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Abstract

High Quality Rendering for Point Sampled Geometry

Feng Liu

In recent years, point sampled geometry models have received growing attention in computer graph-
ics. Compared with polygon based models, the quality of rendered images for point sampled geome-
try is much lower, so far. This is primarily due to the discrete form of representing a 3D surface just
by sample points. Clearly more effort is needed in rendering techniques for point sampled models.
In this thesis, we describe the results of our efforts towards producing high quality images for point
based geometry. We adapt a number of advanced mesh rendering techniques for discrete surfaces
represented as point clouds. These techniques include self shadowing effects using ambient occlu-
sion, diffuse lighting estimation using spherical harmonic representations of irradiance environment
maps and specular lighting estimation by casting a reflected ray at each point into a pre-blurred
version of the environment map. Ambient occlusion computations are improved by using octree hi-
erarchy based on feature analysis of the point cloud data. Other lighting calculations are performed
directly on the Graphics Processing Unit (GPU) using vertex and fragment shaders. We improve
the overall rendering quality and speed by combining pre-computed ambient occlusion results with
environment lighting and procedural textures directly on the GPU. The adapted techniques have

been implemented as a plug-in for the Pointshop3D public domain software system.
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Chapter 1

Introduction

1.1 Real time high quality rendering

Rendering is the process of producing the pixel values in an image of an object or scene from a higher-
level description of its components, usually geometric. Typically one renders objects composed of
polygons or point clouds. One of the important goals of rendering is to create high quality images
which are indistinguishable from photographs, a goal referred to as photorealism. Another important
goal is interactivity for visualization, simulation and other real time applications, for which the
typical frame rate should be 20 frames per second or higher. These two goals have historically been
at odds with each other. Photorealism employing methods like ray tracing and radiosity has resulted
in beautiful pictures, but at the cost of slow algorithms taking hours to days. Advances in graphics
hardware have enabled increasing interactivity, from the earliest SGI machines to today’s powerful
desktop GPU (Graphics Processing Unit). However, the traditional focus in hardware improvements
has been on rendering more polygons rather than production of high quality images. In the last
few years, as a result of improved programmable graphics hardware along with new efficient image
synthesis algorithms, there has been an amazing convergence of these ideas, enabling us to conceive

of real-time photorealistic rendering as an achievable goal in the near future.



1.2 Point sampled geometry

Our particular interest is in real time photorealistic rendering of models represented by point sampled
geometry. For point sampled geometry models, the shape of objects is represented discretely purely
in the form of sampled surface points. Typically these sampled surface points can be directly obtained
using 3D scanners. Point sampled geometry has received growing attention in computer graphics in
recent years. There are two main reasons for this new interest: on the one hand, there is a drastic
increase in the polygonal complexity of computer graphics models as the models become larger
and more detailed. The overhead of managing, processing and manipulating very large polygonal
meshes has led many researchers to question the future utility of polygons as the fundamental
graphics primitive. On the other hand, modern 3D digital photography and 3D scanning systems
facilitate the ready acquisition of point samples on 3D surfaces of complex, real-world objects. These
techniques too generate huge volumes of 3D point data and have thus created the need for advanced

technique for point sampled geometry processing and rendering.

1.3 Issues to be addressed in high quality rendering of point
sampled geometry

The main issues different from mesh based models in rendering of point based models are due
to the following: Firstly, point sampled geometry models have only discrete points. Absence of
any kind of explicit topological continuity information implies the need for inferring this continuity
through neighboring points. The standard solution is to associate with each point a surface region of
influence. Hence, we represent each point by a surface element, a disk shaped element, called surfel.
For rendering such models, we also need to give each point other properties. Typically, each surfel
has the following information associated with it: position, normal, color, radius, and when needed,
texture coordinates. Secondly, due to the absence of other types of information, say, curvature etc.,
the number of point samples needed to represent complex geometry is very large. Hence high quality
rendering in real time requires specialized techniques to correctly address the discontinuous nature

of representation and efficiently handle the large volume of point data.



1.4 Objective of our research

So far, in point based graphics, researchers have only used simple illumination models and techniques
(point light source at infinity or directional light source, and usually the most common, Phong light-
ing calculations). People perceive materials more easily under natural illumination (represented by
environment light map than the above simple illumination as clearly demonstrated in the example
which shows the quality of the two rendered images in Figure 1 and Figure 2. While these images are
renderings based on based on polygonal models of the object, the primary objective in our work is
to adapt this and other real-time techniques to efficiently rendering point sampled geometry. Specif-
ically, we would like to address natural illumination, global illumination like effects and texturing of
point sampled geometry models. A secondary objective is to implement these adapted techniques

and incorporate them into the Pointshop3D public domain point sampled geometry software.

Figure 1: Directional light source (from [1])

1.5 Our Rendering Techniques for Point Sampled Geometry

Currently there have been impressive developments in the photorealistic rendering of polygon based
meshes. Therefore an important direction in rendering point sampled geometry would be to demon-
strate that popular techniques for rendering of high quality images of mesh based geometry can
also be applied to point sampled geometric representations with similar performance. In particular,

we modify mesh rendering techniques of ambient occlusion, environment lighting and procedural



Figure 2: Natural Illumination (from [1])

textures for high quality surface rendering of point cloud data. A brief overview of these techniques

follows.

1.5.1 Environment Lighting

With environment lighting, the object is illuminated by distant surrounding lights, represented by
an environment map, which encodes the amount of light coming from each directions around the
object. We calculate the light reflected off the surface of the object maintaining both diffuse(or
matte) and specular(or shining) reflectance behaviors. For estimating the diffuse component we use
spherical harmonic representations of irradiance environment maps. Specular behavior is captured
by reflecting a ray into a blurred version of the environment map. For increased efficiency, these
calculations can be performed directly on the Graphics Processing Unit (GPU) using vertex and
fragment shaders. A shader is a program that is run by the GPU used in 3D computer graphics to
determine the final surface properties of an object or image. Vertex shader is applied for each vertex
and run on a programmable vertex processor (part of the GPU), while fragment shader is applied
for each pixel, running on a pixel processor (also part of the GPU), which usually features much

more processing power than its vertex-oriented counterpart.



1.5.2 Ambient Occlusion

Ambient occlusion is a shading method used in 3D computer graphics which helps add realism to
local reflection models by taking into account attenuation of light due to occlusion. Unlike local
methods like Phong shading, ambient occlusion is a global method, meaning the illumination at each
point is a function of other geometry in the scene.

In this method, a self shadowing factor is calculated for each vertex in a preprocessing stage
using ambient occlusion technique. After the calculation, we can get an ambient occlusion value for
each point on the surface (ShadowValue) that has to be rendered. We multiply each point’s original
color value by (1 — ShadowValue), and use that as the new color of that point. This preprocessed

model is then rendered to achieve more photorealistic results.

1.5.3 Procedural Texture

A procedural texture is a computer generated 2D/3D image created programmatically with the
intention to create a realistic representation of natural elements such as wood, marble, granite,
metal, stone, and others. The well established technique for procedural textures in 2D and 3D uses
the Perlin Noise formulation. By changing the parameter values in this formulation, one can produce

different procedural texture patterns. These can be programmed within the GPU.

1.5.4 Contributions of this Research

There are three main contributions from this work: Firstly, a number of techniques developed for high
quality rendering of mesh based models have been efficiently adapted for point based models as well.
These include natural lighting through the use of environment maps and procedural textures using
Perlin Noise formulation, both in combination with global illumination like effects using ambient
occlusion. Secondly, we have evolved efficient methods for ambient occlusion using the hierarchy
of an Octree structure and feature based analysis of point sets and incorporated this within the
surfel definition. Further, as many of these techniques as feasible have been implemented within
the GPU. Lastly, we have incorporated our point based renderer as a plug-in for the Pointshop3D

public domain software system.



1.6 Organization

The organization of the remainder of this thesis is as follows.

Previous and related work is discussed in Chapter 2.1. Adaptation of the three techniques for
point sampled geometry are described individually in subsequent chapters. Environment Lighting is
described in Chapter 3; Ambient Occlusion is detailed in Chapter 4; Procedural Texture is provided
in Chapter 5. Chapter 6 contains our conclusions and potential for future work. The Appendix pro-
vides brief details of the PointShop3D public domain software and the process adopted to incorporate

our renderer as a plug-in component.



Chapter 2

Related Work

2.1 Recap

Point sampled geometry consists of data only for discrete points, and there is no connectivity infor-
mation between them to define the surface topology. The standard solution is to associate with each
point a surface region of influence. That means we give each point some properties, such as position,
normal, color, radius, and sometimes texture coordinate. Point sampled surface representations
have been proposed as an alternative to the popular triangle mesh representations. Advances in
3D scanner technology have considerably simplified their acquisition. Also with no requirements of
connectivity information, their representation is much simpler.

In this chapter, we give an overview of earlier work related to our research on the rendering of

point sampled geometry models.

2.2 Previous High Quality Rendering Techniques for Point
Sampled Geometry

High quality rendering of point sampled geometry has been the concern of a large number of re-
searchers. In one of the early papers [2], Zwicker et al. describe a renderer using elliptic splats for
points represented as surfels. As already mentioned earlier, a surfel is a surface element represented

by a point on the surface, a normal to that surface, an extent for the point given as a radius and



other material properties such as color, reflectance, texture coordinates, etc. Zwicker et al.’s work
also incorporates texture filtering. The filter formulation is screen space based and needs software
implementation. Screen space can be thought of as a grid of rows and columns, with each unit in the
grid representing the smallest addressable unit in a virtual buffer. This quantity is called a pixel,
and each pixel is identified by its unique (x,y) integer coordinates. In a subsequent paper [3], they
provided an object space formulation of the EWA (elliptic weighted average) filter and described a
hardware implementation using textured polygons. Object space is also called model space in some
3D references; it is the coordinate system in which a specific 3D object is defined. Usually, but not
always, each object will have its own distinct object space with the origin at the object’s center.
Botsch et al. have described a number of works in which they have tried to improve the performance
and rendering capability of the EWA renderer. Their improvements include the use of point sprites
instead of polygons [4]; a point sprite is a screen-aligned textured quad placed by rendering a single
point. This resulted in reduced number of vertices being sent to hardware. Other improvements

include correction for perspective [5], per pixel shading [6] and deferred splatting [7].

2.3 Ray Tracing for Point Cloud

Ray tracing is the most used method for rendering objects/scenes with global illumination effects,
particularly with specular reflection effects. The standard ray tracing method works by tracing in
reverse, a path that could have been taken by a ray of light which would intersect the imaginary
camera lens. As the scene is traversed by following in reverse the paths of a very large number of
such rays, visual information is built up, on the appearance of the scene as viewed from the point
of view of the camera under the specified lighting conditions. The ray’s reflection, refraction, or
absorption are calculated when it intersects objects and media in the scene.

A number of papers have reported efforts in applying ray tracing techniques to point based mod-
els to simulate global illumination effects. The main problem arises due to the fact that both points
and rays are singular geometric entities having no spatial extent. The different methods vary in the
way in which this problem is solved and also correspondingly in the acceleration data structures that

are employed. Schaufler and Jensen [8] proposed to intersect a ray with a point sampled surface by



creating a cylinder around the ray. Adamson and Alexa [9] proposed a number of ray-surface algo-
rithms based on their moving least squares (MLS) implicit surface definition. They initially create
a sphere hierarchy and intersect the rays with this hierarchy to find an approximate intersection.
Finally they carry out the ray intersection with the MLS surface inside the sphere. In {10] they fur-
ther improved the efficiency of intersection calculations. Wald and Seidel [11] use a combination of
different techniques including an SIMD (Single Instruction, Multiple Data) accelerated intersection
code, together with a highly optimized specially built kd-tree data structure. They report 7 - 30
frames per second for a 512 x 512 image of sufficiently large point based model. In [12] Adams et al.
describe techniques for ray tracing of deformable point sampled surfaces. Once again the emphasis
is on clever update of the hierarchical data structure for accommodating the deformation in each

frame.

2.4 Radiosity for Point Sampled Models

The radiosity method is another powerful and popular graphics method for achieving global illumi-
nation effects, particularly for environments with diffuse surfaces. It simulates many reflections of
light around a scene, generally resulting in softer, more natural shadows. Compared to ray tracing,
the strongest point of radiosity is that the light distribution computation result is view-independent.

Dobashi et al. [13] describe a very straight forward extension of the standard radiosity technique.
For this they consider each surfel as a finite element and calculate inter-reflections among the surfels.

They too assume that a point model is represented by a set of surfels. Each surfel has its position
and properties of the original surface around the point such as a reflectance and a normal vector.
Firstly they compute the area for each surfel. Because the surfels overlap, they use a method to take
into account the overlap for computing the area of each surfel. The computed area is called effective
area. Then the inter-reflection is computed using a method which uses points instead of patches.
To make the intensity distribution accurate, they add new points adaptively before calculating the

inter-reflection.



2.5 PointShop3D

To test our adaptation of various techniques for photorealistic rendering of point sampled geometry,
we have incorporated our implementation in Pointshop3D [21]. Pointshop3D is an open source
software system for interactive editing of point-based surfaces, which was developed at the Computer
Graphics Lab at ETH Zurich.

Pointshop3D supports a great variety of different interactive techniques to alter shape and ap-
pearance of 3D point-based models, including cleaning, texturing, sculpting, carving, filtering and
re-sampling.

In recent years, Pointshop3D was enhanced to support Boolean operations and free form defor-
mation for shape editing. In addition, tools for cleaning and reconstruction of scanned data were
introduced.

Pointshop3D supports only one kind of input data format known as the SFL file format. The
SFL file is a binary format featuring an extensible set of surfel attributes, data compression, upward
and downward compatibility, and transparent conversion of surfel attributes, coordinate systems,
and color space.

Since Pointshop3D is an open source software system, it has numerous plugins. One is called
EWAGLRenderer. It is a fast and high quality hardware renderer which can handle elliptical surfels.
In our work, we have substituted this hardware renderer with our new renderer incorporating the

different adapted rendering techniques.

2.6 BRDF

The BRDF is the ”Bidirectional Reflectance Distribution Function”. It gives the reflectance of
a target as a function of illumination geometry and viewing geometry. The BRDF depends on
wavelength and is determined by the structural and optical properties of the surface, such as shadow-
casting, multiple scattering, mutual shadowing, transmission, reflection, absorption and emission by
surface elements, facet orientation distribution and facet density.

Chris Wynn [16] says, that a BRDF can be thought of as a weighting function that describes

how light is reflected when it makes contact with a surface. In general, it is a function of wavelength

10



as well as two directions - an incoming light direction w;, and an outgoing viewer direction w,.
Since these two directions are unit vectors, it’s convenient to write these vectors as w; = (6;, ¢;) and
wy = (B, ¢0). In this notation (known as spherical coordinates), the angle represents the angular
rotation of a vector from being aligned with the up vector and the angle ¢ represents the angular
rotation of a vector in the plane perpendicular to the up vector. Figure 3 shows intuitively how

these two angles together define a direction on a hemisphere with radius = 1.

hemisphere of

e

rachug 1 /

v

Figure 3: Relationship between a direction vector and associated angles 8 and ¢, from [16]

2.7 Efficient Representation for Irradiance Environment Maps

2.7.1 Precalculate part

Lighting in most real scenes is complex, coming from a variety of lighting sources including area
lights and large continuous lighting distributions like skylights. But current graphics hardware only
supports point or directional light sources.

In their paper, Ramamoorthi et al. use the term irradiance environment map for a diffuse
reflection map indexed by the surface normal, since each pixel simply stores the irradiance for a
particular orientation of the surface. Their main contribution is the rapid computation of an analytic
approximation to the irradiance environment map. For rendering, they demonstrate a procedural
algorithm that runs in real time using hardware implementation. Since irradiance varies slowly with

orientation, it need only be computed per vertex and interpolated across triangles.

11



Given an environment map, they firstly calculate the 9 lighting coefficients, Ly, for [ < 2, by
integrating against the spherical harmonic basis functions. Each color channel has to be treated

separately.

T 2w
Lim = / / L(6, 9)Yim (6, 6) sin 6d9do
8=0 J ¢p=0

For Yin:

(z,9,2) = (sinfcosd,sinbsin g, cosh)
Yoo(8,6) = 0.282095
(Y11;Y10; Y1-1)(0,¢) = 0.488603(z; z; 9)
(Yor;Yo_1; Y2 2)(0,¢) = 1.092548(xz;yz;zy)
Yao(6,¢) = 0.315392(32% — 1)

Y2(0,6) = 0.546274(z - ) (1)

To do the integration, all the pixels in the environment map are summed, weighted by the basis

functions Y.

2.7.2 Rendering Part

In [14], Peter-Pike and J. Sloan implemented the rendering part for Ramamoorthi’s paper [1] using
a better method.

The basis spherical harmonic functions are:

o 1
Yo = 2—\/_77
(i) = %(—w; —y; 2)
s %vaivs') = %(zy; —xz; —y2)
¥y = 4\\//_5;(5%2 - 1)

1

o



2# = {—j;(ﬁ ) ()

To illustrate things easier, we define the following variables:

L o3 VIB V5L VB
2\/7—1_-71 2\/7—_{_52 2\/7—]_73 4\/7-1'74—4\/%’

no

where h; are the convolution coefficients divided by = (irradiance is turned into exit radiance}, and
the n; are the normalization coefficients of the basis functions.
Then for each vertex, the diffuse color contributed by the environment map lighting is calculated

as follows:

Eogo = Logono
Ei1 = Li-inihi(—normal.y))
Ey = Liyo[nihi(normal.z))
Fi1 = Luinihi(~normal.z))
Ey.2 = Lo_glnsha(normal.xz - normal.y))
Ea_1 = La_1[ngha(—normal.y - normal.z)]
Fy = Lgo[n3h2(3(normal.z)2 - 1)]
Ey1 = Loy[ngha(—normal.z - normal.z)]
Eyy = Laglngho[(normal.z)® — (normal.y)?)] (4)

Then for each vertex p:

Diffuse(p) = ZEim(p) (5)

Sloan further used a clever programming trick in order to use fewer GPU registers. We too have
adopted this in our implementation. For more detail about the GPU implementation, please refer

to Section 3.1.
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2.8 Dynamic Ambient Occlusion

Global Illumination adds realism, so we have also considered incorporating some global illumination
like effects into our rendering. In Bunnell’s paper [15], he describes a new technique for computing
diffuse light transfer and shows how it can be used to compute global illumination for animated
scenes.

He treats polygon meshes as a set of surface elements that can emit, transmit, reflect light, and
shadow each other. Because this technique works without calculating the visibility of one element

to another, it is efficient enough for it to perform in real time. Instead of calculating the visibility

between every two surface elements, the dynamic scene is rendered in two passes.

N

N

Figure 4: Change a Polygon Mesh into a Set of Surface Elements, from [15]

The first step of this technique is to change one polygon mesh into a set of surface elements (see
Figure 5). A surface element is defined as an oriented disk with a position, normal, and area. Each
vertex of the polygon mesh is changed to a surface element; for this the vertex’s position and normal
are used as the element’s position and normal respectively. For the area part, this method calculates
the area at a vertex as one-third of the sum area of the triangles that share the vertex (or one-forth
of the sum area of the quads).

Ambient occlusion is a technique that is used to add self shadowing effects to diffuse objects lit
with environment lighting; it provides soft shadows by darkening surfaces that are partially visible
to the environment.

To calculate the accessibility value at each element, one just has to use 1 minus the amount by

which all the other elements shadow the element.
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Figure 5: The Relationship between Receiver and Emitter elements, from [15]

In Figure 5, E is emitter, R is receiver, 0 is the angle between the emitter’s normal and the
vector from emitter to receiver, 6y is the corresponding angle for the receiver element, and A is the
area of emitter.

R’s shadow amount which is cast by E is:

Acosfgcosfp
mr2 4 A

Because the visibility between two elements is ignored, there will be a problem called double

shadowing.

C

Figure 6: Double Shadowing 1, from [15]

In Figure 6, both A and B are visible to C, so C is shadowed by both A and B.

15



C

Figure 7: Double Shadowing 2, from [15]

In Figure 7, C is not visible to A. When calculating shadow for C, if we sum up occlusion values

caused by A and B, C will be shadowed too much.

~*" B

C

Figure 8: Double Shadowing 3, from [15]

In Figure 8, we may consider that A shadows correctly, but B shadows too much. We therefore
need to devise a method to lighten B’s shadow. This is done by rendering in two passes. In the
second pass, we already know how much B is in shadow in the previous pass. At this point, we
multiply B’s form factor by its shadow in the previous pass.

The first image is rendered only by one pass. Because of double shadowing, it shadows too
much, especially in the teeth area. The second image and third image are rendered by 2 and 3
passes respectively. We can see that there is no big difference between them. This means rendering
in two passes is enough to eliminate double shadowing. The last image is rendered by ray-tracing.
Again, there is not much difference between the second and forth image. From this example, one

can see that ambient occlusion can achieve effects similar to global illumination; more important, it
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Figure 9: Compare Rendering Effects Between Different Passes and Ray-tracing, from [15]

can be implemented in real time.

2.9 Jim Blinn Model for Specular Reflection

L Ny H

Figure 10: Reflection Model

In Figure 10, L is light direction, E is eye direction, N is normal, H is the half angle vector of L
and E.

The surface is assumed to be composed of a collection of mirror like micro facets that are oriented
in random directions on the surface. The specular component of the reflected light is assumed to
come from reflection from the facets oriented in the direction of H. Then the specular reflection is a
combination of four factors:

S =DGF/ (N e E)

where:
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D is the distribution function of the directions of the micro facets on the surface;
G is the amount by which the facets shadow and mask each other;

F is the Fresnel reflection law.

The distribution Function (D) is the evaluation of the distribution of the number of facets pointing
in the direction of H. Blinn uses the formula given below to calculate D; this formula is based on

modeling the micro facets as ellipsoids of revolution.

Ds = | i
7 cosa(@ — 1) + 1

]

where o = cos ™! (N e H), c3 is the eccentricity of the ellipsoids, 0 for very shinny surface, 1 for very

diffuse surface.

The Fresnel reflection (F) gives the fraction of light incident on a facet that is reflected rather than
absorbed. It is a function of the angle of incidence of the light (¢ = cos™(L e H) = cos ! (E e H))
and the index of refraction of the substance.

This is the equation for Fresnel:

B _1_[sin2(d) ~8) tan?(¢ —0)
~ 2'sin?(¢+6)  tan?(¢ +0)

]

This formula can be simplified into the one below:

U U Vs

(7o g T 12

where c= (E e H), g =+vn? +c? — 1.

Note: this expression must be divided by 2.0 to give correct result.

2.10 Perlin Noise

Many people have used random number generators in their programs to create unpredictability, make
the motion and behavior of objects appear more natural, or generate textures. Random number

generators certainly have their uses, but at times their output can be too harsh to appear natural.
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Ken Perlin introduced the notion of procedural texture mapping for realistic representation of
objects found in nature for wood, marble, etc. He achieved this by using noise functions, now known
as Perlin Noise functions. Simply speaking, Perlin Noise function adds up noise functions at a range
of different scales. These functions capture the random behavior of natural objects [17]. Researchers
have also investigated the possibility of modeling based on procedurally generated geometry [18].
Stamminger et al. {19] show how to sample procedural scenes and then to model and render them
using point based modeling and rendering.
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Figure 11: Noise functions 1

Ampiitude 16 Amplitude - 8 Amplitude © 4
frequency ; 32 fraguency ; 64 frequency : 128

N ~ : .
wa,/‘ N e "’_"\./"'yv;"\d\\ R e N O e N

Figure 12: Noise functions 2

Sum of Nosse Functions = { Perlin Noise )

Figure 13: Perlin Noise composed by previous noise functions
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Chapter 3

Environment Lighting

Splatting is a standard technique which associates at rendering time a spatial extent of influence for a
point in order to ensure hole-free rendering. Splat based rendering gives reasonably acceptable results
in terms of rendering the discrete representation as a continuous looking surface. However even till
today, most of the renderers for point sampled geometry employ a very simple local illumination
model. Typically, this includes one or more distant point light sources and possible variation in
the diffuse, specular and shininess coefficients of the standard Phong illumination model. This
makes it very difficult to create high quality images with point sampled surfaces. Also, because of
the discontinuous nature of the points and the splats, the rendering results are even poorer under
magnification. This lack of effort in high quality rendering could be due both to the infant nature of
this field and also to the lack of direct hardware support for rendering the spatial extent of discrete
3D points making it inefficient to produce high quality images. Clearly more complex lighting models
have to be considered.

In this chapter we consider the rendering of point sampled surfaces with both diffuse and specu-
lar material properties under distant illumination, as specified using an environment map. We have
combined two of the earlier works for continuous surfaces: (1) spherical harmonic representations
of irradiance environment maps for illumination of diffuse surfaces with light falling on the objects
from all the directions [1], and (2) glossy reflection for illumination of surfaces with specular be-

havior {20]. We have adapted these formulations for point based surface representations and for
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computational efficiency programmed it on the GPU using vertex and fragment shaders. This hard-
ware accelerated implementation has been incorporated into a public domain point based renderer,
namely PointShop3D [21], enabling us to efficiently produce high quality rendered images of point
sampled geometry.

The rest of this chapter is organized as follows: Section 3.1 introduces the techniques which we
used for diffuse component; Section 3.2 illustrates how to calculate the specular component; Section

3.3 shows the rendering result with both diffuse and specular components.

3.1 Irradiance Environment Map for Diffuse Lighting:

There are three benefits of using this technique of spherical harmonic based irradiance environment

map introduced in [1]:

e people perceive materials more easily under irradiance map than geometry lighting (point light

and directional light).

o The cost of evaluating the light condition is independent of the number of light sources. Because

the lighting environment is represented as a whole, and the integral is pre-computed.

e Since the first 9 coefficients approximate the integrated result over the hemisphere very well,

it is computationally efficient even for real time rendering of point based models.

For the benefit of the readers, we repeat parts of the formulation given in [1] below as we use
the same for point based lighting as well. For a complete detailed derivation, the reader is referred
to the original paper [1].

After ignoring shadows and near-field illumination, the irradiance E is a function of surface
normal n only and is given by an integral over the upper hemisphere represented using spherical

harmonics:

E(#.¢) =Y ALymYim(0, ¢) (6)

i,m
where Y}, denote spherical harmonic functions, L, denote the spherical harmonic coefficients of
the incident light in their expansion, and A denotes the dot product of the normal and the direction

vector for which analytical formula have been provided [22].
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We can calculate Ly, in a preprocessing operation:

7 27
Lim = / / L(8, 6)Yim (6, ¢) sin 0d8de (7)
0=0J¢=0

Just 9 coefficients (I < 2) are sufficient for a close approximation. The average error is less than 1%.

For an environment map (EMap), we precalculate the 9 spherical harmonic coefficients:
Lin(0<1<2,-1<m<1)

These calculations are done separately for each of RGB channels and stored in an array SH, which

is then passed on to the vertex shader. Here is the pseudo code to get SH:

for(i = 0;i < EMapHeight; + + 1)
for(j = 0;j < EMapWidth;+ + j)
for(col = 0; cal < 3;+ + col)
{
index =1l (I+1)4+m+1;

SHcol|[index|+ = (—1)10deX  EMap[i, ] * Vim * dw;

The computation of the diffuse lighting component for each point is carried out in the vertex
shader. For this, we need to carry out the following calculations for each point, say p and its given
normal: N{z,y,z).

Please refer to Equation 2 and Equation 3 for Spherical harmonic basis functions and associated
variables, and refer to Equation 4 for each frequency’s diffuse color contribution. These equations
are all given in Section 2.7.

Summing all the frequencies together:

Diffuse(p) = Y _ Eim(p)

As mentioned earlier, in our actual vertex shader implementation, we have reused a clever trick

introduced in [14], which uses less number of GPU registers. In what follows, R , Gim , Bim are
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Table 1: Diffuse Lighting GPU program parameters

C/R cAr cAg cAb ¢Br cBg cBb cC
X *—ClR% —ClG% —ClB} 02R2_2 02G2_2 CQBQ_Z C4R%
y —ClRl-l —chl‘l —ClBl_l —Csz_l —CQG;] —0232_1 C4G%
z c1RY c1GY B 3cs RY 3caGY 3csBY | cuB2
w | coRY — caR | coGY — c3G5 | coBY —¢sBY | —caR2 | —caG] | —c2B; | any

just Ly, in RGB channel respectively.

Before we look at the actual vertex shader pseudo code, we need to define the following:

cop = ng;c1 = hiny;co = hano;cs = hang;

Table 1 shows the formulation of the different parameters which are maintained in the GPU registers.

Now we can implement Equation 4 and Equation 5 within the vertex shader as shown below:

floatd z,y, z;

x1.7 = dot{cAr,vNormal);

z1.9 = dot(cAg, vNormal);

21.b = dot(cAb, vNormal);

floatd vB = vNormal.zyzz * vNormal.yzzz;
zo.r = dot(cBr,vB);

x2.9 = dot(cBg, vB);

z9.b = dot(cBb,vB);

float vC = vNormal.zr x vNormal.z — vNormal.y * vNormal.y;
x3 = cC.rgb*vC,

float3 vDiffuse;

vDiffuse = x; + z9 + Z3;

Below we show a few images of point sampled objects rendered with diffuse lighting only.
Figure 14 is an environment map called rnl_probe.hdr, whose format is mirrored ball and di-
mension is 900 x 900; Figure 15 is the igea model, which has 134,345 points, illuminated by the

environment map, only with diffuse lighting.
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Figure 14: Environment map from rnl_probe.hdr

Figure 15: Model igea illuminated by rnl_probe.hdr, only with diffuse component
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Figure 16 is an environment map called uffizi_probe.hdr, whose dimension is 1500 x 1500; Figure

17 is the igea model illuminated by the environment map, also only with diffuse lighting.

hity /s weawech

Figure 16: Environment map from uffizi_probe.hdr

Figure 17: Model igea illuminated by uffizi_probe.hdr, only with diffuse component
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3.2 Environment Map based Specular Lighting:

We also use the same environment map to simulate specular lighting effects. This part of the
calculation is also done in GPU. Here, we get a vector from the eye position to each point. From
this vector, we compute a reflected vector. This represents a perfect mirror reflection.

In order to simulate glossy reflection, rather than perfect mirror reflection, we also create another
random vector within a cone centered around the mirror reflection vector. Based on this reflected
vector, using the environment map as a texture, we index into the texture map and get a color value

vSpecular as the incident light in that direction.

L N H

Figure 18: Specular Reflection

where H = (L + E)/2.
Then we calculate a Fresnel term F' to determine how much light is reflected, assuming that the
rest is absorbed by the object (see Figure 18):
(g-0o)?

F= (9+6)2[1Jr

(clg+c)— 1)2}
(clg—c)+1)?

where ¢ = (E e H), g = vn?2 + ¢? — 1, n is the index of refraction. Note: this expression must be
divided by 2.0 to give correct result.

Lastly we compute a value for the distribution term D given by:

c2

cos?a(c? —1)+1

D=|

]

where o = cos ™1 (IV e H), c is the eccentricity of the ellipsoids, 0 for very shiny surface, 1 for highly

diffuse surface.

We are now ready to compose diffuse and specular lighting components together. Kz and K are
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the weights for diffuse and specular components respectively. For example, using K4y = 0.8, K; = 0.2
Final_Color = K * vDiffuse + K * vSpecular x F * D, (8)

The GPU implementation of the specular lighting component is distributed between the vertex
shader and the fragment shader programs as follows. First in vertex shader, we connect camera
position with each vertex to form a view direction. From the view direction and the vertex’s normal,
we can get a mirror reflection direction and perturb it randomly as described above to obtain the

reflected vector. Using this reflected vector, we get a corresponding 2D texture coordinate.
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Below we show the pseudo code to get the 2D texture coordinate based on a ray into the mirrored

environment map:

float2 GetTexcoordFromRay(float3 vReflect)

{

float2 texCoord;

float wu,v;

float #,¢;

# = arccos(vReflect.z);

float tan_phi;

if(|vReflect.z| < 0.000001)
tan_phi = 0

else

tan_phi = vReflect.y / vReflect.z;

if(sind > 0)
¢ = atan2(vReflect.y, vReflect.x});

else

¢ = atan2(—vReflect.y, —vReflect.z);

if(vReflect.z > 0)

w=10/(m*+/1+tan_phi?)

else

u=—0/ (7 *+/1+tan_phi?)

v = tan_phi*u

texCoord.x = (u+ 1) *0.5;

texCoord.y = (1 — v) *0.5;

return texCoord;
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We then output this 2D coordinate to the fragment shader of the same rendering pass. Secondly,
in vertex shader, we also calculate the fresnel term and distribution term based on the three vectors
(view direction, reflected vector, normal). We save these F' and D scalar values and output them to
fragment shader too.

In fragment shader, based on the 2D texture coordinate, we do texture mapping to get a color,
then multiply this color by F and D in order to get the final value for the specular lighting component.
This is then composed with the diffuse component to get the final color for the point using Equation

8.

3.3 Rendering Result with both Diffuse and Specular com-
ponents

As described earlier, PointShop3D [21] is a public domain system for interactive shape and appear-
ance editing of 3D point sampled geometry. PointShop3D encourages developers to create their
own plug-in components. We have implemented our environment lighting computations described
above using vertex and fragment shaders for efficiency and replaced PointShop3D’s EWAGLRen-
derer, a hardware renderer which uses the standard Phong lighting model in its shader, with our
own renderer.

To further decrease the mirror effect of the specular part, we don’t use the original environment
map for texture mapping. Instead, we use Gaussian blur, which is typically used to reduce image
noise and reduce detail levels, to blur the environment map. After blurring, the 9 spherical harmonic
coefficients, L;.,, almost remain the same values; that means the diffuse component is not affected
by the blurring.

Figure 19 is a blurred environment map from rnl_probe.hdr. Figure 20 to Figure 23 show the
model gnome, which has 54,772 points, illuminated by the blurred environment map, with increasing

glossy surfaces.
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Figure 19: Blurred environment map from rnl_probe.hdr

Figure 20: Model gnome illuminated by the blurred environment map, only with diffuse component
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Figure 23: Model gnome illuminated by the blurred environment map, high glossy surface
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For a point based model Armadillo, which has 345,944 points, our renderer can achieve a frame
rate of 37 frames per second, while the frame rate of PointShop3D’s EWAGLRenderer is 50 frames
per second. Our renderer is slightly slower, but the rendering results are much more photorealistic.

Figure 24 shows the EWAGLRenderer’s result, Figure 25 shows our renderer’s result.

atshop

Figure 24: Model Armadillo rendered by Pointshop3D’s EWAGLRenderer

Figure 25: Model Armadillo rendered by our Environment Lighting renderer

32



Chapter 4

Ambient Occlusion

Local illumination models like the Phong model do not take into account secondary light effects,
like parts of an object’s surface shadowed from the light by other parts, usually nearby parts.

The ambient occlusion technique [23] [24] tries to attenuate light based on shadowing factors
computed for parts of the object. It basically adds shadows to diffuse objects. Ambient occlusion is
a crude approximation of the full rendering equation [25]. It takes into account inter-object visibility
only. Surfels are shadowed based on whether they are partially occluded to the environment. For
this we calculate the accessibility value, which is the percentage of the hemisphere above each surface

point not occluded by geometry [24]. This is done in two passes as described below.
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4.1 First Pass

Figure 26: The Relationship between Receiver and Emitter

We refer to the surfel that is shadowed as the receiver R and to the surfel that casts the shadow
as the emitter E. Amount of shadow that is transferred to R from E is given by an approximate

form factor,

Acosfgcosfr

mre+ A 9)

To calculate how much in shadow is receiver R, we add the form factors treating all other surfels as
emitters. We also clamp the value to be less than 1.

The initial shadow value from first pass is

Ajcos B, cos b,

7r7‘2+Aj ) (10)

T; =mam(1,Z
#i

We create an octree hierarchy of surfels to efficiently do this calculation. To compute the ambient

occlusion (shadow) factor for each surfel, we consider only those surfels which lie within a cone with

geometry defined as follows, also shown in Figure 27:
e The cone axis is along the normal associated with the surfel
o The cone apex is at the 3D point associated with the receiver

e The cone angle has been empirically chosen to be 150 degrees. Surface parts that are nearly
co-planar contribute very little to this occlusion. Smaller cone angle results in rejecting too

many surfels. On the other hand larger cone angle makes less efficient culling.
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Culled node

Pecerver

Figure 27: Ilustration for Ambient Occlusion Computation

All surfels lying outside this cone are not included in the ambient occlusion computation. Fast
culling of surfels is made possible by traversing the octree hierarchically and retaining only those
octree nodes lying inside the cone.

To further speed up the calculations, distant and nearly flat nodes of octree are treated as single
surfels. To determine whether the node is flat or not, we do a feature analysis based on Eigenvalue
computations in that node. For further details about this method of feature analysis, reader is
referred to [26] [27]. For non-flat nodes we continue traversing its child nodes until the sub node

includes 10 or fewer surfels.

We have therefore two cases in our form factor computation:

e Form factor for a distant flat node: All the surfels in a given node are merged to form a surfel
at the center of the node. Area of this new surfel is equal to sum of areas of all surfels in the
node. Since the node is locally planer, we use the normal of any surfel as normal of this new

surfel. This way we approximate the computation of form factors for surfels in a flat node.

e Form factor for nearby or non-flat node: Form factors are computed for every surfel in node

and added up to give the form factor for that node.
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4.2 Second Pass

Surfels tend to be too dark after the first pass. This is due to ignoring the fact that an emitter which
is itself in shadow should not fully add up to the shadow factor (refer to Figure 6 to Figure 8). For
more detail, refer to [15]. We can correct this by using the shadow values obtained in first pass in a
second pass as follows:

Final shadow factor:
A; cos b, cos 0,

) (11)

S; = max(1, Z(l -Ty)
J#

The use of hierarchical structure for occlusion computation is not new. A GPU based hierarchical
ambient occlusion computation technique has already been presented in [28]. However we are not
aware of any other work that makes beneficial use of feature analysis as we have done.

Bunnell [15] provides a method which can compute ambient occlusion of a thousand vertices
model in real time. Bunnell encoded the vertex information into textures to perform the calculation
on GPU. Although this method can achieve very high performance, it is limited to models with
a few thousand vertices. High density point models can have hundred thousand points or more.
Therefore, given the present capacity of programmable GPUs, we have limited our preprocessing
to a software implementation rather than GPU implementation. We use the octree combined with
eigenvalue analysis to improve the performance. Using this method we can preprocess ambient
occlusion calculations for a model having about 100,000 points in approximately 24 minutes.

For each point of the point based model, we get one ambient occlusion value. We multiply the
original color at the point with its ambient occlusion value to get the new color for that point. Now

the model has self-shadow information without increasing the model’s storage size.

4.3 Rendering Results using Ambient Occlusion

In this section, we present some examples showing the self-shadowing effects provided by Ambient
Occlusion Calculation.

Figure 28 shows the original mannequin model, which has 87,183 points.

Figure 29 shows the modified mannequin model preprocessed by one pass ambient occlusion

calculation. It is too dark in some areas because of double shadowing (refer to Section 2.8).
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Figure 28: Original model of mannequin, without self-shadowing

Figure 29: One pass ambient occlusion precalculation
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Figure 30 shows the modified mannequin model preprocessed by two pass brute force ambient

occlusion calculation.

Figure 30: Two pass brute force ambient occlusion precalculation

Figure 31 shows the modified mannequin model preprocessed by two pass ambient occlusion
calculation with our acceleration algorithm. Comparing 30 with 31, we can see that the rendered
results are almost the same. It takes 28,793.5 seconds to brute force calculate the model mannequin.

On the other hand using our acceleration algorithm, it only takes 1,477.14 seconds for the same

model, almost 20 times faster.

Figure 31: Two pass ambient occlusion precalculation optimized by octree and eigenvalue evaluation
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4.4 Rendering Results Combining Ambient Occlusion with
Environment Lighting

We precalculate Ambient Occlusion value for the point based model mannequin to give self-shadow
effect, then render it using our Environment Lighting technique from Chapter 3; by this we can
achieve even better rendering quality.

Figure 32 and Figure 33 are the rendering results of the mannequin model illuminated by the
environment map rnl_probe.hdr (refer to Figure 14). Figure 34 and Figure 35 are the rendering results

of the mannequin model! illuminated by the environment map uffizi_probe.hdr (refer to Figure 16).

Figure 32: Original model of mannequin illuminated by rnl.probe hdr

Figure 33: Self-shadowing model of mannequin illuminated by rnl_probe.hdr
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Figure 35: Self-shadowing model of mannequin illuminated by uffizi_probe.hdr

For the four figures, we use Ky = 0.7, K; = 0.3 for Equation 8. Compare Figure 32 with Figure
33, or compare Figure 34 with Figure 35, and one can see that the modified model gives much more

realistic rendering results, especially in the nose, ear, and lip regions.
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Chapter 5

Procedural Texture

Texture mapping is a difficult problem for point sampled geometry, so we also tried to implement

procedural texturing for point cloud surface data.

5.1 Implementation of Procedural Texture

When loading a point based model we use standard Perlin Noise function to generate a 3D noise
texture.
You can set different frequencies and amplitudes to generate noise textures with different ap-

pearances. Usually a noise texture looks like this:

Figure 36: Noise texture

We use vertex shader and fragment shader to render the procedural texture. We pass 6 parame-

ters to fragment shader; then carry out the texture mapping in fragment shader. The 6 parameters:
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e volume texture (volumeTexture): when loading the point based model, compute a 3D noise
texture using perlin noise; directly passed to fragment shader. (This is the only parameter

passed directly to fragment shader, others are passed through vertex shader to fragment shader)
e light vector (1ightVec)
e view vector (viewVec)
e normal (normal)
e original color of the point (vColor)

e texture coordinates (texCoord): when loading the model, compute the bounding box of the
point based mesh, then scale the mesh’s position to the range of [0,1], save it as texture

coordinates for texture mapping
This is the CG sample code for one of our procedural texture patterns:

float3 SimpleMarble(float3 vColor,
float3 texCoord,
float3 normal,
float3 lightVec,
float3 viewVec,
sampler3D volumeTexture) {
float3 baseColor = float3(1.0 x vColor.r, 0.843 x vColor.g, 0.624 x vColor.b);
float3 noisy = tex3D(volumeTexture, texCoord).rgb;
float marble = (0.2+ 5% abs(noisy.z + noisy.y + noisy.z — 0.5));
// Phong
float diffuse = 0.5 xdot(lightVec, normal) + 0.5;
float specular = pow(saturate(dot(reflect(—viewVec, normal),lightVec)), 64);
// We assume dark parts of the marble reflects light better
float K, = saturate(l.l — 1.3 xmarble);

return diffuse *marble * baseColor + K * specular * float3(0.5,0.5,0.5);
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5.2 Procedural Texture Rendering Results

Below are some rendered images with procedural texture for point based models:

Figure 38: Plaid Fabric pattern for model Armadillo
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5.3 Procedural Texture Combined with Ambient Occlusion

If we use ambient occlusion to add self-shadowing effect to the model first, then render with a
procedural texture, we can get much better rendering results. Comparing Figure 39 with Figure 40
or Figure 41 with Figure 42, one can see that self-shadowing effect gives more detail of the model

shape.

Figure 39: Plaid Fabric pattern for original model mannequin, without self-shadow effect

Figure 40: Plaid Fabric pattern for modified model mannequin, with self-shadow effect produced by
ambient occlusion calculation
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Figure 41: Simple Marble pattern for original model mannequin, without self-shadow effect

Figure 42: Simple Marble pattern for modified model mannequin, with self-shadow effect produced
by ambient occlusion calculation
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Chapter 6

Conclusion

6.1 Significant Contributions

In this thesis we have demonstrated that high quality mesh rendering techniques can be adapted for

point based models yielding equally good quality images.

Figure 43: Triangle mesh model bunny by real time BRDF technique
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4 PointShop

Figure 44: Point based model bunny using our environment lighting technique

We have adapted ambient occlusion techniques to enable self shadowing effects. An efficient
method has been devised for ambient occlusion computation using a hierarchic structure and a
flatness measure based on feature analysis using eigenvalue computations on the point cloud data.
We also combine ambient occlusion with environment map based lighting supporting diffuse and
specular behavior. For further efficiency, our renderer performs environment lighting and procedural
texture mapping using vertex and fragment shaders. These shaders get ambient occlusion results
directly embedded in color channel, thus avoiding any data overhead due to ambient occlusion

information.

6.2 Future Work

Although we use octree hierarchy combined with eigenvalue evaluation to accelerate our ambient
occlusion calculation, the preprocess time is still too much, usually about 30 minutes for big models.
We think the best way to increase the efficiency considerably could be to make use of current powerful

graphics card support. Next step we will try to do the ambient occlusion for big point based models

in GPU.

47



To achieve more global illumination effects for point sampled geometry, such as soft shadows,
inter-reflection, subsurface scattering, etc, we can try to use Spherical Harmonic Lighting [29] and

Precomputed Radiance Transfer [30] on point sampled geometry.
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Chapter 7

Appendix- GPU Based

Implementation

Our implementation is incorporated into the open source software called Pointshop3D, which is avail-
able on http://graphics.ethz.ch/pointshop3d/. In their SIGGRAPH 2002 paper [21], M. Zwicker et
al. describe this software (Pointshop3D) to interactively render point sampled geometry. Pointshop3D
encourages developers to create their own plug-in components. EWAGLRenderer is a fast and high
quality hardware renderer. It uses the standard Phong lighting model. We have replaced the
EWAGLRenderer renderer with our own renderer, which combines our environment lighting and
procedural texture techniques. Below is the pseudo code for EWAGLRenderer’s Phong lighting

shader:

float3 lightVec = normalize(position.zyz);

float3 eyeVec = float3(0.0,0.0,1.0);

float3 halfVec = normalize(lightVec + eyeVec);

float diffuse = dot(normalVec,lightVec);

float specular = dot(normalVec,halfVec);

float4d lighting = lit(diffuse, specular, 1024);

res.rgb = lighting.y* color.rgh+ lighting.z *x float3(1.0,1.0,1.0});

res.a = 1.0;
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Figure 45 is the rendered result obtained using EWAGLRenderer’s Phong lighting model:

Figure 45: Model Armadillo rendered by PointShop3D’s EWAGLRenderer
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For environment lighting technique, we precompute the 9 spherical harmonic coefficients to rep-
resent the environment map in the initialization time. Then we use vertex shader and fragment
shader to calculate the diffuse and specular components for each point in real time.

For diffuse component part (refer to Section 3.1), we use the precalculated 9 spherical harmonic
coefficients to get the diffuse color for each point in vertex shader. For specular component (ref to
Section 3.2}, we calculate the Fresnel (F') and distribution (D) value for each vertex, also compute a
reflected ray, index into the environment map to get a specular color value (vSpecular) . The final
equation is:

Final_Color = K * vDiffuse + K x vSpecular x F x D; (12)

where K4 and K are the weights for diffuse and specular components respectively.

Figure 46 is the rendering result of our environment lighting technique.

Figure 46: Model Armadillo rendered by our Environment Lighting renderer
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For procedural texture technique, we use standard perlin noise method to generate a 3D volume
texture when initializing. Then we do the procedural texture rendering for point sampled geometry

also using vertex shader and fragment shader. Here is the pseudo code for the simple marble pattern:

float3 SimpleMarble(float3 vColor,
float3 texCoord,
float3 normal,
float3 1lightVec,
float3 viewVec,
sampler3D volumeTexture) {
float3 baseColor = float3(1.0 * vColor.r, 0.843 x vColor.g, 0.624 * vColor.b);
float3 noisy = tex3D(volumeTexture, texCoord).rgb;
float marble = (0.2 + 5 * abs(noisy.z 4+ noisy.y + noisy.z — 0.5));
// Phong
float diffuse = 0.5+ dot{lightVec, normal)+ 0.5;
float specular = pow(saturate(dot{reflect(—viewVec, normal),lightVec)), 64);
// We assume dark parts of the marble reflects light better
float K, = saturate(l.l — 1.3 *xmarble};

return diffuse *marble * baseColor + K * specular * £1oat3(0.5,0.5,0.5);
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Figure 47 is the armadillo model in simple marble pattern:
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Figure 47: Simple Marble pattern for Model Armadillo
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