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Abstract

A New Hierarchical Method for Image Segmentation and Inpainting Using

Mumford-Shah Model

XTAOJUN DU

Image segmentation is a popular topic in computer vision and image processing. As a region-
based (global) approach, the Mumford and Shah (MS) model is a powerful and robust segmentation
technique as compared to edge-based (local) methods. However, there are some difficulties with the
MS model. One difficulty is the detection of roof edges. In this thesis, we first modify the MS model
to include second order derivative term and use linear approximation to implement the solution. In
this way, we can detect not only step edges but also creases and roof edges. The most important
difficulty of MS model is that the segmentation results depend on the initial curves. To overcome
this problem, we present in this thesis a hierarchical strategy that takes into account both the local
information at the pixel level and the global information of the MS model. With this hierarchical
segmentation scheme, we can segment an image into regions until each region is smooth enough and
need no additional segmentation. Compared with previous works, our approach can automatically
detect both main structure and details in an image with multi-level-set functions, and it can stop
automatically when the boundaries are detected. In our approach, the final segmentation does not
depend on the initial condition. Many experimental results indicate that our approach is effective
in many applications. Especially, we apply the new approach to the image inpainting problem.
Compared with previous work, because the new approach can detect all the edges in an image, it

can preserve more edges and details in the inpainting process.
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Chapter 1

Introduction

Image segmentation is a popular topic in computer vision and image processing. Because it is
widely used in image analysis, image registration, image compression, reconstruction, inpainting,
enhancement and denoise, the technique of image segmentation has received much attention.

Because researchers have different interests in different applications, it is difficult to propose a
common definition of image segmentation. In this thesis, we define image segmentation as parti-
tioning an image into different regions, so that the image intensity is smooth inside each region and
changes abruptly on the boundaries of these regions.

"The variational approach is an important technique for image segmentation. In this technique, we
try to minimize an energy to segment an image. This technique can be divided into two categories:
edge-based and region-based approaches. The snake model is an edge-based variational approach

{42, 33]. The final segmentation contour corresponds to the minimum of following energy:

1 1 1
J(C) = /()a(S)IC’(S)Izds+/() ﬁ(5)|0/’(s)|2ds+/\/0 g*(IVu(C(s))ds 1)

where s is a point on the segmentation contour C(s). The first two terms represent the internal
energy and control the deformation of the contour. There are two non-negative parameter functions:
af(s) controls the tension of the contour while 5(s) controls its rigidity. The last term is the external

energy and attracts the contour toward the intensity edges within an image. There are two drawbacks



of the this approach: the result depends on the parameters « and 3, and this model cannot handle
changes in the topology of the evolving contour directly. In fact, it is impossible to detect more than
one object simultaneously [20].

If we set the rigidity term to zero that is 3 = 0, the energy becomes:
1 1
KO = [ aICEPds+A [ F(TuC(E)ds )
0 0
[7, 34] presented the following energy functional:
1
2(©) = 2VA [ g(vu(CeDIC (s)lds 3)
0

and [35] proved that minimizing the energy functional J»(C) is equivalent to minimizing J1(C).
J2(C) is called geodesic active contours model. This model is intrinsic because it does not depend
on the parameterization of the curve. In addition, [20] proposed that J5(C) can be solved by using
the level set methods.

The level set method is first introduced by Osher and Sethian [22, 24, 25, 26, 27, 28]. It is a
numerical technique to analyze and compute the motion of interface. The technique can handle
changes in topology of the evolving curve and is fast.

Both the snakes model and the geodesic active contours model only use edge detector function
(Vug) to stop the evolving curve on the edges of the object. Therefore they belong to the edge-based
approach.

On the other hand, the region-based approaches make use of the information not only near the
boundary of objects but also inside the object regions. Mumford-Shah (MS) model [3] belongs to this
category. In this model, we try to find an optimal piecewise smooth approximation v of the original
image ug, and a set of boundaries C, such that v varies smoothly inside the homogeneous regions
and discontinuously or rapidly across C. Compared with edge-based approaches, MS model is more
robust and can deal with noisy images. However, the numerical method of solving the MS model
is difficult to implement. There are some alternative solutions to this problem. Some researchers

used elliptic approximation to form weak formulation of MS model [20, 36, 37, 38]. Another kind of



approaches are based on level set technique. This category includes the active contours without edges
model [4], the multiphase level set framework [5}, the curve evolution based approach [1], the image
segmentation and selective smoothing [2], and etc.. The piecewise constant approximation presented
by Chan and Vese is one example [4]. The authors approximate the intensity inside each segmented
region in an image by a constant gray value. Compared with the piecewise smooth approximation
approach in [5], the piecewise constant approximation approach only solve one partial differential
equation (PDE) instead of three coupled PDEs. It is faster and more robust.

While MS model works well in many applications, it also faces some difficulties:

1. The piecewise constant approximation is suitable only to the situation in which the intensities

of the segmented regions in an image are uniform.
2. While the MS model can detect step edges, roof edges are often missed.

3. When the level set method is implemented to solve the curve evolution, 2™ regions can be
represented by n level set functions. It is supposed that any number of regions can be segmented
as long as enough level set functions are used. However, this is not true. Besides the high
computational cost to solve coupled multi level set functions, the results of curve evolution
depend on the initial location of the level sets. Because the MS energy functional is not convex,
the minimization of the functional is often trapped by a local minimum. Consequently, in most
cases, it is difficult for the initial curves to evolve to the proper boundaries of objects in an

image.

To overcome the first difficulty, Zhang {29] presents a piecewise linear approximation for MS
model to adapt to the image intensities distribution inside segmented regions. He also generalizes
the MS model to detect low contrast edges and roof edges. In this thesis, we propose to use second
derivative term to detect roof edges.

For the third difficulty, we present a new hierarchical segmentation scheme to obtain better
segmentation results compared to many previous methods. Qur approach is different from previous

hierarchical segmentation approaches proposed in [1] and [2] . In this thesis, we combine the global



approach of the MS model with the local information at the pixel level. With this scheme, we can
detect both large objects as well as small and detailed structures. It is believed that our approach
can be used for complicated images. The most important advantage is that the segmentation result
does not depend on the initial conditions.

The organization of the thesis is as following: First, the MS model and Level set technique are
introduced in chapter two; the piecewise smooth and piecewise constant approximations are reviewed
in chapter three. The piecewise linear approximation and modified MS model are presented in
chapter four. In chapter five, we present the new hierarchical segmentation scheme, and experimental
results are presented in chapter six. In chapter seven, an application of our hierarchical image
segmentation scheme in image inpainting is presented. Finally the conclusion is reached in chapter

eight.



Chapter 2

The Mumford-Shah Model and the

Level Set Approach

In this chapter, we will review the Mumford-Shah model and the level set method in the context of

the image segmentation problem.

2.1 Image Segmentation

The problem of image segmentation can be defined as follows: For an observed image ug (possibly
with noise), we want to find an optimal piecewise smooth approximation u of ug for each specific
region. The regions are denoted by €;, 4 = 1,2, ...,n. The function u varies smoothly within Q;, and
rapidly or discontinuously across the boundaries of ;. The boundaries of all Q; are denoted as C.

The whole image can be expressed as:

e=aJc (4)

The process to find the boundaries of Q; is called segmentation. Mumford and Shah proposed that

the segmentation of an image can be obtained through the minimization of a energy functional



known as the Mumford-Shah energy functional [3]:

E(u,C) = / lu — uol*dzdy + / VulPdzdy + v|C], (5)
Q\C Q\C

In equation (5), up is the original image; u is the smooth approximation of the image; C is the
segmentation curve; |C| represents the length of the curve; Q is the image domain; Q/C represents
the image domain excluding the segmentation curve. If the MS energy functional is minimized, the
image will be segmented into regions so that: (1) u is a good approximation of ug, (2) u is smooth
in each region, and (3) the boundary of each region is as short as possible. The parameters of u and

v are used to balance the affects of different terms.

2.2 Markov Random Field Model

The Mumford-Shah (MS) model can be understood in the following way: For an observed noisy
image ug, we would like to find the true (clean) image u. Using Bayesian decision theorem, the
posterior probability is P(u|ug) = P(ug|u) P(u). Here P(u} is the probability of obtaining u, and
P(ug|u) is the probability of obtaining ug given the image u. Then P(u|ug) is the probability of
obtaining the (clean) segmentation image u given ug.

We assume that P(u) is proportional to the energy in the following form [12] P(u) = exp(-U).
Here U is energy of the image. Considering only interactions between neighboring sites of the image,

U can be expressed as

U > g(uld) = u(f)) < y_ 9(Vu) (6)

i and j are neighbor pizels
Where g(x) is the regularization function; i and j are the indices of pixels in the image. P(ugl|u) is

assumed to be
N
Pluolu) o [ expl—(ua(i)  u(i))’]
xexpl- [ (ug - v}’ )

Assuming P(ulug) = exp(—FE(u, ug)), then we have



Figure 1: The 3-dimension demonstration of level set approach [9].

E(u) = / (u — uo)?dz + / o(Vu)de )
If we include the boundary energy in Eq.(8), we have

E(u,C)= /(u — ug)?dz + u/g(Vu)dz+l/|C| 9)

When g(z) = |z|2, (9) becomes the Mumford-Shah model.
The solution of the MS energy functional is not a trivial task. There are some alternative solutions
to this problem, such as the elliptic approximation to the weak formulation of the MS functional

[20], the active contours without edges [4, 5], and the hierarchical curve evolution based approaches

in [1, 2].

2.3 Level Set Approach

The level set method is first introduced by Osher and Sethian [22, 24, 25, 26, 27, 28]. It is a
numerical technique to analyze and compute the motion of interfaces. Many applications of the
level set method are developed in image processing.

The basic idea of the level set method is to make use of a 3-dimension surface to represent the
motion of a 2-dimension curve as shown in figure 1.

In figure 1, the 3-dimension cone-shaped surface represents the motion of a 2-dimension circle
curve. The intersection between the cone-shaped surface and the x-y plane represents the curve at
different time. In this figure, the circle becomes bigger along the time axis. The 3-dimension surface

can be represented by an equation ¢(z,y, z) = 0. This surface segments the plane into two regions,
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Figure 2: Representation of two regions by a level set function [30].

inside region and outside region. We can assume ¢(z,y,z) > 0 inside the region and ¢(z,y,z) <0

outside the region. On the x-y plane, the relationship becomes:

> 0 inside the curve
¢z, y,t) = ( on the curve (10)
< 0 outside the curve

As shown in figure 2, we can use the function ¢(z,y,t), level set function, to represent two regions,
inside region and outside region. We also can use two level set functions to represent four regions

as shown in figure 3. The two level set functions satisfy:

¢, > 0, @2 > 0 inside region 1 (1)
¢1 < 0, ¢2 > 0 inside region 2
¢y > 0, d2 < 0 inside region 3
¢1 < 0, ¢ < 0 inside region 4
In this way, we can use n level set functions to represent 2™ regions.

As mentioned in the beginning, the motion of a curve can be represented by a 3-dimension

surface. Since the surface is represented by equation: ¢(z,y,t) =0, at any time t the level set value



20

Figure 3: Representation of four regions by two level set functions [5].

— -

of each point z(t) on the surface is always zero. This implies d¢(x(t),t)/dt = 0 . By the chain rule

we have:

+V¢.— =0 (12)
It is an initial value partial differential equation and can be written as:

08(Z, t) ~
5+ FIve| =0 (13)

We also need two conditions for the equation:

1. The boundary condition: we usually impose the normal derivative vanishes on the curve or

the surface.

? 0 on the curve (14)

—

where 7 is the normal vector.

2. The initial condition: The initial function ¢¢(x,y) usually is assumed to be an initial curve.
¢(I7y1 0) = ¢0(17,y) (15)

By solving equation (13), we can obtain the evolution of a 2-dimension curve.

An example of the evolution of a curve is to assume F = —k, where & is the curvature of the



curve. In this case, the motion equation becomes:

WED v (g ) vl (16)

If we assume a square initial curve, the evolution of the curve is shown in figure 4. In figure 4, the

Figure 4: The evolution of a square curve.

square curve first evolves to a circle and then vanishes.

There are many advantages to use the level set method to solve the evolution of curves, including:

1. The topological changes in the evolving boundary such as merging and breaking are handled

naturally as shown in figure 5.
2. The numerical solution of the motion equation is easy to implement.

The formulation of the MS model leads itself to the level set method as a numerical approach for
solving the MS energy functional, in which the contour C' can be presented by the level set function

¢. This concept will be made clear in the following chapters.

10
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Figure 5: The merge of two curves with level-set approach [9)].
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Chapter 3

Piecewise Smooth and Piecewise

Constant Approximations of

Mumford-Shah Model

The solution of the MS energy functional is not a trivial task. There are some alternative solutions
to this problem, such as the elliptic approximation to the weak formulation of the MS functional
[20], the active contours without edges [4, 5], and the hierarchical curve evolution based approaches
in [1, 2]. Because the work of this thesis is mainly based on and extended from the two approaches:
piecewise smooth and piecewise constant approximations of the MS model, these two approaches

are introduced in the following sections.

12



3.1 Piecewise Smooth Approximation

If we consider that a closed curve segments an image into two regions (i.e. inside and outside

regions), the MS energy functional can be written as:

E(uy,uz,C) = / ) luy — u0l2 dzdy + u/ ] IVu1|2 dzdy
inside ¢ inside ¢
+ / |uQ—u0|2dzdy+/L/ |Vug|® dedy + v - |C], (17)
outside ¢ outside ¢

where u; and u, are smooth approximations of the image inside and outside the curve. The numerical
solution of the MS energy functional can be implemented by the level set method. In the case that

the image consists of two regions, the segmentation curve can be represented by one level set function

@:
>0 if (z,y) is inside C

oz, y,t) =9 =0 if (z,y)ison C (18)
<0 if (z,y) is outside C

Using the level set functions and the Heaviside function H(z) defined by

lifz>0
H(z) = (19)

0ifx <O

the piecewise smooth approximation of the MS model can be written as:
Buusd) = [ (w—uolH(@dody + [ (w2 = uo)*(1 — H(o)dody
b [ 1Vl H(@)dody -+ [ 192 (1= H(o)dzly
—H// |V H(¢)|dzdy. (20)

The numerical form of H(x) is:

H(z)=-(1+ %arctan(%)) (21)

1
2

Using the formula:

13



where §(¢) is the Dirac function, we have:

Elun,us¢) = / (s — o) H (@) dady + / (uz — u0)?(1 — H(@))dzdy
u / Va2 H(g)dzdy + / Vusl? (1 — H(p))dady

+V/5(¢)|V¢|d:cdy.

The numerical form of §(zx) is:

1
delz) = T x2 —Ei- €?
We define:
Flui,u2,¢) = (w1 — uo)*H(¢)+ (ug — uo)*(1 — H(¢))

0|V |? H(g) + g [Vuo|? (1 — H(¢)) + v[5(6)| V4]

Following the derivation of the Euler-Lagrange equation, we have

%g = (w1 —up)?6(¢) — (uz — u0)*6(9)
T |V |? 8(0) — 1 Vua|® 8(0) + VI8 () V]

and

a OoF, , o3 8 ¢

6_y(5$;) = vid'(9) ¢%+¢5+6(¢)6z ¢§+¢§]
and

2
0 0F 5 &y 45 9 ¢y

i) = PO ey

Thus, we have the following Euler-Lagrange equation:
8()[(ur — u0)? — (uz — uo)? + 4 [Veur [* = Vo =0V - (557)] = 0
with the boundary condition

58) oy 0600 _
N F i

(23)

(24)

(25)

(26)

(30)



Here # is the normalized normal of the boundary curve of the image. Using the gradient projection

method, we can change equation (29) to the following time dependent equation

0d

O = B0 — wo)? + (ua — w0)? = W[Vl + s Vel 407 (S (31)

Similarly, we also can obtain the Euler-Lagrange equation for the variables of uy, us:

(ug —ug) = wpV2u, inside C (32)
% =0onC

(ug —ug) = pV3uy outside C (33)
% =0onC

The smooth image functions u; and us can be obtained by solving the damped Poisson equations
(32) and (33), and the segmentation curve can evolve according to equation (31). This is the piecewise
smooth approximation presented by Chan and Vese [5]. Many advantages can be achieved by this
approach, such as simultaneous segmentation and smoothing of noisy images, and detection of triple
junctions by using multiple level set functions. However, because three PDEs equations (32), (33),
and (31) are needed to be solved simultaneously, the computational cost of this approach is very
large. To overcome this difficulty, Chan and Vese proposed another approach using the piecewise

constant approximation [4, 5].

3.2 Piecewise Constant Approximation

If the image intensities inside different regions are uniform, the image intensities inside different
regions can be approximated by constants. In this case, the MS energy functional can be simplified
to equation (34):
E(e,C) =3 /Q (c& — uo)2dady + vIC], (34)
PR
where Q,, represents the area inside each region. The gradient term in the MS energy functional

disappears in equation (34) because the gradient inside each region is zero. Using the level set

15



method [9] and the MS energy functional of the two phase segmentation, the image is segmented

into two regions:

E(cy,c0,6) = / (c1 = uo)2H (¢)dzdy (35)

N / (ca — uo)(1 — H(¢))dady + v / 5(6)|V éldzdy

where H(z) is the Heaviside function.

We define:

F(¢) = (c1 —up)*H(¢) + (c2 —ug)*(1 — H(¢)) + v[6(¢)| V| (36)

Following the derivation of the Euler-Lagrange equation, we have

OF

%% (c1 — u0)?8(8) — (c2 — u0)?6(8) + v[d'(4)| V] (37)
and
&  OF , o2 0 ¢
(=) = () 4 §( ) — e
Bles) = PO A g (38)
and
&  OF o o ¢
I Sl — 6/ Yy ) . Yy
Thus, we have the following Euler-Lagrange equation:
H)(er = w)? = (e2 = o) =V - (] =0 (40)
with the boundary condition
90) Gy 300 06 _
Vel 0T Welan )

Here i is the normalized normal of the boundary curve of the image. Using the gradient projection

method, we can change equation (40) to the following time dependent equation

99 _
ot

5(6)[~(cr — uo)? + (5 — uo)? + ¥V - (%)]. (42)

16



equation (42) is the evolution function for the segmentation curve. Constants c¢; and cz can be

solved by:
OF OF
8—c1 =0, —é—c—-z- =0 (43)
Thus
_ JuoH(¢)dzdy
C2(¢) — fuo(l - H(Qﬁ))dzdy (45)

J(1— H(¢))dzdy

After solving these equations, we can obtain the information on ¢;, ¢z, and C. The image ug will
then be segmented into two regions {u = ¢;} and {u = ¢z}. Compared with the piecewise smooth
approximation approach, the piecewise constant approximation approach is much faster because
only one PDE needs to be solved. However, this approach is effective only when the intensity
inside each segmented region (object) is uniform and can be approximated by a constant. When
the intensities smoothly vary inside the object regions, the piecewise constant approximation will
introduce bigger errors, and this approximation will not work well. Furthermore, in the case of roof
edges, the variance of the intensities in the regions on both sides of the roof edge is large but the
second order derivative is small, and the intensities inside these two regions cannot be approximated
by constants. The bigger the variance inside the object regions, the bigger the error introduced by
constant approximation. Therefore, the piecewise constant approximation will not detect roof edges
correctly. To overcome this difficulty, Zhang in [29] presents the piecewise linear approximation
approach. We can use a linear functional to approximate the intensity distribution in objects. This
approach not only can keep the simplicity of the computation, i.e. we only solve one PDE, but also
can adapt to the intensity variance of objects. In this way, we can obtain better segmentation results.
For roof edges, we modify the MS energy functional and use linear approximation. Experimental
results show that we can detect roof edges correctly.

If the image consists four regions, the segmentation curve can be represented by two level set

functions ¢; and ¢s, and the four regions are represented by the signs of the two level set functions:
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Region 1: ¢; > 0 and ¢ > 0;
Region 2: ¢; > 0 and ¢o < 0
Region 3: ¢; < 0 and ¢ > 0;
Region 4: ¢; < 0 and ¢ < 0.

With the piecewise constant approximation, the MS energy functional becomes:

E(e11, o1, €10, Coo, G1, ¢2) =
/wm—q&Hwnmmwww—quwnu—me
+(ug — co1)2(1 — H($1))H($2) + (uo = co0)*(1 — H(¢1))(1 — H($2))]dzdy

+V/|VH(¢1)|da:dy+1//\VH(ng)Ida:dy (46)

where ¢11, Co1, C10, and co are the average intensities in corresponding regions:

c11 = mean(ug) in {¢1 > 0 and ¢ > 0} 47)
coo = mean{up) in {¢1 < 0 and ¢ < 0}
c10 = mean{ug) in {¢1 > 0 and ¢ < 0}

co1 = mean(ug) in {¢; < 0 and ¢2 > 0}

We define
Fi(gr,¢2) = (uo—c11)*H(1)H(d2) + (uo — c10)*H{¢p1)(1 — H(¢2))
+(ug — c01)2(1 — H(¢1))H (¢2) + (uo — co0)*(1 — H(¢1))(1 — H(42))
+v|VH(¢1)| + vIVH (¢2)] (48)
we have

oF
01

(e11 — u0)?8(¢1) H(82) + (cr0 — u0)*6(d1)(1 — H(2))
—(co1 — 0)28(¢1) H(¢b2) — (coo — u0)*8(¢1)(1 — H(¢2))

+v8 (¢1)|V 1 (49)
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and

8 6F4 d’lz

2 4]
= v[§'(¢1) ===+ 8(¢1) 5 (50)
Oz 01 T, R,
and
8 6F4 % 6 ¢1
—(m—) = VI () ==+ ()5 ———] (51)
Oy 00 IR RN
Therefore, we have the following Euler-Lagrange equation for ¢;:
(1) [[(c1r — uo)® — (cor — uo)?*| H (¢p2)+
(eto — u0)® = (co0 — uo)J(1 ~ H(g2)) vV - (L] =0 (52)
IVl
with the boundary condition
6(¢1) . 0(¢1) O¢1
SR = —_ =0 3
Vi O " Ve on (53)
Here # is the normalized normal of the boundary curve of the image.
Similarly, we can derive the Euler-Lagrangian equation for ¢-.
OF, 2 2
ErS (c11 — ug)?8(¢2)H (1) — (cr0 — o) “H (¢1)5(¢2)
+(co1 — u0)28(¢2)(1 — H(¢1)) — (coo — u0)*(L — H(1))8(2)
+v8'(62)| V1| (54)
and
8 aFI4 1 ¢% 6 ¢2z
v = V[ (h2) ==+ 0(¢2) 5~ =] (55)
Oz " 0oy 2 2, + 63, 28z 2.+ 63,
and
d , OF, 3 0 ¢
= = V[ (¢2) ===+ 0(¢2) - ———=] (56)
Oy Oday /62, + ¢%y Oy /62, + d;%y
Therefore, we have the following Euler-Lagrange equation for ¢s:
3(¢2) [[(er1 — u0)® — (c10 — o) ] H (é1)+
[(co1 — u0)? — (coo — u0)*|(1 — H(¢1)) — vV - ( Vo )] =0 (57)
V2|
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with the boundary condition

§(¢2)
Vs

. O(¢2) O
Vér fi= P =0 (58)

Here 7 is the normalized normal of the boundary curve of the image. Using the gradient projection

method, we have the curve evolution equations for ¢; and ¢,:

D0 = 5(60) [ len — w0)? — (eor — w0} (92)
(o0 = w0)? = (e — 0?1 = H(ga)) + 07 - (L)
%%2‘ = 8(¢2) [[—(c11 — uo)® — (c10 — uo)*|H ($1)—
oo = w0)? = (eoo — ua (1 = H(ou)) + 99 - (L) (59)
Constants c¢;1, €10, Co1, and cgp can be solved by:
oOF oF oF oF
Thus
_ S uoH ($1)H($2)dzdy
) = T 60 H{ba)dady (61)
_ fuoH(¢1)(1 — H{¢z))dzdy
@0l0) = T (621 = H(#2))dedy ©2)
_ Juo(l = H(¢1))H (¢2)dzdy
)= T T H (60 H (6o dady (©3)
con(d) = Juo(1 — H(¢1))(1 — H(¢2))dzdy (64)

S - H(¢1))(A — H(¢2))dzdy
If the image consists of more regions, we can use n level set functions to represent 2" regions.
So it is supposed that any number of regions can be segmented if enough level set functions are
used. However, this is not true. First of all, the number of regions in an image is unknown before
segmentation. We may use as many level set functions as possible to segment the image to avoid

missing any regions. In this case, the evolutions of many curves are interlaced, and the computation
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cost will be very large. The most important problem is that the MS energy functional is not convex.
If many curves evolve simultaneously, the problem of initial condition will be more difficult to handle.

To overcome these problems, we present a new hierarchical segmentation scheme in chapter five.
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Chapter 4

Piecewise Linear Approximation
and Modified Mumford-Shah

Model

In this chapter, we present the piecewise linear approximation and the modified Mumford-Shah

model to deal with the problem of creases and roof edges.

4.1 Piecewise Linear Approximation

The piecewise constant approximation can be used only when the intensities of objects in an image
are uniform and can be approximated by constants. When the variance of intensity inside an object is
large, the piecewise constant approximation will introduce larger errors. To adapt to the distribution
of intensity inside object regions, we can use a linear function u(z,y) = a + bz + cy, instead of a
constant, to approximate the intensity of an object. Here a, b, and ¢ are constants.

For the case of two phases, we will have two linear functions, one approximating the inside, the
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other approximating the outside of the level set curve:
ui(z,y) = a1 + iz + a1y (65)
uz(z,y) = ag + b2x + c2y

Similar to equation (35), the MS energy functional can be written as:

E(ai,bi,ci,d)) = /(al +b1x+cly“u0)2H(¢)dzdy
+ / (a2 + baz + coy — up)2(1 — H(¢))dwdy

b+ ) [ HO)dndy s+ + B) [ t@)dody +

v / VH () |dzdy. (66)
We define
F(¢) = (a1+bix+cy— u0)2H(d>) + (ag + baz + c2y — uo)2(1 — H(¢))
+u(b} + ) H($) + u(b3 + ) (1 — H(9)) + v8(8)|Vol. (67)

Following the derivation of the Euler-Lagrange equation, we have

oF

55 = (@thiz+ey—uw)s9) - (a2 + bz + oy — ud)o(@) +

(b3 + ¢3)8(9) — u(b3 + c3)8(8) + vd'(¢)|Vl] (68)

and

o OF, _ . & o s
%(T%) = V{5(¢) +5(¢)6z\/m]

VO + o

and

o, oF , o

_ 0 by
@(5@) = v[6'(¢) +6(@) 5 —F—

Ve + 9 %\ /6%+ &2

Thus, we have the following Euler-Lagrange equation:

(70)

5(¢)[-vV - %% + (a1 + b1z + 1y — ug)® + p(d? + c2)

—(a2 + baz + coy — uo)? — p(b3 +c3)] =0 (71)
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with the following boundary condition

50) g1

5(6) 96 _,
V6]

[Vélon
Here 7 is the normalized normal of the boundary curve of the image.
Using the gradient projection method, we can change equaiton (71) to the following time depen-

dent equation for ¢(z,y,t)

¢

5 = @V

\%
. IV—$ — (a1 + bz + 1y — u0)2 - .U«(b% + C%)
+(ag + baz + ey — ug)? + p(b2 + c2)] (73)

This is the evolution equation for segmentation curve.

We can calculate ay, b1, and ¢; via the following equations:

O0E __8E __ OE

or

@ / H(9)dady + by / H(¢)adady

tor / yH(¢)dody — / o H (¢)dady

a / zH(¢)dzdy + b / [x% + p|H{p)dzdy

+or / sy H (¢)dady = / o H () dzdy (75)
o [yH@dsdy+ b [ ey @)y + [+ wE@) sy

- / yuo H($)dedy

Similar to the above, we can obtain the equations for as, by, and c;, that is:

OoE oF OF
%;—07572—0,8—02——0. (76)

w (- H(@)dody+b [~ H(@)adsdy

+es / y(1 - H(@))dzdy = / uo(1 — H($))dzdy
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@ [ 51— H(@)dsdy+ by [ + w1 - H()dody
ey / zy(1 ~ H($))dzdy = / wuo(1 — H(¢))dzdy (77)
as / y(1 — H(¢))dzdy + by / 2y(1 — H(¢))dzdy -+

e / W2 + W1~ H(¢))dady = / yuo(l ~ H(@))dzdy

Through solving the equations (73), (76), and (78), we can obtain the evolution of the level set
curves and the final segmentation. In this process, only one PDE equation (73) needs to be solved.
In every step of the iteration for solving the equation (73), we use equations (76) and (78) to update
the constants ay, b, ¢i, as, by, and cy.

The comparison between the segmentation results of the piecewise linear approximation and
the piecewise constant approximation is shown in Figure 6. In Figure 6, we use two segmentation
approaches: piecewise constant approximation and piecewise linear approximation, to segment an
image of a head bone. The image is segmented into two regions and these two regions are represented
by two constants or two planar functions in the reconstruction images (b) and (e) respectively. It
is obvious that the piecewise linear approximation can detect more parts of the head bone. This is
because the environmental lighting makes the image intensity of the head bone to vary, the top is
lighter and the bottom is darker. In this case, a planar function can approximate the image intensity
while the constant approximation leads to larger errors. This also is indicated by the MS energy
in (c) and (f). The minimized MS energy of the linear approximation is much smaller than that of
the constant approximation. Furthermore, because the linear approximation represents better the
image intensity, the convergence speed of iteration for the linear approximation is much faster than
that for the constant approximation.

The experiment in Figures 6 only segments the image into two regions, that is, two phases. To
segment the image with more complicated structures, we need use two or more level set functions.

For the four phase case, we use two level set functions to segment an image into four regions. The
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Figure 6: Comparison between the segmentation results of the piecewise linear approzimation and
the piecewise constant approzimation [29]. (a) Original image with the initial curve for the piecewise
constant approzimation; (b) The reconstruction image with the segmentation result of the piecewise
constant approximation; (c¢) The MS energy versus the iteration time for the piecewise constant
approzimation; (d) Original image with the initial curve for the piecewise linear approzimation; (e)
The reconstruction vmage with the segmentation result of the piecewise linear approzimation; (f) The
MS energy versus the iteration time for the piecewise linear approrimation.

four regions can be approximated by four planar functions:

un(z,y) = an +buz+ ey (78)
u10{x, y) = a1g + b1oZ + c10y
uo1(x,y) = ap + bo1z + cory

ugo{®, ¥) = ago + boo -+ cooy

The MS energy functional becomes:

E{™% (aig, bij, ¢ij, d1, $2) =
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/(uo — a1y ~ bz — en1y)2H(d1) H(po)dzdy

+ [ (w0 = 010 — b = ca0u)* H(81)(1 = H(¢w))dady

+ /(uo —ag1 — borx — —co1y)?(1 — H(d1))H{¢2)dxdy

+ [ (o = 00 = boo = coop)? (1 = F(@1))(1 = H(6)dedy
0+ ) [ Ho)H(@a)dody

o+ o) [ F(60)(1— (H(x))dady

b+ ) [ = H(GO)H(@2)dady

0o+ o) [ (1~ H(82))(1 — (H(6))dady

. / IV H (¢1)|dzdy + v / IV H () |dedy. (79)

To minimize this MS energy functional, we need to solve the PDEs for the two curves, and the
solutions of these PDEs are coupled. Therefore the computation cost will be large. To avoid this
problem, we use the segmentation approach proposed in [2] to minimize the MS energy functional.
In this approach, we first use one initial curve on the image and solve the one level set equation for

the curve using equation (80):

% 8(p1)[—(a1 + brz + 1y — ug)? — (b} + ¢})
Vg,

+(ag + box + coy — up)® + p(b3 + ¢3) + vV -
[Vl

] (80)

Through the curve evolution, the curve will segment the image into two phases: ¢; > 0 for the inside
region and ¢; < 0 for the outside region of the curves. Then we use the second level set curve ¢s
on the image. With the second curve, each of the two phases segmented by the first curve is now
segmented by the second level set function. For the inside region 1 (¢ > 0), we can solve the curve

evolution of the second curve ¢ by:

09

o 8(p2)[—(a11 + bz + e11y — uo)® — p(b3, +¢3y)

v
a0+ bio + croy — o) + p(blo + clo) + ¥V lvzzﬂ (81)
2
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And for the outside region 2 (¢; < 0)), the curve evolution equation of the second curve ¢, is:

d
% = 0(¢2)[—(ao1 + bo1z + cory — uo)® — p(b3; + ¢5y)
Vo

V2l

+(ago + booz + cooy — uo)® + (b + cgo) + vV - ] (82)

We can obtain the segmentation through the solution of the three PDEs (80), (81), and (82). Because
the solutions of the three PDEs are decoupled, the computation will be much faster than the direct
solution of equation (79).

A segmentation example of the four phase case is shown in Figure 7. In Figure 7, the segmentation

Figure 7: Segmentation of the four phase case [29]. From left to right: The first is the original image;
the second is the segmentation result by the piecewise constant approzimation of the MS model; the
third is the segmentation result by the linear approzimation.

results by both the piecewise constant approximation and the piecewise linear approximation are

shown. It is obvious that the linear approximation approach can produce better segmentation. This

is because the linear approximation can adapt to the intensity distribution of the objects.

4.2 ROF Mumford-Shah Model

In the MS model, the regularization term (second term) is small in object regions, but is large
across the boundaries. Therefore the original MS model can be used to detect discontinuities in
the image surface. While the MS model works well in many applications, there are two cases that
are difficult for the MS approach. One is the detection of low contrast edges. This is because the
L2-norm of the gradient term in the MS energy functional is too large for edges. The minimization

of the MS energy functional will remove low contrast edges. Different from the classical MS energy
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model, Rudin, Osher and Fatemi (ROF) [13] changed L?-norm to L'-norm and modeled the energy

functional as follows:

Eu,C) = / Ju — uo|?dzdy + ,u/ |Vul|dzdy + v|C|, (83)
a\c a\c

In this model, L'-norm of the gradient can preserve low contrast edges.

Zhang in [29] presented a piecewise constant approximation approach to solve this model. Be-
cause the gradient term disappears in the constant approximation, [29] added the gradient of the
original image ug in the MS energy functional to detect low contrast edges. The MS energy functional

used in [29] is:

E(w,C) = / (e1 = up) dzdy +/ (e — uo)?dzdy
inside C outside C
+u/ |Vugldzdy + v|C| (84)
inside C

In this model, [29} only calculated the gradient inside C. The advantage of this approximation
compared to the original ROF model is that the calculation is faster since we do not need to solve
two coupled PDEs for v inside and outside, respectively.

The level set function equation becomes:

99
ot

= ~5(@)ler — ua)? - (ca — w0) + Vo] 0¥ - (TE), (55)

Comparison between the classical MS model and the improved ROF model is shown in Figure 8.

In Figure 8, it is obvious that the modified ROF model can detect more edges in the image compared

to the classical MS model.

4.3 Modified Mumford-Shah Model with Second Order Deriv-
ative Term

Another difficulty with the classical MS model is the detection of roof edges. For roof edges, the

gradient of u is not small in the regions on both sides of the roof edge, but the second order derivatives
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Figure 8: Comparison of segmentation results using the classical MS model and the modified ROF
model using the piecewise constant approzimation [29]. From left to right: the first is the original
image; the second is the segmentation result of the MS model; the last is the segmentation result of
the modified ROF mode.

of u is small, and the gradient of u is discontinuous across the boundary. That is there is a step
edge in the first order derivative functional space. To minimize the classical MS energy functional,
the gradient of u inside the segmented regions is forced to be small, but this will make it difficult to

detect roof edges. To overcome this difficulty, we modify the MS model to following form:

E(u,C) = / (u — up)?dzdy + )\/ |Auldrdy +/1/|C’| (86)
o el

In the following, we will denote equation (86) as the modified Mumford-Shah (MMS) model. In
MMS we ignore the gradient term because this term forces the gradient of u to be small inside each
region, but this is not true for roof edges. If we include this term, we will miss the roof edges. On
the other hand, we add the term of the second order derivative of u. Because the second order
derivative of u is small inside regions and large across both step edges and roof edges, minimizing
the second order derivative term in MMS model can detect both step edges and roof edges.

The authors of [38] introduced an energy with second order derivative term as following:

Blw Ko K) = | (1A + o(@,w)dz
Q\(KoUK1)
+aH™ ! (Ko N 2) + BH* (K1 \ Ko) N Q) (87)
where «, 3 are positive parameters; H(~1) is the Hausdorff (n — 1)-dimensional measure. Kg

represents the set of jump points for u (step edges), and K \ Ko is the set of crease points (roof

edges).
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Actually, the MMS model is a special case of equation (87). When ¢(z,u) = plu — ug|® and
a = (3, equation (87) is equivalent to the MMS model.

Finding the solution of MMS model for an arbitrary image is more difficult than for the MS
model. The authors in [38] used elliptic functional approximation to solve equation (87). In this
thesis, we use level set function and piecewise linear approximation to solve equation (86). Compared
with the approach in [38], our approach is more simple and faster.

For roof edges, the gradient of u is not small inside the segmented regions, and the image intensity
varies inside these regions. So the piecewise constant approximation is not suitable for this case.
If we use piecewise constant approximation approach, one region could be segmented into several
regions as seen in Figure 22. To conserve the information of the gradients, we use the piecewise

linear approximation. With the piecewise linear approximation, we define
w(z,y)=a+bhz+cay (88)
ug(z,y) = ag + bax + coy
The MMS model can be written as:
E(a;, by, ¢, 9) = /(a1 + bz + cry — up) 2 H(p)dzdy
+ /(az + bz 4 coy — ug) (1 — H())dzdy
+V/ |VH{(¢)ldzdy. (89)

In equation (89), the second derivative term of u disappears because of the linear approximation.

We define

F(¢) = (a1 +biz+ecry—uo)’H($) + (az + baz + cay — ug)2(1 — H(¢)) + vd(d)|V|. (90)

Following the derivation of the Euler-Lagrange equation, we have

‘;_g = (a1 4 bz + 1y — up)28(d) — (az + bax + c2y — ud)5(¢) + v&' (¢)[V ] (91)
and
o .0 2 .
P 0 - Ay 1 A (92)

3z 8¢,



and

a OF o2

(=) = () —Y
oo, =

Thus, we have the following Euler-Lagrange equation:

+4(¢)

9 &

!
% \Jo2 + o2

§(P)-vV: == + (a1 + bz +cay— u0)? — (ag + baz + coy — ug)?] =0

V¢
[Vl

with the following boundary condition.

3(¢)

2N h =

Vel Vol on

Here # is the normalized normal of the boundary curve of the

86) 90 _,

image.

(93)

(94)

(95)

Using the gradient projection method, we can change equation (94) to the following time depen-

dent equation for ¢(t)

o9

3 5(9)[vv

LY
Vol

This is the evolution equation for segmentation curve.

We can calculate a1, by, and ¢; via the following equations:

OF OF OFE

da; b 0c
or
o / H(¢)dzdy + by / H(¢)zdwdy
+er / yH(¢)dzdy = / uoH(¢)dzdy
a / zH(¢)dzdy + by / > H(¢)dzdy
+e1 / zyH(¢)dzdy = / zugH($)dzdy
a / yH($)dzdy + b, / zyH (¢)dzdy +

= / yuoH (¢)dxdy

_ (0,1 + bl.’L' +c1y — ’LL())2 + (ag + bgl‘ + oy — ’U,O)21

=0.

a / y2H(¢)dzdy

Similar to the above, we can obtain the equations for as, bs, and cg, that is:

9B _ (0B _ o 0B _
80,2_ 76()2_ 7662_
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or

as / (1 — H(¢))dzdy + bs / (1 — H($))ededy

‘e / y(1 - H(¢))dedy = / wo(l — H())dody

ag/:z(l —H(¢))dacdy+b2/:c2(1 — H(¢))dzdy

e / sy(1 — H(¢))dwdy = / zuo(1 — H(9))dwdy (100)
as / y(1 — H($))dzdy + by /wy(l _ H(¢))dzdy +

& / Y2 (1 — H($))ddy = / yuo(1 — H(8))dzdy

The segmentation of an artificial roof edge is shown in Figure 9. In Figure 9, the piecewise

Image Intensity
-« & 8 5 8 %

a

Figure 9: Segmentation of an artificial roof edge. (a) Original image; (b) Image intensity distribution
along horizontal direction; (c) Segmentation result by the piecewise constant approzimation of the
MS model; (d) Segmentation result by linear approzimation of the MMS model.

constant approximation of the MS model segments the image into three regions and cannot detect
the roof edge. On the contrary, the linear approximation of the MMS model can detect the roof edge.

This is because the gradient inside each region is a constant, that is, the second order derivative is

small inside each region, and the second order derivative is large across the roof edge.
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Chapter 5

Hierarchical Segmentation

In this chapter, we present a new hierarchical segmentation scheme to detect both main structures

and details of an image.

5.1 Introduction

With the level set method, the MS model works well in many applications. However, generally only
one or two level set functions are used to segment an image into two or four phases. Therefore,
most experiments are done on simple images. For images with complicated structures, the regions
in the images cannot be represented by one or two level set functions. We need n level set functions
to represent 2" regions. There are three difficulties for this approach. First, we cannot define the
number of regions before hand. We may use many level set functions to segment an image to avoid
missing any region. However this approach requires large computational cost. The most important
problem for the MS model using the level set method is the initial condition. Because the MS energy
functional is not convex, the minimization result often is trapped by a local minimum. Consequently
the segmentation result depends on the initial conditions. This problem is more serious for the cases
with many level set functions. As a result, generally the MS model can only detect the main structure

of an image rather than detailed segmentation.
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To segment the images with complicated structures, [1] and [2] presented hierarchical segmen-
tation approaches. The basic idea of the hierarchical segmentation approach proposed in [1] is as
follows: First, put an arbitrary initial closed curve in the image. Through the evolution, the curve
will segment the image into two or more regions. Because in the evolution, the closed curve could
split into two or more closed curves, the segmentation result could consist of more than two regions.
In the second stage, put another arbitrary initial closed curve in each region obtained from the pre-
vious segmentation. Then through curves evolution, the curves inside each region will segment the
region into more regions. We can put more curves into regions obtained from the last segmentation
stage and segment the image into more regions. In this way, we can segment the image into any
number of regions. The difference between [1] and [2] is the following: after one segmentation stage,
[1] puts a second curve over all regions, instead of one curve in one region, and segments all the

regions simultaneously. The disadvantages of these two approaches include:

1. In the approach in [2], we cannot decide if one region needs more additional segmentations,
and there is no stopping criterion. On the other hand, the stopping criterion mentioned in {1]
suggests that this hierarchical segmentation process will stop when the new segmentation will
not change the MS energy functional. Because the segmentation results depend on the initial
conditions, whether the MS energy of the new segmentation is smaller than the original MS
energy depends on the initial conditions. Even when the MS energy of the new segmentation
is not smaller than the original MS energy, it is still possible that the region needs additional

segmentations. So this stopping criterion cannot guarantee the final segmentation result.

2. Although the hierarchical segmentation approaches in [1] and [2] can segment an image into
many regions, these approaches cannot guarantee the segmentation is correct. Because the MS
energy functional is not convex, it is possible that the segmentation curves do not reach the
boundaries of objects, and one object may be segmented into several regions, i.e. the image is

over segmented.

3. Tsai et al. in [1] indicated that their hierarchical segmentation approach cannot be used for
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automatic image segmentation. In fact, the hierarchical approach in [1] is more suitable for
denoising than for locating the segmentation curves. On the other hand, the segmentation
approach in [2] can run automatically. However, because there is no stopping criterion, [2]

only uses two segmentation stages to segment some relative simple images.

For images with complicated or detailed structures, although the MS model can produce segmen-
tation results for the main structures, local segmentation approaches can produce better results for
detailed structures. To combine the advantages of these two kinds of approaches, we present a new
hierarchical segmentation scheme which makes use of both global and local information. In the
process of the hierarchical segmentation, we use a local window (a small area of image intensity)
over a segmentation region to detect whether the region needs additional segmentations or not. In
this way, we can segment the image hierarchically until each object region is smooth. As a result,
we can keep the segmentation of the main structures, and we also can detect detailed structures.
The most important advantage of this approach is that the segmentation result does not depend on

the initial conditions and the method is relatively fast.

5.2 Hierarchical Segmentation Scheme

Before the discussion of our new hierarchical segmentation scheme, we need to clarify the concept
of an object. In an image, what should be considered as an object that needs to be segmented? In
reality, the object should be meaningful. However, without any prior knowledge, it is difficult to
define objects in an image. In this paper, we define an object as an area of image intensity with
a certain level of contrast to its background in the image. The object should meet two conditions:
the area of the object should be bigger than a threshold T, and the absolute difference between the
average object image intensity and its background should be bigger than a threshold 7. The goal
of segmentation is to segment an image into different objects from their background.

We now present our new hierarchical segmentation scheme as follows:
1. Define an initial closed curve. The area inside the curve corresponds to the area threshold Tj,.
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2. Move the initial curve to different positions in one region (in the beginning, the region is the
whole image), and calculate the average intensities inside the curve and the whole region. If
at any position, the absolute difference between the two average intensities is smaller than the
contrast threshold T, the region needs no more segmentation. Otherwise, position the initial

curve at the location where the absolute difference is the largest.

3. In the region (in the beginning, the region is the whole image), use piecewise constant or linear
approximation of the MS model to solve the curve evolution and obtain the segmentation

result.
4. Number the different regions in the image.

5. In each region, repeat steps 2 and 3 to segment the region into smaller regions. In this step,

all the calculations are inside one region.

6. Repeat 5 for each region obtained from different segmentation stages until all regions need no

more segmentation.

7. Calculate the average intensity of each region. If the absolute difference between the average
intensities of two neighbor regions is smaller than the contrast threshold used in step 2, T,

the two regions are merged into one region.

8. Calculate the area of each region. If the area is too small, for example less than 10 pixels, the

region is regarded as noise, and is merged into its neighboring region.

To detect all the details of an image, we can define the minimum object area as one pixel. If

there exists noise, however, the noise can also be detected as an object. Therefore, in step 1 we

need to define a minimum object area to avoid the effect of noise. For step 2, it is obvious that if

the absolute differences between the probe areas and the background are smaller than the contrast

threshold, there is no object in the region, and the region needs no more additional segmentations.

If at some positions, the difference is bigger than the contrast threshold, we position the initial level

37



set curve at the location where the difference is the largest. At this location, the MS energy of the
initial curve is the smallest compared to all other locations.

Repeat steps 2 and 3 on all regions until no more segmentation is needed in each region. At
this point, each region is smooth enough. However, this is not the final result. Because the curve
evolution of segmentation does not guarantee that the curve reaches the boundary of an object.
It is possible that an object is segmented into more than one region. In this case, we can merge
those neighboring regions whose average intensities are similar. After merging, the image intensity
changes smoothly inside the objects and the boundaries are kept because the neighboring regions
with large differences are not merged. The threshold used in this step is the same as the contrast
threshold used in step 2.

In step 8, we remove those regions with very small area, which are assumed to be noise instead
of object.

The flow chart of the hierarchical segmentation scheme is shown in figure 10

In this segmentation scheme, we need to define two important parameters, the area threshold
and the contrast threshold of the objects. As mentioned before, we must define the objects for
segmentation. Without the definition of the objects, we cannot define the real segmentation result.
These two parameters can be obtained from the observation of an image. In the classical MS
model, we need not define these two thresholds. Instead, we need to define parameter v and u.
In the piecewise constant approximation, y disappears, and v becomes the only parameter. The
authors in [2] suggest that v is proportional to the variance o2 of an image. They also suggest a
proportional ratio range. In this paper, we prefer to calculate v from the contrast threshold in the
object definition. In the following, we present the relationship between v and the contrast threshold
T..

As shown in figure 11, if the region can be segmented, we use Ry to represent the region of an

object and R; to represent the background region. The MS energy functional is:

E, = / (e — ug)?dxdy +/ (cg — ug)?dzdy + vL (101)
R, Ry
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Figure 10: The flow chart of the hierarchical segmentation scheme.
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Figure 11: Criterion for the smoothness of segmentation regions.

where ¢; is the average intensity of the background region Ri; co is the average intensity of the
object region Rp; L is the length of the segmentation boundary. We assume the image intensity
inside R is uniform and can be approximated by a constant ca, and we ignore the second term in
equation (101). On the contrary, if there are some other objects inside R, the image intensity over
R is not uniform, and the first term should be kept. So the MS energy functional can be written
as:

E,= / (e1 — ug)?dzdy + vL (102)
Ry

Correspondingly, the MS energy functional for the whole region without any segmentation is:

E, = / (co — ug)3dady + vL (103)
Ri+R2

where ¢ is the average intensity of whole region R; U R,. The relationship between c; and ¢y can

be written as equation (104).

_co(Ar + Ag) — o do
c = Al

(104)

where A; and A, are the areas of the background region R; and the object region Ry respectively.

If the region can be segmented, the MS energy functional after the segmentation should be smaller
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than that of the original region, that is,

E, < By (105)

Substituting equations (102), (103) and (104) into equation (105), we can obtain:

Az Ap 5
v< (AO_AZ)L(CQ co) (106)

If the initial curve Rs is inside Ry as shown in figure 11, the average intensity inside R3 can be
approximated by R, because the image intensity inside Ry is uniform. Therefore, the minimum
value of ¢3 — ¢p is the contrast threshold used in the object definition, Tt.

When the shape of region Ry is a line, the boundary length L of the region is 24,, which is the

maximum value of L. So L < 24,.

If
Ag
v —— T2 107
2(Ap — Ag) (107
then equation (106) is valid.
If we assume A, << Ay, then equation (107) becomes:
T2

v < 76 (108)

We can use equation (108) to estimate v from the contrast threshold. In our experiments,
v<T2/2.

While most papers define v directly, we believe that it is more reasonable to estimate v from the
minimum object contrast because the contrast can be observed from the image itself. To define T,
we first find the object with the lowest contrast to the background in the image through observation.
Then we calculate the average intensities of the object and its neighbor background respectively. T
is estimated as the absolute difference between these two values. For the images with large object
contrast and little noise, as long as T, is in a range, we can obtain good segmentation results.
Therefore, it is easy to define T, in this case. However, it is difficult to define T; for the images
with low contrast and large noise. T, must be defined accurately; otherwise, some objects with low

contrast could be missed, or some noise could be detected as objects. In this case, we can only
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roughly estimate T, through observation. The accurate value sometimes has to be defined through
some segmentation experimentations.
Figure 12 shows the dependency of the segmentation results on the initial condition if we use the

classical piecewise constant approximation.

e g
Figure 12: Segmentation of concentric circles using two level set functions and the classical piecewise
approzimation. Top row: initial curves; bottom row: segmentation results.

In Figure 12, we use Chan-Vese’s piecewise constant approximation approach in [4] with 2 level
set functions and different initial curves to segment the image. The segmentation results are different.
Even in the best case (g), many circles are not segmented. On the contrary, we obtain the correct
segmentation of the image using the new hierarchical segmentation scheme in Figure 13. Figure 13
also shows the different stages of the segmentation. Figure 13 (a) shows the initial curve and the
original image; Figures 13 (b - g) show intermediate stages of our hierarchical method. The stages
between (c) and (d) are not shown in the figure. Figure 13 (h) is the final result. The initial curves
of different stages can be located automatically, and after evolution, they segment the image or large
regions into smaller regions. Finally, the segmentation stops at the best segmentation according to
the criterion presented in this paper.

If we use piecewise linear approximation to segment every regions in step (3), we can also detect
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Figure 13: Hierarchical segmentation of circles. Minimum scale: 3 x 3, minimum object contrast: 5

roof edges. If we use piecewise linear approximation and the MMS method with different initial
conditions to segment an artificial roof edge similar as Figure 15, the segmentation result depends
on the initial conditions and no correct segmentation can be obtained. On the contrary, in Figure
15, we use our new hierarchical segmentation scheme to segment the same image, we can obtain the
correct segmentation. Figure 15 (b) is the segmentation result before the merging of neighboring
regions with similar image intensity. After merging, we obtain the correct segmentation.

For roof edges, we use piecewise linear approximation instead of constant approximation. In this
case, we need to compare three values of the two neighbor regions to decide if these regions should be
merged. On the segmentation boundary between the two regions, if the absolute difference between
the reconstructed values calculated by the two planar functions to approximate the two regions
is smaller than the contrast threshold T, the image intensity is continuous across the boundary.
This is the first condition for merging. To merge two neighboring regions, the distribution slopes of
the two regions also should be similar. That is, if the two planar functions of the two regions are
represented by u1{z,y) = a1 + bz + c1y and ua(z,y) = az + bax + coy respectively, |a; — aa| < T

and |by — ba| < Ty, where T} is a slope threshold defined for the roof edge. In addition to T, which
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d e

Figure 14: Segmentation of roof edge using different initial curves and the piecewise linear approzi-
mation. Top row: initial curves; bottom row: segmentalion results.

a b c
Figure 15: Segmentation result of roof edge using our hierarchical segmentation scheme. (a) Original
image; (b) Segmentation result before merging regions; (c¢) Final segmentation result.

can be defined by the same way for step edges, we need to define another parameter Ty for roof
edges. Through the observation of the image, we find the roof edge with the lowest slope difference,

and we define T, as this difference.
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Chapter 6

Experimental Eesults for

Hierarchical Segmentation Scheme

In this chapter, more segmentation results are shown to indicate that the new hierarchical segmen-
tation scheme is valid in many cases.

Figure 16 shows segmentation results using the two level-set functions and Chan-Vese’s method
[4] on a medical image. It is obvious that the result depends on the initial curve. Figure 16 (f) is
the best result. Even in this case many boundaries are missing and many pixels are segmented as
regions although they are not.

Figure 17 (b) and (c) show the results using the segmentation approach proposed in [2]. With the
approach in (2], we need to adjust the parameters by experimentation. Even in the optimal results
shown in (b) and (c), there are many noise speckles and some edges are missed. On the contrary, the
segmentation results of the new hierarchical scheme presented in this paper are much better. Figure
17 (c) is the result after 6 steps of the new hierarchical segmentation scheme. In this figure, almost
all the boundaries of objects are detected, but some objects are segmented into several regions. Also
there are some noise speckles inside some objects. At this point, the image is over segmented. After

merging neighboring regions with similar averages, and removing the noise speckles as in step (7)
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and (8) of the algorithm, the final result shown in Figure 17 (d) is much better.

Two more segmentation results are shown in Figure 18 and 19. In Figure 18, the tomogram
of body is segmented into different regions according to the image intensity. In Figure 19, the
segmentation result using our hierarchical segmentation scheme, Figure 19 (f), is much better than
the results using the hierarchical segmentation approach proposed in [2] and shown in Figure 19 (¢).
Our result can detect correct boundaries, and even can detect the white materials in the brain with
very complicated shape. In addition, there are no noise speckles in our result.

The MS model can also be used to denoise images. We first segment the image, and based on
the segmentation result, smoothing is implemented inside each region but not across the boundaries.
In this way, the noise is removed inside objects, but the boundaries of objects are kept untouched.
This approach is proposed by [2]. Compared with the classical MS denoise approach, in which the
segmentation and denoise are implemented at the same time, this approach decouples the segmen-
tation and denoise processes hence decreases the computational cost. In our implementation, we
first use the new hierarchical segmentation scheme to segment the image, then use Gaussian filter
to smooth each region. The results are shown in Figures 20 and 21.

In Figures 20 and 21, Chan-Vese’s approach in [4] and the hierarchical approach in [2] can only
detect large structure of the image and miss many details. Consequently, many details are smoothed
out in the denoise process. On the contrary, our new hierarchical scheme can detect details in image
even in the case that noise is very strong, such as in Figure 21 with SNR=10. The white materials
inside brain is very clear in Figure 21 (d).

Figure 22 shows the comparison between the segmentation results using constant and linear
approximations. In both (b) and (c), we use our new hierarchical segmentation scheme to segment
the image; (b) is for the constant approximation, and (c) is for the linear approximation. In (b),
the region of the cheek is segmented into several regions. However in (c), the region is kept as one.
This is because the linear approximation can adapt to the intensity variations.

Figure 23 shows the segmentation results using different minimum object area. With decreasing
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scales, the detected regions become smaller and more details are detected. While the main parts
of brain are segmented when scale=21, details of every parts are detected when scale=5. However,
noise also are segmented as objects when the scale is too small. The reconstructed images are also
shown in the figure. In the reconstructed images, the image intensity inside each region is represented

by the average of the region. Obviously, more details are shown with the decreasing of the scale.
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(d) Segmentation result of initial (¢) Segmentation result of initial (f) Segmentation result of initial
curve 1 curve 2 curve 3

(g) Image with initial curve 4  (h) Segmentation result of initial
curve 4

Figure 16: The segmentation of knee using two level set functions and the Chan-Vese method.
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(a) Original image.

(b) Segmentation result using ap- (c) Segmentation result using ap-
proach in [2] with parameter 1. proach in [2] with parameter 2

(d) Segmentation result using hier- (e) Final segmentation result using
archical segmentation scheme be- hierarchical segmentation scheme.
fore merging regions and deleting

noise region.

Figure 17: Segmentation result of knee. Minimum scale: 21 x 21; minimum object contrast: 7
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(b) Segmentation result before merging (c) Final segmentation result.
regions and removing noise speckles.

Figure 18: Segmentation result of lung. Minimum scale: 15 X 15; minimum object contrast: 7
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(a) Original image. (b) Two initial curves for the segmenta-
tion approach in [2].

(c) Segmentation result for the first stage (d) Segmentation result for the second
in [2]. stage in [2]

(e) Segmentation result using our hierar- (f) Final segmentation result using the
chical segmentation scheme before merg- new hierarchical segmentation scheme.
ing regions and deleting noise regions.

Figure 19: Segmentation result of brain. Minimum scale: 21 x 21; minimum object contrast: 10
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(a) Original image. (b) Gaussian smoothed image. (c) Segmentation result using
Chan-Vese’s approach in [4].

(d) Denoise result using Chan- (e) Segmentation result using (f) Denoise result using the hier-
Vese’s approach in [4]. hierarchical segmentation ap- archical segmentation approach
proach in [2]. in [2].

(g) Segmentation result using (h) Denoise result using our hi-
our hierarchical segmentation erarchical segmentation scheme.
scheme.

Figure 20: Denoise result of head. Minimum scale: 7 x 7; minimum object contrast: 10
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(b) Gaussian smoothed image. (c) Segmentation result using

Chan-Vese’s approach in [4].

(d) Denoise result using Chan- (¢) Segmentation result using hier- (f) Denoise result using the hier-
Vese’s approach in [4]. archical segmentation approach in archical segmentation approach in

[2). (2}

(g) Segmentation result using our (h) Denoise result using our hier-
hierarchical segmentation scheme. archical segmentation scheme.

Figure 21: Denoise result of brain. Minimum scale: 11 x 11; minimum object contrast: 10
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Figure 22: Segmentation result of the head of David. (a) Original image; (b) Segmentation result
using piecewise constant approrimation and our hierarchical method; (c) Segmentation result using
piecewise linear approzimation and our hierarchical method.
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(a) Segmentation result. 7T, = (b) Reconstruction result. T, = (c) Segmentation result. To = 41x
101 x 101. 101 x 101. 41.

(d) Reconstruction result. To = (e) Segmentation result. 7, = 21x (f) Reconstruction result. To =
41 x 41. 21. 21 x 21.

(g) Segmentation result. T, = (h) Reconstruction result. To = (i) Segmentation result. To =5 X
11 x 11. 11 x 11. 5.

(j) Reconstruction result. Tp = 5%
5.

Figure 23: Segmentation with different scale on brain.
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Chapter 7

Image Inpainting Using

Hierarchical Level Set Approach

Image inpainting is originally an artistic procedure to recover a damaged painting or picture. It has
been introduced in [31] and received attention from many researchers in computer vision and image
processing. From a technical point of view, digital image inpainting can be described as a procedure
to fill a defined inpainting domain (i.e. a set of damaged pixels in a given image). In this chapter,
we propose a image inpainting approach based on the hierarchical Mumford-Shah model. Compared
with previous works, my approach makes use of multi level set functions to detect and preserve the

edges for both main structures and details.

7.1 Mumford-Shah Model for Inpainting

Tsai, Yezzi, and Willsky {1], and Chan and Shen [32] first presented the idea of applying the MS

model to inpainting. For inpainting, they modified the MS model as:

Ew,C) = /Q)\(m,y)|u—u0|2d:cdy (109)

+ u/ |Vul® dzdy + v - |C|
o\C
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where A(z,y) = 0 if (z, ) is inside the inpainting area and 1 otherwise. The above equation indicates
that only the variance of the image and the length of the segmentation curve are considered inside
the inpainting area.

The solution of the MS energy functional is not a trivial task. There are some alternative solutions
to this problem, such as piecewise smooth approximation of the Mumford-Shah model presented by
Chan and Vese [4].

If we consider that a closed curve segments an image into two regions (i.e. both inside and

outside regions), the M3 energy functional can be written as:

E(ui,up,C) = / Az, y) uy ~ uol” dady + p / |Vuy | dady
inside ¢ inside ¢
/ Mz, y) lug —u0]2dzdy+u/ |Vuy|® dedy + v - |C| (110)
outside ¢ outside ¢

where u; and us are smooth approximations of the image inside and outside the curve. The numerical
solution of the MS energy functional can be implemented by the level set method. In the case that

the image consists of two regions, the segmentation curve can be represented by one level set function

o:
>0 if (z,y) is inside C

oz, y,t) =9 =0 if (x,y)ison C (111)

<0 if (z,y) is outside C

Minimizing the functional E(u;,ug, ) with respect to ui, ug, and ¢, we obtain the equations for

U1, ug, and ¢ as the following [5]:

Az, y)(uy —up) = 1V2u, inside C

g4 —=0onC, (112)

Mz, y)(ug — uo) = 1V?%uy outside C

%ﬁl =0onC, (113)
2 = a0l () - M@ s - (114)

= plVul? A, y) (2 — uo)? + pl Vsl

57



The smooth image functions u; and us can be obtained by solving the damped Poisson equations
(112) and (113), and the segmentation curve can evolve according to equation (114).

This is the piecewise smooth approximation presented by Chan and Vese. Many advantages can
be achieved by this approach, such as simultaneous segmentation and smoothing of noisy images,
and detection of triple junctions by using multiple level set functions. However, because three PDEs
equations (112), (113), and (112) needed to be solved simultaneously, the computational cost of this
approach is very large. To overcome this difficulty, Chan and Vese proposed another approximation
approach using the piecewise constant approximation [4, 5. If the image intensities inside different
regions are uniform, the image intensities inside different regions can be approximated by constants.

In this case, the MS energy functional can be simplified to equation (115):

E(cs, C) = Z/ Mz, y)(cx — uo)?dady + v|C, (115)
PR

where Q) represents the area inside each region. The gradient term in the MS energy functional
disappears in equation (115) because the gradient inside each region is zero. Using the level set
method [9] and the MS energy functional of the two phase segmentation, the image is segmented

into two regions:

Blercad) = [ Moyl - wo)H(¢)dzdy (116)
+ / Az, y)(ca — uo)2(1 — H(@))dzdy
+ u/6(¢)|v¢|d:cdy

where H(z) is the Heaviside function. To minimize the energy functional with respect to c1, c2, and

¢, we obtain the following equations:

J Mz, y)uoH($)dzdy

a(®) = fH(qb)da:dy (117)
_ [ Mz y)ue(l — H(¢))dzdy
l9) = Ja —OH(qb))dzdy (118)
¢ Vé
5 - ook (wa) o

= M@y (o — e1)? + Al y)(uo - e2)?]
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After solving these equations, we can obtain the information on ci, ¢z, and C. The image uo will

then be segmented into two regions {u = ¢;} and {u = c2}, and the inpainting area will be filled.

7.2 TImage Inpainting Based on Hierarchical Segmentation

In [2], Gao and Bui proposed a hierarchical method for image segmentation and smoothing based on
the Mumford-Shah variational approach and the level set method. The method is fast and robust
to the initial condition since the decoupled curve evolution PDEs are adopted.

Following their idea, we decouple the segmentation and diffusion in the process of image in-
painting. To inpaint an image, we first segment the image using hierarchical segmentation scheme
presented in this thesis, and determine the object boundaries inside the inpainting area. Then we
use the diffusion technique to fill the inpainting area. To preserve the object boundary, the diffusion
is only conducted from inside the object regions towards the inpainting area but not across the
boundaries of the objects. Compared with previous works, my approach makes use of multi level
set functions to detect and preserve the edges for both main structures and details.

Based on the hierarchical segmentation algorithm, the algorithm for image inpainting can be
presented as follows. (For the sake of completeness, here we repeat the hierarchical algorithm for
segmentation already presented in chapter 5. Therefore the difference between the algorithm given

here and the one in chapter 5 is only in step 9 for inpainting.)
1. Define an initial closed curve. The area inside the curve corresponds to the area threshold T,.

2. Move the initial curve to different positions in one region (in the beginning, the region is the
whole image), and calculate the average intensities inside the curve and the whole region. If
at any position, the absotute difference between the two average intensities is smaller than the
contrast threshold 7, the region needs no more segmentation. Otherwise, position the initial

curve at the location where the absolute difference is the largest.
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3. In the region (in the beginning, the region is the whole image), use piecewise constant approx-

imation of the MS model to solve the curve evolution and obtain the segmentation result.
4. Number the different regions in the image.

5. In each region, repeat steps 2 and 3 to segment the region into smaller regions. In this step,

all the calculations are inside one region.

6. Repeat 5 for each region obtained from different segmentation stages until all regions need no

more segmentation.

7. Calculate the average intensity of each region. If the absolute difference between the average
intensities of two neighbor regions is smaller than the contrast threshold used in step 2, T,

the two regions are merged into one region.

8. Calculate the area of each region. If the area is too small, for example less than 10 pixels, the

region is regarded as noise, and is merged into its neighboring region.

9. Use diffusing technique to fill the inpainting area. The diffusion is only conducted from inside

the object regions towards the inpainting area but not across the boundaries of the objects.

7.3 Experimental Results

To show the advantage of our hierarchical segmentation and inpainting approach, we implement the
inpainting algorithm using the total variance (TV) approach, the MS model approach with one level
set function, and the MS model approach with hierarchical multi level set functions respectively.
Figure 24 is the inpainting results on the image of peppers. For the MS model approach, after
segmentation of the image, we can detect the boundaries of objects in the inpainting area, and the
edges of objects are kept very well. In the detail image (f) and (c), it is obvious that the inpainting

result of MS model approach is better than that of TV approach.
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(a) image with inpainting lines (b) inpainting result with TV (c) detail of (b)

(d) segmentation result with MS (e) inpainting result with MS (f) detail of (e)

Figure 24: The inpainting results on the image of peppers.
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Figure 25 shows the inpainting results on an artificial image. In addition of the TV approach and
MS model approach of hierarchical multi level set functions, we also show the inpainting result with
MS model approach of one level set function. Because one level set function cannot detect all the
boundaries, many edges are blurred in the inpainting area. Our hierarchical segment and inpainting
approach can detect all the boundaries, and keep all the edges clear in the inpainting result.

Figure 26 is the inpainting results on the image of a copy machine. Compared with result of one
level set function, the inpainting result of hierarchical multi level set functions is much better. It
can preserve the edges of the paper on the table clear.

Figure 27 is the inpainting results on the image of a street scene. Because the segmentation with
hierarchical multi level set functions can detect more edges than the segmentation with only one
level set function, more edges inside inpainting area can be preserved. While the edge of the car is

blurred in the detail images (c) and (f), the edge is preserved in the detail image (i).
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(a) image with inpainting lines (b) inpainting result with TV (c) detail of (b)

(d) segmentation result with MS (e) inpainting result with MS () detail of (e)
model of 1 level function model of 1 level function

(g) segmentation result with MS of (h) inpainting result with MS of hi- (1) detail of (h)
hierarchical multi-level functions erarchical multi-level functions

Figure 25: The inpainting results of an artificial image.
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(c) segmentation result with MS of 1 level (d) inpainting result with MS of 1 level

function function

(e) segmentation result with MS of hierar- (f) inpainting result with MS of hierarchi-
chical multi-level functions cal multi-level functions

Figure 26: The inpainting results on the image of a copy machine.
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(a) image with inpainting lines (b) inpainting result with TV

(g) segmentation result with MS of (h) inpainting result with MS of hi- (i) detail of (h)
hierarchical multi-level functions erarchical multi-level functions

Figure 27: The inpainting results on the image of euroexpress.
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Chapter 8

Conclusion

In this thesis, we have studied the Mumford-Shah model in some details and implemented it to
solve image segmentation and image inpainting problems. We studied various approximations to
the model including piecewise smooth, piecewise constant, and piecewise linear approximations.
However, the original MS model has some drawbacks, such as its difficulty in the detection of roof
edges. To overcome this difficulty, we investigated different variances of the MS model and propose
to use second order derivative term to detect roof edges. We use piecewise linear approximation and
level set functions to implement the modified MS model for this problem. The experimental results
indicate that our method is effective.

The most important problem for MS model is the initial condition problem. Because the MS
energy functional is not convex, the segmentation result is often trapped by the local minimum and
cannot segment image correctly. We present a hierarchical segmentation scheme to overcome this
problem. With this hierarchical segmentation scheme, we can segment an image into regions until
each region is smooth enough and need no additional segmentation, that is, the final segmentation.
Compared with previous works, our approach can automatically detect both the main structure and
details in an image with multi level set functions, and it can automatically stop when all boundaries

are detected. The final segmentation does not depend on the initial condition. In addition, the
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solution of multi level set functions are decoupled, and the approach is also relatively fast and
robust. Many results indicate that our approach is effective in many applications.

The MS model can also be used in image inpainting. Compared with other image inpainting
approaches, the approach based on the MS model detect boundaries of objects and preserve edges
in an image. We apply the new hierarchical segmentation scheme to image inpainting. Because our
approach can detect both main structure and details edges in an image with multi level set functions,

the new approach can preserve more edges and details compared with previous work.
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Appendix A

Algorithm for Labeling Regions

Loop from the first row to the last row
Loop from the first column to the last column
If the current pixel is at the 1st row and 1lst column
Create a new region number and the current pixel is assigned the region number;
Else if the current pixel is at the 1st row
If according to the segmentation result, the current pixel belongs to the same region as
the pixel at the previous column and the same row
The current pixel is assigned the region number of the pixel at the previous column;
Else
Create a new region number and the current pixel is assigned the region number;
Else if the current pixel is at the 1st column
If according to the segmentation result, the current pixel belongs to the same region as
the pixel at the previous row and the same column
The current pixel is assigned the region number of the pixel at the previous row;
Else

Create a new region number and the current pixel is assigned the region number;
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Else if according to the segmentation result, the current pixel belongs to the
same region as the pixel at the previous column and the same row
The current pixel is assigned the region number of the pixel at the previous column;
If according to the segmentation result, the current pixel belongs to the same
region as the pixel at the previous row and the same column
All the pixels assigned as the region number of pixel at the previous row
are assigned as the region number of the current pixel;
Else if according to the segmentation result, the current pixel belongs to the same region
as the pixel at the previous row and the same column
The current pixel is assigned the region number of the pixel at the previous row;
Else
Create a new region number and the current pixel is assigned the region number;
End of loop for column

End of loop for row
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