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ABSTRACT
Functions of Bounded Variation, Wavelets, and Applications to Image Processing

Anthony Morgante

A common problem in image processing is to decompose an observed image f into a
sum u + v, where u represents the more vital features of the image, i.e. the objects, and
v represents the textured areas and any noise that may be present. The benefit of such
a decomposition is that the “u4” component represents a compressed and noise reduced
version of the original image f.

The space BV of functions of bounded variation has been known to work very well
as a model space for the objects in an image because indicator functions of sets whose
boundary is finite in length belong to BV. This thesis is aimed at investigating the
mathematical properties of the space BV while looking at a very well known “u+v”
model, called the ROF model, in which it is assumed that u € BV.

More recent work has shown that the optimal pair (u,v) to many decomposition
problems can be obtained by expanding a given image f into a wavelet basis and per-
forming simple operations on the wavelet coefficients. This thesis will provide a detailed
introduction to the theory of orthonormal wavelets, giving some important examples of
their effectiveness, as well as showing comparisons of wavelet bases with classical Fourier

series.
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space of continuously m-differentiable functions with compact support
space of continuously m-differentiable functions that vanish at infinity
17 norm of f; ([ f(z)[Pda)?

n-dimensional Hausdorff measure, p. 6

n-dimensional Lebesgue measure, p. 7

Fourier transform of f, p. 28

Schwartz class of smooth functions with rapid decay, p. 4

Space of tempered distributions

; i1 is absolutely continuous with respect to .

; i1 and p, are mutually singular

variation measure of f, p. 4

; BV norm/semi-norm of f, pp. 9,16
; norm of f in the space G, p. 18

space of functions of bounded variation, p. 3
Sobolev spaces, p. 3

Besov spaces, p. 53

Divergence of the vector ¢

Gradient of f
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2 Introduction

Over recent years, many models have been introduced to address the issues of restoration
and compression of black and white digital images. A wide class of these models can be
categorized as “u + v” models. What is consistent in all “u + v” models is that, given
an observed image f which may possibly contain some noisy data, one would like to
decompose f as asum f = u+v where the function u is a well structured function in some
smoothness space which is ideal for compression and represents a good approximation of
the original image, while the function v contains the noisy data and some less interesting
features of the image, such as textures, that one is willing to disregard in order to free up
memory. A well known “u+v” model is the model introduced by Leonid Rudin, Stanley
Osher, and Emad Fatemi in [17]. This model is referred to as the ROF model. The
assumptions of this model are that the observed image f(z) = f(z1,z2) is an L2(R?)
function that can be written as a sum f = u + v where u belongs to the space BV (R?)
and represents the objects of the image while v is an L?*(R?) function and contains the
textures and noise of the image.

With the ROF model and with many similar “a0+4v” models, one attempts to min-
imize a certain energy. In the past, it has been customary to solve such minimization
problems using PDE methods, but more recently, wavelet based methods have been
employed. When wavelets are used, a given image f is expanded into a wavelet basis
and a simple operation, referred to as wavelet thresholding, is performed on each of
the wavelet coefficients of f. As for the construction of wavelets, most orthonormal
wavelet bases can be constructed by means of what is called a multiresolution analysis
(MRA). Furthermore, when the wavelet bases that are formed by an MRA have addi-
tional properties such as sufficient decay and smoothness, many function spaces, such
as Besov spaces, can be characterized by size conditions on their wavelet coefficients.
Consequently, thresholding is a stable operation for many of these function spaces.

The breakdown of this thesis is as follows; section three will give an account on the

space BV which plays an important role in the modelling of objects in images when
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the ROF model is used; in section four the ROF model, along with some important
theorems regarding the optimal “u 4+ v” decomposition, will be described, as well as
some interesting examples of images and textures and how they are treated by the ROF
model; section five will give some background information about wavelet analysis and
construction of orthonormal wavelets by means of a multiresolution analysis; in section
six Besov spaces will be introduced; and in section seven we will establish a connection
between wavelet analysis and image processing, in particular, the ROF model, and some
comparisons between Fourier and wavelet series will be made.

With regards to originality, the author has filled in many details throughout this
thesis which were not included by the respective references. In section 3.1, details have
been added to Example 3.1 and the author has added a proof for Theorem 3.6, which
was stated without proof in [13]. The example given in 3.2 is a concrete realization of
the type of set mentioned in [13]. In section 4, Lemma 4.1, which was stated in [13], has
been proved, while details have been added for the proofs of Lemma 4.2 and Theorems
4.2 and 4.3, which were all proved in [13]. The example given in section 4.2 is original
and some details for the example concerning Meyer’s wavelet in section 5.2 (which was
found in [8]) were added as well. Lastly, details were added to the example concerning

the minimization problem in section 7.3, which was originally given in [7].



3 Functions of Bounded Variation

This first section gives an overview of some of the basic properties of functions of bounded
variation, which is denoted the space BV. This space has become the standard for the
modelling of images, as indicator functions of sets whose boundaries are finite in length
belong to BV. This statement can actually be improved significantly as we will see when
discussing the reduced boundary of a set. Indicator functions are important in imaging
because their boundaries represent edges, which are the main features of the objects in

an image.

3.1 Properties of the space BV

We begin this section by defining the space BV and some other well known spaces.
Definition 3.1 A real-valued function f € L'(U) is said to have bounded variation in
U CR*, and is written f € BV (U), if
sup [ faivg d s G CLUIR), o <1} <. (31)
U

Definition 3.2 Given U C R™ and a non-negative integer k, a function f belongs to
the Sobolev Space W*?(U) if

aa
feLPU) and s € LP(U)
o™
for any « such that |o| < k, where |a] = oy + ... + oy, and the derivatives,
Of 89.0"f

o> 61:1...6:1;,, ’

are taken in the weak sense. When endowed with the norm

8&
I fllwrw = "f"p + Z 8‘7.:';

lal<k

the space W*? is a Banach space. A function f belongs to the homogeneous Sobolev
space W*? if the semi-norm,

*f
dex

1w = D

joi=k

’
P
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is finite.

Remark. The meaning of differentiability in the “weak sense” in the above definition

is the following: A function g € L*(R™) is the weak derivative of f € L'(R") if

/R @) @)z =~ / g(z)ola)ds
for all ¢ € CZ(R"™).

Definition 3.3 A function f € C°(R") belongs to the Schwartz class S(R™) if there
are constants C, g such that

sup
reR™

for each multi-indices o and 3. The dual space of tempered distributions will be denoted
by S'(R™).

R
" oap| = O

We will soon see the relationship between BV and the Sobolev spaces. The space
BV, as this next theorem illustrates, contains the functions whose weak first partial

derivatives are Radon measures.

Theorem 3.1 Let f € BV(U). Then there exists a positive Radon measure u on U and

a p-measurable function & : U — R™ such that
(i) |F(z)| =1 p a.e.
(ii) [, fdivg dz = — [, F-7 du

The proof of Theorem 3.1 will not be given here but can be found in [10]. We will

denote the measure u by
p=DfIl

and we call this measure the variation measure of f. The total variation of f, ||Df|| (U),

is given by (3.1) and moreover, for any V' compactly contained in U, we have

IDAI (V) = sup{ [ saivg do; 6 € OV, 1ol < 1}-



We must also associate with this measure, the vector-valued measure [ D f] which is given
by
d{Df] =& d|| Df]|.

Example 3.1

Let f € WL(U). Then given g € C(U;R*) with [|F]|, < 1 we have,

/fdivgadn—/ﬁf-@dms/|€7f|dx<oo, (3.2)
74 U U
where V f denotes the gradient of f:

5oL, o

axl yeeey 6mn .

This implies f € BV (U). Thus we have
wt(U) c BV(U).

Furthermore,

ID71®e) = [ (9fide. (33
It is sufficient to prove (3.3) for f € C®(R™) since C°(R") is dense in W'(R") and
the general case can be obtained by using a sequence fi € C°(R™) converging to f €
WULL(R"). Then, given f € C®(R"), it suffices to find a sequence g, € Cl(R™;R")
with the following two properties; ) converges, in the vector-valued L? sense, to the

vector-valued function § = (g1, ..., g») defined by
O f

191 if |Vf](z)#0
gi =
0 if |Vf](z)=0

and ||@k|lo < Il for each k € Z since ||g]|,, = 1. For finding such a sequence g, we

can use mollifiers, i.e. consider a nonnegative function 7 € C°(R") such that

/ n(z)dz =1 (34)
Rﬂ

)



and
n(0) = 1.
Then define
1@) = (/)

and @, = (¢5, 95, --., ¥5 ), where
¢i(z) = /R gi(@)me(z — y)dy

for each ¢ = 1, ...,n. Then for each fixed € > 0, . belongs to C°(R"*; R") and, by (3.4),
|Pell o < lgll.. To prove (3.3), we then have

' / @.-9-Vf d“’l < / 6 — gPda)*( / IV fdz)?

where the first integral on the right goes to zero as ¢ — 0% and the second integral is

finite since f € C*°(R™). Thus

lim /fdiv@d.mz— %/@-6fdx=——/§'-6fdx=/ﬁf|dx.

e—0t

Coupling the above equality with (3.2), we have proved (3.3).
Example 3.2

Let E be a bounded open set in R™ such that 8F is a C? boundary with H"~!(0E) <
0o, where H" denotes the n-dimensional Hausdorff measure. Then by the divergence

theorem, for ¢ € C}(R™; R") such that ||Z]| , <1,
/ XE divgb'd:v=/div¢'dx=/ G- dH™ 1,
n E oE
where ¥ is the unit normal along E. Then since F is bounded and 8F is C?%, we can
find a compact set K such that E C K and a vector field § € C}HR"; R™) such that
P(z) = () for £ € OF and P(z) = 0 for = ¢ K. Hence,
sup / divg dz = |7 dH™?
E 8E
= H*Y(OE)

< oo,



where the supremum is taken over all ¢ € C}(R™R") with ||@]|,, < 1. Then we have

shown

I Dxsll (R™) = H*'(BE).

Remark. A set E whose characteristic function belongs to BV, such as the one seen
in Example 3.2, is referred to as a set with finite perimeter. In this case, the variation
measure || Dxg| will be denoted by

loE)|

and the function @ given in Theorem 3.1 will be denoted by vy.
Lebesgue Decomposition

For any f € BV(U), if we write
dur = oxd||Df]| fork=1,...n
where ¢ = (03, ..., o), then by Lebesgue’s Decomposition Theorem (see [18]), we have
Bk = py + Bk

such that
pp < L* and p; L L™

Here £ denotes the n-dimensional Lebesgue measure. Furthermore, for each k, there
exists a unique function by € L'(U) such that

dug = hy dC".
We can then write iy = 0f/0xy and

0 0
Df = (gL s 2L, (DA = (b, (DI = (),



so that [Df] = [Df]* + [Df}® and d[Df)* = Df dC". Thus
dIDfl = Df dC" +d[Df}". (3.5)

Remark. We should mention that a function belongs to the Sobolev space W! if and
only if the singular measure [Df]° is zero. To see this, suppose first that [Df]* = 0.
Then by the Lebesgue decomposition above, the weak first partial derivatives of f all
belong to L*(R") which implies Vf € L!(R*). Conversely, suppose f € W!. Then
from Example 3.1, we have

d[Df] = #d||Df|| = V fdL".

However, by (3.5), d[Df] = VfdL" + d[Df]* implying [Df]* = 0. This remark is also
telling us that for such a set E as given in Example 3.2, xg ¢ W''. Of course, the
weak first partial derivatives of xg(z) for £ € F correspond to a delta function é on

OF which is in fact a singular measure.

We would now like to define weak-* convergence of BV functions. In order to do so,
it will be helpful to view BV as a dual of some Banach space. As it is mentioned in
[13], BV is the dual of the space I" of all tempered distributions f that can be written
as f = divg, where § = (g1, ...,9») and g1, ..., gn € Co(R™). We then have the following

definition.

Definition 3.4 A sequence of functions f; converge to f in the weak-x topology of
BV/(U) if for any @ € CA(U;R™) with ||, < 1,

Jim [ fuoyivao)ts = [ fa)divae)ts

Theorem 3.2 (Lower Semicontinuity) Let {fi} C BV (U) such that fy — f in the
weak-* topology of BV(U). Then

IDAI(U) < lim inf || Dfi[| (U).



Proof. Given any ¢ € C}(U;R") with ||@||, < 1 we have,
/ fdivgde = lim | fidiv dz
U k=00 Jy
= —im [ §-dDf)
k—o0 17
< liminf || Df|| (U),
k—oo

where the last inequality follows since [, @ - d[Dfi] < ||Dfill (U) by definition. Taking

the supremum over all such ¢ we have
|01l (U) < limnf | D] (U).
Theorem 3.3 The space BV (U) is a Banach space when endowed with the norm

Illsv = 1fll, + I DA U).

Proof. The norm properties of ||-|| g, are obvious and are left to the reader. We will
need to show completeness, i.e. any Cauchy sequence f; in BV(U), converges to some
f € BV(U) with convergence in the BV-norm. Given such a sequence f; and an € > 0,

then for k, m sufficiently large

Ife = fullgy <€ = fi — full, <e

and since L'(U) is a Banach space this implies thgre is a function f € L'(U) such
that || f — fill; — 0. Since fi is a Cauchy sequence then the || Df;|| (U) are uniformly
bounded and since ! convergence implies convergence in the weak-* topology of BV,
Theorem 3.2 tells us that f € BV(U). We still must show that ||f — fil| 5, — 0. Since
we already know fi — f in L1(U), then all we need to show is that || D(fx — f)|| (U) — O.

Since
Wfx = fullsy <€ = ID(fi — )| (U) <€

and for fixed k we know

I(fe ~fm) = (fs—Hll; 20 asm— oo,

9



then using the weak-* convergence of (fx — fm) to (fx — f), Theorem 3.2 yields
ID(fi = DI V) < liminf | D(fi — fu)l (V) < €

for k chosen sufficiently large. This proof was due to [11].

Remark. By considering only the space of functions f such that the seminorm || Df|| (U) <
oo we obtain a homogeneous version of the space BV which we can denote by BV. This
space consists of functions modulo constants. We then have the embedding W ¢ BV

which follows directly from Example 3.1.

Theorem 3.4 (Smooth approximation of BV) Let f € BV(U). Then there erists
Junctions fr € BV(U)NC>®(U) such that

(&) | Dfell (U) = IDfI(U) as k — o0

(6) fi — f in L'(U).

The proof of this theorem is obtained by the use of moilifiers and the details can be
found in [10]. Another useful theorem found in [10] is the following.

Theorem 3.5 For the functions fi and f given in Theorem 3.4, define the vector-valued

Radon measures (1, by

dpx = V frda.

Then px — [Df] weakly in the sense of vector-valued Radon measures.

Remark. We should note that the assertion [[D(fx — f)|| (U) — 0 does not hold for
Theorem 3.4. Indeed, as it is discussed in [13], the closure of the Schwartz class S(R")
in BV is not all of BV but is the subspace W'!. We now state this theorem formally

and provide a proof.

Theorem 3.6 The closure of S(R") in BV is the space W1,

10



Proof. Let f; be a sequence belonging to S(R") and suppose f; converges to some f
in BV, i.e.,
lim [|D(fx ~ f)l| =0. (3.6)
Then this implies the f; are a Cauchy sequence in BV as well. Therefore since
DG~ ol = sup{ [ (i~ fr)@)divgia)is: ge CHROR), 1, <1
= s { [ Vi~ f)@) Fa)ds; Fe CLRERY, ol <1
= [ ¥t~ e,
we have
Jm [ 190 = fl@de =0,
The integral on the left is equivalent to the L' (R™; R") norm of 6( frt — fm) given by

a(fk — fm) ‘
6:1;,-

n

l|§(fk — fm)”1 = Z:

Thus for each i € {1,...,n}, by the completeness of L!(R") there exists a function
g:; € L}(R™) such that

1

L =0.
0:65 1

Let § = (g1, ..., 9») and take any J € C}(R"*; R") such that ||F]|, < 1. Then we have

— G

k—o00

/g’-@’dx = lim [ Vfi-@dz

k—oo Rn

= lim [ fidivgde

k—00 Rr
= [ jdivg d.
Rﬂ.
Thus § = V£ in the weak sense which implies Vf € L1(R™; R"™).

Theorem 3.7 There exists a constant C such that

[ llzarm-1gmy < CUDFI (R”).

11



Proof. Let f € BV(R"). Then from Theorem 3.4, we can find a sequence of smooth
functions f; such that

lim [ £y — fll, = 0
and

IDFI (R™) = lim [IDfil] (RY). (37)

The L! convergence of fj to f implies convergence L™ a.e. Then by Fatou’s Lemma,

W om0 | il sy - (38)

The Gagliardo-Nirenberg-Sobolev inequality says there exists a constant C such that for
all k,

||fk"z,n/n~1(nn) <C ||ka "1 ’ (3-9)

and since | Dfifl; = || Dfi|l (R*), we have by (3.7),(3.8), and (3.9) that

1/l grrnr@ny < C DS (R™).

This theorem will be of particular interested in the sections of this paper regarding image
analysis as for the 2-dimensional case it gives the continuous embedding of BV (R2) C

L2 (R?).

3.2 The Reduced Boundary:

Construction of a Swiss Cheese set

In Example 3.2 we observed that if we are given a bounded open set £ C R" with
smooth boundary 8F, then ||8E| (R*) = H"'(3E). In general, however, ||0E| (R") <
H™~1(OE) for an arbitrary open set E. As mentioned by Y. Meyer in [13], there is a subset
O*E of JE, referred to as the reduced boundary of E, such that |0E|| (R*) = H*}(8*E)
for any open set E. This result was proved by Ennio De Giorgi, who is also responsible
for the definition of 3* E. Recalling the definition of Vg given in the remark that followed

Example 3.2, we now define the reduced boundary.

12



Definition 3.5 Given an open set E CR" and x € OE. We say x € *E, the reduced
boundary of E, if the following conditions are satisfied:

[|PE|| (B(z,7)) >0 for all r >0, (3.10)

1
lim——— [ Fd|0E| = Fu(z), -
0 [OE[ (B(z,7)) Jo@n IOE| = vg(z) (3.11)

and

7e(z)| = L. (3.12)

In [13], Meyer suggests the existence of a set E, referred to as a “swiss cheese” set, such
that 3*F is much smaller than OF with respect to the measure H"~!. More precisely,
that ||0F|| (R™) is finite while H"1(3E) = oo.

We wish to construct such a set F in 2-dimensions. This set will be the union of a
countable number of open squares centered at the vertices of a dyadic grid. Furthermore
E will be dense in the unit square C. The term “swiss cheese” is used to describe this
type of set because, as one can imagine it, has many holes in it.

To begin the construction, let W, be the open square of side length 9 centered at
(271,271). Then for n > 2 let Q;‘k be the open square of side length 9" centered at
(27", k27™) and let

Qe if QuNWai=0¢

2"—-1

Wo= |J @} where Q7 =
7, k=1
¢ otherwise.

Then we let
E,=|JW: and E=JW.

i=1 i=1

We can now show some interesting properties of the set E. Our first claim is that E is

dense in the unit square C. To see this, define the set of dyadic points by

Dy = {2 k2™); j,k=1,..,2°~1}

13



and

D=GD,..

n=1

Then given a ball B C C \ D, of radius r we see that r < 27"+1/2 g0 that C'\ D contains
no ball of positive radius, implying that D is dense in C. Then by the construction of

E, given any point x € D, for every n there exists a point y,, € E, such that
|z — ya] < V297",

so that D C F which implies D C E. Combining that with the fact that D = C and,
from our construction, that £ C C we have F = C and we are finished.

Our second claim is that £2(0F) > 0, where £? is the 2-dimensional Lebesgue
measure and OF is the boundary of F in C. To prove this claim we first need to show
an estimate for LZ(F). At the nth stage of construction of E we note that at most 8”1
squares are created, each of side length 9~ (and hence area 9-2*). Thus

EZ(E) S Zs‘n—lg—2n.

n=1
Since F is dense in C we have 9F = C \ E and therefore
L%DE) = LXC\ E) = LX(C) — LYE) > Z gnlg=2n >
n=1

An immediate consequence of this result is that H!(9F) = oo, since L2(0E) > 0 implies
H2(OE) > 0.

Our final claim is that ||0E]| (R?) < oo. This will follow easily if, for any square
Q@ C C we have ||0Q| (R?) = H}JQ) = 4s, where s is the side length of Q. This
holds true since from Example 3.2, we can certainly approximate a square by a set with
smooth boundary (think of a square that is rounded at the vertices), whose perimeter

is arbitrarily close to the perimeter of the square. By the construction of E and since

the Q7 are all disjoint,

N 2n—
xe(z) = ZZ - (T).

14



Then by Theorem 3.2 we have

loE] (R?)

IA

IA

IA

N 2"-1

liminf ) > " |05 (R?)
n=1 jk=1

oo 2n-1

2_21 Z o5 || (®?)

Z S B3

n=1 jk=1

D 4@ l9

oo,
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4 Image Processing: The ROF model

4.1 The Optimal Solution to the ROF Problem

In this section the mathematical properties of the ROF model will be explored and the
optimal decomposition of f into v + v will be studied. We begin with the splitting
algorithm.

Definition 4.1 For a positive parameter A and a given function f € L*(R?), the ROF

model selects the decomposition f = u+ v that solves the variational problem given by
inf{J(u); f =u+v}, (4.1)

where

J(w) = flull gy + Aol (4.2)

Remark. With an obvious abuse of notation, in this section and all of those to follow,
the term || f|| 5, is used to denote the semi-norm || Df|| (R%) given in Definition 3.1.
Although we obtain from this semi-norm the homogeneous version of the space BV,
denoted BV, which is a function space modulo constants, we a priori have that the
u component not only belongs to BV, but to L?*(R?) as well since v = f — v and
f,v € L*(R?). Thus the only constant function allowed is f = 0 and hence ||-|| 5, is in

fact a norm.

Theorem 4.1 There erists a unique solution (u,v) to the minimization problem given

in Definition 4.1

Proof. Here we follow the proof of existence given in [14]. Let {u;} C BV be a

minimizing sequence of the functional J(u), i.e. J(u;) — a = inf J(u). Also for each j,
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let v; = f — u; and fix € > 0. Then we have

2
Uj + Uk

) u; + ux
2

2

1 1
]

1 1 1. ., 1. ., 1 )
= 3 sl gy + 3 lluell gy + /\(5 llv;ll; + 3 e ll; — 1 llv; — vill2)

+/\“f_u,-+uk
BV 2

2
Y l’£"2
2+2 2

J(

IA

= %(J(u,) + J(uk)) - % "'Uj - 'Ukug .

For j and k sufficiently large we then have

uj + ug

A
J(T) Sa+€—2||vj"vk"§

and since o < J(“3*) it follows that

€
oty — well, = oy — vell, < z\g.

Hence u; converges strongly to some 4 in L?. Then for any @ € C}(R?; R?),

R2

<l —all, lldivgll,

= C"uj_'a'uz -0

as j — 0. Thus L? convergence implies weak-* convergence and by the lower semiconti-
nuity property (Theorem 3.2) we have
. < limi o
@l py < lim i Jusll

Hence
a = inf J(u) < J(&) < liminf J(u;) = a,
Jj—oo
implying that o = J(#%) so that % is a minimizer of the functional J.
We prove uniqueness by contradiction. Suppose inf J(u) = J(u1) = J(uz) where u; #

. Then since ||-|| g and ||-]|3 are convex and strictly convex functionals respectively,
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we have

u + Up Uy Up up | uz,||?
I = |5+2],, -G+,

u | U f—wm  f—u
= [|=2+2 A
5+, +A |52+

2

2

2
1 1
< §(||U1||Bv FANf —wl) + §(||u2||3v +Af —uall3)

1 1
= EJ(UI) + EJ(’UQ)

= inf J(u)

which is a contradiction.

The most commonly used method for solving the minimization problem given in
Definition 4.1 is done by a PDE approach. Solving the ROF problem is equivalent to
finding a solution to the Euler equation:

1 Vu

u=f+ 2/\div(|§u|

)

In practice, the optimal u is obtained by a sequence u, € W' and the term ﬁu] is
replaced by [Vu| + 42 for some small constant 3 in order to avoid division by zero. For
more information on this approach and how the optimal solution is obtained, the reader
is referred to [1]. An example of an image decomposed in this way is given in Figure 1
below (images taken from [3])

For analyzing the properties of the optimal pair (u,v) which minimizes the ROF
functional from a mathematical standpoint, Meyer introduced an important function
space in [13] which models the textured components of the ROF model. The definition

of this space now follows.

Definition 4.2 Let G be the space of all tempered distributions f € S'(R?) which can

be written as

F(x1,22) = Op, q1(%1, T2) + O, 921, Z2),
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Figure 1: The ROF decomposition of an image with parameter A = 43; (top left) original
image f(z); (top right) u(z); (bottom) v(z) + 150

where gy, g2 € L®°(R?). The associated norm in G, which we denote by ||-||,, is given by

171l = inf | Vo + o2,

where the infimum is taken over all possible representations of f as divg where § =
(91,92)-

The definition of G leads to the following lemma.

Lemma 4.1 The space G is the dual space of the homogeneous Sobolev space W (R?).

Proof. First we show that any f € G is a bounded linear functional on W!. Given

f € G and any ¢ € C®(R?),
/ f (@) pla)da = - / 3(z) - V(z)dz,
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where § € L(R?;R?). Then

| [ @ < [ 1o
“\/ 9 +93
”\/ 9+ 43

Since C°(R?) is dense in W''(R?), it is obvious that the above inequality holds for
@ € WH(R?),

IA

[ o}

J&r+Zey

el -

Q

For the converse, we need to show that if we are given A € (W"!)*, then for any

Ap= /fso,

where f € G. For this purpose, consider the subspace of L*(R?;R?) given by

@ € Wh, we can write

M ={¢ € C*(R%R?) : V x ¢ =0}.

Then for any ¢ € M there exists a unique function ¢ € C®(R?) such that Vo = ¢
(uniqueness is achieved by setting ¢ = 0 on R?\ K where K is the compact set in which

1,5 is supported). Then we can define A to be the linear functional on M given by
1~\1,/;' = A¢p.
Moreover, A is a bounded linear functional on M since

A9 = Apl < Clipllypns
= 10l + 1920l

~ |l

The Hahn-Banach Theorem allows us to extend A from M to all of L! (R?% R?). Thus

there is a unique § € L°(R?; R?) such that
Ap=[g-¥
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for all ¥ € L'(R%R?). Then for any ¢ € W"'(R?) we have
Ap =A(Vyp) = /9‘-‘790

= —/fcp,

where f = divg. Thus f € G and the proof is complete.

This tells us that the space G is “almost” the dual space of BV. Indeed, from
Theorem 3.6, the closure in ||-|| g, of the Schwartz class of functions S(R?) is the space
WL Also, it should be noted that Theorem 3.4 allows the approximation of ||-|| 5, by

i-/l1.1, and in many instances this is sufficient. Another useful lemma is the following.

Lemma 4.2 For any f, g € L*(R?),

| / f(@)g(@)dz| < | fllpy lall, - (4.3)

Proof. It is obvious that the lemma holds for f € W' since G = (W™')* and || f|| gy, =
[| fllyr1.1. Then for f € BV, by Theorems 3.4 and 3.5, we can approximate f by functions
fm € BVNC® C WU such that || fmll gy — | fllgy and [ fmdivg — [ fdiv@. Then
for each m
| [ fmsl <Vl Nl

and since || f|l gy — |l f]l gy We need only show that [ f,.g — [ fg. Since g € L?(R?)
we can find a sequence g € C(R? R?) such that ||divgy —g|l, — 0 as k — oo. To
see this, we consider the solution u of Poisson’s equation Au = g. By regularity we can
take u € W22(R?), so there exists a sequence ¥ C C°(R?) such that ; — u in W22,
Let @ = Vs Then @ € C°(R%;R?) and divgy = divVey, = Agx — Au = g in L2

Using these approximations for f and g and fixing € > 0 we have

| mg - s0)

| U = ndive + fnlivg — feivii-+ fivi — fo)

< 1 [ alo—div@)| +1 [ (= paivil +1 [ S(eivi—9)
< (ol + 1700) Wi = gl +| [ (= F)divi

< Oy + W) v = gl + | [ (= Deivii,
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where the constant C is given by the embedding theorem for BV (Theorem 3.7). For

some mg we have |[fll gy < 2||fllgy for all m > me. Also there is some ko so that

ldivgx — gll, < €/6C ||fl|gy for all k > ko. Then for any fixed k larger than ko, by

Theorem 3.5, there is an m; such that
N €
| [ (= ptivai < 5

whenever m > m;. Finally for m > M = maz{mo,m1} and k > ky,

€ € €
+ - =e

€
|/(f'"g_fg)|<3C"f”uv'm‘v‘+§—§ 5

The optimal solution (u,v) to the ROF model can now be characterized by the
following two theorems, both of which were proved in [13]. The first of these theorems
tells us that an image with a small enough norm in G is considered too small to be an
object and, consequently, is recognized as a texture. Letting A > 0 be the free parameter

given in the ROF decomposition, the theorem formally reads as follows.

Theorem 4.2 If f is such that || f||, < 55 then the ROF decomposition of f is given by

w=0andv=f.
Proof. The ROF model gives u = 0 iff for any h € BV we have
Bl gy + X1 =Rl = A£1I3- (4.4)
Expanding the squared L? norm on the left we have
IAllsy +M£ = hlE = Wllay +X [ (7R
Il + [ (2 =2+ 1)
= Wlly + AUAE+ 41D — 22 [ 1.

Hence (4.4) is equivalent to

1ll gy + A RIZ > 2) / fh. (45)
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Fixing € > 0 and replacing h by ¢h we have

Wil + 36 111G > 22c [ fh (46)

Dividing by € and letting ¢ — 0, we have

1
| [ fa)ha)dl < 55 Ihllsy @)
which is also equivalent to (4.4). By taking h € W1, we see that (4.7) implies || f||, < 2.

For the converse, if || f||, < 35, then since we are assuming f € L?(R?), Lemma 4.2 shows

that (4.7) is satisfied, which completes the proof.

Theorem 4.3 Let f, u, and v belong to L*(R?). If ||f|l, > 55 then the optimal ROF

decomposition f =u + v satisfies

1
loll, = 5

and

[ wtepie)is = 5 ullp

Proof. First we have (u,v) as the solution if and only if for any h € BV and any scalar
ce€R,
llu+ el gy + Ml = ehllz > llull gy + Alloll3.- (4.8)

Then we have
el lEll gy + Mo — ehlly > Al
Hence we can proceed as in the proof of Theorem 4.2 to obtain
Ioll, < 55 (49)
2X
Lemma 4.2 then tells us that
[van@is < 5wl (4.10)

To prove inequality in the other direction take h = » and —1 < € < 0 in (4.8). Then

after expanding the squared L? norm on the left we have,
11+ €l flull gy + Aol + €A [lufl; — 2eA / w(@)v(z)dz > |full gy + A floll3-
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Noting that |1+4¢€| = 14-¢, we can cancel out terms from each side of the above inequality.
Then dividing both sides by e we obtain

lull gy + Ae [lull2 < 22 / w(z)(z)dz.

Taking € — 0~ and combining with (4.10), the desired result

[ wteyie)iz = o Tl (4.11)

is obtained. But (4.9) implies that ||v|], = 1/2) since otherwise equality would not be

reached in (4.11). Conversely, given the pair (u,v) satisfying

1 1
llo=gr  ad [ u@@ds = o sy

then for any h € BV(R?) and € € R,

Ju+-cbllpy + Ao =l > 22 [ (u(o) + chie)w(o)do + Aol
P / v(@)h(z)dz + A [[h]2
= 2\ [ u(e)ola)ds + Mol + A Al
= Jullgy + AN+ A2 1Bl
> ullgy + Aol

The first inequality follows from |jv||, = 1/2)\ and Lemma 4.2, since v is assumed to

belong to L?(R?). Hence Theorem 4.3 is now proved.
Example 4.1

The ROF model suffers from at least one drawback as we will now see. Let f = xp
where B = By(R) is the ball of radius R centered at 0. We would hope to get u = xp
and v = 0 but that will not be the case. We first show, as in [13], that ||xs|l, = R/2.
From Lemma 4.2 and Example 3.2,

TR = / xs(@)de = / xs(@)xs@)dz < Ixsllsy lxsll, = 20R Ixsll, -
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Thus ||xpll, = R/2. To prove inequality in the other direction consider the vector
g = (91, g2) given by g;(z) = zw(|z|), where
1/2 if 0<r<R
w(r) =
R%/2r? if r > R.

Then one can easily compute that divg = xp. Furthermore, for 0 <r < R,

191 = /g1 + 93 =1/2< R/2,

3] = @i+z)Rt R R
Az +22)32  2r 27

Hence |||§l]l., < R/2 which implies ||xas|, < R/2. Next we let f = cxp for some

and for r > R,

constant ¢ > 0. Then if ¢ <1/R\ the ROF decomposition of f is given as
=0, v=cxs. (4.12)
If ¢ > 1/R) then the ROF algorithm yields
u=(c— (AR) Y xs, v=(R) x5 (4.13)

The first case is easily proved since for ¢ < 1/RA, |cxall, = cR/2 < 1/2) and Theorem
4.2 tells us that the decomposition given by (4.12) is the correct one. As for the second

case we see that

1R _1
22X\

llvll, = "()‘R)—IXB"* = \R

[uen@iz = [ (ﬁ—@m(w)dx

enB =«

A A

1 1
= (C— :\72)21rR .

2X
= [lullpy llvll, -
Hence, since u + v = f, it follows by Theorem 4.3 that the optimal decomposition is as

given in (4.13).
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4.2 Textures and the “v” Component

We would now like to discuss the v component of the ROF model which is supposed
to be modelling textures and noise. As far as noise is concerned, a statistical analysis
is required which we will not discuss here. Our concern is whether the v component
is actually modelling textures. Textures are referred to in [16] as “small scale repeated
details”. It is in this regard that oscillating patterns are a good model for representing
textures.

Consider the following example. Suppose we are given a function

f(z) = cos(N - z)xz(z)

which is modelling the textured patterns of an image defined on some bounded set E.

Here N = (N1, N;) and we assume that |N;| and |N;| are large. Then we can write

f(z) = divg,
where g = (g1, g2) with
g = 2‘}\% sin(N - z)xg-
Then we have
e = 54/ 7+ 72

and consequently

1 1 1
< 2 —

where ||-||, is the norm in the space G. As a result of Theorem 4.2, the ROF algorithm
applied to f alone gives v = 0 and v = f (provided |Ny|, |N;| are sufficiently large).
The issue of whether the ROF model will be able to separate a sum h + f (where f is
as above and h is a simple object such as a disk), yielding v = h and v = f will be
discussed shortly.

The example of a texture provided above falls under a class of more general functions
which are known to have a small norm in G. The following definition will be useful in

describing such functions.
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Definition 4.3 A positive measure i is called ¢ Guy David measure if there exists a

constant C > 0 such that for any ball By of radius R,
w(Bgr) < CR.

Recalling the measure || D f|| given in section 3 for f € BV, Meyer proved the following
theorem [13].

Theorem 4.4 Let f € L*(R?) and let [Df|| be a Guy David measure. Then there
erists a constant Cy such that

Co
fw * S T .02
120, < 2

where f,(x) = e“*f(z).

We now wish to understand more precisely how the ROF algorithm splits an image f
into a sum u +v. Suppose we a priori have f = g+ h where g is some simple object and
h is a texture satisfying ||h||, < € for some small . We would hope that the ROF model
would yield « = g and v = h. However, this seems hardly possible since Theorems 4.2
and 4.3 tell us that the ROF model applied to g alone gives v = § and v = g — § for
some new function §. As suggested in [14], the best we can hope for is that f = g+ h be
decomposed as u = § and v = g — § + h. Although, in general, this is not the case, the

L?-error between u and § is small whenever ||hj|, is small. Meyer proved the following.

Theorem 4.5 Let fy, f» € L*(R?) and let f; = u; +v; be the ROF decomposition of f;,
j € {1,2} with X the chosen value of the free parameter. Then we have

lluz — willy < (LAl + I f2ll2)\/ A f2 = Al

This theorem was proved in [14] in a more general setting on Hilbert spaces. We see

that when f; = g + h with ||h||, < € and f, = g then

lluz — wall; < 13(1fally + [ fallz) Ve
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5 Orthonormal Wavelets
and Multiresolution Analysis

Wavelet analysis has become a very popular field of mathematics over the last 20 or
so years and has very strong ties to Fourier analysis, including roots in time-frequency
analysis and digital image processing. Although there are several types of wavelets, the
focus of this section will be on orthonormal wavelets, which we will eventually see, give
alternative methods of solving minimization problems such as the ROF problem given
by (4.1). A short introduction to wavelets in a more general setting, however, will be
given first as motivation. A common approach to explaining wavelets often begins with
a discussion of time-frequency analysis. This leads us to define the Fourier transform of

a function.

Definition 5.1 Given any function f € L(R), we define its Fourier transform, denoted
Ff or f, by
. 1 oo )
= — .
f©)= 2= [ r@e

The definition can then be extended to any f € L2(R) by defining the integral above as
a limit

. 1 N .

f© = jim —= [ fo)e .
If we think of the function f as a signal evolving in time (where x represents time),
then the Fourier transform gives a representation of the “frequency content” of f (where
¢ represents frequency). Viewing a signal from the frequency domain can often give
information that is not present in the time domain. However, if we are interested in
analyzing some local properties of f from f, the Fourier transform can pose a problem.
This is due to the fact that for any fixed ¢, the function e~**¢ is supported globally as a
function of  and as a result all z € R are needed to compute f(¢) from f (z). One way
of fixing this problem is by first multiplying f by some function g which is well localized
in time (usually having compact support) and relatively smooth, and then taking its
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Fourier transform:

U2 \/%7 /; ” f(x)g(zx — t)e *da.

The mapping W is called a windowed Fourier transform (WFT) and the function g is
referred to as a window function. We can now obtain the frequency information of f
locally in the support of g(- —t) and using different values of ¢ will allow us to shift the
window over R. In this way, “time-localization” is being achieved.

Wavelets offer a different method for achieving “time-localization”. The Continuous

Wavelet Transform (CWT) of a function f € L%(R) is defined as

Wen() = [ s (757 )

where ¢ € R\{0} and b € R. We are assuming 1) is real valued, otherwise 1) would be

replaced by its complex conjugate 1/* when defining the CWT. The terms W, z)(f) are
called the continuous coefficients of f. The requirement on % is that it must satisfy the
admissibility condition:

Co =2 [ Hie)Plel g < oo, (5.1)

which implies that $(0) = 0 (i.e. [(z)dz = 0) when ¥ € L (R) since v would be
continuous. Any 7 satisfying (5.1) is called a “mother wavelet”. Other properties of 1,
such as fast decay (compact support is most preferable) and some sort of smoothness
conditions, are usually imposed as well. Of course, any ¥ € S(R) such that 1/;(0) = 0 will
satisfy (5.1). The term “wavelet” comes from the fact that 1) is necessarily oscillating,
resembling a wave, and also is well localized, hence a small wave. A well known example

of a mother wavelet is the Mexican Hat function,

P(z) = 72_§ﬂ_1/4(1 — z2)e %2,

which is a normalized second derivative of the Gaussian function. This function is also

known as the second Hermite function.
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Figure 2: The Mexican Hat function (image courtesy of [19])
Any f € L?(R) can be reconstructed by using its CWT in the following formula:

1=t [ [ s, 52)

where here we have the notation 9,(-) = |a|™/%4)(=2) and (, } denotes the L? inner
product. Equation (5.2) is called Calderdn’s reproducing identity and is also sometimes
referred to as the “resolution of the identity” formula. A proof can be found in [8].

We would like to compare the WF'T and the CWT. Both the CWT and WFT are
similar in the fact that they are achieving time-localization, however, the CWT has the
added benefit that the window sizes can be changed as we change the values of the
parameter a. This property is often referred to as a “zooming” effect. A prime example
of its usefulness is for analyzing singularities; for small values of a, the 1, , are “zooming”
in and therefore can detect singularities much better. On the other hand, the window
given in the WFT has the width of its support fixed and therefore does not have this
“zooming” capability.

The formula given by (5.2) naturally raises the question of whether f can be recon-
structed if only a discrete number of the Wi, 5)(f) are known. Although there is not a
formula analagous to (5.2) for the discrete case, it is possible to reconstruct f using the
Discrete Wavelet Transform (DWT),

Wis($) =al® [ floyiads — Kbz,
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under certain conditions. Here ag > 1 and by > 0 are fixed, while j,k € Z. We now

denote 9 as
Vix(@) = @/ " (az — kbo).

The condition that the 1, should satisfy in order to allow reconstruction of a function
[ € L*(R) is that there must exist constants A and B, with 0 < A < B < 00, such that

AlfIE < D7 Khwl® < BISI- (53)

JkeZ

A function 1) satisfying (5.3) for some fixed ag, by is said to generate a frame. Moreover,
when A = B, 1 is said to generate a tight frame. When A = B = 1, (5.3) reduces to
Parseval’s identity and the {1, x} are necessarily orthogonal. For the sake of simplicity,
we will assume that the functions being considered take only real values to avoid using
complex conjugates in the inner product above. To see that the condition given by (5.3)
is sufficient for the reconstruction of a function f € L?(R), consider the linear mapping
T on L?(R) defined by

Tf=Y (f,¥is)bir, [fe€L*R).

jkeZ

We can see that T is bounded since, for any f € L%(R),

ITfll, = sup (Tf,g)

flall, <1

= sup > (f,%ix)(¥ix.9)

flall,<1 JkeZ
sup (Y [{(F9ie)®) 20O ik, 9}
loll2<1 ; xez jkeZ

sup B||fll; ligll, = BIlfI

gl <1

IA

IA

We can also see T' is a one-to-one mapping since

(T £ =D Ko
j,keZ

and the lower bound in (5.3) implies that the kernel of T, ker T = {0}. The range of T,
R(T), is closed in L?(R). To see this, let g, = Tf, be a sequence in R(T) such that g,
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goes to some g in L?. Then given ¢ > 0, we can choose m,n large enough such that

A "f» - fmug < (Tfn - Tfm, fn - fm) < ”Tfn - Tfmuz "fn - fm"2 <e€ "fn - fm||2
and thus
lfn — fmll < €/A.

Since the sequence f, is a Cauchy sequence in L? then f,, converges to some f in L?, i.e.

gn converges to g = T'f. Also for any g € R(T)*, we have by definition,
(Tf,g) =0 VfeL*R),
which can be rewritten as

> (i) (Wing) =0 Vf € LX(R).

JkeZ

Rearranging the above equation, we have

(£, ) (@ Pixbiay =0 Vf € L*(R)

J.keZ

or equivalently,
(f,Tg)=0 VfeL*R),

which implies that T'g = 0. Since we have already established that T is one-to-one, we
have g = 0. Thus R(T)* = {0}. Combining this with the fact that R(T) is closed, this
implies that T maps L?(R) onto itself. Therefore, since T is one-to-one and onto, its
inverse T~! is well defined and bounded. Its boundedness can be seen using the lower

bound in (5.3) once more; if T f = g then

ANANG <ATF 1 <AIT AL USIl2,

and replacing f by T1g we have

AT 4|, < ligll,

so that
7=, < 47"
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Finally, the reconstruction of a function f € L?*(R) is given by

f=T'Tf = T Z(f,¢j,k)¢j,k

7,k€EZ

= > (iR T P

3.kE€Z

= Z (r Yixyin,

jkeZ
where the functions ;4 = T~14/; are commonly referred to as dual wavelets.

We should remark that in the case of the {t,x} generating a frame, we do not
necessarily obtain a basis of L*(R) (i.e. the {t;x} may be linearly dependant). Such
redundancy of the functions 1); is often very useful in practical applications but is not
the focus of this thesis. The rest of this section will deal with orthonormal wavelet
bases. For the choices of the constants ag = 2 and by = 1 there is a remarkable method
of constructing 1 such that ;, j,k € Z constitutes an orthonormal basis (0o.n.b.) of
L%*(R). This method is done by means of a multiresolution analysis which will now be

defined.

5.1 Multiresolution Analysis

Definition 5.2 A multiresolution analysis (MRA) of L*(R) is a sequence of closed sub-
spaces {V;};ez with the following properties:

~CcVacVocWic..cL*(R) (5.4)

V;={0} (5.5)

JEZ
Uvi=r® (5.6)
f(z) € V; = f(21) € Vi (5:7)
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There exists a function ¢ € Vg such that (5.8)

{#(x — k)}rez is an orthonormal basis of V;.

Since V; C Vj for each j, we can define W; as the orthogonal complement of V; in Vj4;.

That is, V;11 = V; ® W;. Then we have
Vin=VieW;=Vi oW, eW,=..= P W.
By (5.4) and (5.6), letting j — oo we have,

L*(R) = é Wi (5.9)
k=—00

From (5.7) and (5.8), if we define
$in(z) = 21¢(Fz — k),

then for fixed j, the set {¢;x; k € Z} forms an on.b. of V;. Furthermore, since
#(x) € Vo C V; and {1 = vV26(2- —k) : k € Z} is an o.n.b. of V;, there exists a
sequence {cx} belonging to [>(Z) such that

$(z) =) _ crdri(z). (5.10)

keZ

The equation given by (5.10), which will be met again throughout this thesis, is com-
monly referred to as the dilation equation. If we can find a function 9 such that
{¥(x — k); k € Z} forms an o.n.b. of Wy then by defining

Yix(z) = PPz — k),

the set {9;x; k € Z} forms an o.n.b. of W;. This follows by (5.7) , (5.8), and the fact
that W; = V;,; — V; for each j € Z. Hence, by (5.9), {9;; j,k € Z} forms an o.n.b. of
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L*(R). The functions ¢ and 9 given above are often referred to as the scaling function
and mother wavelet of the MRA, respectively.

A View from the Frequency Domain

For the construction of a mother wavelet 1), it is often beneficial to consider the
properties that ¢ and v must satisfy in terms of their Fourier transforms, é and 1,[3 It
should be noted that the results now given are not the author’s own. Many graduate
texts on wavelets contain these results and some good references are [4], [6], and [8].

By taking the Fourier transform of the dilation equation in (5.10), we obtain

36) = <5 L e 9(¢/2), 611)
kEZ

where the series converges in L2. We can then rewrite (5.11) as

$(&) = my(¢/2)(¢/2), (5.12)
where
my(§) = % Y e (5.13)

is a 2r-periodic function belonging to L%([0, 2x]) since

1 ) 1 ) )
mg(§+2m) = —= Y e *EIN = N " e eI = my (€)
\/i keZ \/5 keZ
and by Parseval’s identity,

2w . 27 1 ikep2
| meera = [712eS e g

keZ

27
= E(% |ex[?)dé

2 2
= —= < 00.
191
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Since the set {¢(x — k); k € Z} is orthonormal we have
bo = [ 0 Bda
= [ b
= [ 1oreras

2(m+1)mw

> / () e

mEZ mn

27
= % [ b+ ommypea, (5.14)

meZ

where the second equality follows from Plancherel’s Formula and where 43 is the Kro-

necker delta defined by
1 ifk=1
Okt = {

0 if k#L.
We would like to interchange the integral and the summation given in (5.14). This is
justified if we consider the separate cases when k = 0 and when k # 0. In either case,

let

Fm(€) = 16(¢ + 2mm)Pe™.
Then for k = 0, since f,,, > 0 for all m € Z, it follows from a corollary of Lebesgue’s
Monotone Convergence Theorem (Theorem 1.27 in [18]) that

27 2
[ mmere= % [ smicrae 515

meZ meZ

For k # 0,

> /0 ”lfm(ﬁ)l = Y /0 ”|$(§+2m7r)|2d§

mcZ meZ
= Y " |¢(©)IPd¢ = l|gll5 < oo.

A corollary of Lebesgue’s Dominated Convergence Theorem (Theorem 1.38 in [18]) then
tells us that (5.15) is true for almost every . Thus we have,

o= [ (X 1606 + 2mm)P)ee. (5.16)

meZ
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Notice from (5.16) that we can calculate the Fourier coefficients hy of the 2r-periodic

function )", |8(€ + 2mm)|? as hy = O for all k # 0 and hg = 1/2x. That is,

Z |6(€ + 2mm) | = % a.e. (5.17)

mEZ
We can now show a nice property that the function my satisfies. Substituting (5.12)
into (5.17) and by a change of variables (w = £/2) we have

—21; = ZIJ)(%+2m7r)|2

meZ

= Y Imy(w + mm)Pidw + mm)|.

meZ

Splitting the sum into even and odd integers, we obtain

— = Y |my(w+2mm)]’|d(w + 2mm)|?
meZ

+ Y Img(w + @m + D) Pldw + (2m + Lm)[?

meZ

Ime(@)* Y Id(w + 2mm)? (5.18)

keZ

+imyw + T [$w + 2m + D)2
keZ

The second equality comes from the fact that my is 27-periodic. Since (5.17) holds for
a.e. ¢, then it holds for a.e. £ + 7 and hence we have

3186 +2mm)P = 3 1€ + @m+ D) = % ae.

meZ meZ

Then (5.18) simplifies to
Img(W)?> +|mg(w + )P =1 ae. (5.19)

Equation (5.19) will be used shortly.
In order to find our mother wavelet 1, we now would like to describe the properties
of a function f belonging to W,. Since f € W, if and only if f € V; and f 1 V,, we

have

F= aidis, where ar=(f, $14) (5.20)

keZ
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and

(f, $ok) =0 (5.21)
for all k € Z. Writing (5.20) in the frequency domain, we have
FI€) = 5 - awe ™ 724(/2) = my(€/2E/2), (5:22)
keZ

where m is the 2r-periodic L?([0, 27]) function

1 —i
my(§) = V—E;er "
We can rewrite (5.21) as
0 = [ Fedea
R
(2m+1)w -
- > [ red@en

meZ 2mn

/ozfr ( o fe+ ZmW)W) eHede.

meZ

so that the Fourier coefficients of 3, ., f(€ + 2mm)$(¢ + 2mm) are all zero. Thus re-
placing £ by 2¢, we have

Z f(2 + 2mm) (26 + 2mn) = 0 a.e.

meZ

Rewriting the left side of the above equation using (5.12) and (5.22), we have

> my(€ + mm)(¢ + mm)my(€ +mm)P(£ +mm) =0,

meZ

or equivalently,
> " my(€ +mm)|GE +mm)*my(€ + ma). (5.23)

meZ
Breaking the sum in (5.23) into sums over even and odd m € Z, we obtain

Y ms€ + (2m + D)7)dE + 2m + 1)7)PmyE + @m + 1)m)
meZ

+ Y my(€ + 2mm)|@(€ + 2mm)Pmy(€ + 2mr) =0
meZ
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and, by the periodicity of both m; and my, we have

ms(€ +mmg(€ +7) Y |$(¢ + (2m + D)

meZ

+m(E)ms(€) Y 1$(¢ +2mm)|* = 0.

mecZ

From (5.17), each of the sums above equals 1/2x and hence we obtain

ms(€ +mImg(§ +7) +me(E)my(€) =0 aee. (5.24)

Since m; and my are both 2r-periodic we can certainly write

ms(£) = B({)mg(§ + ) ae., (5.25)

where (3 is 2m-periodic and since (5.19) tells us that for almost every £, my(€ + ) and
mgy(£) cannot both equal zero, then (5.24) implies that

BE)+BE+7)=0 ae, (5.26)

which can be rewritten as
B(€) = e*v(2€)
for some 2r-periodic function v. Thus any function f € W, can be written as

F(&) = €4/’ my(€/2+ m)v(€)P(£/2), (5.27)

where v is a 2r-periodic function depending on f. This suggests that the function 1
that we seek may be defined by the condition

P(&) = e*’my(€/2+ m)P(£/2) (5.28)
since this would imply
F(€) = v(e)h(e) = (Z vke-“*) ¥©), (5.29)
keZ

or equivalently,
f@@) =) vdlz ~k).

keZ
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We still need to prove that {¢)(x — k); k € Z} is an o.n.b of Wy. As was the case for

proving orthonormality of the ¢(- — k), it suffices to show

Y e +2mm)P =1/2n ae.

meZ

to prove that the 1), ; are orthonormal. This follows easily since

Yo +2mrm)P = Y [my(/2+ mm +m)PIGE/2 + mn)?

meZ meZ
— gle/2 +m)P T 19(E/2 + 2m)?
+Img(€/217 Y $(/2 + 2mm + )|
= 120 (male/DP + Imp(e/2+ M) s

= 1/2n ae.

It only remains to prove that {¢(z — k); k € Z} is a basis for W,. For this purpose we
return to (5.29). It then suffices to show that

> [of? < oo,

keZ
or equivalently, that v is 2r-periodic and belonging to L([0,2x]). The periodicity of v

was already given and hence we only need to show the latter property. First note that
2% 2n .
[ wera = [ e maerpa
0 0
= [ s
= [ 18P (1ma(@)F + mote + P ) e,

where the last equality follows from (5.19). Notice also from (5.26) and the periodicity
of my that

/0 "B PIms(e)Pde = / "= BE + m)Plma(€ +2m)Pde
= [ 1) Pmte + mPde,
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and hence

| W@Pds = [ 10©PImae + Pt
[1) 021r
/0 Im(€)2d€ < oo,

where the second equality follows from (5.25) and the last inequality from the fact that
mys € L*([0,2x]). This gives us the desired result. Thus we have shown that (5.28) is

sufficient for defining a mother wavelet. This is expressed by the following theorem.

Theorem 5.1 Let {V;} be an MRA with scaling function ¢ that satisfies (5.8). Then
the function ¢ given by

9(§) = " my(E/2+ m)$(¢/2)
or equivalently
P(z) = V2 Y (-1 'Tag(2 — k),

keZ
where my and c; are given by (5.13) and (5.10), respectively, has the property that

{¢ix; 4,k € Z} is an o.n.b. of L*(R).

Remark. The mother wavelet 9 is not uniquely determined by the associated MRA.

In fact, if 1) is given as in Theorem 5.1, then any v satisfying

Po(€) = o(€)(¢),

with o being 2n-periodic such that |o(¢)| = 1 a.e., will constitute a mother wavelet as
well.

Some of the conditions that must be satisfied for obtaining an MRA often follow
from simpler conditions which may very well be easier to prove. An example is given by

this next theorem which can be found in [4] along with a proof (see Exercises 7.5).

Theorem 5.2 Let {V;}cz be a sequence of closed subspaces of L*(R) satisfying (5.4),
(5.7), and (5.8). Then

41



(a) njezV:i = {0},

(b) W =z V;j is invariant under translation,

(¢) If § is continuous at 0 and $(0) = 1, then iz Vi = L*(R).

5.2 Some Examples of Wavelets

The Haar Wavelet

The first ever construction of orthonormal wavelets was due to Alfred Haar, who proved

that the function
1 if 0<z<1/2

Y(z) =1 -1 if 1/2<z<1

\ 0 otherwise

is a mother wavelet. Although Haar’s proof (in 1910) was long before the concept of a

multiresolution analysis, these wavelets are the simplest example of wavelets generated
from an MRA. One starts with the scaling function ¢(x) = xjo,1y(x). Then it is obvious
that the spaces V; are defined by

V;= {f: f is constant on [2‘jk,2—j(k+ 1)) ,k € Z},

and properties (5.4) and (5.7) follow immediately. As for property (5.5), for any interval
(a,b) such that (a,b) N {0} = ¢, there exists a negative integer j with |j| large enough
such that (a,b) C [0,277) or (a,b) C [-277,0), thus any function f € [;; V; must be

of the form

f a if 0<z<o
C2 if —co<z<0.

42



The only such function belonging to L?(R) is f = 0. This proves (5.5) is satisfied. The
condition given by (5.6) is obviously satisfied if we note that any L? function can be
approximated with arbitrary precision by step functions and that for any step function
s(z) and € > 0, one can choose j large enough so that there is a function h € V; such
that [|s — hj|, < e. Computing the coefficients of the dilation equation (5.10), we have
o=ca=1/v2

and

Cp = 0
for all k # 0,1. Then Theorem 5.1 tells us that

4

-1 if-1<z<-1/2

Yo(z) =2z +1) -2z +2) =4 1 if —1/2<z<0

{ 0 otherwise

is a mother wavelet. Although this is not exactly the mother wavelet of the Haar system,

the remark following Theorem 5.1 tells us that the function 1 such that

P(€) = —e %40 (€),

is also a mother wavelet. This 1) is precisely the Haar mother wavelet.
The Meyer Wavelet

Meyer’s wavelet 9 is defined by

4
(2m)"V2e* 2 sin[Fu(Z 6 - 1)), F<KI<F

PE) =19 (2m) V24 cos[Zu(ZE| - 1)], L << (5.30)

0 otherwise,
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where the function u is a C¥ or C* function satisfying the properties

{ 0 if £<0
u(z) = (5.31)
1if z2>1
and
wz)+u(l—z)=1. (5.32)

An example of such a function (in C?) is the function given by
u(z) = z*(35 — 84z + 70x* — 202°)

for 0 < z < 1 (taken from [8]). It is obvious from the definition of 4 that if u € C¥,
then so is 1/;

We would like to construct v from the scaling function ¢ given by

(
— 2
(2m)71/2, €<%

o) = (2n) 12 cos[%u(z%rm - 1)}, %" <kl <&

Figure 3: The Meyer Wavelet (image courtesy of [19])
Our first observation is that the ¢(- — k) are orthonormal. To see this we note that

for any £ € R there exists exactly one or exactly two k € Z such that
M€ + 27k) # 0. (5.33)
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If there is one such k satisfying (5.33), which we denote k, then we must have |¢ +27k| <
27 /3 otherwise either k — 1 or k + 1 would also satisfy (5.33). Hence in this case,

3 18(€ + 2mk)? = |B(E + 21R)P = 1/2n.

keZ

If there are two integers satisfying (5.33), it is obvious that we can denote them by k
and k + 1, so that —4x/3 < £ + 2rk < —27/3 and 27/3 < £ + 2n(k + 1) < 47/3. Then
DI +2mk)P = 1§+ 2xk) + |$(€ + 2n(k + 1))

keZ

= % cos? [%u(——%({ + 2nk) — 1))

+o0s? [Zu(r (6 + 2n(k + 1) ~ 1))
= 5 (e (51— u(v©))] +cos? [Fu(e(©)]),

where v(£) = (¢ + 2n(k + 1)) — 1, and the last inequality follows from using (5.32) in
the first term. Hence by applying the trigonometric identity cos(a — b) = cosacosb +

sinasin b to the first term we obtain

16 +2mh)? = 5

kezZ
We now let Vy be the closed subspace spanned by {@ox(z);k € Z} and V; the closed
subspace spanned by {¢;x(z);k € Z}. It is obvious that (5.4) is satisfied if and only if
¢ € V; or equivalently, as we have already seen, if there exists a function my which is

2m-periodic belonging to L2([0, 27]) such that
$(6) =ma(&/2)9(¢/2)
Choosing my(§) = \/2_1rzkez q3(2§ + 47k), we see that

mg(€/2)$(£/2)

V2r )~ (¢ + 4mk)d(¢/2)

keZ

= V21d(€)$(¢/2)
= $(6),
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where the second equality follows since |£/2| < 8n/3 and [§ + 4nk| < 8n/3 if and only
if k = 0, and the third equality follows since £ € supp ¢ implies |€/2| < 27 /3 and hence
V2r(€/2) = 1. Property (5.7) is trivial from the dilation equation and hence, Theorem
5.2(c) proves (5.6), and consequently that {V;} constitute an MRA. Lastly, to see 9, as
defined in (5.30), is the mother wavelet produced by the MRA,

WO = eV my(€/2+1)p(€/2)
= V2re®/?y " $(¢ + 2 + 4wk)$(¢/2)

keZ

= VBrel(§(¢ + 2m) + (¢ — 2m)|d(€/2),

where the last equality follows since £/2 € supp $ implies $(£ + 27 + 47k) = 0 for all
k # 0,—1. Then for |£| > 8n/3 we have &({/2) = 0 which implies 1/}(5) = 0. Also for
€| < 27/3 both (¢ + 2r) = 0 which implies ¢(¢) = 0. For 47/3 < £ < 87/3,

$(&/2) = ()2 cos [Tu( el — 1)]
and

Be+2m)+dE—2m) = @m) 2 (cos [Tulom(€+2m) — 1] +1)
= (2m)*(cos(3) +1)

= (2n)7'2,

where the second equality follows from (5.31). When —87n/3 < ¢ < 4n/3 the same
results hold and will be left for the reader. Then for 47/3 < |¢| < 87/3 we have shown

A

B(E) = V2re2p(E + 2m) + $(€ — 2m)|(¢/2)
= V2re?(2n) " V2(21) /2 cos [gu(%lf | —1)]

= (am) 2% cos [Tu( 1el - 1),

which is consistent with (5.30). The cases when —4n/3 < ¢ < —27/3 and when 27/3 <

€ < 4x/3 are also very similar and we will only consider the latter one. For such a §, it is
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immediate that ¢(£/2) = (2r)~'/2, and since £ +27 > 87/3 it follows that P(E+2m) =
Also
e —2m) = (@r) "V eos[3 (——(5 2m) 1))
= (2r)™"2cos [5(1 — u(%ﬁ ~1)]
= (2r)"%sin [gu(z—i{ -1)].
We then have, for 27 /3 < |¢| < 47/3,
$(€) = @) V2P sinlFu(- el — D).

Thus we have proved that 1 is as defined in (5.30).
We can now take a look at the properties of . Since ’(/} has compact support,
integrating by parts N times (if u belongs to C"), we have

/R IME)e=de = (—iz)V / Dle)etde
= Vam(~iz)V(2),

which implies that

Similarly, if « € C*™ then % decays faster than any polynomial, i.e. for any N € N
@)zl =0 as |z| - co.
From the Riemann-Lebesgue Lemma. (see [6]), we know that f € L! implies f € Gy

or similarly f € L! implies f € C,. Then, since ¥ € C,, it is obvious that for any k € N,

(—it)(€) = %’(5)

also belongs to C. C L1. Hence ¥ ¢ C,, which implies 1 € C*. Since k was arbitrary
we have 9 € C*.
The Meyer wavelet seems, in many ways, to be more useful then the Haar wavelet we

have seen. Although Meyer’s wavelet does not have compact support as does the Haar
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wavelet, it still has nice decay for the function u chosen sufficiently smooth. Further-
more, we see that the Meyer wavelet belongs to C* while the Haar wavelet has a jump
discontinuity. These properties lead to the question of whether we can find wavelets with
compact support that are also relatively smooth. This brings us to the construction of

Daubechies’ wavelets.
Daubechies’ Wavelets

One of the greatest achievements in wavelet analysis was that of Ingrid Daubechies,
who was able to construct a family of wavelets with compact support, such that as
the length of their support increases so does their regularity. The full construction of
these wavelets is beyond the scope of this paper and the reader may refer to (8] for a
detailed exposition. We will however give a general description as to how these wavelets
are constructed. Instead of attempting to construct the wavelet 1 by starting with the
scaling function ¢ or the MRA {V}}, one starts with the function my. The easiest way
to guarantee that a mother wavelet 1 is compactly supported is by choosing the scaling
function ¢ to have compact support. It then follows that the coefficients,

o= V2 [ $(a)o(s — ks,
R
are non-zero for only a finite number of k. It obviously would follow then that % is a

finite sum of functions with compact support and hence is compactly supported itself.
The function
1 -
my(£) = /2 che - (5.34)

keZ
is a finite sum and hence a trigonometric polynomial. Daubechies then was able to prove

that by setting, for each integer N > 0,

meN(§) = (1 +2e_iE)NPN(€),

where

N-1
@ =3 (V7)) s,

k=0
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the functions ¢x and ¥y defined by

ON(E) = man(E/2)(E/2)

YN (€) = ¢/ *my N (E/2+ m)én (€/2)
would constitute a scaling function and mother wavelet of an MRA respectively. More

importantly, both ¢x and 1y are supported in an interval of length 2N — 1 and become

smoother as N increases. More precisely, ¢x and 15 both belong to C™™ where

r(N)
N—otoo N

=o~1/5.

That is to say, for example, if 9 is to be 20 times differentiable, then the length of its
support must be approximately 200. We should also note that when N = 1, Daubechies’
wavelet reduces to the Haar wavelet. For each N, the wavelet 1y is often called the

Daubechies 2N wavelet because there are 2N non-zero coefficients ¢ in (5.34).
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Figure 4: (from top to bottom) Daubechies wavelets and scaling functions ¢ and ¢y

for N = 2,6, 10 (images courtesy of [19])
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5.3 Multidimensional Wavelets

The notion of an MRA can easily be extended to L2(R™) by a tensor product construction
involving the one dimensional wavelet 1/ and scaling function ¢. Although there are more
elegant constructions of multidimensional wavelets, the tensor product construction here
will be sufficient for the purpose of this paper. To simplify notation, we let ¢ = 4 and
9 = ¢'. Then the MRA of L*(R") is the sequence of closed subspaces {V;} c L*(R")
where V; = @"V; and {V;} is the MRA corresponding to the one dimensional scaling
function °. Then the scaling function associated with {V;} is given by

$(z) = (@ )Y°(x2)..¥° ().

There will be 2" — 1 mother wavelets needed and they are given as follows. Let 2 be
the set of vertices of the unit cube in R® and ' := Q\{0} Then the mother wavelets
are given by

P*(x) = P (21)9"* (22) -4 (20),
where w = (w1, ws, ..., wn) € V. Letting 9, (z) = 29~ (27z —k) we have that {¢%};w €
0,4,k € Z} forms an o.n.b. of L*(R"), i.e., for any f € L*(R") we have

F=Y 3 ¥

UGQI j)kez

Notation. To simplify notation for wavelet bases of L?(R"), throughout this thesis we
let A =2Z x Z? x {1,...,2" — 1} and for the analyzing wavelets {¢!,9?, ...,9* "1}, we
define 95, A = (j,k,m) € A, as

Ya = Pk
We now look at an example of 2-dimensional wavelets as they are obviously very impor-

tant in image processing.

Example: The 2-D Haar Wavelets
We begin with the 1-D Haar scaling function 1° and wavelet function ' given by
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9%(x) = xp0,1) and
1 fo0<z<1/2

Pz) =49 -1 if 1/2<z<1

0 otherwise.

\

For each j, the subspace V; = span{y{,(x);k € Z} is the set of functions which are
constant on the intervals I;; = [277k,277(k + 1)). Then for the construction of the
2-D MRA we have ¢(z) = Xp,1)Xjo,1) = Xz Where E = [0,1)? is the unit square and
hence for each j, the subspace Vj' is the set of functions which are constant on the cubes
E;x = [279k1,277(ky + 1)] X [277k3,27(ky + 1)) where k = (ki,k2) € Z*. The three

mother wavelets are then given by
1 if 0<z <1, 0<z,<1/2

Pi(x) =9 (z)Y' (x2) = § -1 if 0<z1<1,1/2<2,<1

0 otherwise,

1 if 0<z<1/2, 0L, <1
Pa(z) = Y1) (z2) = ¢ —1 if 1/2<2;<1,0<z,<1

0 otherwise,

and

1 if 05$1,$2<1/201‘ 1/2_<_$1,$2<1

Y3(z) =P ()Y (=) =3 © if ze€R™\[0,1)2

—1 otherwise.
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6 Besov Spaces

The Besov spaces B are generalizations of other spaces such as the Sobolev and Hélder
spaces. There are various ways of defining the spaces B;? such as in the context of
Littlewood-Paley analysis or in terms of wavelet coefficients. For our purposes we will
be using the definition found in [15], which gives these spaces in terms of the wavelet

expansions of their functions. Before we do so, the following definition will be needed.

Definition 6.1 A multiresolution analysis {V;; j € Z} is called r-reqular (r € N) if the

associated scaling function ¢ satisfies
|6°¢(z)| < Cr(1 + |2])™™

for each integer m € N and for every multi-inder o = (au, ..., ) such that |a| < r

(where 8* = 0 [0xy...0°" [0z, and |o| = a1 + ... + ).

For any p,q € [1,00], and any s € R, let ¢ be the scaling function and ¥, ..., 923
the mother wavelets of an r-regular MRA {V;} of L%(R™) such that |s| < r. Then setting
A; = {5} x 2" x {1,...,2" — 1} and ¥(z) = 2%, (2x — k) for A = (j, k,m), j € Z,
k€ Z*, m € {1,...,2* — 1}, the generalized functions f € B;(R") are those that can

be written as

f@) =" ak)p—k)+ DY W),

kezn j>0 AGA,’
with
1/p
(X ewr) <o
keZn
and for j > 0,
1/p
2:’321»1'(1/2_1/1’)( Z IC()\)IP) =¢;

AGAJ'
with ¢; € 19(Z). Similarly, a generalized function f belonging to the homogeneous Besov
space B;"I is characterized by

@)=Y @),

JEZ AEA;
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where for any j € Z,

o 1/p
2].92n1(1/2—1/p)( Z le( )‘)|p) =¢;

AEAJ'

with €; € 19(Z). We should point out that, as it is given in [15], a function belongs to a
particular Besov space if and only if the above conditions hold on the wavelet coefficients
of their functions. This means that if are defining a Besov space in an independent way,
such as by means of a Littlewood-Paley analysis, then we get an equivalent space when
defining the space in terms of wavelet coefficients, which is independent of the choice of
wavelet basis provided the analyzing wavelet satisfies the forementioned conditions.

For the most part, we will only be concerned with some special cases of the homo-
geneous spaces B;’q. From [15], the dual of the space B;"’ where s € R, p,q € [1,00)
is the space B;:’q' where ¢ = —s and 1/p+1/p' =1/q¢+ 1/¢ = 1. We now treat some
specific exanples. Suppose we have an MRA consisting of C? or smoother wavelets 1,
with compact support (which implies the MRA is 2-regular). Then it is easily verified
that the space B} (R?) is the space of generalized functions

f@) =) Y W),
JEZ AeA,

such that

3 el < oo,

JEZ AeA;

i.e. the coefficients of f belong to I'(Z® x F) where F = {1,2,3}. The dual space of
B} (R?) is Bz (R?), which is easily verified to be the space of all generalized functions
whose wavelet coefficients belong to [°°(Z3 x F). The I' and [°° norms of the coefficients
are equivalent to the usual Besov norms of B’'(R?) and BZ*(R?), respectively.

Remark. We have been referring to any f € B;’q (R™) as being a “generalized” function.
By this we mean that f € S’(R"), however this is not entirely true. When s = n/p and
g > 1, or s > n/p, then the space B;’q (R™) becomes a space of tempered distributions
modulo polynomials of degree < m, where m is the integer part of s —n/p. These issues

will not be of any concern to us.
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We end this section by referring [5] to a theorem showing an important relationship
between the homogeneous Besov spaces and the homogeneous Sobolev spaces. This

theorem will be revisited later.

Theorem 6.1 Fora € R and 1 < p < co we have the inclusion
B c W,

Furthermore, this embedding is a continuous one.

We should point out that we have not discussed the meaning of WP when « takes
noninteger values. These spaces however, referred to as potential spaces, will not be of

concern to us and hence we will not bother defining them here.
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7 Wavelets and Image Processing

7.1 Wavelets in Practice: The Fast Wavelet Transform

The Fast Wavelet Transform (FWT), analagous to the Fast Fourier Transform, is an
algorithm used to find wavelet coefficients in a recursive fashion. We use here the FWT
implemented in [9]. This algorithm will be shown in one dimension but can certainly be
done in higher dimensions as well. In numerical applications, one starts with a function f
(which we will assume belongs to L?(R)). At this point f is approximated by a function
S; belonging to the approximation space V;, where j is chosen large enough so that the
L? error between f and S; is as small as desired. We now have replaced f by a function
8y=">_ 30, k)1
keZ

where the coefficients {s(j, k)}rez C [2(Z) are obtained from f in some suitable way
which we do not discuss for the time being.

We would like to find the coefficients in the corresponding wavelet representation of
S;. Noting that S; € V; and denoting the orthogonal projections of L?(R) onto V; and
W; by P; and Q; respectively, we have

j
S;j=PFS; = RS;+ Y PBS;—PiiS;

i=1

J
= RSi+ Y QiS5
i=1

J
= PS;+ Z Z d(4, k)i x,

i=1 keZ
where d(i,k) are the wavelet coefficients. We now show an iteration for finding the

coefficients {s(j — 1,k)}rez of Pj—1.5;. We have

s(j — 1,k) = (S, bj—14) = /l; (z s(J, m)¢j,m)¢j—1,k,
meZ
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but from the dilation equation (5.10) we know that

bip(z) = 2002y g — k)

= 223" c(i)p(2x — 2%k — i)

i€Z

= Z c()dj2r+:(Z),

i€Z

where c(i) are the coefficients given in (5.10). Hence

=18 = [ (X stimtsm ) (et

meEZ i€z
= Y clm—2k)s(j,m).
meZ
Hence the sequence s;_; := {s(j — 1,k)}srez is obtained from the sequence s; :=

{8(4, k) }xez by the matrix multiplication
8j_1 = As;, where A= (axm) and axm = c(m — 2k).

We also wish to obtain the coefficients d(j — 1,k), k € Z, of Q;-1S; from the coeffi-
cients s(j, k), k € Z. To do so, we see that

d(j—l’k) = (Sj’wj—l,k)

= /R (Z s(j, m)¢j,m) (Zb(l)quk,r,)

meZ leZ

= Z S(j, m)b(m - 2k),

meEZ
where b(7) = (—1)*"'¢(—% — 1), and the second equality follows from Theorem 5.1. Hence

we obtain the sequence d;_; := {d(j — 1, k) }xez by the matrix multiplication
dj_l = BSJ', where B = (bk,m) and bk,m = b(m - 2’6)

So we see that the coefficients s;_; and d;_; are obtained iteratively from the coefficients
8j—i41 by multiplication with A and B, respectively.
We would also like to show how to reconstruct S; given that we know the coefficients

of F3S; and Q1 S; for k = 0,1, ..., — 1. For this purpose we need to be able to rewrite an
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element S =), , s(j, k)¢;x belonging to V; as an element S =", , (5 + 1,k)Pj41x
in Vj;;. From the dilation equation (5.10), we have
=Y s(k) [Z ¢,.+1,2,‘+,} =3 [Zs(k)c(i — 2k)] birri-
keZ leZ i€Z - kel
Thus the sequence s;;1 := {s(j + 1)} is obtained from s; := {s(j)} by multiplication
with the transpose A* of A:

sj+1 = A's; where A* = (a},,), a;,, = c(k—2m).

A similar calculation tells us how to rewrite a function S = ), _, d(j,k)¥;s as

S =Y ez §(F +1,k)$j41,4. We have multiplication by the transpose B* of B:
8341 = B*d; where B* = (b} ..), bi,, = b(k —2m).

This algorithm thus allows us to rewrite
J
Sj = P()S:, + ZQi_lSj

=1

as

Si=>_ 50, k).

keZ
7.2 Image Compression: Some Basic Terminology

To begin, we will need to know some backround information about image processing and
some basic terminology that is used. First of all, a black and white image is represented
by its grey-level f(z) = f(z1,z2), which describes the magnitute of light intensity at the
point (z1,%z). That is, we have 0 < f(x) < 255 where f(z) = 0 means the image is black
at z and f(z) = 255 means that the image is white at z. It is also assumed that the
energy of the image is finite (i.e. f € L2(R?)). In real life application, an image f is no
longer a continuum of points but is represented by a discrete set of points corresponding
to a fine grid, say N X N, where N is a large integer. Then f is now represented by a

matrix (f,,) where m,n € {0,1,..., N — 1}. This discretization of an image, which is
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referred to as sampling, can be done simultaneously with the process of representating
the image by a wavelet basis. To be more precise, let ¢ be the scaling function of an
MRA of L?(R?). Ideally we would like to choose ¢ to be smooth (say C?) and having

compact support. Then choosing n large enough so that the desired accuracy rate is

obtained, we write

f ~ Z akq&n,k, (7'1)

kecZ?

where sampling is now done by choosing the a; in some numerical way from f. If f has
compact support then the series in (7.1) should obviously be finite, otherwise the series
may be truncated since it is assumed that f € L?*(R2?). As for choosing values of the
coefficients ax, a typical choice is to let ax = f(27"k) since 27"k most likely corresponds
to the support of ¢, ;. Once the values for a; are known, one can apply the FWT
described in section 7.1 to obtain the coefficients ¢(k) and ¢(}A) in the wavelet expansion
of f:
f= Z &(k) ok + Z (A

keZ? A€EA

where A = Z x Z? x {1,2,3} and the first series, which contains very few terms, is of
little cost to accept into the expansion. The image can then be compressed substantially
through quantization and thresholding. To perform quantization, coefficients that are
close to some fixed coeflicients are replaced by those fixed coefficients. For example,
partitioning the real line by intervals I,, = [an,b,) each of length 2¢ one could apply a
quantization operator, given by

b‘n—a‘n

Qz) = =5

for z €1,

to each of the coefficients c(j,k). The process of thresholding is done by replacing
coefficients smaller than some carefully chosen parameter 7 > 0 (referred to as the
threshold) by zero. In a hard threshold all other coefficients remain unchanged, while

in a soft threshold, they are moved closer to zero. More precisely, the hard and soft
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thresholding operators are defined as

z iflz|=>T

07 (z) =
0 iflzl<T
and
0°(z) = z —T1(sign(z)) iflz|>7T
0 if |z <7
respectively.

7.3 Wavelet Based Methods

for Solving Minimization Problems

A very useful application of wavelet analysis can be seen by solving minimization prob-
lems such as that given by (4.1). Before dealing with the ROF model, let us consider a

similar problem of minimizing the functional
J(w) = lull gra + A |Lf = ull3 (7.2)

in the 2-dimensional case. We have seen that if a 2-regular wavelet basis with mother

wavelet 1/ is used then the coefficients ¢, of a function in Bj" belong to I'(A), (where

A denotes the set of indices for the wavelet basis) and the I! norm of the coefficients is

equivalent to the usual Besov norm. Instead of solving the problem given by (7.2) we can

solve the equivalent discrete problem of finding a sequence {u,} in I* which minimizes
J(w) =Y luyl + Mfy — /%, (7.3)

vEA
where f, are the wavelet coefficients of f. The exact solution to (7.3) is given by a soft

thresholding with a threshold of 1/2). To see this, we minimize (7.3) for each index 7,

i.e. we minimize the function

h(uy) = luy| + Alfy — u,[?
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for each . It is obvious that if f, > 0 then so is the solution %, which minimizes h,
otherwise h(—u,) < h(i,) which is a contradiction. A similar argument shows that
[y £ 0 implies &%, < 0. With this fact in mind, suppose f, > 0. Then for u., € [0,00) we
have h'(u,) = 0 if and only if u, = f, —1/2A. For 0 < f, < 1/2) we have f,—1/2A <0
and hence inf h(u,) = h(0) for u, € [0,00). Hence for f, > 0, the solution which

minimizes h(u.,) is given by
%, = max{0, f, — 1/2A}.
A similar calculation shows that if f, < 0 then 4, is given by

iy = —max{0, |f,] — 1/2}.

Combining these last two results, we have, for any f, € R,

iy = sign(f,) max{0, |, — 1/2)},

which is presicely the result one would get when applying a soft thresholding with
threshold 1/2).

Such a nice algorithm for minimizing (7.2) may lead one to suggest using this func-
tional instead of the ROF functional to decompose an image into a u +v sum. However,
by Theorem 6.1 we have B;" C W' and hence characteristic functions of sets with
smooth boundary do not belong to B}l As a consequence of this last remark, the edges
of objects, which correspond to the boundaries of characteristic functions, will not be
well preserved in the 4 component. Minimization of the ROF functional by wavelet

thresholding will be discussed in section 7.6.

7.4 Thresholding: Wavelets vs. Fourier Series

We would now like to address the issues of preformance of wavelet series expansions
versus that of Fourier series expansions for representing images. We will soon see that

wavelets are the better choice. The first problem we would like to shed light on is
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whether or not thresholding is a stable operation when performed on both wavelet and
Fourier expansions of functions. If wavelets having compact support are used, then they
have the benefit that changes made to a particular coefficient c(j, k) will only effect the
function in the support of 1(27z — k). However, the sine and cosine basis functions used
in a Fourier series are supported globally, and hence any change to a single coefficient
will effect the function on the entire domain. Meyer proved an interesting result in [13].
Given a hard thresholding operator ©, with threshold ¢ and any Hélder space C* with
a < 1/2, one can find a 2r-periodic function f € C* such that

1€e(lle = 0 as e— 0,

where the thresholding is applied to the Fourier coefficients of f. To see that this problem
does not occur when thresholding the wavelet coefficients of a function in C®, we note,
as it is given in [15], that the space C® is exactly the space B%:* and we have seen that

a function f belongs to the latter space if and only if

@)=Y &k —k) +d_ Y cN)a(@),

keZn F>0 AeA;
such that
sup |&(k)| < Co < 00 (7.4)
keZr
and
sup 222"/ gup |c(A)] < C; < oo, (7.5)
.720 AGAJ'

where A; = {j} x Z" x {1, ...,2" — 1} and the wavelets {11, ...,%2n_1} are chosen to
be r-regular where |r| > 1. Summing the infimum over all the constants Cp and the
infimum over all constants C; which satisfy (7.4) and (7.5) respectively, one obtains an
equivalent norm to the usual norm in C®. Hence if the wavelet coefficients c(\) of f
were replaced by 8.(c())) then they would still satisfy (7.5) and the resulting function
fe would satisfy

[fellca < Clifllca

62



with the constant C' not depending on e. We remark that the coefficients ¢é(k), k €
Z", are left untouched when applying wavelet thresholding to functions belonging to

nonhomogeneous spaces such as the one just described.

7.5 Expansions of BV Functions: Wavelets vs. Fourier Series

When dealing with functions of bounded variation, we will show that it is beneficial to
use wavelet series as opposed to Fourier series. The Fourier coefficients of a BV function
can decay as poorly as O(n~'/2) if logarithmic factors are ignored. An example of such

a function in 2-dimensions is given by

f(@) = |z|™* (log |z]) p(J]),

where ¢ € C* with ¢(z) = 0 for |z| > 1/2 and ¢(z) = 1 for |z| < 1/4. First of all, we
show that this function does in fact belong to BV. Since f is radial we write in polar

co-ordinates,
f(r) =r""(logr) p(r),

and differentiating we have

o _ P O)rlogr — p(r) logr + 2p(r)
Fr)= r2(logr)? :

Hence
. 2% lo's}
[ Wr@las = [ [ 1r@rdras
R2 o Jo
1/2 V4 ogr —2
= 21r/ "(r rdr+27r/ —————r.

1/4 7o)l o r(logr)

The integral

1/2
/ \f(lrdr
1/4
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is obviously finite. As for the second integral we have

1/4 ], — 1/4 1/4
/ ggr_zd,._/ ;d,._/ 2?2
o r(logr)® o r(logr)?” Jo r(logr)®

1 A 1 1/4
logr |, (logr)? |,
1 1
= < 0.

(log4) " log 4
Thus we have f € W' C BV. According to [13], the Fourier coefficients c(k) of f can
be estimated by

c(k) ~ Clk|™(logk])~>
4C
Vi + K[log(kZ + k2)]*’

which implies that the nonincreasing rearrangement of the |c(k)| denoted by ¢}, decay as

n~12(logn)~2. As far as wavelet bases are concerned, we are guaranteed a better decay
on coefficients than what we have just seen. Given an o.n.b. 29(2/z —k), j € Z, k € Z?,
9 € {1, 2,3} of L*(R?) constructed by usual tensor product from a one-dimensional
wavelet 1), where 19 has compact support and belongs to a Holder space C” for some

r > 0, then we have the following theorem.

Theorem 7.1 For any f € BV(R?), the wavelet coefficients cx = (f, ), A € A =
Z x Z* x {1,2,3} belong to weak I'(A).

This theorem was first proved in [7] for the Haar wavelets and was later extended to the
general case in [13]. This theorem says that if the |c)| are rearranged in nonincreasing

order, then these sorted coefficients satisfy

<

31Q

for some constant C.



7.6 The ROF Model: Revisited

We would now like to attempt to use wavelet methods in order to minimize the ROF
functional:
2
J(w) = |lull gy + Allvllz

where f = u 4+ v. We have already seen that when replacing the BV -norm in the above
problem with the norm in the smaller space B; 1 an exact solution (up to a constant that
gives the equivalence of the discrete and continuous norms) is given by a soft thresholding
of level 1/2)\ on the wavelet coefficients of f.

Let us first recall that [|v|], < 1/2), where |-||, denotes the norm in the space G.
This is a direct consequence of Theorems 4.2 and 4.3. On the other hand, by Lemma

4.1 and Theorem 6.1, we have the following estimate for the G-norm:
[vll g1 < Colloll, (7.6)

for some constant Cy > 0. This is a very appealing statement since we know that
the norm of a function f in the Besov space B1™ is equivalent to the I°° norm on
the wavelet coefficients of f. Thus if v,, v € A = Z x Z* x {1,2,3}, are the wavelet

coeflicients of the v component of the ROF model then

by < e
31615 lvy| < )

for some C > 0. By using either a hard or soft thresholding at level € = ¢y = C/2\ the
v component of the ROF model will therefore be completely removed. We will denote
the resulting function from this thresholding by 4 and also let ¥ = f — %. The error of
approximating u by % can be measured in the L? norm. To see this, we first denote the
wavelet coefficients of u by u,,. Since BV (R?) C L%(R?), we have

D lwf? < oo

veA

Then since |0.(u,)| < |u,|, where 6. is a thresholding operator (either hard or soft), it is
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obvious that 4 also belongs to L2. Thus the L? error can be estimated by

hu—lly < (3 fuy — P2,

YEA

where @, = 0¢(u,). Let us denote by u;, the nonincreasing rearrangement of the sequence
luy|, ¥ € A. Then if 6, represents a hard threshold operator, and if N is the least integer
such that

uy <

2|8

then the above estimate simplifies to

Dy — iy

YEA n=N

[
NgE
e
v

IA
K
NgE

3| =

Similarly when 6, is a soft threshold operator,

SNy —if = Y ey —iylf+ Y luy— iy

€A |ey|>e feyl<e
N-1 o) 1
< TGy L
n=1 n=N
N-1 [+
C? 1
< Y ameaY
- —1\2 0 2
n=1 (N 1) n=Nn
Co RN |
< _N—1+C°Z;VF'
n=

Although this is fine for measuring the error of u— 4 in L%, unfortunately it does not
say anything about this error in the BV norm. This is due to the fact that the wavelet
coefficients of a BV function are not characterized by their coefficients belonging to
weak [!, i.e., the converse to Theorem 7.1 is not true in general. This issue leads to the

formulation of the following problem.

Conjecture 7.1 If f(z) = qu A &YW (z) is the wavelet expansion of a function f be-
longing to BV and if 0, is a hard or soft thresholding operator of level € then

fe(m) = Z oe(c'r)d"y(x)

YEA
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still belongs to BV with a norm not depending on .

Although this has not been proved for the general case, it was however proved for the

Haar wavelets by Cohen et al. in [7]. More precicely, they proved that

I fellzv < Cliflizy

where

C =10+ 28v2 [18\/5 + 36(480v/5 + 168\/5)] .
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