallel to the scatterer axis. The discretized cells are as following Fig.4.10.

Fig.4.10 Total cells of 9 layers of the dielectric having size of each cell is (Ao/18 x Ay/18)
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The permittivity of each cell obtained from simulation using “proposed
algorithm” and “Born Approximation algorithm” are as following Fig.4.11 and Fig.4.12.
The permittivities achieved from both algorithms have good agreement with the original
value of the permittivity with some errors. The fluctuation of permittivity got from both
algorithms with respect to the original/actual value of the permittivity is shown in
following Fig.4.13. The inner 3 (three) layers contain cell no.1 to 28, the middle 3 (three)
layers contain cell no. 29 to 113 and the rest layers contain cell no. 114 to 254. The inner
layer, that contains high permittivity scatterer, has higher fluctuation of permittivity got
from Born Approximation algorithm than Pseudo-inverse algorithm. The outer scatterer,
that contains weak scatterer, has excellent agreement between Born Approximation
algorithm and Pseudo-inverse algorithm with very very less fluctuation of permittivity
with respect to the original value shown in Fig.4.13. Born Approximation gives worst
value of permittivity for strong scatterer but on the other hand it gives good result for
weak scatterer like Pseudo-inverse algorithm. Pseudo-inverse algorithm gives promising
result for all kinds of scatterer in case of reconstructing permittivity profile of the
complex dielectric object. For conductivity profile, there is different scenery discussed

later.
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Fig.4.12 The simulated permittivity using Born Approximation method
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Fig.4.13 Fluctuation of permittivity w. r. to original value obtained from both algorithms

The conductivity of each cell got from simulation using ‘“Pseudo-inverse
algorithm” and “Born Approximation algorithm” are as following Fig.4.14 and Fig.4.15.
The fluctuation of conductivity got from both algorithms with respect to the original /
actual value of the conductivity is shown in following Fig.4.16. The reconstructed
profiles follow the same pattern for both algorithms with some =errors with respect to the

actual/original value for conductivity.

53



Fig.4.15 The simulated conductivity using Born Approximation method
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Fig.4.16 The fluctuation of the value of Permittivity got from “Pseudoinverse” and “Born

Approximation method”

4.6 Validation of location of scatterer and the permittivity:

The next simulation is to explore the possibility of determining the location of
scatterer with the error of the reconstruction of the permittivity of the investigated
domain for big scatterer using the proposed algorithm and validate with [13]. TM,
polarized along z-axis, plane wave having unity magnitude along x-axis is an incident

wave. The area of the investigated region is (5/3)Ay X (5/3)Ay, square size and divided
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into 25 square cells having (1/3)A, length of each side. We consider the rectangular
scatterer having size of (1/3)An X (2/3)Am, which occupy two sub-area of the investigated
domain. Here the investigated area contains scatterer in four (4) configurations. In these
configurations, the sub-area of investigated domain contains scatterer in cell no. (17&18),

(16&17), (17&22) and (17&12) separately for each simulation shown in Fig.4.17.

R

Position-2 Position-3 Position-1

i T 17 \Wﬂj‘—f s
5 Square-shape f)ﬁr 19 20
.4
12

—-<jv' ] Scatterer [

13 14 15

6 7 8 9 10

0 " > /

Posi
tion
-4

1 2 3 4 5

Fig.4.17 Four configurations due to changing the position of big scatterer
In all configurations, cell no. 17 occupied by the scatterer is common. The
permittivity of scatterer is 3 and the investigated domain has unity permittivity. The

simulated result for each configuration is picked up in table-4.11.
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Confi

Cell p

Permittivity of scatterer in p cell, &g

Relative mean square error, O¢;

-gura | contained by | Simulated Value | table-Ill  of | Simulated table-IIl  of
-tion | the scatterer [13] Value [13]
1 17 2.9985 2.01 3.313x 10e-4 | 0.27
18 2.9989 3.87
2 16 2.9989 2.45 2.621 x 10e-4 | 0.19
17 2.9990 2.24
3 17 2.9986 2.51 2.900x 10e-4 | 0.13
22 2.9989 2.75
4 12 2.9986 1.87 3.106 x 10e-4 | 0.25
17 2.9986 224

Table-4.1I: Dielectric permittivity-reconstruction for big scatterer.

Fig.4.18 shows the permittivity of the scatterer due to 4 (four) different positions in the

investigated domain (shown in Fig.4.17) for table-III of [13] and the simulated value

respectively. Hence the position of the scatterer is determined with great accuracy but the

permittivity of the scatterer for each position have good agreement in magnitude between

the simulated value and the original value but the difference in magnitude between the

simulated permittivity and that of table-III of [13].

simulation is far better than that of table-III of [13].
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Fig.4.18 Permittivity of the scatterer due to 4 different positions in the investigated domain

It is needed to find the percentage-normalized error for measuring the particular
error of the reconstruction of the scatterer. Fig.4.19 shows the percentage-normalized
error of the constructed permittivity profile from the simulation and table-III of [13] for
each position of the scatterer. The percentage-normalized error of the permittivity for
each position of the scatterer from the simulation is far better than that of table-III of
[13]. Being significantly different in magnitude of the percentage-normalized error of the
permittivity for each position of the scatterer, the numerical solution follows the exactly
same pattern of the plot of the percentage-normalized error of the permittivity for each

position of the scatterer of table-1III of the [13].
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Fig.4.19 Normalized error of reconstructed permittivity from simulation and table-III of
[13]

To further investigate the accuracy of the algorithm in handling small scatterer in
lie of big scatterer, the permittivity profile with its location is obtained in below using
[13] and the Pseudoinverse algorithm. We consider that a square area is (5/3)?»m X (5/3)Am
for the investigated domain and divided into 25 sub areas (small square cell). The

investigated domain is made up o f 25 equally spaced measurement points. These points
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are arranged in different way. We use TM wave illumination. Fig.4.20 shows the
geometrical configuration of the background media adopted for these simulations. The
scatterer has been assumed to be lossless homogeneous, with relative permittivity €, =3.
The cross-sectional shape of the scatterer is a An/3- sided square emerged in the
background media having unity permittivity and its position is made to vary inside the

investigated area. The values of scattering electric field at all measurement points have

| a3 P
:MEi 21 [22 [ T24 725
W (17 115 [IN W

11 12

14 15

Fig.4.20 The geometrical configuration of small scatterer for simulation

been obtained by means of the numerical program through the well known “Richmond
theory” [9]. Assume that the interested region contains scatterer at a position mentioned
cell no. 13, 16, 19, 20 & 23 shown in Fig.4.20. These 5 positions of the scatterer are
involved with 5 separate numerical simulations. Table-4.II gives the results of the
reconstruction of the scatterer for a given number of the significant locations inside the
investigated background media. The first column of this table indicates the numbers of
the cells (according to the numbering in Fig.4.20) where the scatterer have been placed in
the background media; the second column indicates the values of the reconstructed
dielectric permittivity in sub-area (indicated by p) containing the scatterer; and the third
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column gives relative mean square error, dg; which has been used also to take into

account the reconstruction errors related to all cells even where no scatterer is present and

where one should expect unit values of the relative dielectric permittivities. Finally, the

fourth column in the table gives the worst values of the reconstructed relative dielectric

permittivities in the cell that does not contain the scatterer.

Cell p contain

Permittivity of the

Relative

mean

The worst value of reconstructed

scatterer scatterer in p cell, &, | square error, 3¢, dielectric permittivity ey
13 2.9987 2.270 x 10-¢4 1.0001
16 2.9991 1.639 x 10-e4 1.0001
19 2.9987 2219 x 10-¢4 1.0001
20 2.9991 1.644 x 10-e4 1.0001
23 2.9990 1.693 x 10-¢4 1.0001

Table-4.11I: Dielectric permittivity-reconstruction from numerical simulation.

For the validation of the code of the numerical simulation with table-I of [13], the

Fig.4.21 shows the value of the reconstructed permittivity of the scatterer placing in

different 5 positions in the background domain. The value of permittivity of the

numerical simulation gives the better-reconstructed profile compared to that of table-I of

the [13] but the determination of the position of the scatterer is exactly same as that of

table-I of the [13] with excellent accuracy.
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each side of square cell, "A" =% 3

scatterer size=(A x A) & its € =3

Total cell no. of background=25 & its € =1

Fig.4.21 The value of permittivity of reconstruction compared to table-I of [13]

Here there is a scatterer having size ((1/3)An x (1/3)An) in the 17" cell of the
investigated domain. The other cells have unity permittivity. Fig. 4.22 shows the values
of permittivitties of all cells for numerical simulation and for the values of table-II of
[13]. It seems that the reconstructed permittivitties have the promising agreement with
the original value of permittivitties but the permittivities of table-II of [13] have more

erroneous values.
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—&~— Permitlivity from simulation
~£3 Permittivity of table-Il of [13]

The permittivity of the background is 1
A=) 13

Fig.4.22 Permittivity profile of the simulation and table-II of [13]

4.7 Measurement of the uncertainty of the algorithm:

It is desirable to have independent methods for estimating the accuracy of the
simulated numerical solution got from this algorithm. Since the boundary condition
embodied in the integral equation is enforced only at the match points, one way of
studying the accuracy is to compute the electric field at other points within the cylindrical
dielectric object. The boundary condition embodied in the relationship

Einc” =E{" — E{*
will be satisfied exactly by the true solution and thus we do not expect perfect agreement
from approximate result. The amount of deviation is an indicative of the overall accuracy

of the numerical simulation. In this simulation, the dielectric circular cylinder have
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3(three) layered scatterer whose permittivity, €, = 8, 48 and 88 respectively. The radius of
the multi layer circular cylinder is A¢/3 and the size of each side of discretized square cell
is Ag /18. The operating frequency is 2GHz. The resolution of this simulation is 2.9mm to
0.9mm varying on the value of the permittivity, &, =8 and 88 respectively. Fig.4.23
shows the incident field at the boundary got from the known value and got from the total

field of the simulation minus the scattered field of the simulation.

—8- Total field minus scattered fisld
—a— KNown incident field

srof the layered circular scatterer 8
The radius of the layered circular scattere
A=) /18 Source is along x axis

Operating frequency = 2 GHz

Fig.4.23 The electric incident field and total field minus scattered field at boundary
The deviation of the total field minus the scattered field of this simulation with respect to
the known incident field is shown in Fig.4.24. The range of this deviation is ranging =+

1.2 x 107 that is very small. So the accuracy of the numerical simulation using the
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proposed algorithm is very high.

--4- deviation of total field minus scattered field
—s- Deviation of known incicient field
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Fig.4.24 Deviation in satisfying the electric field boundary condition for TM case

65



CHAPTER - 5

Numerical Simulation and Results

5.1 Introduction:

The reconstruction methods, which were proposed, can be classified into two
main categories, namely the spectral domain method and the spatial domain method. The
spectral domain method has utilizes a well-developed theory and techniques. This method
employs the Born and Rytov approximation in the reconstruction, which makes it only
applicable in the presence of weak scatterers. On the other hand, the spatial domain
method theoretically imposes no restrictions on the complex permittivity distribution of
the dielectric bodies to be reconstructed. The main disadvantages of these methods are
their great sensitivity to the noise.

In order to study the effect of the measured data uncertainty on the reconstruction
process, we add the noise array to measured total field data. We then find the scattered
field from this noisy total field. The noise is constituted by an independent sequence of
random variables. These sequences have zero mean and a variance that can be varied to

obtain different signal to noise ratios (SNR):

2
ES
SNR = 1010g|—2—— in dB.
n

Various types of two-dimensional dielectric bodies have been investigated

including simple homogeneous cylindrical objects, inhomogeneous cylindrical objects
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and layered inhomogeneous cylindrical objects. A plane wave or a set of unrelated plane
wave [54] are used to illuminate the investigated object for achieving a better-
reconstructed complex permittivity profile. The cell-size of the discretization is some
fraction of a wavelength (from Ay/3 to Ay/22 where A is the wave length in free space) in
some numerical simulations but in other simulations, it is a function of the permittivity of
the investigated inhomogeneous dielectric and as well as Ag.

In the following numerical simulations, the proposed method cited in chapter 3 is
applied to various geometrically complex inhomogeneous dielectric bodies within noisy
or noiseless environment. The multi illumination method is presented for the
reconstruction of the complex permittivity. Results of the simulations using the proposed
algorithms are reported in the following sections. The objective of these simulations is to
justify the capabilities of this method and to test the strength of this method with

uncertainty.

5.2 Effect of multi illumination with high resolution:

TM wave illumination, according to Richmond’s statement [9], is the
interrogating electromagnetic wave. The field incidents on the dielectric scatterer having
permittivity 4-3i with incident angle ¢; = 0°, 90°, 180°, 270° and 360° where ¢; is the
angle with x-axis. Here Fig.5.1, 5.2, 5.3 and 5.4 show the reconstructed permittivity for ¢
= (°, 90°, 180° & 270° but the reconstructed profile for the position of the source at 0°
and 360° is exactly same because these indicate the same point. So, no needs to show the

plot of the reconstructed profile for ¢; = 360°.
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Fig.5.1 Reconstructed permittivity for source at ¢; = 0°
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Fig.5.2 Reconstructed permittivity for source at ¢; =90°
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Fig.5.3 Reconstructed permittivity for source at ¢; =180°

| Reconstructed ¢ for source at =270 deg.

Fig.5.4 Reconstructed permittivity for source at ¢; =270°
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Here each side of the square cell, A = A/18. The resolution in this simulation is 1.4 mm.
The permittivity and conductivity profiles, that are the opposite of the source, have the
better value because at the source side, the incident field and scattered field is in opposite
polarity and at the opposite side of the source, the incident field and the scattered field is
additive owing to having same polarity.

The error of the reconstructed permittivity and conductivity for each unrelated
[54] illumination and average of illuminations is shown in Fig.5.5 and Fig.5.6
respectively. The fluctuation of the reconstructed value of permittivity and conductivity
for the average of all illuminations is less than that for each unrelated illumination and
average of all illuminations gives less erroneous value and more linear permittivity

profile.

Resolution = 1.4mm

€ =4-3i Total cell=254

complex

Radius= /2 A=218

A due to 1st. illumination
A due to 2nd. illumination
Aer due to 3rd. ilumination
A due to 4th. illumination
A duse to avarage of all iluminations

Fig.5.5 %error of reconstruction of permittivity due to each and average illumination
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Resolution = 1.4mm
€ =4-3i Total cell=254

complex

Radius= 22 A =3/18

Fig.5.6 % error of reconstruction of conductivity due to each and average illumination

5.3 Effect of varying the cell size:

In this simulation, we attempt to study the effect of varying the cell size on the
accuracy of the reconstruction of the relative permittivity for various scatterers. The
diameter of the investigated domain of the circular cylinder is Ag. Some researchers use
ultra wideband (1-11 GHz) microwave sources [55]. Hence the operating frequency is
1GHz. This circular body is divided into 21, 61, 101 and 256 equal square cell (shown in
Fig.4.4) with permittivity & compiex = 32 —j 0.8. The cell size of the investigated circular
cylinder is Ag /5, Ay /9, Ao /11 and Ay /18. Fig.5.7 shows that the smaller the cell size, the
less the error and the better the reconstruction profile of dielectric permittivity for same

SNR. According to [56], one important aspect in this approach is the appropriate
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discretization of the surfaces. This can be done by rectangular-patches. In high frequency
range, the relation between patches and wave length A has also to be regarded as A/10 that
is suitable with respect to a highly accurate field resolution. The optimality properties
may not apply for too small patches. For these cell sizes, the cell density having the
value of 101/A¢* is optimum where as the standard cell density is 100/ Ao® [56]. Here cell
size having value of Ay/11 gives the best linear result. But the cell size Ay/18 gives the
better result except optimum one. For all cell sizes, the relative mean square error is very

low with values ranging from 0.004 to 0.02 only.
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=8— Cell number=21
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Fig.5.7 Relative mean square error of reconstructed permittivity vs. SNR for Ag /5, A¢/9,

ho/11 and A /18
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5.4 Effect of multi contrast:

In this simulation, the multi-layered inhomogeneous scatterer (6 layers with 3
different complex permittivity distribution) to simulate a human body is illuminated by a

TM incident wave in multi directions (here is 4 directions) and shown in Fig.5.8.

g=3 diff. permitt. o Middle layer
N=254

Outer layer

Center layer

v

El

—l
Lagl

0 X
Fig.5.8 Multi contrast dielectric having 254 cells

The direction of the incident wave with x-axis is 0°, 90°, 180° and 270°. The cylindrical
dielectric has 6 different layers. The center 2 layer contain the 1% scatterer having the
same complex permittivity and the middle 2 layers contain the 2™ scatterer having the
same permittivity and the rest of them (outer most 2 layers) contain the 3" scatterer
having the same complex permittivity. The original values of the complex permittivity of
these scatterers are given in table-5.IV. For each permittivity distribution, there is a
different kind of value of signal to noise ratio (SNR). Unrelated multi illumination source
are used to get better-reconstructed permittivity profile. The diameter of the circular
cylinder is 0.6 A4 and the cell-size of all layers varies with its wavelength in its respective
permittivity. These cells are discretized as functions of their permittivities and as well as
the wavelength at the operating frequency. The operating frequency is 3GHz. The size of

each cell is given in table-5. V.
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¢ of 2 centre layers | € of 2 middle layer | ¢ of 2 outer most
(cell no. 1- 12) (cell no.13-50) layer (cell no. 51-
113)
¥ kind-complex 8+0.96i/me 8+0.89i/me, 8+0.82i/me,
permittivity distribution of
3 scatterers (No contrast)
o type-complex 8+0.96i/we, 2840.891/0¢, 48+082i/mey
permittivity distribution of
3 scatterers (Medium cont.)
3™ kind-complex 8+0.961/mweg 48+0.96i/mweg 88+0.821/me,
permittivity distribution of
3 scatterers (high contrast)

Table-5.IV: Permittivity distribution of 3 different layers of the inhomogeneous dielectric object.

Cell no. 01 02 35 50 51 82 112 113
Distrib. -1 € 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0
of & Cell | 0.0018 | 0.0018 | 0.0018 | 0.0018 | 0.0018 | 0.0018 | 0.0018 | 0.0018
size
Distrib. -2 & |80 8.0 28.0 28.0 48.0 | 48.0 48.0 48.0
of & Cell | 0.0018 | 0.0018 | 0.0009 [ 0.0009 [ 0.0007 | 0.0007 | 0.0007 | 0.0007
size
Distrib. -3 e | 8.0 8.0 48.0 48.0 88.0 | 88.0 88.0 88.0
of & Cell | 0.0018 | 0.0018 | 0.0007 | 0.0007 | 0.0005 | 0.0005 | 0.0005 | 0.0005
size

Table-5.V: The cell-size of the arbitrary shape dielectric with the permittivity distribution

74



The resolution of this simulation varies from 1.8 mm to 0.5mm according to the
permittivity of different layers. The reconstructed permittivity for each distribution of the

scatterer is shown in Fig.5.9, Fig.5.11 and Fig.5.13.

3 different lay
=2, /20

3 different S —+— g for SN-1
— srforSN-Q
—— erfor SN-3
— - Original €,

Fig.5.9 The reconstructed permittivities at low contrast for 3 SNRs
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Fig.5.11 The reconstructed permittivities at medium contrast for 3 SNRs
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Fig.5.13 The reconstructed permittivities at high contrast for 3 SNRs
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~ Normalized error of £_at high contrast due to diff. SNRs

} 3 different layers

5 =2,120 1o

3 different SNR

T80 00 420

Fig.5.14 %error of permittivities at high contrast for 3 SNRs

It is seen from Fig.5.9, 5.11 and 5.13 that the reconstructed permittivities for 3
different SNRs have excellent agreement among themselves and with the original value
of the permittivity. The normalized errors of these reconstructed permittivities reported in
Fig.5.10, 5.12 and 5.14 are only £0.2%, +2% and +4% except some spiky points.

At low contrast, the reconstructed permittivity profile achieved from different
types of the numerical simulation presents itself to be quite promising but at high contrast
the normalized error of the reconstructed permittivity is high with respect to that error of
the permittivity got from low contrast. It is undoughty said that the error of the
reconstructed permittivity at high contrast is very low with respect to the original value of
the permittivity. It is concluded that the reconstructed permittivity is tremendously

promising at all contrasts.
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5.5 Effect of varying the strength of scatterers:

In this simulation, three scatterers are investigated, the first scatterer has € = 8§,
the second has ¢, = 32 and the third has &, = 56. The simulation is carried out for 2mm x
2mm square, which is divided into 113 square cells of the circular homogeneous
dielectric cylinder having diameter 0.6Aq at 1GHz. The resolution of this simulation is
very high. Fig.5.15, Fig.5.16 and Fig.5.17 show the normalized error in the reconstruction
of the dielectric permittivity for these scatterers at noisy environment having 3(three)
different noise distributions: 15dB, 20 dB and 25 dB. Fig.5.18 shows the normalized
error in the reconstruction of the dielectric permittivity for these scatterers at noiseless
environment. It is said from these figures of this simulation that the normalized error of
the strong scatterer is high compared to weak scatterer at all SNRs or for noise free
simulation. It is concluded that strong scatterer produces more the error of the
reconstructed profile.

For noise distribution-1, distribution-2 and distribution-3, the normalized error of
the reconstructed permittivity for 3(three) scatterers is approximately +0.2%, +0.15%,
and +0.12% respectively. These are very small with respect to their original values. But
in the case of a noise free simulation, the reconstruction error of the 3(three) scatteres is
ranging from 0.04 to .085. So the reconstruction of permittivity (weak or strong) of the
homogeneous dielectric at either noisy environment or noise free environment is more

accurate. From the above simulations, it is said that the error of the reconstruction is

minimum at high SNR.
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Fig.5.15 Normalized error of 3(three) scatterers at noise distribution-1

Normalized error of g at SNR-2 having for 3 different scatterer
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Fig.5.16 Normalized error of 3(three) scatterers at noise distribution-2

80



%Normalized etror ofg

% Normalized error ofg

Normalized error of e at SNR-3 having for 3 different scatterer
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Fig.5.17 Normalized error of 3(three) scatterers at noise distribution-3
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Fig.5.18 Normalized error of 3(three) scatterers due to noise free simulation
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5.6 Effect of varying operating frequency:

In each simulation, the dielectric properties of the scatterer are kept constant for
the three frequencies studied such as 300MHz, 900MHz and 1.5GHz. Two types of
scatterer having ¢, of 8 and 32 and o of 0.96s/m are used in this simulation. The size of
the discretized square cell is A4/20 in each simulation. Fig.5.19, Fig.5.20 and Fig.5.21
show the relative mean square error in the reconstructed relative dielectric permittivity
and conductivity at the above frequencies. As shown, the error in the reconstruction
increases with increasing the operating frequency for the relative permittivity but vice
versa for the conductivity the error in the reconstruction increases with increasing the
operating frequency for the relative permittivity but vice versa for the conductivity. The
reason for this increase is that the incident matrix is not totally diagonally dominant. This
is mainly because as the frequency increases, the physical size of the array, that produces
the plane electric wave, decreases. This in turn decreases the beam width of the incident
wave. Thus, the incident field is not totally focused on the desired cell of the circular
dielectric cylinder. For the conductivity, this is a different scenario. If the dielectric
scatterer is lossless then due to numerical simulations there are few conductive effects
added to the reconstruction process. This is the cause that the error of the reconstructed
conductivity is always higher than that of the relative permittivity in all simulations. Due
to this reason, the conductivity does not behave like the permittivity for relative mean

square errors. From the figures, the relative mean square error of €, = 8 for all frequencies
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at all SNRs is ranging from 0.06% to 0.11% where as this error of €, = 32 is ranging from
0.08% to 0.18%. On the other hand for the conductivity, this error is ranging from 0.1%
to 0.8% at all frequencies and at all SNRs. The reconstructed error of the two scatterers at
all mentioned frequencies and at all mentioned SNRs is acceptable for the relative

permittivity as well as the conductivity.

- Realtive mean square error of ¢, at 300MHz |-
-g- Realtive mean square enor of , at S00MHz ’
—- Realtive mean sguare enor of & at 1.5GHz

g of the scatterer is 8

Fig.5.19 Relative mean square error of the reconstructed relative permittivity for €, = 8 at

3 frequencies
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—&- Realtive mean square error of g at 300MHz
-3~ Resltive mean square error of & at 900MHz
- Realtive mean square error of g al 1.6GHz

g of the scatterer is 32

Fig.5.20 Relative mean square error in the reconstructed relative permittivity for g, = 32

at 3 frequencies

—&— Realtive mean square srror of o at 300MHz
-E+ Realtive mean square error of o at 900MHz
—&—~ Realtive mean square etror of o at 1.5GHz

o of the scatterer is 0.96

Fig.5.21 Relative mean square error in the reconstructed conductivity at 3 frequencies
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5.7 Reconstruction of scatterer using TE case:

Again, the dielectric material is assumed to be linear and isotropic but it is
inhomogeneous with respect to the transverse coordinate i.e. &=&(x,y). The

investigated circular cylindrical dielectric has 5 layers having 3 different permittivity

distributions for different contrast as shown in table-5. V1.

Three (3) e-distributions

including layer number

Very low contrast

E-distribution

Medium contrast

g-distribution

High contrast

e-distribution

Inner € (layer-1) 8.82 + 0.82i 48.82 + 0.82i 88.82 + 0.82i
Middle € (layer-2,3) 8.82+0.891 28.82+0.89i 48.82+0.89i
Outer € (layer-4, 5) 8.82+0.961 8.82+0.961 8.82+0.961

Table-5.VI: Permittivity distribution with 3 contrasts for 3 simulations.
The cell size of this example is A¢/20. Each cell-size depends on the operating frequency
and the permittivity of each cell. The reconstructed permittivity and conductivity at 6GHz
due to low contrast and high contrast are shown in Fig.5.22 and 5.53 respectively. The
percentage of normalized error of the reconstructed permittivity is ranging from 1 x 10"
to =6 x 10"? for all simulations. These errors are very small. The reconstructed
conductivity at 6GHz due to low contrast and high contrast are shown in Fig.5.24 and
5.25. The percentage of normalized error of the reconstructed conductivity is ranging
from 15 x 10" to -20 x 10" for all simulations. These errors are also very small. Though
the TE case provides accurate results but this method requires two times CPU memory of
and running time for the same size of the dielectric object of arbitrary shape. This is a

disadvantage of TE case.
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Fig.5.23 %error of simulated permittivity at 6GHz for high contrast
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CHAPTER 6

Conclusion

6.1 Conclusion:

In this thesis, we have attempted to study different aspects of interaction
of electromagnetic waves with 2D arbitrary shaped objects of complex dielectric
permittivity. Mainly, two types of dielectric objects were investigated. The first is a
homogeneous dielectric object to study forward scattering of electromagnetic waves. The
other is a layered inhomogeneous dielectric object to study both forward and inverse
scattering of electromagnetic waves. The total and the scattered fields are measured due
to the interaction of a known incident field with the dielectric body in the forward
scattering while in the inverse scattering, the complex permittivity profiles have been
reconstructed from the known scattered field. The scattering electric field is directly
related to the permittivity and conductivity of the dielectric body. Pseudoinverse
algorithm and Born approximation method have been used to obtain the scattered field
and to reconstruct the complex permittivity profile. The method utilizes the method of
moment (MoM) to discretize the nonlinear integral equation, which relates the scattered
field data and the complex permittivity distribution of the body. It is a frequency domain
technique. Both numerical methods are used to investigate single and multi layer
dielectric scatterers excited by either TM or TE polarized electromagnetic plan wave.
Circular layered square discretization technique is introduced and used thorough out this

thesis. This discretization gives more degree of linear values of the reconstructed profile

88



of the complex permittivity than the conventional square discretization of [13].

To investigate the possibility of the reconstruction of the arbitrary shaped
dielectric bodies from the near scattered field data, the unrelated illumination method has
been used. Using the Pseudoinverse algorithm and Galerkin’s method, the result is a
system of linear equation in a matrix form with unknown expansion coefficients.
Through performing some simple matrix operations, the scattered field as well as the
permittivity distribution profile have been computed numerically.

The total field due to the interaction of the known incident electromagnetic wave
with the investigated dielectric domain in the forward scattering problem is validated
with results reported in [12]. The numerical results agree well with the published results.
Also, the numerical solution agrees well with the exact analytical solution for the circular
cylinder case. This numerical technique involves calculation over discrete values.

In both the forward and inverse scattering parts of the proposed method, the
reconstructed permittivity profile is also validated by comparing the numerical results of
the simulation to the results published in [13]. Due to using different algorithms and
discretization techniques, there is a little difference in the magnitude of the permittivity
but the computed results are better than those of [13]. The relative mean square error at
all positions of the scatterer follows similar pattern as in [13].

The possibility of determining the location of scatterer with the error of the
reconstruction in the investigated domain is compared to the results reported in [13]. The
determination of the location of the scatterer in the investigated domain is most important
for surgical operation purpose. The determination of location of the scatterer has

excellent accuracy. Meanwhile, as mentioned earlier, the proposed method gives less
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erroneous value of the reconstructed permittivity.

The proposed method of reconstruction of the permittivity profile is compared to
that of the ‘Born Approximation’ for weak scatterers. The error of reconstruction of the
permittivity profile increases as the value of the permittivity increases. The error of the
reconstruction of the conductivity follows the same pattern with same magnitude for both
methods.

Finally, the uncertainty of the proposed method is measured to satisfy the
boundary condition at the circumference of the cross section of the scatterer where the
known incident field and simulated total field minus simulated scattered field is exactly
the same on the boundary.

In the simulation, the direction of the incident electric field affects the
reconstruction of the complex permittivity profile of the investigated dielectric object.
The permittivity and conductivity profiles on the opposite of the source have more
accurate value than the other portion of the object. Because the incident field and
scattered field are in opposite polarity at the source side and the incident field and the
scattered field are additive owing to having same polarity at the opposite side of the
source. As a result, multi illuminations by a group of unrelated [54] electromagnetic
wave give better accurate results of the reconstructed complex permittivity and more
linear profile with respect to single illumination.

The value of the reconstructed complex permittivity varies with the discretized
cell size. Generally, the smaller the cell size, the less the error and the better the
reconstruction profile of dielectric permittivity for same SNR but there is an optimum

value of discretized cell size: A /11. In a noiseless simulation, the fluctuation of the
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value of reconstructed permittivity is negligible irrespective of the complex permittivity
distribution at all cell sizes.

It has been shown that this method is well capable to handle multi contrast
inhomogeneous scatterer (either low or high contrast) with a low error of reconstruction
for the permittivity and with acceptable error of reconstruction for the conductivity due to
a very high contrast at realistic measurement condition i.e. at noise.

To show the strength of this method, weak and very strong scatterers are
considered and simulated. It is noticed from simulations that the relative mean square
error of high scatterer is high compared to low scatterer at all SNR. The error of the
reconstruction of the permittivity profile is small at high SNR compared to low SNR for
all scaterers. It is shown that the error of reconstruction is very low at various SNR for
each scatterer. Multi frequency effect is also considered in simulations where the relative
mean square error of the reconstruction increases as the frequency increases.

The above simulations are carried out for the TM case only. This method is also
capable to handle TE case. In simulations for the TE case, the error of reconstruction is
also low but this method requires two times CPU memory and running time for the same

size of the dielectric object. This is a disadvantage for the TE case.
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6.2 Future Research

In this thesis, only two-dimensional scatterer is investigated and the interaction of
electromagnetic scattering with various types of scatterer has been studied. Yet, research
can still be done for three-dimensional scatterers. Also, research can be carried out to
design the antenna array that can be used as a transmitter and receiver simultaneously.
All simulations are done theoretically. The whole procedure should then be tested against
measured data.

Array of slotted antenna can be made on the hollow cylinder having fixed radius.
Antenna array can be excited in either TM or TE mode to generate the incident field. The
human body goes through the cylinder at fixed speed to reconstruct three-dimensional
microwave image with fixed resolution. Design of this type of medical instrument could
also be done to reconstruct the permittivity distribution profile of the human body. The
reconstructed permittivity profile makes a key role in diagnosing the cancer of human

body at early stage.
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APPENDIX A

Matrix Formulation of Total Field

Let £ represent the total field; that is, the field set up by the source in the
presence of the dielectric cylinder .The scattered field is defined to be the difference
between the total and incident fields. Thus,

E=FE+E* (A. 1)
E' and E° represent the incident field and scattered field respectively.
Under the assumed conditions, the total and the scattered electric field intensities will
have only z components. The field of an electric current filament dI parallel with the z-

axis in free space is given by,

=

dE® = —2(au | )H,? (k,p)dl (A. 2)
Where HO(Z) (k,p) is the Hankel function of order zero, pis the distance from the
current filament to the observation point and £, ZQ’M =2n/A,. The free space
wavelength is given by 4.
The increment of electric current which generates the scattered field, is given by

dl = JdS = jo(e - &,)EdS (A.3)

Where dS is the increment of surface area on the cross section of the dielectric cylinder.

From (A.2) and (A.3), the scattered field is given by
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E*(x,y) = ~Uky' 14 [[(e, = DEG', y)H,® (ko p)dx'dy’

= —(jk,' /4) jj“’ &Py @k pyax'dy’ (A4)

where (x, y) and (x',y") are the coordinates of the observation point and the source point

, respectively , ¢, is the complex relative dielectric constant (&, =¢/¢,) and

p=y(x=x)" +(y-») (A.5)
The integration in (A.4) is to be performed over the cross section of the dielectric

cylinder. Equation (A.4) is valid for the scattered field at any point inside or outside the

dielectric region. The integral equation for the total field £ is obtained from (A.1) and

(A4) .

E(x,y)+(jky' 14) [[(e, =DE', ) H,® (kop)dx'dy’

™ a, Trot [ ) i
= E(ry)+ 22 [T 0, (op)dd'dy' = Exy) - (A6)

Let us divide the cross section of the dielectric cylinder into cells sufficiently
small so that the dielectric constant and the electric field intensity are essentially constant

over each cell. If (A.6) & (A.4) is enforced at the center of cell m , the following

expression is obtained
E, +(k' 19, (s, - DE, ||~ H,"(kp,,)dx'dy' = E, (A7)
n=1

By taking m = 1,2,3, .....N, equation (A.7) yields a system of N linear equations, where
N represents the total number of cells.

The surface integral in (A.7) can be evaluated by Method of Moment technique. Using
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Dirac delta both for basis function and testing function (Galerkin’s method), one can
avoid the number of integrations required. Care must be exercised in integrating through
the singularity that exists when the observation point is at the center of cell n. The region
of integration (over cell n) is square of rectangular in the simplest case, and the closed
form solution for this integral is not known. A simple solution is however available for
the integral of the zero-order Hankel function over a circular region.

The system of linear equations (A.7) can be written in the following form using the

solution for the integral of the zero-order Hankel function over a circular region:

E, + i(gn -DE, (j/2)[ ®KaH] (Ka)-2j]|=E, if m=n (470)

n=]

N
(an—-l)En jKal/2)J,(K,a)HP (K, p =E' if m#n (A.7.b)
0 0 0/ mn m

n=l1
Putting m=1,2,3,...... Nineq.-(A.7.a) and (A.7.b).

For m=1;

> o ‘k2 1A o 'k2 1A r

E +(¢ _I)Elj_o _” HY? (Ko, J0x'0y + (e, _l)Ez% ” Hy? (Kopp, )00y’ + (& - DE,
cell=1 cell=2

.]k: (2) At o ]k02 (2) 1A,

e [] 5O (Ko, )ox'dy +(e,~DE, 7L [[ 5 (Koo )ox'0y + ...

cell=3 cell=4

7 ‘kz 1Al i
+(ey —DEy % 'U HY (Kopw )3)6 ' =E,

cell=N

or, For m=1,;

. ' . - jk? - -

E1+(c, —1)%{7zk0aHf(k0a)—2 ‘]}]+(82—1)E2% [ 1Y (Ko, ox'dy' + (5, - DE,
cell=2

ks

v ' I 'k2 [ '
" [ HY (Ko, Jox'ay +(e4-—1)E4—]29- [[ HY (Kopi)ox'ey + ...

cell=3 cell=4

- k2 o
&y —1)15,,{70 [[ 52 (Koo, Jox'ey = E;

cell=N
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or, For m=l,

= i 2 . = jmkya =
E 1+ —1)%{7zkoaH,'(k0a)—2 H+(e, -DE, < 225, (k) (Kopyy) + (2 - DE,
Jrkya

= jrk,
J, (ka) HY (Kopy3) + (8, - DE, Jﬂzoa J, (koa)Hf)z) (Kopra) +

....... +(ey —DEy > J, (ka)HY (Koo, ) = E!
For m=2

r oy .k2 1At - .k2 ra,,! -
E2+(el—l)El-j—4—°- [ HO (Ko ox'ey +(82—1)E2—JZ°— [[ B2 (Kopy, Jox'dy' + (2 - DE,
cell=1 cell=2
ﬁ H HY (K, 0y, )0x'0y' + (g, ~DE —J—l—ci ” HY (K0, J0x'0y" +
4 0 023 4 4 4 0 0/24

cell=3 cell=4

k i
....... +(8N—1)E ]4 ” H(z) opzlv)axay E

cell=N

or, For m=2

. -k2 , , - .kZ , , -
(¢ —l)Elﬁi ” HY (K,p, Jox'dy +E2[1+(ez—1)-JZ°- ” HY (K, pp, J0x'0y']+ (g, - DE,

cell=1 cell=2

” H‘Z)(Kopzs)axay +(&, _I)E Jk .” H(Z) 0p24)6x'8y +

cell=3 cell=4

k2
....... ey -DE, L ([ HY (Ko, )ox'ey = B

cell=N

or, For m=2;

7rk - ] . -
(6, - DE, L2292 1, (kya) HE (kopy ) + Bo[1+ (5, —1)—]2—{7rk0aH12 (koa) =231+ (&, - DE,
ik, a 7rk a
_J_2_o_JI (koa)Hg (kop2s) + (84 = DE, ~—*~ 22 J, (k@) Hy (kypos) + oo
. ik .
+(ey ~DE, L2 1 (kya) H? (kopyy ) = B
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For m=3

- n 'k2 g, .kz ., I
E3+(gl—l)E,lZ°_ [ B (K0, Yox'ay +E2(52—1)JT° [[ B (Ko ox'y + (&, - DE,

cell=1 cell=2

‘kz A, % lkz A,
I H HP (K,py; Jox'cy +(€4—1)E4J—0 H HP (Ko, )0x'0Y" + ...

4 cell=3 cell=4

L 'k2 AT
+(&y _I)EN‘!ZO' _” Hy” (K opyy Jox'oy’ = E;

cell=N

or, For m=3

0 'kz 1At r .kz 2 A I
(g,—l)E,fTO [[ H? (Kypy, Jox'ay +E2(82—1)—J4—° [[ HY (Kopy, Yooy’ + Ey[1 + (- 1)

cell=1 cell=2

.kz - o .kz W)
Lo |f Hg”(Kop33)axay]+(g4—1)E4-JZ°- [] HY (Kops, Jo'dy' ...

4 cell=3 cell=4

I .kz It i
+Hey —DEy e ” H (Kopyy Jox'sy’ = E,

cell=N

or, For m=3

Jjrkya
2

) i} - ) .
(g, ~1E, 7, (kea) HE (kopy, )+ Ey(&, - 1)%J1 (koa ) HZ (kopyy )+ Es[1+ (&, - 1)%

Jjrk,a

{wk,aH} (ka)—2/}]+ (e, —1)E, J, (k@) Hy (ko3 )+ vovenee

...........................................................................................................
...........................................................................................................

..........................................................................................................

For m=N,

I o .kz (S 'kz -
EN+(51—1)E]-J—49- [[ HY (Ko, Jox'ay +E2(52—1)% [] B (Kopy, Jox'dy + Ey(e, -1)

cell=] cell=2
Jk()2 (2) ! ! .]k()2 (2) ] '
T _“. Ho (KopN3 )axay + (34 "“1)E4T ”' Ho (KOPN4)6X 8y ton
cell=3 cell=4
-1)E ks H? (K '0y' = E!
+ey —1DE, 2 H 0 ( 0PNw )6’56)’ =Ly
cell=N
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or, For m=N;,
Jjrkya jﬂ;coaj

(e, -1E, Jy (koo ) H (kopyy )+ Ey (6, = 1) (koa ) HE (Kopys ) + Eo(8, - 1)

Jjrkya Jrkya

J, (ko) Hy (kopys ) + (4 ~DE, Ty (ko@) Ho (KoPys )t weveoreneceviean
..... +(gy —DE,[1+(¢, - l)—é—{ﬂkoaHf (koa)=2/}1= B,

The general form can be written from the above expressions in the following:

N .
> C,E, =E, withm=123..N (A. 8)

mn™~n m
n=l|

The coefficients C,,,are given by,
Cow =14 (e, = Dizkoa, H,(kea,) =21 iy n=m (AS2)

Cow = (&, =D jmkoa, 12)J,(kya,)H " (kyp,, ) if n=m(A8D)
For m=1,2,3,...... N and n=1,2,3....... N, (N x N) equations of (A.8) can be written in

the matrix form as follows:
[clE]=|E] (A.9.a)

[E]=-[cI'[E'] (A9.b)

98



APPENDIX B

Matrix Formulation of Scattered Field

The scattered field from equation (A. 4) of appendix A can be written
B’ (x,) = [G(x, 3,5, y)O(x', y)E(x', y")x'dy’
= ~(jo eoty 1 4) [[(e, ~DE(x', y)H,® (k, p)dx'dy’
= —(jk," 1 4) j j(g, —“DE(x', y"\H,? (k,p)dx'dy’

=== [T,y HG o)y (B.1)

We can write from (3.11)
N
—CO 7 F ! ' IS
~2 Y TN [ H Rop 'y = B (B2)
n=1 eb—n

The system of equations (B.2) can be written in the following form using the solution for
the integral of the zero-order Hankel function over a circular region and Galerkin’s
method. The integral equation (B.1) can be discretized by the method of moment (MoM).

If a, represents the radius of the equivalent circular cell which has the same cross section

area as small square cell n and m=1,2,3...N

N
= T Pl wkoa, B (ka, )20, = E,5 if m=n (B2.a)

n=l
N

’“"”0 TR 7 (kya, YHY (kopy )T, = E.* if m=n  (B2.b)
1

n=

We obtain the following equation putting m=1,2,3...N and n=1,2,3...N in (B.2.a) and
(B.2.b).
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For m=1,

_26?5—0 [wkaH® (kya)— 21, + 2292 1 (koa)HE (ko) T, +

0 0

%J, (koa) H (kypy,) T3+ “”5‘;:’“’ J, (k@) H® (ko) T, +
....... +:%€<f’2j, (ko@)HD (kyory ) Ty = E

For m=2

Z%‘&[nkoaﬂgz> (kga)-2717, + "””0:“’ J, (k@) HY (ky 0, ), +
:%‘]i‘i“—’Jl (koa)H? (kypy ) T3+ “’Z‘]g:’“ 7, (kyaVHS (ko2 ) T, +
....... +—_—-”2ﬂ—]:f—cgjl (ko@ ) H® (ko0 )Ty = E5

For m=3
—TTH, a0
2k,

— T, a0
2k,

P80 [k, aH? (kya) - 2717, +
2k

—TT, a0
2k,

J| (koa)ng) (k0p31 )jl +

J| (koa) HSZ) (kopn)]z +

J, (kpa) Hg? (k0p34).74 +

—U,am - s
....... +—-2%2-‘—1—J1 (ko@)H® (ko oy ) T = E:
0

For m=4,

— T, A0

%[ﬂkoaHf” (kga)—271T, +

0 0

J| (koa) HEZ) (kopaz )‘72 +

J, (k@) H (koo ) T, +
—U AW
2k,

| a0
2k,

~TTL, A0
2k,

J| (koa)Hf)z) (kopu)j:s +

.........................................................................................................



----------------------------------------------------------------------------------------------------------

........................................................................................................

lz%i[”koaHi” (koa) =271y + _?Igaa) J, (koa ) H? (koo ), +
0 0
M‘Il (koa)HBZ) (kop/vz)jz + A% J| (koa)HSZ) (kopN3)‘73 +
2k, 2k,
------- +%J1 (koa)HE)Z) (kOION4)‘74 = Ey
0

The above expressions are written in general form:

N
YD) J, =E, withm=1,2,3..N (B.3)
n=]

The coefficients Dy, are given by,

-1

D, =——lrkoa,H, " (ka,) =21 fn-m (Baa)
0
- 7T a
D Z—_go—n'jl(koan)Ho(z)(kopmn) if n#m (B.4b)

(N x N) equations of (B.4) can be written in the matrix form as follows for

m=1,2,3,...... Nandn=1,23....... N:
D)7 |=|E°] (B.6.2)
[7]= [T [E*] (B.6.b)
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APPENDIX C

Formulation of various fields for analytical Solution

Expressions for analytical solution of electric field inside a homogeneous circular
dielectric for TM excitation are given in [50].

If a TM, uniform plane wave traveling in the +x direction in free space shown in
fig.C.1 is incident normally on lossless dielectric circular cylinder of radius ‘a’, the
incident, scattered and transmitted (into the cylinder) electric field can be written as

following:

€0, Uo

Fig.C.1 The cylindrical object emerged in free space

E' =2E! = E e ™ (C.1)
E'=2E, Y j"J,(kyp)e™ (C2)
E* =2E, Y a,H? (kyp)e’™ (C.3)

E* = 3E, Y [b,J, (kyp) +c,Y, (kyp)le™ = 3E, D b,J, (k,p)e™  (C.4)

n=-w
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¢, =0 (C.5)

| T (koa)J, (k,a) - (% r)J,,(koa)Jn’(kda)
a, =j (C.6)

)0, e @H? )=, k) H® (koa)

T, (ky@)H® (kya) - J, (ko) H® (ky2)

b,=j" : (C.7)
Tk, a)H® (kya) - ,/(% W, (k@) H® (kya)
Numerical technique: +n = truncation number = round (3k4 a+10) instead of +oo.
J, (ky@) == . (ky@) + = J , (k) (C3)
kya
HD (ko) = ~H 3 (ko) + - H," (ko) (C9)
a

0

Where, y, =1.
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