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ABSTRACT

Yu Feng Wang, Ph.D.
Concordia University, 2006

Hysteresis widely exists in smart materials such as shape memory alloys (SMAs),
piezoelectrics, magnetorheological (MR) fluids, electrorheological (ER) fluids and so on.
It severely affects the applicability of such materials in actuators and sensors. In this
thesis, problems of modeling and control of systems with hysteretic SMAs actuators are
studied. The approaches are also applicable to control of a wide class of smart actuators.

Hysteresis exhibited by SMAs actuators is rate-independent when the input frequency
is low, and can be modeled by a classical Preisach model or a KP model. The classical
Preisach hysteresis model is a foundation of other hysteresis models. In this thesis,
traditional methods are explained in advance to identify and implement the classical
Preisach model. Due to the extremely large amount of computation involved in the
methods, a new form of the Preisach model, linearly parameterized Preisach model, is
introduced, and then an effective method to implement the model is presented. The KP
model is a more effective operator to describe the Preisach class of hysteresis than the
Preisach model. The relationship between the two models is revealed to verify the
effectiveness of the KP model. Also, a linearly parameterized KP model is proposed. For
both of the Preisach hysteresis model and the KP hysteresis model, algorithms of inverse
hysteresis operators are developed, and simulations for modeling and inverse
compensation are conducted.

Since the Preisach model and the KP model can only describe hysteresis which has
saturation states and reverse curves with zero initial slopes, a novel hysteresis model is

defined to overcome these shortcomings. The newly defined hysteresis model is a low
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dimensional hysteresis model and can describe hysteresis which has revertible linear
parts and reverse curves with non-zero initial slopes.

The problems for controlling systems with input hysteresis have been pursued along
three different paths: inverse compensation, gradient adaptive control and robust adaptive
control for linear and nonlinear systems.

Control schemes of open-loop inverse compensation and gradient adaptive inverse
compensation for the Preisach hysteresis model are explored to eliminate the effects of
the hysteresis when the output of the hysteretic actuator is measurable.

Usually hysteresis of smart actuator in systems is not exactly known, but it can be
approximately modeled via the linearly parameterized KP model. For a known linear
system preceded by an unknown actuator hysteresis, a model reference control scheme
combining with an adaptive inverse compensation is designed for tracking control of the
systems. While an unknown linear system preceded by an unknown actuator hysteresis, a
model reference adaptive control scheme together with an adaptive inverse compensation
is developed for tracking control of the system. Simulations for both cases have been
performed to illustrate the control methods.

Finally, when hysteresis of smart actuator in systems has a non-measurable output and
is modeled via the KP model or the newly defined model, a novel robust adaptive control
configuration is presented for tracking control of systems. The analysis for the stability
and the convergence of the control systems is conducted. Simulations are performed to

verify the effectiveness of the novel control method.
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CHAPTER 1

BACKGROUND

1.1 Hysteresis in Shape Memory Alloys

The phenomenon of hysteresis have been found and have been noticed in scientific and
engineering applications for many decades, and the study to eliminate and/or to control
hysteresis effects have been attracting more research studies than before. Hysteresis
occurs in many different areas of science such as plasticity, ferromagnetism,
ferroelectricity, shape memory alloys, superconductivity, porous media filtration,
semiconductors and so on [13, 14]. Typically smart materials, such as magnetostrictives,
piezoelectrics, electroactive polymers (EAPs), shape memory alloys (SMAs),
electrorheological (ER) fluids and magnetorheological (MR) fluids, exhibit significant
hysteresis [10]. Hysteresis is a form of nonlinearity that contains memory, thus there may
be multiple possible outputs for a given input. Unmodeled hysteresis in systems can lead
to inaccuracy in open-loop control, and reduce the effectiveness of feedback control for
the systems.

Actuators made of the smart materials SMAs have been receiving tremendous interest
and have broad applications in the past decade because they have some excellent
properties such as very good mechanical power-to-mass ratio, noiseless and anticorrosion,
and can be conventionally built into structures with the ability to respond to
environmental changes to achieve desired goals. Hysteresis existing in SMAs, however,
makes the effective use of the SMA actuators quite challenging.

SMAs are materials capable of returning to some previously defined shape or size

when they are subject to the appropriate thermal procedure and external force. This



phenomenon is referred to as the Shape Memory Effect (SME). It occurs due to a
temperature and stress dependent shift in the material’s crystalline structure between two
different phases called martensite and austenite [1, 19, 36]. Martensite, the low
temperature phase, is relatively soft; whereas austenite, the high temperature phase, is
relatively hard. The change in SMA’s crystalline structure is not a thermodynamically
reversible process. In other words, there is energy dissipation due to internal friction and

creation of structural defects.
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Fig.1.1 Phase transformation of the SMA wire [1]

The hysteresis in SMAs is caused by their phase transformation, in which SMAs
convert thermal energy to mechanical work by the change of the lattice structure. The
phase transformations of an SMA wire actuator are illustrated in Fig.1.1. Assume that the
SMA wire is initially at a low temperature and is in its martensite state (point A in
Fig.1.1). Upon heating, the SMA wire will experience a phase transformation to the cubic
stronger austenite and the wire will contract in its length (point B in Fig.1.1). Upon
cooling, the SMA wire will transfer from austenite to the weaker martensite phase (point

Cin Fig.1.1). At this stage, the crystal structure of the SMA is in a twinned parallelogram



form. In general, its strength in terms of Young’s modulus in martensite is three to six
times less than its strength in austenite. When an external tension force is applied to the
wire, the wire can be easily stretched (point D in Fig.1.1). During its phase
transformation, an SMA generates an extremely large force when encountering
resistances or experiences a significant change in dimensions when unrestricted. The

transformation exhibits a hysteretic effect (see Fig.1.2), in which the transformations on

heating and on cooling do not overlap.
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Fig.1.2 The hysteresis loop associated with SMAs [1].

The hysteretic effect, shown in Fig.1.2, adversely affects precise control of SMA
actuators and may even cause the system to experience instability. Thus, the hysteresis
behavior makes it challenging to develop model and control schemes for SMA actuators,
and the compensation of the hysteresis is a major concern during the design of control
systems for SMA actuators. |
1.2 Fundamentals of Hysteresis
Hysteresis nonlinearities existing in different areas of science are defined by different
meanings. To avoid confusion and ambiguity, a mathematical description of scalar

hysteresis is abstracted as below.
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Fig. 1.3 Hysteresis Transducer

Consider a transducer (see Fig.1.3) that can be characterized by an input v(¢) and an
output u(¢) . This transducer is called a hysteresis transducer H if its input-output
relationship is a multibranch nonlinearity (see Fig.1.4) for which branch-to-branch
transitions occur after input extremes. Particularly, loops are created when an input is
varied back and forth between two consecutive extremes (see Fig.1.4a). This is not the
essence of hysteresis; however, it is a particular case of “branching,” which occurs at the
reversals of an input (see Fig.1.4b). Generally, hysteresis is a multi-branching
nonlinearity that occurs when the output of a system lags behind the input.

Output 4 Output

/ Inp{;t Inpu't

a) Looping b) Branching

Fig.1.4 Looping and branching in hysteresis
Definition of hysteresis [14]: At any time ¢, the output u(¢) of a system depends not
only on its inputv(¢), but also on its previous trajectory (memory effect). The input—
output relationship is invariant with respect to changes in the time scale (rate
independence). When a system has memory effect and is rate independent, it is said to
have hysteresis.

Rate independent implies the input-output relationship is invariant with respect to



changes in time scale (see Fig.1.5).
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Fig.1.5 Rate independent property of hysteresis
Memory effect implies that the output at a moment of time cannot be determined
simply by knowing the input at the moment, the history of the input must also be known.

Memory effect in hysteresis is a kind of “non-local memory,” which means that the

future output values of the hysteresis u(¢), V¢ 2 ¢,, depend not only on u(z,) but also on
past extremes of the input v(¢) [18]. The special case of “local memory” implies that the
value of the output u(¢,) at some instant and the value of the input v(¢) at all subsequent
instants in time ¢ > ¢, uniquely determine the future value of u(¢).

Classifications of hysteresis: Hysteresis nonlinearities observed in real systems can be
classified into the four following cases:
» Nonsaturated and rate independent hysteresis (e.g., ceramic actuators [22]);
 Saturated and rate independent hysteresis; (e.g., SMA actuators [24]).
o Nonsaturated and rate dependent hysteresis [23];
o Saturated and rate dependent hysteresis.

The class of saturated rate independent hysteresis is the main concern of study in this

dissertation. Before detail discussions, some notations concerning saturated rate



independent hysteresis are defined. In a saturated hysteresis as shown in Fig.1.6, when
the input decreases to v~ , it is said that the system has reached its negative saturation
state. This occurs when further decreasing in the input yields little or no change in the
output. Similarly, it is said that the system has reached its positive saturation state as the
input increases to v'. When the input increases from v~ tov*, the input-output pair
(v,u) follows path 1, which is called the limiting ascending branch of the hysteresis
loop because, in general, (v,u) will never be below this branch of the loop. Similarly,
path 2 is called the limiting descending branch. The loop constructed by path 1 and 2 is
the major loop. Path 3 and path 4, called reversal curves, occur when the input reverses

its direction at a point other than v~ or v*. The loop closed by paths 3 and 4 is called a

minor loop.

Fig.1.6 Hysteresis graph
1.3 Hysteresis Models
Hysteresis have been found in many physical systems and a number of models have been
introduced to describe the phenomenon, including the Duhem model, the Classical
Preisach model, the Prandtl-Ishlinskii model, Krasnosel’skii-Pokrovskii (PK) model , and
the Stoner-Wohlfarth model, etc. A description of these models can be found in various

monographs of Brokate and Sprekels [15], Della Torre [16], Mayergoyz [13] ,Stoner and



Wohlfarth [38], and Visintin [14, 37].

The Duhem model describes hysteresis using two systems of differentiable curves in
the input-output plane, one for increasing input and the other for decreasing input
respectively [14]. This formulation can be easily modified to confine input-output
relationship to a loop-like set. However, it can not precisely describe some complex
hysteresis, for example, some hysteresis with saturation states.

The Preisach model was originally introduced by Ferenc Preisach in 1935 [39] as a
phenomenal model for hysteresis in ferromagnetic materials. Until the 1970’s, a rigorous
mathematical treatment had been made by a group of Russian mathematicians from the
phenomenological character of the Preisach’s model [12]. At present, this model is
widely utilized in piezoelectric, magnetostrictive and shape memory alloy actuators. This
model describes hysteresis via a linear combination of elementary operators. It is a
discontinuous model because its elementary operators are some discontinuous “relays”.
This model can precisely model a class of hysteresis and reveals many properties of
hysteresis. Also, it is the basis of some hysteresis models.

The Prandtl-Ishlinskii model and the Krasnosel’skii-Pokrovskii (PK) model [12] are
continuous models because they employ continuous elementary operators such as so-
called “play” and “stop”. They are more effective models than the Preisach model.

There are many literatures on hysteresis modeling, especially for ferromagnetic
materials, but a relatively small portion of them is related to other smart materials, for
example, shape memory alloys. Furthermore, the models are usually developed for
physical based simulation rather than for stability analysis and control design.

A fundamental idea in dealing with hysteresis is to formulate the mathematical model



of hysteresis and use inverse compensation to cancel the hysteretic effect. This idea can
be found in [6~11]. Also, there have been a few monographs devoted to the modeling of
hysteresis and study of dynamical systems with hysteresis [12~16].

1.4 Control Strategies for Systems with Hysteresis

Tracking control of smart material based actuators is essential in many applications such
as vibration controls [2, 3] and robotic applications [4]. Considering the fact that a
position sensor is a major cost of a smart actuator system, open-loop control without a
position sensor is a preferred approach to reduce the total cost. However, due to the
hysteresis, an inherent nonlinear phenomenon associated with smart materials, tracking
control of smart actuators is a challenging task [5]. This has motivated researchers to the
study of tracking control of smart actuators with hysteresis compensation.

Cru’ z-Hemandez and Hayward [17] have discussed in their paper the use of phasers
for compensation of the hysteresis by shifting the phase of the periodic signal in a
piezoelectric actuator. Webb ef al.[18] have presented an adaptive hysteresis model for
on-line identification and closed-loop compensation. A neural network controller for
tracking control of the SMA wire actuator was introduced by Song et a/ [1]. Hughes and
Wen [20] implemented the Preisach Model in the control of a SMA wire actuator to
provide bending force to a flexible aluminum beam. Ge and Jouaneh [21] have used a
combination of feed-forward controller with a feedback loop (PID) to reduce hysteresis in
actuators represented by the Preisach model. Tao et al. [7, 29] have used adaptive
methods to control plants with hysteretic behavior. They have developed control
algorithms to reduce the effects of hysteresis nonlinearities. Other monographs [26,

30~35] also are devoted to control of hysteresis in smart materials.



1.5 Studies and Contribution in the Dissertation
In this dissertation methods for modeling hysteresis of shape memory alloy actuators and
control methodologies for systems preceded by the actuators will be studied.

To study the problem of modeling hysteresis in smart material based actuators, three
models will be adopted. The first model is the Classical Preisach model, which reveals
the properties of the hysteresis of smart actuators, and is the basis of other models to
describe the Preisach class of hysteresis. The second is the Krasnosel’skii-Pokrovskii (KP)
model, which governs the Preisach class of hysteresis with few elementary operators, and
is more suitable for real-time adaptive control. The third is a newly defined hysteresis
model, which improves the shortcomings of the Preisach model and the KP model, and is
more general and applicable for modeling hysteresis in smart materials than the Preisach
model and the KP model.

The problem of hysteresis control is pursued from three perspectives. The first is based
on the Preisach model and the theme is to develop accurate and fast inverse control
algorithms. The second perspective is optimal control based on the approximate inversion
of the KP model. The third is adaptive control through adopting a compensator from the
KP model and the newly defined hysteresis model.

The following outlines the contributions of this dissertation. First, this dissertation
develops a direct method to implement the Classical Preisach model. This method avoids
the time-consuming computation to find the memory interface which is mostly used by
existing literatures to model the Preisach class of hysteresis. Also, this method can be
applied to implement other models, particularly when a model employs few elements to

describe the hysteresis. Second, this dissertation reveals the relationship between the



Preisach model and the KP operator. This relationship proves that the KP model
possesses the same properties as the Preisach model, and guarantees suitable application
of the KP model in modeling the Preisach class of hysteresis. Third, by examining the
shortcomings of the Preisach model and the KP model, a new model is developed, which
can describe the reversible parts in real hysteresis after exceeding saturation states. Also,
this new model can express reversal branches with arbitrary initial slopes in hysteresis
loops; conversely, reversal branches modeled by the Preisach model and the KP model
feature zero-initial-slope. Finally, a novel robust adaptive control methodology, which is
based on a newly defined elementary compensator of the KP model rather than the
inverse KP model, has been established to reduce the hysteresis effect injecting into
systems and achieves the trajectory tracking goal of the systems.

The rest of the dissertation is organized as follows. Chapter 2 reviews the definition
and some key properties of the Preisach model. Aided by the key properties, simulations
for identification, implementation, and open-loop and closed-loop compensations through
the Preisach model inversion are conducted. Chapter 3 presents a direct method to
implement the Preisach model without adopting memory interface. Related simulations
for implementation and compensation are also carried out. This method saves
computation cost extremely, and is more suitable for real time control. Chapter 4 reviews
the definition of the KP model and defines the elementary compensator of the KP model.
It also reveals the relationship between the KP model and the Preisach model which in
turn guarantees the KP model has the same properties as the Preisach model. Simulations
for identification, implementation, and open-loop and closed-loop compensations through

the KP model inversion are conducted. Chapter 5 describes the adaptive inverse KP

10



model for the model reference control for linear systems with unknown actuator
hysteresis. Chapter 6 discusses adaptive inverse KP model for the model reference
adaptive control for linear systems with unknown input hysteresis. Chapter 7 designs
adaptive robust controller for nonlinear systems with unknown input hysteresis using a
compensator from the KP model. Related robust stability analysis for robust trajectory
tracking has been performed. Chapter 8 newly defines a hysteresis model in order to
overcome some shortcomings of the Preisach model and the KP model. Simulations are
also conducted to control systems with hysteresis through this modified model. Chapter 9

summarizes the dissertation.
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CHAPTER 2

MODELING AND COMPENSATION OF HYSTERESIS
BY THE CLASSICAL PREISACH MODEL

In this chapter, the classical Preisach model and its properties, and the method to
implement the Preisach model will be explained. In order to cancel hysteresis
nonlinearity, an inverse hysteresis model based on the Preisach model will be developed.
Also, some calculations and simulations will be performed to verify and to illustrate the
method and algorithm presented in this chapter.
2.1 Introduction to the Preisach Operator
2.1.1 Definition of the Preisach Model
The classical Preisach model was ﬁrst introduced by F. Preisach in his landmark paper
[39] published in 1935. Because the Preisach’s approach was purely intuitive, which was
based on some hypotheses concerning the physical mechanisms of magnetization, it was
first regarded as a physical model of hysteresis. The insight of the model was revealed
mathematically for better understanding by the Russian mathematician M. Krasnoselskii
[12] and his colleagues in the 1970s when they undertook a comprehensive mathematic
study of systems with hysteresis. After that, it was gradually realized that the Preisach
model contained a new general mathematical idea, and was abstracted from its physical
connotation to be expressed in a purely mathematical form.

The purely mathematical description of the Preisach model can be considered as an

operator which integrates infinite weighted elementary hysteresis operators Fop OVeEr a 2-

dimensional region. Namely, it can be expressed by

u@)=HO=  [[#(e, B)7,[W(8))dedp . @1

vi2a2fzv”
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Fig.2.1 An elementary operator (a relay) of Preisach model

Here H(:) is an operator to transform an input v(f) into a hysteresis output u(f) ;
H(e, B)is a weighting function (densities) that is often referred as the Preisach function.
Each of the elementary operators 74p[v(®)] can be represented by a relay on the input-
output diagram (see Fig.2.1). Its parameters a and £ correspond to “on” and “off’

switching thresholds of input applied on the relay, respectively. From the physical point

of view, it is always assumed that « is larger than or equal to 8, ie., a> 3, which
defines a 2-dimensional region of input. Different sets of parameters (a, f) determine
different relays. It is assumed that each relay has only two saturated output values
as 7,,[v()] = +1 and 7,,[v(f)]=-1. As the input v(f) monotonically increases from a
value less than its lower threshold £ towards its upper threshold «r, the output of the
relay remains in its negative saturation state ( Popv(®)]=—1). If the input v(¢) of the relay
continues to increase, the output of the relay switches to its positive saturation state
(Zoplv(®)]1=+1) when v(f)=a, and remains in this state while v(t)>a . Thus, the
monotonic increases of v(f) forms the ascending branch ABCDE of the relay (see

Fig.2.1). Similarly, while the input monotonically decreases, the descending branch

EDFBA s traced. It is apparent that each relay represents hysteresis nonlinearity with
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local memory.

The expression (2.1) of the Preisach model can be interpreted as a parallel connection
of infinite weighted relays with positive/negative saturation values as +1/-1 (see
Fig.2.2). This means that the complex Preisach hysteresis nonlinearity (2.1) is
represented as a superposition of simple elementary hysteresis nonlinearities (relays) with
local memories; nevertheless, the Preisach hysteresis usually has a non-local memory. It
is noticed that the Preisach model has been defined without any reference to a particular
physical origin of hysteresis, and it is a phenomenon model with mathematical generality

to describe a large number of hysteresis nonlinearities.

—.[T o (2. A )
L ]
— —
140 * ¢ U@
—pesel g *® L

3
£
2

[
L

B
—

K

Fig. 2.2 Structural interpretation of the Preisach model
2.1.2 Notations and Geometric Interpretation of the Preisach Model

Preisach Plane T
According to the definition of the Preisach model, every elementary operator has two

parameters: & and f, corresponding to “on” and “off” switching thresholds of a relay,
and they are always assumed to be a2 4. From this fact, a half plane above the

linea = f in the a — #diagram can be constructed. Usually, there exists a limiting input

region [v7,v"] associated with certain hysteresis nonlinearity. This means that the
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parameters, « and 3, of elementary operators can only vary among the region[v ,v'],
ie,v < f<a<v',to create hysteresis loops. If the parameters o and S arrive to the
boundaries of the input region[v',v’], i, a=8=v" or a= =", the ascending
limiting curve and descending limiting curve will merge together, and the hysteresis
nonlinearity degenerates as a step function. Thus, there exist a horizontal line & =v*and
a vertical line f#=v" together with the line « = £ to form a triangular half plane T,
which is referred as the Preisach plane of hysteresis (see Fig.2.3). Every point in the
triangular domain with a specified pair of coordinates (3, a) corresponds to a particular

operator 7,,[v(¢)]. Furthermore, there is a weighting factor u(a, ) associated with each

point (S, ) on the Preisach plane T.

From the above remarks, it can be realized that the hysteresis only occurs on the
Preisach plane T, and the hysteresis gets saturated when the input exceeds the region T .
This is guaranteed by setting the weighting factor u(a, B)to zero for all points outside

the Preisach plane T.

v’

Fig. 2.3 The Preisach plane T

Memory Interface Curves L(¢): The varying of input v(t)in the region [v ,v*] forth
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and back creates the hysteresis loops, and forms a staircase memory interface L(t)on its

Preisach plane T to divide the region T into two domains, where the relays have two
uniform output distributions of +1 and —1.
To explain what the memory interface is and how it forms, they can be illustrated by

examining the outputs of all relays on the Preisach plane T caused by variations of their
inputv(¢) . First, assume that the input v(¢) varies starting from a valuev(f,) <v-. At this
time #,,all elementary operators PaslV(%)] are subject to the input v(¢,) < v-, which sets
all relays to their negative saturation states, i.e., Paplv()]=-1. As the input
v(t) monotonically increases to value v(f,) at time ¢, some relays with “on” switching
values o <v(t,) are turned into their positive saturation states, i.e., YopV(t)] = +1 with
a<wt) , while others still remain in their negative saturation states, i.e.,
Vap[v(#)] =—1with & > v(t,). This increase of input results in a horizontal interface line
L(t):a =v(t)) dividing the Preisach plane T into two domains: S*(#,) consisting of
points with 7_;[v(#)]=+1 and S7(z) including points with 7ap[v(t,)]1=~1(see Fig.2.4).
If the input v(¢) had continued to increase so thatwf)>v*, all the relays of the Preisach

model would reach their positive saturation states, and the set S™(¢) would degenerate to

be nil, while the set S*(¢) would develop to the whole Preisach plane T. At this time, the
memory interface L(f) would change as the upper boundary of the Preisach plane T,

ie. ,L(@):a=v".
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Fig. 2.4 Subdivision of the Preisach plane T by an increasing input v(z,)

Next, assume that input v(#) is monotonically decreasing until it reaches an input value
v(t,) <v(4;) at a moment of time ¢, (see Fig2.5). At this time, some operators
7.5v(t;)] with “off” switching values £ >v(t,) change into their negative saturation
states. This decrease of the input updates the previous dividing of the Preisach plane
T into two new domains: positive saturation domain S*(¢,) and negative saturation
domain S”(¢,). The memory interface between the two domains S*(¢,) and S (¢,) now
consists of a horizontal line segment a =w(,) and a vertical line segment 8 =(t,), and
has a vertex with the coordinates (v(#,),v(f,)) on it. The vertical line segment moves
leftwards, and its motion is specified by the equation f#=v(t,). If the input v(f) had
continued to decrease so that v(¢) <v-, the motion of the vertical line segment would
terminate, and all relays would reach their negative saturation states. At this time, the

memory interface L(r,) would degenerate as the left boundary L(¢): f =v-.
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=S{t2)+S{t2)

Fig. 2.5 Subdivision of the Preisach plane T by a decreasing input
v(t,) followed an increasing input v(#,)

Continuing assume next that the input increases again until it reaches a new value v(t,)
satisfying condition v(t,) <v(t;) <v(,) at an instant of timet,. The increasing input
towards v(f;) results in the forming of a new horizontal interface line segment
a =v(t;), which moves upwards as the input v(¢) continues to increase (see Fig.2.6). At
this moment, the memory interface consists of three segments as a =w(,), 8 =v(¢,) and
a =v(t;), and a new vertex as (v(t,),v(t,)).

Continuing again, assume that the input decreases again until it reaches a smaller

value v(z,) satisfying the constraint v(¢,) <v(,) <v(t,) at the moment of time t,. This
leftward motion adds a new vertex of interface with the coordinates (v(1,),v(2,)) (see

Fig2.7). At this time, the memory interface consists of four segments:

a=vt), f=wt), a=¥t) and f=w(t,).
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Fig. 2.6 Subdivision of the Preisach plane T by an input sequence
{v(#,),v(1,),v(t;) } satisfying v(t,) < v(t;) < v(t,)

v-.v) e

Fig. 2.7 Subdivision of the Preisach plane by an input
sequence { v(#),v(t,),v(t;),v(¢,) }

Generalizing the above analysis, the following conclusions can be drawn. At any

instant of time?, the triangular Preisach plane T is divided into two sets: S*(¢) consisting
of points (a, ) with YaplV(©)]=+1 and S™(¢) including points (a, £) with Papglv(®)]=-1.
The interface L(f) between S*(¢) and S™(¢) is a staircase whose vertices have @ and yi)

coordinates representing respectively the previous local maxima and minima of inputs.

The staircase interface L(¢) starts from somewhere on the upper or left boundary and

stops at somewhere on the line @ = #. This means that the final line segment of the
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interface L(¢) is attached at the line @ = # and moves along the line as the input v(f)
changes. The final line segment is a horizontal one moving upwards as the input
increases (see Fig.2.4 and Fig.2.6), and it is a vertical one moving leftwards while the
input decreases (see Fig.2.5 and Fig.2.7). The dividing of the Preisach plane T into two
domains by the staircase interface is very important because it facilitates the development
of a formula to calculation the output value u(¢) of the Preisach model, which will be
discussed in the following section.

Density Distribution u(a, 5)

(v-vt)

Fig. 2.8 The Preisach function or density distribution
In equation (2.1), the output value u(f) of the hysteresis is expressed as an integral of
infinite sets of weighted relays over the Preisach plane 7. From the physical point of
view, the weight factor u(a, f) of every relay associated with every point on the Preisach
plane T must be a continuous function defined over the plane T (see Fig.2.8). This
function is referred to as the Preisach function or the density function of hysteresis. For a
particular hysteresis with certain input region [v",v*], the shape and size of the hysteresis
loops are only determined by the density distribution u(e, ). The problem to identify a
real hysteresis loop via the Preisach model is to find the density function (e, f), and an

identification method will be presented in a later section. As long as the input region
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[v7,v"]and the density function u(a, #) of the Preisach hysteresis have been specified, its
output value u(¢) can be calculated by equation (2.1), or its equivalent formula, which

will be derived in the next section.

Examining equation (2.1), it can be realized that the density function u(a, #) must be
in a double integral form, which is usually called as a closed form function. However, it

is a challenging task to find a closed form density function u(a,f). Alternatively, a
discrete form of density distribution u(a, 8) is sometimes used within required modeling

precision.
Formula to Calculate Output Value of Hysteresis

In this section, a formula to calculate the output value u(¢) of hysteresis at any instant of

time ¢ will be introduced [13].

Facilitated by the definition of memory interface L(f)on the Preisach plane 7', at any
instant of time ¢, the integral over the Preisach plane T of equation (2.1) can be divided

into two integrals over S*(r) and S (¢), respectively, as follows:
u(®) = [[ @ B)7 5V K adp

= IL*(,)ﬂ(a,ﬂ)y‘aﬁ[v(t)]dadﬂ + ﬂ_m Ha, B ,lv)ldedB . (2.2)

Since YopV(®)] = +1 for points (B,a) € S* (1) (2.3)
PaplV(®)]1=—1 for points (B,a) e S™(¢) , (2.4)

and the fact that u" = H Ma,P)adf , where the subscript T represents ‘total’, then

equation (2.2) can be rewritten as

u@) = [[., e pradp- [ wa praip
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=2f[. #a pradp- ([ wa, B)iadp

=2[[. . priodp~u". @.5)

From equation (2.5), it is understood that an instantaneous value of output u(¢) depends
on dividing the Preisach plane T into positive and negative sets S*(¢) and S™(f) by a
particular staircase interface L(¢) . The shape of L(¢), in turn, depends on the past

extremes of inputs because these extremes are the coordinates of the vertices on the

staircase interface L(r). Consequently, the history of input of hysteresis before a certain

moment ¢ determines the output of hysteresis at the moment. This means that the output

of hysteresis at a moment can be memorized by its staircase interface L(¢) at the moment.
The memory effect of the staircase memory interface L(f) can be verified by the
following reasoning.

Assume that two input histories start from the same initial input v(¢,) at initial
time, and terminate at the same input v(¢) at the last time¢, but they have different input

histories between time #,and ¢. This assumption leads to two different memory interfaces

L,(#)and L,(¢) (see Fig.2.9). According to equation (2.5), the output values u,(t) and

u, (¢) are obtained, respectively as follows:

()= [[. ma.padp~ [[ . wa,pradp (2.6)

and w®= [, maprcdp~ [ _ @ pradp . @7)

()
They are different output values for the same instant of time even though the two

processes start from the identical initial input value v(z,), and stop at the same input value

22



V() (see Fig.2.10). This means that the output of hysteresis at certain moment ¢ not only

depends on the input at that moment but

also relies on the input history before that time.

This is the property of hysteresis with non-local memory effect. Thus, the expression (2.5)

can describe the hysteresis nonlinearities with non-local memories.

(v.vY)

fa

L1l

s
L2(9
sty

S179 =Sy +4s@®

S1(0 =S(y - AS(Y)

Fig. 2.9 Memory interfaces with same starting inputs and same final inputs

u(t) 4 u(t) A
/ﬁ/ '
' |
v(t) v(t)
o =7

Fig. 2.10 Outputs of different memory interfaces
with same starting inputs and same final inputs

Geometric Interpretation

From the above analysis, two memory rules of memory interface L(¢) can be summarized

by the following statement:

A monotonic increase of inputVv(t) leads to a horizontal final line segment of memory

interface L(t) moving upwards on the Preisach plane T (see Fig.2.6), and a monotonic

decrease of input v(t) results in a vertical final line segment of memory interface L(t)
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moving lefiwards on the Preisach plane T (see Fig.2.7).

These two different rules result in the formation of the staircase interface L(¢), whose

vertex coordinates equal to past input extremes.
The formula (2.5) to calculate output values and the above two memory rules for the

modification of memory interface L(¢), can be interpreted as two independent geometric

definitions of the Preisach model. Both definitions are fully equivalent to each other.
2.1.3 Properties of the Preisach Model and Representation Theorem

Having described the geometric interpretation of the Presach model, some main
properties of the model can be conveniently revealed as follows:

Symmetry of Output Property

The output value u” in the positive saturation state equals to the minus output value u”
in the negative saturation state [13].

Indeed, as input w(f) exceeds the upper limit of the hysteresis input domain,
i€, v(t)=2v", all the relays reach their positive saturation states with outputs as

7a5[v(®)]=+1. Hence, according to equation (2.5), therefore,

u' = [[ e, pydadp 28)
Similarly, in the state of negative saturation, the input v(¢)is less than the lower limit of
hysteresis input domain as v(f) <v~, then all relays shift to negative saturation states with

outputs as 7,,[v(¢)] =—1. This fact results in

u”=-[[ u(a, pdadp 29)
From equations (2.8) and (2.9), it is concluded that

ut=-u" (2.10)
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These saturation output values remain constant as * or «~ for any input values above
v* or belowv™, respectively. In other words, it means that after the limiting ascending

branch of the major loop pass the positive saturation state of (v*,u*) or the limiting

descending branch of the major loop pass the negative saturation state of (v",u”), the
hysteresis becomes flat. However, this fact shows one of the shortcomings of the classical
Preisach model because it cannot describe reversible components with non-zero slope of
hysteresis nonlinearities. This shortcoming can be overcome by introducing a new

hysteresis model which will be presented in chapter 8.

u
u+ ----------
Vas Y v' y
i Vps i *
i = e |
Fig. 2.11 Original coordinate system Fig. 2.12 Transformed coordinate system

In reality there are some hysteresis loops whose input values of positive and negative
saturation states usually are asymmetrical about the output axis, even though the
hysteresis loops are symmetric about the input axis v(¢) (see Fig.2.11). For convenience
of analysis, coordinate transformations are necessary to change the hysteresis loops to

become symmetrical about the output axis u(¢) by the following formulas (see Fig.2.12):

] , 2.11)
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Here, v, and v, are the inputs of positive and negative saturation states.

Wiping-Out Property

Each local input maximum wipes out the vertices of L(t) whose a — coordinates are
below this maximum, and each local minimum wipes out the vertices whose
B —coordinates are above this minimum [13].

}a

vl
v3

v
v7

N
G

vl v2 v4 vi \:13

Fig. 2.13 Memory interface line L(¢) corresponding to input
sequence {vo,v, ’vz’v3>v4’V5:v6av7 ,vs}

To explain this property clearly, consider a particular input history that is characterized
by a finite ascending sequence {v,v;,v;,v,} of local input maxima and a descending
sequence {v,,v,,V,,V,,V;} of local input minima. A typical a — #diagram for this kind of
history is shown in Fig.2.13.

Now, assume that the input monotonically increases until it reaches some maximum
value v, above v,. This monotonic increase of input results in the forming of a horizontal
line segment of interface L(f) that moves upwards until the maximum value v, is
reached, which modifies the o — fdiagram as shown in Fig.2.14. It is apparent that all
vertices with & — coordinates below v, have been wiped out. Equivalently, the input

history associated with these wiped out vertices have also been erased. Similarly, the
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wiping out of vertices occurs for monotonically decrease of input as well. The wiping out
occurs due to the further variations of input updating output states of some relays. Indeed,

in the above example, as the increasing input approaches to v, , all relays with

a - coordinates less than v, must change their states from negative saturation to positive

saturation.
)
vl /
103
& B

Fig. 2.14 Memory interface line L(¢) corresponding to input
sequence {vo,vl,vz,v3,v4,v5 sv63v7,v83v9}

Applying the wiping-out property, an algorithm can be established to determine the
memory interface L(¢) consisting of global input extremes which are only accumulated

by the Preisach model.

Fig. 2.15 A particular input variation starting from the negative saturation state
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Consider a particular input variation initially increasing from v, (see Fig.2.15) for the
time intervals, <z <¢'. The initial input value v, was assumed below v~ at the initial
instant of time #, to ensure all relays start from states of negative saturation. The first
global minimum input is m, =v, =v(t,) attimez; =¢,.

Now, input v(¢) first increases and then decreases during the intervals, <t <¢'. It is

easy to find the global maximum of the input, M/, , at the time ¢ 1+ as

M, =maxv(f) telt,,t']
(2.12)
vt ) =M 1 efty,t']

It is clear that all previous extremes of inputs between m, and M, were wiped out by
this maximum M, .
Next, for input v(#) during the period #" <t <+, the global minimum of the input, m, ,
at the time ¢, can be found as
m, = minv(¢) telt,t']
(2.13)
V() =m, el
It is apparent that all intermediate input extremes between M, and m, were wiped out by
this minimum m, .
After that, for the interval £ <¢<¢' we can find the global maximum of the input M,

at the time #; can be found as

M, =maxv(t) teft,t')
(2.14)
V(1)) =M, el
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It is obvious that all previous input extremes between m, and M, have been wiped out
by this maximum M, .
As before, for inputs in the intervals, <¢<¢', the global minimum of the input m, at

the time ¢, can be found as

m, = minv(?) telt,t']
(2.15)
V) =m, £ €[],

Continuing the above reasoning, the global maximum M, and global minimum m,

can be found, respectively, as:

JMk = max v(t) telt,t']

(2.16)
V(&) =M, t elt,t']
(mk = minv(¢) teft],t')
and < 2.17)
V) =m, el 1]

Only the above input extremes are accumulated by the Preisach model, while all

intermediate input extremes are wiped out. It can be said that the global maximum M,
and global minimum m, form an alternating series of dominant maxima and minima.

Based on the above algorithm, an m. file program in Matlab has been written (see
Appendix 1) to calculate the alternating series of dominant extremes for any given input
sequence. It will be used to find and draw the memory interface L(¢) at any moment of
time and to calculate the output value of the hystersis at the moment. This m. file will be
called as a subroutine by another m. file to calculate and draw the hysteresis loops for an

arbitrary continuous input.
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Congruency Property
All minor hysteresis loops corresponding to back-and-forth variations of inputs between

the same two consecutive extreme values are congruent [13].

Let v,(¢) and v,(¢) be two inputs starting from the same instant of time ¢, with two
different past histories. When they reach the same extreme v_ or v, , they have two
different memory interfaces as L (¢) and L,(¢) which divide the Preisach plane into two
different sets as S;'(¢)/S; (¢t) and S;(t)/S; (¢), respectively. They vary back and forth
between the same two consecutive extremes v_ and v, . It can be shown that these

periodic input variations result in minor hysteresis loops with the same shape and size.
The proof of the congruency property for the above loops is equivalent to showing that

any equal increments of inputsv,(¢) and v,(¢) result in equal increments of outputsu, (?)
andu, () . First, assume that both inputs v,(¢) and v,(¢) increase by the same amount:
Av, = Av, = Av starting from the same minimum value v_. As a result of these increase,
the identical triangles AT, and AT, are added into the positive sets S; (¢) and S; (¢) and

subtracted from the negative sets S, (¢) and S, (¢) (see Fig.2.16 and Fig.2.17).

L

Fig. 2.16 Input with previous memory interface L (#) varying inside an interval [v_,v, ]
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V- v(t) Ve

Fig. 2.18 Congruency of two minor loops
By applying equation (2.5), the corresponding output increments due to the two inputs

can be calculated as

By =2[[ p(a fdadf 2.18)
and Au, =2 iT w(a, Bdadf . (2.19)
Since AT} = AT, , therefore Au, = Au, (2.20)

Equation (2.20) has been proven for the case when inputs v,(f) and v,(?)

monotonically increase with the same amount Av after starting from the same

minimumv_. This equality shows that ascending branches of the above two minor loops
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are congruent. Similarly, the same result holds when inputs v,(f) and v,(¢)
monotonically decrease with the same amount Av after achieving the same maximumv, .

This means that the descending branches of the above minor loops are congruent as well.
Thus the congruency property of the Preisach model has been proven (see Fig.2.18).
Zero-Initial-Slope Property

All reversal curves of hysteresis loops described by the Preisach model feature zero
initial slopes [13].

This statement is based on the following reasoning. Let u,, » be a reversal curve which

is traced for a monotonically decreasing input. This curve starts at the point

(vy»4,:) Which corresponds to the local input maximumv=a'. Referring to equation

(2.18), the difference u,, —u,., between two outputs is then given by
gty =2[[  pa,pradp (2.21)
Furthermore, Uy =1ty =2 [ ‘[(a,m we, B)dadp . (2.22)

For a fix starting point(v,.,u,.), u,. is a constant. Thus, the current slope of this curve

at the point v = ' can be expressed as

tané’(a',ﬂ')=ag;f" =_2a-"~[(a"ﬂ')‘;;f’ﬂ)dadﬂ =_26[J;(J;ﬂg;"3)da)dﬂ]

_af e[ uapdap
_ o

=2j;"y(a,ﬂ)da (2.23)

where 0(a', B') is the angle between the input axisv and the tangent to the reversal curve

U,z at the point v= 4",
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Referring to equation (2.23), for the starting point v = o' of the reversal curve u,,,
lim tané(a’', #) = 2 lim f (e, f)da =0.
p'a’ B'oa' B

This property is shown in Fig.2.19, where the slopes k, =k, =k, =k, =0 . This

property is another shortcoming of the Preisach model which will be overcome by

introducing a newly defined hysteresis model in the chapter 8.

Fig. 2.19 Zero initial slope of hysteresis loops

Representation Theorem
The wiping-out property and the congruency property constitute the necessary and
sufficient conditions for a hysteresis nonlinearity to be represented by the Preisach model
on the set of piece-wise monotonic inputs [13].

The complete proof can be found in L.D. Mayergoyz’s book [13].
2.2 Identification of the Preisach Model
The issue to identify the Preisach model is particularly important in its application to a
wide variety of physical systems. From the previous definition of the model it should be

understood that determining the output of the Preisach operator is a matter of

» finding the memory interface L(¢) on the Preisach plane, which has been discussed in
the previous subsections, and
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o knowing the density distribution u(a, f) of the Preisach model.

Thus, in order to use the Preisach model to describe a system with hysteresis, it is
necessary to identify the “optimal” parameters u(a, ) corresponding to data obtained
from measurements of hysteresis.

One method to identify the “optimal” densities u(a, ) is called the “curve fitting
method” which is introduced in the following: By assuming that densities u(a, 8) can be
expressed by some specific function with a few undetermined parameters, the output
values of hysteresis responding to some given inputs can be expressed using the Preisach
model with the assumed density x(a, 8) . Optimal fitting of the calculated outputs to
measured data can determines the parameters of the assumed density function.

For example, in ferromagnetism, the fact that parameter wu(a,f) is seen as a
probability distribution of hysterons had motivated Della Torre and his co-authors to

assume a particular form for u(a, ), namely the Gaussian function

Ha ) =i (E ) By, (2.24)

9k Oy g;
The beauty of this method is in its simplicity. The measure u(a, ) has four unknown
parameters (M, ,h,0,,0,) which can easily be determined with only a few
measurements, and these are standard in experimental magnetism. In fact, only
measurements on the limiting branches and one reversal curve are required. Once these

parameters are determined the measure u(a, f) is known over the entire Preisach plane.
The curve fitting method can also be used to describe the density function u(a, p) for

hysteresis models of other smart materials such as SMAs.

The second method for approximating the density distribution u(a, 8) is to determine
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the value of the u(a,pB) at various points in the triangular Preisach plane T and use
interpolation to approximate u(c, ) over the remaining points in the Preisach plane T'.
Before moving on to discuss the methods to determine these parameters for u(a, ),

some necessary concepts and formulas are first introduced.

2.2.1 The Discrete Preisach Plane

‘ u(h

-

Fig.2.20: A FOD curve and its memory interface line
For any point p, =(f;,2;)on the Preisach plane T, it can be considered as a vertex on a
memory interface L(f) which is formed by increasing input v from the negative
saturation state v to a valuev =g, and then decreasing input v to a state as v= g

These variations of input v result in a partition of the limiting ascending branch of the
hysteresis major loop and a part of the first-order decreasing curve (FOD), which
attaches on the limiting ascending branch at point (@;,u, ) in the input-output diagram
(see Fig.2.20).

In this manner, different pairs of inputs (B;,a)with a; 2 . form different first-order
decreasing curves (FOD) inside the hysteresis major loop and divide the Preisach plane
T into small cells. By dividing the Preisach plane T uniformly using numbers of

horizontal / lines and numbers of vertical / lines respectively, a total number of N nodes
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on the Preisach plan T' as shown in Fig, 2.21 can be created, where

N=(z+2)<1+22>—(1+2)+(,+2)=<1_+12<l:2_) (2.25)
[=1~Le2) | o
(v-,ve) vy ‘ —-

vt

=1~(L+2)

a=v

Fig. 2.21 FOD data points in the Preisach plane T

The above dividing of the Preisach plane T also generates four kinds of small cells, as

illustrated in Fig.2.22.
-t - (7T W 2@
| ; V P Broz
a; a, Apog=vt Briz=vt
B, A,
Rectangular cell Triangular cell ~ Degenerated cell Point cell

Fig. 2.22 Four kinds of cells in the Preisach plane T

The total number of the small cells also equal to N. Thus, each node represents a lefi-

lower corner of a small cell, and the input pairs (B,,2,), coordinates of the ji node, can

be defined by following formula:

vi—v
+v

I+1
with i,j=12,.,(0+2);, i2j (2.26)

ﬂj =(j-1D

Vvi-v
I+1

+v

a; =(i-1)

2.2.2 Identification of Density Function by Least Squares Method

36



In this section the least squares method to determine the optimal density function
M(a, B) of the Preisach model is presented.
To obtain the outputu(r), the weighting function u(a, £) needs to be determined first.

This can be done experimentally using a set of first-order descending curves (FOD curves)
as shown in Fig.2.20.
With reference to Fig.2.20 and applying equation (2.5), the change in output along the

descending branch is obtained as

Uy, ~Uay, =2 [[pla, PdadB -2 [[u(a, B)dadp

$T+Qy

=2 j wu(a, B)dadp (2.27)
Qij

where u,, refers to the output when the input monotonically increases to e, from v~ ,
and u, s, refers to the output when the input monotonically decreasing to B,

immediately after the increase of input from v™ to ¢;. For all output changes u,, — Uy

corresponding to all points (5, ) on the Preisach plane T, a formula is obtained as

oo ~hop =2 [[pter, p)dad~2 [[ule, B)dadp

$*+Q

=2 [[u(a. pydadp (2.28)

Referring to equation (2.23) and taking partial derivatives of both sides of (2.28) with

respect toar and [ the value of the weighting function at any point in the Preisach plane

T can be determined by the following formula:

62
y(a,ﬂ)%éa“a%; 2.29)
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If the output values u,, could be identified for all points in 7' by collecting an infinite

number of FOD measures, then the density function u(a, ) can be determined at these
points. With respect to equation (2.29), the surface consisting of all 3-dimensional points

(B,a,u,;) should be smooth. This surface, which is called the FOD surface, must be

twice differentiable with respect to variables @ and £ to obtain the weighting function

Hop-

To identify the density function u(a, £) via equation (2.29), however, it is impossible
to measure an infinite number of FOD measures to construct the FOD surface. Instead,
one can first assume that the FOD surface has a special form governed by a class of
functions with some unknown parameters, and then match the candidate surfaces defined
by the functions to some measured output values of u,; to find these parameters by the
is

least squares method. After obtaining the parameters, the FOD function Uyg

determined, and then solving the density x(a, ) is a straight forward application of
equation (2.29). Alternatively, one can directly assume that the density function u(a, f)
satisfies a particular class of functions with some parameters required to be determined.

And then express the outputs of u,z1n a function of these parameters by substituting
(e, ) into equation (2.28). Matching these outputs of U, With the measured output

values by the least squares method results in the optimal parameters for the density

function u(a, f) . These two methods are discussed in detail as follows:

A. Estimation on the FOD Surface Function to Determine Density Function

Assume that the FOD surface function has a special form as
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g = [0 %52350.%,,0, ) (2.30)
where x,,x,,X,,...,x, are parameters to be determined by the least squares method. For
every point(@;,f;), there exists a corresponding point on the FOD surface with a
calculated output value as

U, = S 06 X, 2...%,, 05 ) (2.31)
and a measured output value as u, 5"
To find a density function suitable for all points on the Preisach plane, first mesh the

plane by / horizontal lines and / vertical lines uniformly resulting in N nodes as in

Fig.2.21. Then for every point(e;,f;), make a measure of Ug,p, and calculate @, 5, by
equation (2.31). There is a square error between these two values for every point as

Iﬁa,.ﬂ, —Uqp, =] f(xl’x2’x3""’xn’ai’ﬂj)—ua,ﬁj 5 (2.32)
The sum of all square errors for all points on the Preisach plane is a function of

parameters x,, X, , X5 ,..., X, , given as

i 1+2 i

1+2

A 2 2
Z:t uaiﬂj _uaiﬂj l =ZZIf(xl’xz’x3""’x”’ai’ﬂf)_uaiﬂj l
i=1 j

|
— peripr
= e(Xy, Xy, X350.,%,) 2 0. (2.33)
Equation (2.33) can be expressed in terms of the vectors X =[x,x,,%,.,x,] ,
F(X)=[A(X), /,(X),..., fy(X)]and U =[u,,u,,u,,...,u,] as
(%, X%y, X350, %,) =| F(X) = U [} (2.34)
where N is calculated by (2.25).

Minimizing the function (2.34) yields parameters X =[x,,x,,%;,...,x,] which leads to
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the best fitting of the measured data to the surface described by the assumed function.
This matching can be implemented by calling an existing Matlab function: Isqnonneg
(F(X),U). After obtaining the FOD function#,; = (X, %),%,,...,X,,@, B), it is substituted
into equation (2.29) to calculate the density function u(a, f) .

B. Direct Estimation on the Density Function
Different from the method to estimate the FOD function, the second approach is to

directly assume that the density function has a special form as

e, P =g(x', %', x',..x," @, ) (2.35)
where x,',x,',x,',...,x,"' are parameters need to be determined by the least squares method.
The output vales 4,, for every point on the FOD surface can be expressed as a function
of the parameters X'=[x',x,",x,",...,x,"], also the actual values u,, can be measured by

experiments. Similar to approach A, the parameters X'=[x,",x,",x,",...,x,'] can be solved

by the least squares method.
Remark: the above two procedures are considered curve fitting methods, and there are

very restrictive limits on the assumption of the expressions to represent the FOD

surfaceu,, or the density function u(a,f)because they must be in closed form. This

implies that the functions must be twice differentiable or in double-integral form.
Otherwise, the density function cannot be obtained from the optimal FOD function, or the
FOD values cannot be calculated from the assumed density function. This limitation
restricts the curve fitting method from being applied to a wide variety of physical systems.
2.2.3 Identification FOD Surface by Interpolation Method

The second method for identification of the Preisach model is to identify the FOD surface
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U,s , rather than to identify the density function #,s. This method is resulted from the
fact that the FOD distribution %,4 describes the effect of 4,5 on the hysteresis operator.

Also, the interpolation method avoids making twice partial differential of experimentally

determined quantities to obtain density function 4, because the operation of twice
partial differential can greatly magnify any error introduced in the collection of data. This
fact can be understood from (2.29). One can only measure U, at nodes of the Preisach
plane T, and then use interpolation method to find .5 for any points in the plane 7. The

interpolation method for determining the FOD distribution %,5 can be explained as
bellow.

As long as the experimentally measured data Ugp, (izj=12,..,l1+2) for all discrete
nodes on the Preisach plane are known, the data u, p, of most points which do not

coincide with those discrete nodes could be approximated through interpolation. If a

point (§,a) is located inside a rectangular cell formed by points of (5,,,), (8,,,2;),
(B>a.), and (B,,«,,,) or a triangle cell with vertices as (¢;,0),(a,;,%,,) and(a;,a,,,),

outputs of which are experimentally measured already (see Fig.2.23), the u,, of the point

(f,a) can be determined by the following formulas:

ﬂj ﬁj+l
ai+1 a:‘+1 ai+1
¥
Q, Q Q,
IBJ ﬂjﬂ

Fig. 2.23 Interpolation the DOF outputs of points

41



If (a-a)a-a,,)<0 and (B-B,)(F-p,,,)<0 then the point (F,a) locates
inside a rectangle cell with vertices at (5;,2;), (B,.,2,), (B»a,) and (B,,a,,,), the

output of the point (#,«) can be interpolated by a formula as

"y = (a—a))B-5,) ) _ (@=a)B-B,.) )
” (ai—a"+‘)(ﬂj_ﬂj+l) il (ai~ai+])(ﬂj_ﬂf+l) sl

__@-a)B-p) | @-a) BB
(a; - ai+l)(ﬂj = ﬂjH) @il (a;, - ai+1)(ﬂj - :Bjn) “ill

(2.36)

If (@—a)a—-a,,)<0,, =4 and a,, = f5,,, then the point (B,a) locates inside a

H

triangular cell with vertices at(¢;,,),(¢;,,,%,,) and(q;,q,,,) , therefore

i+l

_G.-2)6,-a), | @-ea)a-f, A Gi—ae-p

Z WG ] (237)
(@, _q)z “ @, _q)z Tt (., _q)z o

af

The method described in this section allows for a much more general determination of
the parameters and therefore is applicable to a greater number of physical systems.
However, it requires the collection of much more data than the curve fitting method
described above.

2.3 Numerical Implementation of the Preisach Model
Having the FOD function or the density function, theoretically, the output of the Preisach

hysteresis can be directly calculated by equation (2.1) or its equivalent formula (2.5).

However, the 7, in equation (2.1) and knowledge of the integral domain S*(¢) are

required to determine the memory interface line segments of L(¢). In practice, the output

of the Preisach hysteresis are determined through the implementation of numerical

implementation methods.
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Recall equation (2.5): u(?) = | Lm e, Bydadf - | _[_m ua, B)dadf
=2|[. , ma prdedp ~ [{ ua. pydadp
Substituting equation (2.8),u" = [[ u(a. A)dadp, into (2.5) yields
u@)=2[[. e prcdp-u'

Substituting equation (2.10),u™ = —u~, into the above equation obtains

u(®)=2 [[u(e, f)dadp +u (2.38)

5
If the last variation of the input is decreasing, the memory interface L(f) divides s*(¢)
into n numbers of trapezoids Q, withk =1,2,...,n (see Fig.2.24). O, has the right-upper

vertex of (B,a)=(m,,M,)=((),M,) . For each Q, , referring to Fig.2.20, and

considering equation (2.28), u,, ~u,, =2H,u(a, P)dadf , the result for one single
Q

trapezoid is

u u u —u U —u
Ijﬂ(a,ﬂ)dadﬂz MM, Mime, MM, Mymy _ “Mymy Mimyy (239)
o 2 2 2

Summation of all trapezoids underneath the memory interface L(¢) in Fig.2.24 gives

[, priadp =y s ~Mtim, 240)
& 2

St
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Fig.2.24 Memory interface with increase final input and
corresponding trapezoids in the Preisach plane T

(mo My

-

Fig.2.25 Memory interface with a final increase input and
corresponding trapezoids in the Preisach plane T

Substituting equation (2.40) into (2.38) yields
wt) =D (tyym, —Upgm, )+ (2.41)
k=1

If the last variation of the input is increasing, then in addition to those n trapezoids,
s*(¢t)has a triangular part Q, (see Fig.2.25). If it is assumed that inputv(¢) at the final
time has a decreasing trend but have not begun to reduce the area of the triangular part o,,

then a new final vertex can be defined with coordinates as (m,, M, ) =(8,a) = (\(t),(t)) on
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the memory interface line. Based on this assumption, equations (2.39) to (2.41) are still

valid sincem, = M, = v(¢) . Thus, the numerical Preisach model for both cases with final
increasing input and final decreasing input can be written as equation (2.41).

With u,,, =u, _=u-=-u",some special cases can be verified as follows:
i

Casel: Whenn =1, equation (2.41) becomes
u(®)=—-u"+ (Urtom, — Yrtymy) = —u"+ Untim, +ut = Untim, (2.42)

Case 2: From the above case 1, if v(f) =v*, then M, =m, =v*, and thus equation (2.42)
becomes

u(®)=uy, =4,..=u" (2.43)

vy

Case3: From the above case 1, after v(¢) increases to an arbitrary value above the input of

the negative saturation state v™, it decreases finally to arrive at the negative saturation

state as v(¢) =v~, then m, =v~, and thus equation (2.42) becomes

ut)y=uy,, =u =u" (2.44)

My~

Remarks: when a continuous FOD surface function has been identified through
matching a candidate function to experimental data, equation (2.41) can directly be used
to calculate the output of hysteresis subjected to an input value at the end of any sequence
of inputs. As the input is given as a continuous process of time, the corresponding output
as a continuous process can be obtained, and furthermore, the hysteresis loops can be
draw in the input-output diagram.

However, sometimes, the candidate functions for the FOD surface or density
distribution are difficult to predict in advance even though some precise output data on

the FOD surface can be measured. In this situation, the numerical implementation of
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formula (2.41) is still applicable, and is implemented through interpolation methods. The
finer the Preisach plane T is divided (the larger / is adopted), then the results are more
precise for the calculations of u,,,, and u,, , from equation (2.41) which are obtained
through the above two interpolation formulas (2.36) and (2.37). Thus, the hysteresis
outputs are more precisely modeled by equation (2.41).

2.4 Hysteresis Compensation through Inverse Presiach Model

2.4.1 Exact Inverse Preisach Model

After obtaining the numerical expression of the hysteresis, its corresponding inverse
numerical model can be derived as in the following procedure:

Forv(t) <0, seeking the inverse hysteresis becomes a problem of finding a decreasing
input v(#) =m, = [ corresponding to an output #(¢) and a given fixed input @ =M,

so that

n-1

u . =ul(t +u++ u -u +Uu or n=2
o5 =U(0) Z,( Mames, " Watem ) Fthyg S (2.45)

Uyp =u(t) for n=1

Equation (2.45) can be derived as following reasoning;

From (2.41), one has
W)= D (hyym, —Upgy, )+ U (2.46)
k=1 '

For n=1, since u mm, =¥ and uy, . =u,  =u,,, equation (2.46) is rewritten as
U(t) = gy, = Upgy T U =Ugy ~ U +U = U, (2.47)

For n2 2, since Uy m, =Ugp and u~ =—u", equation (2.46) can be rewritten as
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n-1

u(t) = Z(uM,‘mk - uMkmk_l ) + u- + uM,.mn - uMnmrhl
k=1

n-1
= uaﬂ - u+ . uM..”',.-l - Z(uMkmk-l - uMkmk ) (248)
k=1

Rearranging equation (2.48) yields
n-1

U =u(t) +u* +uy, , + Z(uMka ~ U ) (2.49)
k=1

Combining equations (2.47) and (2.49) leads to equation (2.45). Thus, the inverse

function for decreasing input is obtained as

n-1

Uy (M, u(t) +u" + ;(uMkmk_l =ty ) F Uy 3 for n22W6)<0

u/;' {M ,u(t)} for n=1y()<0

wt) = u;(a7uaﬂ) =

(2.50)

Similarly, forv(t) >0, the problem of secking the inverse hysteresis is to find an
increasing input V(f) = & = M, corresponding to a given fixed input #=m, | and an
output u(?), so that

Upy —Ugp = u(t)+u’ for n=1v()2=0

n-1
Upg —Ugg =u(t) +u’” + Z(uMkmk_] —Upym) Jor n22,9()20 @.51)
k=1

Equation (2.51) comes from below reasoning:

From (2.41), one has equation (2.46) as

u(t) = Z(uMkmk ~Upg e VU (2.46)
k=1

For n=1, since Upgym, = Upgym, = Ugq @0d Uy, . =Uy . =u,,=u_ =u , equation
(2.46) can be rewritten as

u(t) = Uty — Uty U
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=Uy, —U_ tU

S Uy —Upp HU = Uy, (2.52)
This situation means that the input-output points of hysteresis loop goes along the
ascending limiting curve starting from the negative saturation state of the hysteresis.

For n 22, equation (2.46) is rewritten as

n-1

u(t) = Z(uM*mk —Upm, )+u + Ut m, —Upt m (2.53)
k=1

In this case with a final ascending input, sinceu™ = —u",u,, =u,, , ,and u,, =u M m, (S€€

Fig.2.25), equation (2.53) becomes

n-1

u(t) = Z(“Mkmk ~Upm, ) -u" +u,, ~Uyp (2.54)
k=1
Combining equations (2.52) and (2.54) leads to equation (2.51). By defining

A
F,;=u,, —u,; and substituting F_, into equations (2.51), one has

Fp=u(t)+u’ for n=1,v()20

n-l1 255
Fy=u(@®)+u" +;(“Mkm“ —Upm) Jor n229()20 (2:55)

Thus, the inverse function for increasing input is obtained as
W) = F, (Fy f) = F,\(F,5,m, )

F u(@®)+u*,m,_} Jor n=1v(#)20

= F {[u@®)+u* +§(”M,,m,,_, ~tyy o Mm ) for n22,9(6)20 (2.56)

This numerical inverse Preisach model, (2.50) and (2.56), can be converted to an
s-function in Matlab for real time control.

2.4.2 Approximated Inverse Preisach Model
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The FOD surface sometimes can only be determined by interpolation methods since the

function u,, can not be assumed as a specific form. Even though the function u,, can be

expressed by a continuous function, the exact inverse Preisach models, (2.50) and (2.56),
sometimes are in implicit forms and can not be solved. Therefore, the exact inverse
Preisach model cannot be used to compensate the hysteresis. Instead, an approximate
algorithm of the inverse hysteresis model is introduced as in the following:

For a given output u(tr)at a moment of time t© with known input and output history
v(t <7), u(t <t) of the Preisach hysteresis operator, increase or decrease the input v
by steps of idv ,where i=12,..n, until the calculated output value of the Preisach

operator becomes close to the true output ,i.e.,

HWt <t)+ndvlzu(t) and HWt<1)+(n-Davl<u(r) for u()=>0

when (2.57)

HWt<t)—ndvl<u(r) and H[Wt<7)—(n-Ddvlzu(t) for u(t)<0
thus, interpolate the input v(t) for the moment T as

u(r)— Hv(t <)+ (n—1av] for ()20
H[W(t < 7)+ndv]—- H[v(t < 7) +(n—1)dv] -
wWt) = (2.58)
Wt <7)—dv u(r)— H[v(t <7)—(n—1dv] for i(t)<0
H{wWt <7)—ndv]- H[v(t <7)—(n—-1)dv] a

vt<7)+dv

This algorithm can be explained by the following sequence of steps:

1) Pass the present input v,,,.,,to v, =v, . and the corresponding current output
upre.vent to u2 =u present *
2) If the process has an increasing trend, namely, v2v, . and u 2 u,, ..,

(u increases as v increases, see Fig.2.26),
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Fig. 2.26 Increasing u

2.1)  store the values of v, and u, into v,and u, by setting v, =v, andu, =u,, and

2.2) update the values of v, and u, by v, =v, +dv and u, = H(v,), where the updated

output u, is calculated by the Preisach operator.

2.3) If u, <u, the updated output u,is still less than the desired output value u, then
return to the step 2.1. This means that the calculated output has not yet arrived at
the desired output u, the input vhas to increase continuously to calculate a larger
output approaching to the desired output u.

2.4)  When the calculated 4, becomes larger than or equal to the desired output (i, 2u),

then interpolate the desired input as

(2.59)

Fig. 2.27 Decreasing u
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3) If the process has a decreasing trend, namely, v<v and u<u

present presen
(u decreases as v decreases, see Fig.2.27),

31) setv,=v, and 4, =u,

3.2) calculate and update v, =v, —dv and u, = H(v,)

3.3) if u, >u, go back to step3.1.

3.4) when the calculated u, becomes less than or equal to the desired output

(u, <u), then interpolate the desired input as

u—u

v=v, —dv (2.60)

U, =4

It can be seen that ifv, <v<v,, v, <V <v,anddv={v, —v, |, then|v' —v|< dv. In fact,
the estimated v will generally be close to the exact inverse v’ much less than dv. In
addition, asdv — 0, then v — v". However, to obtain finer outputs of %, and u, in (2.59)
and (2.60) using interpolation equations (2.36) and (2.37), a large number / of dividing
lines is required, which in turn increases the computational cost significantly in this
inverse method. For example, a number / =98 of dividing lines will create 5050 nodes
on the Preisach plane T, resulting in a small dv which must be much less than the

interval Av,i.e.,

dv<Av=v 4
[+2

=0.01(v" —v").

For any relative large variation of input v,, ., —Vv it takes many steps to update the

present 3

input v to exceed the desired input v, ., , thus, it involves a large cost of computation to
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make the current point of state (v .) to pass the desire point (v, ,..>%yuired) -

present > ¥ presen
Thus, some conclusions can be stated as follows:

The approximated inverse algorithm gives a good but not exact inverse hysteresis, but
it is at least as close as dv to the true inverse. The algorithm is computationally expensive
for extremely small dv and fine divisions of the Preisach plane T with a large /.

2.4.3 Open-Loop Compensation by Approximate Inverse Presiach Model

Based on the results presented in the above subsections, it is assumed that the Preisach
model captures the hysteresis characteristics of an actuator accurately and
comprehensively. Consequently, it is possible to pursue model-based compensation of
hysteresis of the actuator using an open-loop compensation strategy depicted as in

Fig.2.28.

u,(t) Inverse | V() I Hysteresis

Hysteresis Transducer

u(t)

Fig. 2.28 Open loop compensation of hysteresis in SMA actuator
In the open-loop compensation configuration, the desired output from the actuator is
the input signal applied to the inverse Preisach model as described by equations (2.1) and

(2.59). The inverse hysteresis model predicts the input v(¢) of hysteresis that would
achieve the desired output u,(), and pass this calculated v(¢) to the actuator as its input.
If the prediction is exact, the output u(¢) of the hysteresis will be equal to the desired
output u,(¢) , and the inverse model will perfectly compensate the hysteresis in the
actuator. The exact compensation by the inverse hysteresis is expressed as

u(t) = H{v(1)] = H[H '[u,()]] = u, (¢) (2.61)

Due to the inaccurate modeling of the hysteresis and the inverse model, as well as
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calculation errors, there is a difference between the predicted input to the actuator and the
exact required input to the actuator. Therefore, the compensation is not perfect. The

inaccurate compensation by the inverse hysteresis is expressed by
u(t) = H(O)] = H[H ' [u, ()] = 4, (?) (2.62)
This open loop compensation configuration with imperfect hysteresis cancellation can be

applied when the plant output is within error tolerance specifications.

2.5 Examples for Identification, Implementation and Compensation
of the Preisach Class of Hysteresis

2.5.1 A Two-Wire SMA Actuator

Shaft ¢ = 6mm

- i SMA wire o

5 ’-&"'"I T'T"s\ < :

RN W a8 =~

11 6] ===

-, /s [ M= TR,
- rd rl

W, rd 3

[ %
2 s i
Tt "\ Optical encoder et

Fig.2.29 A two-wire SMA actuator [35]

In [35], a two-wire SMA actuator had been introduced, and it had been shown that the
SMA actuator had the wiping-out property and the congruent property. Thus, it can be
modeled through the Preisach hysteresis representation. For quoting the experimental
data from [35] to conduct simulations of modeling and compensation of the hysteresis,
the actuator is illustrated as Fig. 2.29, and its construct is explained as follows.

The mid-point of a length of SMA wire is anchored at the centre of the 6mm shaft by a
set screw. This shaft is equipped with a 2000 count/revolution optical encoder, giving an
angular of 0.18 degrees per scale, or less than 10 sz of change in length of the SMA wire.

A total of 35cm of ¢ 0.3mm NiTi wire is used to provide two 15cm lengths of active
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wire. The wires have a common electrical connection at the shaft, and the two “free” ends
have electrical lugs crimped over a knot tied in the wire. The lugs provide an electrical
connection to the ends of the SMA wire, and also allow the wire ends to be secured to a
terminal block. This terminal block is mobile, and can be positioned by means of a screw.
In this configuration, one wire shrinks caused by applied current on it, while its opposing
wire stretches. It is considered that a reverse current has been applied on the actuator
when the opposing wire is heated. Even though the rotation of the actuator is caused by
the current applied on one of its wires, the temperature of the SMA wires above ambient
is considered as the input of the actuator while the rotation angular degree of the shaft is
regarded as the output of the actuator.
2.5.2 Identification of Density Function
Consider the SMA actuator with the following input (temperature °C ) restriction
185z2a =2 >-185
inside which the actuator has hysteresis property and beyond which the hysteresis
becomes saturated. This domain is equivalent to a triangular Preisach plane defined by
T={a,p)|1852a 2 >-185}.

To construct a FOD surface over the domain, the Preisach plane T is first uniformly

divided by /=9 horizontal lines and / =9 vertical lines, respectively. In this way, the

plane T is divided into small cells with N = (/ + 2)(/ +3)/2 = 66 nodes. For each node,

the corresponding pair of coordinates is expressed as(f »@;), where @, and S, are the

ith and jth element of the two respective vectors, with a restriction that i > j
a=[-185-148-111-74 -37 0 37 74 111148 18§

p=[185-148-111-74 -37 0 37 74 111148 18
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The measured outputs u,, (rotation degree) of the hysteretic actuator for the above input
pairs(f,, ;) are arranged as shown in the following upward triangular matrix:

[ -17.000 -16.370 -14.400 -9.160 0290 9.500 14.400 16.200 16.780 16.950 17.000]
-17.000 -16.380 -14.450 -9.320 -0.050 8980 13.780 15.550 16.110 16.280 NaN
-17.000 -16.410 -14.580 -9.690 -0.880 7.700 12270 13.950 14480 NaN  NaN
-17.000 -16.480 -14.850 -10.530 -2.720 4.890 8940 10430 NaN NaN NaN
-17.000 -16.600 -15.350 -12.010 -5.990 -0.130 2.980 NaN NaN NaN NaN

U=l -17.000 -16.750 -15.970 -13.880 -10.120 -6.460 NaN NaN NaN NaN NaN

-17.000 -16.870 -16.480 -15.430 -13.530 NaN NaN NaN NaN NaN NaN

-17.000 -16.950 -16.770 -16.320 NaN NaN NaN NaN NaN NaN NaN

-17.000 -16.980 -16.910 NaN NaN NaN NaN NaN NaN NaN NaN

-17.000 -16.990 NaN NaN NaN NaN NaN NaN NaN NaN NaN

| -17000 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Fig. 2.30 FOD curves on the FOD surface over the Preisach plane T

Hysteresis Nonlinearity

20

160 200

(/]
fnput

Fig. 2.31 FOD curves in the hysteresis major loop
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Using the above matrix u,, , the FOD surface is constructed, as shown in Fig.2.30. If

the FOD surface is projected along the & axis (i.e., onto the output- # plane), then, the
region where the hysteresis loops occur can be obtained (see Fig.2.31). The outline of the
region is the major hysteresis.

For this FOD surface, from reference [35], the assumed candidate FOD function is
given by equation (2.63), where 5 parameters are to be identified.

(ex4(V_+x5) _ ex4 (ﬂ"‘xs))

+u
(1+ex2(a+x3))(1+ex4(ﬂ+x5))(1+ex4(v'+x5))

Uy =X X (2.63)

Whena = f=v",then d,, =i, , =u". Thus, the parameter x, can be calculated as

X(1+exz(v++x3))(1+ex4(v++x5))(1+ex4(v’+x5))
(ex4(v'+x5) _ex4(v++x5))

X = -u) (2.64)

Equation (2.64) shows that the FOD surface function only has 4 independent parameters
asx,,x,;,x,, and x;, which can be identified by the least squares method.

Given the following conditions as output of the negative saturation state u™ =—17,
input of the negative saturation state v =—185, and input of the positive saturation state
v" =185, the parameters [x, x, x, x] of the surface can be optimized by the Nelder-

Mead simplex algorithm [42], as

[, x x x]=[-0026 -16.773 -0033 38 .473]
Furthermore, the parameter x, can be given by (2.64) as

x, =34.724.
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Fig. 2.32 FOD surface
After conducting the parameter identification, the estimated FOD surface function

i,; can be considered as the exact FOD surface function u,,. The FOD surface function

(2.55) describes a smooth FOD surface which is depicted as in Fig.2.32.

1 0%u
Recalli tion (2.29), a,f)=——22%
ecalling equation (2.29) ula, ) 2 200

where u,, indicates the FOD surface function (2.63), the corresponding density function

can be calculated as [35]

e"4(ﬂ+x5) eXz(mxs) ex4(ﬁ+x5)

=(x — l Fa(V +x5)
/uaﬂ_(xl 1)"“-2x4 (1+exz(a-rx3))2(l+ex4(ﬂ+x5))2(l+ex4(v'+x5))+2xle (265)

By substituting the values of the parameters x, x, x, x, x and v’ =-185, the

density function (2.65) is solved and is shown in Fig.2.33.
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Fig. 2.33 Density distribution ,,

2.5.3 Examples for Numerical Implementation of the Preisach Model

With the FOD surface function u,; (2.63) and its corresponding density function

Hqp(2.65), it is possible to conduct some calculation to find the memory interface line in

the Preisach plane T to obtain the output of hysteresis at any moment; and to draw the

hysteresis loops for the above hysteretic actuator subject to some continuous input with

different local extrema. The related m. files in Matlab are written and listed in Appendix 1.
To demonstrate the application of the m.files, some special cases with different input

histories are studied as following:

Example 1

For the hysteresis of the actuator described by the density function (2.65) and conditions
u'=17,u” =-17,v =-185 andv* =185, it is subjected to a continuous input with a
sequence of local input extrema as

vLE=[—185 185185 145 —145 145 —145 105 -105 75 -75 45 —45 20 —30].

Between any two adjacent local extremes, it is assumed that there is a linear increase or

decrease process joining two input extremes (see Fig.2.34). It should be mentioned that
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the form of these continuous processes between the adjacent input extremes has no affect
on the memory interface and at the output of the hysteresis at the end moment of the
process. The process is needed for the calculation of the output values of the hysteresis at

any time during the process and to draw the hysteresis loops. The continuous input v(¢)

lasts for a period of ¢ =100seconds.

~N
[~
Q

=]
=]

Iﬁput signal v(g
8 o

N
[~
L~

0 20 40 80 100

Time t{: sseoc)

Fig. 2.34 Input signal ,(r) with a sequence of local extreme input values

Conveying the above continuous input process to the m.file in Appendix 1, the output
values at any moment of time along the process can be calculated. In this example, the

calculated final output is specifically given as u(-30) =-3.0468 when the inputv = —30.
The memory interface (see Fig.2.35a) at the final moment of time is found and drawn in
the Preisach plane. The hysteresis loops (see Fig.2.35b) for the entire process is drawn by

finding all outputs for every sampling moment with sampling time¢, = 0.1sec . The final

point is the last point at the hysteresis loops.
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200 -100 0 00 200 ~100 0 100 200

a Memory interface b Hysteresis loops

Fig. 2.35 Memory interface lines and hysteresis loops for a sequence of local input
extrema v, =[-185,185-1 85,145,-145,145,-145,105,-105,75,~75,45,-45,20,~30]

From Fig.2.35a, it can be realized that the green staircase is the memory interface
L(#) of this special input sequence. Note that the sub-processes v=[-185 185 —185]
and v=[145 -145 145 -145] does not have interface lines shown on the
staircase L(#) , because its interface lines have been wiped out. Thus the entire process is
equivalent to

vie=[-185 —145 105 -105 75 -75 45 -45 20 -30].
However, the periodical sub-process v=[-185 185 —185] causes the major loop, and
the periodic sub-process v=[145 -145 145 —145] results in a completed minor loop

inside the major loop.

Example 2

For the same hysteresis described as above, suppose that it is subjected to a continuous
input with a sequence of local input extrema as

vLE=[—185 185 ~185 145 —145 145 145 105 -105 75 =75 45 —45 20 ]

Also, there is a linear increase or decrease process joining every pair of adjacent input
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extrema. The simulation time and the sampling time are the same as the example 1.
Performing the simulation through the m. files in Appendix 1 obtains the memory

interface lines as shown in Fig.2.36a and the hysteresis loops as in Fig.2.36b. The

hysteresis loops is created by the last input increase from -50 to 20. And the last point is

the final input-output state of (v,u) =(20,2.4481).

200,

150
100,

-100

-15011

200 -100 0 100 200 200  -100 0 100 200

a Memory interface b Hysteresis loops

Fig.2.36  Memory interface lines and hysteresis loops for a sequence of local input
extrema v, =[-185185-185145-145145-145105-1 05,75,-75,45,-4520]

Example 3
Similarly, when the actuator is subjected to a continuous input with a sequence of local
extreme input values as

vz =[-185 185 -185145 —-145 105 -100 75 —45 80 -30 20|

then, this input process has the same starting state and final state as in case2, but has a
different history from case 3.

Simulation gives the memory interface line for the final moment of time as shown in
Fig.2.37a, and the hysteresis loops are drawn as in Fig.2.37b. In Fig.2.37b, the hysteresis

loops is created by the last input increase from -30 to 20, and the marked point has an
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output value as u(20) = 5.1428 whenv =20. The figure clearly shows that the memory

interface and the output at the final moment of time, as well as the hysteresis loops, are

different from case2. This is because the two cases have different histories.

200,

a0
LU

150 Z. 15 W

100 T / 10l p i/‘

» ; 74

, V4 4 /

” / 4 A7 /

-150 -15 /V
/ ——

20050 -100 0 100 200 2% -100 0 100 200

[~

a Memory interface b Hysteresis loops

Fig. 2.37 Memory interface lines and hysteresis loops for a sequence of local input
extrema v, =[-185185-185145-145105-1 0Q75,-45,80,-30,20]

Remark: from the above three simulation cases, the following facts are summarized:
each line segment of memory interface lines corresponds to a branching curve inside the
major loop. As line segments develop upwards, an increasing branching curve is formed;
while line segments move leftwards, a decreasing branching curve is generated. When
two adjacent line segments of a hysteresis process are wiped out by later interface lines, a
minor loop consisting of an increasing branching curve and a decreasing branch curve is
created inside the major loop. Even though two memory interface lines formed through
different histories have the same shape, they create different shapes of hysteresis loops
with the same outputs at the final moment of time.

2.5.4 An Example for Open-loop Compensation with Inverse Hysteresis
The following example shows how the inverse Preisach model is determined. The

objective is to have the hysteresis u(f)= H[v]()to produce a continuous output as
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u, = —8.5(cos( gﬂat) + cos(#t)) , (2.66)

The hysteresis input v(¢) is unknown, and its value as a function of time is required to
obtain the desired output. Thus, the inverse Preisach model must be used to calculate the
input v(¢). According to equation (2.58) and the inverse algorithm introduced in section

2.4, the Preisach model and its associated approximated inverse model have been
software coded and is given in Appendix 2. These two models are cascaded as the open
loop compensation configuration of Fig.2.28, where the desired output is treated as an
input signal to the inverse hysteresis model. This open-loop compensation configuration
can be software executed in a real-time environment for simulation purposes, or in real-
time applications to cancel or reduce the hysteresis nonlinearity.

The initial and final simulation time is set as ¢ = 0:269sec, with a sampling time of

t, =1sec. For this input signal to the inverse model, the minimum of the desired output
signal is min(u,)=-17 when ¢t=0 , which means that the actuator starts from its
negative saturation state. The maximum of the desired output signal is
max(u,) =14.6635 <u* =17, which means that the hysteresis does not need to reach its

positive saturation state. The simulation results are shown as Fig.2.37. In Fig.2.37, the

signal v(¢) is calculated by the inverse hysteresis model, it is applied on the actuator as
an input signal; the signal u(¢) is the real output of the actuator; the input signal v(¢) and
the real output signal u(f) have the similar tendency of variation; the relationship between
the desired output u, () and the real output u(¢) of the actuator is the compensation effect;
the relationship between the input signal v(r) and output signal u(¢) of the actuator is the

hysteresis nonlinearity.
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Fig. 2.38 Modeling and compensation of a hysteresis generated by a continuous signal

Remark: from the above simulation results, it is observed that if the hysteresis is
modeled with high precision, the inverse hysteresis model can nearly reduce most of the
nonlinear effect. However, due to the inaccurate modeling of the hysteresis and hysteretic
dynamic properties, the hysteresis model cannot precisely describe the hysteresis
nonlinearity. Furthermore, the inverse hysteresis model cannot completely cancel the
hysteresis effect. Thus, the open loop compensation method is not enough, and an on-line

identification or adaptive parameter identification methodology is required. These will be

introduced in forthcoming chapters.
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2.6 Summary

In this chapter, the classical Preisach model and its properties have been described and
mathematically proven. The implementation method to model the Preisach class of
hysteresis by identifying its FOD surface function or density function, and finding the
memory interface has been developed. An associated approximated inverse hysteresis
model has been derived. Some calculations have been performed to identify the density
function, to find the memory interface, to obtain the output of hysteresis, and to verify the
properties of the Preisach model. A simulation of open loop hysteresis compensation has
been carried out to illustrate the modeling process and reduction effect to the hysteresis.

In this applicable method, the memory interface L(¢) is very important because the

off-line parameter identification depends on it, the calculation of the hysteresis output
depends on it, and the inverse hysteresis operator is based on it. This method is mostly
adopted in existing literatures. This method, in some way, simplifies the calculation to
obtain output of hysteresis because it divides the entire Preisach plane into two domains
with uniform outputs of relays. It is acceptable for off-line identification and simple on-
line compensation.

However, for an input processes with an irregular variation in the real time
environment, there is extremely large amount of calculation involved to find memory
interface line, and to numerically implement the hysteresis model as well as to
compensate the hysteresis using the inverse hysteresis operator.

To find memory interface line, the local input extrema are required to be found first,
and then according to the wiping-out property of hysteresis, these extrema are sorted out

at every moment of time during the process. The more irregular variation of an input
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processes is applied on the hysteresis, the shorter sampling time is required to be adopted,
and then the finer cells are created by dividing the Preisach plane, finally the more
calculation is involved to seek the memory interface line.

Also the more irregular variation of an input process is applied on the hysteresis, the
more vertices on the memory interface line are formed, and the more narrow strips on the
§7(t) domain are sliced into by these vertices, finally, the more calculation is involved in
the numerical implementation. This can be understood from the Fig.2.22 and the equation
(2.41).

Since the inverse hysteresis model uses (2.41) several times during every sampling
period, the cost of calculation becomes extremely large for the compensation methods
based on seeking memory interface line.

On-line adaptive control configurations have more applications in industries. These
configurations require more effective methods to capture the dynamics of systems.
Therefore, in the next chapter, a direct method will be introduced to implement the

Preisach class of hysteresis.
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CHAPTER 3

IMPLEMENTATION OF LINEARLY

PARAMETERIZED PREISACH HYSTERESIS
MODEL WITHOUT USING MEMORY INTERFACE LINES

3.1 A Direct Method to Implement the Preisach Model

In chapter 2, a numerical method procedure was introduced to implement the Preisach
model using memory interface lines in the Preisach plane. Due to the extremely large
amount of calculations required to sort the dominating input extrema of hystersis at every
moment of the entire process, it is very difficult to divide the Preisach plane into a large
amount of strips, especially when the staircase shape memory interface line has many
vertexes. Also, it is usually difficult to formulate a suitable weighting function u(p,p,)
which is expressed in double integral form over the Preisach plane T. Thus, it is difficult
to implement real-time control of systems with hysteresis using the numerical method.

To avoid the complexity of the numerical method, in this section a direct approach
will be discussed. For this method, at every moment of the entire hysteresis process, the
output state of every relay will be calculated according to the definition of the relay; then
the output of each relay will be weighted with its density factor; and finally all weighted
outputs of relays will be summed together to calculate the output of the hysteresis at any
moment of time.

3.1.1 Linearly Parameterized Preisach Model

Although the Preisach hysteresis model can be described in integral form by equation
(2.1), it is difficult to directly calculate the output of hysteresis, as explained by the above
two reasons. Thus, to circumvent these difficulties, the integral form of the Preisach

hysteresis model will be transformed into an expression in linearly parameterized style.
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Fig.3.1 Dividing Preisach plane T into small cells
To linearly parameterize the Preisach hysteresis model, first uniformly divide the

Preisach plane T with / horizontal lines and / vertical lines into N =(/ +2)(/ +3)/2 small

cells (see Fig.3.1). The coordinates (f;,a;) of the lower-left nodes of cells can be

expressed by
vi—vT
=(j-1 +v
B,=0 )1+1 v
with i,j=12,..,(0+2); i2]j 3.1)
vi—v”
i1 R
a;=(-1) | +v

After the dividing of the Preisach plane T, the total contribution of relays in each cell
to the Preisach hysteresis model (2.1) can be lumped together as the effect of a relay

associated with the lower-left node of the cell. In this way, one has

Pag P VO1= [, 1@ D7y lv()Ndadp (32)

H el

where £,,4, is called the lumped density of the ijth cell to its lower-left node (B,a,). As
[ is selected large enough, the dividing of the Preisach plane T becomes very fine, the

cells become very small, and the output values 7ap[v(t)]of all relays on the ijth cell can

be approximately considered as an identical value as the output value }Z,iﬂj[v(t)] of the
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lower-left node of the ijth cell. Thus (3.2) is rewritten as

Pap, P V1= 7y VO [, (e, P)dadp (33)
and therefore, Pays, = ”, ., M@, B)dodp (3.4)
A I+2 i
Define o= [ ua, Pdadf=33" | L \.. A Pdadf (3.5)
A 1+2 i
and Frag, =Hap, Q0D Hag,) (3.6)

i j=1
wherec is the total density value of the Preisach hysteresis and u, 4, are the normalized

densities of all lower-left nodes on the Preisach plane T, so that
+2 i
53 oy =1 67
i Jj=l
+2 i +2 i +2 i
Furthermore DD Cllngy, =CD D Hhugy =C= D f L . A(aPdadB  (3.8)
i Jj=l i j=l i =l
Considering (3.4) and (3.8), one has
Pa,g, = Chna, g, (3.9)

Indeed, as the number of dividing lines/ — oo, each cell degenerates as its lower-left

node. Thus, onehas p, 5, = Chhgs, ™ Hap,

For an acceptable modeling precision, a large enough / results in equation (3.3), and

then the Preisach hysteresis model (2.1) can be linearly parameterized as

42 i

u®=33 [[, 1@ B)f., MO Madp

=l j=1
42 i

=22 7 VO], e Brdadp

=1 j=
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1+2 i

=22 Payp, P O]

i=1 j=1

=@'F(v) (3.10)

where FO) =[Py Parppp Pasppys Ve aapy g )= Pt Pase oy (3.11)
A

and e =[P Paspys Poogpy Pspyo+3P 1y =L O Bosevisensby ] (3.12)

are N dimension vectors, respectively, and Pa,g; are calculated by (3.5), (3.6) and (3.9).

3.1.2 Simulation Principle

This direct method is to implement the linearly parameterized Preisach hysteresis model
ut)=H[v()]=0"F(v) (3.10)
The finer the Preisach plane T is divided, the larger the vectors ® and F(v) are obtained,

and the more precisely the linearly parameterized Preisach model approaches the original

Preisach hysteresis model.

To calculate the output of hysteresis using (3.10), the lumped densities Pa,p; in the

parameter vector ® are required to be known. The lumped densities Pa,p; are related to
the density function or distribution 4, of the hysteresis by equations (3.5), (3.6) and
(3.9). Thus, it is still required to identify the densities H,p of the hysteresis in advance. It

can be carried out by the least squares method to fit an assumed density function to all
measured output data on the FOD surface, or by the interpolation method. These methods

have been systemically presented in chapter 2.
Output values Parp ; of relays, which can only be two alternative values as +1 and -1,

are the elements of the vector F(v) . Theoretically, they can be determined by the
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definition of the relay. To model and simulate systems with the Preisach class of
hysteresis, one has to construct the elementary operator (relay) of the Preisach model
according to its definition. Fortunately, there is an elementary nonlinear operator (relay)
in the library of the simulation software Simulink for real time simulation or real-time
control. Thus, it is not necessary to write an s-function to describe the relay of the
Preisach model. Instead, the existing relay in the Simulink package can be conveniently
used to express the Preisach relays, and to establish a model for real-time control of
systems with hysteresis.

To express the “relays” in the Preisach model with the simulation “relays” in Simulink,
the relay defined in the Preisach model and the relay in the library of the Simulink
package are examined first as below.

The “relay” defined in the Preisach model has two input thresholds, a and #, with a
restriction thata > £, and has two saturation states with output values as —1 and +1.

This means that the output of the relay will switch to +1 as the input increases above the
upper threshold e, and the output of the relay will switch back to —1 when the input

decreases below the lower threshold g (see Fig.2.1). There is no restraint on the
symmetry of ¢ and £ about the output axis 7.5 - On the other hand, the “relay” defined
in the Simulink package is similar to the “relay” defined in the Preisach model. It also has
two asymmetric input thresholds o and £ satisfying the condition « > . But, unlike

the two fixed output states “+1” and “-1” defined in the Preisach model, the Simulink
“relay” has two user defined parameters as “output when on” and “output when off”’ (see

Fig.3.2).
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Fig.3.2 A relay in the Simulink package

3.1.3 Simulation of a Relay

To define the parameters of the Preisach “relay” with respect to the Simulink package,
the parameters o and f are set as @« =2 and S =-2 in the pop-up menu of “Block
Parameters: Relay”, and the output states “the output when on” and “the output when
off’ are assigned values as “+1” and “-1”, respectively. The input signal applied to the
simulation block “relay” is chosen as v(f) = —4cos(¢) . This completes the modeling of the
Preisach “relay” in the Simulink environment. Running the simple simulation model, the
output-input relation of the block “relay” can be obtained. The relation is identical to the
elementary operator defined in the Preisach model with two thresholds as a =2

and f =-2. The simulation model and the results are shown as in Fig.3.3 and Fig.3.4,

respectively.

vl g=i |

Cosine Wave Relay

Scope

Fig.3.3 Simulation model of the Peisach “relay”
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Fig. 3.4 Results of the simulation of the Preisach “relay”

3.1.4 Simulation of a Rough Hystersis

After modeling a relay in Simulink, a rough hysteresis can be modeled as below by

superimposing a few weighted relays.

Assume there are three points, p,(-3,-2), p,(-3.5,3)and p,(1.5,2), on the Preisach
plane T to represent three relays, (4,,a,), (f,,@,) and (f,,a;) (see Fig.3.5). The
hysteresis input range is assumed asv(f) e[v',v']=[—4,4]. Also densities of the three
relays are assumed as g4, =0.3, u, =0.45, x4, =0.25, respectively. The parameters

a,,0,,a5; B, [5,,0,; and the densities 44, u,, 44, of the three relays are expressed in three

vectors as
a=[o,q,,a]=[-2, 3, 2]
B=15,5B]1=[-3, -3.5 15]
and M=, 1, 14,1=03, 045, 0.25].
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Fig.3.5 Relays on the Preisach plane T’
The three vectors o, £, u are entered into the workspace of MatLab in advance, and
the relay parameters in the Simulink package refer to the values of the three variables
a, fB, u by calling their values in the MatLab workspace. The parameters “output
when on” and “output when off’ of these relays are assigned values as “+1” and “-1”,
respectively. In this way, the “relay” in the Simulink package becomes a vector
consisting of three relays, and the output is also a vector. As this output vector is made as
an inner product with the density vector ®, which is obtained by equations (3.5), (3.6),
(3.9) and (3.12), a scalar output is obtained as the output of the hysteresis at any instant of
time. When the same continuous input signal v () = —4cos(?) is applied to the vector
relay, a rough hysteresis is formed. The simulation model and the corresponding results

are shown as in Fig.3.6 and Fig.3.7.

A 4

=
- > }’ '
[ R
inputt hiad Dot Product

-

Density vector

Fig.3.6 Simulation model with vector relay
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Fig.3.7 Simulation results for a rough hysteresis

3.1.5 Simulations of Smooth Hystersis Loops

In the above simulation model, if the dividing of the Preisach plane T becomes finer to
generate smaller cells, and a continuous density function is divided in the same manner to
create a vector @ consisting of lumped densities of all these small cells, a smoother
hysteresis can be produced. For example, if / =100 horizontal lines and / =100 vertical
lines are used to uniformly discretize the Preisach plane T into N = (/ +2)( +3)/2 = 5253
small cells, N relays corresponding to N left-lower nodes of & small cells are obtained.
In this case, the density function is assumed as u(a,f)=1/5253, which defines a
uniform density distribution over the Preisach plane 7. For an input signal
v(t) = —6e "% cos(t), the simulation results of the model in Fig.3.6 are shown as in
Fig.3.8. Due to the exponential decay of the amplitude of the input signal v(¢) , the output
of the hysteresis cannot always reach its negative and positive saturation states. When the
local input extrema cannot exceed the hysteresis input region[v™,v*]=[-4,+4], the minor

loops of hysteresis are formed inside the major loop.
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Fig.3.8 Hystersis formed with normalized uniform density distribution
When the input signal applied to the hysteresis remains asv(¢) = 6> cos(¢), but

the density function changes as a normalized bi-variant normal distribution defined by

+2 i

lu(ai’ﬂj)=:u'(ai’ﬂj)/22lu'(ai’ﬂj) (3.13)

i=l j=1

where /=100, i> j=1,2,...,/+2, and

L (@, +a0)? (B, +60)?)

L 2 (3.14)

270

M (e, B)=

witho =1.8, @, =-0.1and B, =0.6, a smooth hysteresis but with a different loop shape
from that of Fig.3.8 is formed. The simulation results are shown as Fig.3.9. Note that the

density vector ®7 =[6,,6,,...,0,s, 1is also calculated by equations (3.5), (3.6), (3.9) and

(3.12).
6 Input Signal Output of actuator Hysteresis of actuator
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. i
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Fig.3.9 Hystersis formed with a normalized bi-variant density distribution
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For the above two cases, in the beginning of the process, the local input extrema
exceeded the hysteresis input region [v',v"]=[—4,4] which resulted in the saturation

states to be reached, and the major loops were formed. As the amplitude of the input
signal exponentially decayed so that local input extrema remained inside the hysteresis
input region[v™,v"]=[—4,4], the minor loops were traced inside the major loops of the
hysteresis. The shapes of the hysteresis loops in these two cases were different just
because a uniform density distribution was used in one case, while a more complex
density function was chosen in the other case.

Remark: for an actuator with a certain hysteresis input region [v_,v*Jto create a

hysteresis nonlinearity, the fineness of dividing the Preisach plane T determines the

smoothness of the simulated hysteresis loops; the amplitude of the input signal v(¢) to the

actuator determines whether the minor loops and the major loop appear or not; the
density distribution of the relays influences the shape of the hysteresis loops; and the sum
of all the density factors determines the outputs of the hysteresis saturated states. In the
above three examples, the summation of densities are all specially chosen as 1. Thus all
these hysteresis have the same saturated outputs (¢~ =-1 and u* =1).

Compared with the method introduced in chapter 2, which implements the hysteresis
through the memory interface line, this direct method is simpler and involves less
calculation. In this method, the output of every relay is assigned directly and individually,
and the calculation just depends on the complexity of the hysteresis operator (relay) and
the fineness of the dividing of the Preisach plane 7. No mater how complex the input
signal is applied on the system, the strictly defined operators (relays) can directly and

promptly give the output values for every point in the Preisach plane T. Consequently, the
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calculation for the hysteresis output is straightforward, i.e., it is a summation of weighted
outputs of all relays. This method avoids the necessity to find the memory interface line
at every moment during the entire process and involving the complicated formula (2.41).
This useful and simple method will be applied in forthcoming chapters where even more
complex operators are employed to describe hysteresis.

3.2 Open Loop Hysteresis Compensation

In_hys

Input signal

Inverse hysteresis
"

Density "
factors Hysteresis

Compensation

Fig.3.10 Open loop compensation using the approximated inverse Preisach model
According to the algorithm of the approximated Preisach inverse model introduced in
subsection 2.4.2 of chapter 2, a simulation subsystem can be established in Simulink as
the “inverse hysteresis operator” which will be used in the open loop compensation
configuration, as shown in Fig.3.10. In the figure, the ‘inverse hysteresis’ block
represents the “inverse hysteresis operator” subsystem described in subsection 2.4.2.

Figures 3.11 to 3.13 show the internal programming of this block.

>uu(t,_,)> —

In1

P|in2 do{... }while Out1
ud(t;)

CD >

In2

In3

While subsystem

Fig.3.11 Inverse hysteresis subsystem of Fig.3.10
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Fig.3.12 While subsystem in the inverse hysteresis subsystem of Fig.3.11
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- Switont

Fig.3.13 Subsystem of adjustment for variation of input of Fig.3.12
In the subsystem “inverse hysteresis” (see Fig.3.11), the block “memory” is used to the
previous sampled input value u,(¢,_,), i=1,2,..n is the sampling sequence. u,(¢, ,) and
the current sampled input value u, () are fed to the “while subsystem” through the ports
“inl” and “in2” to calculate the variation trend of the input u,(¢). This adjustment is

done by the subsystem ‘jjudgment for variation of input”’ (see Fig.3.13). The subsystem
“while subsystem” (see Fig.3.12) acts as a “while loop” for approaching the final value of

v(¢) for a desired u,(f).

To judge the variation of input u,(¢) , in Fig.3.13, the previous sampled input
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valueu,(¢,_,) is stored, and then the current sampled input value u,(z,) is subtracted by
the u,(n—1) to generates the judgment conditions as
(gate =1 if u, (8, ) <u,(t,)

v8ate =2 if u, (¢, ))=u,(t)

Lgate =3 if u,(¢_)>u,()

The value of the “gate” is used to control the channels of the “multi-port switch” and the
“multi-port switch 1” in the subsystem “while subsystem” to allow the corresponding data
flow into the “while iterator” and the “hysteresis model”’. The block “while iterator”
functions as the approaching algorithm, and the “multi-port switch I controls the
approaching direction. The “hysteresis model” includes the “vector relay” and “dot
production” in Fig.3.6. The signal from port “in3” of the “while subsystem” in Fig.3.13 is
the density vector of the hysteresis model. The signal from “out!” of the “while
subsystem” in Fig.3.13 is the calculated v(¢), which is passed to the hysteretic actuator as
its input.

Referring to Fig.3.12, for example, as the input value u,(¢) is increasing at a moment
of time#, , the judgment of u,(¢,)—u,(t, —1) > O decides "gate=1", and corresponding
branch approaching _u(t;) >u,(t, —1) is allowed to go through “multi-port switch” and
to active the do-while loop, “while iterator”. Meanwhile, the previous calculated

candidate v(¢,_,) from “memory_increase” is allowed to go through “channel 1” of the
“multi-port switchl”. And then, v(f_;) is updated as a new candidate of v(z,) by

increasing a step dv . This updated candidate v(¢,)is then entered to the subsystem
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“hysteresis operator” to calculate a new approaching u(t;) . The “while_iterator” loop
continuous to calculate an integrate increasing by 1 so that the candidate value of v(z,)
increases by an approaching step dv  while the logical condition
u(t,) > approaching _u(t;) is still valid. Similarly, when the input to inverse hysteresis
u,(t;) changes to decrease, both the “multi-port switch” and the “multi-port switch 1"
open their “channel 3” to find the approximated v(z,) . When the input to inverse
hysteresis u,(,) arrives the positive or negative saturation states, i.e.,u,(t,) =u,(t_,), the
“while_iterator” loop is skipped, the previous calculated candidate v(¢,_,) from
“memory_saturated” is directly pass through the “multi-port switch 1’ as the
approximated v(f,) .

Assume a hysteresis with a hysteresis input region[v’,v']=[-4,4]. If the density
distribution of the hysteresis is exactly known as equations (3.13) and (3.14) witho =1.8,
a, =-0.1and £, = 0.6, the Preisach model u(¢) = H[v(¢)] represented by equation (3.10)
and the corresponding approximated inverse Preisach model v(f) = H'[u(f)] from

subsection 2.4.2 can be constructed. The open loop compensation configuration (see
Fig.2.28) can be used to eliminate the nonlinearity of the hysteresis through cascading
these models. Fig.3.10 is the simulation model for the open loop compensation. In this
simulation model, the input signal applied to the inverse hysteresis model is set as the

desired output u,(¢) from the hysteresis, which is given by

u,(t) =—-e "% cost (3.15)

so that the approximated inverse Preisach model is expressed as
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W(t)=H '[u,(1)]. (3.16)

When the exactly known densities are used in both models, the open loop compensation
configuration results in a complete cancellation of the nonlinearity of the hysteresis

because the output of hysteresis is operated as

u() = Hv(O]= H{H [u, ()]} = u, (1) (G.17)

The simulation results are depicted as Fig.3.14.

Inverse Hysteresis Hysteresis Compensation effect

u(t)
©
2,
u(t)

I
o

(=]

out%ut of actuator
&
Outgut of actuator

Calculated input to actuator v(t)
A & & 4 © a v w A

4 -1

- y ; g . ) 1
DLsired-%fltpm o“ actua‘{osr Ud(t)1 -+ Ingut to adtuator V{t) Besire-g gutput gf actugtsor ud(t)

Fig.3.14 Exact compensation results
From the simulation results (Fig.3.14), it is realized that the compensation of the
hysteresis is almost perfect even though there still exists a small error. This error is
caused by using the approximated inverse hysteresis rather than the exact inverse
hysteresis. The error can be considered as a computation error. If the approaching step
dv of the approximated inverse algorithm is chosen as a very small constant asdv ~ 0,

the computation error approaches zero.

Outt

Compensation
Input signal effect
Inverse hysteresis
guessed
®
Guessed density vector Density vector Hysteresis

Fig.3.15 Approximated compensation using the approximated inverse Preisach model
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Due to dynamics existing in the hysteresis and inaccurate identification of the densities,
the density function cannot be exactly known. Unlike the exact open loop compensation,
estimated densities are always applied to the inverse model to reduce the hysteresis
nonlinearity. The simulation model for open loop compensation is shown as in Fig.3.15,
where the guessed density vector © is calculated by equations (3.5), (3.6), (3.9), and
(3.12) ~ (3.14) witho =1.6, o, =-0.1and B, =0.6; while the real density vector ® is
given as that used in the previous example of exact compensation configuration. The
input signal (desired output from hysteresis) u,(¢) and other conditions remain the same
as that in the previous example. The compensation effect is illustrated as Fig.3.16.

Apparently, there is relative large compensation error in this approximated

compensation scheme. Compared with the output amplitude of the saturation
state| u- |5 4" |=1 , the maximum relative error is about 13% of the output amplitude (see

Fig.3.17). This error is caused by the inaccurate identified densities and the calculation
error in the inverse model.

To reduce this compensation error, it is necessary to implement an adaptive approach

to modify the guessed density vector ® . This compensation configuration will be

discussed in the next subsection.
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3.3 Adaptive Compensation to Input Hysteresis of Linear Systems
3.3.1 Design of a Gradient Adaptive Controller

For a hysteretic actuator, it can be described by a nonlinear operator u(t) = H[v(?)]

mapping the input v(¢) of the actuator into its output u(f) . Expressed in vector

form H(v) = ®" F(v), where O is the density vector of relays and F(v) is a vector of
outputs of the relays, then the hysteresis model is suitable for the gradient adaptive

control method. Let the output u(z) of the actuator be connected to a linear plant whose
characteristics are assumed be totally known. Namely, the linear plant is assumed can be

totally described by a transfer function G,(s). Rather than measuring the actuator output

u(r) because of sensor inconvenience and cost, instead the output y of the plant is

measured and is used for the design of an adaptive controller to reduce the hysteresis
effect.

Assume the real hysteretic actuator can be exactly described by the linearly
parameterized Preisach model H(v)=®"F(v) with an exact density vector ® and a

vector F(v) containing outputs of adequate relays. For a fixed dimension of the
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vector F(v) , some limited knowledge ¢ regarding the vector ® can be predicted in
advance through testing the actuator; where § is called the estimated density vector. For

an input v(f) applied to the actuator which is modeled by an estimated Preisach
model H W=0"F (v), the calculated output 7(¢)is different from the real output u(¢) of
the actuator. Consequently, the calculated output () of the modeled plant ép , which is
considered to be an exact model of the real plant G, without any modeling errors

(ép =G,), is different from the measured output y(¢) of the actual plant. Therefore, the

actual plant output y(¢) and the modeled plant output $(¢) can be expressed,

respectively, by

y=H®W»)G, = @TF(v)Gp (3.18)
§=HWG,=0"FMG, . (3.19)

There exists an error between the two outputs as
e(t) = y(t) - y(1)
=[HW)-H)IG,
=(®-0) F)G,
=0"F(v)G, (3.20)

~ A
where @=

©-© is a vector consisting of density errors.
Based on the estimated Preisach model A(v)=®'F(v), an inverse hysteresis H

which has the same estimated density vector ® can be constructed. In order to cancel or

reduce the hysteresis nonlinearity, the inverse hysteresis A~ is cascaded with the
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actuator H(v)as the Fig.3.18. Due to the inaccurate ®, the inverse hysteresis model

H™' cannot perfectly cancel the actuator hysteresis H(v). If the parameters © are
estimated more accurately, the compensation effect is more acceptable. Thus, it is
required to construct an adaptive controller (see Fig.3.18) to update the estimated ©® so
that it approaches the real ®. Please be noted that H(v) = ® F(v) in Fig.3.18 represents

the real actuator for simulation.

u‘(tz ﬁ({; V(t)=IH(V) u(t); Ci (s)

0(0: ép(s) \

\ 4
XI>
2

Adaptive|
law

Fig.3.18 Gradient adaptive compensation configuration
The output error between the real system and modeled system is simply described by

(3.20). To ensure signal boundedness, a normalized estimation error [27] is introduced as

y=p (?)TF(v)Gp

g=%= —~ ——=, (3.21)
where, m* =1+ n, = 1+ (F(V)GP)T(F(V)GP) . (3.22)

and n, is the normalizing signal designed so that

Fv)G,

n

E)

e L

oo

As in section 4.34 of [27], typical choice for n, are n, =[F (v)Gp]T[F mG,1,
n, =[F(v)G,] PIF(v)G,]for P=P" > 0,etc.

Consider a quadratic cost function given by
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A _&e'm*  (O'F()G,) (-0'F(G,)
J(®) = o= o = = (3.23)

The minimizing trajectory for the cost function (3.23) is given by the negative of the

gradient of J (@) as

A

®=-TVJ(©)

r (y-O"F(v)G,)F()G,

2

m
= F@%F G,
~TF ()G, (3.24)
Equation (3.24) results in the adaptive update law as
® =T F()G, (3.25)

where, ' =T > 0 is a positive scaling matrix of adaptive gains. The larger I is chosen,

the faster © converges to its true value ® .

So far the choice of parameters ®7 = [01,92,...,9,.,...,9]\,] 18 non-restrictive. If one has an

estimate from a prior knowledge on the maximum achievable output, u*, then clearly

any individual é, would never be greater than ", otherwise,
N N
u(®)=Y 67,=Y 0,(+)>u* for v(©)>v*
i=l i=1

N N
and u(®)=Y 67, =2 6(-)<-u"=u"  for v(t)<v
i=1

i=1

which conflict with the positive and negative saturation states. Therefore, a safe upper
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bound of max(6,) = «* must be used to define a set Q for @ as

dcQ=(beR" u" ~6,20, i=12,.,n} (3.26)
3.3.2 Simulation Studies
For simulation purposes, the real hysteretic actuator in the configuration of Fig.3.18 is
represented by the Preisach model

HW)=0"F(v)
The accurate density distribution of the hysteresis model is rearranged into a one-

dimensional vector as
T
e =[91’92a'-'9‘9ir--’91v]=[Pnapzl’P22’P31’--~’P(1+2)(1+2)]

where /=100, i>j=12,..,/+2, N=(+2)( +3)/2=5253,and

142 i

Py = (@ B)) = e, )1 DD (@, B)  (3.27)

=1 j=1

1

with LP. )=
He, B)) Y-

S expl (@ + ) +(8,+ A7) (3.28)

In (3.28) the parameters «,, ), and o are chosen asa, =-0.1, £,=0.6 ando =1.8.

The known linear plant is described by the transfer function

4
s+4

G,(s)= (3.29)

with initial condition y(¢)) = x(t,) = —1.
The desired input u,(f)to the plant G,(s), which is also treated as the input of the

inverse hysteresis, is defined by

u,(t) =—e " cost (3.30)
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A

The estimated density vector © = [H,,éz,...,ti,...,é]v] is calculated by equations (3.27)

and (3.28) with the same parameters except o =1.6 which defines a different density

distribution.
The inverse hysteresis H “(u,)is calculated by the approximate inverse algorithm

introduced in subsection 2.4.2 of chapter 2 based on the estimated hysteresis H ) with

the estimated density vector @7 .

The adaptive control law is as given in equation (3.25). The above conditions for the

simulation are listed in table3.1 and table 3.2.

Table 3.1 Actual hysteresis and estimate hysteresis

Characteristic Actual hysteresis Estimated hysteresis (initial estimate)
Discretization number /=100,i > j =12,...,/+1 =100, 2 j=1.2,...,1 +1
Number of nodes N=(1+2)(1+3)/2=5253 N=(+2)(I+3)/2=5253
Hysteresis input region v(¢) e [v™,v'] =[-4,+4] W) e[v ,v']=[-4,+4]
1 Sl <a+a0 1 5@t {B+a7)
Density distribution a,B)=——e e, B,)=—-—e2
y ey, f;) Py 2GRN Py

a,=-0.1,43,=06, andoc =18 a,=-0.1,5,=0.6,ando =1.6

41 i I+1 i

Py = /J(a,-:ﬂj)/ZZ/u(ai’ﬁj) Iby =la(ai’ﬁj)/zzﬁ(ai’ﬂf)

i=l j=l i=l j=1
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Table 3.2 Characteristic of plant

Input signal
Plant transfer function

with initial condition

-0.02¢ cost

u,(t)=—e
G,(s)=4/(s+4)

Y(to) = x(t) = -1

Adaptive law @ =T&F(v)G, with[' =15
H
® ® Plant y
X = Ax+Bu -
Density vith
vector
Input Actuator
Signal H -l Hysteresis e +
< U <
d -
6 ::I_,@ o 6
Data Store Data Store  gybsystem2
Memory 6 Write (Adaptive law) O
Inverse H-
Hysteresis | 4 ;
> X = Ax+Bu -
(,.:.) @ = Cx+t
' Plant
Data Store Read Simulated
(Guessed]?ensnty) Hysteresis
vector

Fig.3.19 Adaptive compensation of hysteresis of actuator with hidden output
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Fig.3.21 Output error of a linear plant with input hysteresis
through compensation by a gradient adaptive inverse hysteresis
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Fig.3.22 Convergence of estimated density vector &
The Simulink simulation model is shown Fig.3.19. The adaptive controller (see

Fig.3.20) is a subsystem of the simulation model. The adaptive gain I'is chosen through

iterative simulation. The larger I' is chosen, the faster ® converges to its true value ® .
But too large I' causes much oscillation in the control system. Here, the adaptive gain is
chosen as I'=15. Performing the simulation obtains the output error of the system as

shown in Fig.3.21. The convergence to zero of the output error means that the estimated

model density vector ©® approaches to the real ® to completely cancel the hysteresis
effect of the actuator. The convergences of three adaptive densities are shown in Fig.3.22.
In this chapter the convergence analysis is postponed and will be described in chapter 5.
However, for an unknown or partially unknown plant, this adaptive compensation
configuration is not enough to guarantee that the plant will produce a desired output or
will be able to track a reference model. For this situation, other types of adaptive robust
controllers are needed. Also, in the above gradient adaptive compensation configuration,
the linearly parameterized Preisach hysteresis model has a parameter vector ® of
extremely large dimension to be updated, for example N =5253. This is the critical

shortcoming of the model which sometimes makes the real-time adaptive control systems
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not implementable. Thus, a more effective hysteresis model is required to be developed.
3.4 Summary

This chapter discusses a direct method to model the Preisach class of hysteresis through
the linearly parameterized Preisach hysteresis model. Simulation principles for relay and
smooth hysteresis loops have been presented systematically. Online model parameter
identification and the adaptive inverse compensation method through the gradient
adaptive law have also been explained. Some simulations have been conducted for
verifying the introduced methods. The methods for modeling hysteresis and for the
compensation of hysteresis have established foundations for more complicated hysteresis

elementary operators which will be introduced in the forthcoming chapters.
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CHAPTER 4

MODELING AND COMPENSATION OF HYSTERESIS BY
PARAMETERIZED KP HYSTERESIS MODEL

M. A. Krasnosel’skii and A. V. Pokrovskii had presented a hysteresis operator called the
KP model in reference [12]. The method can be adopted to represent input hysteresis of
systems with saturations. The KP model has the same integral form of weighted
elementary operators as the Preisach model. But, unlike the Preisach relay being a
discontinuous function on the Preisach Plane and only having two saturation output states
(+1,-1), the elementary operator of the KP model which is referred to as the KP kernel is
a continuous function on the Preisach plane, and has minor loops within its major loop.
The KP kernel is a more compact elementary operator than the Preisach relay because it
can be considered as a local memory hysteresis to be expressed as an integral of weighted
relays using the Preisach representation [13]. The relationship of two elementary
operators guarantees that the KP model has the same properties as the Preisach model.
These advantages enable the KP model as a more effective mathematical model to
formulate the Preisach class of hysteresis.

4.1 Krasnosel’skii-Pokrovkii (KP) Model

Pyea
r(v-p,):ABCDE
r(v-p,):EDFBA
Major loop:
ABCDEDFBA

Minor loop:
ABCD'F'BA

Fig.4.1 KP kernel
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As presented in reference [40, 41], the Krasnosel’skii — Pokrovkii (KP) hysteresis model

can be expressed as an integral of kernels (see Fig.4.1) over a specific domain by

u(t) = HVI@) = [k, v, &,10)u(p)dp 1)

where v(¢) : input to the hysteresis;

u(t) :
H():

P

AON

u(p) :

output of hysteresis;

an operator to transform the input v(¢) into the output u(z);

: Preisach Plane (see Fig.4.2) over which hysteresis occurs. It is defined by

P={p(p,,p,)eR* V' —azp,>p >~} 4.2)
where v-and v* represent input values of negative and positive saturation

states of hysteresis, respectively. a is the rise-constant of the kernel £,

which will be explained later. The range ofv(r) e[v",v*] represents the

hysteresis input domain. If the input exceeds the range the output of
hysteresis remains at its saturation states. Please note that Preisach
plane is notated as P rather than 7 as in Chapter 3 in order to find the

relation between the Preisach model and KP model;

: kernel function which gives output values of each KP kernel defined by a

pair of parameters p(p,,p,)€ P (see Fig.4.1) as it is subjected to the
input v(¢);

a variable to memory the previous extreme output of kernel parameterized
by p;

Density of the kemnel k,, which is utilized to weight the output of the kernel
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k,. Each point p(p,,p,)in the Preisach plane P is associated with a
kernel k, and has its specific density value u(p,, p,). The function to

describe densities 4(p,, p,) of all points in the Preisach plane P is called

the density function or density distribution of the KP model. Please note
that the density function of the KP model is different from the density of

the Preisach hysteresis model for modeling a particular hysteresis.

i~y 4P2
viao :

REEwwe

i=1~(L+1)

Fig.4.2 The Preisach plane P

The integral KP model given by equation (4.1) can be interpreted as a parallel

connection of an infinite number of weighted kernels (see Fig.4.3).

-| £ —-lz@i:pz) |

ﬂ: F :‘{’M,@)F#:)

Fig.4.3 Parallel connection of weighted kernels

The kernel function £ [v,£,]¢)(see Fig.4.1) with parameters ( p,, p,,a) is expressed by
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max {& (),(\)-p,)} for v=0
k,[v,¢,10) = (4.3)
min {G,(#),\({H)-p)} for v<0

where the value of the memory variable ¢,() depends on the kernel k, and is updated
whenever the rate of v(¢r) changes sign. For example, if the input v(7) starts from a value
less thanv’, i.e., w(t) <v,both initial values of £()and outputk [v(s),¢,(5,)] equal -1. As
the input v()monotonically increases from v(z,)to a valuev(z,) and then tends to decrease
at time+, , v(¢)switches sign at the timey,, i.e., sign(v(,")) = —sign(¥(t, ")) - Each & (1,) updates
tok [W#).6, ()] and retains the value until the input v(¢) tends to increase again at a timez,,
ie., sign (W(t,"))=-sign (W(t,"))=-sign (V(")).

Thus, the memory variable £, (¢) is expressed as

[ -1 if t=t,

&=y KMO.G()] i t=t>1, and sign ("))=-sign (X)) (4.4)

KA, if t,2t>t, and sign ((t"))=sign ("))
for i=1,2,.... representing the i th turning point. Equation (4.4) will be made clearer by
some case studies presented below.

In equation (4.3), the boundary functions r(W¢)—p,) and r(v(f) - p,) form the major
loop (ABCDEDFBA) of the kernel k, between -1 and +1(see Fig.4.1). Any other loops
which locate inside the major loop and are not enveloped by the boundaries
r(W(t)—p,) and r(W(t)—p,) are called minor loops of the kemel k, , for example,

(ABCD'F'BA) . It can be seen that the width of the kernel is determined by the switching
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input values, p, and p,, while the transfer slope between —1 and +11is determined by the

rise-constant g . The ridge function »(v(¢)) shown in Fig.4.4 is given by

[ -1 w(t) <0
rvl(®) =5 —1+2v(t)/a 0Lv(t)<a 4.5)
| +1 v(t)>a
Ar(v)
+1
v
>

van

Fig.4.4 Ridge function of KP kernel £,

-1

Considering equations (4.3), (4.4) and (4.5), the KP kernel can be explained as
followings:

Case A: As the input v(¢) keeps increasing from a value less than p, after the initial
time t=0 , (v(t)<p, , W(t)20 ), according to equation (4.4), the memory
state §,(¢) = —1because the hysteresis has not changed the inputs variation sign from the
beginning. Referring to equation (4.5), one has r, =r(v(t) — p,) = -1 sincev(t) — p, <0.
From equation (4.3), the output of the kernel is calculated as

k,[v,6,1(t) = max {&, (), r(v(t) - p,)}

=max(-1,-1)=—1 for v(£)>0 (4.6)
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Case B: As the input v(¢) passes the value p, and keeps increasing, (v(t) > p, ,v(t) 20 ),
the kernel hysteresis moves along its ascending ridger, = r(v(t) — p,). Sincev(t)> p,,
from the ridge function (4.5), one has
r(v(t) - py) =-1+2-[v(t) - p,]/a>-1. 4.7
The memory state £, (¢) = —1because the input v(f) remains increasing. From equations
(4.3) and (4.7), the output of the kernel is obtained as
k,[v,6,1(2) = max{&, (#), r(v(t) - p,)}
=max(-1,-1+2-[v(t) - p,1/ a)
==1+2-[v(t)-p,]/a for w(t)=0 (4.8)
Case C: Specially, the kernel hysteresis will get its positive saturation state when the
input v(¢) passes the value p, + a. That means the output of the kernel equals +1. This
fact can also be determined by equations (4.3), (4.4) and (4.5). Sincev(t) — p, > a, one
hasr, = r(v(t) — p,) =1. From equation (4.3), the output of the kernel is calculated as
k,[v,6,1(2) = max{&, (&), r(v(t) - p,)}
=max(-1,+1)=+1for v(#)20 (4.9)
Case D: If the input v(¢) changes its variation trend to decrease after increasing to a
value v(¢') between p, and p,+a , (e, p,<v({)<p,+a, v(t)<0 for t>1"),
according to equations (4.4) and (4.8), the memory state $, @) =-1+2-[v(¢)- p,)/a for

t2¢ because the new memory state will be updated to store the previous output of
kernel at the instant ¢'.

Since p, <W(t') < p, +a and v(¢) <0, one has
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-1<-142-[W(t")- p,)/a <1

(4.10)
p V() -(p,~p)Sp +a
Considering equation (4.5), one has
[ r((6)-p))=-1 if vt)<p
3 rv@®-p)=-1+2-W@t)-plla if pSvt)<p +a (4.11)
L r(v(®) - p,) =+1 if v()>p,+a

From equation (4.3), the output of the kernel is calculated as
k,[v,$,1(¢) =min {&, (¢),r(v(t) - p,)} since v(#)<0 for t>¢'
=min{~142-[{) - p,/a, r({))-p)}
Substituting equation (4.11) into the above equation yields
min {~1+2-)-p,)/a , +1} if e(p +aur)]

min {-1+2-Mt)-p)a , -1+2:pO)-p)Va} if W)eM!)-(p,~p).p, +4]
ky[v:6,16)=1 (4.12)
min {-1+2:p()-p,)a , -1+2:MO)-pl/a} if M)elp,Ut)~(,~p)]

min {~1+2-Mf)-p,}a , -1} if (O<p
Equation (4.12) is defined over four domains while the descending boundary (4.11) is

defined over three domains. The domains of equation (4.12) are formed by the
intersecting of the descending boundary, r(v(t)— p,) : EDFBA , and the horizontal line of
memory state, k,=¢ (1) =-1+2-[v(¢)- p,]/a (see Fig. 4.5).

Considering equation (4.10), equation (4.12) yields
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—1+2:M)-p,Va if W)e(p +aut)]

—

20O -pYa if A M)~(p,—p)pr +]
AR (4.13)

—1+2MO-pla if v)elp.A)-(p,-p)]

[ -1 if v)<p

which defines a descending curve D'FBA of a minor loop.

Ax

1! 14

|p2 l V(") p2+a

| l r(v-p,):EDFBA
|

| 7 mln((;,’r(v-n,))
¥ =D'F'BA
A B (1 ¢

Fig. 4.5 Formation of the descending curves of minor loops
Case E: Specially, if the input v(f) changes its variation trend to decrease after
increasing to positive saturation state v(t')> p, +a , the memory state &,()=+1.
Consequently, equation (4.12) changes as
[ min(+1,+1) if Wt)e(p,+awt')]
min(+1,~1+2:Me)-pl/a) if W) eM)-(p,-p).p +al

ko[> 6,1@) =
min(+1,-1+2-M0) - p )/ a) if W) €lp,,At)~(p,—p)]

| min(+1,-1) if Mt)<p,
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[ +1 if V) e(p,+a(1)]
={ —1+2:W()-p)la if W) e[p,p,+a] (4.14)
L -1 lf V(t)<p1

More specially, if the input v(¢) returns to decrease after increasing to a value v(¢")
which was still in negative saturation state v(¢') < p, , the memory state &,@)=-1.

Consequently, equation (4.12) changes as

[ min(-1,+1) if vt)e(p, +a,v(t")]

min(-1,-1+2-[(MO)—-p 1/ a) if W) eMt)—(p,~p),p,+4]
k,[v,.8,10 =
min(-1,~-1+2-[W)-p )/ a) if WO) elp, )~ (p, - p))]

| min(-1,-1) if W)<p,
=-1 Jor v(t)<v(t) < p, (4.15)
Case F: By the same reasoning, the ascending curves of minor loops can be formed if the

input v(¢) returns to increase after decreasing to a value v(¢"). In this case, it is only
considered when the input v(#) changes its variation trend to increase after decreasing to
a value v(¢")between p,and p, +a, ie, p, <W")<p +a, Wt)20, for t>¢". According to
equations (4.3), (4.4) and (4.5), the memory state &, (¢) =-1+2-[w(¢")— p,]/a for t >¢"
because the new memory state will be updated to store the previous output of kernel at

the instant ¢".

Since p, <v(t") < p, +a, and v(t) 20, one has
=-1<-14+2-[v(t")-pl/a<1

(4.16)
P, <v(t")+(p,—p)<p,+a
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Considering equation (4.5), one has

( r(v(t)— p,) =-1 if v(H)<p,
{ rM0-p) =142 00~ pilla f p,SWOSp;+a @.17)
| r(V() - p,) =+1 if v(t)>p,+a

From equation (4.3), the output of the kernel is calculated as

kv, I(

t) = max {fp.(t), r(v(t) - p,_)} since v(¢)>0 for t>¢"

=max{~1+2-[W") - p)/a, rO(e)-p,)}

Substituting equation (4.17) into the above equation yields

ke [v,8510 =1

max (-1+2-¢")-p)/a,-D if M) eMr").p,)

max (-1+2:-M¢")-pVa,-1+2- (M) -pVa) if W) e(p, ) Hp,—p))
(4.18)
max (-1+2-(M")-p Y a,~1+2:- M) -p, ) a) if WO)eM)+(p,~p).p, +4]

imax (-1+2-[¢")-pJ)/a,+1) if \2p,+a

Equation (4.18) is defined over four adjacent domains while the descending boundary

r(v(t)—p,) : EDFBA is defined over three domains (see equation (4.17)). The four

domains of equation (4.18) are formed by the intersecting of the descending boundary

and the horizontal line of memory state, i.e., k, =& () =—1+2-[(")— p )/ a (see Fig. 4.6).

Considering equation (4.16), equation (4.18) changes as

’-1+2-[v(t")—p1]/a if W) e(r"),p,]

—14+2:[e")-p )/ a if W) e(p, () +(p,— p1))

k,[v,$,10) =1 (4.19)

=1+2-[v(®)-p,) a if Wt)elV()+(p,—p).p, +al

+1 if (t)zp,+a
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which defines an ascending curve B'C'DE of a minor loop.

Fig. 4.6 Formation of the ascending curves of minor loops

4.2. Definition of Compensator of KP Op

Referring to the definition of the KP kernel function &,[v,&,](s), a related elementary

erator

|#  nv-p)ABCDE

I _y max(&y.,r(v-p))

L1 ¢ sB'C'DE

compensator m,[v,¥,c,](¢) (see Fig.4.7) can be defined so that

ko [v:6,1(0) +m,[v,y,6,1(6) = v(2)

A mp
L I (4
Ry 1 C, i
!
Py Pra A R Rta
} Y
’:_-—-- Py ta-t
F
B. ! P+l

Fig.4.7 Compensator m, related to £,

The mathematical definition of the elementary compensator 7,[v,,5,](¢) related to

the kernel function k,[v,&,1(¢) is be expressed by
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min {1)-y(0)+5,(), .M)-p,]+p,+1} for v20
m,[v,y,6,1¢)= (4.21)
max (O)-p(0)+¢, 0, r.MO-p,J+p,+1} for v<0
where (¥ (2),5,(?)) is the coordinate of a turning point, for example such as points D,'
and B,' in Fig.4.7. The coordinate is defined by

'V(to) if t=t

w()=3 vt) if t=t>t, and sign (W(t*))=-sign (1)) (4.22)

| W) It 2t>t, and sign (W(t7))=sign (A1)
(v(to)'*'l if t =,

and 6, (1)=1 m[8)t1).6, (D1 i t=t,>1, and sign ({¢"))=-sign (")) (4.23)

| 56 if 121>, and sign ({"))=sign ()
A rc(v)
Slope=1
W
a-2 v
a >
Slope=1

Fig.4.8 Ridge function of compensator m,
It should be noted that the horizontal coordinates y (¢) of each turning point of different
kernels can have the same value, but the vertical coordinates ¢, (¢) of each turning point

are kernel related. The ridge function r,[v](s) (see Fig.4.8) is defined by
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[ V() v(£)<0

rvI =y A-2/a)v(r) 0<v()<a (4.24)

| v(#)-2 v(t) > a
The formation principle of inner loops in the compensator is similar with that of the
KP kernel except for the different choice of the operator “max” or “min” in (4.3) and

(4.21). This can be explained as follows with reference to Fig.4.9. As the input v(¢)
changes its variation trend from increasing to decreasing, i.e., from v(£)>0 fo v(t) <0,
the curves (4.B.F.'D.'D.E.) of the inner loop of the compensator are above the decreasing
boundary r.(v(t) = p\): 4.B.F.D.E.,but the curves (4BF D'DE) of the inner loop of the KP
kernel are below its decreasing boundary r(v(t)—p,): ABFDE . Thus, the “max”
operator is taken in equation (4.21) but the “min” operator is selected in (4.3). Similarly,

the “min” operator is taken in equation (4.21) but the “max” operator is selected in (4.3)

if the input w(f) changes its variation trend from decreasing to increasing
ie., from v(t)<0 to v()20.

The weighting factor u(p)=u(p,,p,)is the same density function as that of the
kernel £, . Thus, to describe a hysteresis, either kernel k, or compensator m, is used in

the KP model, and the same density function is used.
There exists a relationship between the vertical coordinates ¢,(4) and &,(%) of the ith

turning point of a compensator m, and it corresponding kernel k, as

Sp (ti) + é:p (ti) = v(ti) (4.25)
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With  these relationships (4.25) and the definitions of elementary

compensator m,[v,y,¢,]¢) and its kernel k,[v,&,](z), it can be easy proven that the

relationship between the compensator and its related kernel is mathematically expressed

by equation (4.20) and graphically related as shown in Fig.4.9.

4 kp, mp, v
mpakp=v
//;
D,
D
c, |
. F g { I Ev
g > v ; D’ ’
A B LA c
] ’F.
BiAZ.
AL/

Fig.4.9 Relationship between k,andm,
From equation (4.20) which relates the compensator m, to the kernel k,, thus the KP

hysteresis model (4.1) can be alternatively described by an integral of compensators over

the hysteresis plane P as

u(t) = Hv)(e) =v0) [ ip)dp— [m,00,¢,.0, X (p)dp
vioep,
=et)= [ [, 08, )0 1p, py)dDdD, (4.26)
with ci Lu(p)dp being a constant for a particular hysteresis with a certain density
P

distribution u( p) over the region P.
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4.3 Relationship between KP Model and Preisach Model
The KP kernel shown in Fig.4.1 is a hysteresis with local memory effect; i.e., it has a set

of inner curves which consist of line segments parallel to the input axis v(¢). Referring

to equation (4.5), the output of the inner curves are calculated as

. 4 mu() .
A T ¢
) '
! :
i i
e o}
] 1
i i
Py ' : :v{ﬂ:a orpg
HE +a w=a p,*a
H v [ aterpy)
¥
i
I
]
]
A B o

Fig.4.10 KP kemel as a rate-independent local memory hysteresis

2 -p)a-1 w—(p,—-p)<v()<y

Av(t)-plla-1 p,<v(e)<y —(p,-p,) for v(£)<0 (4.27a)

u(t) =k, ={

ul®)=k, =

{2@,._1,1)/(,_1 v'svit)<y'+(p,— p,) for v(£)=0 (4.27b)

2lv@®)-p,l/a-1 y'<v(t)<p,+a

where y is the input coordinate v(¢) of the turning point from increase to decrease while
w' is the input value of turning point from decrease to increase. Thus, the output of the
inner curves are completely characterized by the parameters p,, p,, a, and v(¢). It can

be proved that KP kernel can be described with the Preisach representation [13] as

k, V() = [[1(e, B oV )(1)dd 3, 4.28)

where T={(a,f)eR*:v* 2a>f>v"} denotes the Preisach plane, 7, are relays
}/aﬂ

characterized by the parameters as a, § and =1, with ¢ and S denoting the increasing
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and decreasing switching inputs of the relays respectively. Without loss of generality

v =p, and v'=p,+a are assumed be symmetric about output axis u(t) , i.e.,

+

v =p,+a=-v =-p,. The weighting function (e, ) can be calculated by using

formula (2.29) [13]

_10%u,
ula,p)= 2 900 (2.29)

Please note that u,, in equation (4.29) is the output of points in the first order descending

curve (FOD), for example, a FOD curve is shown as the segments DF'B in Fig.4.10.

From Fig.4.10 It is clear that for any @ such that p, <@ < p, +a the corresponding
FOD curve u,, consists of two parts: a particular inner curve D'F"' along which u,,

remains constant for a given a, and a part of the limiting descending branch F'B on

which u,, varies its value while (see Fig.4.11)

(o, ) eQi{(a,ﬂ)Ip, <psp+a and f+p,-p<a<p, +a}.

»>
Segment CD: o=p+{p2-p1)
Point D’ represents
segment D'F' of Fig.4.10

Point B’ represents
segment B°'C’ of Fig.4.10

Fig. 4.11 Support region in the Preisach plane
(a and g are the parameters of the Preisach model)
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From the above remarks and equation (4.27a), one finds

. {zw—pl)/a—l if @< 429)

p=uaﬂ'— _ _ .
2la—(p,+a)Va-1 if (ap)eQd
Please note that y =a and v(f)=a in equation (4.27a) when V(¢) <0 . Taking the

partial derivative of equation (4.29) with respect to f gives

Ok, _ou _Ouy, _ 2 fa.pree (4.30)
o8 8B  op a

B 0 if(a.p)eQ

Equation (4.30) means that for a given a, 0k,/0f has an uniform value 2/a when
(«,$)€Q and an uniform value 0 when (a,f) ¢ Q. The change of Ok,/0pB is the

steepest when f=a—(p,—p,) (see Fig.4.11).

4 %k,
o8

B
I

pt a
B8 =a-(p2-p1)

Fig.4.12 Function ok, /3p

In Fig.4.12, an a corresponds to a f=a—(p,—p,). Thus, the partial derivative of

equation (4.30) with respect to a gives

2 .
Ok, 0y _|Z8(a-B-p,+p) fp,<asp,+a (4.31)
0adB  dadf |8

0 otherwise

where 8(a - - p, + p,) is a delta function defining when a = - p, + p,. Consequently,

s = 2008

1 ,
10Uy _|=8@-p-p+p) fp<asp+a (4.32)
0 otherwise
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In equation (4.32), u,, has nonzero value when p, <@ < p, +a, which corresponds to
q of 2 2 P

the domain Q shown as in Fig.4.11. Thus, one has

() = [[top7 opV)(O)dad

[[ta? 1)) dcdB

prtazazfzp

= [[#ep 70 VU()d 2d B
Q
Substituting equation (4.32) into the above equation gives

1 pp+a pporta .
u@=—["" [ " 6@ F-po+ b VNOddf (433

P2
From Fig.4.11, segment CD is described by a = f+ p, — p, . Thus, if a is considered as
a variable while f is considered as a constant, one has
6(0)=d(a-pf-p,+p)
Similarly, if B is considered as a variable while & is considered as a constant, one has
00)=5(f-a+p,—p)

Finally, one has da=df and &(a-Lf-p,+p)=0(8—a+p,—p,)=05(0)

. . L, +a R 1 i =0+ - .

Considering J.p o(a=B—-p,+p)ylvIt)da = Ya=F+p,-p equation
P2 0 otherwise ,

(4.33) can be rewritten as

1 ppita ¢ pi+a A
u@=—["" [ 6(8~a+ Py~ P aapuep VNOdfda
. 1 pyta A
Finally, u(®) =k, V1) = — jpz P aia-ppem V1A 4.34)
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Equation (4.34) is the Preisach representation of the KP model. To verify that the
equation can describe all the branches of the KP model, let the input v(¢)increase from
P, to p, where p e(p,,p,+a). By substituting v(¢#) = p into equation (4.34), one
obtains

prta

£ KO == [P F e (P)@

All points on the support segment CD above the linea =y havey,, , .. (v)=-1

and other points on the support segment CD below the line a=y

have7, ,_,.,,(¥)=+1. According to equation (4.34), one has

u(t) =k, (t) =%(—j: do — fp““da)

w

1

=;[(w—pz)—(pz+a-w)]

2
=“1+;(W_P2)a v €(p,, p, +a) (4.35)

From Equation (4.35), one can see that equation (4.34) indeed describes the KP model

when input v(¢) = increases between p, and p, +a.

If it is assumed that the input decreases to V(t) ==y — p, + p, (point F') in

Fig.4.10, the support segment CD in Fig. 4.11 is still divided into two short segments

DD' and D'C . This means that the output value of the KP kernel remains as
2
u(t)=k,,(t)=—1+;(vf—pz), Belw,y-p,+p) (4.36)

After decreasing to point F"'in Fig.4.10, let the input keep decreasing to point B'

where V(£) = B =y". Please note that ¥'e (W — p, + p,, p,). The dividing point will
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slip down along the support segment DC in Fig.4.11 from point D' towards point B'.

According to equation (4.34), the output of the KP kernel can be calculated as

1 v 'H(py-p) pyta
u() =k, () =—( Lz do - j da)

v Hp-p)

=}1<@/ B -p)-p -+ (5, -p)

2 \
=—l+;(w '~p), v 'ely-p,+p.p) (4.37)

From equation (4.37), one can see that equation (4.34) indeed describes the descending
curve of the KP element. Finally, equations (4.35) ~ (4.37) prove that the KP hysteresis

model can be described by the Preisach model in integral form of relays as given by

equation (4.34). From Fig.4.11, it is clear that by varying p,, P, and «a the support
segment of the KP kernel in the representation of The Preisach model can be freely
moved around in the half-plane v* > p, > p, >v". This fact and equation (4.34) suggest

that the equivalent representation for the Preisach model can be obtained as a
superposition (parallel connection) of infinite number of KP hysteresis elements. They
also prove that the KP model possesses the wiping-out and congruent properties.

Even though the Preisach representation in integral form of weighted relays is more
elementary in terms of its operators, the KP kernel provides more information of the
nonlinearity than the relay because every KP kernel can be expressed as an integration of
infinite weighted relays. The KP model has the memory effect to record all previous
extremes of the process. This provides KP model to use less elements to calculate more
complicated hysteresis, and it is not necessary to find the interface line of the process in

the triangular Preisach plane.
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4.4 Linearly Parameterized KP Model

Although the KP hysteresis model can be described in integral form as in equation (4.1),
there are still some difficulties to directly calculate the hysteresis output. First, it is very
difficult to formulate a suitable weighting function (p;, p,) which is double-integrable

over the Preisach plane P; second, it is impossible to describe the outputs of the kernel
k,[v,&,1() as continuous functions due to the nonlinearity of the kernel. Thus, the KP

hysteresis model should be implemented by numerical method.

To numerically implement the KP model, one can transform (4.1) into linearly
parameterized form by dividing the Preisach plane P into a mesh. For an acceptable
rough approximation, the Preisach plane P can be uniformly divided by ! horizontal lines

and / vertical lines into N =(/+2)(/ +1)/2 small cells (see Fig.4.2) with coordinates

(v;»v;) of their lower-left nodes expressed by

{v,. =v_ + ([ -1AV

v, =v +(j-DAV (4.38)
where izj, i,j=1,2,..,0l+1 (4.39)
and A=Y=V (4.40)
[+1
is the interval of the divided input v(¢), which is selected as
Av'=a (4.41)

so that the kernels overlap cell by cell to create the smoothest hysteresis curves (see

Fig.4.13).
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Figure 4.13 Possible Curve form KP Model when a < Av'
After the dividing of the Preisach plane P, the total contribution of kernels of each cell
to the KP hysteresis model (4.1) can be lumped together as the effect of the kernel

associated with the lower-left node of the cell. One has

k@ -py= [k, (0 mdp (4.42)

the ijth cell
where O, is called the lumped density of a cell to its lower-left node (v,v). As [ is

selected large enough, the dividing of the Preisach plane P becomes very fine, the cells

become very small, and the output values k,(¢) of all kernels on each cell can be
considered as identical to the values k, () of the lower-left node of the cell. Thus (4.42)

1S rewritten as

by @-0y= [k, mdp~k, ). [u,dp (4.43)
the ijth cell the ijth cell
Finally, Py = Iﬂpdp (4.44)
the ijth cell
A I+ i
Define c=[up)dp=323,  [udp (4.45)
P i J=l the ijth cell
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I+1 i

and By=p, QY 1,,) (4.46)

i j=l

where /_lij is the normalized densities of all lower-left nodes on the Preisach plane P, so

I+l i

that d>m=1. (4.47)
i =l
. I+ i I+] i
Since PIPNITTAETI I
i el i j=l

substituting equation (4.47) into the above equation gives
41 i
D2 ch;=c.

i =l

Considering the definition (4.45) gives

41 i 41 i
22 CH =2 I,u,,dp (4.48)
i J=l i J= the ijth cell
Substituting equation (4.44) into (4.48) yields
I+ i I+ i
22 F =22 Py
i j=l i =l
which implies
Py = cl; (4.49)

Indeed, if the number of dividing lines/ — oo, then each cell degenerates as its lower-left
node, and one has Py = Clly = [, .

For an acceptable modeling precision, a selected large enough / results in equation

(4.42), and then the KP hysteresis model (4.1) can be linearly parameterized as
I+ i I+ i

u)=3Y  [k©- pdo=Y 3k, ©): p,+d(e) =T"K+d(1) (4.50)

i=t j=1 the ijth cell =l =1
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T _
where K = [kpn ’ kp2l ’ szz ’kp3l ’kP32 ’""kp(mxlu) ] (45 1)

and I’ = L0115 Pa1s Pr2s Pais p32""’p(l+l)(1+l)] 4.52)
are N dimension vectors respectively, and p, are calculated by (4.45), (4.46) and (4.49).

The term d(v(t)) in (4.50) is modeling error by the linearly parameterization of the

model. If the number of dividing lines increases to extremely large value, the term

d(v(t)) can be considered as zero.
Alternatively, the linearly parameterized KP hysteresis model (4.50) can also be
expressed using compensator m, as

I+ i

u@)=cv()-2 % [m, () u,dp

i=1 j=1the jjth cell

I+l i

=cv(t) _szpy @) pp,-p,- +d(v(t))

=1 j=1

=cv(®)-T "M +d(W(t)) (4.53)
T _
where M= [mPn ’ szn ’ mpzz ? mp31 ’ mP32 o ’mp(1+1)(1+|) ] (4.54)

is a N dimension vector consisting of output values of all compensators associated with
all lower-left nodes of all small cells.

Equations (4.50) and (4.53) are called the linearly parameterized KP hysteresis
models. Although they can be modeled respectively, these two models are dependent and
compensative to each other since they have the same parameter vector I'” (4.52). The

relationship between two models is expressed as

u@®)=cv(t)-T'M +d(v()) =T"K +d(v(1)). (4.55)
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In (4.53), the term cv(¢) is a proportional part of the input v(¢), and it means that the
hysteretic actuator can be considered as a linear transducer with an input-output error of
hysteresis directly described by the term I'” M. This linearly parameterized representation
by equation (4.53) is critical for nonlinear robust adaptive control design because the
linear term cv(f) can be used to design the controller while the term I''M can be
considered as dynamics of the plant. Namely, the hysteretic actuator can be treated as a
linear transducer while the hysteretic error I’ M can be considered as plant dynamics.

4.5 Implementation of the Linearly Parameterized KP Model
Governed by the linearly parameterized KP model by equations (4.50~4.52), a hysteresis

system is completely characterized by its positive/negative saturation states
(v*,u™)/(v ,u”), number / of dividing lines, and the density distribution 4 over the
Preisach plane P when the system is subjected to a certain input signal v(¢). In (4.51), the
kemels are characterized by p; = (p,, p;) pair and rise-timea, and these parameters can
be calculated by using equations (4.39) and (4.41). The positive/negative saturation states
(v*,u")/(v",u”) can be observed from experiment results. The number of / dividing
lines, which determines the precision of approximation, can be chosen upon the
requirement of modeling precision. The density distribution 4, which is the key
parameter to determine the shape of the hysteresis loop can only be identified by
matching experiment data using the method to be discussed in forthcoming section.

Based on the definition of a kernel function of the KP model (equations (4.3~4.5), an

s-function, “Kernel”, in MatLab to calculate the outputs of each kernel as it is subject to

an input signal v(¢) is written and listed in Appendix 3. The summation of all weighted
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outputs of all “Kernels” is calculated by a custom defined s-function “Hysteresis”, which
is also listed in Appendix 3.

In the s-function “Kernel”, the input v(t)is sampled into a series of input values
forming a V' vector with a sampling time ¢, = 0.01sec . At every sampling moment there
is a corresponding ¥ vector consisting of input values as its elements from the beginning
of the process to the moment. As the time marches forward, the ¥ vector is updated, and
every new updated J vector is used to calculate the outputs of all kerels. Furthermore,
all outputs of kernels are multiplied by the corresponding densities, and then are summed
together to generate the output value u(f) of the system at the sampling moment. Thus,
with the same size as the ¥ vector, an output vector U which consists of the calculated
outputs u(¢) at every sampling time is formed. As the time continues, the applied inputs
v(#) and the calculated outputs u(f) of the system form the hysteresis loops.

One fact need to be mentioned is that the ¥ vector only has one element at the

beginning of the process (¢ = 0) . In order to determine whether the sign of input variation,
sign (¥(2)), is switched at the initial time (¢ = 0) , two elements equaling to v(¢ = 0) are

added into the ¥ vector. This makes the ¥ vector to have three elements with the same

value v(¢ =0) at the first sampling moment (¢ = 0) . Meanwhile, two elements (—1,—1) are

also added at the head of output vector U . This ensures the input ¥V vector and the
output U vector have the same size.
In order to conduct simulation by running this s-function “Hysteresis” to calculate the

output of a hysteresis, the density distribution z; of the hysteresis must be first offered to

the s-function “Hysteresis”.
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For simplicity of explanation, the lumped densities #; in (4.50) and (4.52) of a

particular hysteresis system are directly assumed as

H#(pip;)
Py =TT - (4.56)

Z ﬂ(Pi,Pj)

i=1 j=1
where ﬂ(Pi,pj) =cexp(c,((p, _ﬁl)z + (pj - 52)2)) (4.57)

_ 1 1 - _

with constants ¢, =2—”O_7, c, =— Py 0=0.6 and p,=p, =0, (4.58)
and i2j i, j=12,..1+1.

Equation (4.57) expresses a bi-variant normal density function, where the constant
o specifies the spread of the distribution, and p, and p, are the center of the distribution.
Equation (4.56) is used to calculate the lumped densities [0 ] .1y, by normalizing the

density values u(p,,p;) so that

I+1 i

> > py=c=1 (4.59)
i=1 j=1

Here the normalized densities given by equations (4.56) and (4.57) are used to perform

the simulation. The normalized densities p, with / =4,0=0.6 for v- =-2 and v* =2
are listed in table 4.1, and the normalized density distribution p, over the P plane with

I = 4,0 = 0.6 for the same hysteresis region v e[v",v"]=[-2,+2] is shown in Fig.4.14.

Table 4.1 Normalized densities with / =4,0 =0.6 and ve[v ,v"]=[-2,+2]

Py B J=1~5

o 0.0002 0.0076 0.04485 0.0448 0.0076

$10.0013 0.0448 0.2650 0.2650 ]

410.0013 0.0448 0.2650 0 0

5 |0.0002 0.0076 0 0 0
0.0000 0 - 1] 0 0
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Mp1,p2)

Fig. 4.14 Normalized density distribution over the P plane with
[=99,0=0.6andve[v,v']=[-2,+2]

In the table 4.1, the summation of all normalized weighting factors indeed equals+1.
This leads to the saturation states u*/u” of the hysteresis to equal +1/—1when input
v(t) reaches the saturation points v*'/v~ respectively. This fact can be proven by

calculating the outputs at saturation states by equations (4.50) and (4.59) as

I+1 i 41 i I+1 i
u(y=3 > k, py =22 EDp, =D Y p, =2l
i=1 j=1 i=1 j=1 i=1 j=1
Thus the normalization of the density distribution also normalizes the hysteresis loops.

The hysteresis system with the above density distribution (table 4.1) is first assumed to

be subject to a sinusoidal input signal (see Fig.4.15) as

v(t) =—4cos(xt/20). (4.60)
All responses of kernels defined by /=4 andve[v",v']=[-2,+2] to the input signal,
v(t) =—4cos(rt/20), are illustrated in Fig.4.16. These kernels do not have inner loops

inside their major loops because all extremes of the input V(¢) exceed the saturated inputs
(+2). Furthermore, the summation of weighted kernels forms a rough hysteresis with only

a major loop (see Fig.4.17).
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Input signatl v(t)

Input V(1)

v
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0 5 10 15 20 25 3¢ 35 40
Time t (sec)

Fig.4.15 Input signal v(¢t) = -4 cos(z ¢/ 20)

KP model kernels (L=4)

1 1 1

0) l Ly 0l 0 0|
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0
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Fig.4.16 kemels in P plane:v e [v",v"] =[-2,4+2] w(t) = -4 cos(x ¢/ 20)

Hysteoresis with L=4

Output u(t)
S & & o o o o
@ » 19 = [ » @ o >

[
o

25 -2 45 4 o 1 15 2 25

o5 o5
Input v(t)

Fig.4.17 Hysteresis with v(r) = ~4cos(z¢/20), I =4,0 =1.0andv e[v ,v*]=[-2,+2]
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Input signal v(t)

‘Input v(t)

0 .':0 160 150
Time t (sec)

Fig.4.18 Input signal v(r) = —2[(cos(r ¢/15) + cos(v 27 ¢/ 15)]

For the same hysteresis, if the inputs signal (see Fig.4.18) is selected as

w(t) = —2[(cos(rt/15) + cos(v 2zt /15)], (4.61)
simulation results are shown in Fig.4.19 and Fig.4.20. From Fig.4.19, one can see that
every kernel have inner curves inside their major loops because the input signal has some
local maximal and minimal which are inside the region of [v™,v"]. The sign switching of

the input variation for every kernel causes its input-output trajectory to traverse inside its
major loop. Therefore, the accumulation of all input-output trajectories of all kernels

forms the hysteresis loops with both major loop and minor loops (see Fig.4.20).

KP model kernels (L=4)
1 1 1

1 1
0 Ej 0 f1 0 0 0

E] E] K] E] Kl
4202442024 42024 42024420204
-1 - 4 -

A2024 42024420324 42024

0 0 0

E] “ K]

42028 4202442024

0 0

“ E]

f2024 42024

0

-1
420 2 4

Fig.4.19 kemels in P plane:v e [v",v"]=[-2,+2] W) =2 [(cosrt/15)+ cos(\/izrt /15)]
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Hysteresis with |.=4

Output u(t)

B A T R a‘;lnp uot vmo's T T
Fig.4.20 Hysteresis with/ = 4,0 =1.0and ve[v",v*]=[-2,+2] W¢) =-2[(cosrt/15) +cos(27/15)]

The above simulation results (Fig.4.17 and Fig.4.20) show that the KP model can
conveniently describe the hysteresis phenomena including major loop and inner minor
loops, but when the number of discretization lines / is chosen too small, the simulated
result is very rough. As the number of / is chosen larger, the hysteresis plane P is
discretized finer and the resulted hysteresis loops become smoother. For example, in the
above two cases, when [ is selected larger than 10, acceptable smooth modeling results
can be achieved.

For a finer discretization of /=19, Fig.4.21 and Fig4.22 illustrates two hysteresis
nonlinearities with different density distributions in the same input region
ve[v,v']=[-2,+2] when it is subjected to an input signal as shown in Fig.4.18. When a
lumped density distribution is given by equation (4.56) with o = 0.6, the hysteresis result
is shown as in Fig.4.21; with parameter o =1.0 the modeled hysteresis loops are
displayed as Fig.4.22, in which the loops are wider than the hysteresis loops in the
Fig.4.21. These simulation results show that the density distribution of the KP model

indeed influences the shape of the hysteresis loops.
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Hysteresis

Output u(t)
& & & o & © o
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&
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-25 -2 15 15 2 25

4'};put6v(t) o5
Fig.4.21 Hysteresis with / =19, o = 0.6 and v(¢) =~ 2[(cos( ¢/15) + cos(~27 £ /15)]

Hysteresis

output u(t)

0.4

28 2 a5 A J.sInP uot v(t)°:5 T s 2 25
Fig.4.22 Hysteresis with/ =19, o =1.0and v(r) = —2[(cos(7 1 /15) + cos(~27 £/15)]
4.6 Identification of Model Parameters by Least Squares Method
To model the input hysteresis of a system in the linearly parameterized KP representation,

its parameters (density vector I') must be identified in advance by the least squares

method by fitting the experimental data.

In the above equations (4.50) and (4.55), for every input v(¢), in terms of the definition
of kernels one can get x =[kpl,kpz,...,kpl_,...kpN]TwithFT =01 Pss--s Pir---Pxn ] Which is a
parameter vector to be found. For an input signal v(¢), the number of N outputs u"(¢)of a

real hysteresis actuator can be measured. It is assumed that vector « (¢) can be exactly
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generated by the linearly parameterized KP model using real parameters
T =] pprses P vepy 1 8S

u()=T""K (4.62)
However, since the exact parameters I' *is unknown, any approximation to the parameter
vector I" over the Preisach plane P will lead to different output of the hysteresis subjected
to the same input signal v(¢). One can use the least squares method to minimize the

square error of hysteresis output to find acceptable densities, given as:
N ) N .r
min Ju, —u, [ =mind |([; -T; HK [’ (4.63)
i=l i=1

This calculation can be implemented by calling an m. function “Isqnonneg (K,u’(t))”

where K and u’(t) are vectors consisting of N number of elements.

The off-line identified parameters can be used to predict the range of KP model
parameters for adaptive control design in next section.
The following is an example of using the least squares method to identify the density

distribution of the hysteresis. For a hysteresis with a hysteretic input region
as ve[v ,v']=[-2,42], it is assumed that the real lumped density distribution
T =[p, P, px] is governed by equation (4.56). If the Preisach plane P is uniformly
divided by /=9 horizontal lines and /=9 vertical lines, thus nN=(+2)¢+1)/2=55 left-

lower nodes associated with 55 small cells. The lumped density distribution " is a
55x1vector, which can be rearranged as a 10 x10 matrix over the Preisach plane P in a

mechanism described by following program.
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N=(+2)(+1)/2;

[ _vector =[p,].» % enter a density vector with demension of 1xN
I'_matrix =[0],,1n % define a (I+1)x(+1) matrix
Jor i=1:1+1
for j=1:i
m=i*@{i-1)/2+j
Py = Pn % evalue element of the (I+1)x(I+1) matrix
end
end

I'_matrix = [pij ](I+1)x(l+1)
The rearranged 10x10 density matrix is shown in table 4.2, The identification result of

densities is also rearranged into a 10x10 matrix "= (£, 00 in the same mechanism

and the matrix is shown in table 4.3. The corresponding identification error matrix is
calculated and shown in table 4.4.

Table 4.2 Given normalized densities with / =9,0 =1.0 and ve[v ,v*]=[-2,42]

L £ j=1~10 —
0.0019 0.0039 0.0068 0.0101 0.0128 G0.0139 0.0128 0.0101 0.0068 0.0039
’ 0.0033 0.0068 0.011¢9 0.0177 0.0225 0.0244 0.0225 0.0L77 0.0119 0
Q 0.0049 0.0101 0.0177 0.0264 0.0335 0.0363 0.0335 0,0264 ] ]
w | 0.0063 0.0128 0.0225 0.0335 0.042¢6 0.0462 0.042¢6 +] 0 0
t 10.0068 0.0139 0.0244 0.0363 0.0462 0.0500 1} 0 0 0
Y~ | 0,0063 0.0128 0.0225 0.0335 0.0426 0 0 1] 0 0
.! 0.0049 0.0101 0.0177 0.0264 0 0 1} 0 1} 0
0.0033 0.0068 0.0115% 0 o] 0 0 0 0 o]
0.0013 0.0039 0 0 o] 0 0 o] [ o]
0.000% 0 0 0 o] 1] 0 0 Li] 0

Table 4.3 Calculated normalized densities with / =9,0 =1.0 and ve[v,v']=[-2,+2]

Dy [ j=1~10 —
0.00L9 0 0 0.0478 0 0 0.0128 0.0101 0.0068 0.0039
' 0.0033 0 0.0413 0 0.0018 0 0.0355 0. 0441 0.0115 0
Q| 9.0049 0 0 0 0 0.1208 0.0632 o] o 0
W= | 0.0063 0.0141 0 0.0766 0.1097 1] 0 0 0 0
t | 0.0068 0 0.0746 0 0.0462 0.0500 0 0 0 0
= | 0.0063 0.0353 1] 0.0335 0.0426 0 0 0 0 0
u 0.0049 0.0278 0 0.0264 0 0 0 0 0 0
0.0033 0 0.018¢ 0 0 0 0 0 0 0
B 0.0019 0.0039 0 0 0 0 1] 0 1] 0
0.0009 g 0 0 0 0 0 0 0 0
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Table 4.4. Error of normalized densities with / =9,0 =1.0 and ve[v",v*]=[-2,+2]

D [ =1~10 —

0.0000 0.0039 0.0068 -0.0374  0.0128  0.0138 -0.0000  0.0000 -0.0000 -0.0000
f -0.0000  0.0068 -0,030L  0,0177  0,0207 0.0244 -0.0130 -0.0264 -0.0000 0
° 0.0000 0.0101 0.0177 0.0264 0.0335 -0.0845 -0.0296 0.0264 0 0
w | 0.0000 -0.0013 0.0225 -0.0430 -0.0670  0.0462  0.0426 0 0 0
? | -0.0000 0.013% -0.,0502 0.0363  0.0000 -0.0000 0 0 0 0
™| 0.0000 -0.0225 0.0225 -0.0000 -0.0000 0 0 0 0 o
M| -0.0000 -0.0177 0.0277 0.0000 0 0 0 0 0 0

0.0000  0.0068 -0.0068 0 0 0 0 0 0 0
ﬁ -0.0000  0,0000 0 (i} 0 0 e 0 0 0

-0.0000 o 0 0 0 0 0 0 0 0

Using these calculated parameters (lumped densities), the outputs corresponding to the
input signals (4.61) are obtained and the hysteresis loop is shown as the curve “B” in
Fig.4.23 and Fig.4.24 when / is chosen as /=9 and /=19 respectively. Using the
original densities listed in table4.2 to simulate the system, the result is also shown as the
curve “A” in Fig.4.23 and Fig.4.24. By comparing the two figures, it can be seen that the

error approaches zero when / is chosen as an acceptable large number.

Fig.4.23 Hysteresis calculated by given density distribution vs identified densities
with /=9 and v(r) = —2[(cos(z t /15) + cos(v2 £ /15)]
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Fig.4.24 Hysteresis calculated by given density distribution vs identified densities
with /=19 and v(¢) = - 2[(cos(z ¢/15) + cos(v'27 ¢ /15)]

4.7 Inverse Hysteresis Operator and Open Loop Compensation

The KP model is to find the output u(f) of the hysteresis nonlinearity with a given
inputv(#) applied to the hysteretic actuator at every moment. The goal of modeling the

hysteresis with the KP model is to cancel or reduce the hysteresis nonlinearity.
Compensation through an inverse operator of the KP model is one effective approach.

The objective of the KP inverse operator model is to find the input v(¢) for a given
desired outputu,(¢) . The goal is to predict the input v(¢) at every moment of time ¢ with

knowledge of previous inputs, outputs before the moment ¢, and the desired output

u,(¢) at the moment ¢. Thus, the operator is the application of the KP model, in which the

input vector consists of previous input values and the estimated input value at the

moment of concern. The input value at the moment of concern is estimated by adding
approaching steps ( dv,n = 1,2,...) to the last known input value. The output u(¢) is
calculated by using every estimated input value and u(f) approaches the desired

valueu, (¢) at the moment ¢. As the calculated output value u(f) becomes greater than
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the desired output u,(r) at the moment ¢, the adding of the approaching steps stops. The

last two calculated output values will be used to interpolate an optimal output value for
the moment ¢, as given by equations (4.64) and (4.65). The numerical method is
illustrated in Fig.4.25 and Fig.4.26 and the algorithm to approximate the KP inverse
model is as follows:

1) Set input v, and output u,

=V present =Uy present

2) Ifu,> Ui present (u increase as v increase, see Fig.4.25)
2.1) Set v, =v, and u, =u,

22) v,=v,+dv and u, = H(v,)

(Increase input y by step dv and calculate output u, by hysteresis operator)

2.3) Ifu, <u,,back to step 2.1
(Not yet arrive or far away from the outputu, , continue to increase the input v)

2.4) Asu, >u,has just been satisfied, conduct the following interpolation to findv.

Uy —uy

V= +dv

(4.64)
u, —y

)=

Fig.4.25 Desired u, changes to increase
3) Ifu, <u,,,,, (theoutput u,changes to decrease, see Fig.4.26)

3.1) Set v, =v, and u, =u,
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32) v,=v,—dv and u, = H(v,)
(Decrease the input vby step dv and calculate the output u, by hysteresis operator)

3.3) Ifu, >u,back to step3.1
(The output u, has not arrived the valueu, , the input v must be decreased again)

3.4) Asu, <u, has just been satisfied, conduct the following interpolation to find v.

(4.65)

Fig.4.26 Desired u, changes to decrease
It can be seen that ify, <P <v,, v, <v' <v,anddv=|v, —v,|, then|v' —V|< dv. In fact,
the estimated ; will generally be much closer to the exact inverse v' thandv. In addition,
asdv— 0, one has ; _ . However, dvand the number / of dividing lines of H(v)

increase the computational cost significantly in this inverse method while

dv
V. -V

max min

<1% and [ >19.

Based on the results presented above, it is assumed that the KP model captures the
hysteresis characteristics accurately and comprehensively. Consequently, it is possible to
pursue model-based compensation of hysteresis nonlinearity using an open-loop

compensation strategy depicted in Fig.4.27. The desired output from the hysteresis
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system is the input to the inverse KP model. The inverse model predicts the input v(¢)
which is applied to the hysteresis to achieve the desired output u,(f) , and thus

compensates the hysteresis. If the KP model cannot capture the hysteresis characteristics
accurately and comprehensively, there will be a deviation between the desired output
u,(t)and the generated output u(¢). This error can be used as a measure of success for

the open-loop compensation strategy.

Inverse
Hysteresis

Input signal
=
Densities Terminator
Guessed densities Actuate densities

Hysteresis

Fig.4.27 Open-loop compensation to hysteresis of actuator described in KP operators
According to the approximate inversion algorithm, a Simulink diagram (the inverse KP
model) is designed as shown in Fig.4.28, where the “while” subsystem acts as a “while

loop” which represents the approaching of the final value of v(¢) towards the desired

u, ().

: Ud(n) Ud(n-1)

@ guessed_gamma Out
In2

While subsystem

Fig.4.28 The inverse hysteresis operator based on the KP model
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To judge how the input u,(¢) varies, a “memory” block is used to store the previous
sampled input valueu,(n—1) . Comparing the current sampled input value u,(n) to the
previous u,(n —1) generates the judgment conditions as

(channel ~_ state =1 ifu,(n-1)<u,(n)

{channel _state =2 if u,(n-1)=u,(n) (4.66)

| channel _ state =3 if u,(n—-1)>u,(n)

Switch

[ 2
G
hannel_state
>€?

=1/2/3 »@

Qut1

Q—

In2

QQ—=
Switch1

In1

Fig.4.29 Judgment for variation of input
A Simulink diagram (see Fig.4.29) is constructed to work as a subsystem, Judgment for

variation of input u,(t) , in a while subsystem (see Fig.4.30) of the real time

compensation configuration. The channel_state =1 represents an increasing desired

inputu, (f), i.e., the desired output of the actuator, passing to the inverse hysteresis; the
channel_state =3 indicates a decreasing u,(¢) entering to the inverse hysteresis; and the
channel state =2 implies that input u,(¢) arrives at #*/u~ which is the output of the

positive/negative saturation state. The value of the variable “channel state” is used to
decide the open channel of the block “Switchl” in the “While” subsystem to pass the

signal from the input gates to its output gate.
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Fig.4.30 While subsystem
With reference to Fig.4.30, as the desired input to the inverse hysteresis u,(n) is
increasing, channel state =1, the branch u,(n) >u,(n—1) is allowed to pass through

switchl as the input to the do while loop, while iterator. Meanwhile, the previously

calculated candidate v(n) passes from the memory increase and increases by an
approaching step dv to update as a new candidate of v(n), estimated v(n), which enters

to the subsystem “Hysteresis in KP operator” to calculate a new approaching u(n). The

while_iterator loop continuously increases by 1 so that the candidate value of v(n)

increases by an  approaching step dv  while the logical operation

(1%

u,(n) > approaching _u(n) > still has a logical value “1”, which means the
approaching _u(n) is still less than the desired input u,(n) . Similarly, when the
desired input to the inverse hysteresis u,(n) changes to decrease, both switch 1 and
switch 2 opens and switch number 3 closes to find the closest v(n). When the desired

input to the inverse hysteresis u,(n) arrives positive or negative
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saturations,u,(n) = u,(n—1), then the while_iterator loop is skipped, and the previous
calculated candidate v(n) passes from the memory_saturation as the closestv(n) .

If the desired output of the hysteretic actuator or the input of the open-loop

compensation system is given by the equation

u, (£) =—2[(cos(r t/15) + cos(v 27t /15)], (4.67)

which is shown in Fig4.31a, then the predicted input to the hysteresis system is
calculated by using the inverse KP operator as shown in Fig.4.31b, and the real output of
the hysteresis system is calculated by the KP model as shown in Fig.4.31c. The
compensated result is shown as Fig.4.31f. Fig.4.31d and Fig.4.31e show respectively the
inverse hysteresis and hysteresis loops.
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Fig.4.31 Open loop compensation by inverse KP operator
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If the inverse hysteresis is a rough approximation, an error e(t) = u(t) —u,(t) between
the desired output u,(f) and the real output u(z) will still remain in the system after the
compensation. For example, assume that an actuator hysteresis system is exactly
represented by the parameters as /=19, 0 =0.6,v =-2,v' =2, u" =-land u* =1. If
the same system is approximately described by the KP model with the same parameters
except for o =1.0, the compensation (shown as Fig.4.32f) will introduce some error

between the outputs of the real system and the modeled hysteresis. In the simulation
results of Fig.4.31, all the conditions are same as the open-loop compensation results of

(Fig.4.31), except for o =1.0 instead of o =0.6.

a Input Signal (Wd) b Caculated output V(t)
Desired output 2 Input to hysteresis 1 c Output of hysteresis W(t)
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Fig.4.32 Open loop compensation results with inverse KP operator
In general, the hysteresis in actuators cannot be precisely modeled because its

parameters can only be represented to a finite limit, and thus the hysteresis effect cannot
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be completely eliminated. If the hysteresis is represented by the linearly parameterized
KP model, the precision of approximating its density distribution and the number / of
dividing lines are the determining factors to the accuracy of the model. The accuracy of
the inverse KP model is also dependent on these parameters. Consequently, the
compensation effect is influenced by the selection of these parameters. To improve the
compensation effects as influenced by the parameter values, a methodology of parameter
updating based on an adaptive closed-loop control method will be described in later

chapters.
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CHAPTER 5

MODEL REFERENCE CONTROL OF
KNOWN LINEAR SYSTEMS
THROUGH ADAPTIVE COMPENSATION OF INPUT HYSTERESIS

In Chapter 4, the modeling, identification and inverse compensation of hysteresis through
the linearly parameterized KP model have been presented. In this chapter, the model will
be used to describe the actuator hysteresis and the corresponding inverse KP model will
be utilized to partially or completely compensate the hysteresis of the actuator. The
tracking problem for known linear time-invariant systems with input hysteresis will be
solved with the model reference control (MRC) method. An inner loop gradient adaptive
compensation of input hysteresis will be used to asymptotically reduce the disturbance
injected into the linear systems by the input hysteresis. Choices of MRC controller law
and gradient adaptive law for compensation will be derived. Convergence of the
parameters for the linearly parameterized KP model will be proven.

5.1 System Description and Control Objective

5.1.1 System Description

v, ()
iy G,(8) -
Model
r{t) ) .
11 (1) (1) . W) o
Out1 Hv G
n2 7 H(V) P G,(5)
Controller Actuaor Plant

(Hysteresis)

Fig.5.1 Tracking control scheme for linear systems with input hysteresis
Consider a known linear time-invariant plant with input hysteresis from an actuator (see

Fig.5.1). The linear plant to be controlled is described by
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N,(s)
Dp(s)u 5.1

y=G,(su=g,

where u(f)e R and y(f) € R are the plant input and output, respectively; N,(s) and
D, (s) are monic polynomials of degrees m and n, respectively; and g, is a constant

scalar gain. The hysteresis nonlinearity of the actuator can be described in an operator

form as

u(?) = H[v](), (5.2)
where v(¢) € R is the input of the actuator and u(¢) € R denotes its output. The operator
H(:) is the KP model to describe the hysteresis characteristic of the actuator, which has
been presented in detail in Chapter 4. The operator H(-) can be expressed in the linearly
parameterized form as

u@®)=HM@)=T"K, (5.3)
where the N x1vector I' consists of parameters of N KP kernels, i.e., I' =4, 46,,.... 14y ] »
and the N x1vector X includes output values of N KP kernels as they are subjected to
the input v(¢).

Some assumptions about the known linear time-invariant plant and the hysteretic

actuator are made as follows:

(1) G,(s)is minimum phase;
(2) The relative degree n' =n—m of G,(s) is known, and the transfer function is

proper (n>m);

(3) The degree of pole D, (s) is known as n;

(4) The sign of g, is known.
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(5) The parameters I' of the KP model used to describe the actuator hysteresis are

not exactly known, but their lower and upper boundaries (I'*" ,I"#"*") and initial

estimations f‘(t = () are known.
5.1.2 Control Objective
The control objective is to design a feedback control v(¢) so that all closed loop signals
are bounded and the output y(z) of the plant tracks the output y, (¢) of a reference model

defined by

Vu =G, (8)r=g, —g"‘zg r, (5.4)

where G, (s) is a stable rational proper transfer function of relative degree n' =n—m
the gain g, is assumed positive without loss of generality, and the command reference
r(t) is a bounded piecewise continuous signal.

As the linear time-invariant plant is known, one can use the model reference control |
scheme to solve the tracking problem while the hysteresis nonlinearity of the actuator is
absent. i.e., u(f)=v(t). In the case where the input hysteresis is present, a linear
controller alone cannot achieve the control objective even for a known linear plant. If the
hysteresis output is measurable, one can use the hysteresis inverse to construct an
adaptive compensation configuration to cancel or reduce the effects of the actuator
hysteresis (see Fig.5.2 and Fig.5.3). In Fig.5.3 the actuator is represented by an exactly

modeled hysteresis.
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Fig.5.3 Subsystem of gradient adaptive controller in Fig.5.2

5.2 MRC for Known Linear Plants with Measurable Input Hysteresis through
Adaptive Compensation for Hysteresis

5.2.1 Gradient Adaptive Compensate for Measurable Input Hysteresis
Choice of Adaptive Law

For a hysteretic actuator, the nonlinear operator mapping the input v(¢) into the actuator
output u(f) can be represented as u = H(v). According to equation (4.50) from Chapter
4, the output from the KP hysteresis model can be expressed in vector form as

H(v)=T"K . Thus, the hysteresis model is transformed into a suitable form for the
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gradient adaptive control. Due to inaccurate prior knowledge concerning the exact

parameters I' from the KP hysteresis model, the exact hysteresis parameters I' can be
estimated off-line by the estimated parameters I in advance. Thus, the exact KP model
and the estimated KP model can be expressed, respectively, by

u=HW)=T"K (5.3)
and i=HW)=I"K. (5.5)

Furthermore, the error between the outputs of the two models is expressed by
. AL
e=u—i=C-1K=T"K (5.6)

~4 .
where I'=I" —T"is called the parameter error of the input hysteresis. As the exact output

u of the hysteresis is measurable, the error e =u —# can be calculated, and can be used to

carry out the gradient adaptation for I" to converge to the exact parameters I".
To ensure that the signals are bounded, a normalized estimation error [27] is defined as

A -3 _AT =T
=iz=u 2u=u I;Kzl“f(’ (5.7)
m m m m

£
wherem’ =1+n_, and n, is the normalizing signal designed so that

el

0 *

LS
m

As in section 4.3.4 of [27], typical choices for n, are n’ = K"K, and n’> = K" PK for
P =P" >0,etc. Thus, by choosing P = P’ =1, one has

m’=1+n,=1+K'PK>0 for ¥V P=P'>0 (5.8)

K K K
also, — = = el or ¥V P=P">0,(59
m Tim TiKPK e T 59)
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and -IieLm for P=P">0
m

For example, let P=P" =] >0, equation (5.8) can be rewritten as

m’=1+n =1+K"K >0 (5.10)

LY Kl i1 o 1 wa

K
one has lim | — |= lim—————= = lim——— =],
oo m t—>w ’1+KTPK t—o ,1+KTIK

Thus, EeLuo for P=P" =150
m

From equation (5.7) it is clear that signal e¢m =fT—I£eLw is a bounded signal and a
m

reasonable measure of the parameter error I because for any piecewise continuous
signal vector K, large |em| implies large |I'|. Thus adaptive laws for I can be
generated by using the gradient method to minimize a wide class of cost functions of &£m

with respect to the parameters .

Consider a quadratic cost function given by

2,2 BT 2
J(F)=€;" _u-T'K) (5.11)

2m

To minimize the trajectory for the cost function (5.11) with respect to the estimated
parameters I, it is required to determine the convexity of J(I") over the space of T at
every moment of time ¢. This means that the minimum of the cost function J(I") requires
the variables I to be strictly decreasing to approach the convex point. Applying the

gradient method, the minimizing trajectory is generated by the differential equation

f=—zvit)=z K=2Z

2
m

_fT T _fT =T
(u 1;12K)K=(r 12“)1( 'K (5.12)

m
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Finally, substituting equation (5.7) into (5.12) results in the adaptive update law as

F=Zek (5.13)

P

where, Z=Z" >0 is a scaling matrix of adaptive gains. The larger Z is chosen, the
faster I converges to the convex point of the cost function J(I'), namely to the true
valuel .

To ensure that the estimated parameters I remain bounded in a certain set Q. derived

from a prior knowledge of the properties of I, a parameter projection term (see

Appendix 7) can be used. By defining Q as
O={TeRM™: g()<0} (5.14)
where g(I") is a vector of constraint equations on estimated parameters f‘=[,&,, T

the adaptive update law (5.13) becomes

zex 7 I:GQO
. or Ted(Q) and (ZeK)'Vg<0
[=Pr(ZeK)=1 (5.15)

T
ZaK—Zﬂ—ZeK otherwise
Vg'IIVg

where Q, is the interior of Q, and 5(Q) is the boundary of Q and I'(f = 0)is chosen to be

in 0,ie, Ft=0)eQ.
For a considered hysteresis, in case of the existing of positive and negative saturation

states, a non-restrictive choice for Q is simple. If one has an estimate from a prior
knowledge on the maximum achievable output of the hysteretic actuator, u*, then any

individual 4, of the vector I" would never be greater thanu* . This result comes from

following reasoning:
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For v(t)2v*, 4=H) ="K =[f, My fiy][LL] va =u*. Since 2, 20, one
has 4, <u” Vi=1~N.
Therefore, referring to (5.14), the set O can be defined by

Q={leR": . —u" <0,Vi=1~N} (5.16)

where 4, =u” Vi=1~N is the upper bound of 4, . Since g,.(f‘) =g(@)=4—-u"
Vi=1~N, then Vg =V[g,(D),g,(0),.gn O =[1, 1, ..., 1na.

Ifle Q, (i.e, @, —u* <0 for i=1~N), the values of estimated parameters I is
updated by the adaptive law f =ZeK.

If e 5(Q), ie., f,—u"=0Vi=1~N and ZeKVg=ZeK[l, 1, .., W m=ZcK<0,
one has ['=Z¢K <0 which ensures the trajectory remains in the set of Q.

If the Ned(Q) and (ZeK) Vg=ZeK >0, f=Z&¢K>0 can not ensure the

trajectory remains on the boundary of the set of Q. In order to keep the trajectory

remaining on the boundary of the set of O, one can set

. T
b=2:k-2"8Y8 7.K=0
Vg'IlVg

Thus, the adaptive update law with projection (5.15) can be rewritten as

, zex ¥ A< _Jor i=1~N
['=proj (ZeK)= or i=u and ZeK<0 (5.17)

0 otherwise
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Parameter Convergence

The gradient adaptive law (5.17) guarantees that [27]
G) &en,BFeL,;
(ii) &,&n, ,f‘ € L, are independent of the boundedness of the signal vector K ;
(1i1) if n:,f € L, and K is persistence of excitation (PE), then I" converges
exponentially to I" and

(iv) ['(t) e Q@ V> 0provided I'(0)=T, eQ and T Q.

~ A n < A
Proof: Because I' is a constant vector, from the definition '=I' —I",onehas I'=-I".

Substituting = —f into the gradient adaptive law (5.17) one has

(5.18)

S ZeK
0
If a Lyapunov-like function is chosen as

V()=

F’i"F >0 (5.19)

then along the solution of (5.18), one has

.~ |-T"Ke
Vi) =
) { 0
From(5.7), one has I'7K = em?. Substituting it into the above equation yields

o |-TTKe=—c'm*<
V(F)={Or Ke=-&'m* <0 (5.20)
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Hence, V([), T e L, , which, together with equation (5.7), implies that ¢,em* € L_. In
addition, from the properties of ¥(I') and (') one has em e L,, which implies that
g,en, € L,. Now from (5.18) one has

K|

ITH T2 am |~ (5.21)

which together with L8] €L andeme L, N L implies that f € L, N L_ and the proof of
m

(1) and (ii) is complete.
The proof for (iii) is long and complicated and the reader may refer to Section 4.8 of

reference [27].

The proof for (iv) is comes from equation (5.17) that whenever I" e &(Q), i.e.,
A, =u",Vi=1~N, one has fTVg <0, which implies that the vector i points either
inside Q or along the tangent plane of boundary of Q at point I". Because ['(0) = f‘o eQ,
it follows that f(t) will never leave Q, i.e., ['(f) e QO VvVt=0.

Remarks: The property ¥(I') > 0and V(') <0 of the Lyapunov-like function implies
that }i_{EV(IN“(t))=Vm. This does not imply }i_’rgV(f’(t))=0. Consequently, one cannot

conclude that s orem go to zero as t —» «. i.e., that the steepest descent reaches the

global minimum that corresponds to VJ(I") = —¢ K = 0.If however, E,ﬂ € L, one can
m m

establish that %(a m) € L_, which, together withem € L,, implies that g(¢t)m(f) > 0 as

t > [27]. Because m’ =1+n’, one has £({) >0 as t > and from (5.21) that
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1(6) >0 as 1 > w. Now | VI < e K I em | L which implies that | V() - 0 as
m
t >, ie., I'(¢)converges to a trajectory that corresponds to a global minimum of J(I")
asymptotically with time provided —, — e L_[27].
m m

5.2.2 MRC Design for Output Tracking of Known Linear Systems
In this section, a model reference controller will be designed for the linear time-invariant

plant with the known transfer function (5.1) to track the linear reference model (5.4).

r{t ¥
() . Gm m
Reference model
e T e e e — —I
i) IL’[} 7 e Gp AX{2] 1{f) e o]
Refgrence I
signal | Lknown linearplant | | Scope

Y A 4
A A

() @,(1)

r'————-——
JAN

MRC controller

Fig.5.4 An MRC control system with perfect tracking
In the above section, the configuration (Fig.5.3) about the gradient adaptive
compensation of actuator hysteresis through inverse hysteresis has been introduced.

This scheme acts as the subsystem “adaptation compensation” of Fig.5.2. The

subsystem passes the output u,(¢) of the MRC controller together with an error to the

input of the linear plant. The injected error asymptotically converges to zero,

ie,u(t)=u,(t)+e(t), where e(t) > 0 as t > . To design the MRC controller for the

known linear time-invariant plant, the parameters of the MRC controller must be found
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in advance. Thus, disregarding the error injected into the linear plant, one can directly
construct an MRC configuration as shown in Fig.5.4.

In order to modulate the transfer function of the known linear plant with relative
degree n' =n—m to be the same as the model transfer function with the same relative
degree, some gains 6, 6, 8,, 6, and filter signals @,(¢), »,(¢)in the controller structure,
as shown in the Fig.5.4, must be introduced. The structure of this control system can be
explained as follows.

Parameters 6, 6,, 6, and 6, represent control gains which lead to perfect tracking
when the plant parameters are known. The block for generating the filter signal

@, (¢) represents an (n —1)” order dynamics, which can be described by

o =19, (5.22)
A(s)

where A(s) is an (n—1) degree monic polynomial and A(s) is a (n—2) degree monic
polynomial such that A(s)/A(s) is controllable. The monic polynomial A(s) is chosen
so that

A(s) = A(s)N,, (s) (5.23)
For the plant and the reference model with relative degree one (n° =n—m=1), As)=L
As)=N,(s). The block for generating the signal ,(¢) has the same dynamics but with

y(#) as its input,

_hs)
%=1 (5.24)
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Since the scalar gain 6, in Fig.5.4 is intended to modulate the gain g , of the plant to

have the same gain g, as the reference model, it is directly defined as

6, =%n (5.25)
Ep

The vector 6, contains (n—1) parameters which are intended to cancel the zero of the
plant. It can be understood that the assumption for the plant to be minimum-phase allows
the plant zeros to be cancelled by the controller poles. The vector &, contains (n—1)
parameters which together with the scalar gain 6, can move the poles of the closed loop
control system to the locations of the reference model poles.

The control input in this system is a linear combination of the reference signal (¢), the
vector signal @,(?) obtained by filtering the control input u(¢), the signal @,(¢) obtained
by filtering the plant output y(¢), and the output itself. The control input u(f) can thus be
written, in terms of the gains and the various signals as

u(t) = Gr(t) + 6,0y(1) + 6,0,(1) + Gpy(1) , (5.26)
which is denoted as the model reference controller for model matching,

Since these parameters in the control law (5.26) result in perfect tracking, for any

reference input (), the output of the plant must equal the output of the reference model,
ie., y=G,(syu=y,=G,(s) (5.27)
To calculate the perfect tracking gains 6,(¢), 6,(¢), 6,(¢), 6,(¢t) and choose the

filter A(s)/ A(s), the following two cases will be considered to derivate the model
matching formulas.

Case 1: n=1, first-order plant G,(s) and first-order reference model G, (s)
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Since n =1 it is impossible to select 4(s) asa (n—2) degree monic polynomial. Thus,

one can set i(s)=0. This means that the filtered signals @, (f) and w,(¢) from the input

u(t)and the output y(¢) of the linear plant are not required, instead, the reference signal

r(¢) and the output y(¢) of the plant can be used to construct MRC controller as

u(t) =6,r(t)+6,y(1).
Substituting (5.28) into the plant transfer function (5.1) obtains

N N
y=G,(s)u =gp6’3—5”—r+gp90D—py .

p p

N
Solvin from (5.29) yields =g @, ——2—r,
8y (29 i y=g, 3Dp_gp90Npr

Substituting (5.30) and (5.4) into the model matching condition (5.27), one has

P N — V= G
- 3~ aar !l T Vm = m o~
i D, —gpﬁoNp D,
Considering 6, = g,,/ g, as (5.25) results in
N,D,-N,D,
=L " p,
g,N,N,,

If the plant is expressed as y=-a,y+b,u
and the reference model is described as

ym =_amym +bmr’

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

the model matching formulas (5.25) and (5.32) to calculate the exact parameters for

perfect tracking are rewritten as

=0~ anaq g =2
b, b,
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Case 2: n 22 high-order linear plant G,(s) and reference model G,,(s)

For n22, h(s)=[s"2,5">,.,s]] and A(s)=A(s)N, with degree of n-1 ,
substituting equations (5.22), (5.24) and (5.25) into the MRC controller (5.26) and
solving the output y of plant yields

gmNpA
= r
Dp (A-6h)- gpr (6,A+6,h)

y (5.35)

Substituting equations (5.35) and (5.4) into the model matching condition (5.27), one has

gmNpA
y= r
Dp (A-6h)- gpr (6,A+6,h)
N
=g —2r= 5.36
&y Vm (5.36)

m

With A(s) = A(s)N,,, (5.36) can be rewritten as
g,N,(0,A+6,h)+6hD, =D, A~D,N A (5.37)

Equations (5.37) and (5.25) are denoted as the model matching formulas.

5.3 MRC for Known Linear Systems with Non-measurable Input Hysteresis through
Adaptive Hysteresis Compensation

(0 A

Pl G, (5)
Model
.\'(r)l
MRC w (1 ‘ ‘ )
)r_(r)__» controller > a7 v{7) H u(r) » 60 NG
Inverse Hysteresis .
hysteresis y Knovg?a::?ear

Updated iAdaptive
Hensitie law >

Fig.5.5 Diagram for adaptive hysteresis compensation with immeasurable hysteresis output
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In this case, an adaptive control scheme will be designed for the known linear plant (5.1)
with a hysteresis input to track the reference model (5.4) as the hysteresis input is not
measurable.

To design this control scheme, it is assumed that the plant with a completely
compensated hysteresis input (H = H) is controlled by an MRC scheme (Fig.5.5).
According to the derivation in the above section, the plant input can be generated by
hysteresis as

u(t) =H(H " (u, () =u, () , (5.38)

and the control signal u,(¢) is provided by an MRC controller as

uy (1) = 6r(0) + 6y (1) + 6,0,(1) + G, y(¢) (5.39)
with filtered signals definedas o, = z((‘?) u, and w,= /}(—((2)3 ¥, (5.40)
gain 6, selected as 6, =£n , (5.41)

&p
and other gains 6,,6, € R", g, € R satisfying the following Diophantine equation
g,N,(6,A+6,h)+6hD, =D,A-D,N,A (5.42)
where A(s) = K(s)Nm (5.43)
with A(s)=1if n"=n-m=1, or A(s) is a monic Hurwitz polynomial of degree n—1
ifn =n-m>1.
However, it is impossible to exactly model the hysteresis of the actuator. There exists a

parameter error 1'(f) =T — I'(t) between the modeled hysteresis and its actual hysteresis.

And the modeled linearly parameterized hysteresis is solely determined by its parameter
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vector I'(¢) for a predetermined modeling precision, which is decided by the number of
lines / for uniformly dividing the Preisach plane defined by a specific hysteresis input
region[v™,v"] horizontally and vertically. Consequently, the inverse hysteresis, which is

constructed based on the modeled hysteresis, cannot completely cancel the hysteresis of
actuator, and the cancellation effect of the hysteresis requires to be continuously
improved by updating the parameter vector of the modeled hysteresis. Since the output of
the actuator is not measurable in this case, an adaptive controller should be developed to

update the inverse hysteresis according to the output error e(¢) between the plant G, (s)

and the reference model G, (s). Thus, to implement this adaptive control, one should find

out the relationship between the parameter error r (1) =T -T'(r)and the output error e(¢).

1,

‘ Pl i P H ibc:,(:)—)
c

TE IR IN

h(s)

p 7 ] 7 PGl

Fig.5.6 Equivalent diagrams: (the upper for an input error ¢, (1) caused by inaccurate
compensation, the lower for an extra input ¢, (¢) of plant with exact hysteresis
compensation caused by extra reference signal)

An input error of the plant caused by the parameter error T'(¢) can be expressed as

e,(t) =u(®)—u, () =T"KW)-T"K(v)=T"K(v). (5.44)
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Since the error e,(f) occurs between the MRC controller and the plant, it can be
equivalently considered as another reference signal Ar(f) together with the original
reference command r(¢f) applied to an MRC control system with perfect hysteresis

compensation (Fig.5.4) to cause the plant input to vary.

To evaluate the extra reference signal Ar(t), examine two equivalent diagrams in the
Fig.5.6, where the upper diagram represents that an input error e, () to the plant is caused
by inaccurate compensation; and the lower one represents that an extra input e, () to the

plant with exact hysteresis compensation is caused by an extra reference signal Ar(¢) . In

the upper diagram, the signal relationship between point B and point C is

h
u, +6’1%ud =u, (5.45)

and in the lower diagram, the signal relationship between point B and point C is

u, +Au, + 6, (( ))(ud +e,)=u, +e, (5.46)

Subtracting (5.45) from (5.46) and solving for Aw, yields

h(s)
" A(s)

Further considering the signal relationship between the point A and point B in the lower

=(1-6—>)e, (5.47)

diagram obtains

g (s)

A z )) #(8) (5.48)

1
=—(1-

o,
This extra reference signal Ar could result in an extra output Ay, if it were applied to the
reference model G, (s) . Thus, the output error of the plant caused by the inaccurate

compensation equals to
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e(ty=y—-y, =4y, =ArG,(s)

_1 _g )
=5, G- 07 e, ) (5.49)

Substituting equation (5.44) into (5.49) gives

e(t)—;G ()16,

3

”((S))]FTK( ) (5.50)

With a new transfer function defined by

W(s) =G, (s)1 - 6,2

; A )] (5.51)

which is a stable, strictly proper, and known transfer function, equation (5.50) can be
simply expressed as
e(t) =W ()ITK (v(t)) (5.52)
Equation (5.52) represents a common form for system identification, in which the
parameters can be updated by a number of standard techniques such as the gradient
method or the least-squares method. Using the gradient method with normalization, the
parameters can be updated by an adaptive law combining with a projection operator that
uses a prior knowledge of the boundaries of parameters of hysteresis model. The

projected adaptive law [25, 27] is expressed as

Zgh (t)gh (t) lf f c (l-‘lower’l-‘lower)
m, (t)
. ~ __ lower Zgh(t)gh (t) >
Projt) =1 or P=Tand =50 2%(5.53)
or [ =T""* and M <0
my, (t)
0 otherwise

.

where &,(¢) is an augmented error defined by
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&) =e()+5,(0) (5.54)
using an auxiliary error as

&0 =T" (g, (1) ~W (T FMI) (5.55)
where

() =W ()FMWI1), (5.56)

and the normalization signal m, (¢) is defined by

m, () =1 +6; (6, ()+ & (1) (5:57)
The theorem and the subsequent proof that adaptive law (5.53) ensures signal
boundedness can be founded in reference [25, 28].
5.4 Simulation Studies
5.4.1 MRC of Known Linear Plant with Measurable Input Hysteresis
In this section, the methodology introduced in section 5.2 will be illustrated by
application on a simple linear plant with a known transfer function as

s+1

=G, (=l
y=G,(s)u s2+3s—1u

(5.58)

The plant is unstable since it has a positive pole at s =(3 +«/§)/2 > 0. The plant is

preceded by a hysteretic actuator which in turn injects nonlinearity into the plant. The
output of the hysteretic actuator is assumed measurable.

The control objective is to design a controller to force the output of the plant (5.58) to
track the output of a reference model described by

s+4

—_—r 5.59
SZ+6s+9r ( )

Yn =Gp(8)r =
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If the hysteresis of the actuator can be perfectly modeled, a perfect inverse model
could be derived to cancel the nonlinearity from the actuator. In fact, the parameters of
the hysteresis KP model are impossible to be identified exactly, thus, an inaccurate
inverse compensation is usually carried out to reduce the hysteresis nonlinearity of the
actuator. If the output of the actuator is measurable, a gradient adaptive controller can be
designed to guarantee that the injected error into the plant converges to zero. In this
situation, for the known linear plant, the tracking problem can be accomplished by the
method of model reference control, which matches the plant by introducing a controller
to be identical to the reference model. The parameters of the MRC scheme are
determined by omitting the actuator and assume that the signal from the controller is

directly applied to the plant.

In the transfer function of the known linear plant (5.58), N ,=s+1,D, =s*+3s-1, and
g, =1; in the model transfer function (5.59), N,=s+4,D, =s’+6s+9and g, =1.
Since the plant and the reference model are second order systems with relative degree one
(n'=n-m=2-1=1), one has h(s)=1, and A(s)=A(s)=s+4. Also 6,=g, /g, =1.
Substituting all the above variables into the model matching condition (5.37) yields the

parameters as [6, § 6 @]=[l 3 2 -3],and the model reference controller (5.26) is

can be written as

u, (1) = r(t) +3a3,(t) + 20,() - 39(0) (5.60)

with the filtered signal w, =

! u; and @, =—1— y ; and as an example, the reference
s+4 s+4

command to the closed loop system is chosen as

r=-0.16[cos(r ¢t/3) +cos(~N27t/3)]. (5.61)
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Case 1: MRC for known linear plant without input hysteresis

s+4 ym
$2+65+9
Input r Refer model

Out1 L P

In1 o1 . Scope

$2+3s-1
Known plant

Outt [—2t—Jp

—
—P»in2

y MRC controlier

Fig.5.7 Simulation model for MRC of a known unstable linear plant
The simulation model for model reference control to the plant (5.58) is established in the

Simulink environment as in Fig.5.7, and the simulation result is shown in Fig.5.8.

MRC effect for a known unstable linear plant

W I
JT \/V\V vv:

-0.1]

O

Responses (Ym,e)
—

‘0 5 10 15 20 25 30 35 40
Time t (sec)

Fig.5.8 MRC tacking effect for a known unstable linear plant
With reference to Fig.5.8, one can see that the tracking error is zero for all simulation
time. This is because the linear plant is a time-invariant system, and the parameters of the
MRC controller are calculated based on the plant transfer function without any adaptation
to the hysteresis.

Case 2: MRC for known linear plant with input hysteresis
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s+4
out1 L ym
> s2+65+9
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Y| MRC controller

Fig.5.9 Simulation model for MRC of a known unstable linear plant with input hysteresis
However, if there is hysteresis existing in the actuator, it will introduce hard nonlinearly
error into the plant. To examine the influence of the hysteresis on the tracking effect of
the MRC of the linear plant, a simulation model for the linear plant with uncompensated
hysteresis is established as in Fig.5.9, where the parameters for exact hysteresis is listed
in table 5.1, and the simulation result is shown as Fig.5.10.

MRC effect for a known unstable linear plant with input hysteresis
0.15 v v v

0.1

b
e
S

(=]

-0.05

Responses (Ym,e)

0.1

0 5 10 15 20 25 30 35 40
Time t (sec)

Fig.5.10 MRC tracking effect for a known unstable linear plant with input hysteresis
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Table 5.1 Parameters for hysteresis and estimated hysteresis model

Characteristics Hysteresis Estimated hysteresis (initial guess)
Discretization number [/=19,i2 j=12,..,/+1 [=19i2j=12,.,/+1

Number of nodes N=({+2)(I+3)/2=231 N=({+2)(I+3)/2=231
Hysteresis input region v(¢t) e[v™,v']=[—4,+4] v(t) e[v,v']=[-4,+4]
Parameter distribution /(@)= 2_;;2_ e%((mwc)zﬂﬂ,-%)’) ia ) = 2_7:07 e;‘;.';«om)h(ﬂ,-m,)’)

@, =-0.1,8,=0.6,andoc=1.8 a,=-0.1,8,=0.6,andc =1.0

I+l I+ i

6, = u(@,B)/ Y. Y ma,B) 6;=pia,B)D.Y Ma,B,)

i=1 j=1 i=l j=I

From Fig.5.10, one can see that the tracking error is very large. The MRC controller
can only replace the poles of the plant into the stable region to make the unstable plant
become stable, but can not ensure the output of the plant to track the output of the model.
This means the error injected from the hysteretic actuator is severely disturbing the linear
plant and the hysteresis is required to be cancelled or reduced.

Case 3: MRC for known linear plant with fix compensated input hysteresis

Due to the MRC scheme being not able to reject the disturbance from the input, an
inverse hysteresis based on modeling of the hysteresis can be constructed to compensate
the hysteresis. However, due to the inaccurate modeling of the hysteresis, the exact
inverse hysteresis cannot be found. Therefore, because of inaccurate modeling as well as
computation errors, disturbances will still be injected into the linear plant. This raises
some tracking error in the MRC scheme. The simulation model for model reference
control to the plant (5.58) with inaccurate compensation of its input hysteresis is setup as
shown in Fig.5.11, where the parameters for exact hysteresis and estimated hysteresis are

listed in table 5.1, and the simulation result is shown in Fig.5.12.
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Fig.5.11 Simulation model for MRC of a known unstable linear plant
with inaccurate compensated input hysteresis

D%Rc tracking effect for plant with inaccurate compensated input hysteresis
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Fig.5.12 MRC tracking effect for a known unstable linear plant
with inaccurate compensated input hysteresis

Comparing the tracking error in the Fig.5.12 with the tracking error in the Fig.5.10,
one can observe that the tracking error is reduced by about 50%. But, there is still relative
large tracking error in this inaccurate compensation method. This is caused by the
inaccurate estimation parameter o =1.0to the exact o =1.8.

Case 4: MRC for known linear plant with adaptive compensated input hysteresis

In fact, the exact parameters are impossible to be investigated. If the output of the
actuator is measurable, a gradient adaptive method can be utilized to ensure that the
disturbance injected into the plant asymptotically converging to zero. The gradient
adaptive method and its convergence have been presented in section 5.2. The simulation

model for model reference control to the plant (5.58) with gradient adaptive

161



compensation of the hysteresis of the actuator is established as in Fig.5.13, where the
simulation parameters for representing the exact hysteresis and initial estimated
hysteresis are listed in table 5.1. The simulation result with the adaptive gain 7 chosen as
n =2 is shown in Fig.5.14. The tracking error has been already extremely reduced (see
Fig.5.14), and the convergence of the parameters in the simulation period (¢ = 40sec) s
relative smooth (see Fig.5.15). If the adaptative gain is chosen as large as 7 =40 the
tracking error is reduced almost to zero (see Fig.5.16), but the convergence of the
parameters in the simulation period ( ¢ =40sec) is relatively oscillatory with much
dynamics involved (see Fig.5.17); this maybe stimulating the unmodeled dynamics in the

plant which is causing the MRC scheme to become unstable.

s+4
outt : m
> s2+65+9
ym
Input  r Refer model :]
e
y
—» In1 Ud u s+1 y Scope
Outt = In1 Out1 P Troe]
—] In2 _ S
Adaptive Known plant
¥| MRC controller compensation
of hysteresis

Fig.5.13 Simulation model for MRC of a known unstable linear plant
with adaptive compensated input hysteresis
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Fig.5.14 MRC tracking effect for a known unstable linear plant
with adaptive compensated input hysteresis with 77 = 2
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Fig.5.15 Gradient adaptation of parameters of KP hysteresis model with7 =2
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Fig.5.16 MRC tracking effect for a known linear plant
with adaptive compensated input hysteresis with7 = 40
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Fig.5.17 Gradient adaptation of parameters of KP hysteresis model with 77 = 40
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5.4.2 MRC of Known Linear Plant with Non-measurable Input Hysteresis
In this section, the methodology introduced in section 5.3 will be illustrated by
application on a linear plant with a known transfer function as

1

—_— 5.62
s2+2s—8u ( )

y=G,(s)u=

The plant has a relative degree of 2 and is unstable since it has a positive pole ats =2 > 0.
The plant is preceded by a hysteretic actuator which in turn injects nonlinear dynamics
into the plant. For this plant, the output of the hysteretic actuator is not measurable.

The control objective is to design a controller to guarantee that the output of the plant

(5.62) will track the output of a reference model described by

Yu=G,(s)r= (5.63)

16549

If the hysteresis of the actuator can be perfectly modeled, a perfect inverse model
could be derived to cancel the hysteresis nonlinearity. Realistically, the parameters of the
hysteresis KP model are impossible to be identified exactly, thus, an inaccurate inverse
compensation is usually carried out to reduce the hysteresis nonlinearity of the actuator.
However, the inaccurate inverse compensation generates disturbances to be injected into
the plant, and the disturbance furthermore affects the tracking performance of the MRC
for the plant. Due to the unavailable output of the hysteretic actuator, a gradient adaptive
inverse hysteresis is modeled based on the measurement of the output error between the
linear plant and its reference model. The gradient adaptive inverse hysteresis guarantees
that the input error (disturbance) injected into the linear plant asymptotically converges to

zero, and furthermore ensures the MRC scheme to still have perfect tracking performance.

In the transfer function of the known linear plant (5.62), N , =1 Dp =5 +25s-8,
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and g, =1. In the model transfer function (5.58), N, =1,D, =s*+6s+9and g, =3.
Since the plant and the reference model are second order systems with relative degree 2
(n'=n-m=2), thus, A(s)=1 and A(s)=1~\(s)=s+l are selected. Also one has
0, =g, /g, =3. Substituting all the above variables and values into the model matching
condition (5.37) obtains the parameters as [6 § & @]=[3 -4 -36 -13.

Substituting these control gains into the model reference controller (5.26) gives

u,(t) =3r(t) — 4o, (t) — 36w, (t) — 13 y(t) (5.64)
with the filtered signal w, = 1}(((“9)) u; = —_lﬁud and w, = 1’(((5)) y= —ITI— y. For the following
s s ) s

simulations, the signal (5.61) is still selected as the reference command to the MRC
schemes.

Case 1: MRC for known linear plant with exactly compensated input hysteresis

The simulation model for the MRC to the plant (5.62) without input hysteresis is

established as in Fig.5.18, and the simulation result is shown in Fig.5.19.

3
out1 Ym
¢ q s2+6s+9 ym
Input Refer model olt I:
Y

P int " 1 Scope

outt > Y

§44+2s-8
—P{In2
Known plant
MRC
controller

Fig.5.18 Simulation model for MRC to an unstable linear plant with relative degree of 2
From Fig.5.19, one can observe that the tracking error is zero for all simulation time.
This is because the control gains in the MRC controller are calculated based on the plant

transfer function without any hysteresis, and the MRC controller places the poles of the
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linear time-invariant plant at the same location as that of the reference model, and adjusts

the plant transfer function to the same gain g, to that of the model.

N Tracking performance of MRC for an unstable linear plant

ﬂ
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Fig.5.19 Simulation result for MRC to an unstable linear plant with relative degree of 2
Case 2: MRC for known linear plant with uncompensated input hysteresis
However, if there is hysteresis existing in the actuator of the plant (5.62), it will
introduce hard nonlinearly input error into the plant. To examine the influence of the
hysteresis on the tracking effect of the MRC of the linear plant, a simulation model for
the plant with an uncompensated hysteresis is established as in Fig.5.20, where the
simulation parameters for representing the exact hysteresis is listed in table 5.1, and the

simulation result is shown in Fig.5.21.

outt =L L 3 ¥
s2+65+9
Input r Refer model eft
—P»1 In1 1
Out1 -ug-b In1 Out1 |- P > Y
—P In2 s$<+2s-8
y MRC Hysteresis Known plant
controller

Fig.5.20 Simulation model for MRC to an unstable linear plant with input hysteresis
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From Fig.5.21, one can see that the closed loop system with input hysteresis is unstable
even though the MRC scheme can guarantee that the unstable linear plant without input

hysteresis is stable. The response y(f) of the plant diverges very fast at the beginning of
the simulation; and the tracking error goes to infinite. This is because the linear plant with
high relative degree (n" =n—m > 2) characterizes more internal dynamics and is more

sensitive to any disturbance. Thus, a relative large disturbance can stimulate its dynamics

and cause the system to become unstable.

Tracking performance of plant with input hysteresis

Responses (y,ym,e(t))

0.9 o

02 04 06 08 1 12 14 16 18 2
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Fig.5.21 Simulation result for MRC to an unstable linear plant with input hysteresis
Case 3: MRC for known linear plant with fix compensated input hysteresis

From the simulation study of case 2, it is known that the MRC scheme can not reject
the disturbance from the input, and the disturbance injected by input hysteresis causes the
plant with high relative degree to be unstable. These facts motivate the construction of an
inverse hysteresis based on modeling of the hysteresis to compensate the hysteresis.
However, due to the inaccurate modeling of the hysteresis, the exact inverse hysteresis
cannot be found. Therefore, the error caused by inaccurate modeling together with the
computation round-off will still inject disturbance into the linear plant. This input error

raises some tracking error in the MRC scheme. The simulation model for the MRC of the
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plant (5.62) with fix compensated input hysteresis is setup as in Fig.5.22, where the
simulation parameters for representing the exact hysteresis and the estimated hysteresis

are listed in table 5.1. Simulation results are shown in Fig.5.23 and Fig.5.24.

Refer model
3
! r
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MRC s2+65+9 ym ym
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Ud U
Y Outt ==»{In1 Out! =P
In2 §2 +05-8 y v
Inaccuate Known plant
compensation

Fig.5.22 Simulation model for MRC to plant with fix compensation for input hysteresis
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Fig.5.24 Tracking performances of MRC to plant
with fix/adaptive compensation for input hysteresis
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Fig.5.23 shows the time response of the reference model. In Fig.5.24, the controlled
system becomes stable and the tracking error of the MRC with fix compensation of
hysteresis still remains large in the entire simulation period. This is caused by the

inaccurate estimation of the parameter o =1.0to the exact o =1.8.
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Fig.5.25 Simulation model for MRC to plant with adaptive compensation for input hysteresis

Case 4: MRC for known linear plant with adaptive compensated input hysteresis

To reduce the tracking error and make it asymptotically converge to zero, an adaptive law
can be designed to update the parameters of the inverse model according to the output
error of the plant. The gradient adaptive method and its convergence have been presented
in section 5.3. The simulation model for MRC for the plant (5.62) with adaptive
compensation of the hysteresis is established as in Fig.5.25, where the simulation
parameters for representing the exact hysteresis and initial estimated hysteresis are listed
in table 5.1. The tracking error simulation result with the adaptive gain Z chosen as
Z =2 is shown as the dash-line in Fig.5.24; one should observe that the tracking error
has been significantly reduced and has the tendency to converge to zero.

5.5 Conclusions

In this chapter, the linearly parameterized KP model has been used to describe the
actuator hysteresis, and the corresponding inverse KP model has been used to partly or

completely compensate the hysteresis of the actuator. The tracking problem for known
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linear time-invariant systems with input hysteresis has been solved using the model
reference control method. An inner loop gradient adaptive compensation of input
hysteresis was used to asymptotically reduce the disturbance injected into the linear
systems by the input hysteresis. Choices of MRC controller law and gradient adaptive
law for compensation have been derived. Convergence of parameters of the linearly
parameterized KP model has been proved.

In the MRC configuration, the MRC controller can only replace the poles of the plant
into the stable region to make the unstable plant to become stable, but cannot force the
output of the plant to track the output of the model if the plant has any input disturbance
due to hysteresis. This means the error injected from the hysteretic actuator is severely
disturbing the linear plant.

The inaccurate compensation of hysteresis between the MRC controller and the plant
has an effect to reduce the tracking error, but it still cannot satisfy the design requirement
because it cannot completely eliminate the hysteresis effects.

If the gradient adaptive hysteresis compensation is constructed as an inner loop of the
MRC and is utilized to reduce the hysteresis, relative larger adaptation gains for the
parameters of the hysteresis model can greatly reduce the tracking error, and the
convergence of the parameters is relatively smooth. If too large an adaptation gain is
chosen, the tracking error is reduced almost to zero, but the convergence of the
parameters have large oscillations, and this may excite the non-modeled dynamics in the

plant and cause the MRC scheme to become unstable.
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CHAPTER 6

MODEL REFERENCE ADAPTIVE CONTROL OF UNKNOWN
LINEAR SYSTEMS WITH COMPENSATED INPUT HYSTERESIS

In Chapter 5, the model reference control (MRC) method has been presented to achieve
the tracking goal for known linear time-invariant systems. In this chapter, a problem of
model reference adaptive (MRAC) control for unknown time-invariant linear systems
with input hysteresis will be discussed. Due to the output from the hysteretic actuator of
the systems which are assumed to be not measurable, the inaccurate compensation of
hysteresis through the inverse KP hysteresis model will be used to reduce the disturbance
injected into the linear plants. Choices of controller law and adaptive law will be derived
for plants with relative degree of one or more. Convergence of tracking and adaptation of
parameters will be proved.

6.1 System Description and Control Objective

6.1.1 System Description

Consider an unknown linear time-invariant plant with input hysteresis from the actuator

(see Fig.6.1). The linear plant to be controlled is described by

N, (s)
u
D, (s)

y=G,(su=g, 6.1)

where u(f)eR and y(f)eR are the plant input and output, respectively;
N,(s), D,(s) are monic polynomials of degrees n and m, respectively; g ,» 1s a constant

scalar gain.

The hysteresis nonlinearity of the actuator can be denoted in operator form as

u(t) = H{v](®), (6.2)
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where v(f) € R is the input of the actuator and u(f) € R denotes its output. The operator
H (") is the KP model to describe the hysteresis characteristics of the actuator, which has
been discussed in detail in Chapter 4. The operator H(:) can be expressed in linearly
parameterized form as
u(®)=HH@)=T"K, (6.3)

where the N x1vector I consists of densities of N KP operators, i.e., I'=[4, ‘uz,...,yN]T ,
and the N x1vector K includes output values of N KP operators as they are subjected to
an input v(¢).

The assumptions for the unknown linear time-invariant plant and the hysteretic

actuator are:
(1) G,(s)is minimum phase;
(2) the relative degree n° =m—n of G,(s) is known;
(3) the degree of pole D, (s) is known as m ;
(4) the sign of g, is known.
(5) the output u(¢) of the hysteretic actuator is unavailable for measurement;

(6) the densities " of the KP model used to describe actuator hysteresis are not exactly
known, but their upper and lower boundaries and initial estimations are known.
6.1.2 Control Objective

The control objective is to design a feedback control v(¢) so that all closed-loop signals

are bounded and the plant output y(¢) tracks output y, (¢) of a reference model:

N,

" D,(s) ©9

Yn=C,(SJu=g
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where G, (s) is a stable rational transfer function of relative degree n” = m —n, the gain
g, is assumed positive without loss of generality, and the # is a bounded piecewise

continuous signal.

As the linear time-invariant plant is unknown, the model reference adaptive control
method will be applied to achieve the tracking goal while the hysteresis nonlinearity of
the actuator is absent. With the presence of actuator hysteresis, an inaccurate
compensation is necessary in the MRAC configuration to reduce the disturbance injected

into the linear plant (see Fig.6.2).
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Fig.6.1 Tracking control scheme for unknown linear systems with input hysteresis
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Fig.6.2 MRAC configuration of an unknown linear time-invariant system
with inaccurate inverse compensation of input hysteresis
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6.2 Model Reference Adaptive Controller Design for Unknown
Linear Systems with Relative Degree One

6.2.1 Model reference adaptive control law
In this section, it is assumed that the linear time-invariant plant that was introduced in
section 5.1 is unknown. The objective is similar, that is, to design a controller to ensure
that the output of an unknown plant will track the output of a reference model.

In this adaptive control problem, since the plant parameters are unknown, thus the
ideal control parameters are unknown. Instead of a control law with ideal control

parameters as in (5.26) or (5.28), the adaptive control law is chosen to be
u() = Oyr(1) + 6,0,(1) + 6,0,(1) + G, y(1) (6.5)
where 633(t), é’l(t), éz(t), éo(t) are adaptive control parameters to be provided by the

adaptation law. The initial values of these parameters are estimated through experiment

or simulation. This adaptive control law (6.5) results in an output of the unknown plant as
() =G, (s)u (6.6)

The MRAC configuration is shown as Fig.6.3.

o G, (5) | 2at

G,(s)

Fig.6.3 Model reference adaptive control of a unknown linear plant
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6.2.2 Choice of Adaptation Law
To simplify the notation, let é(t) be the 2nx1 vector containing all the controller

parameters, and w(¢) be the 2nx1 vector containing the corresponding signals, i.e.,

6 =16,¢c) 4 60 40T 6.7)
o) =[rt) o) w,t) yOI (6.8)

Then the adaptive control law (6.5) can be written in compact form as

u(f) = 67 (t)e(t) (6.9)
Denoting the ideal value of é(t) by 6(t) and the error between é(t) and
8(1)byg(r) = é(t) —0(t), the estimated parameters can be represented as

0(t) = 6(5) + 4(2) (6.10)
where the parameter errors is written in a vector form as

s =[4() 41 &O 4O (6.11)
Therefore the adaptive control law (6.9) can also be written as

u(t) = 6" ((t) + ¢* () o(t) (6.12)

G, (s) 2ol

A

4

-

()] G, ) ¥y

o o,
Ala
<G,
e
\Qﬂl‘

Fig.6.4 An equivalent configuration of an MRAC for an unknown linear plant
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In order to choose an adaptation law so that the tracking error e(¢) converges to zero, it

is necessary to investigate how the tracking error is related to the parameter error. With

the adaptive control law (6.12), the MRAC system can be equivalently represented as

shown in Fig.6.4 with

regarded as an external signal. Thus, the output of controlled

¢
0,

plant is

¥(8)=G,(5)r + G, ()¢’ (ha(t)/ 6] (6.13)
with the desired output expressed as

Vu() =G, (s)r (6.14)

and the tracking error is related to the parameter error as

e() = y(t) = y,,(6) = G, ()P () (1)/6;] (6.15)
Since the tracking error (6.15) is the familiar equation seen in Lemma 8.1 of reference

[25], the following adaptive law is chosen

61) = §(0) = ~sgn(g, )7 elt)eo(t) (6.16)
where y is a positive number representing the adaptation‘ gain, and the sign of g, is the
same as that of g, due to the assumed positive sign of g, .

In order to prove that the tracking error in the adaptive control system (6.16) converges
to zero asymptotically, the following Lemma [25] is introduced.

Lemma: Consider two signals e(t) and §(t) related by the following dynamic equation

e(t) = H(s)[k¢" ()v(1)] (6.17)

176



where e(t) is a scalar output signal. H(s)is a strictly positive real transfer function. k is
an unknown constant with known sign, ¢(t)is an mx1 vector function of time, and v(t)
is a measurable mx1 vector. If the vector ¢ varies according to
§(t) = —sgn(k)y ev(s) (6.18)
with y being a positive constant, then e(t) and ¢(t) are globally bounded. Furthermore,
if v is bounded, then e(t) > 0 as t > ».
Proof: let the sate-space representation of (6.17) be
X = AX +b[k¢™v]
(6.19)
e=c’X
Since H(s) is SPR (strictly positive real transfer function), it follows from the Kalman-
Yakubovich lemma stated in Appendix 5, that given a symmetric positive definite matrix

0, there exists another symmetric positive definite matrix P such that
Pb=c (6.20)
and PA+A"P=-Q (6.21)

Let ¥ be a positive definite function of the form
V(X,0)=X"PX + m¢T¢ 20 (6.22)
4
Its time derivative along the trajectories of the system defined by (6.18) and (6.19) is
s pT rpy o VKl Lkl o
V=X"PX+X PX+—¢ ¢p+—¢ ¢
4 4

= X" A"PX +blkg"v]" PX + X"PAX + X" Pb[k¢"v]

~kev' p—keg'v
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= X"(A"P+PA)X +2X"Pb[k¢"v] - 24" (kev) (6.23)

Consider (6.19), (6.20) and (6.21), (6.23) can be rewritten as
V=-X"0X +2X"k¢"v]— 24 (kev)

=-X"QX +2ekg"v - 2¢" (kev)

=—X"0X <0 (6.24)
Therefore, the system defined by (6.17) and (6.18) is globally stable. The equations (6.22)
and (6.24) also imply that e and ¢ are globally bounded.

From (6.19), one has that X is bounded if the input v(¢) signal is bounded. This

implies the uniform continuity of ¥ since there is a bound of its derivative
V=-2X0X . (6.25)
Application of Barbalat’s lemma (see Appendix 5) then indicates the asymptotic

convergence of ¥ to zero. Since Q is a positive defined matrix, the asymptotic

convergence of V to zero as t > leads X -0 as t - o , Furthermore, results in
e—>0ast—>o since e=c’X.

Based on the above Barbalat’s lemma and through a straightforward procedure for
establishing signal boundedness, one can see that the tracking error in the adaptive
control system (6.16) converges to zero asymptotically.

6.3 MRAC Controller Design for Unknown Linear Systems with
Higher Relative Degree

In the above section, the adaptive controller design for plants with relative one degree has
been presented. In this section, the design of adaptive controller for plants with relative
degree larger than one will be discussed. For the choice of control law, there is no

difference from that for the plants with relative degree one, but the choice of the adaptive
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law is very different, which comes from the fact that the reference model now cannot be
SPR.

Choice of adaptive law

When the plant parameters are unknown, the adaptive control law (6.9) can be used again.
ie.,

u(t) = 6" (D) (6.26)
with the 2n controller parameters in é(t) provided by the adaptation law. Using similar
reasoning as before, the output y and the tracking error can be obtained again in the form
of (6.13) and the form of (6.15), respectively. Therefore, one has

e(t) =G, ()" w(t)/ 6] (6.27)
However, the choice of adaptation law given by (6.16) cannot be used, because now the
reference model transfer function G, (s) is no longer SPR. In order to find an adaptation
law, an augmented error is introduced as

e(t)=e(t)+a()n() (6.28)
where a(¢)is a time-varying parameter to be determined by adaptation, and a(f) is not a

controller parameter, but only a parameter used in forming the new augmented error;

n(t) is an auxiliary error defined as

() = 6" (1)G,,(s)a(t) - G, ()6 ()ar()] (6.29)
which is shown in Fig.6.5. 7(f) can be computed on-line since the estimated parameter
vector é(t) and the signal vector w(f) are both available. When the estimated vector

é(t) is replaced by its true parameter vector @, the auxiliary error 77(¢) becomes zero as

7(6)=06"G,,(s)a(t) - G, ()6 w(1)] = 0

179
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- G, (9
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Fig.6.5 The augmented error

OSSN E

Defining a(t) = Gi + ¢, (¢) and substituting (6.27) and (6.29) into (6.28) yield

3

£(1) = 9i¢f<t)g(t) +8,(0n(0) (6.30)
k]

A
where ¢()=G,(s)w(¢). This means that the augmented error &£(f) is linearly
parameterized by the parameter errors ¢(f) and ¢,(¢). The above equation (6.30)

represents a problem of system identification. The gradient method with normalization
can be used to find the controller parameters and the parameter for forming the

augmented error are updated by the adaptation law as

' bty = sgn(g,,T)ysg
l+¢'¢
) (6.31)
a() =21
I+¢'¢
with n(t) = 6" (s (t) ~ G, ()" (X)),

5(t) = G, (s)a(?),

£(1) = 9i¢’(t)c;(r) +8,(0n(0),
3
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and 8. (1) =a) —ei.

3
With the control law (6.26) and the adaptation law (6.31), global convergence of the
tracking error can be guaranteed. The proof is omitted here due to much mathematical
derivation involved [25].
6.4 Simulation Studies
In this section, the above methodology will be illustrated by applying it on a simple time-

invariant linear plant with a transfer function as (5.59). The plant is unstable since it has a
positive pole At s =(3 +~/ﬁ)/2 > 0. The function (5.59) is given for representing the
plant for simulation, but it cannot be used to design an MRC controller as explained in
Chapter 5. Thus, the plant is assumed unknown since the poles, zero and gain of the plant
are not exactly known, but only have some information about the sign of the gain, the

order of D,(s)and the relative degree. The plant is preceded by a hysteretic actuator

which in turn injects nonlinearity into the plant.

The control objective is to design a controller to force the output of the plant (5.59) to
track the output of a reference model described by (5.60).

If the hysteresis of the actuator has been perfectly modeled, a perfect inverse model
could be derived to cancel the nonlinearity from the actuator (u = H(H ' (u,))=u,). In
this way, the tracking problem becomes the design of an MRAC configuration for an
unknown linear time-invariant plant with linear input. However, the parameters of the
hysteresis KP model are impossible to be identified exactly; thus, an inaccurate inverse
compensation is usually carried out to reduce the hysteresis nonlinearity of the actuator.

This inaccurate compensation of hysteresis in turmn injects disturbance
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(u=H (I:I - (u;)) =u, +d(t)) into the plant. Usually, the output of the actuator is not

measurable if the hysteretic actuator is connected to the plant. Even if the output of
actuator is measurable the sensor is a very expensive component of the control system,
thus for simplicity of the system, the output of the actuator is still considered as unknown
since the sensor is omitted. Thus the method of gradient adaptive control cannot be used
to cancel the hysteresis. Fortunately, the MRAC method can reject some disturbance
injected from the system input. This motivates the design of an MRAC system to control
the unknown linear system with an inaccurate compensation of input hysteresis, rather
than to design a gradient adaptive controller to cancel the hysteresis.

The initial parameters of the MRAC scheme are all assumed zero because there are not
any other information about the plant except some assumptions stated in section 6.1. The

parameters are calculated by the updating law (6.16), where the filtered signals @ and
@, are still chosen as

1 1
u and o,=
s+4 s+4

o = y

since the transfer function of the model has only a zero at s = —4 with relative degree as
n =n—m=2-1=1. Since the sign of the plant gain is positive, sgn(g ,) =1. The adaptive
gains are chosen upon the simulation effects in order to make the tracking error quickly
approach zero and to avoid the MRAC gains to not have severe oscillations. This is
because severe oscillation of MRAC gains introduces much dynamics into the system and
in turn excites the unmodeled dynamics of the plant.

Case 1: First, assume that the hysteresis of the actuator is completely cancelled by its

inverse hysteresis model, and then design an MRAC scheme for the output tracking
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problem of the unknown plant. In this situation, the output of the MRAC controller is
directly connected to the input of the plant because u = H(H "' (u,)) = u, . The simulation
model for this case is shown in Fig.6.6. As the input command applied to the MRAC
system is chosen as »=-0.16[cos(m/ 3)+cos(\/5m/ 3)], and the adaptive gains are
chosen as y, =10,7, =200y, =200y, =100, the corresponding simulation results are

shown in Fig.6.7, Fig.6.8 and Fig.6.9.

Refer model
|Out1} L . . s+4 ym
s2+65+9
Input ym
+ e | I
L piniou J pl = ! _m—
s2+3s-1 | ¥ S
CcO
——| In2 Ou = Unknown pe
plant
e

y | MRAC controller

Fig.6.6 Simulation diagram for MRAC of an unknown linear plant

MRAC effect for an unknown unstable linear plant

Responses

20 25 36 35 40
Time t (sec)

Fig.6.7 Tacking effect of MRAC for an unknown unstable linear plant
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Adaptation of parameters of MRAC

63
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Time t (sec)

Fig.6.8 Convergences of adaptive parameters of MRAC for an unknown unstable linear plant

Signals in MRAC controller

Amplitude of signals (r,w1,w2,y)

Time t (sec)

Fig.6.9 Signalsin MRAC controller

Fig.6.7 shows that the output of the unknown linear plant perfectly tracks the desired output of
the reference model after about 3 periods of input (15seconds). Also, from Fig.6.8, it can be
observed that four MRAC gains converge to stable values after about 15 seconds. They are all
initialized at zero because there is no any information about them. In the first 15 seconds, four
MRAC gains promptly approach their stable values with some gentle oscillation. The relative
larger adaptive gains [y,,7,,7,,7,] are chosen, the faster the MRAC gains reach their stable
values and the earlier the tracking error approaches zero. Too large a value of adaptive

gains should not be chosen because it causes the MRAC gains to oscillate too much to be
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stable even if it can make the tracking error quickly approach zero. From Fig.6.9, one can
see that the signals in the MRAC controller have reasonable multitudes for the choice of
the adaptive gains as 7, =10,y, =200, =200y, =100.

Case 2: To reveal the hysteresis effects in the MRAC configuration, the hysteresis will
not been compensated. In this case, the output of the MRAC controller is directly offered
to the hysteresis, and then the hysteresis produces the input signal for the unknown plant.
The simulation diagram is shown in Fig.6.10. As the input command is applied to the
closed-loop system, the adaptive gains and filtered signals are selected as the same as in
simulation case 1, and the parameters for modeling the hysteresis is still chosen as given

in table 5.1; the simulation results are shown in Fig.6.11 and Fig.6.12.

Model
outt L st4_ fym
s2+65+9
Input ym
+1 D
— Pl oy 2 it out L] _H:I_‘

AC controller

—Pp! In2 ‘ $2+3s-1
In3 Out2 D Hysteresis Unknown Scope
MR {Actuator) linear plant

Fig.6.10 Simulation model for MRAC with input hysteresis of an unknown unstable linear plant

MRAC effect with input hysteresis of plant

Responses (Ym ,e)

o 5 10 15 20 25 30 35 40
Time t (sec)

Fig.6.11 Tacking effect of MRAC (with input hysteresis of an unknown unstable linear plant)
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Adaptation of parameters for MRAC with input hysteresis of plant

}

&N

=

Adaptive parameters
'3 Q

5 10 15 20 2 30 35 40

Time t (sec)
Fig.6.12 Adaptation of parameters

(MRAC with input hysteresis of an unknown unstable linear plant)

As shown Fig.6.11, the output of the unknown linear plant hardly tracks the desired output of
the reference model during the entire simulation period. Also, from Fig.6.12, it is noticed that
some MRAC gains cannot approach to certain stable values, and there is much oscillation of the
MRAC gains. This means that the MRAC configuration cannot reject completely the
disturbance injected from the hysteresis. Therefore, an inverse compensation to the
hysteresis is necessary.

Case 3: Through the modeling of the actuator hysteresis, some of its properties can be
investigated. Thus, an inverse hysteresis model can be designed to partly reduce the
hysteresis effect. The precision of the hysteresis model is a determining factor upon the
error d(t)=u, - H (I:I “(u,))=u, —u . In this case, an inverse hysteresis model between
the MRAC controller and the hysteretic actuator is added in the simulation diagram of
case 2 to reject the remained disturbance. The simulation diagram is shown in Fig.6.13,
and the simulation results are shown in Fig.6.14 and Fig.6.15. The simulation parameters
for the hysteresis and the inverse hysteresis are chosen as those given in table 5.1, and the

adaptive gains and filtered signals remain the same as in simulation case 1.
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Fig.6.13 Simulation model for MRAC with inaccurate input
hysteresis compensation of an unknown unstable linear plant

MRAC effect with inaccuate compensation for hysteresis
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Fig.6.14 Tacking effect of MRAC with inaccurate input

hysteresis compensation of an unknown unstable linear plant

Adaptation of parameters (MRAC with inaccurate hysteresis compensation)
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Fig.6.15 Adaptation of parameters of MRAC with inaccurate input
hysteresis compensation of an unknown unstable linear plant
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From Fig.6.14, the output of the unknown linear plant perfectly tracks the desired output of the
reference model after about 2 periods of input (10 seconds). Also, as observed from Fig.6.15, four
MRAC gains converge to stable values after about 10 seconds. In the first 10 seconds, four
MRAC gains promptly approach their stable values smoothly. If relative larger adaptive gains

[%1,72,73,74] are chosen, the tracking effect will be better. This means that combining

with the relative accurate compensation of the hysteresis, the MRAC configuration can
perfectly reject the disturbance injected from the hysteresis and also acheives perfect
tracking.

6.5 Conclusions

From the above simulations, some conclusions can be drawn as follows: values of adaptive gains
determine the approaching speed of the MRAC gains to their stable values, and also affect their
approaching oscillation. For relatively larger adaptive gains selected, the faster the MRAC
gains reach their stable values and the earlier the tracking error approaches zero. Too
large a value of adaptive gains should not be chosen because it causes the MRAC gains to
oscillate too much to be stable even if it can make the tracking error quickly approach
zero. The MRAC configuration cannot by itself completely reject the disturbance injected
from the hysteresis. Combining with the relatively accurate compensation of the
hysteresis the MRAC configuration can perfectly reject the disturbance injected from the

hysteresis and also achieves perfect tracking.

188



CHAPTER 7

ROBUST ADAPTIVE CONTROL OF NONLINEAR SYSTEMS
WITH UNKNOWN INPUT HYSTERESIS

7.1 Problem Statement

Consider a nonlinear plant with a preceding hysteretic actuator which generates input

signal for the plant. The hysteresis of the actuator can be expressed in an operator form as
u(t) = H{v](t) (7.1)

where v(¢) denotes the input of the actuator, u(¢) represents its output. The nonlinear plant

is described in canonical form as
x5 + Za,-yi(X(t),J'C(t),---,x(""”(t)) =bu(t) (7.2)
i=1

where X =[x, %,..., xX"""]" is the state vector which is assumed measurable, y, are
known continuous nonlinear functions of the states and time, and the parameters g, and

the control gain b are unknown constant. Without losing generality, it is commonly to
assume b > 0. The canonical form expression (7.2) describes a class of nonlinear systems
since some general nonlinear systems can be transformed into this structure [27].

The control objective is to design a control law for v(¢) in (7.1), to ensure the plant state
vector X to track a specified desired trajectory X, =[x,,%,,..., xd("_])]T ,ie, X = X, as

t > .

7.2 Adaptive Controller Design Using Compensator of KP Model

In case of the difficulties and estimation inaccuracies to model the actuator hysteresis in
the control system, controlling the system through constructing an inverse hysteresis to

compensate for the actuator hysteresis effects is a challenging task. Instead, the
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development of a direct control method by using currently available robust adaptive
control techniques together with the properties of the hysteresis KP model is attempted in
this section.

Different from some inverse compensation methods, which are adopted frequently in
the literatures, a robust adaptive controller is proposed in this section to control a
nonlinear plant as expressed by equation (7.2), which is preceded by an actuator with
hysteresis nonlinearity described by the KP model of equation (7.1), so that the controlled
system has global stability and the plant states track a specified desired trajectory within a
desired precision.

By recalling equation (4.53), the hysteresis nonlinearity of the actuator described by
the KP model can be expressed as

u(t)=cv(t)-T"M +d(v(¢)) (7.3)
where ¢ =||T"||, and d(v(?)) is the modeling error of hysteresis in representation of the

linearly parameterized KP mold. If the number of dividing lines increases to extremely

large value, the term d(v(¢)) can be considered as zero.

Substituting the hysteresis model (7.3) into the dynamic system (7.2) gives
D@+ a,y,(x(), %(0),.. x" (1)) = bev(t) ~ BT M +bd(v(t)),  (7.4)
i=1
Dividing both sides of (7.4) by bc and rearranging terms results in

ix“”(t) + ‘Zﬂy,. (x(@), %(),..., x" V() + Irrm = v(t) + lar(v(t)) . (7.5)
bc be c c

i=1
For the development of a robust adaptive control law, the following definitions and

assumptions regarding the plant and the hysteresis are made:
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b=1/(be), (7.6)

A A
06,,6,,....6,,...6.] € R", where 6, =a, /(bc) (7.7
A
Y={y,(X),5,(X),.. 3, (X5, (O] €R (7.8)
A
and T ZT/c, (7.9)

where I, is a vector consisting of normalized densities of hysteresis as

1, ()= (p) = u(p)! | T.

Substituting all these definitions (7.6) ~ (7.9) into (7.5) yields
$x"()+O'Y +T, M = v(t)+ld(v(t)). (7.10)
4

For the development of a robust adaptive control law, the following definitions and

assumptions are made:

Define the tracking error vector as X(f)=X()—X 0] (7.11)
and a filtered tracking error as s(¢) = (di + )" VF@), A>0 (7.12)
t

which can be rewritten as s(r) = AT X (r) with A7 =[A"", (n—1)A""?,..1].
Remark: It has been shown in [25] that the definition given in (7.12) has the following
properties:

1)  Equation s(¢) = 0 defines a time-varying sliding surface in R", on which the
tracking error vector X () decays exponentially to zero;

ii) If )N('(to)=0 and |s(t)| <&, where ¢ is a positive constant, then

~ Ao ~ . .
X(t)eQ£={X(t)| | X, 1< 27 A g i=1,..., n} for V¢>0;
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iii) If X (0#0 and | s(¢) |< &, then )?(t) will converge to Q, within a constant a time
(n-1)/4.
Rather than use the filtered error s(¢) to derive the adaptive law, a tuning error s, is

introduced as
s, = s — &sat (i) , (7.13)
£

where £ is an arbitrary positive constant and sat () is the saturation function. The tuning

error §, = 0 when the filtered error s < €.

(n-1)

Assumption 1: The desired trajectory X, =[x,,%,,...,x,” ] is continuous and

available. Furthermore, [ X dT,xZ]T €Q, c R™' with Q, a compact set;

Assumption 2: There exist known constants 0 < b,,, <b . such that the control

max

gain b in (7.2) satisfies b e[b,;,,b,,,]1;

i=1,.r},where 6, and 6, aresome

max ? X

A
Assumption 3: ®e€Q, ={®| 6., <6 <6

known real numbers;

A
Assumption 4: T € Q. =T "! O<p, <y, . (p),peP},where u, . (p)are some
known real constants.

Assumption 5: The bound B for the relation ||d (v(t))“ < B is known.

Assumption 6: There exist known constants 0 < ¢, <c_, such that the slope ¢ in

max

(7.3) satisfying ¢ € [Cpy »Crnx ] -
Remark: Assumption 1 sets a restriction on the types of reference signals which may

be used for design of the tracking controller. Assumption 2 is common for nonlinear
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controller designs [25]; In assumption 3 a new parameter vector ® has been defined for
the convenience of further development. This assumption implies that the range of the

plant parameters, a;,i =1,...,r, are known in advance. This is a reasonable assumption
concerning the prior knowledge of the system; For assumption 4, based on the definition
and property of the density function 4, (p), it is reasonable to set an upper bound
Hoymax (P) >0 for u,(p) . For the assumption 5, the bound B of modeling error of

hysteresis is required as the modeling precision.
In presenting the developed robust adaptive control law, some parameter errors are

defined as following:

O@)=6@1)-0, (7.14)
$(t)=d(t) - ¢, (7.15)
I =I-T, (7.16)

where ©(¢) is an estimate of ® as given in Assumption 3, f,, is the estimate of the

normalized density vectorI] due to the unknown vector I", and ¢3(t) is an estimate of

¢=1/(bc)>0 due to the positive unknown plant parameters b >0 and the uncertain
constant ¢ =||I"||> O of hysteresis.

Given the plant and hysteresis model subjected to the assumptions described above, a

control law is designed as following:
v=—ks(O)+ v, (0) + O Y(X)+TTM -k satS)  (7.17)
g
with v (0) = X —5(0)

=x ~[0,A" D, (n-DA"?, ., (n-DAT X, (7.18)
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and k;, >0. k, is a control gain satisfying k, > B/c_, . The parameters gz;(t), O(t) and

normalized density I, will be updated by the following adaptation laws

(0) = proj(d—nv zs.) (7.19)
O(t) = proj(®,-7 Ys,) (7.20)
I = proj(f,,—q Ms,) (7.21)

where parameters 77, y and g are positive constants determining the rates of the

adaptations, and the proj(-) are projection operators formulated as:

proj (é,—ﬂvfdss) =3

[0

—NVgS,

{proj(©,~y ¥s,)}, =1

{proj(f,,—q Ms,)}, =

—7(Yss)i

~

o=t

i 6 €lbuin>Pum ]
or [¢5 = Pum-and nv,s, <0]
or [¢A = P sand v s, 2 0]

(7.22)

if ¢?=¢minsand nvfdss >0

l:f éi=0imax’

and y(¥s,)<0

if 6 ¢el6.. .0

imin? imax]
or [6=6_ and y(¥s,), <0] (7.23)

imin?

or [67,. =6, ..and y(¥s.), 20]

if 6=6

imin?

and y(¥s.), >0
if 6= 0, ..and q(Ms,), <0

if éx € [elmm’ etmax]
or [6,=6,,,,and q(Ms,),<0]
or [4=6,,,and q(Ms,),20]

¥

(7.249)

if 6=0,,.and q(Ms,),>0
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withi =1~r,and j =1~ N. The adaptive control model is shown as Fig. 7.1.

.\'d '\'d
o P int vit)
Outt
Input X,
Exact Parameters < s(h) n2
> Out2[——p»
'y Fpplint o
Out2 —P»1 In3
Actuator H(v) rr
—t Plant s Out3|—
~N— .Y Lplind
Adaptive
Estimate Compensator controller
Parameters

Fig.7.1. Adaptive control model for unknown nonlinear system with unknown input hysteresis

Remarks:
1) The projection operators for © used in the above control law have the following
properties [33]:
i) 6@ e, if O@,)eQy;
i) || proj(@,y)|I<|| y ||and
iii) — (& —@)" A proj(é3,z) > —(6 —w) Az , where A is a positive definite
symmetric matrix. Note that these three properties are also valid for the
projection operators defined for (13 and fn (t,@).
2) The projection operators require the upper and lower bounds of the parameters ¢,
® and T, . Assumptions 2) ~ 4) are fundamental to these bounds. However, these

parameters are only used to specify the variant ranges of the parameter for the
projection operator. These ranges are not restricted as long as the estimated

parameters are bounded.
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3) The term I'M , which is associate with the compensation part I”M of the
hysteresis, represents the dynamic effects of the actuator on its plant. The vectors
M and f‘n have N =I(l+1)/2 elements respectively. Here / denotes the number
of lines to uniformly divide the Preisach plane P horizontally or vertically. The
larger [ leads to finer cell divisions of the Preisach plane P. The selection of the
size of the cells depends on the accuracy requirement. As will be shown in the
simulation example, extremely small sized cells are not necessary because it
causes many calculations but only improves the accuracy slightly.

The stability of the closed-loop system described by equations (7.10), (7.17) and (7.19)

~ (7.24) is established in the following theorem:
Theorem: For the plant given in (7.2) with the hysteresis (7.3), subject to Assumptions

1)~4), the robust adaptive controller specified by equations (7.17), (7.19)~(7.24) ensures

that: if é)(to) €Qg, fn (%) € Q. and ¢3(t0) €2, all the closed-loop signals are bounded

A ~ o
and the state vector X(t) converges to Q, ={X ()| X, |< 27 X "¢,i =1,..,n} for Vt 2> t.

Proof: For system (7.10), considering (7.12), (7.17) and (7.18) the time derivative of

the filtered error (7.12) is:

$() =%[v(t) +-i—d(v(t)) -@'Y T, M - ¢v,(0)] (7.25)

By applying the control law (7.17) to (7.25), it changes as
§(0)= %[—kds(t) +@-Pa)+(©-0)Y +(, ~T,) M —k sat(2) +=d(¥)] (7.26)
& ¢

To establish global boundedness, a candidate Lyapunov function is defined as following:
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V() =1 + L6 6+ + LETE . (7.27)
2 Y noq
Since the discontinuity at | s |= £ is of the first kind, the derivative V(¢) exists for all s.
Applying the facts 5,5, =s,§, @=0-0, (f)=®, f‘n =1 ,T,=I-T,, § =¢—¢ and
¢7=¢;, one has as
V(1) = ps,§ +-(O-0Y 6+ L(p-p)g+ -, -LYT,  (7.28)
4 n q
When |s|< ¢ and s, =0, applying adaptive control law (7.19) ~ (7.24) to (7.28) gives
. P T 1 2 l - T
V()=¢s3——(0-0) yYs, ——(¢-Pnvys, —— 1, -T,) qMs,
4 n q
=0 for |si<e¢ (7.29)

When |s[>¢, applying (7.26) to (7.28), one has

V() =s,[~k,5() + (@ p 1 () + (O -O) Y + (€, -T,)" M —k,sat(2) +Laey
& C
1 2 T A l - A 1 A T A
+_(®—®) ®+_(¢_¢)¢+—(Fn—rn) Fn (7'30)
Y n q

Considering the definition of the filtered error as (7.12), one has

s—& for s>¢
s£=s—8sat(i)= 0 for —e<s<e¢ (7.31)
Fy
S+& for s<-¢

which leads to | s 2] s, |> 0 while | s|> & Furthermore,
—k,ss, < ~k,s,’ (7.32)

With (7.32), (7.30) can be simplified as
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V()< ~kys,” +5,[(~ v (0) +(©-0) Y +(T, -T,)" M - kesat(f) +%d(v)]
+L -0y 0+ (F-pp+ 1, -T,) L, (7.33)
4 n q

Utilizing the adaptive laws given in (7.22) ~ (7.24) and the properties of the projection

operators as

L(6-0)proj(®,-y¥5,) <@ -0)¥s,,
4
1(1‘“" ~T,) proj(T,,—q Ms,) <, -T,)" Ms,
q
1, 2 .
and -7;(¢ =P proj(@,—nv,s,) < —(d—P)v,s,,

one has V(t) < —k,s. —k s sat(>) +ld(v)s <0
dV ¢ Ve c c &

since | s, |= s sat(s/ &) for | s[> &, the above inequality becomes

V(t) < _kdscz —ks | Se |+ﬂ)_s€
c

2 B
S—kdse _k£|s5|+z——lse|

<-k;s? Vspe. (7.34)

Equations (7.27), (7.29) and (7.34) imply that ¥V (¢) is a Lyapunov function which
leads to global boundedness of 5,, ®=6-0, T, =TI -T,, and J =¢?—¢. From the
definition of s, , s(¢)is bounded. It is easily shown that if X(0) is bounded, then X () is

also bounded for all ¢, and since X,(¢) is bounded by design, X(f) must also be

bounded. To complete the proof and establish asymptotic convergence of the tracking
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error, it is necessary to show that s, — 0 as t — 0. This is accomplished by applying

Barbalat’s lemma [25, 27] to the continuous, nonnegative function
KO =V(O) - [ (P@) +ks ()T 20

with V(t)=—k,s, (r)<0 (7.35)
It can easily be shown that every term in (7.25) is bounded. It is required to show that
v(t)-T'M in (7.25) is bounded. From (7.3) one has u(f) = c[v(t) -TT M] which is the

output of an actuator of the system. Thus,
T 1 1 T
V(&) -, M < —u(@®)H-T"K|
c c
By choosing the extreme values for every KP kernels as k,=%1, the above equation
changes to

v -rim gy,
C

Hence $(f), and s,(¢) are bounded. Furthermore, f/;(t) =-2k,s,(t)s.(¢) is bounded. This
implies that V,(t) is a uniformly continuous function of time. Since ¥,(¢)2>0 and

V.(£)<0 for all ¢, applying Barbalat’s lemma [25, 27] proves that V,(t) > Oas t — .

Therefore, from (7.35) it can be demonstrated that s,(f) >0 as f—o. The remark

following equation (7.12) indicates that X (#) will converge toQ2, .

Remark: It is now clear that the developed control strategy to deal with the hysteresis
nonlinearities can be applied to many systems and may not necessarily be limited to the
system described by (7.2). However, it should be emphasized that the goal is to develop a

control strategy in a simpler setting that reveals its essential features.
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7.3 Simulation Studies
To illustrate the control methodology introduced in section 7.2, in this section it is
applied to control a nonlinear system with input hysteresis (see Fig.7.1). The nonlinear

system is described by

_ %)
i(t) = ax(t) +a21—+z_—xm+bu(t) (7.36)

where u(t) represents the output of an actuator with hysteresis nonlinearity. The actual
parameter values of @, , a,, b and density function w(p)= u(p,,p,) are assumed
unknown, and some nominal values are a, =-2,a, =1, b=6. The nominal density
function u(p,, p,) will be specified later. Without control, i.e., u(f) =0, the system is
stable becausea, < 0. The objective is to control the above system state x(f) to follow a
desired trajectory x,(¢) , which is given by a reference command as
x,(1)=22sin(m/3-7/2)+ 2.2sin(«/—2—zzt/3 —n/2). (7.37)

The system to be controlled is preceded by an actuator with hysteresis nonlinearity,

which can be described by the linearly parameterized KP model as

u@®) =T"K +d(()) (7.38)
with the parameters N =[I(/+1)]/2, [/ =20,and p €[v",v*]=[—4,4]. The nominal density
vector I and operator vector K[w(f)] of the KP model are rearranged from a 2-
dimensional upper-triangular matrix consisting of densities 4, and a 2-dimensional

upper-triangular matrix consisting of outputs of the KP operators. These two upper-

triangular matrices are only defined over the Preisach plane P. The elements K, are

calculated by a normalizing function as in equations (4.56) and (4.57) with o =1.0 and
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D1 = P, =0. The normalized densities u; over the Preisach plane P are illustrated in

Fig.7.2. In equation (7.38), || I' [|=1 since u, are the normalized densities.

Fig. 7.2 Normalized densities 4, over the P plane

Without adaptive control, The responses of the dynamic system (7.36) including (7.38)
subject to the input signal (7.37) with the initial conditions of x,(0) = —4.4,x(0) = —4.4
and u(0) = -1 is shown in Fig.7.6. The hysteresis loops of the actuator are formed as in
Fig.7.3. The relationship between output and input of the nonlinear compensator is shown
in Fig.7.4, and its relationship with the actuator hysteresis is shown in Fig.7.5. Also,

simulation studies show that different frequency values of input signal x,(f) result in

hysteresis loops similar to that in Fig.7.3. This means that a fixed density distribution of
the KP model combined with the KP operators fully determines the properties of the
actuator, and the linearly parameterized KP model (7.38) can be used to describe the
hysteresis nonlinearity of the actuator. In Fig.7.3 the maximum and minimum output
values of the actuator equal to +1 and —1 respectively because the normalized densities

are taken for the input hysteresis.
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Hysteresis of actuator

1.5 v v v v ” v v T v
1
§ 0.5¢
]
S
]
‘s or
§-0.5I'
-1
1.5 N A . . N a A A A
-5 ~ -3 -2 -1 [ 1 2 3 4 5

Input v(t) to actuator

Fig.7.3 Hysteresis nonlinearity of actuator

Compensator to the hysteresis of actuator

s -4 -3 -2 -1 0 1 2 3 4 5
Input v(t)

Fig.7.4 Hysteresis related compensator

Relationship between hysteresis and its compensator

= Hysteresis
~w~  Compensator
Hysteresis+Compensator =sinput

- -3 -2 -1 1 2 3 4 5

[}
Input vit)

Fig.7.5 Relationship between hysteresis and its compensator
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Input signal & Response of system without control

— [nput v(t) to acfuator:
A

Y £y
\ —~=~- Output of system pnJ \ J

0 5 10 15 20 25 30
Time (sec)

Fig.7.6 Responses of uncontrolled system

From Fig.7.6 it can be seen that without control, the output of the plant is quite
different from the output of the reference model due to the nonlinearities of its actuator
and the plant. If there is some parameter uncertainness in the real system, the response of
the open-loop system becomes more different from the reference command. Thus, it is
necessary to design a robust adaptive controller for the system to modify the input of the
actuator, and furthermore to force the plant to generate an output to follow the reference
command.

In the simulations, the robust adaptive control law (7.17) ~ (7.24) were used. So far,
there has been no analytical approach developed for the selection of the control constants
but only iterative simulation has been used. The control gain in the first term of the

control law is set as k£, =10, and the control gains to calculate the adaptive parameters

~ a

0, ¢, and [ are chosen as y =2, 7=2 and g =1.3. The bound for modeling error of

hysteresis is assumed as B = 0.05 , which means the modeling error must less than 5% of

the output multitude of the saturation states. ¢, =0.95 and ¢, =1.0. Thus, the control

gain k, = 0.053. The minimum and maximum values of the normalized densities /i, are
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set as 0 and the nominal densities distribution g, are calculated by equations (4.56) and
(4.57). The initial distribution is chosen arbitrarily between these two extreme surfaces, 0
and ;. Here the initial adaptive densities are chosen as /,(f,) =0.74,, and the initial

normalized densities are calculated as

. I
fy (86) = (1) sum(T (1)) = (1) 1 D (1)) -

i=1 j=1
The initial parameters 6(¢,) =1/3, ¢(z,) =1/4, the initial state x(0)=-—4.4, and the

constraint to the error is chosen as € =0.025. The simulation sample time is 0.01 sec.
From the simulation, it is observed that the system responses are more sensitive to control

gains k, and q. It is intuitive that ¢ directly corrects the errors caused by the hysteresis.

To evaluate the effectiveness of the proposed adaptive robust control scheme, the

simulation is also conducted without controlling the effects of the hysteresis, i.e.,
f',,T M =0 in the controller v(¢) in equation (7.17). Simulation results of the tracking

errors of the system state for the desired trajectory with and without controlling the

effects of the hysteresis are shown in Fig.7.7, where the tracking error (solid line) has
been kept as s,(f) = X(¢) < 0.025, while the tracking error s,(¢) for f“,,T M =0 shown by
the dash-dot line is larger than s,(f) and cannot satisfy the design requirement

s(t)<&=0.025. Fig.7.7 shows that the signal ff M which is designed to reduce the

hysteresis effects is necessary and effective, and also verifies the excellent tracking
performance of the proposed algorithm.
It should be mentioned that simulations for several different desired trajectories with

various parameter values and initial conditions have also been conducted. Results show
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that they all displayed similar behaviors as the ones shown. The simulation for / =30,
which divides the Preisach plane P into smaller cells, gives almost identical results but
involves larger cost of calculation. This further verifies that the developed control
algorithm is repeatable and computationally implementable. This means that dividing the
Preisach plane P into extremely small sized cells is not necessary because it causes too

much calculation but only marginally improves the accuracy.

Tracking errors

Tracking errors x-xd

75 26 75 30
Time (sec)

Fig.7.7 Tracking errors of state with the control term I'7M # 0 and with I7M =0

7.4 Conclusions

In this chapter, a modeling approach to actuators with hysteresis by employing the
parameterized Krasnosel’skii—Pokrovkii model is systemically presented, and then a
robust adaptive control architecture is proposed for a class of continuous-time nonlinear
dynamic systems preceded by the actuators with hysteresis. By showing the properties of
the hysteresis model, a robust adaptive control scheme is developed without constructing
the hysteresis inverse. The new adaptive control law ensures global stability of the
controlled system and achieves both stabilization and trajectory tracking within desired
precision. Simulation results performed on a simple nonlinear system illustrated and

further validated the effectiveness of the proposed approach.
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CHAPTER 8

A NOVEL HYSTERESIS MODEL

In the previous chapters, the classical Preisach hysteresis model and the KP model have
been presented. The classical Preisach model is the basis for the KP model. The
elementary operator of the KP model is a continuous kernel, which can be expressed by
the classical Preisach model. Even though both models can be rewritten in linearly
parameterized forms, the linearly parameterized KP model is more suitable to be
combined with the adaptive control methodology for systems. But, both models have the
same drawbacks such as zero-initial-slope of the reverse curves and no capability to
describe reversible parts of the hysteresis actuators. This fact motives further research to
define a new hysteresis model to overcome these shortcomings. In this chapter, the
definition of the new hysteresis model will be introduced, and the application of the
model in the adaptive control of nonlinear systems will be illustrated.

8.1 Definition for the New Hysteresis Model

The new hysteresis model is defined as an integration of weighted elementary operators

over a specific domain as

u(®) = [ k,[vp,&,10u(p)dp

= [ [k 00,8, 100 1(p, PR, @®.1)
Also it can be simply expressed in operator form as

u(?) =H[v](r) (8.2)
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mg

Fig. 8.1 anew elementary hysteresis operator &,
where v(¢) is the hysteresis input; #(¢) is the hysteresis output; H(:) is the hysteresis
operator; k,[v,y,&,](f) as shown in Fig. 8.1 is called the operator function which
defines the output values of a specific elementary operator with a pair of
parameters p =(p,,p,) € P as it is subjected to the input V(¢) ; u(p), a function of
parameters p=(p,,p,) € P, is the weighting factor of the elementary operator
k,[v,w,¢£,)(t); and the triangular region P shown in Fig. 8.2 is the hysteresis plane over

which the hysteresis occurs, and it can be defined as

) AP,
v ,v’)

L

Fig. 8.2 Hysteresis Plane P
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P={p(p,,p2)eR2:v+ —azp,2p v} (8.3)

where v~ and v are the lower and upper hysteresis input limits, respectively, and a is a
rise-constant of hysteresis elementary operator which will be introduced later.

Mathematically, the operator function &,[v,y,&,1(¢) can be expressed by

max( ¢ ,(¢), n[vI(¢)) for v=20
kv, &, 1) = (8.4)
min( §,(¢), ,[vI(£)) for v<0
where k, is the output of the elementary operator corresponding to its input v(¢) ; the

&, (#)is the output coordinate of turning point where input v(¢) changes its varying trend

when v() =y , and the pair of (,£,(¢)) is defined by
(V(to) if t=t,

w=3w(t) if t=t,>t_ and sign (v(t"))=-sign (")) (8.5a)

W) if & 21>t and sign (Wt ")=sign (Ot 7))

r”(to) if t=t,

4;:17(1‘)=< kp[v(ti)7y/(ti—l)’gp(ti—l)] if I=t>1, and sign (v(¢ +))=_Sign v _))(8.5b)

MO~y (t)]+e, () if 428>t and sign (V) =sign (V¢ 7))
where i is the sequence of the turning points.

The two boundary functions #[v](t) : ABCDEFG and r[v](t): ABCHEFG forming

the major loop of the elementary operator &,[v,y,&,1(¢) (see Fig.8.1) are defined by
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[ m,((t)-v)-1  if v(e)<v"
-1 if v <v(t)<p,
m((t)-p)-1 if p<v()<p,

IO = v(v(t)-p,-a)+1 if p,<v(t)<p,+a (8.0)
1 if p,+a<v(t)sv’
| m (@) —v)+1 i v(e)>v'
( m,(v(t)-v7)-1 if v(t)<v”
-1 if v7<v(t)<p,
rivl =1 2O ¥ pev)<mra oo
m,(v(t)— p, —a)+1 if p+asv()<p,+a
1 if p,+a<v(t)<v'
| m () =v*)+1 if v(e)>v*

where v=2-m,(p, — p,)]/a, m, is the slope of the half line 4B ; m, is the slope of
both segments CD and EH ; m_ is the slope of the half line FG ; the horizontal
segments BC and EF have end points with coordinates as B(v™,-1),C(p, —1),E(p, +1)
and F(v*,+1); the segments CH and DE are parallel to each other with slope as
v=[2-m,(p, — p,)]/a so that their end points Dand H have horizontal coordinates as

p,and p, +a respectively.

To explain the formation (8.4, 8.5) of the elementary operator as the input v(¢) varies,
the input is assumed starting from a value v(f) <v". As the input v(¢) keeps increasing,
the point of input-output pair (v(¢),k,) traces along the boundary r, : ABCDEFG . And
then the input v(¢) changes its varying tendency and keeps decreasing after it increases
tov(t) > p, +a; this decreasing input variation results in the input-output point (v(¢),4,)
to slide down along the boundaryr, : ABCHEFG . If the turning point E' with coordinates

(w,&,) is on the segment DE, the point ((f),k,) slides down along the
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segment E£' H' and then along the segment H'CBA . After that, if the input v(¢) changes its
varying tendency again and keeps increasing after it decreases to p, +a > v(¢) > p,, the
point (v(#),k,) goes up along the segment C'D'and then along the segment D' EFG. And
the segments E'H', H'C', C'D' and D'E' form an inner loop of the elementary operator.
From this explanation, the coordinates of the turning points £' and C' are critical for the
operator function to determine its loops.

The weighting factor wu(p)=u(p,,p,) is called the density of the elementary

operator k. Each point p(p,, p,)in the P plane associates with an elementary operator

k,and has its specific density factor x(p,,p,). The function u(p,,p,)to describe the

densities of points in the entire Preisach plane P is called the density function or density
distribution of the newly defined hysteresis model.
The integral model of hysteresis (8.1) can be interpreted as a parallel connection of an

infinite number of weighted elementary operators as shown in Fig.8.3.

- Py — ° — u(t)

Fig. 8.3 Parallel connection form of new defined Hysteresis Model

8.2 Definition of Compensator of the New Hysteresis Model

Referring to the definition of the newly defined operator function £,[v,y,&,](¢) one can

construct a elementary compensator m,[v,i,5,](¢) as shown in Fig.8.4
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Fig. 8.4 Compensator m, of the newly defined elementary operator £,

so that

k,[v,y,5,1@0) +m,[v,p,6,1(8) = v(1) (8.7
The mathematic definition of the elementary compensator m [v,i,5,1(¢) related to the

operator function k [v,y,& ](2) is expressed by

min(c, (£),1'[v](#) for ()20
m[v,y,5,1(0)= (8.8)
max(, (), V) for W)<0
where m, is the output of the elementary compensator corresponding to its input v(¢) ; the
¢,(1)is the output coordinate of the turning point where input v(r) changes its varying

trend when v(f) =y , and the coordinates (v, ¢ ,(¢)) of the turning point is defined by

(V(to) ift =l

w=1wlt) ift=t, >t and sign ((t"))=-sign (")) (8.9a)

WL)if T, 2t >t and sign (") =sign ("))
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EARA) ift=t,

and 6, @) =ym, M) Wt),6,(00)]  ift=t, >t and sign ((¢"))=-sign ({¢"))(8.9b)

\mb'[v(t)—(,//(t,._,)]+gp(t,._l)zf t,2t>t_and sign (t")=sign ((t"))
where i is the sequence of the turning points, and ¢, is the instance of time at the ith
turning point.

The two boundary functions #'[v](¢): A'B'C'D'E'F'G' and r,'[v](¢): A'B'C'H'E'F'G'

enveloping the major loop of elementary compensator m [v,y,5,1(#) (see Fig.8.4) are

defined by
[, (1) —v)+v™ +1 if v)<v
v(t)+1 if v <v()<p,
' _ m,'(W(f)-p)+p +1 f p<v)<p,
V6= IO -(p,+a)]+p,+a-1 if p,<v()<p,+a (8.10)
w(t) -1 if p,+a<v(t)<v'
m () =v)+v' -1 if vi)>v*
( m'(t)—v7 ) +v +1 if <v
vo)+1 if v vt <p
=] SO+ p+] lf AS<ptra o)
m M) -(p,+a)l+p,+a-1 if p+asu)<p,+a
() -1 if p,+a<vt)<v’
L m'((O)—V)+v -1 if WH)>v*

where 9=[a-2+(1-m,")(p, —p,))/a, m,' is the slope of the half line 4'B'; m,' is
the slope of both segments C'D'and E'H'; m_' is the slope of the half line F'G'; the
slopes of segments B'C'and E'F'have the same value as 1. The coordinates of key
points are B' (v_,v +1),C' (p,, o, +1), E' (B, +a, p,+a—1), and F' ¢/,v' -1). The segments

C'H'and D'E' are parallel to each other with the same slope as 9 and their end points
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D'and H' have horizontal coordinates as p, and p, +a, respectively. Thus, the key
points D' and H' are determined by C'H' and D'E' as
D' (py,p+1+m,'(p,— p)) and H'(p, +a,p, +a—1-m,'(p,— p,)).

The formation principle of the inner loops in the compensator is similar with that of the

newly defined elementary operator except for different choices of the operator “max or

“min” in equations (8.4) and (8.8). This can be explained as followings. As the input v(¢)
changes its variation trend from increasing to decreasing(from Vwt)20 fo W) <£0),
the curves of the compensator inner loop are above the decreasing boundary
n'VI): A'B'C'H'E'F'G', but in contrary the curves of the inner loop elementary
operator are below its decreasing boundary r,[v](¢): ABCHEFG. Thus, the “max”
operator is taken in (8.8) but the “min” operator is selected in (8.4). Similarly, the “min”
operator is taken in (8.8) but the “max” operator is selected in (8.4) if the input v(¢)
changes its variation tendency from decreasing to increasing (from v(¢) <0 to v(¢) > 0).

The weighting factor u(p)= u(p,, p,)is the same density of the elementary operator
k,. Thus, to model a hysteresis, either operator k, or compensator m, is used in the
newly defined hysteresis model, and the same density function is used.

There are relationships between the slopes of the segments of he compensator 7, and

that of the corresponding segments of the elementary operator k&, as

m,=1-m, (8.12)
m',=1-m, (8.13)
m.=1-m,; (8.14)
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Also there exists a relationship between the vertical coordinates ¢,(¢,) and &,(¢,) of the

i+ turning point of the compensator m, and it corresponding operator &, as

gp(ti)+§p(ti)=v(ti) (8.15)
With these relationships (8.12) ~ (8.15) and the definitions of the compensator

m,[v,,6,]() and its operator k,[v,i,&,](¢), it can be easy proven that the relationship

between the compensator and its related elementary operator is expressed as equation

(8.7), and their relationship is shown in Fig.8.5.
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Fig. 8.5 Relationship between &, and m,

Thus, by defining the compensator m, of the operator k,, the newly defined hysteresis

model can be alternatively described by an integral of the compensator over the

hysteresis plane P as

u(t) = H®) = [0 - m, [v,p,¢, 10) p(p)dp

=v(®) [ u(pap - [ m [v.v.¢, (D u(p)dp
viep
=ev®)= | [, 5436, 10 4 p)ndD,  (8.16)

where ¢ = .L Hu(p)dp = Iv_ I Iiz u(p,, p,)dpdp, is a constant for a particular hysteresis.
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8.3 Linearly Parameterized Hysteresis Model
The hysteresis plane P={p(p,p,)€R’:V' —a>p,>p >V} can be uniformly divided by
[ horizontal lines and / vertical lines into N=(/+2)(+1)/2 small cells (see Fig.8.6) with

coordinates (v;,v;) of their lower-left node as

v, =v +(i-1)Av
8.17)
v, =v +(j—DAv
vi=y”
I+1

where Av= s j2i, Lj=12..,1+]

Fig. 8.6 Dividing of Preisach plane P
And then the total contribution of the elementary operators of each cell to the newly
defined hysteresis model (8.1) is lumped into that of the operator corresponding to the

lower-left node of the cell. Thus, one has

ko OBy = i, (0 p1,dp (8.18)

the ij cell

where 71, - is called the lumped density of a cell to its lower-left node (,v,). Finally,

with (8.18) the newly defined hysteresis model (8.1) can be linearly parameterized as
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I+1 i

u@®=HMO =YY, [k, @ u,dp

i=l j=1 the jj cell

I+1 i

=22k, 0 F,, +d((1)

i=1 j=1

“TTK +d(v() (8.19)
where KT =l sk Ky sy sy ek, ] (8.20)
and FT =[ﬂpu’ﬁplz’ﬁpu""’ﬁﬂu’ﬁpzj ""ﬁpg""’ﬁp(ulxzu)] (821)

and where K7 and I'" are N = (I +2)(/ +1)/2 dimensional vectors. The term d(v(f)) in

(8.19) is modeling error by the linearly parameterization of the model. If the number of

dividing lines increases to extremely large value, the term d(v(¢)) can be considered as

Z€ro.

Alternatively, the linearly parameterized newly defined hysteresis model (8.19) can
also be expressed using the compensator m, as
I+l i
wO=HpIO=cv-3.>.  [m,@) p,dp

i=l j=l (he jj cell

I+1 i

=ov()=2. > m, (1)-F,, +d(¥(0)

i=1 j=1

=cv(t)-T"M +d(v(t)) (8.22)

where M" =[m ] (8.23)

o3 Mgy s My eens My ST, o, s,
is an N =(/+2)(/+1)/2 dimensional vector consisting of output values of all the
compensators associated with all lower-left nodes of all small cells.

Equations (8.19) and (8.22) are called the linearly parameterized hysteresis model.

Although they can be modeled respectively, these two models are dependent and
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compensative to each other because they have the same density distribution (same density
vector I") and have the relationship as

u(t) = cv(t) = T™M +d(v(t)) =K +d(v(£)) (8.24)

The term I'" M in the linearly parameterized hysteresis model (8.22) is very useful since
it directly models the input-output error of hysteresis. And this error is critical for
nonlinear robust adaptive control design since it can be treated as plant dynamics while
the hysteretic actuator is considered as a linear transducer.

In order to conduct simulations of systems with input hysteresis which can be described
by the newly defined hysteresis model (8.19) or (8.22), a simulation model has been
developed in Simulink and is shown as in Appendix 6.

8.4 Simulation Studies
To illustrate the control methodology introduced in the section 2 of Chapter 7, in this
section it is applied to a nonlinear system as

1-e®

x(t)=Px(t)+ B, ———+ bu(t

( ) ﬂ] ( ) ﬂz 1+e_x(t) ( ) (825)
y=x

where u(t) represents the output of an actuator with hysteresis. For the simulation,

B =-2, B,=1and b=6 are chosen as their nominal values. The hysteresis model

parameters p, for describing the input hysteresis of the nonlinear system are unknown,

but their nominal values are assumed to be obtained from the functions
I+ i

P = Hj /(ZZﬂji) (8.26)

i g
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_ 7(vj’vi)
Hi =T 8.27)

D)

i=1 j=1

-2 =32
and y(vv)=qexp (v, —p) +(—D,))) (8.28)
with parameterso=3.8, p,=0, p,=0. The input region of hysteresis is p€[v",v']=[-6,6].
The hysteresis plane is divided by / =18 horizontal lines and /=18 vertical lines

into N =190 nodes. The coordinates v, and v, in (8.27) and (8.28) are calculated by
(8.17). The slopes of the hysteresis are measured as m, =m, =m_=0.1. The sample time

of the simulation is £, =0.01 sec and the simulation time =30 secs,
The objective is to control the above system state x(¢) to follow a desired trajectory

x,(£) as x,(£) ==3.1[cos(r t/3) +cos(2rt/3)]. (8.29)
Without adaptive control, the first investigation is the response of the open-loop
system which includes the nonlinear plant (8.25) with the initial conditions of x(0) =0
and the hysteretic actuator (8.19) as it is subjected to an input signal given by (8.29), i.e.,
W) =x,(?). The hysteresis loops of the actuator are formed as shown in Fig.8.7. The

nonlinear compensator and its relationship with the hysteresis are shown in Fig. 8.8. Also,

simulation studies show that the hysteresis loops generated by different frequencies of
input signal W¢) are similar to that in Fig.8.7. This means that the linearly parameterized

hysteresis model with a fixed density distribution fully determines the property of the

hysteretic actuator. The response of the open-loop system is shown in Fig.8.9, from

which it is observed that the output }(¢) of the nonlinear plant is quite different from the

command Wf). In fact, the presence of the input hysteresis and the parameter
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uncertainties of the nonlinear plant make the response of the open-loop system very
different from that of the reference command. Thus, it is necessary to design a robust
adaptive controller to guarantee that the output of the nonlinear plant will follow the

reference command.

Hysteresis of actuator

-0 10
input wi)

Fig. 8.7 Hysteresis of actuator
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Fig. 8.8 Relationship between hysteresis and compensator
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Open-loop response
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Fig. 8.9 Open-loop response
In the simulations of the closed-loop system, the robust adaptive control law used are
those given by equations (7.17) ~ (7.24) as were designed in Chapter 7. The initial

condition of the nonlinear plant is also chosen as x(0) = 0. So far, no analytical approach

has been developed for the selection of the control constants, but they are selected
through iterative simulation. The control gain in the first term of the control law is

selected as k, =10, and the other control gains are set as y=2, n=2, and ¢g=6 to
calculate the adaptive parameters &, @ and ©,. The minimum and maximum values of

the normalized densities 0, are set as 0 and 1. The bound for modeling error of

hysteresis is assumed as B = 0.05, which means the modeling error must less than 5% of

the output multitude of the saturation states. ¢, =0.95 and c¢_, =1.0. Thus, the control
gain k_ = 0.053. The initial density distribution is chosen arbitrarily between these two

extreme surfaces as p =0 and p =1where j,j=1~N. The initial values for the parameters
A1) and @()are set as &¢,)=1/3and ¢{,)=1/4. The constraints for the tracking error are

chosen as &€ =0.025and 4 =0.1. The tracking performance using the robust adaptive
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control is shown in Fig.8.10. Simulation studies show that the system responses are more

sensitive to control gains k; and g . It is intuitive that ¢ directly corrects the errors

caused by the hysteresis.
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To evaluate the effectiveness of the proposed adaptive robust control scheme, the
simulation is also conducted for the closed-loop configuration without controlling the
effects of the hysteresis, i.e., ’M=0 in the controller (7.17). The tracking errors for the
robust adaptive control with and without controlling the effects of the hysteresis are

shown in Fig.8.11, where the tracking error (solid line) has been kept as
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5,(1)=X(#) <0.025, while the tracking errors, () (the dash-dot line) for r’am=o is larger than

5,(*)and cannot satisfy the design requirement 5(¢) <&=0.025. Fig.8.11 shows that the
signal r."s designed to reduce the hysteresis effects is necessary and effective, and also

verifies the excellent tracking performance of the proposed algorithm.

It should be mentioned that simulations for several different desired trajectories with
various parameter values and initial conditions have also been conducted for the
applications of the newly defined hysteresis model and the robust adaptive control
method introduced in Chapter7. Results show that they displayed similar behaviors as
these shown in the simulations presented. The simulation for/ = 28, which divides the
hysteresis plane P into smaller cells, gives almost identical results but involves larger cost
of calculation. This further verifies that the developed control algorithm is repeatable and
computationally applicable. And it means that dividing the hysteresis plane P into
extremely small sized cells is not necessary because it causes much calculation but only
slightly improves the accuracy.

8.5 Conclusions

In this chapter, a modeling approach to the input hysteresis of systems is systemically
presented, and a robust adaptive control architecture is proposed for a class of continuous-
time nonlinear systems preceded by the hysteretic actuators. By showing the properties of
the hysteresis model, a robust adaptive control scheme is developed without constructing
the hysteresis inverse. The adaptive control law ensures global stability of the controlled
system and achieves both stabilization and trajectory tracking within the desired precision.
Simulation results performed on a simple nonlinear system illustrate and further validate

the effectiveness of the proposed approach.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE WORK

9.1 Conclusions

This thesis has been dedicated to modeling and control of hysteresis of SMA actuators
connected to systems. Extensive simulations have been conducted to validate the
modeling approach and the control schemes.

The contribution of this thesis in the modeling aspect is the proposal of a linearly
parameterized Preisach model, an alternative form of the linearly parameterized KP
model, and a novel hysteresis model which overcomes the drawbacks of the Preisach
model and the KP model.

The classical Preisach hysteresis model is widely used in the existing literatures.
However, to implement the model in integration form, a suitable density distribution
function for the hysteresis must be formulated in advance and the memory interface line
for an applied input is required to be determined at every instance of time. These facts
hinder the effective applications of the model. Motivated by the linear parameterized KP
model defined by Banks, Kurdila and Webb in [41, 42], the Preisach model is rewritten
as a linearly parameterized model, and this linear form of the Preisach model is suitable
to be applied in adaptive control schemes. Thus, it becomes possible to conduct online
identification and compensation of the hysteresis using the Preisach hysteresis model.

The linear parameterized KP mode is a linear combination of nonlinear elementary
operators, called kernels. It is convenient to describe the Preisach class of hysteresis and
to compensate the hysteresis using an inverse hysteresis model based on the linearly

parameterized KP model. However, the findings of this thesis research shows that the
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newly proposed robust adaptive control of systems with input hysteresis, the inverse
hysteresis model is not required to be constructed. Instead, an alternative form of the
linearly parameterized KP model is defined to describe the error introduced by hysteretic
actuators. In this alternative form of the KP model, an elementary compensator
associating with the elementary hysteresis operator, kernel, is defined. The KP model can
be expressed in the integral form of either weighted kernels or weighted elementary
compensators. Also, the relationship between the KP hysteresis model and the Preisach
model is revealed in this thesis. This relationship guarantees that the KP model has the
same properties as the Preisach model and can describe the Preisach class of hysteresis.

Both the classical Preisach hysteresis model and the KP model have some drawbacks.
Both models cannot describe the hysteresis with reversible parts. Also, the reverse curves
of the hysteresis loops described by the models can only have zero initial slopes. To
overcome these shortcomings of the models, a novel hysteresis model has been proposed
in this thesis. This newly defined hysteresis model can easily describe the reversible parts
of hysteresis, and can precisely model reverse curves with non-zero initial slopes. This
new model is expressed in a linearly parameterized form so that it can be conveniently
integrated with the adaptive control techniques.

The problems of control systems with input hysteresis have been pursued along three
different paths: inverse compensation, gradient adaptive control and robust adaptive
control for linear and nonlinear systems.

The idea of inverse compensation is to construct an inverse operator to eliminate or
cancel the hysteretic nonlinearity in actuators. The inverse hysteresis model has been

traditionally constructed by using either the classical Preisach operator method, the
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linearly parameterized Preisach operator method, or by the KP operator method. Inverse
compensation of hysteresis is open-loop in nature and its performance is susceptible to
model uncertainties and to errors introduced in the inversion process. For the classical
Preisach hysteresis model, it is difficult to update the model parameters to adapt the
effects caused from the uncertainties and dynamics of the actuator. For the linearly
parameterized Preisach model, it is possible to incorporate adaptive control schemes to
update model parameters. However, due to the discontinuity of the elementary relay
operator, this model has extremely large amounts of parameters to be updated. Thus, the
adaptive compensation would involve a large amount of computation and would affect
the application of the control scheme in systems with more uncertainties and dynamics.
The linearly parameterized KP operator method based on the inverse hysteresis model is
more suitable for adaptive compensation. Due to the lack of effective inverse algorithms,
a large amount of calculations and computation errors still exist in this inverse
compensation framework.

To avoid the recursive approximation in the inverse algorithms, disturbances injected
into systems by the hysteretic actuator is modeled by an elementary compensator. This
modeled disturbance can be treated as the dynamics of the linear or nonlinear systems
while the actuator is assumed as a linear transducer. Thus, the existing adaptive
techniques can be used to control the dynamic systems. This alternative control
framework has been successfully combined with the linearly parameterized KP model
and the newly defined model to control nonlinear systems with input hysteresis. This

scheme avoids the direct cancellation of the hysteresis nonlinearity of the actuator. In the
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adaptive control schemes, analysis for system stability and convergence of trajectory
tracking has been conducted.

9.2 Recommendations for Future Work

In this thesis, hysteresis of SMA actuators is considered to be rate independent if the
operation frequency or the change rate of input is low enough, for example, less than 10
Hz . However, in some realistic cases, the operation frequency may be considerably high
and vary with time; consequently, the hysteresis of SMA actuators is a rate dependent
nonlinearity. Thus, in the future work, the problem of defining dynamic hysteresis
models to describe the rate dependent hysteresis will be involved, and adaptive control
techniques combined with the dynamic hysteresis model will be examined to control

systems preceded by dynamic hysteretic actuators.
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APPENDICES

Appendix 1

%%%%%%%%%%%%%%% main function %%%%%%%%%%%%%%%%%
%% to find interface lines and draw the hysteresis loops %%

clear all

close

%% acquits input value sequence %%

%p=[-185 145 -145 145 -145 105 -105 75 -75 45 45 20 -30]; %casel%
%p=[-185 185 -185 145 -145 145 -145 105 -105 75 -75 45 45 20]; %case2%
p=[-185 185 -185 145 -145 105 -100 75 45 80 -30 20]; Ycase3%

Umin=-185;
Umax=185;
yyO=-17;
m=1000;
yti=0;
ytd=0;

% call function 'interface_loops'%
interface_loops(p,Umax,Umin,yy0,m,yti,ytd);
%% %% %%%%%%%%%%% end of main function %%%%%%%%%%%%%%%

%%%%%% interface_loops%%%%%%%%%%%%%
function interface_loops(p,Umax,Umin,yy0,m,yti,ytd)
if p(1)<=p(2)
%call function ' start_from_negative_state'%
[AA,BB]=start_from_negative_state(p);
else
%call function ' start_from_positive_state'%
[AA,BB]=start_from_positive_state(p);
end

subplot(1,2,1)
memory(AA,BB,Umax,Umin);

subplot(1,2,2)

%call function 'loops'%
loops(AA,BB,Umax,Umin,yy0,m,yti,ytd);
%%%%%% end of function interface_loops %%%%%

%%%%% start_from_positive_state %%%%%
function [AA,BB]=start_from_positive_state(p)
[Ip.kp]=size(p);
en=p(kp);
kkp=kp;
for ih=1:kkp
[CA,IA]=max(p);
AA(ih)y=CA;
if AA(ihy}=en
break;
end
for i=1:kp-IA
pp(i)=p(1A+i);
end
P=pp;
pp=NaN;
[Ip.kp]=size(p);

[CB,IBJ=min(p);

BB(ih)=CB,

if BB(ih}==en
break;

end

for i=1:kp-IB
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pp(i)=p(IB+i);
end
P=PP;
pp=NaN;
[Ip.kp]=size(p);
end

%%%% end of function “start_from_negative_state” %%%%%%%%

%%%%% start_from_negative_state %%%%%
function [AA,BB]=start_from_negative_state(p)
[Ip,kp]=size(p);
en=p(kp);
kkp=kp;
for ih=1:kkp
[CB,IB]=min(p);
BB(ih)=CB;
if BB(ihy==en
break;
end
for i=1:kp-IB
pp(iy=p(IB+i);
end
P=PP;
pp=NaN;
{Ip.kp]=size(p);

[CA,IA]=max(p);

AA(ih=CA,;

if AA(ihy==en
break;

pp=NaN;
([ilp,kp]=size(p);

en

%check the end element is an>bn to decide add a bn+1 to p vector
[AALLAAk]=size(AA),
[BB1,BBk]=size(BB);
if AAk—BBk
BB(BBk+1)=AA(AAKk);
end
%%%% end of function “start_from_negative_state” %%%%%%%%

%%%% function memory%%%%%%%%%%%%%
function memory(AA,BB,Umax,Umin)
av=[Umin,Umin,Umax,Umin];
bv={Umin,Umax,Umax,Umin};

% draw a plot of memory curve in support triangle
line(av,bv, 'linewidth’, 4, ‘color',[1 0 0]);

hold;

grid on

[Lk]=size(AA);
BX(2*k+1)=BB(k+1);
AY(2*k+1)=BB(k+1);

fori=1:k
BX(2*i-1)=BB(i);
BX(2*i)=BB(i+1);
end

for i=1:k
AY(2*%i-1)=AA();
AY(2*)=AA(l);
end
line(BX, AY, 'linewidth', 2, ‘color’,[0 1 0]);
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%%%% end of function memory %%%%%%%%%%%

%%%%%%%% function yab(a,b) %%%%%%%%%%%%%%%%%%%%%%% %% %%%%%%%%%%
function y=yab(a,b)
y=34.7239*(exp(-0.033*(-185+38.473))-exp(-0.033*(b+38.473)))/((1+exp(-0.026 *(a-16.773)))*(1 +exp(-
0.033*(b+38.473)))*(1+exp(-0.033*(-185+38.473))))-17;

%%%%%%%% end of function yab(a,b) %%%%%%%%%%%%%%%%% %% %%%%%%%%%%%%%

%%%% function loops %%%%%%%%%%%%%
function loops(AA,BB,Umax,Umin,yy0,m,yti,ytd)
[1A kA]=size(AA);
[1B,kBJ=size(BB);

for ip=1:kA
p(2*ip-1)=BB(ip);
P(2*ip)=AA(ip);
end
p(2*kA+1)=BB(kB);
[pl,pk]=size(p);

%% draw major loop %%%%%%%%%%%%%%%%%
u=Umin:(Umax-Umin)/m:Umax;
for jj=1:m+1
yyi(ij}=yab(u(ij)uGi));
end
plot(u,yyi,-', 'linewidth', 2);
hold;
grid on;
u=Umax:(Umin-Umax)/m:Umin;

for jj=1:m+1
yyd(ij)=yab(Umax,u(jj));
end
plot(u,yyd,"-, 'linewidth’, 2);
%% end of draw major loop %%%%%%%%%%%%%%

if p(pk)==p(pk-1)
for kk=1:(pk-1)/2-1
u=p(2*kk-1):(p(2*kk)-p(2*kk-1))/m:p(2*kk);
for jj=1:m+1
()i'yi(ij)=yyd(m+ y+yab(u(ij)u(j))-yab(u(ij),p(2*kk-1);
en
plot(u,yyi,'-', 'linewidth', 2);

u=p(2*kk):(p(2*kk+1)-p(2*kk))/m:p(2*kk+1);
for jj=1:m+!
(}i'yd(j.i F=yyi(m+1)-yab{(p(2*kk),p(2*kk))+yab(p(2*kk),u(jj));
en
plot(u,yyd,-', 'linewidth', 2);
end

kk=(pk-1)/2;

u=p(2*kk-1):(p(2*kk)-p(2*kk-1))/m:p(2*kk);

for jj=1:m+1
s'yi(ij)ﬂ'yd(m+l)*yab(U(ii),U(ij))-yab(U(li),P(Z“kk-1));

en

plot(u,yyi,'r-', 'linewidth', 2);

%% calculate the output at end of process %%%%%%%%%%% %% %%%%%% %% %
for kk=1:(pk-1)/2
yi(kk)=yab(p(2*kk),p(2*kk+1))-yab(p(2*kk),p(2*kk-1)),
d

en
yr=yyO+sum(yt)

plot(u(m+1),yt,5*);

%% end of calculate the output at the end of process%%%%%%%%%%%%

clse
for kk=1:(pk-1)/2
u=p(2*kk-1):(p(2*kk)-p(2 *kk-1))/m:p(2*kk);
for jj=1:m+1
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()i'yi(ij)=yyd(m+l)+yab(U(ii),U(jj))-yab(U(ij),P(2*kk-1));
en
plot(u,yyi,-, 'linewidth', 2);

u=p(2*kk):(p(2*kk+1)-p(2*kk))/m:p(2*kk+1);
for jj=1:m+1
(}i'yd(ij)=wi(m+1)-yab(p(2*kk),p(2 *kk)Hyab(p(2*kk),u(ij));
en
plot(u,yyd,"-', ‘linewidth', 2);
end

%%calculate the output at end of process%%%%%%%%%%%

for kk=1:(pk-1)/2
yt(kk)=yab(p(2*kk),p(2*kk-+1))-yab(p(2*kk),p(2*kk-1));

end

yt=yy+sum(yt)

plot(u(m+1),yt,'r*);

%%end of calculate the output at end of process%%%%%%%%%

end
%%%%%%% end of function loops %%%%%%%%%%%%%%%

Appendix 2

%%%%%% %% %% %% %% % %% % %% % Yomain part%%%%% % %% %%%%%%%%%%
%%%%%%%%%%%%%%find input when knowing desired output%%%%%%%%%%%
clear all;

close

global umax umin stp y

load yab_999lines;
m=169;
n=2,

tim=0:n:m;
yd=17*(-0.7602+185*(0.5*sin(pi*(tim/30-0.5))-0.5*cos(pi*(tim/30/20.5-1))))/185.7602;
yd(1)=-17;

u=find_process_input(yd);
[uluk]~=size(u);
yi(1)=-17;

for t=2:uk

p=NaN;

p=u(Lat);
[AA,BB]=start_from_negative_state(p);
ytt(tt)}=yt_end_loops(AA,BB);

end

subplot(2,2,1);
plot(tim,u);
grid on;

subplot(2,2,2);
plot(tim, ytt,'b-", 'linewidth', 1);
grid on;

subplot(2,2,3);

plot(yd,ytt);

grid on;

subplot(2,2 4);

plot(uytt,'r-', 'linewidth’, 1);

grid on;

%%%% %% %% %% %% %%%%% end of main part%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%
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function u=find_process_input(yd)
u(1)=-185;
[1Pd, iPd}=size(yd);

for tt=2:iPd
Pi=yd(1:tt);
[AA,BB]=start_from_negative_state(Pi);
[Laa,Kaa]=size( AA);
P=NaN;

if AA(Kaa)j==BB(Kaa+1)
for Pj=1:Kaa
P(2*Pj-1)=BB(Pj);
P(2*Pj=AA(Pj);
end

else

for Pj=1:Kaa
P(2*Pj-1)=BB(Pj);
P(2*Pj=AA(P));

end

P(2*Kaa+1)=BB(Kaa+1);

end

[Ip.i_p]=size(P);

u(tty=find_moment_input(P);
end

%%%%%%%%%%%%%%%%%%%%
function a=find_moment_input(P)
[Ip.i_p]=size(P);

ifi_p==2

bn=-185;

yn=P(l); %yn=-16;
yi=P(2); %yn=18;
[y_t.a_t}=up(yn,bn,ytt);

a=a_t;

elseifi_p=3

bn=-185;

yn=P(1);  %yn=-16;
yi=P(2); %yit=18;
[y_ta_t}=up(yn,bn,ytt);

an=a_t;

yn=P(2);

yi=P(3);
[y_tb_tJ=down(an, yn, ytt);
a=b t;

elseifi_p>3

bn=-185;

yn=P(1);  %yn=-16;
yt=P(2); %ytt=18;
[y_ta_t}=up(yn,bn,ytt);

an=a_t;

yn=PQ2);

yit=P(3);
[y_tb_tJ=down(an, yn, ytt);

for ip=2:round((i_p-1)/2)

bn=b_t;
yn=P(2*ip-1);
yit=P(2*ip);
[y_t.a_t]=up(yn,bn,ytt);
if2*ip==i_p

a=a_t;

break;
end
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an=a_t;
yn=P(2*ip);
ytt=P(2*ip+1);
[y_t,b_tJ=down(an, yn, ytt);
a=b _t;
end
end

%% %% %% %%%%%%% %% %% %% % %% %%
function [AA,BB]=start_from_negative_state(p)
%clear all;
%close
%p=[185 -184 105 -100 75 -45 80 -30]
[lp.kp]=size(p);
en=p(kp);
kkp=kp;
for ih=1:kkp
{CB,IB]=min(p);
BB(ih)=CB;
if BB(ih)—en
break;
end
for i=1:kp-IB
pp(i)=p(IB+i);

end

pp=NaN;
[lpkp]=size(p);

[CA,IA]=max(p);

AA(ih)y=CA;

if AA(ihy=en
break;

end

for i=1:kp-IA
pp(i)=p(IA+i);

end

P=PD;

pp=NaN;

[Ip.kp]=size(p);
end

%check the end element is an>bn to decide add a bn+1 to p vector
[AALLAAk]=size(AA);
[BBI,BBk]=size(BB);
if AAk==BBk
BB(BBk+1)=AA(AAK);
end

%% %% %% %% %% %% % %% %% %% % %% %% %% %% %% % %
function [y_t,a_t}=up(yn,bn,ytt)

%Iload yab_999lines;

a=umax:-stp:umin;

b=umin:stp;umax;

ytt=yn:(ytt-yn)/99:ytt; % discrete the expected outputs;
deta_y=ytt-yn;

ii=round(1-(umin-bn)/stp);
1=1001-ii;
fori_up=1:100
while y(jj,1001-j5)-y(jj,ii)<deta_y(i_up)
Ii=ii-1;
end
an(i_up)=a(jj),
(}i't_t(i_Up)=yab(an(i_UP),an(i_ur’))-yab(an(i_ur’),bn)*yn;
en
y_t=ytt(100);
a_t=an(100);
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%%%% %% %% %% % %% %% %% % % % %% %% %% %%
function [yt]=yt_end_loop(AA,BB)
yy0=-17;

yti=0;
ytd=0;
[1A,kA]=size(AA);
[IB ,kBJ}=size(BB);

for ip=1:kA
p(2*ip-1)=BB(ip);
p(2*ip)=AA(ip);
end
p(2*kA+1)=BB(kB);
[pl,pk]=size(p);

%%%Calculate the output at end of process%%%

for kk=1:(pk-1)/2
yt(kk)=yab(p(2*kk),p(2*kk+1))-yab(p(2*kk),p(2*kk-1));
end

yt=yyO+sum(yt);

Appendix 3

%%%%%%%% %% %% %% % %% % %% %% % %% %% %% %% %% % %%
clear all;

close

%n=209.9;

n=40;

m=0.1;

t=0:m:n;

%v=-2*(cos(pi*t/15)+cos(pi*2"0.5 *15));

v=-4*cos(pi*t/20);

plot(t,v);

[kl ki]=size(v);
w(l)=v(1);
wW(2)=v(1),
for i=3:ki+2
w(i}=v(i-2),
end
v=vv;
kn=5;
a=4/kn;
%s1=-2:4/(kn-1):2;
si=-2:4/kn:(2-a);
s2=sl;
for i=1:kn
for j=1:i
ru=1.0;
cl=1/(2*pi*ru"2);
¢2=-1/(2*1ru"2),
gamma(i,j}=c1*exp(c2*(s1(j)"2+s2(i)"2));
end
end
sum_gamma=sum(sum(gamma),2);
for i=1:kn
forj=1:i
gamma(i,j)=gamma(i j)/sum_gamma,
end
end
for i=1:kn
forj=l:i
ww(ij, y=element(s1(j),s2(i),a,v);
end
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end
forjl=1:kn
for j2=1:j1
for ji=1:n/m+3
AAQGiyww(jl j2,ji);
end
subplot(kn,kn,(kn-j1)*kn+j2) %draw elements in support triangle
plot(v,AA,-" linewidth',2);
axis([-4 4 -1.1 1.1])
AA=Q;
end
end
%%%% %% %%%%%%%%%%% %% % %% %% %% %% %% % %% %% %%

%%%% %% %% %% %% % %% 6% %% % % % % % %% % % % % % % % % % % %
clear all;

close

%n=209.9;

n=40;

m=0.1;

=0:m:n;

%v=-2*(cos(pi*t/15+cos(pi*2"0.5 *t/15));

v=-4*cos(pi*t/20);

[kl ki}=size(v);
w(l)=v(l),
w(2yv(l);

for i=3:ki+2
vv(i}=v(i-2);

end

V=vv;
=4,

kn=1+1;

a=4/kn;
s1=-2:4/kn:(2-a),
s2=sl;

for i=1:kn
forj=t:i
nu=1.0,
cl=1/(2*pi*ru"2);
c2=-1/(2*ru"2);
gamma(i,j}=cl*exp(c2*(s1(j)"2+s2(i)*2));
end
end
sum_gamma=sum(sum(gamma),2);

for i=1:kn
forj=1:i
gamma(i,j}=gamma(i,j)/sum_gamma;
end
end

fori=1:kn
forj=1:i
ww(i,j, }J=gamma(i j)*element(s1(j),s2(i),a,v);
end
end

forjl=1:kn
forj2=1:j1
for ji=1:n/m+3
AA(iy=ww(jl,j2,ji);
end
=0;
end
end
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w=cumsum(cumsum(ww),2);
for ji=t:n/m+3
wa(ji}=w(kn,kn,ji);
end
plot(v,wa,'r-, 'linewidth’, 2);
axis([4 4 -1.1 1.1]);
%%%% %% %% % % %% % %% %% %% %% % % % %% %% %% % % % % % % % %%

S-function

Loading parameters by calling m.file “gamma_kpsf”
%%% %%%%%%%%%% gamma_kpsf.m %%%%%%%%%%%

%%%used to calculate and upload parameters for s-function %%%
%%%%%%%%"HY STERESIS" in the simulation block%%%%%

clear all;

close;

%%%give conditions about hysteresis and density function and discretization level%%

umin=-2; %give negative saturation input value;
umax=2; Y%give positive saturation input value;
kn=22; %(discretization level;

ru=1.0; %parameter of density distrbution function;

[s1,a)=discretization(kn,umax,umin);%call function ‘discretization' to calculate 's1','s2, 'a';
[gamma]=density(kn,s1,ru);%call function ‘density' to calculate normalized density ‘gamma’;

%%%%%%%%% end of m.file “gamma_kpsf” for loading parameter %%%%%%%%%%%%

Two subroutines called by the m.file “gamma_kpsf’:

%Yot
function [s1,a}=discretization(kn,umax,umin)
s1=umin:(umax-umin)/(kn-1);umax;

a=(umax-umin)/(kn-1);

o YotHHHHHHHHHHHHHBHHHH AR Y% %

%%

Yo YotHHHHHHHHHE
function [gamma]=density(kn,s1,ru)
c1=1/(2*pi*ru"2);

¢2=-1/(2*ru"2);

HHHHHHHHAHRH AR Y%

for i=1:kn
for j=1:i
gamma(i,j}=c1*exp{c2*(s1(j)"2+s1(i)*2));%calculation of density distribution
Yegamma(i,j}=1;
end
end

sum_gamma=sum{sum{gamma),2});%summation of all density factors

for i=1:kn
for j=1:i
gamma(i,j)=gamma(i,j)/sum_gamma;%normalized density distribution

HHH Y% Y%

S-function: H

function [sys,x0,strts] = H(t,x,u,flag,kn,gamma,umin,a,s1)

%% %% %% %% %% % %% %% %% %% % %% % % %% %% %% % %% %%
% H %

% This S-function computes an output value of a hysteresis system. %
%% %% %% %% %% % %% %% %% %% %% % %% %% %% %% % %% %%
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% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage of the S-function.
v={0];
switch flag,
%%%%%%%%%%%%%%%%%%
% Initialization %
%% %% %% %% %%%%%%%% %%
% Initialize the states, sample times, and state ordering strings.
case 0
[sys,x0,str,ts]=mdilInitializeSizes;

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

% Retumn the outputs of the S-function block.

case 3
sys=mdlOutputs(t,x,u,kn,gamma,umin,a,s1);

%%%%%% %% %% %% %% % %% %%
% Unhandled flags %
%%%%% %% % %% %% %% %% %%%
% There are no termination tasks (flag=9) to be handled.
% Also, there are no continuous or discrete states,
% so flags 1,2, and 4 are not used, so return an emptyu
% matrix
case {1,2,4,9}
sys={];

%%%%%%%% %% %% %% %% %% % %% %% %% %% %% % %% %% %%
% Unexpected flags (error handling)%
%%%%%%%%%% %% %% %% % % % %% %% %% %% %% % %% %% %%
% Return an error message for unhandled flag values.
otherwise
error(['Unhandled flag = ',num2str(flag)]);

end

% end timestwo

0,
% mdlInitializeSizes

% Retun the sizes, initial conditions, and sample times for the S-function.
0,

function [sys,x0,str,ts] = mdlInitializeSizes()

sizes = simsizes;

sizes.NumContStates = 0;

sizes. NumDiscStates = 0;

sizes.NumQutputs =-1; % dynamically sized
sizes. NumInputs =-1; % dynamically sized
sizes.DirFeedthrough = 1; % has direct feedthrough
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

str={];

x0 =[J;

ts =[-10]; % inherited sample time
% end mdlInitializeSizes

o/
o

% mdIOutputs
% Return the output vector for the S-function
o/

function sys = mdlOutputs(t,x,u,kn,gamma,umin,a,s1)

%store sampling time vector and input vector

if =0
v=u; % pass current input 'v’ from outside to the inside input variabl 'v'
tt=t;
save('tl','t',"-ascii','-double");% save 't' as 't1'
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else
v=load('vva');
[vl,vk}=size(v);

if (u<=umin)&(vk>=2)&(v(vk-1)>v(vk)) &(v(vk)<u);
v=u;
save('vva','v',-ascii','-double’); % save 'v' as 'vva'
v=load('vva');
save('tl",'t'"-ascii','-double’); %save 't' as 'tl’

end

tl=load('tl");
t=t-t};

iftt==0
v=U,
else
v=[v,ul;
end

end
save('vva','v',"-ascii','-double"); %save 'v' as'vva'

%use stored time vector and input vector to calculate the operators' output
sys=hh(v,tt,kn,gamma,a,s!);
% end mdlOutputs

%%%%%%%% end of the s-function “H"%%%%%%%%%%%%%%%%%

Some subroutines called by the S-function “H”

%%
function sys=hh(v,t.kn,gamma,a,s1)
m=1;
[kt kil=size(v);
w(l}=v(1),
wi(2Fv(1);
for i=3:ki+2
w(iy=v(i-2);

%%

V=VYV;

for i=1:kn
forj=1:i
ww(ij,:)=gamma(i,j)*element(s1(j),s1(i),a,v);
end
end

forjl=1:kn
forj2=1:j1
for ji=1:t/m+3
AAGiIFww(jl,j2,5i);
end
AA=0,
end
end
w=cumsum(cumsum(ww),2);

for ji=1:t/m+3
wa(jiy=w(knkn,ji);

end

for iv=3:ki+2
[Iwa,kwa]=size(wa);
waa(iv-2)=wa(iv);

end

[iLki}=size(waa);
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sys=waa(ki);
%%

%%

%%
function w=element(sl,s2,a,v)
[kLki}=size(v);

%w(1)=1;

%w(2)=1;

%xi_s=1;

w(l)=-1;

w(2)=-1;

xi_s=-1;

HHHHHRHRHH Y% Y%

for i=3:ki

if (v(iP=v(i- D) &(v(i- N<=v(-2)(v()<=v(i-1)&(v(i-1)>=v(i-2)))

xi_s=w(i-1);
end

if v(i)<v(i-1)
rl=r(sl,a,v(i));
w(i)=min(xi_s, rl);

elseif v(iy>=v(i-1)
r2=1(s2,a,v(1));
w(i)=max(xi_s, 12);

%%

“H” block by calling the s-function “ H”

Out1 P> >
input signal kp_sfunction XY Graph
(by calling gamma_kpsf.m
to upload parameters)
Cc o]
Scope Scopel

i s, i, 451

Fig.1A “H” block by calling the s-function “ H”

Appendix 4

4.1 Simulation model of “KP hysteresis”

Hysteresis
Display

—_—_> Int O

[e]

——»

3

Ir]putI _ﬂ kernel vector
siona -—J

Input

Output

Fig. 2A Simulation model of hysteresis with KP representation
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where the “kernel vector” block can be combined with the operator “dot production” as a

“Hysteresis” block.

—5
Hysteresis
Input v(t) Densities E,)Tsplay

Input Hysteresis

Fig. 2A Simulation model of hysteresis with KP representation

ID <
ManON
&—@ "
I MinMax1
increase
m o o >
| Ty
Jusdgement
m out1 min ,__I
decrease Minviax
Switch1
L2l
Memoryt

Fig. 3A the “kernel vector subsystem” in Fig.2A
The kernel vector subsystem (Fig.3A) includes following subsystems:

a. Ascending ridge function:

-1 v(t) < p,
2
r, = _1+;'[V(t)“P2] p,Sv(t)s p,+a
1 v(t)> p, +a
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L)

Constant1

in1 . Out1
Subsystem | \
K “—
1 i Switch1
Constant2 S—
Switch2

Fig. 4A the ascending boundary of a kernel

T —
Outl

p2

Fig. 5A the “Subsystem” in Fig. 4A

b. Descending ridge function:

-1 v (1) < p,
2
nh= _1+;‘[V(t)_P1] p,sv(t)< p +a
1 v(t)> p,+a

Constant

S > '\
,. R |
'

A4

—

Outt

“—
Subsystem1 Switch2

L.

Constant1

“—
Switch1

Fig. 6A the descending boundary of a kernel
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Out1

Fig. 7A the “Subsystem 1” in Fig. 6A

1
In1

@ > D . Constant

Out1

Memory1 1

Constant1 Switch

Fig. 8A Judgment subsystem in Fig. 3A
(To judge the ascending or descending trend of input)

4.2 Simulation model of “inverse KP hysteresis”

Inverse
Hysteresis

Input signal

Guessed densities Actuate densities

Terminator

Hysteresis

Fig. 9A Simulation model for open-loop compensation with inverse KP hysteresis model

— D
@ guessed_gamma

In2

While subsystem

Fig. 10A Simulation model of the subsystem “inverse hysteresis” in Fig. 9A

241



channel_state

d.

judgment for >
variation of input

— e

Ppcond .. Memory_decrease
8 g ol [T O}
hi
While lterator appr;ae; ng D
Udin) P
approaching_U(n) D r
Hysteresis Switcht Memory_increase

in KP
! 7]
operators channel_state j
v vy Vv Memory_saturation
Switch2 -
guessed_gamma Out1
estimated_V(n) unated_v(n} n

In3

Fig. 11A The “while subsystem” in Fig. 10A

Switch
‘-
1 hannel_state
In2 1 Out1
Ud(n-1) -
1 Switch1

Fig. 12A The “judgment subsystem” in Fig. 11A
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Appendix 5
5.1 Norms and L, Spaces
Definition 5.1.1 The norm | x| of a vector x is a real valued function with the following
properties:
(1) | x>0 with |x|=0 ifand only if x=0
(1) |ax|= || x| for any scalar
(iii) | x+ y |<| x|+ y| (triangle inequality)
The norm | x| of a vector x can be thought of as the size or length of the vector x.
Similarly, | x — y | can be thought of as the distance between the vectors x and y.
An mxn matrix A represents a linear mapping from » -dimensional space R" into
m -dimensional space R”. The induced norm of A4 is defined as follows:
Definition 5.1.2 Let |-| be a given vector norm. Then for each matrix A€ R™", the

quantity || A|| defined by

A
I Al= sup '—f‘x—|'=sup|Ax|=sup|Ax|

x20,xeR” | X [x|<1 Jxj=1
is called the induced (matrix) norm of A corresponding to the vector norm |-|.

The induced matrix norm satisfies the properties (i) to (iii) of Definition 5.1.1. Some

other properties of the induced norm are summarized as follows:
(@ |4x|<|| 4l x|, VxeR
() [|4+B]<| 4]+ B

(©) 4Bl 4]l Bl
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where A4,B are arbitrary matrices of compatible dimensions. Table 1A shows some of the
most commonly used norms on R".

It should be noted that the function || 4||,=max, |a, |, where 4€ R™"and g, is the
(i, /) element of A satisfies the properties (i) to (iii) of Definition 5.1.1. It is not,
however, an induced matrix norm because no vector norm exists such that |} ||, is the

corresponding induced norm. Note that || - ||, does not satisfy property (c).

Table 1A Commonly used norms

Norm on R" Induced norm on R™*"

|2]oc=max;|x;| (infinity norm) | ||Aljoc = max; 3°; |ai;| (row sum)

lz)y = 3, =] |All1 = max; 3_; |ai;| (column sum)

lrle = (3, |:)?)/? Alla = M (AT A2, where A\ (M)
(Euclidean norm) is the maximum eigenvalue of M

Definition 5.1.3 L, norm: For functions of time, the L, norm is defined as follow

A
Ix1, =([ 1 x(2) )"
for p €[1,0) and say that x € L, when | x ||, exists (i.e., when || x ||, is finite).

Definition 5.1.4 L, norm: The L_norm is defined as

A
I Xl =sup|x(#)|
120

and it can be said that x € L  when || x ||, exists.
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In the above L,, L, norm definitions, x(t) can be a scalar or a vector function. If
x is a scalar function, then |-| denotes the absolute value. If x is a vector function in
R" then |-| denotes any norm in R".

Similarly, for sequences the /, norm can be defined as

A ©
Ixll, =% P)"?, 1< p<eo
i=l
and the /, norm as

A
[l x|l =sup|x, |
il
where x =(x,x,,...) and x, € R. It can be said that x €/, (respectively xe€l,) if || x||,

(respectively|| x ||, ) exists.

To handle classes of functions of time that do not belong to L,. It is necessary to
define the L, norm.

Definition 5.1.5 L,, norm: the L,, norm is defined as follow

i ! P Adr\V'e
Ix1l, =(| | (@) d7)
for p €[l,0) and it can be said that x € L,, when || x, ||, exists for any finite ¢.

Definition 5.1.6 L., norm : The norm L_, is defined as follow

A
Il x, [l =sup | x(z) |
0<r<y

The function ¢* does not belong to L, but e L,, . Similarly, any continuous function

of time belongs to L, but it may not belong to L,.
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Definition 5.1.7 L, space and L,, space: For each p e[l,), the set of functions that
belong to L, (respectively L, ) form a linear vector space called L, space (respectively
L, space) [43].

If the truncated function f, is defined as

Alf(r) O0sr<t
f'(r)_{O T>t

for all ¢ €[0,00), then it is clear that for any p €[l,»), f €L, implies that f, € L, for
any finite ¢. The L, space is called the extended L, space and is defined as the set of all
functions f suchthat f,eL,.

It can be easily verified that the L, and L, norms satisty the properties of the norm
given by Definition 5.1.1. It should be understood, however, that elements of L, and L,
are equivalent classes [43], ie., if f,geL, and || f—g||,=0, the functions f and g
are considered to be the same element of L, even though f(¢) # g(¢) for some values of

¢ . The following lemmas give some of the properties of L, and L, spaces.
Lemma 5.1.1 (Holder's Inequality). If p,q €[l,©) and —1—+—1-=1 then feL,geL,
P 9

imply that fg €L, and

2 hsll A1l e

When p =g =2, the Holder's inequality becomes the Schwartz inequality, i.e.,

I /2 h=ll £, & [l (A5.1)
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Lemma 5.1.2 (Minkowski Inequality): For pe[l,©), f,geL, imply that f+gel,

and

If+gll,<h s, +1ell, (A5.2)

The proofs of Lemma 5.1.1 and 5.1.2 can be found in reference books [44, 45].

It should be noted that the above lemmas also hold for the truncated functions f,, g, of
S, g, respectively, provided f,geL, . For example, if /' and g are continuous

functions, then f,gelL,, ie, f,g €L, for any finite ¢t €[0,00) and from (AS5.1) one

bas || (), Ih<ll £, ) & I ice.
[1r@e@ldr<([| /@ dr) +([ e[ dr)?  (A53)

which holds for any finite ¢ > 0.
5.2 Properties of Functions
Definition 5.2.1Continuity: A function f :[0,0)— R is continuous on [0,) if for any
given &,>0 there exists a O(&,t)>0 such that Vt,te[0,0) for which
| £ty 1< 8(6sty) one has | £(B) = £1) < &
Definition 5.2.2 Uniform Continuity A function f :[0,00) = R is uniformly continuous
on [0,) if for any given &,>0 there exists a 6(g,) >0 such that Vt,te[0,00) for
which |t —t,|< 5(g,) one has | f(t)— f(t,) < &-

In other words, f(¢)is uniformly continuous if one can always find an & which does
not depend on the specific point ¢, , and in particular, such that & does not shrink as

t, > o,
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Definition 5.2.3 Piecewise Continuity: A function f :[0,0) — R is piecewise continuous
on [0,00) if fis continuous on any finite interval [t,,t,) < [0,00) except for a finite number
of points.

Definition 5.2.4 Absolute Continuity: A function f :[a,b]— R is absolutely continuous

on [a,b] iff, forany &, >0, thereisa & >0 such that

I f(@)- £(B)I< 2

Jor any finite collection of subintervals (e, ;) of [a,b] with Z| a,— B |<0.
i=1

Definition 5.2.5 Lipschitz: A function f :[a,b] > R is Lipschitz on [a,b] if

| f(0) = f(x)[<k|x—x,| Vx,x,e[a,b],
where k 20 is a constant referred to as the Lipschitz constant.

Please be noted that a uniformly continuous function is also continuous. A function
f with fe L is uniformly continuous on [0,) . Therefore, an easy way of checking
the uniform continuity of f(¢) is to check the boundedness of f. If f is Lipschitz on
[a,b], then it is absolutely continuous.

The following facts about functions are important in the analysis of adaptive systems.

Fact1 lim, () =0 does not imply that f(¢) has a limit as ¢ — oo,

Fact 2 lim, ,_ f(t)=c for some constant c € R does not imply that f(@)—>0 as

t — oo,

Some important lemmas that are frequently used in the analysis of adaptive schemes

are the following;:
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Lemma 5.2.1 The following is true for scalar-valued functions:

(i) A function f(t) that is bounded from below and is nonincreasing has a limit ast — .
(ii) Consider the nonnegative scalar functions f(t), g(t) defined for all t20 . If
f@#)<g() Viz0 and geL,, then f €L, forall pe[l,o).

Proof (i) Because f(¢) is bounded from below, its infimum £, exists, i.e.,

Jn = 1nf f(2)

0<t<mw
which implies that there exists a sequence {f,} € R such that lim f(¢,) = f,,. This, in
n—yo©
turn, implies that given any ¢, > 0 there exists an integer N >0 such that

| f@)-f, 1<&,Yn=>2N
Because f is nonincreasing, there exists an n, 2 N such that forany ¢2>¢, and
some n, 2 N one has
fO=re,)
and
| fO-fu K fC) - Tul< &

forany ¢ 21, . Because &, >0 is any given number, it follows that !im f®O=1,.
(i1) One has
A 1 1
2(t) =( £ 17 @) <([ g7 (@)dr)? <a0,¥120

Because 0<z(f) <o and z(¢) is nondecreasing, one can establish, as in (i), that z(¢) has

a limit, ie., limz(f)=Z <o, which implies that feL, . For p=co, the proof is
t—o0

straightforward.
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Lemma 5.2.1 (i) does not imply that f € L_. For example, the function f(¢) =1/t with
t €(0,0) is bounded from below, i.e., f(¥) 20 and is nonincreasing, but it becomes
unbounded as ¢ =0. If, however, f(0) is finite, then it follows from the nonincreasing
property ()< f(0)Ve>0that f e L_. A special case of Lemma 5.2.1 which is often
used in adaptive analysis is when f(¢)>0 and f(¢)<0.
Lemma 5.2.2 Let [, V :[0,0) — R. Then

V-aV+f, VYt2t,20

implies that V(t)<e * ™V () + I e f(r)dr, Vt21t,20 for any finite constant

¢
fo
a.
A,
Proof: Let w(t)=V +aV — f. One has w(t) <0 and
V=-aV+f+wt)
implies that
¢t t
V(t)=e V() + .[; e f(r)dr + J'r e w(r)dr
Because w(t) <0 Vr2>¢, 20, one has

V() <e W () + [ e f(r)dr, V21,20

Lemma 5.2.31If f,feL_and f e L, forsome pe[l,®), then f(¢)—>0 as t — .

The result of Lemma 5.2.3 is a special case of a more general result given by

Barbalat's Lemma stated below.,
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Lemma 5.2.4 (Barbalat's Lemma [46)) If lim,_, £ f(t)dt exists and is finite, and f(t)

is a uniformly continuous function, then lim, ,_ f(¢) =0.

Proof: Assume that lim f(¢) =0 does not hold, i.e., either the limit does not exist or it
{—o0

is not equal to zero. This implies that there exists an &, > 0 such that for every 7 > 0,
one can find a sequence of numbers ¢, > T such that | f(¢,) |> &, for all i.

Because f is uniformly continuous, there exists a number J(g,) > 0 such that

| @) - fE) < ‘% Vtelt, 1, +3(&)]

Hence, for every t €[t,,¢,+d(¢&,)], one has

| fOHESO-F@+ RIS -1~ f(t)|>€o—3°=% Vi et + (&)
which implies that

[ e [ f@) e > 220

(A5.4)
where the first equality holds because f(¢)retains the same sign for ¢ €[¢,,¢, + 5(g,)]. On

A
the other hand, g(f)= J: S(t)d7 has a limit as ¢ — o implies that there exists a T'(g,) > 0

such that for any ¢, > ¢, > T'(¢,) one has
80 -6 < 22

ie., j' * f(o)dr < &55(-@2

which for ¢, =t + d(&,),¢, = ¢, contradicts (A5.4), and, therefore, lim,_, f(¢) =0.
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The proof of Lemma 5.2.3 follows directly from that of Lemma 5.2.4 by noting that
the function }im J:I f(@)|dr= }im _[:f(r)dr = f(o)exists for f(#¥)20 and p=1. f(¢) is

uniformly continuous for any p €[1,0) because f(¢), f(t) € L.
5.3 Lyapunov Stability
Consider systems described by ordinary differential equations of the form

x=f(t,x), x(t,)=x, (AS.5)

where xeR", f:JxB(r)/» R, J=[t,,©) and B(r)={xeR"|x|<r}. It is assumed

that f is of such nature that for every x, € B(r) and every ¢, € R*, the differential
equation (AS5.5) possesses one and only one solution x(¢,%,,x,).

Definition of Stability:

Definition 5.3.1 A state x, of a system is said to be an equilibrium state of the system

described by (45.5) if

f(t,x,)=0 forall t 21¢,
Definition 5.3.2 The equilibrium state x, is said to be stable (in the sense of Lyapunov)
if for arbitrary t, and &>0 there exists a O(&,t,) such that |x,—x,|<d implies
| x(2;t0, %) —x,|< € forall t 2¢,.
Definition 5.3.3 The equilibrium state x, is said to be uniformly stable (u.s.) if it is
stable and if &(¢,t,) in Definition 5.3.2 does not depend on t,.
Definition 5.3.4 The equilibrium state x, is said to be asymptotically stable (a.s.) if (i) it
is stable, and (ii) there exists a O(t,) such that |x,—x,|<d(t,) implies
lim

| x(t5t5,%) — x, |= 0.

1—0
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Definition 5.3.5 The set of all x, € R" such that x(t;t,,x,) > x, as t > o for some
t, 2 0is called the region of attraction of the equilibrium state x,. If condition (ii) of
Definition 5.3.4 is satisfied, then the equilibrium state x, is said to be attractive.
Definition 5.3.6 The equilibrium state x, is said to be uniformly asymptotically stable
(u.a.s.) if (i) it is uniformly stable, (ii) for every € >0 and any t, € R*, there exist a
0, >0 independent of t, and € and a T(e)>0 independent of t, such that
| x(#580, %) — %, |< € for all t 2t,+T(&) whenever | x, —x,|< &,
Definition 5.3.7 The equilibrium state x, is exponentially stable (e.s.) if there exists an
a >0, and for ever € > Othere exists a 6(¢) > 0 such that
| x(t525,%,) —x, |< £ *“™ forall t >4,

whenever| x, — x, |< 6(€).
Definition 5.3.8 The equilibrium state x, is said to be unstable if it is not stable.

Equation (AS5.4) possesses a unique solution for each x,eR" and f,€R". The

following definitions for the global characterization of solutions are needed.

Definition 5.3.9 A solution x(t;t,,x,) of (45.4) is bounded if there exists a f# >0 such
that | x(t;t,,x,) |< B for all t 2t,, where  may depend on each solution.
Definition 5.3.10 The solutions of (A5.4) are uniformly bounded (u.b.) if for any o >0

and tye R", there exists a f=f(a) independent of t, such that if |x,|<a,, then

| x(t50, %) |< B forall t >¢,.
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Definition 5.3.11 If x(t;t,,x,) is a solution of X = f(t;X), then the trajectory
x(¢;t),x,) is said to be stable (u.s., a.s., u.a.s., e.s., unstable) if the equilibrium point
z, =0 of the differential equation

z= f(t5z+x(858, %)) — f(£5x(2585,%))
is stable (u.s., a.s., u.a.s., e.s., unstable, respectively).

Definition 5.3.12 A continuous function ¢@:[0,r]> R* (or a continuous function
@ :[0,00) > R?) is said to belong to class K, i.e., p e K if
®) 9(0)=0
(ii) @ is strictly increasing on [0,r] (or on [0,) ).
Definition 5.3.13 A continuous function ¢ :[0,0)— R* is said to belong to class KR, i.e.,
peKR if
@) ¢0)=0
(ii) @ is strictly increasing on [0, )
(iii) lim, , @(r)=oo.
Definition 5.3.14 Two functions ¢,,p, € K defined on [0,r] (or on [0, oo)) are said to be
of the same order of magnitude if there exist positive constants kl:k2 such that

ko () < 0,(n) < k@ (1), Vr €[0,r] (or V7 €[0,0))
Definition 5.3.15 A function V(t,x): R* x B(r)> R with V(t,0)=0 Vte R is positive
definite if there exists a continuous function ¢ € K such that V(t,x)2¢(|x|) VteR'
xeB(r)={xe R"|| x|<r} and som r>0. V(t,x) is called negative definite if —V (¢,x)

is positive definite.

254



Definition 5.3.16 A function V(t,x):R* x B(r)i> R with V(t,00=0 VteR" is said to
be positive (negative) semidefinite if V' (t,x)20 (V(t,x)<0) for all teR* and
Vx € B(r) for some r > 0.
Definition 5.3.17 A function V(t,x):R*xB(r)= R with V(t,00=0 VteR" is said to
be decrescent if there existsp € K such that |V(t,x)|<@(x|) Vt20 and Vxe B(r)
for some r>0.
Definition 5.3.18 A function V(t,x): R* xR" +> R with V(t,00=0 VteR" is said to be
radially unbounded if there exists ¢ € KR such that V(t,x)2¢(|x]) for all xeR"
and teR".

It is clear from Definition 5.3.18 that if V(¢,x) is radially unbounded, it is also

positive definite for all x € R” but the converse is not true.
Definition 5.3.19 Persistence of Excitation (PE) Signal: A piecewise continuous signal

vector ¢(t):R* > R" is PE in R" with a level of excitation a,>0 if there exist

constants «,, T, >0 such that
1 pe+7, T
ol | @) (@)dTz al, Vi20
0

Second method of Lyapunov
Without loss of generality, x, =0 is assumed as an equilibrium point of (AS5.4) and 14

is defined to be the time derivative of the function V' (¢, x) along the solution of (AS5.4),
i.e.,

V= %tV— + (VY f(t,x) (AS.5)
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where VV =[%K,§K,...,2—V-]T is the gradient of V' (¢,x) with respect to x. The second
X 0Xy

method of Lyapunov is summarized by the following theorem.
Theorem 5.3.1 Suppose there exists a positive definite function V(t,x):R* xB(r)+-> R
for some r >0 with continuous first-order partial derivatives with respect tox, t, and
V(t0)=0 VteR". Then the following statements are true:
(i) If V<0, then x, =0 is stable.
(ii) If V is decrescent and V <0, thenx, =0is u.s.
(iii) I V is decrescent and V <0, then x, =0is n.a.s.
(iv) If V is decrescent and there exist ¢,,,,9; € K of the same order of magnitude such
that @ (x)<V(t,x)<@,(x]), V({t,x)<~p,(x|) for all Vxe B(r) and teR", then
x,=0ises.
5.4 Stability of Linear Systems

Positive Definite Matrices

A square matrix A€ R™" is called symmetric if A=A". A symmetric matrix 4 is
called positive semidefinite if for every xeR", x’Ax>0 and positive definite if
x"Ax>0 VxeR" with | x|#0. It is called negative semidefinite (negative definite) if
— A is positive semidefinite (positive definite).

A positive semidefinite matrix 4 is usually written as 4 >0, and a positive definite
matrix A is written as A>0 . If A—B >0 and 4- B >0 they can be written as 4> B

and 4 2 B, respectively.
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A symmetric matrix 4€ R™" is positive definite if and only if any one of the
following conditions holds:

(i A(4)>0,i=1,2,..,n where 4,(A4) denotes the ith eigenvalue of 4, which is

real because 4= 4",

(i) There exists a nonsingular matrix 4, such that 4= 44",

(iii) Every principal minor of A4 is positive.

(iv) x"Ax>a|x| for some a >0 and VxeR".

The decomposition 4= A4 in (ii) is unique when 4, is also symmetric. In this case,
4, is positive definite, it has the same eigenvectors as A4, and its eigenvalues are equal to
the square roots of the corresponding eigenvalues of 4. This unique decomposition 4,
of A can be specified by denoting as A ,1.e, A= A*A where A" is a positive definite
matrix and A° denotes the transpose of A5

Lemma 5.4.1 (Kalman-Yakubovich) Consider a controllable linear time-invariant system

X =AX +BU
Y=C'X

The transfer function is

H(s)=C"[sI-A]"'B
and is strictly positive real if, and only if, there exists a positive definite matrices P and
Q such that

PA+A"P=-Q

PB=C
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Appendix 6
Optimization Techniques

In this appendix, two simple optimization techniques, the gradient method and the
gradient projection method for constrained minimization problems will be introduced.

6.1 Notation and Mathematical Background

A real-valued function f:R"+ R is said to be continuously differentiable and is

written as f € C' if the partial derivatives exist for each x € R" and are

ACI /A C)
.

xl n
continuous functions of x. More generally, if all partial derivatives of order m of the
function f:R" — R exist and are continuous functions of x, the function is written as

feCm.

If feC', the gradient of f at a point x € R” is defined to be the column vector

vf(x)i[af;i") -z )(c")]

n

If feC?, the Hessian of f at x is defined to be the symmetric nxn matrix having

o’ f(x)/ Ox,0x; as the ij th element, i.e.,

reof 40|

A subset S of R" is said to be convex if for every x,y €S and a €[0,1), there exists
ax+(l-a)yes.
A function f:S > R is said to be convex over the convex set S if for every x,ye S

and a €[0,1) there exists
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flax+(1-a)pyl<a f(x)+1-a) f(»).
Let f e C' over an open convex set S, then f is convex over S iff
S 2 fED+Vf (X)) (y-x)Vx,yeS (6.1a)
If feC?ver S and V2 f(x)20 VxeS,then f isconvex over S.

Now consider the following unconstrained minimization problem
min (J(6)) (6.2a)
where J: R" - R is a given function. The vector &’ is said to be a global minimum for
(6.2a) if
J(@HY<J(O) VOeR"
A necessary and sufficient condition satisfied by the global minimum &° is given by the
following lemma.

Lemma 6.1 Assume that f € C' and is convex over R". Then &’ is a global minimum

for (6.2a) iff
VJ(6)=0
The proof of Lemma 6.1 can be found in [47, 48]
A vector @ is called a regular point of the surface S,={@ecR"|g(d)=0} if
Vg(6)=0. At a regular point 8 , the set
M@)={feR"|0"Vg(@)=0
is called the tangent plane of g at@ .

6.2 The Method of Steepest Descent (Gradient Method)
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The gradient method is one of the oldest and most widely known methods for solving

the unconstrained minimization problem (6.2a). The method proceeds from an initial
approximation @, for the minimum @’ to successive points 6,6, ,...,in R” in an iterative
manner until some stopping condition is satisfied. Given the current point §,, the point
6,,, 1s obtained by a linear search in the direction d, where
d,=-VJ(@,)

It can be shown [48] that d, is the direction from &, in which the initial rate of decrease
of J(6)is the greatest. Therefore, the sequence {6,} is defined by

6., =6, -A4VJ(@,) (6.3a)
where 6, is given and 4,, known as the step size or step length, is determined by the
linear search method, so that 8,,, minimizes J(#) in the direction d, from &,. A simpler
expression for 6,,, can be obtained by setting 4, =4,Vk,i.e.,

6,,, =6, —AVJ(6,) (6.4a)
In this case, the linear search for 4, is not required, though the choice of the step length

A is a compromise between accuracy and efficiency.
Considering infinitesimally small step lengths, (6.4a) can be converted to the

continuous time differential equation
0 =-VJ(O®)), 6(t)=6, (6.5a)

whose solution 8(¢) is the descent path in the time domain starting from ¢ =¢,.
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The direction of steepest descent d =—~V.J can be scaled by a constant positive definite
matrix T=I7 as follows: let I =IT}" where I} is annxn nonsingular matrix and
consider the vector 8 € R" given by

rio=0

Then the minimization problem (6.2a) is equivalent to
. S, A A e
min (J(6))=J(T16) (6.62)

If 8" is 2 minimum of J , the vector 8 =T,@" is a minimum of J. The steepest
descent for (6.6a) is given by
O =6, — AVI (8,) (6.7a)
Because VJ(F)=aJ(T,0)/80 =T,"VJ(#) and T8 =6 it follows from (6.7a) that
0,,,=6, - ALT'VJ(6,) (6.8a)
Setting I' = FII‘IT, one obtains the scaled version for the steepest descent algorithm
6,,, =6, —AI'VJ(6,) (6.9a)
The continuous-time version of (6.9a) is now given by
6=-IVJ(O) (6.10a)
The convergence properties of (6.3a), (6.4a), (6.8a) for different step lengths are given

in any standard book on optimization such as [47, 48]. The algorithms (6.5a), (6.10a) for

various cost functions J(@)are used in Chapters 3 and Chapter 5 where the design and

analysis of adaptive laws is considered.
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6.3 Gradient Projection Method

In sections 6.2, the search for the minimum of the function J(&) given in (6.2a) was

carried out for all @ € R". In some cases, @is constrained to belong to a certain convex

set

A
S={@eR"|g(@)<0} (6.11a)
in R"where g(-) is a scalar-valued function if there is only one constraint and a vector-

valued function if there are more than one constraints. In this case, the search for the

minimum is restricted to the convex set defined by (6.11a) instead of R".

First a simple case which has an equality constraint is considered, namely,

min J
subject to g(6)=0 (@ (6.12a)

where g(0) is a scalar-valued function. One of the most common techniques for handling

constraints is to use a descent method in which the direction of descent is chosen to

reduce the function J(@) by remaining within the constrained region. Such method is
usually referred to as the gradient projection method.

The parameter vector @ is selected starting from a point 6, which satisfies the
constraint g(6,)=0. To obtain an improved vector §,, the negative gradient of J is
projected at 6, i.e.,—VJ(6)) is projected onto the tangent plane M(6,)={f R’ |Vg"(6,)0=0}
to obtain the direction vector proj(6,) . Then 6, is taken as 6, + 4 proj(6,) where 4, is

chosen to minimize J(6,) . The general form of this iteration is given by

Oy = 0, + A4 proj(6,) (6.13a)
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where 4, is chosen to minimize J(6,) and proj(6,) is the new direction vector after
projecting —V.J(6,)onto M(6,). The explicit expression for proj(6,) can be obtained as
follows: The vector —VJ(6,) can be expressed as a linear combination of the vector
proj(6,) and the normal vector Norm(6,) =Vg(8,) to the tangent plane M(6,) at 6, , i.e.,
-VJ(8,)=aVg(6,)+ proj(6,) (6.14a)
for some constant & . Because proj(6,) lies on the tangent plane M(d,), one also has
Vg’ (6,)proj(6,) =0 which together with (6.14a) implies that
-Vg'VJ =avg'vg
1.e.,
a=—(Vg'Vg)'Vvg'vJ
Hence, from (6.14a), one can obtain
proj(6,) =11 -Vg(Vg'Vg)'vg v/ (6.15a)
Here proj(6,) is referred as the projected direction onto the tangent plant M(6,). The

gradient projection method is illustrated in Fig.13A.

Ve(8y) -V M(8))

g(0)=0

Vi®,)

Fig.13 A Gradient projection method
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It is clear from Fig.6.1a that when g(@) is not a linear function of &, the new vector
6,,, given by (6.13a) may not satisfy the constraint, so it must be modified. There are
several successive approximation techniques that can be employed to move §,,, from
M(6,) to the constraint surface g(d)=0[47, 48]. One special case, which is often
encountered in adaptive control applications, is when @ is constrained to stay inside a
ball with a given center and radius, i.e., g(8)=(0-6,)" (6-6,) - sz where 6,is a fixed
constant vector and R, >0 is a scalar. In this case, the discrete projection algorithm

which guarantees that §, € § Vk is

O =0, +AVJ

0k+1 _ if |§k+1 - 90 < R,
0,., = .., -6 P 6.16a
NG+ F—=R, if |6, -6, >R, ( )
'0k+l _00 l

Letting the step length 4, become infinitesimally small, one obtains the continuous time
version of (6.13a), i.e.,
0 = proj(0) = -{I -Vg(Vg'Vg)'Vg ' IVJ (6.17a)
Because of the sufficiently small step length, the trajectory 8(¢), if it exists, will satisfy
g(6(1))=0 Vt =0, provided 6(0) =6, satisfies g(6,) =0.
The scaled version of the gradient projection method can be obtained by using the
change of coordinates I';@ =@ where T} is a nonsingular matrix that satisfies I' = rr’

and T is the scaling positive definite constant matrix. Following a similar approach as in

section 6.2, the scaled version of (6.17a) is given by

0 = proj(T,0) = {1 -Vg(Vg'Vg)'Vvg'IVJ
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The minimization problem (6.12a) can now be extended to

min  J(0) (6.18a)

subjectto g(6) < 0

where S ={f € R"|g(6) <0} is a convex subset of R".

The solution to (6.18a) follows directly from that of the unconstrained problem and

(6.12a). Starting from an initial point 6, € S. If the current point is in the interior of S,

defined as S, ={f €R"|g(f) <0}, then the unconstrained algorithm is used. If the

A
current point is on the boundary of S, defined as o(S)={@ e R"|g(8) =0} and the

direction of search given by the unconstrained algorithm is pointing away from S, then
we use the gradient projection algorithm. If the direction of search is pointing inside §
then we keep the unconstrained algorithm. In view of the above, the solution to the
constrained optimization problem (6.18a) is given by

-VJ(6) if €S, or 8e5(S) and —VJ'Vg<0
T
-VJ +Mg—-VJ otherwise

T

Vg'Vg

0= (6.19a)

where 8(0) € S or with the scaling matrix

-I'vJ(6) if 88, or 0ed(S) and —(TVJ)' Vg<0

= T
- —FVJ+rVgT$FVJ otherwise
Vg'I'Vg

é (6.20a)
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Appendix 7

Simulation model for newly defined hysteresis model

Out1 Pl in1 Out —P . » @
Input signal Modified KP kernels XY Graph1

in vector form

gk

Densities

Fig.14A Simulation model of hysteresis in the newly defined hysteresis model

Memory
.
max
( 1 » P int Out1 - >
In1 - MinMax1
increase
P in1 Outt > I »p{ 1)
I Out1
jusdgement
P int outt >
| min ». I
decrease Miniax
Switch1
Memory1

Fig.15A Subsystem of “an elementary operator of the newly defined
hysteresis model in vector form”

I _I

Out1
Memory1

A

N

Constant{ Switch

Fig.16A Subsystem of “judgment” in Fig.15A
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