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ABSTRACT

Contributions to the JML Project: Safe Arithmetic and
Non-null-by-default

Hao Xi

The MultiJava Compiler (MJC) is an extension to the Java programming language that
adds open classes and symmetric multiple dispatch. The Java Modeling Language (JML)
is a Behavioral Interface Specification Language (BISL) that can be used to specify both
simple DBC and full behavioral interface specifications. The JML toolset is based on
MIJC and contains tools such as the JML (type) checker and the JML Runtime Assertion
Checker (RAC). JMLDb, is a new version of JML that supports arbitrary precision inte-
gers and safe-arithmetic. In this thesis we present the implementation of (bytecode level)
support for safe-math integral arithmetic in MJC as well as a performance evaluation of
this new version of MJC, in comparison with other Java compilers. Another main en-
hancement presented in this thesis is the implementation of a non-null statistics gathering
tool in the JML checker. An overview of the desugaring process for various kinds of JML
method specifications is given. In addition, rules for judging non-null usage are described

by presenting examples of different scenarios.
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1 Introduction

One of the areas of activity of Concordia University’s Dependable Software Research
Group (DSRG) is in the formal specification and verification of Java programs. One ac-
tive area of research is the Java Modeling Language (JML), a behavioral interface speci-
fication language (BISL) in which specifications are expressed in the form of contracts.
The JML compiler is based on another project, the MultiJava Compiler (MJC), a Java

compiler that supports open classes and symmetric multiple dispatch [Clifton01].

Chalin recently demonstrated that use of Java’s arithmetic in specifications causes prob-
lems (e.g. even inconsistencies in specifications) [Chalin03]. To correct this problem,
Chalin proposed JMLD, an extension to JML supporting arbitrary precision arithmetic
and various math modes—including one called “safe math” in which any arithmetic over-
flows are reported as exceptions. In this thesis we describe the implementation of

JMLDb’s safe math.

Also, Chalin and Rioux recently conjectured that Java programmers often want refer-
ences to objects to be non-null [ChalinRioux05]; however, the default values of these ref-
erences are null in Java and JML. In order to verify this idea, a tool that gathers statis-

tics of non-null usage in JML specifications was developed.

The work described in this thesis is done in the context of overall research in formal pro-

gram verification.

1.1 Contributions

The main objectives of the research reported in this thesis have been to:



Add bytecode level support for “safe-math arithmetic” (arithmetical computations
that throw exceptions when overflows occur) in MJC.

Enhance the JML checker so that it can gather statistics concerning the frequency of
occurrence of non-null declarations. The purpose of this enhancement is to support a
study which has as objective to prove that the majority of declarations of reference

types are meant to be non-null (based on design intent).

More specifically, the work reported in this thesis involved:

Studying and understanding the design and source code of both MJC and JML pro-
jects. More than six hundred files are involved.

Designing and implementing the two new features in MJC and the JML checker in
accordance with existing development conventions established by the JML developer
community.

Reviewing desugaring processes for different kinds of method specification in JML
and creating a tool for non-null statistics calculation and analysis of non-null usage in
JML specifications by simulating the desugaring processes.

Developing test cases and integrating them into the existing JML project testing

framework.

1.2 Thesis Organization

In Chapter 2, we present a survey of tools that extend Java with support for Design by

Contract (DBC) and a brief introduction of JML. In Chapter 3, we discuss integral arith-

metic in JML and illustrate how the current semantics of integral arithmetic causes incon-

sistency in JML specifications. JMLa, an extension to JML that addresses some of the



issues related to integral arithmetic is described. In Chapter 4, JMLDb, a variant of JML
that supports primitive arbitrary-precision numeric types in Java is introduced. In Chap-
ter 5, we discuss design alternatives to support safe arithmetic in MJC and JML. In Chap-
ter 6, the implementation of safe arithmetic in MJC and JML is given. In Chapter 7, we
evaluate the performance of MJC after implementing safe arithmetic in MJC by compar-
ing it to other Java compilers. In Chapter 8, we illustrate rules for non-null statistics and
their implementation in JML. Chapter 9 presents a summary and discusses possible future

work.



2 Design by Contract for Java and Related Work

Design by contract (DBC) is a software development technique whose main idea is that a
class and its clients have a contract with each other. The client must guarantee certain
conditions that are specified by the method before calling it, and in return the method
guarantees that certain properties will hold after the call. The use of such pre- and post-
conditions to design software dates back to Hoare's 1969 paper on formal verification
[Hoare69]. The novelty of DBC lies in its contract-executing capability. The contracts are
specified with program code and are translated into executable code by a compiler.
Hence, any violation of the contract that occurs during program execution can be detected

immediately.

Figure 2-1 presents an example of code written in the Java Modeling Language in the
DBC style. It defines an insertion method for a HashMap class. The requires clause
specifies an input condition, or precondition; the ensures clause introduces an output
condition, or postcondition. Both of these clauses are called assertions. In the precondi-
tion, count is the current number of objects in HashMap, and capacity is the maxi-
mum number of objects the HashMap can contain. In the postcondition, exist (x) is a
boolean query which tells whether a certain object is present, and the method item re-
turns the object associated with a certain key. The notation \old(count) refers to the value

of count when the program entered the method.



Class HashMap/{
/*@ spec_public */ private int count;
/*@ spec_public */ private int capacity = 100;

Insert x so that it will be retrievable through key.
public normal behavior

requires count < capacity

requires key != null;

ensures exist(x):

ensures item(key) = x;

?nsures count = \old(count) +1;

@*

Public InsertHashMap (x: Object; key: STRING) ({

}
}

/
/*

(D (D (D (D (D (D™

Figure 2-1 a DBC example

Preconditions and postconditions apply to an individual method. Other kinds of assertions
characterize a class as a whole. An assertion describing a property which holds of all in-
stances of a class is called a class invariant [Meyer02]. For example, an invariant of class

HashMap could be

//@ invariant count <= capacity;

Another important issue in DBC is contract inheritance. A class B that inherits from a
class A may have a new specification for an inherited specification » of 4, which is called
a subcontract. For example a subclass B of HashMap might override the method Inser-
tHashMap and specify different preconditions or postconditions. The subcontract is
bound by the inherited contract. The principle of subcontracting is that a subcontract may

keep or weaken the precondition and it may keep or strengthen the postcondition.

As a popular programming language, Java is criticized for its lack of support for DBC by
many people [SDN]. Assertion support was voted second on Sun’s ’Request for En-
hancements’ list [Jass]. This hinders Java from being a successful language for develop-
ing reliable software. Although a recent version of the Java specification (v1.4) adopts

the keyword assert to declare assertions in Java code, it still has no direct support for



DBC. Like the successful usage of assertions in Eiffel, many tools such as the JML com-
piler, Jass, iContract, and Jcontract have been developed to introduce DBC to Java. In the

following subsections, we briefly review each of these approaches.

2.1 Jass

Jass (Java with assertions) is a precompiler that supports assertions in Java [Bartetzko0O1,
Jass]. It precompiles a Jass file to a normal Java file (it should come as no surprise that
the resulting Java file is much bigger than Jass file). The decorated Java code can be

compiled with a Java compiler like any other Java code.

Jass supports the following assertions: preconditions, postconditions, class invariants,
loop invariants, and a check expressions. A check expression is an expression that can
state an assertion at any place in a method. All assertions are Boolean expressions except
for the loop invariant, which is of type int. They may contain variables and method calls.
It also supports the universal quantifier (Forall) and existential quantifier (Exists).
Furthermore, the recursive definition of assertions (i.c., assertions that include a method
call in which at least one assertion is defined) is not allowed in Jass. No expression or
method calls that may cause side effects (e.g., assignment and instance creation) can be

used in assertions.

Preconditions and postconditions are used to specify the state of the system that should be
satisfied before and after the execution of a method. In postconditions, to implement an
old expression, Jass needs to store a copy of the object at the beginning of a method and

implement the method clone () without throwing any exception. Another expression is



change only expression that defines a list of variables that may be changed after exe-

cuting the method.

public class firstJass implements Cloneable ({ //1
protected int count=0;
public int usePre(int i) {

/** require i>0; i<Integer.MAX_VALUE; **/ //4
count=i+1l;
/** check count >= 0; **/ /76
return count;
/** ensure Old.count == i-1;**/ //8
/** rescue catch (PreconditionException e) { //9
if (e.label.equals(“valid parameter”)) ({
i = Integer .MIN VALUE ; retry;
} else {
throw new RuntimeException(“precondition is violated”);
ey
}
protected Object clone() { //10

/* Use the Objects clone method*/
Object b = null;
try {
b = super.clone();

}Jcatch (CloneNotSupportedException e) {;}
return b; :

/** invariant 0 <= count ; **/ //19

Figure 2-2 a sample Jass program
Moreover, Jass extends the exception mechanism in Java by adopting rescue and retry
statements. For example, Figure 2-2 line 9 catches a precondition exception and reiniti-

ates the method call with new parameter.

In Jass a subclass can refine the specification of its superclass. To realize refinement, a
programmer must implement jass.runtime.Refinement to inform the precompiler
to add extra refinement checks in the final Java code. In addition, the method jass-
GetSuperState (), which maps states of a subclass to corresponding states in its super-
class, must be implemented. In [Abercrombie02], the author says it is a disadvantage of

Jass that private variables in a superclass cannot be copied to its subclass. However, due



to the mapping mechanism between a superclass and its subclass, the problem is safely

solved.

In Eiffel and JML, if the evaluation of an assertion invokes a method that also declares
assertions, these secondary assertions are not checked. Jass partly implements this princi-
pal, namely, if an assertion contains a call to a method from the same class, this method
will be copied without any assertion checks; however, if an assertion contains a call to a

method from the another class, then assertions in the called methods will be checked.

2.2 iContract

Like Jass, iContract also precompiles an iContract file to a Java file decorated with iCon-
tract assertions [Lackner02, Enseling01]. Moreover, all iContract notations also appear
within Java as comments. Since the iContract notations are modeled after a subset of the

Object Constraints Language (OCL), they look different from Java notations in style.

iContract supports preconditions, postconditions, class invariants, the universal quantifier
(forall) and existential quantifier (exists), and implication (implies). Like Jass, it
supports an o/d expression (written expr@pre) by implementing the method clone ().
But its old expression is just a shallow copy of the variable expr, (i.e., there are no cop-

ies of other objects but only copies of all fields and references in an object).

In iContract, class invariants, preconditions, and postconditions can refer only to non-
private instance variables unless the class is final. A subclass inherits all assertions from
its superclass but may add more restricted assertions. Also, method calls with no side ef-

fects can be used in assertions. Furthermore, to automatically avoid non-terminating re-



cursion, iContract instruments checking code by keeping track of the call chain at run
time [Enseling01].

public class firstiContract implements Cloneable({
public int count=0;
public int incrementCountBy (int 1) {

/**

*@pre 1>0

*@pre i<Integer.MAX VALUE

*@post @return =count@pre + i; //7
*

count+=1i;
return count;
}
}

Figure 2-3 sample iContract program

In Figure 2-3, we present a sample iContract program. The notation @pre indicates a pre-
condition assertion. Notation @post indicates a postcondition assertion. At line 7,
@return represents the method return value (like \result in JML); count@pre stands

for the old value of the variable count.

2.3 jContractor

Unlike Jass and iContract, jContractor [Abercrombie02] is not a precompiler. To use it,
users just use a modified command line to launch the JVM, and jContractor replaces the
default class loader with a specialized version that adds the defined contracts to the class

bytecodes as they are loaded.

In jContractor, contracts are written as standard Java methods following a naming con-
vention. It supports preconditions, postconditions, class invariants, universal quantifier
(forall) and existential quantifier (exists), set comprehension (suchThat), and im-
plication (implies). In jContractor, the old expression is represented as:

OLD.value (variable) where OLD is a class with a static method value () . To use it,



a class must explicitly declare a private instance variable OLD of the same type as the
class (its subclass has its own private OLD variable). Hence, users may reference the OLD

variable to access fields and methods in the postcondition.

Since jContractor works at the Java bytecode level without the presence of source code, it
cannot adopt the techniques that simply copy the code of old reference to the top of the
method and save the result [Abercrombie02]. For example, the clause int OLD.count
= getCount () will store the old value of count derived from method getCount () in
variable OLD. count. jContractor will create a clone of the object before executing the
method body and redirect all reference to OLD to the cloned object. Therefore, it also

needs to implement the clone () method in the class.

In Figure 2-4, a sample jContractor program is given. At line 2 it defines a private field
OLD with the same type as the class. The precondition (line 8), postcondition (line 11),

and class invariant (line 14) are all represented in the method definition.

public class firstdContractor implements Cloneable {
private firstdContractor OLD; //2
public int count=0;
public int usePre(int 1i) {
count=i+1;
return count;

protected boolean usePre Precondition (int i) { //8
return (i>0) && (i<Integer.MAX VALUE);

}
protected boolean usePre Postcondition (int i, Void RESULT) {//11
return OLD.count == i -1;

}
protected boolean Invariant () { //14
return count >= 0;

}

Figure 2-4 sample program of jContractor

In order to avoid infinite recursion, jContractor, like iContract, keeps track of the contract

checking’s progress with a shared hashtable of threads. jContractor implements contract
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inheritance only for non-private, non-constructor methods. The check of an overriden
method’s contract also redirects to the contract of the method of its superclass. Because
interface contracts are stored in a separate file, jContractor is responsible for inserting

contract code into classes that implement the interface.

2.4 Java Modeling Language (JML)

The Java Modeling Language (JML) is a Behavioral Interface Specification Language
(BISL) [Leavens02] that can be used to specify the behavior of Java modules, i.e. either a
Java class or interface. JML is like a model-based specification language, like VDM
(The Vienna Development Method) [Jones90] or Larch [Wing87], and has some elements
of a refinement calculus [Leavens02]. JML specifications are written with a syntax based
on Java. It supports Design by Contract, quantifiers, specification-only variables, and

other enhancements.

JML supports a Hoare-logic-like method contract using preconditions and postconditions.
The postcondition can be divided into a normal postcondition and an exceptional post-
condition. The former is used to indicate behavior of the method when it terminates nor-

mally, while the later is adopted when it terminates by throwing an exception.

All JML specifications are in comments that start with the character “@”. Figure 2-5

gives a sample JML program.
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public class Purse({

final int MAX BALANCE

int balance;

//@ invariant 0 <= balance && balance <= MAX_ BALANCE; //

/*@ requires amount >= 0; //
@ assignable balance; /7
@ ensures balance == \old(balance) - amount //
@&& \result == balance; //
@ signals (PurseException) balance == \old(balance); //
@/

int debit (int amount) throws PurseException{

}
}

O-JOU W

Figure 2-5 a sample JML annotated class

An important feature of JML is that it supports abstract specification written in terms of
specification-only declarations such as model fields, ghost fields and model methods.
Figure 2-6 presents an example using model fields that is from the JML package. The
class List declares a public model field 1istvalue, which describes the abstract value

of a List object.
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/@ model import edu.iastate.cs.jml.models.*;
public abstract class List {

//@ public model non null JMLObjectSequence listValue;
protected /*% rep %$*7 Node first, last;

//Q@ protected depends listValue <- first, first.values, last;
/*@ protected represents listValue <-
@ /(first == null ? new JMLObjectSequence() : first.values);
@*
/*@ public normal behavior
@ requires o != null;
@ modifies listValue;
@ /ensures listValue.equals(\old(listValue.insertBack (o))},
@*
public void append(/*% readonly %*/ Object o) {
if (last==null) {
last = new /*% rep %*/ Node(null, null, o);
first = last;
} else {
last.next = new /*% rep %*/ Node(null, last, o);
last = last.next;

/* L. %/

Figure 2-6 A JML specification of the Java class List

JML is supported by tools such as the JML Checker, which can parse and type check
Java programs in which JML annotations are integrated. Another important tool is
known as the JML RAC (Runtime Assertion Checker) that is an extension of the JML
checker; the RAC can compile a JML-annotated Java file into Java bytecode. The com-
piled bytecode includes runtime assertion checking instructions that check JML specifica-

tions.

2.5 Summary of capabilities of DBC languages and tools for
Java

Finally, we give a brief comparison of the above-mentioned DBC tools support for basic

DBC features.
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Jass iContract jContractor JML
Pre- /, Post- con- | yes yes yes yes
ditions
Invariant class class class class
loop
Qualifier \forall,\exists \forall,\exists \forall,\exists,\suchthat | \forall, \exists,
\sum, \min
Contract inheri- non-private, non-private, on-private, non- non-private
tance constructor
QLD expression | yes yes yes €s
Abstract specifi- no no no yes
cation
Location Java comment Java comment separate file Java comment
Pre- compiler yes yes no, it is library based | yes
Other features rescue/retry , trace | no name convention, rich set of asser-

assertion, refine-
ment

recovery and excep-
tion handling

tion, operators,
support refine-
ment, behavior,
exception han-
dling, etc

Table 2-1 Comparison among Java DBC Tools

In the next chapter, we will introduce the integral arithmetic in Java, illustrate a problem

in JML that is caused by adopting Java semantics of integral arithmetic in JML and pro-

vide a solution to the problem.
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3 Integral Arithmetic in Java and JML

Integral arithmetic in JML is based on that of Java. This makes it easy for Java develop-
ers to write JML specifications; however, this also introduces problems since the Java
language was not designed to be a specification language. In this chapter, we briefly illus-
trate the integral arithmetic used in Java and JML and present the problem of inconsisten-

cies in JML specifications caused by this.

First, a brief introduction to Java’s integral arithmetic is given. Next, an example is em-
ployed to indicate that the semantics of current JML numeric expressions fail to meet
specifier expectations. Then, JMLa, predecessor of JMLDb, is introduced. This chapter is

based on earlier work by Chalin [Chalin03, Chalin04].

3.1 Integral Arithmetic in Java
Since JML inherits Java’s integral arithmetic, we briefly present Java’s integral arithme-

tic here, concentrating on type conversion and promotion.

3.1.1 Integral types

In Java, the integral types are byte, short, int and long (in Java, char is also an integral
type. Since our later discussion focuses on the others, we ignore char type here). Table

3-1 presents range information for these types.

Bits Min Value Max Value
byte 8 -2/ 2'-1
short 16 27 2.1
int 32 -2°! 271
long 64 2% 2%°.1

Table 3-1 Ranges for Integral Types in Java
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3.1.2 Type conversions

Occasionally, the integral type of a Java expression is not appropriate to its surrounding
context and consequently a conversion, either explicit or implicit, is needed. After a con-
version from type 1) to type 12, type 1) can be treated like a type 1. In some cases a run-
time check is executed to ensure the validity of the conversion or a runtime action is
taken to finish the type translation. For example, conversion from type int to long re-
quires run-time sign-extension of a 32-bit value to its 64-bit representation. Next, some

type conversions and promotions that are related to Java integral arithmetic are given.

3.1.3 Widening Primitive Conversion

The following three conversions on primitive types are called the widening primitive

conversions:

e Dbyteto short, int, long
®¢ short toint, long

e inttolong

A widening conversion from one integral type to another does not lose any information,
(i.e., the numeric value is preserved). A widening conversion from a signed integer value
1) to another integral type 1, simply extends the sign bit in two's-Complement Represen-

tation (TCR) of the integer value 1, to fill the higher order bits [JLS00, §4.2.2].

3.1.4 Narrowing Primitive Conversions

In Java, in terms of integral types, the narrowing primitive conversions include:
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e shorttobyte
e inttobyteorshort

® longtobyte, short,or int

Narrowing conversions may cause loss of precision due to loss of value magnitude. A
narrowing conversion from a signed integer 1 to another integral type T, simply keeps
the n low-order bits, where # is the number of bits used to represent type 2, and discards
other bits. Consequently, in some cases, loss of magnitude information of the numeric
value may cause the sign of the resulting value to be different from the sign of the input

value—e.g., (byte) 129 evaluatesto -127.

Despite the possible overflow, underflow, or loss of information, narrowing conversions
among primitive types never result in a run-time exception. The test program given in

Figure 3-1 demonstrates narrowing conversions in which loss of precision occurs:

class Test {
public static void main(String[] args) {

// A narrowing of int to short loses high bits:
System.out.println (" (short) 0x67890==0x" +
Integer.toHexString((short)0x67890));
// A narrowing of int to byte causes changes of sign and magnitude:
System.out.println (" (byte)129==" + (byte)129);
// A long value that is too big to fit gives largest int value:
System.out.println(" (int) 2147483648L ==" + (int) 2147483648L);

}
Figure 3-1 sample program of Narrowing Primitive Conversions

This test program produces the following output:
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(short) 0x67890==0x7890
(byte) 129==-127
(int) 2147483648L== -2147483648L

3.1.5 Assignment Conversion

Assignment conversion occurs when a variable is assigned with the value of an expres-
sion; the type of the expression must be converted to the type of the variable. Towards
integral primitive types, widening primitive conversion and narrowing primitive conver-

sion are allowed within an assignment context.

If the type of an expression can be converted to the type of a variable by assignment con-
version, we say the type of the expression is assignment compatible with the type of the

variable. Otherwise, a compile-time error occurs. For example:

The expression s + s is automatically promoted to type int, and an int cannot be im-
plicitly converted to type short; therefore a compile-time error that possible loss of pre-

cision is generated.

If a variable like the above variable s has a type int, the program is executed without
any warning, even in those cases in which an incorrect result is computed. For example,

the code

int 1 = Integer.MAX VALUE + 1;
System.out.print ("Integer.MAX VALUE + 1= " + i);

produces this output
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Integer.MAX VALUE + 1= -2147483648

3.1.6 Numeric Promotion

Numeric promotion is used to convert the operands of a numeric operator to a common
type so that an operation can be performed. There are two kinds of numeric promotion:

unary numeric promotion and binary numeric promotion [JLS00, §5.6]

Unary numeric promotion
If a unary expression has type byte or short, unary numeric promotion promotes it to
type int by widening conversion. Unary numeric promotion is performed on an expres-

sion in the following situations:

e FEach dimension expression in an array creation expression

e Each index expression in an array access expression

e An operand of the unary plus operator +

e An operand of the unary minus operator -

e An operand of the bitwise complement operator ~

e Each operand, separately, of a shift operator >>, >>>, or << (note that a 1long shift
distance (right operand) does not promote the value being shifted (left operand) to
long [JLS00].)

The following is a test program that provides examples of unary numeric promotion:
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class Test
public static void main(String[] args) {
byte bValue = 2;
int al[]=new int[bValue];//dimension expression promotion
short sl = 2;

al[sl-1] = 1; // index expression promotion
al[0] = -s1; // unary - promotion
System.out.println("array al: " + al[0] + ","™ + al[l]):

Figure 3-2 sample program for unary numeric promotion

This test program produces the following output:

array al: -2,1

Binary numeric promotion

Binary numeric promotion is performed on binary expressions in the following situations:

o If either operand is of type 1ong, the other is converted to 1ong.

e Otherwise, both operands are converted to type int.

Binary numeric promotion is performed on the operands of certain operators:

e The multiplicative operators *, /, and %

e The addition and subtraction operators for numeric types + and -
e The numerical comparison operators <, <=, >, and >=

e The numerical equality operators == and ! =

e The integer bitwise operators &, *, and |

e In certain cases, the conditional operator 2 : [JLS00, § 5.6.2].

Here is an example in which binary numeric promotions are applied
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class Test {
public static void main(String[] args) {
int i1 = 1;
/* expfession having types char & byte is promcted to types int
& int: *
byte bl = 0x1f;
short cl = 0x45;
int bc = cl & bl;
System.out.println(Integer.toHexString(bc));

}
}
Figure 3-3 sample program for binary numeric promotions

The output is: 5.

3.2 Integral Arithmetic in JML
Integral arithmetic in JML has the same definition as Java. Specifically, the above-
mentioned conversions and promotions are also applicable to the integral arithmetic in

JML specifications.

3.2.1 A semantic gap

Figure 3-4 gives the JML specification of method negadd. In this method, assuming that
the value of both arguments a and b are 0, if the specification of negAdd is interpreted
using Java semantics, a valid implementation of method negaAdd will permit to return

Integer .MIN VALUE.
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public class Test {
/*@ normal behavior
@ requires a <= 0 && b <=0;
@ ensures \result <= a && \result <= b
@ && \result * \result / 4 >= a * b;
@*/
public int negAdd (int a, int b){
f“

public static void main(String[] args) {

}
}

Figure 3-4 specification of method negAdd

The reason is that Java integral types have fixed precision, and operations over these
types obey the rules of modular arithmetic (modular arithmetic is the arithmetic of
congruences, sometimes known informally as "clock arithmetic". In modular arithmetic,
numbers "wrap around" upon reaching a given fixed quantity, which is known as the

modulus [Modulus]). For example, the following equations hold in Java [Chalin03]:

Integer.MIN_VALUE == Integer.MAX VALUE +1;

Math.abs (Integer .MIN_VALUE) == Integer.MIN_ VALUE
(Integer .MIN_VALUE +1) * (Integer.MIN VALUE +1) == 1
Integer.MIN VALUE * Integer.MIN_VALUE == 0

Based on the examples above, we can find that since specifiers generally ignore the fi-
niteness of numeric primitive types and think in terms of arbitrary precision arithmetic,
problems of invalid and inconsistent JML specifications often occur. Hence, a semantic
gap exists between specifier expectations and the current semantics of JML numeric
types [Chalin03]. Next, we will try to fix the specification of negAdd within the current

semantics of JML; then a method to close the semantic gap is proposed.
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3.2.2 Fix the semantic gap

The problem with the specification of negAdd occurs because Integer .MIN_VALUE is
not a valid result when both arguments are zero. This can be easily corrected by ensuring
arithmetic overflow does not occur within an ensures clause expression. To preserve
the previous form of the ensures predicate as much as possible, a sample solution is
given in Figure 3-5 (differences between the current and previous specifications are un-

derlined), in which explicit type widening ensures that all operators will be with long
type.

public class Test {

/*@ normal behavior
@ requires a <= 0 && b <=0;
@ ensures \result <= a && \result <= b
@ && (long)\result * \result / 4 >= (long) a * b;
*

public int negAdd (int a, int b){
B
Figure 3-5 specification of negAdd with cast to long

Although explicit type casting solves the problem in this particular case, it would be inef-
fective if the argument type of negAdd were changed to long. The only available solution
in current JML semantics is to employ the IMLInfiniteInteger model class for arbi-
trary precision representation. The new specification of method negadd is given in

Figure 3-6 in which we see how the problem is solved at the cost of clarity.
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public class Test {

/*@ normal_behavior
@ requires a <= 0 && b <=0;
@ ensures \result <= a && \result <= Db
@ && (new JMLInfiniteInteger (\result)).multiply(
@ new JMLInfinitelInteger (\result)) .divide(
@ new JMLInfiniteInteger((long) 4))) .compareTo
@ new JMLInfiniteInteger(a).multiply/(
@ new JMLInfiniteInteger(b))) >= 0;
@*/
public int negAdd (long a, long b)/{
.
Figure 3-6 Specification of negAdd using JMLInfiniteInteger
Based on the above discussion, we can draw the conclusion that under current JML se-
mantics, a general and practical solution is not available. Hence, two variants of JML
named JMLa and JMLb [Chalin03] that support arbitrary-precision arithmetic in JML are

illustrated in the next sections.

3.3 JMLa: supporting primitive arbitrary precision numeric

types
3.3.1 Closing the semantic gap

Figure 3-6 indicates that in addition to primitive fixed-precision numeric types, JML, like
Larch, should also support primitive arbitrary-precision numeric types. Therefore, in the
JML variant JMLa, two primitive numeric types \bigint and \real that represent arbi-
trary precision integers and floating point numbers, respectively, are introduced. In order
to avoid causing name collision with existing Java code, these two types start with a

backslash character.

Also, a model class org.jmlspecs.lang.JMLMath is defined in which methods in

java.lang.Math are presented, but defined over \bigint and \real types.
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public class Test {

/*@ normal behavior
@ requires a <= 0 && b <=0;
@ ensures \result <= a && \result <= b

@*&& (\bigint)\result * \result / 4 >= (\bigint) a * b;
public int negAdd (long a, Tong b){
-
}
Figure 3-7 JML specification of negAdd with casts to \bigint

In Figure 3-7, a specification of method negadd is given in JMLa in which both accu-
racy and clarity (only two new expressions are added, which are underlined) of specifica-

tion are achieved.

After introducing new primitive arbitrary-precision types, we need to define the arithme-
tic rules among \bigint, \real and other primitive types. Here, the general rule is to

add implicit promotion to \bigint for integral expression.

3.3.2 Informal semantics

Figure 3-8 presents the JMLa numeric type hierarchy in which both the \bigint and
\real types are defined as top elements [Chalin03]. Type widening and narrowing are
defined as natural extensions of the rules of Java. One design goal of JMLa is to ensure
that numeric operations that can cause overflow are performed over \bigint by default.
Since unsafe operators, including unary -, binary +, -, *, and /, can cause overflow, they
will unconditionally promote their integral operands to \bigint. However, this rule is
not totally applicable to constant expressions involving unsafe operators. Java semantics
are preserved if the operands are constant expressions and operator evaluation does not
result in overflow (note that in JML, a constant expression will be folded to a constant

using the constantFolding method during the typechecking stage of compilation).
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Figure 3-8 JMLa primitive numeric type hierarchy [Chalin03]

For example, in JMLa, for an int type variable i, the expression -i will be interpreted
as - (\bigint) ij; expression -5 will be interpreted as -5; the expression — Inte-
ger .MIN VALUE will be interpreted as - (\bigint) Integer.MIN_VALUE since

the constant expression value is not in the range of int.

In the next chapter, we introduce a variant of JML called JMLb that employs the notions
of integral arithmetic modes to indicate the context in which a numeric expression should

be interpreted.
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4 Safe Arithmetic in Java and JML: JMLDb

Although JMLa solves the inconsistency in JML specifications caused by fixed-precision
arithmetic in Java with either no syntactic changes or minor syntactic changes to the
specifications [Chalin03]. However, JMLa breaks one basic design goal of JML: expres-
sions that are valid in Java should remain valid in JML and with the same meaning.
Therefore, a new variant of JML, JMLDb, is introduced in which the notions of integral
arithmetic modes (we refer to these as math modes for short) are employed to indicate the
context math mode in which a numeric expression should be interpreted. In addition, the
default math mode in JMLDb is Java mode; this ensures that expressions in JML specifica-

tion have the same semantics as those in Java by default.

4.1 Math modes

In JMLDb, there are three integral arithmetic modes, namely

e Java math, which corresponds to Java semantics.
e bigint math corresponds to the implicit promotion to \bigint semantics of JMLa.
e safe math is like Java math except that arithmetic overflow is detected and an excep-

tion is thrown when it occurs (like checked mode in language C#).

A math mode can be applied to a class, a method or an expression. The modifiers
spec_java_math, spec_bigint_math and spec_safe_math can be applied to the
declaration of a class. As a result, all specification expressions within the class will have
a default math mode of Java, bigint, and safe, respectively. These modifiers can also be

applied to a method definition to set the math mode within the method scope. To imple-
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ment finer control, JMLb provides operators \java math(E), \bigint_math(E),

and \safe math(E) to restrict the math mode during the evaluation of an expression E.

A sample JMLDb specification that adopts several math mode modifiers is given in Figure
4-1. At line 1, the spec_bigint_math modifier indicates that all specification expres-
sions in the class are to be interpreted under bigint math mode by default. The first
method specification is from the method negAdd given in Figure 3-4. Notice that under
JMLDb, the specification of method negAdd is consistent since the expressions are inter-
preted over \bigint rather than int. The second specification of method decre-
ment_and_wrap, we use the \java_math modifier to specify that the expression i-1
should be interpreted under Java mode. That is to say, i-1 will be equal to Inte-
ger .MAX_VALUE if variable i is equal to Integer.MIN VALUE. The specification of

the model method cal illustrates the usage of \bigint in a model method.

If there is no explicit math mode is set, then Java math mode will be applied. However, as
mentioned before, JIML specifiers generally think in terms of arbitrary-precision arithme-
tic, (i.e., in a bigint math mode); therefore JML tools should produce a warning message

if a math mode is not explicitly stated.

In JMLb, with modifiers code java math, code bigint math, and
code_safe_ math, math modes of Java, bigint, and safe can be respectively applied to
Java code. For example, in Figure 4-1 the method useMathMode will use Java math
mode. However, this only has effect when using the MJC or JIML RAC compilers

[Chalin04].
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public /t%fpec_bigint_math@*/ class Test {
1

/*@ normal_behavior
@ requires a <= 0 && b <=0;
@ ensures \result <= a && \result <= b
@ && \result * \result / 4 >= a * b;
e/ -

public int negAdd (int a, int b) {

}

/*@ public normal behavior
@ assignable \nothing;
@e7sures \result == \java math(i-1);
@x -
public static int decrement_and wrap (int i) ({
return i-1;

/*@ public normal behavior
@requires i >0;7
@assignable \nothing;
@e7sures \result == i*j+1;
@*
/*Q public pure model static \bigint cal (\bigint i,\bigint j)
gr?turn i*3+1;
*

/*@

@public normal behavior

@requires i < Integer.MAX VALUE;

@ensures \result = i +1;

g*/
public /*Q@ code java math @*/ /*@ spec Jjava math @*/
int UseMathMode™ (int™ 1 ) { - -

return i+1;

}

public static void main(String({] args) {

Test t = new Test():;

short uo =t.unaryOppose (Short.MIN VALUE);

int daw =t.decrement_and wrap (Integer.MIN_ VALUE);
}

Figure 4-1 Sample JMLD specification

4.2 JMLDb semantics

In this section we present the definition of JMLb semantics. Similar to what is done by
the LOOP tool [vdBJO1], an example demonstrates how a JMLb program is translated

into a corresponding PVS theory by applying JMLDb elaboration rules.
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4.2.1 The LOOP Tool and PVS

LOOP is a tool that can verify JML assertion. It translates code that is annotated with
JML specifications into proof obligations that can be proved with the PVS theorem
prover by defining a formal denotational semantics of both Java and JML [Berg01]. PVS,
short for Prototype Verification System, consists of a specification language: PVS, sev-
eral predefined theories, and a theorem prover [PVS]. In this section, we follow the ap-
proach of LOOP tool, namely, formalizing JMLb semantics and then embedding them in
PVS. Here, we only focus on the difference between JMLb and JML, (i.e. on the seman-
tics of arithmetic expressions under various math modes). We also ignore some important
issues, such as abnormal termination in expressions, which are already effectively han-

dled in LOOP.

4.2.2 Abstract syntax ands semantic objects

The semantics of JMLb expressions is defined by means of an “inference system” in a
style referred to as natural semantics [Winskel93]. The inference rules allow us to estab-
lish the validity of elaboration predicates in the form (this definition is taken from

[Chalin04]):

p H a—i-ox
where A is generally stands for an abstract syntax phrase class. This predicate asserts that

the syntactic element a will map (also called elaborate in [Chalin04]) to the semantic ob-
ject x under the context p; a is a JMLb expression; and x is the counterpart expression of

a in PVS with its type.

e € EXPR::=c|t|op(ei,...,ex) | (t)e|\old(e) |efer(er,...,ex) | (qTL;€)|
\java_math(e) | \bigint_math(e) | \safe_math(e) | ...
te TYPENM 1 =1]...
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op € OPNM
q € QUANTNM :: = \forall | \exists

Figure 4-2 Abstract syntax of JMLD expressions [Chalin04]

In Figure 4-2, the abstract syntax for JMLb expressions is given. The expression could

be:

¢ An integral literal constant of type T € {int, long}.

e An identifier representing a logical variable (\result, method parameters and quanti-
fier variables). Note that we assume that all classes and instance members are ex-
pressed in the form e, so that they can be distinguished from the occurrence of other
logical variables.

e An operator, it could be unary operator or binary one. it includes those of Java (e.g.,
+, -, *) and JML (e.g., ==>, <==>).

e A type cast expression.

e A pre-state expression.

e A field access expression.

¢ A method invocation expression.

e A quantified expression.

e Math mode expressions.

JMLDb expressions are translated into corresponding PVS expressions, whose annotated

abstract syntax is

e € PVSEXPR:=c:1|op(€1,....,e):T|q(1:T): €
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Each PVS expression is annotated with its type, which ensures that overloaded operators
have the same meaning as in JMLb. We define constants, operators (including logical
connectives and equality), and quantifier ( either FORALL or EXISTS) in PVSEXPR.
Elaboration of expressions is done within the context of an environment: p € ENV that
can be thought of as a mapping from the identifiers into their attributes. However, some

JMLDb identifiers have special meanings:

e \result is a JML logical variable that denotes the value returned by a method,;

e \mathMode denotes the “currently active” math mode;

® \state denotes the evaluation state context and can be bound to either pre or post
state. By default, requires clause expressions are evaluated in pre state and en-
sures clause expressions in post state.

e p® {1:->a} denotes the update of mapping from 1 to a in context p. Note that in

the initial JMLb context pg, \mathMode is set to Java.

4.2.3 Primitive numeric types in PVS

Next, we discuss the relationship between JMLb primitive numeric types and their corre-
sponding types in PVS. The JMLb arbitrary precision types \bigint and \real are
mapped to the standard PVS types: integer and real. For convenience, a type: bigint,
which actually is identical to type integer is also defined. In addition, for each of the
bounded-precision integral types (i.e., byte, short, int, and long), we created simple
theories, all of them in the same form. In Figure 4-3 [Chalin04], we present an excerpt of
the theory for int. At line 3 and 4, existing theories from standard library files are im-

ported. For example, number_ theory@mod_nt indicates theories in file
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pvs/lib/number theory/ mod_nt.pvs are imported; at line 10, int type is defined
as the subtype of built-in type integer that contains values in the range of min to max in-
clusive. At line 12, the function narrow implements the narrowing conversion from in-
teger to type int. All arithmetic operations of type int are defined based on the function
narrow. Finally, at line 30, a lemma div_rem is defined with respect to two int
variables 1 , j: if j is not zero, then the property 1 = i/ *3j + rem(i , j)

should hold.

All arithmetic operators are defined using their integer counterparts followed by an appli-
cation of narrow. Thus, the addition of two values of type int is defined as the addition
of their values interpreted as integers followed by a narrowing of the result to int: (i.e,.

add(i,j) = narrow((i:int + Jj:int):integer) :int).
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int: THEORY

BEGIN
IMPORTING number_theory@mod nt, dive@div, %3
div@div_alt, div@rem %4
twoPn: posint = 4294967296 g ==2%
max : nat = 2147483647 % ==Integer.MAX VALUE
min : negint = -2147483648 % ==Integer.MIN_VALUE

int: TYPE+ = {i: integer | min <= 1 AND i <= max} CONTAINING 0; %10

% narrowing primitive conversion to int

narrow(i: integer): int = %12
LET b:nat = mod(i, twoPn) IN
IF b <= max THEN b ELSE b - twoPn ENDIF

neg(i:int): int = narrow(-i) %16

add(i,j:int): int = narrow(i + j)

sub(i,j:int): int narrow (i - j)

mul(i,j:int): int = narrow(i * j)

]

$Division rounds towards zero (JLS 2.0, Section 15.17.2):
%

div(i:int, j:{j:intlj /= 0}): int = narrow(div.div(i,3))
%Remainder satisfies (i/3)*j + (i%j) == i for all

$values except j=0, including 1i= max and j=-1
% (JLS2.0, section 15.17.3).

%

rem (i:int, j:{j:int | j/=0}): int = narrow (rem.rem( 1i,3))
div_rem: LEMMA FORALL (i ,j:int):

j /= => div(i , 3 )* J + rem (1 , ) =1
G e e
bit neg(i:int): int = -i -1
END int

Figure 4-3 PVS theory for int

The definitions of elaboration rules for transforming JMLb expressions into correspond-

ing PVS expressions are given in [Chalin04].

4.2.4 An Application Example of Elaboration Rules

As an example of the application of the elaboration rules, Figure 4-4 presents a resulting
PVS translation of the specification of the method inc. The lemma inc_consistent is

used to check the consistency of the specification and has been successfully proved.
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/*@spec_bigint math@*/public class Test({
/*@ normal behavior
@ requires t <0;
Q@ ensures \result == t+l ;
e*/
public short inc (short t){
return t+1;
}
}

and the corresponding PVS translation is
IMPORTING short,

inc_requires(y: short): bool =y < 0;
inc_ensures(y, result: short): bool = result=y+l;

inc_consistent : LEMMA FORALL (y: short):
EXISTS (result: short): inc_requires(y) => inc_ensures(y,result)

Figure 4-4 PVS definition of inc

In the next chapter, our work will focus on adding support to safe arithmetic in MJC and
JML; and we will discuss two approaches: post-processing and redesign MJC to imple-

ment this.
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S Supporting Safe Arithmetic in MJC and JML

In this chapter, we will discuss methods of implementing support for the safe arithmetic
mode (short for safe arithmetic) of JMLb. Since JML is established on the basis of the
MultiJava Compiler (MJC) [MultiJava04], most of work is occurred in MJC.. The im-
plementation is achieved at two levels: at the compiler (i.e. source) level and at the byte-
code level (i.e., in Java class files). Here we mainly present the implementation at the

bytecode level in MJC.

5.1 Relationship between MJC and JML

Firstly, we will briefly explain the relationship between MJC and JML. MJC extends
Java by adding features of open classes and symmetric multiple dispatch [Clifton01]. The
JML checker is built upon MJC; that is, it extends most of the MJC classes and also adds
support for JML specification processing. As a result, if we add support for safe arithme-

tic in MJC, JML will automatically “inherit” the support.

5.2 Implementing support to safe arithmetic at the bytecode
level

Next, we propose two approaches to support safe arithmetic at the bytecode level in MJC.
One is called post processing (i.e., adding support to safe arithmetic by modifying class

files generated from MJC). The other is to redesign MJC.

5.2.1 Post-Processing Method

A Post-Processing method is implemented using a Java class file disassembler and as-

sembler.
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public class TestDJava({
static int i=1;
public int getSum(int k, int Jj){
long 1 = k+j ;
if (1 < Integer.MAX VALUE)
return k+3j;
else
return Integer.MAX VALUE;
public static void main(String(] args) {
TestDJava tdj = new TestDJava();
int mi = tdj.getSum(i, 1);
}
}

Figure 5-1 a sample Java file

There are many Java class file disassemblers, such as D-Java [DJava], Javad [JavaD],
Neuron [Neuron]. Javap, a tool included with the Java SDK, is also a class file disassem-
bler. Figure 5-1 shows a sample Java file. The corresponding JVM instructions disassem-

bled from its class file are given in Figure 5-2 and Figure 5-3.

After using the command: p-Java -o jasmin TestDJava.class, the corresponding D-Java
output is a given in Figure 5-2 and Figure 5-3 . There are corresponding JVM codes for
each method. It also indicates the maximum usage of local variables and stack; therefore,

JVM can reserve correct space for the program execution. The disassembled code also set

label name for the conditional statements like ifge.
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; Output created by D-Java (mailto:umsilvel@cc.umanitoba.ca)

’

;Classfile version:
; Major: 46
H Minor: 0

.source TestDJava.java
.class public synchronized TestDJava
.super Jjava/lang/Object

.field static 1 I

; >> METHOD 1 <<
.method public <init>()V
.limit stack 1
.limit locals 1
.line 1
aload_0
invokenonvirtual java/lang/Object/<init>()V
return
.end method

; >> METHOD 2 <<
.method public getSum{(II)I
.limit stack 4
.limit locals 5
.line 4
iload 1
iload 2
iadd
i21
lstore 3
.line 5
lload_3
ldc2_w 2147483647
lcmp
ifge Labell
.line 6
iload_1
iload 2
iadd
ireturn
.line 8
Labell:
ldc 2147483647
ireturn
.end method

Figure 5-2 sample output of D-Java disassembler

38



; >> METHOD 3 <<
.method public static main{[Ljava/lang/String;)V
.limit stack 3
.limit locals 3
.line 11
new TestDJava
dup
invokenonvirtual TestDJava/<init>()V
astore 1
.line 12~
aload 1
getstatic TestDJava/i I
iconst_1
invokevirtual TestDJava/getSum(II)I
istore 2
.line 13
return
.end method

; >> METHOD 4 <<

.method static <clinit>()V
.limit stack 1
.limit locals 0

.line 2
iconst 1
putstatic TestDJava/i I
return

.end method

Figure 5-3 sample output of D-Java disassembler (cont.)

5.2.1.1 Java Class File Assembler

There are some assemblers for the JVM, such as Jasmin [Jasmin], Jamaica [Jamaica], and
the Java Bytecode Assembler [JBA]. We chose D-Java and Jasmin because both support
ASCII descriptions of Java classes that are written in a simple assembler-like syntax us-
ing the JVM instruction set. They can convert these descriptions to a binary Java class
file, which can then be loaded by a Java runtime system. In addition, D-Java provides a

specific option to customize output in Jasmin format.

5.2.1.2 Implementing Safe Arithmetic by Post-Processing

Post-processing a Java class file involves two phases. Firstly, a Java class is disassembled
into a set of JVM instructions. Next, some modifications made to the instructions, and

they are assembled into a new class file. For example, to enable the program in Figure
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5-1 to throw a RuntimeException when the sum of two arguments is greater than In-
teger .MAX VALUE, we replace previous JVM instructions with new instructions to
throw a rRuntimException. Figure 5-4 presents the new D-Java code for method getSum.

The new code is underlined.

; >> METHOD 2 <<
.method public getSum(II)I
.limit stack 4
.limit locals 5
.line 4
iload 1
iload 2
iadd
i21
lstore_3
.line 5
lload_3
1dc2 w 2147483647
lcmp
ifge Labell
.line 6
ilecad 1
iload 2
iadd
ireturn
.line 8
Labell:
new java/lang/RuntimeException
dup
ldc "sum is overflow"
invokenonvirtual
java/lang/RuntimeException/<init>(Ljava/lang/String;)V
athrow
.end method

Figure 5-4 example of post-processing

To implement safe arithmetic in MJC and JML using post-processing, the following steps

are taken:

e Find the JVM instructions corresponding to unsafe integral arithmetic operations and
replace these instructions with JVM instructions that perform safe integral arithmetic
o Since changing bytecodes introduces new parameters, stack limit and local-variable

limit should be recalculated.
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e Create new labels as necessary

5.2.1.3 Advantages and disadvantages

A post-processing method has the following advantages:

e No negative effect on current MJC and JML projects since there is no modification to
their source code.

e No specific knowledge of MJC or JML is needed. Because new added codes are iso-
lated from current projects, there is no need for the developer to be familiar with MJC
or JML.

e It can be applied to .class files produced with any Java compiler.

However, this method finally proved to be unsatisfactory since MJC conducts constant
folding during compilation. As an example using addition, if both operands are con-
stants, MJC will calculate the result of the addition expression at compile time. As a re-
sult, some unsafe operations cannot be determined. For example, the assignment expres-
sion int i = Integer.MAX VALUE + 1 should throw an overflow exception under
safe-math mode. However, if constant folding occurs, the assignment expression will be
treated as int i = Integer.MIN_ VALUE after narrowing primitive conversion is per-
formed on Integer .MAX VALUE + 1. The unsafe addition operation can therefore not

be found in a D-Java file.
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5.2.2 Redesign the MJC compiler

Another approach to implementing safe arithmetic in MJC is to adapt the compiler so that
it can generate different bytecode. The work of redesigning the MJC compiler includes

the following:

e An attribute is added to the abstract syntax tree (AST) classes that represent unsafe
math operators. This attribute specifies in which mode the operator is to be inter-
preted.

e Integral arithmetic in Java is analyzed and the condition at which an overflow will
occur towards unsafe operators is summarized.

e Provision of functions like check/uncheck in C# to implement finer control of safe
arithmetic on expressions are created

e Method genCode() of each unsafe operator is enhanced. If an operator is interpreted

in safe mode, then safe math bytecode will be generated.

To support safe math in MJC, in other words, we need to explore cases on which incor-
rect integral arithmetic operations take place in Java math mode and ensure these cases
should throw an exception in safe math mode. Next, we present how the safe arithmetic is

achieved in MJC by providing a new class that implements safe integral arithmetic.

5.2.2.1 Incorrect integral arithmetic operation cases

Based on above description, what we need to do is to find the cases in which the integral
arithmetic operations are incorrect and replace them with code that throws an exception
instead of giving an incorrect result. In the following, four kinds of basic integral arith-

metic operations are discussed.
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In the case of a addition expression, a + b, an exception should be thrown in the follow-
ing cases: (a or b is integral type operator; R (E) stands for the result given by current
Java operations for evaluating the expression E, max stands for the maximum value of

the expression type, and min stands for its minimum value) [Winkler02]:

o ifa >0Ab>0Amax < a + b £ 2 * max,

thenR(a + b) < 0 A R(a + b) = (a + b) - (2 * max + 2)
e ifa<0ADb<O0OA2*min < a + b < min,

thenR(a + b) > 0 A R(a + b) = (a + b) - 2 * min
These two cases can also be represented as

(@a>0Ab>0ARG@+Db) <0 v(@<0aAab<0AaRGh >0

which indicates that if a > 0, b > 0, and a + b (as computed in Java math mode) is
both greater than max and less than 2 * max then the actual result of a + b will be
both less than zero and equalto (a2 + b) - (2 * max + 2). Similarly,ifa < 0, b
< 0Oand a + b is both greater than 2 * min and less than min then the actual result
of a + Db will be both greater than zero and equalto (a + b) - 2 * min. Inboth

of these cases, an overflow will occur, and they require that an exception be thrown.

In the case of a subtraction expression, a - b, an exception should be thrown in the fol-

lowing cases:

IA

e ifa 2 0Ab<0Amax <a ->b < max - min,

then R (a 2 * min

!

b) < 0 A R{a - Db)

I
v
|
e
+

A
1]

|
o
A

e ifa <0 ADb>0Amin - max min,

then R (a 2 * min.

by > 0 A R(a - b)

fi
a0
|
o
|
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These two cases can also be represented as:

(a20Ab<0AaAR@-b)<0 v(@<O0aAb>0AaAR@-Db >0

In the case of negation, expression - a, an exception should be thrown in the case that a

== min.
In the case of Division, expression a / b, an exception should be thrown in the case

e ifb = 0 thenR(a / b) = Infinity

e if (a == min A b == -1),thenR{(a / b) = min

These two cases can also be represented as:

b==0v (@a=mnab==-1)

Evaluation of the expression a * b should cause an exception to be thrown in the fol-

lowing case (Round (E) returns the closest value to E that can be represented by the inte-

gral type):

0 A (b < Round(m1n / a) vb>Round(max / a ))
< -1 A (b < Round(max / a) v b > Round(min / a)))

(a >
v (a
v (a
which indicates that an exception should be thrown in three cases:

e when a is greater than zero and b is either less than Round (min / a) or greater
than Round (max / a), the actual result will be less than min or greater than

max,
e when a is equal to -1 and b is equal to min, the actual result is still min, or

e when a is less than -1 and b is less than Round(max / a) or greater than
Round (min / a), the actual result will be out of range; therefore, an exception

should be thrown.
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5.2.2.2 Redesign the MultiJava Compiler (MJC)

Based on the previous discussion, there are two alternatives to the redesign of MJC:

In the first method, when each unsafe operation is executed in safe arithmetic mode,
the above mentioned rules should be applied while generating bytecodes. Thus, we
need to obtain JVM instructions representing the applied rules. Also, modification of
the stack limit and local variable limit needs to be considered since that new bytecode
probably increases the stack limit.

The second method is to implement all of the above-mentioned rules in a separate
class. When an operation is executed in safe arithmetic mode, bytecode calling the
corresponding method in this class are generated. It is unnecessary to consider factors
such as changes in stack limit or local variable limit here since replacing an arithmetic
operation with a method call causes no change to the stack usage or the number of lo-
cal variables. For example, both a JVM addition instruction (iadd) and the JVM in-
struction to invoke a method implementing safe arithmetic addition (invokestatic #13)

have stack limit 2 and local limit 2.

We chose to implement the second approach since it exerts less effect on current projects
than the first solution, and there is no extra workload for stack or local variable limit cal-
culation. Thus, a new file safeIntegralArithmetic.java was created, in which
methods for safe integral arithmetic operations are defined. For each kind of operation,
two methods with different argument types are created (i.e., one for int operands and
one for longs). Furthermore, methods named checked() and unchecked()}—equivalent to

C#’s checked and unchecked modes—are provided in the file. For example,
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public int incCint i) {
int k;
try { .
k = checked (i+1) ;. //4
} catch(ArithmeticException e) {
e.pr1ntStackTrace(§;

return k;

}

at line 4, we use checked () to explicitly enable overflow-checking on expression i+1.

Figure 5-5 demonstrates the class diagram of the Expression hierarchy in MJC [Multi-
Java04]. In MJC, the class Phylum represents a node in the AST; class JPhylum means
a MJC node in the AST; class JExpression is the parent node of all kinds of expression
in MIJC; representations of all binary-operantor expressions are made with
JBinaryExpression or its subclasses. Two methods of interest are genCode, which
generates JVM bytecodes for the corresponding expression, and typecheck, in which
the implementation of safe math at static checking level is achieved. Most of the work of
implementing the redesign of MJC is contained in the method genCode; we provide de-

tails of the implementation in the next chapter.
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Figure 5-5 class diagram for safe arithmetic implementation

5.3 Implement support for safe arithmetic at the source code

level

Before implementing safe math at the bytecode level in MJC, DSRG member Frederic
Rioux had finished the work of supporting safe arithmetic in MJC at the source level. The

following is a summary of his main work in this area (as it related to the work discussed

in this thesis):
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¢ Added support for the command-line option -safemath (abbreviated -s).

e Modified java.JAddExpression’s constantFolding (): if the operand type is
an integral type (i.e., either int or long) and the arithmetic context is not
java_math then do safe_math computations.

o These same modifications were made to

" JDhivideExpression,
® JMinusExpression, and

® JMultExpression.

In the following chapter, we will present the implementation of safe arithmetic in MJC

and JML.
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6 Implementation of Safe Arithmetic in MJC
and JML

In this chapter, we describe the implementation of safe arithmetic in the MJC and JML

tools.

6.1 Multijava Compiler

In MJC, a new file safeIntegralArithmetic.java is created in which methods for
safe integral arithmetic operations are defined for all unsafe operators: binary +, -, * and
/, and unary -. For each operator, methods supporting operands of each of the two integral
types (i.e., int and long) are created. For example, the methods corresponding to the

addition operator are defined as:

public static final int add(int argl, int arg2) {
long result = (long) argl + (long) arg2;
if (result < Integer.MIN VALUE || result > Integer.MAX VALUE)
throw newArithException("int addition", argl, arg2);
return (int) result;

}
public static final long add(long argl, long arg2) {
long result = argl + arg2;
if ((argl > 0 && arg2 > 0 && result < Q)
Il (argl < 0 && arg2 < 0 && result >= 0))
throw newArithException("long addition”, argl, arg2);
return result;

}
Figure 6-1 add methods in safeIntegralArithmetic.java

To enforce safe arithmetic in MJC, bytecode that implement integral arithmetic opera-
tions are replaced with bytecode instructions that invoke the corresponding methods in
the class safeIntegralArithmetic. For example, the following JVM instructions are

employed to implement a Java addition operation in a Java class:

O0:iload_1
l:bipush 7
3:iadd

49



In safe math mode, this code is replaced with

0:iload_1
l:bipush 7 |
3:invokestatic #13; //Method org/multijava/mjc/Safelntegral Arithmetic.add:(II)I

6.2 JML Checker and Runtime Assertion Checker

Support for JMLb was added to the

e JML checker by Patrice Chalin and Frederic Rioux. This support consisted of the
necessary updates to the grammar of JML as well as added type checking.
¢ JML Runtime Assertion Checker (RAC) by Kui Dai. Dai added run-time checking

support for bigint math only (and not for safe math).

6.3 Test Cases
The implementation of support for safe math in MJC at the bytecode level is tested using

JUnit, a unit-testing tool.

6.3.1 JUnit

JUnit is a framework for writing unit-tests in Java. It was developed by Erich Gamma and
Kent Beck [JUnit]. It provides a simple way to test individual methods in a program.
With JUnit, writing a test case is as simple as writing a method. In test cases, a program-
mer just sets the expected results and execution route, and Junit sets the run-time context
and runs the test cases automatically. If the results match those expected then nothing

happens; otherwise, JUnit reports an error.

In JUnit, test cases can be integrated into test suites, and test suites can be organized hier-
archically. JUnit can be used to run regression tests for either the entire system or for

specific subsystems. This is useful in project development. We can write test cases for all
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core components of the project, and when a modification is made, we can run the test
cases and see results immediately: if no errors are shown, the modification (is likely to

have) had no negative effect on the existing system.

6.3.2 Test cases

The MJC and JML projects are covered by a large number of JUnit test cases. After a
modification is made to these projects, existing test cases are run again to ensure the new
modification does not break any existing functionality. In our implementation, we pro-
vide abundant test cases to ensure our new functionality works properly and does not

cause any negative effect on existing projects.

6.3.2.1 Test case: Java Math

In Figure 6-2, we present a sample JUnit test class illustrating how unsafe operations can

be tested with JUnit.
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//Test case for java math
package org.multijava.mjc.testcase.runtime;

import junit.framework.TestCase;
public class TestMath extends TestCase {

public void testAddByte () {

byte i = Byte.MAX VALUE;

assertEquals ((byte) (i+l), Byte.MIN VALUE); /710
}

// ... test for short,

public void testAddInt () {
int i = Integer.MAX VALUE;
assertEquals (i + 1, Integer.MIN VALUE); //17

}
..// test cases for Long,

..// test cases for other integral operations

public static void main(String{] args) ({
junit.textui.TestRunner.run(TestMath.class);

Figure 6-2 sample JUnit test class

The program provides test cases for integral addition operations in Java mode for the
types byte and int. Since the statement assertEquals(i+l, Integer .MIN VALUE
) is interpreted in Java mode, the expression Integer.MAX VALUE+1 should be equal
to the value Integer .MIN VALUE. Also, the structure of the program shows how JUnit
provides an easy and concise way to implement unit testing. If we want to implement
testing on the type long, we just need to add the following method to the class Test-
Math:

public void testAddLong() {
Tong i = Long.MAX_VALUE;
assertequals(i + 1, Long.MIN_VALUE);

The class in Figure 6-2 is compiled with MJC and is executed during the project build

procedure, i.e., with a make command.
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1. Test case: Java Safe Math
The program in Figure 6-3 implements safe math unit tests for types byte and int.
Since the program is compiled under safe math mode, it should be compiled with MJC in

safe math mode.

//testcase for safeMath
package org.multijava.mjc.testcase.runtime;

import junit.framework.TestCase;
public class TestSafeMath extends TestCase (|
public void testAddByte () {
byte i = Byte.MAX VALUE;
try({
assertEquals ({(byte) (i+l), Byte.MIN_ VALUE);
} catch(ArithmeticException e) {

fail():;
}

}
public void testAddInt () {
int 1 = Integer.MAX VALUE;
try {
assertEquals(i + 1, Integer.MIN VALUE);
fail();
} catch(ArithmeticException e) {
}
//.. testcases for short, long and other integral operations
protected void setUp() throws Exception {
super.setUp();// no setup needed in this test file.
public static void main(String[] args) {
junit.textui.TestRunner.run(TestSafeMath.class);
}

}
Figure 6-3 sample JUnit program for the types byte and int

We claim that in safe-math mode, an overflow exception must be checked, i.e. the catch
blocks should be entered after doing the addition operations Byte .MAX VALUE+1 and
Integer .MAX VALUE+1. If not, the method fai1() will be executed, which indicates
that a unit test has failed. The class will be compiled in safe math mode and is executed

during project rebuilding with a make command.
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6.3.2.2 Testcase: for the methods checked () and unchecked ()

The classes in Figure 6-4 and Figure 6-5 are used to conduct unit testing of method
checked () and unchecked () on the types byte, short, and int for the addition op-
erations. From these tests, we can see that the methods checked () and unchecked ()
provide finer control over the math mode used in an application, i.e., arithmetic modes
are only applicable to the expressions that are the actual parameters of the methods

checked () and unchecked () .
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//testcase for _checked method in SafeIntegralArithmetic
package org.multijava.mjc.testcase.runtime;

import junit.framework.TestCase;
public class TestChecked extends TestCase ({

public void testAddByte () {
byte i = Byte.MAX VALUE;
try{
assertEquals ( (byte)
org.multijava.mjc.SafelntegralArithmetic.checked(i+l), Byte.MIN_VALUE);
} catch(ArithmeticException e) {
fail ();
}
}

public void testAddShort() {
short i = Short.MAX VALUE;
try{
assertEquals ( (short)
org.multijava.mjc.SafelntegralArithmetic.checked(i+1l), Short.MIN_VALUE);
} catch(ArithmeticException e){
fail():
}
}

public void testAddInt (} {
int i = Integer.MAX VALUE;
try {
assertEquals (
org.multijava.mjc.SafelntegralArithmetic.checked(i+l), Integer.MIN_VALUE);
fail ();
} catch(ArithmeticException e){
}
}

//.. testcases for long and other integral operations

public static void main{String([] args) {
junit.textui.TestRunner.run(TestChecked.class);

}

Figure 6-4 sample JUnit program for checked

Figure 6-4 shows that safe math mode is applied to addition expressions by using the
static checked () method of class SafeIntegralArithmetic. For example, in
method testAddInt (), the expression i+1 (i.e., Integer .MAX VALUE+1) will throw

an overflow exception. If Integer.MAX VALUE+1 is interpreted in Java mode—and
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the expression therefore equal to Integer .MIN VALUE—then the method fail () will

be called and an error thrown.

//Test case for unchecked method in SafelntegralArithmetic
package org.multijava.mjc.testcase.runtime;

import junit.framework.TestCase;
public class TestUnchecked extends TestCase {
public void testAddByte() {
byte i = Byte.MAX VALUE;
assertEquals ( (byte)
org.multijava.mjc.SafelntegralArithmetic.unchecked(i+l), Byte.MIN VALUE);
}
public void testAddShort () {
short i = Short.MAX VALUE;
assertEquals ((short)

org.multijava.mjc.SafelntegralArithmetic.unchecked(i+1l), Short.MIN_VALUE);
}

public void testAddInt () {
int i = Integer.MAX VALUE;
assertEquals(org.multijava.mjc.SafelIntegralArithmetic.unchecked(i+l),

Integer .MIN VALUE

)i

//.. testcases for long and for other integral operations

public static void main(String{] args) {
junit.textui.TestRunner.run(TestUnchecked.class);

}

Figure 6-5 sample JUnit program for unchecked

Figure 6-5 gives an example of the application of the method unchecked (), in which
Java math mode is applied to addition expressions using the static checked () method
from class safeIntegralArithmetic. For example, in the method testAddInt (),
the expression 1+1 (i.e., Integer.MAX VALUE+1) should not throw an overflow excep-
tion. If the expression Integer .MAX VALUE+1 is interpreted in Java mode, the result
will be equal to Integer .MIN VALUE. Otherwise, if the expression is not equal to In-

teger .MIN_VALUE, an error will be thrown during the testing .

In the next chapter, we will employ three benchmarks to evaluate the new redesigned

MIC.
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7 Benchmarks

In this chapter we present some benchmarks used to evaluate the new version of MJC
that supports safe arithmetic. In general our approach has been to compile two versions
of a given benchmark, one with MJC and the other with MJC having the safe-math option

on (we call it SMJC for short).

7.1 Java Grande Benchmark

7.1.1 Introduction

Java Grande Benchmark is a suite of benchmark tests for measuring and comparing dif-
ferent Java execution environments. The benchmark applications uses large amounts of
CPU processing, I/O, network bandwidth, and memory. They include not only applica-
tions in science and engineering but also, for example, corporate databases and financial

simulations [JGrande].
The benchmark applications provide three different versions of test suites:

e sequential, suitable for single processor execution
¢ multi-threaded, suitable for parallel execution on shared memory multiprocessors

e MPJ, suitable for parallel execution on distributed memory multiprocessors

Our testing made use of the sequential benchmarks. The sequential benchmarks can be

divided into three areas

e Low-level operations (section 1), evaluating the performance of low-level operations
such as arithmetic operations, method calls, and casting.

o Kermels (section 2), measuring specific complex operations such as Heap Sorting,
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Fast Fourier Transform (FFT), Sparse Matrix multiplication.
e Large-scale applications (section 3), including applications that require significant

resources at runtime.

More information about each section can be found in Appendix A.

7.1.2 Evaluation process

In this section, we compare two versions of JGrande: one is JGrande compiled with MJC
and the other with SMJC (i.e., MJC with the safe-math option on). The evaluation proc-
ess has two phases. First, we obtain two versions of the JGrande bytecode by compiling
with the two compilers. Then we run a built-in tool called JGFNumber to generate per-

formance indexes for each section and for the overall package.

7.1.3 Results

The overall performance indices of the two versions of MJC are presented in Table 7-1.
The numbers represent the comprehensive index of processing performance on each sec-
tion. The greater the number is, the better performance the compiler has. Table 7-1 indi-
cates there is no big difference between MJC and SMJC. The result is: 0.6% increase in
sectionl, -1.8% decrease in section2, -0.9% decrease in section3 and overall -0.8% de-
crease. The reason is the class generated with SMJC implements bytecode safe math.
During execution of these classes, extra check for overflow exception cost extra time and

hence lowers the performance of SMJC.
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Compiler/run section 1 section 2 section 3

run 1 4.85 6.15 8.60

run 2 4.91 6.12 8.49

run 3 4.80 6.21 8.50

Mic run 4 4.78 6.25 8.53
run S 4.82 6.30 8.55

average 4.83 6.21 8.53

run 1 4.81 6.20 8.37

run 2 4.81 6.15 8.42

run 3 4.89 6.12 8.44

SMJC run 4 4.92 5.98 8.50
run 5§ 4.98 6.06 8.53

average 4.86 6.10 8.45

Table 7-1 MJC and SMJC Java Grande Benchmark results

7.2 ESC/Java2 as a Benchmark

ESC/Java2 is an Extended Static Checker for Java, i.e., a programming tool for finding
errors in Java programs by examining the source text [Cok+04]. In performing its verifi-
cation, ESC/Java2 checks code against specifications that are written in the Java Model-
ing Langauge (JML). ESC/Java2 is distributed as part of the ESCTools package which
consists of approximately 124 KLOC of code and it contains an extensive test suite. In
this section, we compare the run-time efficiency of two versions of ESC/Java2, one com-
piled with MJC and the other with SMJC. We ran the ESCTools complete test suite (via
make test) to check all of the test files in ESC/Java and recorded the time for each

ESC/Java tool.

Results are shown in Table 7-2. ESC/Java2 compiled with SMJC takes a little bit longer
time (3.5% increases) than the one compiled with MJC. Since there are not many arith-
metic operations within source code of ESC/Java2 and test codes, the cost of calling safe
math method in class SafeIntegeralArithmetic and doing safe math operations is

small.
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ESC/Java2 version Testing time (sec)
runl 1249.3
run 2 1227.3
. run 3 1250.3
MJC compiled ESC/Java2 —" 1291 7
run 5 1245.2
average 1238.8
runl 1275.3
run 2 1280.4
SMJC compiled run 3 1270.3
ESC/Java2 run 4 1295.9
run S 1289.2
average 1282.2

Table 7-2 Comparison of execution efficiency of
ESC/Java2 (MJC and SMJC compiled version)

7.3 MJC as a benchmark

We decided to use MJC as a benchmark itself. I.e., what we did was:

e As usual, created an MJC binary by using javac, the standard Sun Java compiler.
We call this version of MJC the Sun MJC. (Note: the Sun MJC is the version we
used in the previous section.)

e Next, a version of MJC was compiled with the Sun MJC. We will refer to this ver-
sion as MJC2.

¢ Finally, we compiled the MJC source using the Sun MJC but with safe math enabled.
We call this the SMJC2.

Then we compiled JGrande with MJC2 and SJIMJC2 and compare the time it takes for the

compilation. Table 7-3 presents the comparison of compilation time between MJC2 and

SMIJC2. The difference (only 0.4% increase) can be ignored, which means generating

bytecode of calling a method does not cost much more time than primitive arithmetic op-

erations in terms of JVM instructions using these two compilers.
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Run MJC2(s) | SMJC2(s)
1 5.975 6.054
2 5.969 5.991
3 5.984 6.005
4 5.971 5.976
S 5.992 5.991
average 5.978 6.003

Table 7-3 Compile times of Java Grande using MJC2 and SMJC2

We also conduct the same comparison towards ESC/Java2. Table 7-4 presents the result
of compilation time of ESC/Java2 using MJC2 and SMJC2. The result shows only 0.08%

increase in compilation time.

Run MJC2(s) | SMJC2(s)
1 8.160 8.146
2 8.162 8.171
3 8.159 8.224
4 8.131 8.148
5 8.205 8.159
average 8.163 8.170

Table 7-4 Compile times of ESC/Java2 using MJC2 and SMJC2

7.4 Comparison of bytecode size
We also collected metrics on bytecode size of all class files generated with MJC and

SMIJC in each above-mentioned benchmarks. Table 7-5 presents the result:

benchmark | MJC (bytes) SMJC (bytes) % (increase)
JGB 246639 248639 0.81%

ESC/Java2 683984 691157 1.05%
MJC 3246026 3270030 0.74%

Table 7-5 bytecode size of benchmarks using MJC and SMJC

The result shows only 0.81%, 1.05% and 0.74% increase in each benchmark respectively.

The reason is there is no big difference in bytecode size between JVM instructions of
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conducting primitive arithmetic operations and calling a safe math method in class

SafeIntegeralArithmetic.

7.5 Summary

Based on above-mentioned experiments, we can draw the conclusion:

Cost of generating bytecode for a Java file under different math modes: safe math
mode or Java math mode does not have great difference. The reason is: writing a
JVM instruction like iadd costs similar time as writing a JVM instruction like

invokevirtual to aclass file.

Cost of conducting safe math operations is a little bit larger than conducting java
math operations (on average, around 2% increase based on all conducted testing).
The reason is: compared with doing one JVM operation like iadd, doing safe
math operations require JVM to find the entrance address for class
SafeIntegeralArithmetic and execute extra operations to make judgment

on the result. Then it will cost more time.

For the most products that have no intensive application of arithmetic operations
like FFT, there are no significant performance differences between applying Java

math and safe math.

In terms of bytecode size, the bytecode generated from SMJC has similar size to
the bytecode from MJC since the size of JVM instructions between conducting
primitive arithmetic operations and calling corresponding methods in class

SafelntegeralArithmetic is almost the same.
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8 Non-null-by-default in JML: Tool Support for
an Empirical Study

8.1 Introduction

Chalin and Rioux recently hypothesized that by design, most declarations of reference
types in Java and JML are meant to be non-null [ChalinRioux05]. However, the default
in both Java and JML is to allow any reference to hold the value null; therefore, devel-
opers have to add JML non_null annotations to all declarations that are not to contain
null. In order to verify their hypothesis, Chalin and Rioux conducted an empirical study
of the actual number of declarations that are non-null, deriving nullity information from
the Java source and JML specifications. In support of this study, my contribution was the
creation of an enhancement to the JML checker that gathers statistics of nullity of decla-
rations. In the remainder of this thesis we will sometimes refer to this JML checker fea-

ture as the “non-null statistics tool”.

As shall be seen, determining if a declaration is meant to be non-null is much more in-
volved than it might at first appear. Hence, in the sections that follow we take the time to
describe the general rules that have been used for collecting nullity statistics in JML an-

notated Java files. This involves defining rules for three constructs:

¢ class fields,
¢ method parameters, and

e methods (having a non-void return type).

Some program samples are given to help illustrate the rules; the samples are excerpt from

an extensive suite of tests developed in conjunction with the non-null statistics feature.
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8.2 Nullity Statistics of Class Fields

Field declarations (static or non-static) are counted as non-null when they are either ex-
plicitly marked with the non_null annotation or constrained to not be null by means of
a class invariant (static or non-static, respectively). The following gives some exam-

ples of how to determine if a class field is to be considered non-null.

8.2.1 Explicit non_null modifier

public class FieldO2b { ] ]
public /*@non_null@*/ static Object so;
private /*@non_null1@*/ Object o;

NN
NN
[WE1, 8]

At lines 2 and 3, static and non-static fields are declared with an explicit

/*@non_null@*/, therefore, the fields so and o are counted as non-null.

8.2.2 Implicitly non-null

public class Field02d {
static Object so;
Obéect o; . .
//@ static invarijant so != null; //4
//@ invariant o != null; //5

At lines 4 and 5, static and non-static fields are declared to be non-null using an expres-

sion of the form “x '= null”.

public class Field03d {
static Object so;
Object o;’
) /*@ invariant so != null & o != null; @*/ //4

The static field so is constrained by a non-static invariant, so it cannot be counted as non-

null. Only the instance variable o should be considered as non-null.

64



/*@ wvismod behavior

requires P;

diverges T;

assignable SR;

ensures Q;

signals (Exception e) Ex;

(® (D (D (D (D (D

*

vismod T m(T1l pl, T2 p2, .., Tn pn);

Figure 8-1 Basic form of a JML method specification (main clauses).

8.3 Method Specifications, Core Syntax and Sugars
Before we describe how to determine nullity information for method parameters and
method return types, we begin by describing how JML method specifications can be de-

fined. The first thing that we note is that the grammar of JML is defined in two parts:

e there is a base (or core) subset of JML on which

e so-called syntactic sugars are defined.

Syntactic sugars (e.g., extended and nested specifications) simplify the writing of method
specifications in JML. In this section, we present the process for desugaring some syn-
tactic sugars that are involved in our non-null statistics analysis. Here only the parts of
specification desugaring methods that are related to non-null statistics are given. Readers

can obtain more details from [Cheon03].

8.3.1 The Basic (Core) Form of a JML Method Specification

The basic form of a JML method specification is illustrated in Figure 8-1—vismod is
one of the visibility modifiers, private, protected and public. Such a basic group-
ing of clauses (requires, assignable, ensures, etc.) is called a specification case.
In general, a method specification can have multiple specification cases separated by the

keyword also (as we shall describe at further length in the next section), but the basic
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requires PreCondl;

assignable Varl;

ensures PostCondl ;

signals (Exceptionl el ) Cl1;
also

requires PreCond2;

assignable Var2;

ensures PostCond2;

signals (Exception2 e2 ) C2;

(a) sugared

requires PreCondl || PreCond2;
assignable Varl , Var2;
ensures (\old(PreCondl ) ==> PostCondl )
&& (\old(PreCond2 ) ==> PostCond2 );
signals (Exceptionl el ) \old(PreCondl ) ==> PostCondl;
signals (Exception2 e2 ) \old(PreCond2 ) ==> PostCond2;

(b) desugared
Figure 8-2 desugaring specification cases combined with “also”

form of method specification has only one specification case. While the basic form is the
simplest, however, it can not effectively represent complicated method specifications,

€.8., that would naturally be captured by cases, as we clarify next.

8.3.2 Desugaring Specification cases (separated using also)

In JML, a method specification can be composed of one or more specification cases sepa-
rated using also as is illustrated in Figure 8-2(a). The specification cases can, but need
not, be disjoint. This kind of specification is desugared into a single method specification
case.

Figure 8-2 illustrates the desugaring of a method having two specification cases: the de-
sugared precondition is the disjunction of the preconditions of the specification cases; the
desugared postcondition is the conjunction of postconditions of specification cases, each
guarded with its corresponding precondition. Since all preconditions are evaluated at pre-

state, they are wrapped with \o1d ().
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//@ requires index > 0;
public Object getElement (Stack s, int index) throws EmptyException;
)

(a) sugared

/*@ public behavior
requires index > 0;
c diverges \not specified;
@ assignable \not specified;
Q ensures \not specified ;
c} y signals (Exceptionl) \not_specified;
@*
public Object getElement (Stack s, int index) throws EmptyException;
)

@

(b) desugared

Figure 8-3 Desugaring a lightweight specification (main clauses)

8.3.3 Desugaring Lightweight, Normal, and Exceptional Specifications
8.3.3.1 Lightweight

A lightweight method specification case is a method specification case in which

e does not start with a “behavior” keyword,;
¢ only selected clauses are written.
Lightweight specifications are desugared by adding clauses that are omitted each with the

value \not_specified. The resulting block of clauses is prefixed with

//@ vismod behavior

where vismod is the visibility of the method being specified. Figure 8-3 illustrates the

desugaring of a lightweight specification.
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8.3.3.2 normal_behavior

A method spec case that starts with

//@ vismod normal_behavior
is desugared to a vismod behavior spec case that has the following signals clause
added:

signals (Exception e) false

This clause indicates that no exceptions can be thrown by the method.

8.3.3.3 exceptional behavior

Similarly, a spec case that starts with

vismod exceptional_behavior

is desugared to a spec case that starts with vismod behavior and has the following

ensures clause inserted:

ensures false

/*@ public normal behavior

@ requires !empty(s);

@ ensures \result !=null;

@ also

@ public exceptional behavior

Q requires empty(s);

8 y signals_only EmptyStackException;
*

public Object getTop(Stack s) throws EmptyException;
)

(a) sugared

/*@ public behavior
requires !empty(s);
ensures \result !=null;
signals (Exception e) false;

also

public behavior
requires empty(s);
ensures false;
signals only EmptyStackException;

® @ (® (@ (D (D (B (D (D

*/

public Object getTop(Stack s) throws EmptyException;

(b) desugared

Figure 8-4 desugaring Normal and Exceptional Specification
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This clause indicates that the method cannot return normally. Figure 8-4 illustrates the

desugaring of a normal and exceptional specification cases.

8.3.4 Desugaring of Extended Specifications

In JML, a method’s specification can be inherited or refined. A subtype inherits all non-
private members from its supertypes as well as all non-private method specification. In
addition to method specification subtyping, JML’s refinement files can extend the corre-
sponding refined method specifications and have no visibility restrictions. For example,
the specification in file IntMathOps2.jml-refined (shipped with the standard distri-
bution of JML) inherits specifications with all four visibility levels (viz., private, pro-

tected, public, and default) from file IntMathOps2.java.

JML method specifications starting with the keyword also are referred to as extending
specifications. Such an annotation can only be applied to overriding or refining methods,
regardless of whether the overridden and refined methods have specification or not.
When gathering non-null statistics on a method’s extending specification, all of the speci-

fications inherited from its supertypes must be considered.

Figure 8-5 illustrates an example of specification inheritance and its desugaring result.
The inherited specification (class CHO1A) and extending specification (class CHO1AE)

are combined with “also”.
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public class CHOIA({
String str;

//@ public behavior

//@  requires 'hasElement(s) ;

//@  ensures \result !=null;

public Object getTop(object s){ .. }
}

public class CHO1AE extends CHO1lA {

/*@ also
@ public behavior
@ requires 'hasElement(s) and s.length() > 1;
@ ensures \result !=null;
@ ensures Q;
@ax/

public Object getTop(object s){ .. }
}

(a) sugared

public class CHOLAE extends CHO1A {
/*@ public behavior
@ requires !'hasElement(s) ;
@ ensures \result !=null;
@ also public behavior
@ requires 'hasElement(s) and s.length() > 1;
@ ensures \result !=null;
@ ensures Q;
@x/
public Object getTop(object s){ .. }
}

(b) desugared version of class CHO1AE

Figure 8-5 specification inheritance and its desugaring

8.3.5 Desugaring Nested specifications

It is easiest to explain what a nested specification cases are by providing an example,
hence see Figure 8-6. Nested specification cases are written inside “{|” and “|}” brackets.
Desugaring of nested specifications is handled by copying all of the clauses in the top

spec-header into each of the nested spec cases, as is illustrated in Figure 8-6.
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requires PreCond0 ;
{1
requires PreCondl ;
assignable varl ;
ensures PostCondl ;
signals (Exceptionl el ) C1 ;
also
requires PreCond2 ;
assignable Var?2 ;
ensures PostCond2 ;
signals (Exception2 e2 ) C2 ;
[}

(a) sugared

requires PreCond0 ;

requires PreCondl ;
assignable Varl ;

ensures PostCondl ;

signals (Exceptionl el ) Cl ;

also

requires PreCond0 ;

requires PreCond2 ;
assignable Var2 ;

ensures PostCond2 ;

signals (Exception2 e2 ) C2 ;

(b) desugared

Figure 8-6 desugaring nested method specification

8.3.6 Desugaring empty specifications

If a method not overriding an existing method (or a constructor) has an empty specifica-

tion, all specification clauses are implicitly taken to be \not specified. The meaning

of \not_specified may vary between different tools that use JML specifications. For

example, a static checker might treat a requires clause that is \not_specified as

true, while a verification tools may treat it as false. For the purpose of our nullity

processing, we treat \not_specified as true.

However, if a method whose specification is empty overrides another method, then its

specification should be considered to be the lightweight specification:
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also

requires false;

Such a specification case actually has no effect on the overall specification of overriding
methods—that is, it is a “unit” of also-joined specification cases. For example, the pre-

condition of a desugared specification is in the form

requires (pl) [ (p2) Il .. |1 Cpn)

where each Py (k=1..n) is the precondition from each specification case, then, e.g., if pl is

false, then p! can be ignored in this expression.

8.4 Nullity Statistics of Method Parameters
A method parameter is counted as non-null if all requires clauses the desugared
method specification constrain the parameter to be non-null; i.e. the parameter is defined

in one of following forms:

1. asingle assertion expression of the form
" parameter !=null,ornull != parameter,or
! (parameter == null), etc.
" parameter instanceof T,

* \nonnullelements (parameter) where parameter is of an array type.

2. asingle assertion expression consisting of the application of the conditional (&&) or

logical (&) conjunction, where one of the argument expressions is of the form listed in

().
3. asingle assertion expression is a conditional disjunction (| |) or logical (|) disjunction

where all of the argument expressions contain an expression of the form listed in (1).

Of course, a method parameter can be declared as explicit non-null with modifier

/*@non_null@*/
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Here are some examples written in the form of sugared specs (since this is the form most

familiar to JML developers).

pub11c ¢lass paramQlb %
string m(/*@non_nul1*/String s) { return s; }

Method parameter s should be counted as non_null since it is declared with an explicit
/*@non_null@*/ modifier.

public class paramQlc
@ requires s !=
String m(string s

{
n

) % réturn s; }
Method parameter s should be counted as non-null since it is constrained to be non-null
in a precondition clause with != null expression.

/*g*yub1ic model void m(int i, non_null Integer x){}

Model method (a “specification-only” method that can only be referred to within JML
specifications) parameter s should be counted as non-null since it is declared with ex-
plicit non_null modifier.

//@ requires x != null && o != null;
public void m(int i, object o0){}

Method parameter i and o should be counted as non-null since they are constrained to

be non-null in a precondition clause with a conjunction of two !=null expressions.

//@ requires x_ != null él o !=null;
public void m(int i, /*@non_nul1@*/ Integer x, Object 0){}

Method parameter i and o should not be counted as non-null since they are specified in a

precondition clause with a disjunction of two not equal to null expressions.
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public class CF_HP_b {
requires o != null;
public void m(int i, Integer X, /*@ non_null @*/ Object o0){}
public class CF_HC_pb_b extends CF_HP_b {
also

//@ requires o != null;
publiic void m(int 1, Integer X, /*@ non_null @*/ Object o){}

}

After desugaring, the method specification of m () in class CF_HC pb_ b can be written
as:

requires o!=null || o!=null;

which always constrains o to be not equal to null. Therefore, o should be counted as non-
null.

public class CF_HC_pb_e extends CF_HP_e {

//@ requires o !=_null I{ X t=null;
//@ ensures \resu1t I=nuil;
public ob]ect)m(1nt 1, Integer X, Object 0){

1f ( t=null
per(i 3
e1se 1f (x‘=n 11
return x;
}
public class CF_HP_e {
@ also

//@ requires o != null;
//@_  ensures \resu1t I=null;
public Object m(int i, Integer x, /*@ non_null @%/ Object o){return o;}

After desugaring, the method specification of method m () in class CF_HC_pb_e can be

written as:
//@ requires (o != null X !=nu 11) | (o !'= null);
//@ engures \g T1d(o != nu{{ éé x !=nul {) )i
//@ \result !=null \old(o != nu11)—> \result {=null;

In the desugared precondition clause, o is not always required to be not equal to null.

Therefore, it should not be counted as non-null.
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8.5 Nullity Statistics of Method Return Types

A method’s return type is counted as non-null if all ensures clauses constrain \result
to not be equal to null. That is, its return type is counted as non-null if after desugaring
of its specification, all postconditions have one of the following forms:

1. a single assertion expression is of one of the following forms:
* o != null,reference o is not equal to null
" o instanceof C,reference o is an instance of class C, which states ¢ is not
equal to null
» \fresh (o), reference o is to a new object (this can be found only in an
ensures clause)
* \nonnullelements (a), for an array reference a
2. asingle assertion expression is a && or & (i.e., a conditional or logical conjunction)
expression that contains \result != null;
3. asingle postcondition statementisa | | or | (i.e., a conditional or logical disjunction)
expression that contains \result != null in both left- and right-hand side expres-
sions.

Also, a method’s return type can be inferred to be non-null when its declaration explicitly
contains the /*@non_null@*/ modifier.
Some examples follow.

public class_MethodOlb {
} /*@non_null@*/ string m1() { return ""; } //2

Method m1 () should be counted as non-null since it is declared with an explicit non-null
modifier.

public class MethodQlc {
//@ ensures }resu]t = null;

} string m2(Q) return ""; }
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Method m2 () should be counted as non-null since it is constrained to be non-null in a

postcondition clause with the single expression \result != null.
public class CHPla §
public string m3() { return ""; }
public class CHOld extends CHPla {
public /*@non_null@*/ string m3() { return ""; }
public class cHO01ldS1l_extends CHOld {
public /*@non_null@*/ string m3() { return ""; }

The method specification of m3 () in class CHO1dS1 can be desugared to:

requires \not_specified
also

ensures \result != null;
also
ensures \result != null;

Tthe above specification can be further desugared to

requires \not_specified || \not_specified not_specified;
engures \o1d(Yngt_s ecifled) =>Yngt_s eci#leé && P
\o]dg\not_spec1f1ed§=>\ result != pul
\old(\not_specified)=>result != null;

Therefore, the method m3 () in class CH01d51 should not be counted as non-null.

public class CHOlk_e extends CHO1lk {
//@ requires s!=null;
//@ ensures \result I=null && str!=null;
pub1%c String m(string s) {
str="";

9y
return s+str;

}
public class CHOlK {
String str;
//@ also
//@  ensures \result !=null;
pub1%c string m(string s){
str= ;
return s+str;
}

After desugaring, the method specification of m () in class CHO1K e can be written as
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//@ requires s'-nu11 I} \not_specified;

//@ ensures \old(s != null)_=>

//a (\resu1t I= null && str_i= null)

//@ \o1d(\not specified) ->\resu1t I=null;

Regardless of the precondition that holds, the m’s return type is constraint to be not equal
to null; therefore, the return type of method m () in class CHO1X_e should be counted as

non-null.
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9 Non-null Statistics Feature: Implementation
and Results

The non-null statistics tool looks up existing specifications in a file and gives counts of

non-null annotated references that occur in:

¢ normal, ghost and model class fields,
¢ normal and model method return references,

¢ normal and model method parameter references.

In addition, the tool provides separate counts for references that are explicitly declared
with a /*@non_nul1@*/ modifier and references that are implicitly (via assertion ex-

pressions as explained in the previous section).

9.1 Some Important Methods in the Implementation

Some of the more interesting methods in the implementation of the non-null statistics tool

are discussed in the following sections.

9.1.1 Method CheckExpressions

The analysis of expressions such as the not-equal-to expression (!=) or the conditional
and expression (& &) plays an important role in determining implicit non-null declarations.
In the implementation, the handling of expressions ultimately ends by processing one of
following expressions: JInstanceofExpression, JmlEqualityExpression,
JmlFreshExpression, or JmlNonNullElementsExpression. The method
checkExpression () recursively parses an expression until it reaches a basic expres-

sion and transfers the handling of parsed expressions to corresponding processing meth-
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ods. For example, expression a != null && b = null will be considered as a JML
conditional-conjunction expression and parsed to two JML equality expressions: a !=
null and b =null, then both expressions will be separately processed with a method

that handles an equality expression. Figure 9-1 shows the hierarchy of JML expression

classes that are involved in our expression processing

JmiPredicate JmiSpecExp L JmiNonNUIIElementExp

JBooleanLiteral | c<oxtends>>| JUitaral  Leexionds>y JEXporssion k<axtancs>>JMIExprassion ke<extonds>HJmiSpecExressionWrapper
< <<gxiends>> JAN <<gxtends>>
<<axtends>
H <Eextends>>
I |
JParenthesedExpreesion JUnaryExpression JBinaryExpression JmiFreshExprossion JmiResulExprossion
<<ax > A A
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JThisExpressior I fExpross JBinaryArithmeticExpression JConditionalAndExpression | | JEqualityExpression
«evas» «eme»
JBitwiseExpression JmiEqualityExpression

Figure 9-1 Class diagram of method CheckExpression

9.1.2 Method CheckSpecification
The basic idea of processing a method specification is to simulate its desugaring. There-
fore, a recursive traversal of the inheritance tree is required. In the implementation, an

array is employed to store the specification of each class node of the inheritance tree.
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Elements of the array are then parsed and analyzed. In the implementation, the specifica-
tion is divided into lightweight specifications and heavyweight specifications.

For lightweight specifications, the grammar is:
lightweight-spec-case .: = generic-spec-case
generic-spec-case ::= [ spec-var-decls | spec-header [ generic-spec-body ]
| [ spec-var-decls ] generic-spec-body
spec-header ::= requires-clause [ requires-clause | . . .
generic-spec-body ::= simple-spec-body | '{|’ generic-spec-case-seq |}’
generic-spec-case-seq ::= generic-spec-case [ also generic-spec-case | . . .
simple-spec-body ::= simple-spec-body-clause [ simple-spec-body-clause | . . .
simple-spec-body-clause ::= diverges-clause | assignable-clause | when-clause
| working-space-clause | duration-clause | ensures-clause
| signals-only-clause | signals-clause

The grammar for heavyweight specifications is
heavyweight-spec-case ::= behavior-spec-case | exceptional-behavior-spec-case
| normal-behavior-spec-case
behavior-spec-case ::= [ privacy ] [ code ] behavior-keyword generic-spec-case
behavior-keyword ::= behavior | behavior
normal-behavior-spec-case ::= [ privacy ]| normal-behavior-keyword normal-spec-case
normal-behavior-keyword ::= normal_behavior | normal_behavior
normal-spec-case ::= generic-spec-case
exceptional-behavior-spec-case ::= [ privacy ] exceptional-behavior-keyword
exceptional-spec-case | exceptional_behavior
exceptional-spec-case ::= generic-spec-case

The grammar for top-level method specifications is
method-specification ::= non-extending-specification | extending-specification

non-extending-specification ::= spec-case-seq
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spec-case-seq ::= spec-case [ also spec-case | . . .
spec-case ;.= lightweight-spec-case | heavyweight-spec-case
extending-specification ::= also spec-case-seq

From the above grammar definitions, the handling of specifications entails handling spec
case sequences, specification bodies, and specification body clauses. Therefore, in the
implementation, four methods (viz., checkSpecification(), checkSpecCase (),
checkSpec-Body (), and checkSpecBodyClause ()) are handle specification, spec
case sequences, spec body and spec body clauses, respectively.

In order to exert as little impact on current JML projects as possible, a new file called
NonNullStatistics.java was created, in which most of processing work is done.
Figure 9-2 gives the class diagram of the JMLNode class hierarchy illustrating all node

types that need to be handled by checkSpecification ().
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Figure 9-2 JMLNode class hierarchy.

9.2 Results

Chalin and Rioux made use of the nullity statistics features of the JML checker. They
included in their study a random sampling of 161 KLOC out of a total 457 KLOC. They
were able to demonstrate (with 95% certainty) that over 60% of declarations of reference

types are meant to be non-null.
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10 Conclusions and Future Work

The main contribution of this thesis is the implementation of bytecode level support for
safe-math arithmetic in MJC. The work is based on a work by Chalin [Chalin03]. To im-
plement this in MJC, cases in which incorrect integral arithmetic operations occurred are

found, and a new class is generated based on these cases.

Another contribution of this thesis is the implement of a non-null statistics gathering tool
in JML. Setting reference types as non-null by default in JML is proposed by Chalin, an
idea which was motivated by the fact that the majority of reference types are intended to
be non-null in Java. The implementation of this tool is based on the simulation of the de-
sugaring process of different kinds of method specifications in JML and its corresponding

non-null judgement rules.

Although the work to define all reference types as non-null by default has been imple-
mented in the JML checker and RAC, it is based on detecting violations at runtime. Fu-
ture work should consider extending the JML checker to use non-null types, guided by
the work of Féhndrich and Leino [Fahndrich03]. In addition, the work presented here on
safe-math arithmetic could be incorporated into ESC/Java2 to allow potential coding er-

rors to be detected sooner.
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Appendix A - Java Grande Benchmark

Low-level operations:

Benchmarks in this section are designed to measure the performance of the Java compil-
ers towards low-level operations. These benchmarks are designed to run for a fixed pe-
riod of time and the number of executed operations during this time is recorded. The per-
formance reported as operations/second.

Arithmetic

This benchmark measures the performance of arithmetic operations including addition,
multiplication, and division on the primitive data types int, long, float, and double. The
performance index is the number of operations performed per second.

Assignment

This benchmark measures the cost of assignment to different types of variables, which
can be scalars or array elements, local variables, instance variables, or class variables.
The performance index is the number of assignments performed per second.

Casting

This benchmark measures the performance of casting between different primitive types
including int&float, int&>double , long<>float, and long<>double. The performance in-
dex is the number of casts performed per second. Other type pairs could also be tested
(e.g., byteint), but sometimes the measured results are meaningless due to the swiftness
of the casting.

Create
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This benchmark tests the performance of creating objects and arrays. Arrays are created
of types int, long, float, and Object, and in different sizes. Both complex and simple ob-
jects, with and without constructors, are created during the test. The performance index is
the number of arrays or objects created per second.

Loop

This benchmark determines the performance of looping constructs, which include a for
loop, a reversed for loop, and a while loop. The performance index is the number of itera-
tions executed per second

Math

This benchmark measures the performance of math methods from java.lang.Math. The
performance index is the number of operations performed per second. For some methods
(e.g., exp, log, the inverse trig functions), the cost also includes the cost of any arithme-
tic operations (addition or multiplication) that are necessary to provide a stable iteration
without overflow. In addition, if the cost of these additional operations is significant, the
result can be corrected by using the relevant result from the Arithmetic benchmark.
Method

This benchmark measures the cost of method calling. Methods can be instance, final in-
stance, or class methods, and the calling can be made from within the same or different
classes. The performance index is the number of methods call per second.

Note: since both final instance and class methods can be statically linked, a high per-
formance figure for these tests generally indicates that the compiler successfully inlined
these methods[JGrande].

Serial
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This benchmark measures the performance of object serialization. Both the writing and
reading of objects to and from a file are involved. The types of tested objects are arrays,
vectors, linked lists, and binary-trees. The performance index is the number of bytes per
second converted.

Exception

This benchmark measures the performance of exception handling. The cost of creating,
throwing, and catching exceptions, which can occur within a method or further down the
inheritance tree, is measured. The performance index is the number of exceptions handled

per second.

Kernels

Benchmarks in this section are some applications which conduct numerically intensive
tests. For each benchmark, small (size A), medium (size B), and large (size C) versions
are supplied. The performance index is the number of operations executed per second.
Series

This benchmark computes the first N Fourier coefficients of the function £ (x) =

(x+1) ~x over the interval [0,2]. Performance units are coefficients calculated per sec-
ond. This benchmark heavily employs transcendental and trigonometric functions. Since
there is little array activity involved in the test, it should not be dependent on cache or

memory architecture.

Size |N

A 10,000

B |100,000
C 11,000,000
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LUFact

This benchmark solves an N x N linear system using LU factorization of linear equations
with one right-hand side, Ax=b. The matrix is generated randomly and the right-hand side
is constructed so that the solution has all components equal to one. The method of solu-
tion is based on a Gaussian elimination with partial pivoting [Linpack]. Performance

units are Mflops/s (Millions of floating point operations per second)

Size| N
A 500
B (1,000
C {2,000

SOR (Jacobi Successive Over-Relaxation)

Jacobi Successive Over-Relaxation of an N x N grid exercises typical access patterns in
finite difference applications, for example, solving Laplace’s equation in 2D with
Drichlet boundary conditions. The algorithm exercises basic “grid averaging” memory
patterns, where each A (i, j) is assigned an average weighting of its four nearest
neighbors.

The inner loops of the kernel look like

for (int i=1; 1 < Mml; i++)

double[] Gi = G[i];
double[] Giml =G 1_—1];
doublel] Gipl = G{i+1];

for (int_j=1; j < Nmlj j++) e el e
Gi[j] .= omega_over_four * (G1m1[3{_+ Gipl[jl] + Gi{j-1]
+ G11j+1]) + one_minus_omega * G1[lj];
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Some hand optimizing is done by aliasing the rows of G[] [] to streamline the array ac-
cesses in the update expression. The data size for the LARGE version of the benchmark
uses a 1,000x1,000 grid.

The SOR benchmark performs 100 iterations of successive over-relaxation on an NxN

grid. The performance is measured in iterations per second.

Size| N

A ]1000
B {1500
C 2000

HeapSort

This benchmark measures memory moving performance by sorting an array of integers
with size N using a heap-sort algorithm. The algorithm can test non-sequential perform-
ance of cache, with added burden that moves are byte-wide and can occur at odd address
boundaries. This may exert extra weight on cell-based processors, in which additional
shift operations are performed to deal with bytes. Performance is measured in units of

items per second.

Size N

A 1,000,000
B 5,000,000
L C 125,000,000

Crypt
This benchmark performs IDEA (International Data Encryption Algorithm) encryption
and decryption on an array of bytes with size N. Performance is measured in kilobytes

per second.
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Size N

A 13,000,000
B 20,000,000
C 150,000,000

FFT

This performs a one-dimensional, forward transform of N complex numbers. This kernel
exercises complex arithmetic, shuffling, non-constant memory references, and trigono-

metric functions[SciMark].

Size N

A 12097152
B |8388608
C 16777216

Sparse Matrix Multiplication
This benchmark uses sparse matrices stored in compressed-row format with a prescribed
sparsity structure. For example, a 1,000 x 1,000 sparse matrix with 5,000 nonzero ele-

ments has following storage pattern,
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in which each row has approximately 5 nonzero elements and evenly distributes between
the first column and the diagonal column. This benchmark exercises indirection address-
ing and non-regular memory references [SciMark]. An N x N sparse matrix is used for

200 iterations. Performance is measured in iterations per second.

Size N

A 50000
B |100000
C 500000

Large-scale applications

The benchmarks are intended to be large-size applications that are suitably modified by
eliminating any I/O and graphical components. For each benchmark, small (size A) and
large (size B) versions are supplied. The performance is measured in operations per sec-
ond.

Search

The search benchmark solves a game of connect-4 on a 6 x 7 board using an alpha-beta
pruning technique. The problem size is determined by the initial position from which the
game in analyzed. The number of positions evaluated (N) is recorded, and the perform-

ance reported in units of positions per second (Memory and integer intensive).

Size N
A [7321073
B 34517760
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