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Abstract

Modeling and Comparative Analysis of a Stochastic Production Planning System with
Demand Uncertainty

Vibhor Vineet

Effective planning strategies are essential to minimize high costs of production and inventory.
Uncertainty and seasonal variation in product demand is a major issue that contributes to a
substantial share of production planning costs. Hence, it is important to consider the uncertain
information while designing a production planning model. This thesis is aimed at presenting a
comparative analysis of deterministic and stochastic approaches towards finding optimal
solutions for demand uncertainty problems. The first model is a generic mixed-integer
programming model to maximize total profit. Decision variables are identified and random
values are substituted by their expected values considering uncertainty to obtain the expected
value solutions. Second model is formulated as a stochastic programming model by adding
scenarios and probabilities in the deterministic model to explicitly account for the uncertainties
in the product demand. The models are programmed and solved by LINGO optimization solver
based on data collected from a brewing company. Several test ‘problems are solved by varying
the input parameters, product demand and probability of existence of scenarios to study the
sensitivity of the models. A statistical coniparative analysis is conducted on all the example
problems by measuring the Expected Value of Perfect Information (EVPI), Value of Stochastic

Solution (VSS) and the results are discussed.

Keywords: Production planning, stochastic programming, demand uncertainty, scenarios,
comparative analysis
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Chapter One

Introduction

1.1  Production Planning

In the past several decades, information systems, production management and other related
technologies have made significant progress in many different manufacturing and processing
industries. Competitiveness in the world market is compelling many firms to use their
manufacturing and processing operations as a key factor to succeed in achieving an edge over
competitors. Production automation techniques are widely used to achieve advantage in
manufacturing. Other areas of improvement in operations and management include better
utilization of facilities, lower inventory levels and shorter lead times (Buxey, 1993).
Production planning and manufacturing management system is a vast field for implementing
new philosophies and technologies in material procurement, shop floor scheduling, facility
capacity planning, location and distribution optimization and inventory management (Seward
et al., 1985). Material Requirement Planning (MRP), Capacity Requirement Planning (CRP),
Just-in-time (JIT) and Hierarchical Production Planning (HPP) are constantly used as
technological applications to improve the efficiency of manufacturing and processing
operations. Products with seasonal demands face additional challenges in production and

planning decisions.



1.2 Planning and Control Issues in Brewery Industry

Brewery industry is highly susceptible to seasonality. The most critical production planning
and control issues include minimizing the costs due to uncertainty. Another control issue is
scheduling for timely product delivery. Due to the seasonality and uncertainty of product
demand, a highly systematic approach towards material procurement, production planning
and inventory management is essential. Non-optimal decisions often lead to shortages or
excessive inventories. In general, the key objective of most companies is “economize to
survive” (Ware, 1992) and both shortages and excessive inventories should be minimized.
The two common approaches for dealing with shortages due to uncertainty in customer
demand and product completion times are to use safety stocks and safety lead times (Enns,
2002). In case of unexpectedly low demand leading to excessive inventory, stochastic
optimization techniques may be applied to obtain better results. We shall first briefly discuss

the brewery industry and its typical production planning and control functions.

1.3 The Company Studied in This Research

The company studied in this research is one of Canada’s largest beer breweries and bottling
companies. It often uses historical data for estimating demand for the subsequent planning
year. The company has bottling and packaging plants all across the country. In one of its key
plants, it processes roughly 2.2 million 330ml bottles of beer per day and 700 million bottles
per year. However, the demand of the products is not distributed uniformly throughout the
year. The company encounters extreme seasonal variation in demand which is difficult to
predict. Shortages are covered by safety stocks to an extent and further higher demands lead

to loss of sales. On the other hand, low demands lead to high inventories. To ensure



sufficient inventory to meet high demands and to deal with low demands, substantial

inventory costs are incurred.
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Figure 1.1 Brewing, Production and Packaging Process



Another key area of cost reduction is recovery of used bottles. The company has managed to
be highly effective given that 98% of the bottles are returned for reuse. Costs and concerns
revolve around efficient inventory management for raw materials and finished products to
maximize output. Hence, it is essential to employ a good forecasting technique for predicting
demand for the successive planning horizon.

‘The study begins with the analysis of the actual manufacturing environment for processing
and packaging of bottles. Figure 1.1 gives a general schematic representation of brewing,
production and packaging operations provided by the company sources. Processes 15 to 21
are studied in this thesis work. Bottles are purchased and retrieved from initial products
inventory and filled with beer brewed from processes 1 to 14. Beer is home-brewed and there
is no restriction on the quantity and supply of beer. Bottles, caps and labels as raw materials
are ordered in equal quantity from the procurement department. Procurement department, in
turn, orders the raw materials from different vendors for new and reused bottles. Hence, there
is only one vendor for production department i.e., procurement or purchase department.
Likewise, sales department receives the finished products and deliver them to the market.

Hence, sales department is assumed to be the only distributor for production department.

1.4 Research Methodology

This section presents a framework of methodologies in the development of Mixed Integer
Linear Programming (MILP) multiple-products, capacity-constrained production planning
deterministic and stochastic models. General characteristics of production planning concepts
and their relationship with each other are also discussed. It illustrates the methods involved in
data collection, model formulation and optimization. Finally, the result analysis for the

problems is presented.



1.4.1 Background

Fransoo et al. (1995) developed a multi-item, single-machine planning and scheduling linear
programming model. Their model considered the case of higher demand compared to
production capacity. The model has been extended to lower demand case and generalized on
the basis of variation in demand from the forecasted values. This thesis also extends their
work to multiple machines and increased the problem size and planning horizon substantially
to observe the effects of seasonal variation. Stochastic model is compared with expected
value solution of deterministic model for the identical input data to compare results under
uncertainty. The models consider inventory both at raw material stage and finished product
stage. Problem difficulty has been analyzed with respect to the size and tightness of

constraints and data.

1.4.2 Data Collection

Data is collected mainly through historical records of the company for inventory, production,
purchase of raw materials, sales trend and various processes followed. It was not feasible to
collect all the data with utmost accuracy. Some of the information, mainly financial details,
was not disclosed. The data used in this work is a blend of factual and assumed data.
However, several runs of the model are executed for a large set of data to ensure the accuracy

of the assumed data.

1.4.3 Model Formulation
A Mixed Integer Linear Programming (MILP) model is formulated for the data collected to

maximize total profit. MILP is a classical mathematical approach that has been extensively



utilized in solving production planning problems. MILP is a very powerful mathematical tool
for problem solving. Application of Linear Programming (LP) is reported in Savsar and
Cogun (1994) for the analysis and modeling of a production line in a corrugated box factory.
Koksalan et al. (1995) used an MILP model for location and distribution problem of a beer
company. Models in this thesis research are formulated, coded and solved in optimization

software LINGO for all the variants of the problem.

1.4.4 Optimization Approach

Stochastic modeling approach is used to solve the MILP capacity-constrained production
planning model. Stochastic programming and fuzzy logic are two most frequently and widely
used programming tools when uncertainty is involved. Fuzzy logic is more appropriate in
case of availability of limited input data. Also, it comes handy when the probability
distributions of uncertain variables are unknown. In this technique, main emphasis is on
experts’ opinion to model uncertainty. For the models formulated in this thesis work,
stochastic programming as solution approach is more pertinent. The model developed in this
research and the problems will be solved directly by off-the-shelf optimization software due

to less number of integer variables in the model.

1.4.5 Analysis of Results

The MILP capacity-constrained production planning models for deterministic and stochastic
solutions are solved in commercial optimization software by branch and bound algorithm.
The solution procedure is referred to as “stochastic programming with recourse” (Harrison

and Van-Mieghem, 1999). The model is solved in two stages and results are presented in



terms of two statistics, namely, Expected Value of Perfect Information (EVPI) and Value of
Stochastic Solution (VSS). EVPI is the difference in the solutions obtained from
deterministic model and stochastic model for identical set of input data. The difference is
referred to as “the cost of perfect information”. In other words, EVPI measures the cost or
value of knowing the future with certainty (Dempster and Thompson, 1999). Calculation of
EVPI concludes the first stage solution of stochastic programming with recourse. At this
point, recourse actions are taken. The model is solved for the same input data as first stage by
substituting the random variables by their expected value. It should be noted that, not all the
random variables are replaced by their expected value. Only the variables for which recourse
action is possible called “wait-and-see” variables are substituted. Variables for which no
recourse action is possible are referred to as “here-and-now” variables. VSS is the difference
between the stochastic solution and expected value solution which is obtained by substituting
the random variables by their expected value in the deterministic model. It is also referred to
as the cost of ignoring uncertainty while making a decision (Birge, 1995). This is the
measure of superiority of approach between stochastic and deterministic while modeling
uncertainty for the identical input data. Calculation of VSS concludes the second stage

solution of stochastic programming with recourse.

1.5 Research Contribution

The work of Fransoo et al. (1995) is extended to multiple setups in this thesis work. They
considered a single scenario where demand was higher than production capacity. The
problem is extended to several scenarios of demand and a generic model is formulated for

variation in demand. The contribution, along with modeling uncertainties, also includes a



comparative analysis of two distinct techniques to deal with uncertain parameters. The
comparison of expected value solution and stochastic solution for identical set of input data
seems unique in the literature surveyed. Capacity constraints are included for purchase,
production, inventory, etc. to make the models more practical. The two models formulated
are extensively tested by several examples with majority of the data collected from the

brewery company studied.

1.6 Objectives of the Thesis

The purpose of this thesis work is to outline a comparison between deterministic and
stochastic modeling approaches towards finding an optimal solution. Assumptions are made
for not including a few costs or variables because inclusion of such costs and variables would
not change the course or outcome of the models. This is done to avoid unnecessary
complexity and redundant constraints in the problem. Inventory cost contributes to a
substantial share of production planning cost. High efficiency (minimization of waste) and
effectiveness (supply to demand) is necessary to reduce this cost. Modern technology and
automation tools have significantly improved the production process. Uncertainty is the main
factor beyond control and effective planning strategies are essential to minimize inventory
problems due to uncertainty. There are a host of issues that are taken care of in order to

sketch a comparison in stochastic and deterministic programming to model uncertainty.

1.7 Organization of the Thesis

Following Chapter One, we shall review the literature on the earlier work done in the area of

production planning and stochastic programming in Chapter Two,



Chapter Three presents the problem description and model formulation for the system under
study,

Chapter Four presents the numerical examples solved on the models and analysis of results.
Scenario solution of the models to test their robustness in different situations is also
presented,

Concluding remarks are presented in Chapter Five. Directions for future research work are

also discussed within the limit of this thesis work.



Chapter Two

Literature Review

Significant research has gone into production planning for manufacturing and processing
systems over the past few decades. A wide range of literature is dedicated in developing
deterministic production planning models with capacity constraints. However, uncertainties
in product demand and production lead time play a vital role in many production planning
decision problems (Messina and Mitra, 1997). In such situations, stochastic programming
and fuzzy logic approach are used to address these uncertainties. Stochastic programming
models were first proposed in 1950s (Dantzig, 1955). In addition to production planning,
stochastic programming has been applied to various areas in manufacturing system analysis
including machine failure analysis (Cooke et al., 2005), supply chain management (Santoso
et al., 2005), MRP (Grubbstrom and Wang, 2003), among others. Articles on importance of
stochastic programming to tackle demand uncertainty and inventory control in manufacturing
and processing plants will be reviewed in this chapter. Fuzzy logic approach to handle
uncertainties in production planning has been reported in Aliev (1987). As discussed earlier
in Chapter One, stochastic programming is an appropriate problem solving approach for the
problem tackled in this thesis work.

This chapter is categorized into different sections based on the topics covered. Table 2.1

presents the summary of the topics covered in this study and related papers.

10



Table 2.1: Categorization of Literature

Index Topics Literatures
1 Brewing Industry Production | Cooke et al (2005), Koksalan et al. (1995),
Problems Koksalan et al. (1999)
2 Deterministic Production | Aggarwal et al. (1992), Chen and Wang (1997),
Planning  Models  with | Grubbstrom and Huynh (2006), Sana et al.
Capacity Restrictions (2004)
3 Characteristics of | Bhattacharjee and Ramesh (2000), Casey and
Uncertainty Models Sen (2005), Enns (2002), Graves (1980), lida
(2002), Sox and Muckstadt (1996)
4 Stochastic Programming to | Fransoo et al. (1995), Harrison and Van-
Tackle Uncertainty Mieghem (1999), Listes et al. (2003), Messina
and Mitra (1997), Wilhelm and Som (1998),
Yan (1995)
5 Other Papers on | Arreola-Risa (1996), Grubbstrom and Wang
Deterministic and Stochastic | (2003)
Approaches
2.1 Brewing Industry Production Problems

Cooke et al. (2005): In this paper, the authors discussed the one way filling line of a brewery

bottling unit. A similar bottling line is considered in the present thesis research. The authors

of this paper constructed a simulation model of a mass balance production line based on

constant machine rates, fixed finite buffer and stochastic failure and repair behavior. The

11




system was tested for several runs to understand the statistical fluctuations of stochastic
model for the same MTTF (Mean time to failure) and MTTR (Mean time to repair). In the
end, stochastic fluctuations of line output for the different lengths of production runs were

studied.

Koksalan et al. (1995): In this paper, the authors developed a mixed integer linear
programming (MILP) model for location and distribution problems of a beer company. The
model was constructed to minimize total location and transportation costs. The seasonal
demand for beer of this company was forecasted by a separate study and was considered as
an input to the model. Planning horizon of one year was considered in the study. The authors
emphasized that the model was primarily used for the purpose of demonstrating the relative
importance of the alternative sites rather than finding an optimal solution. In the end, best

location alternatives amongst the options considered were selected.

Koksalan et al. (1999): In this paper, a medium-term model and a short-term model for
forecasting and understanding the factors affecting beer demand were developed. To identify
these factors, a survey was conducted among sales personnel in different regional sales
departments and managers in the headquarters of the company. Twenty factors were
considered initially and the individuals being surveyed were asked to add any additional
factors they considered relevant. Linear regression models were developed to explain and
forecast beer demand based on these factors. The authors proposed a procedure based on
statistical process control (SPC) principles and techniques to detect non-random data points

and to identify missing lurking variables using indicator variables. These lurking variables

12



were integrated into the model. The modeling of the residual was conducted and shown to be
useful for solving the key problem and two other randomly generated problems. The results
indicated that short-term effects on beer consumption have been captured well and the model

can be useful in forecasting short-term beer sales.

2.2 Deterministic Production Planning Models with Capacity

Restrictions

Aggarwal et al. (1992): This paper presented a production planning and scheduling model to
satisfy the demand of dried lumber at a minimum cost over a specified planning horizon. The
model can be generalized to develop a number of manufacturing process solutions consisting
of multiple products and multi-stage environment. The authors presented a MILP
deterministic model to minimize production and inventory costs over the planning horizon.
Deterministic model in the present thesis research is an extension of the model formulated in
this paper with changes in the constraints pertinent to the industry. It was concluded that
when machine processing times are relatively short in comparison to the length of the
planning time period, aggregate production planning models can generate good solutions to
scheduling problems. However, when processing times are longer, an integrated model over
the complete planning horizon provides better solutions because it incorporates processing

times explicitly in the formulation.

Chen and Wang (1997): This paper illustrated an integrated production-distribution planning
problem for a system with a single semi-finishing central factory, multiple finishing factories

and multiple customers. The flow of materials was from the supplier to the central factory, to

13



the finishing factories and finally to the customers. A single period problem was formulated
since the production and distribution planning decisions were to be taken simultaneously. A
linear programming model was applied to a steel manufacturing industry and was solved
using commercial optimization software. Computational results of the planning problem

revealed that high benefits could be realized by integrating the functions discussed above.

Grubbstrom and Huynh (2006): A multi-level, multi-stage, capacity-constrained production-
inventory problem was discussed in this paper. The authors considered the situation that lead
times were non-zero constants and demands were deterministic. An analytical solution
procedure based on dynamic programming was developed to solve the problem. The
objective was to select the best production plan to maximize net present value (NPV) of the
cash flow associated with production and demand. In the present thesis research, similar
fundamentals are applied to the cash inflow and outflow with additional cost of purchasing as
cash outflow. As an extension of a previous paper by the same author, combination of
Laplace transforms and input-output analysis were used for solving the problem. The
numerical examples showed that the solutions used up all available capacity and produced
negligible inventory and backlogs. The NPV obtained behaved as expected and demonstrated

a linear relation with available capacity.

Sana et al. (2004): A production-inventory model for a deteriorating item over a finite
planning horizon with linear time-varying demand was developed in this paper. The authors
considered four stages for the formulation of the model. In the first stage, inventory was

accumulated as production continued after meeting demand and deterioration. Later,

14



production was stopped and inventory shortages continued to accumulate. Finally, the
production starts and shortages were cleared gradually after meeting the current demands.
The model considered both increasing and decreasing demands. The periods of production
and no-production in different cycles were optimally defined in the paper. In the end, the
optimal number of production cycles that minimize the average system cost was determined.

Sensitivity analysis of optimal solution was also carried out.

2.3 Characteristics of Uncertainty Models

Bhattacharjee and Ramesh (2000): The authors presented a single-product, multi-period
inventory and pricing model where the product had fixed life perishability for a specified
number of periods. This study investigated the dynamics of pricing and inventory policies at
the retail end of the supply chain and developed an efficient decision model to determine
pricing and inventory policies under known circumstances. The paper illustrated the problem
of simultaneously deciding product prices and quantity to order from suppliers to maximize
net profit. Two algorithms were developed to solve a multi-period pricing and ordering
problem. The results obtained by Wagner-Whitin algorithm were compared with the results
obtained by complete enumeration of solution space. The comparison demonstrated that their
algorithm approach was robust, efficient and easy to implement. The authors concluded that
the model and algorithms can be applied to solve planning and pricing problems and

extended to multi-period pricing and ordering policies with stochastic demand scenarios.

Casey and Sen (2005): The authors developed a multi-stage stochastic linear programming

(MSLP) optimization model. This paper presented a scenario generation algorithm for

15



solving the optimization problem. The authors solved an approximation problem generated
by either an aggregation or discretization of the probability model depending on the number
of scenarios. The algorithm provided asymptotic convergence and measure of optimality of
the decision. The algorithm also offered a sequence of policies for it to adapt to real-time

applications.

Enns (2002): This paper investigated forecasting errors and their effects on a batch
production system using MRP logic. The author formulated a model for handling uncertainty
of demand in a make-to-stock environment where it is desirable to meet delivery
performance objectives with minimum inventory. He discussed two common approaches to
deal with uncertainty in customer demand and product completion times. These approaches
are safety stock and safety lead time. The author suggested five policies or sets of decision
variables that affect customer due date and delivery performance in a make-to-stock
environment with varying but known demands. These include forecast, shipment, safety
stock, lot-sizing and planned lead-time setting policies. It was concluded that delivery service
levels improve with the increase in forecast-to-demand ratio. Moreover, increasing planned
lead times and adding safety stocks are both effective in improving the customer delivery

service level in MRP production environments.

Graves (1980): The author developed a heuristic for solving a multi-product production
cycling problem (MPCP). The problem was to determine the production and inventory
policies for a family of products, each of which requires proceésing on a single capacitated

plant and had stochastic demands. Due to an inherent computational difficulty in solving a

16



multi-product model as a Markov chain problem, a heuristic was developed to obtain
desirable solutions. A single product problem was formulated over a two dimensional state
space that consists of inventory level of products and machine status. The heuristic was

tested against four other heuristics, based on traditional inventory theory.

lida (2002): In this paper, the author considered a non stationary periodic review dynamic
production-inventory model with uncertain production capacity and uncertain demand. The
author developed upper and lower bounds of optimal policies for non-stationary production—
inventory problems with uncertain capacity constraint. The objective function of the model
was to minimize the total discounted expected cost including production, inventory holding
and penalty costs. The production, inventory holding and penalty cost functions were
assumed to be linear. Also, the demands and production capacity were assumed to be
independent across time but may not be identically distributed. Furthermore, the demands
and production capacities were assumed to be independent of each other. In the end, it was
shown that the upper and lower bounds converged in calculating the results of the example

problems solved in the paper.

Sox and Muckstadt (1996): In this paper, the authors presented a finite horizon capacitated
production planning problem. The problem was formulated excluding the setup costs and
setup times, but including the backorder costs. The authors utilized a sub-gradient
optimization algorithm to solve the model. The solutions obtained were 1% off the lower
bound obtained from the Lagrangian dual. The main advantage of this approach, according to

the authors, was that realistic problem instances were solved quickly. Moreover, better
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solutions were obtained in reasonable amount of computing time although the optimal

solutions to these problems were difficult to obtain.

2.4 Stochastic Programming to Tackle Uncertainty

Fransoo et al. (1995): In this paper, a two-level hierarchical planning and scheduling model
was introduced for multi-item, single-machine production systems facing stochastic demand.
The authors considered the situation where demand levels were high compared to the
available production capacity. This is also the situation considered in the present thesis
research. It was assumed that production is continuous and production lines cannot be
stopped. The objective function of the model was to maximize profit with optimal production
planning and control subject to service level requirements and capacity constraints. The
authors presented the solution for a two-level planning and control problem. The top level
was for medium-term capacity coordination to specify which products to produce and for
how long. The bottom level was for short-term operational scheduling to achieve the
medium-term targets set at the top level. Extensive simulation tests comparing the proposed
approach to a cycle time variation policy indicated the superiority of the proposed approach
in terms of total profit and rate of production. In the end, the results validated the internal
consistency of the proposed two-level hierarchical approach in which the actual profit and

production rate, from the simulation run, were very close to the estimated values.

Harrison and Van-Mieghem (1999): This paper considered a firm that marketed multiple
products manufactured using multiple resources, thereby varying the capacity of its

manufacturing process. Resources considered were several types of labor and capital.
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Resource increase is achieved at a particular cost, while a decrease may generate revenue.
This paper illustrated a multi-resource investment problem with demand uncertainty. The
authors solved this problem using stochastic programming with recourse. This approach
yielded an economical descriptive multi-dimensional generalized model. The model
developed was agreeable to analytic solution and graphical interpretation but may be difficult
to implement for practical decision support. In general, the optimal solution requires solving
the characteristic equations simultaneously using multivariate demand distribution. Various
numerical examples were solved in two stages varying the number of products and resources
for dealing with demand uncertainty. In the end, the authors reached the conclusion that the

model explained current practice and quantified the optimal operational hedge.

Listes et al. (2003): In this paper, the authors presented a stochastic programming based
approach by which a large scale deterministic location model for product recovery network
design was extended to explicitly account for uncertainties. They applied the stochastic
model to a case study concerning recycling of sand from demolition waste. Previously, these
cases were mainly handled by scenario analysis. The goal was to develop insights for twenty
problems with real-world dimensions. The construction of stochastic models followed a
rather simple technique. It may be extended and used to solve large location models. In such
models, uncertainty was an issue and a relatively small set of realistic scenarios can be
identified. The objective function of the MILP model was to maximize the net revenue
subject to constraints. The authors considered high supply and low supply cases. They solved
the model for location uncertainty of demand and additional uncertainty of supply. The

stochastic model was solved in two stages. In the first stage the location variables were fixed
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and then in the second stage the model was solved for the optimal flow of materials. The

mixed integer solver CPLEX 6.5 was used to solve the model for all variants of the problem.

Messina and Mitra (1997): In this paper, the authors discussed the difficulties in developing
multi-period stochastic models. The authors emphasized that time and uncertainty are the
most important factors in decision problems and stochastic programming models are well
suited for capturing both these aspects. Scenario tree structure was used to represent the data
dependencies among different time stages where scenarios represent the hierarchical
relationship of decision variables over time. In this paper, the authors developed new and
versatile techniques and software tools for modeling and analyzing dynamic problems under
uncertainty. This paper discussed the development of a software environment combining
MDDB (multi-dimensional database) structures, declarative modeling languages and
procedural languages which supported the automatic generation of multi-period stochastic
models. The authors generated different instances of the model in a software environment by
varying the sets of data. They commented that the user can apply different optimization

algorithms depending on the model structure and dimensions.

Wilhelm and Som (1998): The authors of this paper modeled a single-stage, single-product
stochastic assembly system according to an MRP controlled ordering philosophy. The
authors explicitly demonstrated an underlying stochastic process that described the end-
product inventory position, enabling production lead times to be treated as independent and
generally distributed random variables. They stated that deterministic assumption seemed

unrealistic for MRP parameters since production takes place in a stochastic environment and

20



demand for end-products is seldom completely predictable. They developed a model
allowing uncertain parameters, production times and demand to be treated as independent
random variables. The effect of part flows to initiate inventory on average end-product
inventory was used to describe some operating characteristics of the stochastic assembly

systems under MRP control.

Yan (1995): In this paper, manufacturing systems with stochastic demands and failure-prone
machines were considered. The author emphasized that uncertainties such as machine
failures, demand fluctuations, stochastic set-up times and random yields are the most
significant characteristics of many contemporary manufacturing and processing systems. He
considered a failure-prone manufacturing system with a single machine that produced a
single product. An iterative algorithm for stochastic optimization was developed. The
algorithm presented in this paper utilized perturbation analysis to carry out the gradient
estimation and stochastic approximation to find the optimal number of circulating Kanbans
for a manufacturing system with general machine breakdown and stochastic demand.
Numerical results indicated that the algorithm provided good approximation results and

convergence properties.

2.5 Other Papers on Deterministic and Stochastic Approaches

Arreola-Risa (1996): An integrated production-inventory system with stochastic demand was
studied in this paper. The authors considered a multi-item model in which the items shared a
capacitated production process and were produced under either deterministic or stochastic

circumstances. The problem tackled in this paper was to estimate the base stock levels to
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minimize expected inventory costs. The connection between capacity utilization and
variability in production systems was successfully modeled by queuing models. After solving
the test problems, the authors concluded that some of the implications were intuitive, while
others were due to the randomness of manufacturing environment. Furthermore, for
deterministic and exponential manufacturing times, the authors derived equations leading to
the base stock levels minimizing expected inventory costs per unit time. They presented their

results based on more than 200 test problems.

Grubbstrom and Wang (2003): This paper presented a model of a multi-level capacity-
constrained system when external demand is stochastic. Laplace transform with input-output
analysis were employed to construct the model. It used Laplace transform in combination
with matrix representations of product structures and capacity requirements. It also extended
previous analytical results in the direction of capacity considerations combined with
uncertainty in external demand. Dynamic programming was used to solve the multi-stage
optimization problem. To correctly model practical situations, it also considered the
stochastic nature of the environment. A model was constructed assuming demand as a single
source of uncertainty and occurring with known distribution function. After solving the
model, the authors observed deterministic and stochastic solutions coincide for low level
capacity. It was concluded that stochastic programming provided better solution with high
capacity utilization in comparison to the deterministic solution which uses safety stock to

deal with demand fluctuations.
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2,6 Literature Review Summary

The literature review presented above is based on sequential progress in optimization of
multi-period, multi-product, capacity-constrained, stochastic production planning model
considered in this thesis research. We started with the study of brewery industry production
related problems. Later, we discussed the papers on general deterministic problems with
capacity constraints followed by the papers studying problems with uncertainty parameters
and different techniques to overcome it. This section provided an overview on production-
inventory problems for products with seasonal demands. Industry related and problem
specific techniques are applied to resolve uncertainty issues. Later papers were specific to
stochastic programming to tackle uncertainty and its consequences. Finally, we presented a

study of other literatures related to the model developed in this thesis work.
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Chapter Three

Problem Description and Model Formulation

This chapter discusses in detail the critical issues involved in developing the model and the

characteristics of generic production planning strategies. It further includes:

3.1

Detailed description of the general characteristics of production planning concepts
and their relationship with each other.

Explanation of the various processes/stages considered in the model.

Assumptions made during the different stages of production.

Mixed Integer Linear Programming deterministic and stochastic models formulation.
Uncertainty involved in the process and related variables.

Comparison of deterministic and stochastic model to estimate “Expected Value of

Perfect Information (EVPI)” and “Value of Stochastic Solution (VSS)”.

Problem Introduction

Operational effectiveness and strategic positioning are very critical for the success of any

manufacturing, processing or service industry. Operational effectiveness implies doing

similar things as business competitors but in a better way. Best practice in terms of

operational effectiveness includes, for example, better technologies, superior inputs, better-

trained employees, more effective management structure, and clearly articulated operations

strategies. Strategic positioning means doing things differently from business competitors in

a way that delivers a unique value to customers (Koksalan et al., 1999).
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Figure 3.1 Brewery Production Planning System

3.1.1 General Characteristics of Brewery Production Planning System
The considered system assumes that the bottling plant is responsible for packing the beer
received in big barrels into the bottles based on their concentrations and characteristics. The

raw materials are supplied to the plant internally by the procurement department. Hence, we
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consider one supplier for all the raw materials. Figure 3.1 shows the schematic representation

of the system considered in this research work.

3.2 Stages of Production

The filling and packaging process involves different stages of production. It includes
processes starting from acquiring raw materials such as bottles, caps, labels and beer from the
supplier. Raw materials are processed by different machines to obtain finished products.
Finally, finished products are dispatched to the sales and distribution department or cold
stored as finished products inventory. The various functions of the production system are:

e Acquisition/ Purchase

e Raw materials Inventory

¢ Production/ Processing

o Quality Control

o Finished Products Inventory

¢ Distribution/ Sales
These stages are further categorized into sub-stages as discussed below.
Acquisition/ Purchase
The raw materials involved in the production process are obtained from different sources.
However, it is assumed that the purchase of different raw materials based on orders received
from production department is handled by procurement department. Beer is the internal
product of the company and is believed to be available in sufficient quantity. Hence, for
production planning set-up, there is only one vendor for the raw materials supply. This leads

to a significant reduction in the complexity of the problem.
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Raw Materials Inventory

Ideal inventory is zero. However, we consider a more practical aspect of it. This study is
based on an actual processing plant which has inventory at various stages of production. Raw
materials are stored separately in the form of raw materials inventory for bottles, caps and
labels. Each of these inventories is subjected to capacity, budget and utility restrictions.
Based on the demand of the product, the inventory is consumed and subsequently replenished
on reaching the minimum allowable level. The inventory cost consists of ordering cost and
holding cost. The ordering cost has to be paid each time an order is placed and is fixed, i.e., it
is independent of the quantity ordered. The holding cost reflects the cost per time unit of
storage of the goods in the warehouse and is assumed to be linearly proportional to the
quantity stored. For consistency of calculations, holding cost is considered at the end of each
time period.

Production/ Processing

Processing of bottled beer takes place in different stages of a one way filling line (Cooke et
al., 2005). A number of machines produce filled bottles of beer. Empty bottles arrive on
pallets. The depalletizer takes the bottles from the pallets and puts them on a conveyor. The
rinser washes the bottles and filler fills them with beer. Next, the pasteurizer heats the bottles
to decontaminate them. The packer puts the caps on the bottles and the labeler applies the
labels. Bottles, finally, assemble on crates and palletizer places the crates back on pallets.
Between each machine there are conveyors. Conveyors have both transport function and
buffer function. They transport bottles from one machine to the next and they store bottles so
that a given machine may keep running even if the upstream or downstream machine is

temporarily down. Each machine has a nominal rate of production, but can run faster or
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slower to compensate for breakdowns. The core machine is the machine with the slowest
rate. Figure 3.2 illustrates the production process. In this study, a constant rate of production

and no machine breakdown are assumed.
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A
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y
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Figure 3.2 Production Process
Quality Control

In brewery bottling plant, quality control is extremely important at various stages of

production. Quality control includes visual inspection, gauge measurement, laser testing, etc.,
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for the random samples. Quality rejects, testing stations and man-power are few of the
important factors constituting the cost of quality. The process of production is highly
automated so the labor force required for quality control is minimal and mostly unskilled.
Hence, quality and operations share the labor force. In addition, most of the quality processes
take place during the process of production, making it an integral part of production.
‘Therefore, cost of quality is expressed as a fraction of manufacturing cost.

Finished Products Inventory

After the processing of raw materials, finished products are cold stored as finished products
inventory. However, in this stage of inventory, ordering cost is not encountered. The only
cost associated with the finished products inventory is the inventory holding cost. Similar to
the raw materials inventory, each of these inventories is subject to capacity, budget and
utility restrictions.

Distribution/ Sales

Finished products from the final inventory or directly from the production floor are
dispatched for sale. Similar to procurement, sales and distribution department in the company
is assumed to supply the products to different buyers. Hence, there is only one buyer from the
production department. The cost of the products charged to the sales department does not

include overheads, delivery or transportation charges to wholesalers or retailers.

3.3 Multi Period Deterministic Model

We consider several concentrations of bottles being purchased, stored, processed (filled,
crowned, pasteurized, labeled and tested), cold stored and dispatched. The planning horizon

is divided into multiple time periods. The company has an ordering policy in which it has
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divided its operations into several time periods of precise length. The company brews beer

followed by the bottling operation. The brewing process time for a single lot is twice as

compared to the bottling process. The lot is dispatched after this. Hence, brewing is done in

such a manner in multiple brewing plants that the bottling process is continuous.

Demand is estimated to be equal to a value based on historical data and production is done

according to that estimated demand. Using the MILP model of the deterministic problem, we

can observe the effects of demand on the decision variables and objective function for

maximizing total profit.

3.3.1
D)
2)

3)

4
5)
6)
7

8)

9)

Assumptions

Demand is forecasted based on historical data.

Shortages are allowed.

No backorder is permitted i.e., if any customer order is not fulfilled, then the order is
lost.

Safety stock is not considered.

Machine failures are not considered.

Work in progress inventory on conveyer is considered.

No set-up time and cost as production operations do not require set-up.

Existence of one vendor and one distributor is assumed for reducing the complexity
of the problem.

Production capacity is specified in terms of machine hours.

10) Production process includes different types and shapes of bottles having the same

volumetric capacities to maintain the consistency of the model. Hence, the processing

time for each product type is considered same.
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11) Company purchases all the sub-parts of a unit in the same quantity. Therefore, the
caps and labels purchased for a particular product are equal to the number of bottles

purchased.

3.3.2 Modeling Approach

The solution methodology requires a practical approach for tackling issues, costs and
constraints. Firstly, a deterministic MILP model for the problem is developed. The objective
of this model is to maximize the profit based on costs incurred during or before the
production or processing stage. Selling price mentioned is the internal price at which the
finished products are received by the sales department. These processed goods are sold to the
wholesalers and retailers by adding transportation cost and other overheads to this price. A
deterministic MILP model is formulated on the basis of average expected demand which is
also the forecasted demand based on historical data. Later, two more problem instances are
considered for the variation of demand from the expected value. Hence, the deterministic
production planning model for profit maximization is solved for three different problem
instances of low, intermediate and high demand levels, reflecting demand fluctuation.

Cost Factors

The objective of the multi-period production planning model developed is to maximize the
profit and minimize the costs in the system. The costs at different production stages in
modeling include:

Material Purchasing Costs:

It includes the cost of purchasing raw materials from the vendor. The raw materials include

beer and different types of bottles, caps and labels. As mentioned above, the production
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department purchases the raw materials from the procurement department which is
considered as the internal vendor.

Production Costs:

Labor and Quality Costs — Labor cost and cost of quality are dependent on the units
produced. More man-power is needed with an increase in the number of units required to be
produced in a time period. Quality rejects percentage is assumed consistent for the planning
periods independent of the units produced. However, the number of quality rejects increase
with the increases in the number of units produced.

Unit Production Cost — In this model, unit production costs are assumed constant. They
only vary depending on the types of the products.

Inventory Costs:

Holding Cost - It is a variable cost depending on the number of units in the inventory.
Holding cost applies to both raw materials inventory and the finished products inventory. It
includes depreciation of warehouse, electricity, heat, ventilation, etc.

Ordering Cost — This is a fixed cost irrespective of the number of units ordered. This cost is

present whenever an order is placed during any time period.

3.3.3 MILP Deterministic Model Formulation

Based on the above discussion and thorough study of the problem, MILP model is
formulated below to solve the deterministic problem. We will present the details of the model
after we introduce the notations.

Indices
i = Type of products considered, i =1,2,....,N

¢t = Time periods considered in the planning horizon, ¢ =1,2,....,T
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Decision Variables

U;; = Units of product isold at time ¢

X ;= Units of product i produced at time ¢

I;;= Units of finished products i carried from time ¢ to ¢ +1
B;; = Units of raw materials i carried from time ¢ to ¢ +1
B = Units of raw materials i purchased at time ¢

Z,= Binary variable determining the status of order placed in time ¢

Parameters

D;,= Demand of product i during time ¢
S;; = Unit sales price of product i at time ¢
C;;= Unit cost of product i at time ¢ (Combined cost of bottle, cap, label, liquid and

processing)

V;;= Unit cost of bottles i purchased at the beginning of time ¢

O, = Ordering cost at time ¢

M ;; = Unit Production cost of product i at time ¢

@, = Number of production lines available at time ¢

B;= Inventory carrying/ holding cost as a fraction of unit cost of the initial product i
A;= Inventory carrying/ holding cost as a fraction of unit cost of finished product i

h= Number of hours each production line is available per day

0 = Number of days in each time period ¢
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W, = Maximum investment on raw materials inventory at time ¢
J;; = Maximum finished products inventory allowed for product i at time ¢
T, = Maximum investment on purchasing at time ¢

L;; = Maximum raw materials inventory allowed for product i at time ¢

b = Purchasing cost of caps as a fraction of purchasing cost of bottles

plab = Purchasing cost of labels as a fraction of purchasing cost of bottles
£ = Labor cost as a fraction of production cost
¢ = Number of units of all products produced per hour

Q= Cost of quality as a fraction of production cost

B® = Raw materials inventory at the beginning of first time period

I = Finished products inventory at the beginning of the first time period

Objective Function

The objective function of this model to maximize profit is expressed as:

Total profit = Sales (SP) — Production Cost (Processing + Labor + Quality) (PC) — Raw
Materials Inventory Cost (RMIC) — Finished Products Inventory Cost (FPIC) — Purchasing
Cost (PUC)

Sales

The production team applies a sales price tag on the finished goods and forwards them to the
sales and distribution department. They, in turn, add overheads and transportation cost to the
price and supply the products to the retailers and wholesalers. Sales refer to internal sales

price of the products from production to the sales department.
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N T
SP=3"8,Uy
i=1t=1 3.1)

Production Cost
The total cost of production for a planning horizon including the cost of machine hours, man
hours, quality checks and rejects. Production cost is given by

NT
PC=) > M;X;(1+£+Q)

i=1t=1 3.2)
Quality rejections and labor cost are specified as a fraction of manufacturing or processing
cost which is expressed in terms of machine hours.
Raw Materials Inventory Cost
The raw materials purchased are stored in separate warehouses as raw materials inventory,
each incurring a holding cost. The initial inventory holding cost is expressed as a fraction of
the purchasing cost of the bottles. Ordering cost is added irrespective of the quantity ordered.
Ordering cost is applicable as long as the raw materials order quantity is more than zero

otherwise no ordering cost is incurred.

N T T
RMIC =YY B, (Vi x By 1+ b°P +b1°)}+ 3" 7,0,
i=11=1 t=1 (3.3)

Finished Products Inventory Cost

Final inventory is the inventory of finished products cold stored and ready to be dispatched.

NT
FPIC =" 4CylI;
i=1t=1 (3.4
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Purchasing Cost
Total purchasing cost of raw materials for each time period is expressed. Purchasing cost of

caps and labels are expressed as a fraction of the purchasing cost of the bottles.

NT
PUC =Y 3V x By(1+6°% +b/P)

i=1t=] (3.5)
Constraints

Sales Constraints

These are the logical constraints which govern the inventory, production and units sold.
Equation 3.6 ensures that the sum of inventory carried from one time period to the next and
units produced in that time period equals the sum of units sold for that period and inventory
carried to the successive period. However, if the inventory carried forward from the previous
period is zero then Equation 3.7 is applicable. It implies that units sold in a time period do

not exceed the sum of units produced and the inventory carried to the successive time period.

lipa+ Xy =1y Uy =0 Vi, t (3.6)
and

; 3.7
Uy <Ly + Xy Vi, t (3.7)

Units sold for a product in any time period are less than the demand for that period. This
holds true for all products i and for each time period+.

Uy <Dy Vi, t (3.8)
Production Constraints

The maximum number of productive hours in each time period is at least equal to the total

hours used for production in that period.

36



Hence, the processing time does not exceed the maximum capacity of production lines.

N
D =X <@y xhxd
e \2; (3.9

Raw Materials Inventory Constraints

This constraint enforces that raw materials inventory cannot exceed the maximum capacity
limit for each product in all the time periods. The maximum limit on the inventory is
governed by storage space restriction.

By <L Vi, t (3.10)
Equation 3.11 is a budget constraint on the raw materials inventory. The raw materials
inventory carrying cost in each period for all the products should not exceed the maximum
budget allocated to the raw materials inventory.

N

2 Vi x By 1+ 5 +610)y <,

i=1 V't (3.11)
Initial inventory for raw materials is known for the first time period of the planning horizon.

B, = B® Vi (3.12)

Finished products Inventory Constraints

This constraint ensures finished products inventory for all the products and for each time
period should be below the maximum permitted capacity.

Iy £J; Vi, t (3.13)

Finished prbducts inventory for bottles is known for the first time period of the planning
horizon.

I —7® YVt (3.14)
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Purchasing Constraints
This constraint enforces that the sum of raw materials purchasing price for bottles, caps and
labels with ordering cost for each time period should not exceed the total fixed investment on

purchasing for that period

N
> Wi x By (1+6°P +619) 1+ 2,0, < 1,
=1 Vi (3.15)

Equation 3.16 is a logical constraint which ensures the sum of the units purchased and carried
from the inventory of previous time period is equal to the sum of the units produced and
carried to the successive period inventory.

Fy+Biy 1-Xy—B; =0 Vi, t (3.16)
Equation 3.17 implies that ordering cost is encountered only if there is an order placed. If the

purchase quantity for a particular period is zero, the ordering cost would be zero.

N
D Py SMxZ,
i=1 Vi (3.17)

Z, is binary and

M is any large positive number
3.3.4 Summary Representation of Deterministic Model

Putting the objective function (Equations 3.1 to 3.5) and constraints (Equations 3.6 to 3.17)

together, we get the MILP Production Planning Model with deterministic demand as:
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Maximize Total Profit (Z)

ZZSnUn ZZMtizz(l+f+Q) ZZﬂz{VztXth(1+bcap+blab)} zZtOt

i= lt 1 i= lt 1 i=1t=1
- A Culi =3, Y x By +5)
i=1t=1 i=1t=1

Subject to constraints:

Il,t—1+Xlt—Ilt_Ult=0 Vl,t
Uy Iy + Xy Vi, t
U, <Dy Vi, ¢
N

D —X; <@, xhx0 Vv ¢t

1 C

i=1

By <Ly Vi, t
y lab

D Vi x By (1+6°P +b )y < W, Vot

i=1

Fy+Bjy1—Xyy—By =0 Vi, t
Ilt S"]lt VZ,t
N lab

> Vi x By(1+5°P +b'%°) + 2,0, < T, v 1

i=1

N

> Py SMxZ, vt
i=1

Binary Variables

Z, €{0,1}
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Continuous Variables

0<Xy, Py, Uies By, iy <1

In this model, the calculations are based on the average forecasted demand which is referred
to as intermediate demand instance. We solved several individual problem instances based on
the variation in demand. The demand is variable but deterministic based on historical data.

The model is solved for low, intermediate and high demand instances.

3.4 Stochastic Programming Model Formulation and Solution

Stochastic programming is a framework for modeling optimization problems that involve
uncertainty. Whereas deterministic optimization problems are formulated with known
parameters, real world problems almost invariably include some unknown parameters. We
have shown the deterministic production planning model in Section 3.3. The demand is
forecasted based on historical data. However, uncertainty phenomenon is more prominent for
brewery industry (Koksalan et al., 1999). The demand may be lower or higher than this

intermediate forecasted value.

3.4.1 Scenario Probability
The different cases of variation in demand are referred to as scenarios in this thesis. Each of

these scenarios is associated with a corresponding probability of occurrence. In developing

the stochastic programming model, we consider a limited number of scenarios. pk is the

probability that scenario £ will happen. Hence, we have

pk € P, where ipk =1
k=1
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Unlike deterministic solution, the stochastic solution tries to estimate the results considering
all possible scenarios together. It is quite obvious that deterministic solution would present a
higher value of profit due to its deterministic nature. Since it does not consider the
uncertainty in its calculations, its output is based on the exact information on the occurrence
of a particular event. Whereas, the stochastic model formulation takes into consideration the
uncertainty while modeling a problem and the results obtained can be more realistic. The
most widely applied and studied stochastic programming models are two-stage linear
programs. The decision maker takes some action in the first stage, after which a random
event occurs affecting the outcome of the first-stage decision. A recourse decision can then
be taken in the second stage that compensates for any loss of sales or excessive inventory that

has been experienced as a result of the first-stage decision.

3.4.2 EVPI and VSS Fundamentals

Stochastic solutions can be analyzed and interpreted in terms of the following two parameters.
Expected Value of Perfect Information (EVPI): It measures as to how much more one is
expected to win if perfect information about the stochastic components of a problem is
available (Dempster and Thompson, 1999). In other words, EVPI measures the cost or value
of knowing the future with certainty. Hence, this is the maximum amount that may be spent
to gather information about the uncertain elements. The difference in the profits obtained by
the deterministic solution and the stochastic solution is referred to as EVPI. The solution of a
deterministic problem is always equal to or better than the solution of a corresponding
stochastic problem. This is due to the absence of uncertainty in the deterministic approach.

Based on the outcome of the deterministic solutions, decision variables are identified.
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Consequently, they are segregated into 2 different categories, ‘“here-and-now” variables and
“wait-and-see” variables depending on their nature of recourse. “Here-and-now” decisions
are the ones which are taken before the beginning of a planning horizon and no recourse is
possible later. “Wait-and-see” decisions may be modified later based on the outcome of
uncertainty. This part of the solution is called the first stage solution of stochastic modeling.

Figure 3.3 represents the estimation of EVPI from the deterministic and stochastic models.

e - ; ‘ 1 Max Z1
o Low D mand ot e Demand D1

' Determ ' Probability P1
| Deterministic Production robability

| Interm dlate'Demand ’ De'\:'naaxn?m
: @ta § : ,@iu@ﬂon _ Probability P2
_CS: Demand |

ELL “Productlon De'\:'naaxn?m
ZI“-. Scenario Probability P3
A

O Z (Deterministic) =

s P1Z1+P2Z2+P3Z3

Z (Stochastic) = PZs

B i Max Zs
, ’Productlon Demand Ds

\:olutlon Probability P

Expected Value of Perfect Information
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Figure 3.3 Estimation of EVPI
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Value of Stochastic Solution (VSS): It is also referred to as the cost of ignoring uncertainty
while making a decision (Birge, 1995). VSS is calculated in the second stage of the
stochastic programming solution. In this stage, the random decision variables are substituted
by their expected value. Moreover, the variables that are identified based on “here-and-now”
decisions and “wait-and-see” decisions are segregated on the basis of effects due to uncertain
parameters. ‘“Wait-and-see” variables are assigned the respective probabilities on the basis of
scenarios. The solution, thus, obtained is the Expectation of the Expected Value, EEV or
Expected Value Solution, EVS. This solution is compared to the stochastic solution for the
given scenarios. Higher values of VSS justify stochastic approach over EVS for the given
problem. The collective solution is referred to as “stochastic solution with recourse”
(Harrison and Van-Mieghem, 1999). The fundamentals of VSS are shown in Figure 3.4 as
the second stage of stochastic programming. Only 3 scenarios are shown in Figures 3.3 and

3.4, however, it can represent any number of scenarios.

3.4.3 Modeling with Uncertainty

The MILP model presented in Section 3.3.4 can be extended to a stochastic programming
model with the corresponding variables and parameters re-defined by incorporating different
scenarios and their probabilities. We first present the modified notations for the new model.
The same parameters and variables used in the deterministic model will not be re-defined.
Index

k = Number of different scenarios considered, £ =1,2,.....K

Decision Variables

Uy = Units of product i sold at time ¢ for scenario k
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Xy = Units of product i produced at time ¢ for scenario k
I, = Units of finished products i carried from time ¢ to ¢ +1 for scenario &

By = Units of raw materials i carried from time ¢ to ¢+1 for scenario k&

Fix Variables
High Demand

Fix Variables
Intermediate

Fix Variables
Low Demand

Low Demand Intermediate High Demand
Scenario Demand Scenario
Scenario

Expected
Solution Y/ (Expecteq
(Variables Fixed) Value Solution)

N

Stochastic
Solution j (Stochastic) j
\

Value of Stochastic Solution,
VSS = Z (Stochastic) — Z (Expected Value Solution)
Figure 3.4 Estimation of VSS

Parameters

Dy, = Demand of product i during time ¢ for scenario £
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pk = Probability of the occurrence of scenario k
Apart from the decision variables and parameters declared above, all the other variables and
parameters are identical to the deterministic model.
Costs
If uncertainty is taken into consideration, Equation 3.1 for sales would be expressed as
K i N T
SP = ZP xzzsitUitk
k=1 ==l (3.18)

Equation 3.2 does not involve the terms of uncertainty. Hence, can be expressed as it is

N T (3.19)
PC=Y>YM;X;(1+L+Q)
i=1t=1
Introduction of the scenarios would change Equation 3.3 as
K NI . L (3.20)
RMIC =Y p* x> Bi{Vy x By 1+ b°F + 6"} + > 7,0,
k=1 i=1t=1 t=1
Equation 3.4 for finished products inventory cost may be expressed as
v I (3.21)

FPIC = f P x> ac,I,
k=1

i=l =1

Purchasing cost in Equation 3.5 does not change with the introduction of uncertainty and

may be written again as

N T
PUC =33V x Py (1+ 5% +5/) (3.22)
i=lt=1

Constraints

Sales constraint in Equation 3.6 for deterministic model becomes
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Iig 15+ Xig —Lig —Ujyx =0 and Vit k (3.23)
Equation 3.7 is rewritten with uncertainty as

Uik S Lige + Xy Vit k (3.24)

Units sold for a specific product in any time period are less than the demand for that period.

This holds true for all the scenarios. Hence, Equation 3.8 is expressed as

Ui < Djy, Vi, t, k (3.25)
Equation 3.9 has no change and re-written as

N 4 A (3.26)

i=1¢

Raw materials inventory constraint changes with uncertainty. Hence, Equation 3.10 is
modified to

This is a budget constraint on the initial inventory. This constraint expressed earlier in

Equation 3.11 is re-written as

N Vvt k (3.28)
> Wi x By (1455 +670) < W,
i=l
Initial declaration for raw materials inventory is

o _n@ Vi, k (3.29)
Byx =B

Final inventory for all the products and for each time period should be below the maximum
permitted capacity. With the introduction to scenarios, Equation 3.13 is expressed as

Ly < U, Vi, t, k (3.30)

Initial declaration for finished products inventory is
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Lk =7 Vit k (3.31)

Equation 3.15 shows the sum of the purchase price of all the raw materials should not exceed
the total allotted investment on purchase for that time period. This holds true for all the
scenarios.

N

DV xB(1+b +b")+Z,0, < T,

i=1 4 (3.32)
Logical constraint Equation 3.16 for initial inventory is expressed as

Py+Bj; 14~ Xy —Bjp =0 Vi t, k (3.33)
Equation 3.17 implies that ordering cost is encountered only if there is an order placed for a

period. This holds true irrespective of the scenario.
N VieT (3.34)
D> Py sMxZ,

i=l

Z, is binary

3.4.4 Summary of Stochastic Model Solution

This section presents the summary of model after rewriting and re-optimizing the
deterministic problem with the introduction of stochastic modeling. The effect of probability
is clearly evident when demand varies from the estimated range in the deterministic problem
instances. Putting the objective function (Equations 3.18 to 3.22) and the constraints
(Equations 3.23 to 3.34) together, we get the complete MILP Production Planning problem

with uncertainty in demand as follows:
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Maximize Total Profit (Z)

NT NT
Y MXA++D =D Y Vi xgt(1+bc"p+bl“b)+

i= = = =
ZO" ZZSztUzzk ZZ@ i< Byl +bC“P+b"’”)}—ZZzot ZZﬂ,cnInk
k= =l = = = = =

Subject to constraints:

Lip g+ Xy —Ligg —Upg =0 Vi, t, k

Uitk < Lige + Xy Vit k
Vi t, k

Uitk < Digk !

Z—XltS(D,xhxa

1 vt
By < Ly Vit k
u lab
D Vit x B 1+ 5P +6"*7)} < W, Vi k
i=1
Py+Bis 1k —Xit —Bip =0 Vi, t, k
‘Iitk < Jll Vla ta k
N
DV, xP,(1+b*"+b")+Z,0, <T, 7
i=l
N
D> Py SMxZ, V¢

i=1
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Binary Variables
4 t € {051}
Continuous Variables

0< Xy, By, Upge» Bigkes Ly <1

The above model is a stochastic programming model with recourse. It can be solved
explicitly following standard stochastic programming approach. The size of the problem,
however, is much larger than the corresponding deterministic model, due to the scenarios
considered in the stochastic approach. The deterministic and stochastic models are tested and
compared through a number of test problems. The problem details and results are reported in

the next chapter.

49



Chapter Four

Numerical Examples and Analysis

This chapter presents the numerical analysis of the model discussed in Chapter 3. The data
used in the example problems represent the pertinent information over one planning horizon.
The models developed are solved for various problem instances based on demand variation.
These solutions with demand variations are referred to as individual scenario solutions.
Parametric analysis is conducted by varying the inputs, scenarios and probabilities. The
impact of these parameters on the decision variables and total profit is observed. Stochastic
model is also formulated representing different scenarios with corresponding probabilities.
Consequently, deterministic models are compared with the stochastic model for similar set of
input data. This forms the first stage of solution for stochastic programming. Based on the
results of deterministic problems, the decision variables are fixed and interchangeably
substituted in all problem instances for the same set of data values to obtain “Expected Value
Solution (EVS)” or “Expectation of the Expected Values (EEV)”. For each set of probability
values, 3 different scenarios are formulated to validate the existence of uncertainty. The
expected value solutions with uncertainty are compared with the corresponding stochastic
solution. This gives the second stage optimization of the stochastic programming problem
calculations. Based on the historical data analysis, each of these scenarios is assigned the
probability of its existence. Four examples are solved with different probabilities of existence

of scenarios.
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4.1 Example Problems

To demonstrate the applications of the linear programming model presented in Chapter 3, we
consider a production planning problem with a planning horizon of one year. This planning
horizon is further divided into 12 time periods of one month each. The general data of the
examples are given in Table 4.1. There are 3 different products to be processed in 12 time

periods. Hence, there are 36 values of demand for each scenario. Considering only 3 demand

scenarios, there are 36 =1.5x10!7 combinations of possible demand scenarios.

Table 4.1 General Parametric Values

Number of Products (V) 3
Number of Time Periods (7) 12
Number of Working Days in each time period (0) 22
Number of Hours/Day (4) 24
Number of Scenarios (K) 3
Ordering Cost (O;) 5000

However, practically the probability of occurrence of most of these demand instances is very
low. We consider the more likely 27 instances. Figure 4.1 represents the combination of
demands values for 3 products. It is observed that if demand for a product shows an upwards
or downwards trend for a particular time period, it may have the same trend for the other
periods as well. It is possible that the demand for a product is less for one time period and
more for the successive period. However, the probability for such a case is low and can be
ignored. Figure 4.1 shows the 27 likely scenario combinations among all the possible

permutations, which have higher probability of occurrence compared to the

1.49999 x 10'7 alternatives.
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Moreover, the 27 deterministic solutions in the first stage lead to 81 solutions in the second
stage. To reduce the complexity of the problem and considering the solutions which are most

relevant, 3 cases with highest probability of occurrence are solved. Figure 4.1 shows the set

of demand instances for which the first stage solution is computed.

-n—

“Produ‘ctv ‘1 | Prbdlictz R P;’oduct3

Figure 4.1 Demand Scenarios with Highest Probability of Occurrence
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To tackle uncertainty, in the second stage, we consider 9 sub-problems by assigning the
corresponding probability to compare with the stochastic solution to estimate VSS.

In reality, demand may repeat its pattern each year with variations. This may be due to the
growth or decline of the company sales, population increase of the region, rise or fall in the
brand name of the product, improvement in the advertising, change in the product according
to the customer demands, competition, etc. It is also experienced and observed that the trend
is generally same for all the products of a company.

As shown in Table 4.2, for each set of examples, the value of demand varies. The scenarios

are based on this variation in demand given in Table 4.2. The problem was initiated with

intermediate demand values, Dl-(tl). It is assumed to have a standard deviation of 5% from

this mean value. Hence, range of the intermediate demand is considered as Di(tl) +5%. The

demand data for the products in each time period and scenarios are shown in Table 4.2. Other
data used in the example is given in Appendix 1. Furthermore, there is a probability that the
demand is outside the limit of the intermediate demand. Considering the continuous blocks of
demand domain and same value of standard deviation ( £5%), the demand for all 3 scenarios
are shown in Table 4.2. Demand is assumed to be normally distributed. For calculation
purpose, the mean of the distribution is considered as the demand value. Most of the data
used in the examples are based on those from the company studied. However, some of the
remaining data are hypothetical. Various verifications and tests were carried out to validate

the data and results.
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Table 4.2 Demand Data Variation

Product

Time
Period

Deterministic Models

Low Demand,

Intermediate Demand,

High Demand,

1 t 0.9x D) +5% DD +5% 11x DD £5%
1 1 167400 186000 204600
1 2 148050 164500 180950
1 3 135900 151000 166100
] 4 144000 160000 176000
1 5 168300 187000 205700
1 6 184500 205000 225500
1 7 176400 196000 215600
1 g 139950 155500 171050
I 9 127800 142000 156200
i 10 131850 146500 161150
1 1 142380 158200 174020
1 12 180450 200500 220550
2 1 152100 169000 185900
2 2 139950 155500 171050
2 3 127800 142000 156200
2 4 135900 151000 166100
2 5 160200 178000 195800
2 6 176400 196000 215600
2 7 168300 187000 205700
2 8 132300 147000 161700
2 9 119700 133000 146300
2 10 123750 137500 151250
2 1 134280 149200 164120
2 12 172350 191500 210650
3 1 176400 196000 215600
3 2 164250 182500 200750
3 3 152100 169000 185900
3 4 160200 178000 195800
3 5 184500 205000 225500
3 6 200700 223000 245300
3 7 192600 214000 235400
3 8 156150 173500 190850
3 5 144000 160000 176000
3 10 148050 164500 180950
3 1 158580 176200 193820
3 12 196650 218500 240350
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The model is programmed and solved using LINGO optimization solver, version 8.0, for the
optimal solution. The size of the stochastic linear programming problem can be estimated by
the number of variables and constraints. In this case, the total number of variables are 628
including 12 integers and 721 constraints. Hence, the size of the constraint coefficient matrix
18628 x721.
The two statistics used for stochastic optimization problems are:

e Expected value of perfect information, EVPI

e Value of stochastic solution, VSS

4.1.1 Calculation of EVPI

Expected Value of Perfect Information, EVPI, is the expected or average profit or return, in
long run, if perfect information is available before the decision is made (Dempster and
Thompson, 1999). In order to calculate EVPI, the objective function for each demand
scenario is multiplied with corresponding probability of occurrence.

Hence, on the basis of the above explanation, we have:

EVPI= ZDet "ZStoc )
Deterministic Solution, Z ),

Let Zy,Z, and Z3denote the objective functions obtained from scenarios 1, 2 and 3, and

p(l) , p(z) and p(3) denote the probabilities of scenarios 1, 2 and 3, respectively.

Then, we have

Zper= 0V xZ))+(p® x 23)+(0®) x Z3) (4.2)
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Stochastic Solution, Z g,

Without perfect information, the total maximum profit can be obtained by solving the
recourse problem. Recourse model is the deterministic equivalent of the stochastic model.
The probabilities are associated with the decision variables based on “wait-and-see” or “here-
and-now” decisions.

Wait-And-See Solutions

Wait-and-see (WS) problems assume that the decision-maker waits until the uncertainty is
resolved before implementing optimal decisions. This approach, therefore, relies upon
perfect information about the future.

Here-And-Now Solutions

Unlike wait-and-see solutions, here-and-now (HN) solutions are taken before the uncertainty
is resolved. These decisions are irrespective of the probability of occurrence of a scenario in
the future. Moreover, recourse of these variables is not possible.

Considering the demand as the input, the model is solved for low, intermediate and high
demand scenarios. Results are provided in Appendix 2. Produced units and purchased units
are observed as two main decision variables. Figure 4.2 shows the trend in the produced units
of the 3 products for the 12 time periods. Similarly, the second decision variable is the
number of the purchased units. Figure 4.3 represents the variation in the purchased units for

each product over the entire planning horizon.

4.1.2 Calculation of VSS

Value of Stochastic Solution, VSS is the difference between the objective function value of

the stochastic problem and the objective function value of the deterministic problem
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computed with stochastic variables replaced by their expected values (Harrison and Van-

Mieghem, 1999).

Units Produced vs Time Period

300000

250000

200000
—eo— Low

150000 —m— Intermidiate

e High

100000

Units Produced

50000

0

Time Period

Figure 4.2 Trend of Decision Variable 1 w.r.t Time and Product Variation

Units Purchased vs Time period

400000
350000
300000
250000
200000
150000
100000
50000
0
-50000

—eo—Low
—a— [ntermidiate
- High

Units Purchased

Time period

Figure 4.3 Trend of Decision Variable 2 w.r.t Time and Product Variation
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In other words, it is the difference between stochastic solution value and expected value

solution (EEV or EVS).
Therefore,
VSS = Zgoc - ZEgy (4.3)

where Zggy is computed by substituting the decision variables by their expected value in

deterministic problem to obtain the second stage expected value solution.
It is not possible to find the “wait-and-see” solution if perfect information is not available.
Easier way to solve is to replace all random variables by their expected values in a simpler

problem to calculate EEV or EVS. Expectation of the expected value, EEV or EVS, is the

parameter that measures how ;(5 performs, allowing second stage decisions to be chosen
optimally as functions of ;(5 and&.
where E = E (&) denotes the expectation of the random variable & and ;(5 =E (x(g))

denotes the expected value of the function x(a with —é_ as the expectation of the random
variable &

VSS is the statistical tool that measures how good a decision is, in terms of the deterministic
equivalent of the stochastic solution. After the first stage solution, the decision variables are

identified based on “here-and-now” or “wait-and-see” characteristics.

4.2  Variation in Probability of Scenarios

Example 1
Probability: 0.2, 0.2, 0.6
In example 1, the first set of probability of occurrence is assigned to the demand scenarios.

Maximum profit for the deterministic problem is obtained from Equations 3.1 to 3.17 given
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in Chapter 3 for different scenarios. Based on the input data in Tables 4.1 and 4.2 and in
Appendix 1, the first set of deterministic problems is solved to obtain the objective function
for maximizing total profit shown in Table 4.3. Stochastic problem is formulated using
Equations 3.18 to 3.34 and solved for the same set of data as the corresponding deterministic
problem. The deterministic solution provides higher value of objective function compared to

the stochastic value. This is due to the uncertainty in the stochastic solution.

+ Expected Value of Perfect Information, EVPI

We compute EVPI for the data in Example 1. The profit values are shown in Table 4.3,
Zper =(0.2x5711869)+(0.2x 6350747) +(0.6 x 6975182)

Table 4.3 Example 1: Scenarios, Profit and Related Probabilities of Occurrence

Objective Function
Scenario Demand Nature Probability of Total Maximum
Occurrence Profit

1 Low 0.2 5711869

2 Intermediate 0.2 6350747

3 High 0.6 6975182
Deterministic 6597632

Stochastic 5857792

Z pet =6597632
From the equations of stochastic solution,

Z g0 = 5857792

Calculating EVPI from Equation 4.2,
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Deterministic vs Stochastic Solutions

6800000

6600000 -

6400000 -
6200000 - @8 Detemministic Solution

6000000 -

Total profit ($)

5800000 - Stochastic Solution

5600000 -

5400000 -

Figure 4.4 EVPI for Example 1

EVPI = 6597632 — 5857792 = 739840

Hence, it can be seen that the total profit would be 12.6% more, if perfect information on the
future is available. The difference in the maximum total profit obtained from deterministic

and stochastic solutions is represented in Figure 4.4

« Value of Stochastic Solution, VSS

We compute Zggy by the optimal decision variables from the deterministic solution with
corresponding probabilities to obtain EVS or EEV as follows
ZSBYV = (p(l) X Zu)+(p(2) X le)+(p(3) x Z13), where ZI(:%V denotes the expectation of

the expected value when random variables are substituted by their expected value for

scenario 1.

p(l) , p(2) and p(3 ) denote the probabilities of scenarios 1, 2 and 3, respectively.
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Z;1 = Objective function value of scenario 1 by setting the first stage decision variables of

scenario 1

Z1, = Objective value of scenario 2 by setting the first stage decision variables of scenario 1
Z,3 = Objective value of scenario 3 by setting the first stage decision variables of scenario 1

The second stage objective function values are shown in Table 4.4 on fixing the first stage

decision variables.

70

ey = (02x5711869) + (0.2x5711172) + (0.6x5711172)

O -

Table 4.4 Second Stage Objective Fixing Scenario 1 Variables

Objective Value

Scenario Demand Nature Maximum Profit
1 Low 5711869
2 Intermediate 5711172
3 High 5711172

Deterministic equivalent of stochastic solution, Zg,,.= 5857792

VSS = Zsioc - ZEEY
VSS = 5857792 —5711312 =146480

Hence, it can be seen that stochastic solution is 2.56% higher than Z 1(511)EV .

Similarly, the first stage decision variables for scenario 2 are fixed and the objective function
value for every scenario is calculated to obtain the total maximum profit as shown in Table

4.5. This provides the second stage of the stochastic solution. Uncertainty is involved and the
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random variables are substituted by their expected values. This solution is compared with the

stochastic solution to find out which approach is better.
2
Z2 = (PO x2)+ (PP x 2y0)+(PD x Z33)

z2), = (0.2x3797669) + (0.2 6350747) +(0.6 x 6350747)

2 -
z2), =5840132

Deterministic equivalent of stochastic solution, Zg;,. = 5857792
Therefore, VSS = 17660

Table 4.5 Second Stage Objective Fixing Scenario 2 Variables

Objective Value

Scenario Demand Nature Maximum Profit
1 Low 3797669
2 Intermediate 6350747
3 High 6350747

Hence, the stochastic solution is 0.3% higher than Z ](52131, .

Lastly, the first stage decision variables for scenario 3 are fixed and the objective value for
every scenario is calculated as represented in Table 4.6.

ZQy= (PO xZ31)+(PP x Z30)+ (PP x Z33)

z8), = (0.2x1950251)+(0.2 x 4503329) + (0.6 x 6975182)

z8), = 5475825

Deterministic equivalent of stochastic solution, Zg,,. = 5857792
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Table 4.6 Second Stage Objective Function Fixing Scenario 3 Variables

Objective Value

Scenario Demand Nature Maximum Profit
1 Low 1950251
2 Intermediate 4503329
3 High 6975182

Therefore, VSS = 381967

Hence, the stochastic solution is 7% higher than Z g_%y .

Comparing the stochastic solution with the individual scenario solutions, it is clearly evident
that the stochastic solution gives higher value of total profit. Figure 4.5 shows the

comparison of objective function values for total maximum profit.

Stochastic vs Expected Value Solutions
5900000 O Stochastic Solution
5800000 - 1
) |
) |
& 5700000 - i m Expected Solution
- i Fixing Scenario 1
"§ 5600000 - 1 Variables
E: 5500000 - | @ Expected Solution
}g Fixing Scenario 2
= 5400000 - Variables
Expected Solution
5300000 - Fixing Scenario 3
5200000 Variables

Figure 4.5 VSS for Example 1
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Example 2

Probability: 0.7, 0.2, 0.1

In this example, the values of probability assigned to each scenario are changed. This is done
to investigate the effect of the probability on the final solution. One particular scenario that
has higher probability of occurrence is expected to play a key role in the final results. It
would have a considerable impact on the values of the decision variables. Other data such as
number of products, time periods in one cycle, costs and demand values remain constant.
They are same as those presented in Tables 4.1 and 4.2. Other data used in the problem are
shown in Appendix 1.

Table 4.7 Example 2: Scenarios, Profit and Related Probabilities of Occurrence

Objective Function
Scenario Demand Nature Total Maximum Probability of
Profit Occurrence
1 Low 5711869 0.7
2 Intermediate 6350747 0.2
3 High 6975182 0.1

Table 4.7 shows the summary of the deterministic problem objective function values for each

scenario and their related probabilities as assigned for Example 2.

Z per = (0.7x5711869)+(0.2 x 6350747) +(0.1x 6975182)

Z per = 5965976

Z 100 = 5711869

EVPI = 5965976 — 5711869 =254107
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Deterministic vs Stochastic Solutions

6000000
5950000
5900000
5850000 -
5800000 -
5750000 -
5700000 -
5650000 -
5600000 -
5550000 -

Total Profit ($)

m Deterministic Solution
Stochastic Solution

Figure 4.6 EVPI for Example 2

Hence, it can be seen that the maximum total profit would be 4.4% more, if perfect

information on the

future is available. The difference in the maximum total profit obtained

from the deterministic and stochastic solutions is presented in Figure 4.6

Value of Stochastic Solution, VSS

VSS = Zstoc = ZEEY

The second stage objective function values are shown in Tables 4.4, 4.5 and 4.6 by fixing the

first stage decision
obtained.

70

2 = (0.7x571

Do
z8), =5711660

Z 5100 = 5711869

variables. Table 4.8 shows the summary of the objective function values

1869) + (0.2x5711172) + (0.1x5711172)
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VSS = 5711869 —5711660 =209

Table 4.8 Second Stage Objective Values Fixing Decision Variables

Objective Value
Scenario | Demand Nature Maximum Profit
Scenario 1 Scenario 2 Scenario 3
Variables Fixed | Variables Fixed | Variables Fixed
1 Low 5711869 3797669 1950251
2 Intermediate 5711172 6350747 4503329
3 High 5711172 6350747 6975182

Hence, it can be seen that the stochastic solution is higher than Zgz)YV by $ 209.

It is interesting to note that there is a negligible difference between the values obtained by
stochastic solution and EVS fixing scenario 1 variables. This is due to the high probability of
existence of scenario 1. The EVS is administered by scenario 1. Hence, when the random
variables are substituted by their expected value, the substitution of scenario 1 variables

resulted in nearly ideal solution.

ZI(:%«%V = (0.7 x3797669)+(0.2x 6350747) +(0.1x 6350747)
2) _

Z gy =4563593

Z 500 = 5711869

VSS =1148276

Hence, the stochastic solution is 25.16% higher than Z 1(5213,, .

z3), = (0.7x1950251)+(0.2x 4503329) + (0.1 x 6975182)
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3
Z 5100 = 5711869

Therefore, VSS = 2748509

Hence, Z glsz is 48% lower than stochastic solution.

Stochastic vs Expected Value Solutions
6000000 @ Stochastic Solution
5000000 -
@ 4000000 - ] E.xpected Solgtlon
- Fixing Scenario 1
S Variables
a 3000000 - :
33 0 Expected Solution
Fixing Scenario 2
o 4
- 2000000 Variables
1000000 - E-X[:)ected SOIl:ltion
Fixing Scenario 3
0 Variables

Figure 4.7 VSS for Example 2
Comparing the stochastic solution with the individual scenario solutions, it is clear that the

stochastic solution gives a higher total profit. Figure 4.7 shows the comparison of the

objective values.

Example 3
Probability: 0.3, 0.5, 0.2
Table 4.9 shows the summary of the objective function values of the deterministic model

objective values for each scenario and their related probabilities as assigned for Example 3.
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Z e = (0.3x5711869)+(0.5x 6350747) +(0.2 x 6975182)
Z per = 6283971

Z 100 = ST4TT22
EVPI = 6283971 — 5747722 = 536249
Hence, it can be seen that the maximum total profit would be 9.3% more, if perfect

information on the future is available.

Table 4.9 Example 3: Scenarios, Profit and Related Probabilities of Occurrence

Objective Function
Scenario Demand Nature Total Maximum Probability of
Profit Occurrence
1 Low 5711869 0.3
2 Intermediate 6350747 0.5
3 High 6975182 0.2

The difference in the maximum total profit obtained from the deterministic and stochastic

solutions is shown in Figure 4.8.

Value of Stochastic Solution, VSS

VSS = Zstoc - ZEEY

zQ = (03x5711869) + (0.5x5711172) + (0.2x5711172)
z0) =5711381

Z gy00 = STATT22

VSS = 5747722 -5711381 = 36341
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Deterministic vs Stochastic Solutions
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= 6100000 -
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Figure 4.8 EVPI for Example 3

Hence, it can be concluded that stochastic solution is 0.63% higher than Z 1(51125V .

z2), = (0.3x3797669)+ (0.5 x 6350747) + (0.2 x 6350747)
(2) -

2, =5584824

Zstoe = STATT22

VSS =162898

Hence, the stochastic solution is 2.9% higher than Z‘%%V .
z8), = (0.3x1950251)+(0.5x 4503329)+(0.2 x 6975182)

3 -
ZP), = 4231776
Z100= 5747722

VSS = 1515946
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Hence, Z gﬁ?‘V is 26.37% lower than the stochastic solution.

Comparing the stochastic solution with the individual scenario solutions, it is clear that the
stochastic solution gives a higher total profit. Figure 4.9 shows the comparison of the

objective values.

Stochastic vs Expected Value Solutions
7000000 0 Stochastic Solution
6000000 -
= 5000000 - m Expected Solution
- Fixing Scenario 1
© 4000000 - Variables
::B 3000000 - Expected Solution
S Fixing Scenario 2
~ 2000000 - Variables
Expected Solution
1000000 - Fixing Scenario 3
Variables
0
Figure 4.9 VSS for Example 3
Example 4

Probability: 0.333, 0.334, 0.333
Table 4.10 shows the summary of the deterministic model objective values for each scenario

and their related probabilities as assigned for Example 4.

Zper = (0.333x5711869)+(0.334 x 6350747) +(0.333 x 6975182)

Z per = 6339587
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Z 100 = 5720982

EVPI = 6339587 — 5720982 = 618605

Table 4.10 Example 4, Scenarios, Profit and Related Probabilities of Occurrence

Objective Function
Scenario Demand Nature Total Maximum Probability of
Profit Occurrence
1 Low 5711869 0.333
2 Intermediate 6350747 0.334
3 High 6975182 0.333

Hence, it can be seen that the maximum total profit would be 10.8% more, if perfect
information on the future is available. The difference in the maximum total profit obtained
from the deterministic and stochastic solutions is shown in Figure 4.10.

Value of Stochastic Solution, VSS

VS8 = Zsioc - ZgEY

z{0), = (0.333x5711869) + (0.334x 5711172) + (0.333x 5711172)
Do

z8)., =5705693

Z 100 = 5720982

VSS = 5720982 —-5705693 = 15289

Hence, it can be seen that the stochastic solution is $15289 higher than Z SI)EV .

Z3), = (0.333x3797669) +(0.334x 6350747) +(0.333 x 6350747)
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2 -
Z 500 = 5720982

VSS =226761

6400000
6300000 -
6200000 -
6100000 -

Deterministic vs Stochastic Solutions

6000000 -
5900000 -
5800000 -

B Deterministic Solution
[@ Stochastic Solution

Total Profit ($)

5700000 -
5600000 -
5500000 -
5400000 —

Figure 4.10 EVPI for Example 4

Hence, the stochastic solution is 4.1% higher than Z%?V .

z8), = (0.333x1950251) + (0.334 x 4503329) +(0.333 x 6975182)
zQ), =44711778

Z 100 = 5720982

VSS =1249204

Hence, Z %‘V is 21.8% lower than the stochastic solution.
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Comparing the stochastic solution with the individual scenario solutions, it is clear that the
stochastic solution gives a higher total profit. Figure 4.11 shows the comparison of the

objective values.

Stochastic vs Expected Value Solutions
7000000 , :
0 Stochastic Solution
6000000 -
& 5000000 - B Expected Solution
- Fixing Scenario 1
g 4000000 ~ Variables
o 3000000 - o Expected Solution
2 Fixing Scenario 2
F 2000000 - Variables
Expected Solution
1000000 - Fixing Scenario 3
0 Variables

Figure 4.11 VSS for Example 4

4.3 Analysis of Results

The objective function values obtained in the examples vary with variation in the probability
of occurrence of different scenarios. With change in probability, the solutions are governed
by different scenarios or their combinations. The combinations of probabilities show that the
stochastic solutions are more realistic. Table 4.11 shows the summary of the probabilities

assigned to each scenario in the examples solved.
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Table 4.11 Scenarios and Associated Probabilities

Probability
Scenario Example 1 Example 2 Example 3 Example 4
1 0.2 0.7 0.3 0.333
2 0.2 0.2 0.5 0.334
3 0.6 0.1 0.2 0.333
Table 4.12 Deterministic Solution Summary
Total Profit
Scenario Example 1 Example 2 Example 3 Example 4
1 1142374 3998308 1713561 1902052
2 1270149 1270149 3175374 2114799
3 4185109 697518 1395036 2322736
Total Profit 6597632 5965976 6283971 6339587
(Deterministic)
Total Profit 5857792 5711869 5747722 5720982
(Stochastic)
EVPI 739840 254107 536249 618605

Three deterministic problems are formulated for each example representing each of the low,
intermediate and high demand scenarios. The summary of objective function values for
maximum total profit for each problem is given in Table 4.12. It also represents the summary

of the stochastic solution obtained from the examples and its comparison to the deterministic
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solution. Figure 4.12 shows the comparison of the first stage deterministic solution obtained
from the problems solved above. It can be observed from Figure 4.12 that there is a
considerable variation in the objective function values obtained by assigning different
probabilities to each scenario. The reason for the variation is obvious. If high probability is

associated with the high demand scenario, the profit is more.

Determinstic Solution Comparison

6700000
6600000 -
6500000 -
6400000 -
6300000 -
6200000 -
6100000
6000000 -
5900000 -
5800000 -
5700000 -
5600000 -

Total Profit ($)

Example 1 Example 2 Example 3 Example 4

Figure 4.12 Deterministic Solution Comparisons
Since, there is a rise in the demand; the units sold would increase, leading to higher profit.
Similarly, Figure 4.13 represents the comparison of the first stage stochastic solution

obtained from the examples used in this thesis research.

Comparison of the values in Figures 4.12 and 4.13 is shown in Figure 4.14. The difference

between the stochastic and the deterministic solution is EVPI.
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Total profit ($)

Stochastic Solution Comparison

5900000

5850000 - - - R R P EEE R

5800000 - -
5750000 -
5700000 -

5650000 -

5600000 -

Example 1 Example 2 Example 3 Example 4

Figure 4.13 Stochastic Solution Comparisons

Total Profit ($)

EVPI Comparison

Deterministic Solution B Stochastic Solution

6800000
6600000 -
6400000 -
6200000 -
6000000
5800000 -
5600000 -
5400000 -
5200000 -

Example 1 Example 2 Example 3 Example 4
(0.2,0.2,06) (0.7,02,01) (0.3,050.2) (0.3,0.3,0.3)

Figure 4.14 EVPI Comparison
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“Wait-and-see” variables are assigned the related probabilities and “here-and-now” variables
are fixed. Table 4.13 shows the summary of the second stage solution and the objective

function values by fixing the variables to obtain EVS, Zggy . In this approach, the decision

variables for scenarios 1, 2 and 3 are fixed one at a time and substituted for the random
variables in the deterministic model. The second stage solution involves uncertainty in the
existence of the scenarios. Based on uncertainty, the expected values of the decision
variables are substituted. Moreover, Table 4.14 compares the numerical results of the
expected value solutions and the stochastic solutions.

Table 4.13 Second Stage Stochastic Solution Summary

Total Profit
Probability Fixing Scenario Stochastic
Set EVS Solution VSS
0.2 1 5711312 146480
Example 1 0.2 2 5840132 5857792 17660
0.6 3 5475825 381967
0.7 1 5711660 209
Example 2 0.2 2 4563593 5711869 1148276
0.1 3 2963360 2748509
0.3 1 5711381 36341
Example 3 0.5 2 5584824 5747722 162898
0.2 3 4231776 1515946
0.333 1 5705693 15289
Example 4 0.333 2 5494221 5720982 226761
0.333 3 4471778 1249204
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VSS obtained for each example problem and all the scenarios furnish higher value of the
total profit which justifies the use of stochastic programming to model uncertainty. The
comparison of the objective function values for stochastic solution and EVS is shown in

Figure 4.15. The difference is the Value of Stochastic Solution, VSS.

Expected Solution By Fixing Variables

B For Scenario 1 M For Scenario 2 [ For Scenario 3 @ Stochastic Solution

7000000
6000000 -
& 5000000
4000000 -
3000000 -
2000000 A
1000000 +
0

Total Profit ($

Example 1 Example 2 Example 3 Example 4

Figure 4.15 VSS Comparison

44 Summary

From the computational results of the example problems, one can see that the parameters that
have the influence on the total profit, purchasing and production decisions are the probability
of occurrence of each demand scenario. The uncertainty in the demand plays a major role in
detemining the value of maximum profit. However, there are other parameters which

determine the outcome of a production planning model. The models in this research work are
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solved by varying the probability of occurrence of each scenario by keeping the number of
scenarios constant. Other input data are maintained constant for the problems solved. The
aim of this study is to draw a comparison between stochastic and deterministic solution
methodology. The results obtained are reasonable for the variation in the most important
parameter. Other parameters to be considered include introduction of more demand
scenarios, variation of demand fluctuation rate, combination of different demand instances
and assigning different probability sets to scenarios.

4.4.1 Stages of Solution

The solution of this type of stochastic model is obtained in 2 stages

First Stage

« Deterministic model is formed for maximizing total profit.

« Referring to the historical data, 3 most likely scenarios namely, low, intermediate and
high, are obtained and assigned the respective values.

« Deterministic model is solved for each of the scenarios. Units purchased and units
produced are the two decision variables found for 3 products and 12 time periods.
Decision variables are identified on the basis of “here-and-now” decisions. Units
sold, raw materials inventory and finished products inventory are identified as “wait-
and-see” variables.

» Stochastic model is solved by assigning these sets of probabilities to the variables
based on “wait-and-see” decisions. The objective function value for maximum profit
is expressed as Z g, .

+ For deterministic model, objective function values are obtained assigning the

probability sets and is expressed as Zp,,.
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The stochastic solutions for all 4 sets of probabilities are compared to the
corresponding deterministic solution.

It is observed that in each of the example solved above, the value of profit obtained
from deterministic solution is more than the stochastic solution. The difference in the

deterministic and stochastic solutions is the Expected Value of Perfect Information,

EVPL

EVPI is the amount a company would be willing to pay for the perfect information.

Second Stage

The decision variables namely, units produced and units purchased identified in the
first stage are fixed for the scenario 1 values.

These decision variables are substituted for scenario 2 and scenario 3 values for the
same set of input data. Hence, for fixing the variables for one scenario, three profit
values are obtained in the second stage. The objective function values obtained are
the Expectation of the Expected Values, EEV or Expected Value Solutions, EVS.

The three objective function values obtained are assigned the respective probabilities

to attain Z pgp for first scenario.

Similarly, decision variables are fixed for scenario 2 and scenario 3 to obtain 3
solutions of each scenario and assigned their corresponding probabilities.

Hence, for Example 1, 3 EEV solutions are compared to the stochastic solution for
the same example.

It is observed that stochastic solution provides a higher objective function value in all

three cases for maximum profit as compared to EVS.
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o+ Similarly, the Zggy for example 2, 3 and 4 are calculated by varying the

probabilities for each scenario and comparing with corresponding stochastic solution.
Again, stochastic solution gives higher profit values than EEV or EVS.

« Stochastic solution is compared with several EEV solutions to demonstrate the
efficiency of stochastic programming approach.

« The difference between the objective function values of Zg,,. and Zggy is referred

to as the Value of Stochastic Solution, VSS.
VSS is the value of profit obtained from stochastic solution over the expected value of

deterministic solution considering uncertainty.

4.4.2 Effects of Variation in Data

The variations in the results calculated are dependent on various factors. Following are the
factors considered in this study.

+ Variation in the demand

With increase in demand for a product there is an increase in the units produced, units
purchased, inventories and units sold. The increase in the profit with the increase of demand
implies that the costs which are directly proportional to the units sold are lower than the
profit.

+ Variation in the probability of scenarios with constant number of scenarios

Total profit increases with the variation between the probabilities of occurrence of scenarios.
EVPI decreases with the increase in variation of probability between scenarios. However,

VSS increases with the increase in variation of probability between scenarios. There are other
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factors which have an effect on EVPI and VSS values. The variation of such other factors is
not considered in this study.

Since, the results obtained are conducive with the variation of the factors considered; it must
be conducive for the variation in other factors. Hence, to avoid the complexity of the model,
following factors and their variations are not used for the calculations in this thesis work.

« Variation in number of scenarios

Total profit decreases with the increase in the number of scenarios. EVPI increases with the
increase in the number of scenarios. VSS decreases with the increase in the number of
scenarios.

« Variation in demand for each scenario keeping the number of scenarios constant
Increasing demand values for all the scenarios simultaneously: Total profit from the
stochastic solution increases constantly. EVPI remains almost constant. VSS increases with
the increase in the demand.

Increasing demand values for one scenario while keeping other 2 constant: Total profit
from the stochastic solution increases at a constant rate. EVPI decreases with the increase in
the demand of any one scenario. VSS increases sturdily with the increase of demand of one

scenario keeping demand constant for other scenarios.
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Chapter Five

Conclusions and Future Research

This chapter presents a summary of the research conducted in this thesis. It also presents
several concluding remarks based on the problem modeling and results analysis. Future

directions for research on this study are also discussed.

5.1 Concluding Summary

In this thesis, two MILP models for capacity-constrained production planning are proposed
for modeling uncertainty in product demand. The first mathematical model is formulated as
deterministic model for maximizing total profit. The profit obtained is based on known
values of product demand. The same model is solved again with random variables substituted
by their expected values to obtain Expected Value Solution (EVS) for each individual
scenario. The second model is formulated as stochastic optimization model where demand is
stochastic.

This research extends the work of Fransoo et al. (1995) to multiple machines. They
developed a linear programming model for multi-item, single-machine planning and
scheduling. In this thesis, a generic problem is formulated to accommodate several scenarios
simultaneously. Problem size has been substantially increased due to the increase in planning

horizon. Effects of seasonal variation in product demand on production and purchasing
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quantities subject to capacity constraints are discussed in this work. Based on the information
of a brewery company, several example problems are solved and results are verified to
ascertain the robustness of the two models.

It is important to note that the primary objective of this thesis work is to clearly outline a
comparative analysis between deterministic and stochastic modeling approaches. The
variations of the total profit are tabulated and represented graphically. Two statistics for
stochastic optimization problems: Expected Value of Perfect Information (EVPI) and Value

of Stochastic Solution (VSS) are measured and the variations are analyzed.

5.2 Future Research

In this research a stochastic production planning model is considered to cope with demand
uncertainty. However, there are many other parameters for which uncertainty is not
considered. These parameters include machine failures, setup costs, purchasing, and
inventory.

The author would consider the following aspects for the future research of this study:

e Cost and time factors may be expressed as unique values rather than a fraction of
other costs or time values. For example, Cost of Quality is expressed as a fraction of
production cost in this thesis.

e Setup time and cost may be included in case of change over from one product to the
other. Also, lead time and penalty on loss of sales may be taken into consideration.

e More robust stochastic models can be developed which are capable of handling more
complex production planning problems with multiple vendors and multiple

distributors.
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Meta-heuristics can be designed to obtain effective solutions for large instances of
problems and complex data.

Sensitivity analysis of the results can be conducted to analyze the competency of the
solution.

A generic algorithm can be formulated to account for uncertainty in any parameter
without much change in model structure.

Problem can be solved with more scenarios for real life applicability.
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Appendix 1

Tables Utilized in Solving the Model

Table Al: Purchasing Costs

Products
Product 1 Product 2 Product 3
Months
Jan 0.45 0.35 0.2
Feb 0.45 0.35 0.2
Mar 0.45 0.35 0.2
Apr 0.45 0.35 0.2
May 0.45 0.35 0.2
Jun 0.45 0.35 0.2
Jul 0.45 0.35 0.2
Aug 0.45 0.35 0.2
Sep 0.45 0.35 0.2
Oct 0.45 0.35 0.2
Nov 0.45 0.35 0.2
Dec 0.45 0.35 0.2
Table A2: Production Costs
Products Product 1 Product 2 Product 3
Months
Jan 0.8 0.65 0.3
Feb 0.8 0.65 0.3
Mar 0.8 0.65 0.3
Apr 0.8 0.65 0.3
May 0.8 0.65 0.3
Jun 0.8 0.65 0.3
Jul 0.8 0.65 0.3
Aug 0.8 0.65 0.3
Sep 0.8 0.65 0.3
Oct 0.8 0.65 0.3
Nov 0.8 0.65 0.3
Dec 0.8 0.65 0.3
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Table A3: Finished Product Costs

Products
Product 1 Product 2 Product 3
Months
Jan 2.2 1.8 0.85
Feb 2.2 1.8 0.85
Mar 2.2 1.8 0.85
Apr 2.2 1.8 0.85
May 2.2 1.8 0.85
Jun 2.2 1.8 0.85
Jul 2.2 1.8 0.85
Aug 2.2 1.8 0.85
Sep 2.2 1.8 0.85
Oct 2.2 1.8 0.85
Nov 2.2 1.8 0.85
Dec 2.2 1.8 0.85
Table A4: Selling Price
Products
Product 1 Product 2 Product 3
Months
Jan 2.9 2.4 1.1
Feb 2.9 2.4 1.1
Mar 2.9 2.4 1.1
Apr 2.9 2.4 1.1
May 2.9 24 1.1
Jun 2.9 2.4 1.1
Jul 2.9 2.4 1.1
Aug 2.9 2.4 1.1
Sep 2.9 2.4 1.1
Oct 2.9 2.4 1.1
Nov 2.9 2.4 1.1
Dec 2.9 24 1.1

93




Table AS: Raw Materials Inventory Capacity Restrictions

Products
Product 1 Product 2 Product 3
Months

Jan 200000 150000 250000
Feb 200000 150000 250000
Mar 200000 150000 250000
Apr 200000 150000 250000
May 200000 150000 250000
Jun 200000 150000 250000
Jul 200000 150000 250000
Aug 200000 150000 250000
Sep 200000 150000 250000
Oct 200000 150000 250000
Nov 200000 150000 250000
Dec 200000 150000 250000

Table A6: Finished Products Inventory Capacity Restrictions

Products
Product 1 Product 2 Product 3
Months

Jan 250000 180000 300000
Feb 250000 180000 300000
Mar 250000 180000 300000
Apr 250000 180000 300000
May 250000 180000 300000
Jun 250000 180000 300000
Jul 250000 180000 300000
Aug 250000 180000 300000
Sep 250000 180000 300000
Oct 250000 180000 300000
Nov 250000 180000 300000
Dec 250000 180000 300000
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Table A7: Maximum Investment on Purchasing

Months Products Maximum Investment

Product 1
Jan Product 2 1200000
Product 3

Product 1
Feb Product 2 1150000
Product 3

Product 1
Mar Product 2 1100000
Product 3

Product 1
Apr Product 2 1150000
Product 3

Product 1
May Product 2 1200000
Product 3

Product 1
Jun Product 2 1250000
Product 3

Product 1
Jul Product 2 1180000
Product 3

Product 1
Aug Product 2 1200000
Product 3

Product 1
Sept Product 2 1150000
Product 3

Product 1
Oct Product 2 1170000
Product 3

Product 1
Nov Product 2 1180000
Product 3

Product 1
Dec Product 2 1250000
Product 3
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Table A8: Maximum Investment on Raw Materials Inventory

Months

Products

Maximum Investment

Jan

Product 1

Product 2

Product 3

250000

Feb

Product 1

Product 2

Product 3

230000

Mar

Product 1

Product 2

Product 3

210000

Apr

Product 1

Product 2

Product 3

220000

May

Product 1

Product 2

Product 3

270000

Jun

Product 1

Product 2

Product 3

300000

Jul

Product 1

Product 2

Product 3

260000

Aug

Product 1

Product 2

Product 3

250000

Sept

Product 1

Product 2

Product 3

210000

Oct

Product 1

Product 2

Product 3

220000

Nov

Product 1

Product 2

Product 3

240000

Dec

Product 1

Product 2

Product 3

300000
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Table A9: Product Demand

Demand

Months Products Scenario 1 Scenario 2 Scenario 3
(Low) (Intermediate) (High)
Product 1 167400 186000 204600
Jan Product 2 152100 169000 185900
Product 3 176400 196000 215600
Product 1 148050 164500 180950
Feb Product 2 139950 155500 171050
Product 3 164250 182500 200750
Product 1 135900 151000 166100
Mar Product 2 127800 142000 156200
Product 3 152100 169000 185900
Product 1 144000 160000 176000
Apr Product 2 135900 151000 166100
Product 3 160200 178000 195800
Product 1 168300 187000 205700
May Product 2 160200 178000 195800
Product 3 184500 205000 225500
Product 1 184500 205000 225500
Jun Product 2 176400 196000 215600
Product 3 200700 223000 245300
Product 1 176400 196000 215600
Jul Product 2 168300 187000 205700
Product 3 192600 214000 235400
Product 1 139950 155500 171050
Aug Product 2 132300 147000 161700
Product 3 156150 173500 190850
Product 1 127800 142000 156200
Sept Product 2 119700 133000 146300
Product 3 144000 160000 176000
Product 1 131850 146500 161150
Oct Product 2 123750 137500 151250
Product 3 148050 164500 180950
Product 1 142380 158200 174020
Nov Product 2 134280 149200 164120
Product 3 158580 176200 193820
Product 1 180450 200500 220550
Dec Product 2 172350 191500 210650
Product 3 196650 218500 240350
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Table A10: Number of Production Lines

Months

No. of Production Lines

Jan

N

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

W IN |= = N W h W |= = -

Dec

Table Al1: Probabilities of Scenarios

Probability Product 1 Product 2 Product 3
Set

1 0.2 0.2 0.6

2 0.7 0.2 0.1

3 0.3 0.5 0.2

4 0.333 0.334 0.333
Table A12: Other Input Data
Ordering Cost 5000
Carrying Cost as Fraction of Unit Cost for Raw Materials 0.15
Carrying Cost as Fraction of Unit Cost for Finished Products 0.15
Labor Cost as Fraction of Production Cost 0.1

Cost of Quality as Fraction of Production Cost 0.02
Units Produced per Hour 1000

98




Appendix 2

Tables Utilized in Presenting the Discussion

Deterministic Solution for Different Demand Scenarios

Table A13: Units Produced vs. Time Period

Units Produced
Product Month Low Demand Intermediate Avg. High Demand
Scenario Demand Scenario Scenario
Jan 167400 186000 204600
Feb 148050 164500 180950
Mar 135900 151000 166100
Apr 144000 160000 176000
1 May 168300 187000 205700
Jun 184500 205000 225500
Jul 176400 196000 215600
Aug 139950 155500 171050
Sep 127800 142000 156200
Oct 131850 146500 161150
Nov 142380 158200 174020
Dec 180450 200500 220550
Jan 152100 169000 185900
Feb 139950 155500 171050
Mar 127800 142000 156200
Apr 135900 151000 166100
2 May 160200 178000 195800
Jun 176400 196000 215600
Jul 168300 187000 205700
Aug 132300 147000 161700
Sep 119700 133000 146300
Oct 123750 137500 151250
Nov 134280 149200 164120
Dec 172350 191500 210650
Jan 176400 196000 265100
Feb 164250 182500 176000
Mar 152100 169000 173525
Apr 160200 178000 185900
3 May 184500 205000 222406
Jun 200700 223000 243753
Jul 192600 214000 234626
Aug 156150 173500 190463
Sep 144000 160000 175806
Oct 148050 164500 180853
Nov 158580 176200 193771
Dec 196650 218500 240325
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Table A14; Raw Materials Inventory vs. Time Period

Raw Materials Inventory

Product Month Low Demand | Intermediate Avg. | High Demand
Scenario Demand Scenario Scenario

Jan 148050 0 0
Feb 0 151000 0
Mar 144000 0 0
Apr 0 0 0

1 May 0 0 0
Jun 0 0 0
Jul 0 0 0
Aug 127800 142000 156200
Sep 0 0 0
Oct 142380 158200 0
Nov 0 0 0
Dec 0 0 0
Jan 139950 0 0
Feb 0 142000 0
Mar 135900 0 0
Apr 0 0 0

2 May 0 0 0
Jun 0 0 0
Jul 0 0 0
Aug 119700 133000 146300
Sep 0 0 0
Oct 134280 149200 0
Nov 0 0 0
Dec 0 0 0
Jan 164250 0 0
Feb 0 169000 0
Mar 160200 0 0
Apr 0 0 0

3 May 0 0 0
Jun 0 0 0
Jul 0 0 1520
Aug 144000 160000 175807
Sep 0 0 0
Oct 158580 176200 0
Nov 0 0 0
Dec 0 0 0

100




Table A15: Bottles Purchased vs. Time Period

Bottles Purchased

Product Month | Low Demand | Intermediate Avg. | High Demand
Scenario Demand Scenario Scenario
Jan 315450 186000 204600
Feb 0 315500 180950
Mar 279900 0 166100
Apr 0 160000 176000
1 May 168300 187000 205700
Jun 184500 205000 225500
Jul 176400 196000 215600
Aug 267750 297500 327250
Sep 0 0 0
Oct 274230 304700 161150
Nov 0 0 174020
Dec 180450 200500 220550
Jan 292050 169000 185900
Feb 0 297500 171050
Mar 263700 0 156200
Apr 0 151000 166100
2 May 160200 178000 195800
Jun 176400 196000 215600
Jul 168300 187000 205700
Aug 252000 280000 308000
Sep 0 0 0
Oct 258030 286700 151250
Nov 0 0 164120
Dec 172350 191500 210650
Jan 340650 196000 265100
Feb 0 351500 176000
Mar 312300 0 173525
Apr 0 178000 185900
3 May 184500 205000 222406
Jun 200700 223000 243753
Jul 192600 214000 236146
Aug 300150 333500 364750
Sep 0 0 0
Oct 306630 340700 180853
Nov 0 0 193771
Dec 196650 218500 240325

101




Table A16: Units Sold vs. Time Period

Units Sold
Product | Month | Low Demand | Intermediate Avg. | High Demand
Scenario Demand Scenario Scenario
Jan 167400 186000 204600
Feb 148050 164500 180950
Mar 135900 151000 166100
Apr 144000 160000 176000
1 May 168300 187000 205700
Jun 184500 205000 225500
Jul 176400 196000 215600
Aug 139950 155500 171050
Sep 127800 142000 156200
Oct 131850 146500 161150
Nov 142380 158200 174020
Dec 180450 200500 220550
Jan 152100 169000 185900
Feb 139950 155500 171050
Mar 127800 142000 156200
Apr 135900 151000 166100
2 May 160200 178000 195800
Jun 176400 196000 215600
Jul 168300 187000 205700
Aug 132300 147000 161700
Sep 119700 133000 146300
Oct 123750 137500 151250
Nov 134280 149200 164120
Dec 172350 191500 210650
Jan 176400 196000 215600
Feb 164250 182500 200750
Mar 152100 169000 185900
Apr 160200 178000 192087
3 May 184500 205000 225500
Jun 200700 223000 245300
Jul 192600 214000 235400
Aug 156150 173500 190850
Sep 144000 160000 176000
Oct 148050 164500 180950
Nov 158580 176200 193820
Dec 196650 218500 240350
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Table A17: Order Status vs. Months

Order Placed
Low Demand Intermediate High
Months Scenario Avg. Demand Demand
Scenario Scenario
Jan Yes Yes Yes
Feb No Yes Yes
Mar Yes No Yes
Apr No Yes Yes
May Yes Yes Yes
Jun Yes Yes Yes
Jul Yes Yes Yes
Aug Yes Yes Yes
Sep No No No
Oct Yes Yes Yes
Nov No No Yes
Dec Yes Yes Yes
Stochastic Solutions
Table A18: Stochastic Order Status vs. Months
Order Placed
Probability | Probability | Probability Probability
Months Set 1 Set 2 Set 3 Set 4
(0.2,0.2,0.6) { (0.7,0.2,0.1) | (0.3,0.5,0.2) | (0.333,0.334,0.333)
Jan Yes Yes Yes Yes
Feb No No No No
Mar Yes Yes Yes Yes
Apr No No No No
May Yes Yes Yes Yes
Jun Yes Yes Yes Yes
Jul Yes Yes Yes Yes
Aug No No No No
Sep Yes Yes Yes Yes
Oct No No No No
Nov Yes Yes Yes Yes
Dec Yes Yes Yes Yes
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Table A19: Stochastic Units Produced vs. Time Period

Units Produced
Product | Month | Probability | Probability | Probability | Probability
Set 1 Set 2 Set 3 Set 4

Jan 167400 167400 167400 167400

Feb 148050 148050 148050 148050

Mar 135900 135900 135900 135900

Apr 144000 144000 144000 144000

1 May 187000 168300 168300 168300
Jun 205000 184500 184500 184500

Jul 196000 176400 176400 176400

Aug 155500 139950 139950 139950

Sep 142000 127800 127800 127800

Oct 146500 131850 146500 131850

Nov 158200 142380 158200 158200

Dec 220550 180450 200500 200500

Jan 152100 152100 152100 152100

Feb 140580 139950 139950 139950

Mar 142000 127800 127800 127800

Apr 150000 135900 135900 135900

2 May 178000 160200 160200 160200
Jun 196000 176400 176400 176400

Jul 187000 168300 168300 168300

Aug 147000 132300 147000 132300

Sep 133000 119700 133000 119700

Oct 137500 123750 137500 137500

Nov 149200 134280 149200 149200

Dec 210650 172350 191500 191500

Jan 176400 176400 176400 176400

Feb 164250 164250 164250 164250

Mar 169000 152100 152100 152100

Apr 178000 160200 160200 160200

3 May 205000 184500 184500 184500
Jun 223000 200700 200700 200700

Jul 214000 192600 192600 192600

Aug 173500 156150 156150 156150

Sep 160000 144000 160000 144000

Oct 164500 148050 164500 164500

Nov 176200 158580 176200 176200

Dec 240350 196650 218500 218500
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Table A20: Stochastic Raw Material Inventory vs. Time Period

Raw Material Inventory
Product | Month | Probability | Probability | Probability | Probability
Set 1 Set 2 Set 3 Set 4
Jan 148050 148050 148050 148050
Feb 0 0 0 0
Mar 144000 144000 144000 144000
Apr 0 0 0 0
1 May 0 0 0 0
Jun 0 0 0 0
Jul 0 0 139950 139950
Aug 142000 127800 0 0
Sep 0 0 146500 131850
Oct 158200 142380 0 0
Nov 0 0 0 0
Dec 0 0 0 0
Jan 140580 139950 139950 139950
Feb 0 0 0 0
Mar 150000 135900 135900 135900
Apr 0 0 0 0
2 May 0 0 0 0
Jun 0 0. 0 0
Jul 0 0 147000 132300
Aug 133000 119700 0 0
Sep 0 0 137500 137500
Oct 149200 134280 0 0
Nov 0 0 0 0
Dec 0 0 0 0
Jan 164250 164250 164250 164250
Feb 0 0 0 0
Mar 178000 160200 160200 160200
Apr 0 0 0 0
3 May 0 0 0 0
Jun 0 0 0 0
Jul 0 0 156150 156150
Aug 160000 144000 0 0
Sep 0 0 164500 164500
Oct 176200 158580 0 0
Nov 0 0 0 0
Dec 0 0 0 0
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Table A21: Stochastic Bottles Purchased vs. Time Period

Bottles Purchased
Product | Month | Probability | Probability | Probability | Probability
Set 1 Set 2 Set 3 Set 4

Jan 315450 279900 279900 315450
Feb 0 0 0 0
Mar 279900 168300 168300 279900
Apr 0 184500 184500 0

1 May 187000 176400 316350 168300
Jun 205000 267750 0 184500
Jul 196000 0 274300 316350
Aug | 297500 274230 0 0
Sep 0 0 158200 259650
Oct 304700 180450 200500 0
Nov 0 292050 292050 158200
Dec 220550 0 0 200500
Jan 292680 263700 263700 292050
Feb 0 0 0 0
Mar 292000 160200 160200 263700
Apr 0 176400 176400 0

2 May 178000 168300 315300 160200
Jun 196000 252000 0 176400
Jul 187000 0 270500 300600
Aug 280000 258030 0 0
Sep 0 0 149200 257200
Oct 286700 172350 191500 0
Nov 0 340650 340650 149200
Dec 210650 0 0 191500
Jan 340650 312300 312300 340650
Feb 0 0 0 0
Mar 347000 184500 184500 312300
Apr 0 200700 200700 0

3 May 205000 192600 348750 184500
Jun 223000 300150 0 200700
Jul 214000 0 324500 348750
Aug 333500 306630 0 0
Sep 0 0 176200 308500
Oct 340700 196650 218500 0
Nov 0 279900 279900 176200
Dec 240350 0 0 218500
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Table A22: Stochastic Units Sold Inventory vs. Time Period

Units Sold
Product | Month | Probability | Probability | Probability | Probability
Set 1 Set 2 Set 3 Set 4
Jan 167400 167400 167400 167400
Feb 148050 148050 148050 148050
Mar 135900 135900 135900 135900
Apr 144000 144000 144000 144000
1 May 187000 168300 168300 168300
Jun 205000 184500 184500 184500
Jul 196000 176400 176400 176400
Aug 155500 139950 139950 139950
Sep 142000 127800 127800 127800
Oct 146500 131850 146500 131850
Nov 158200 142380 158200 158200
Dec 200500 180450 200500 200500
Jan 152100 152100 152100 152100
Feb 140580 139950 139950 139950
Mar 142000 127800 127800 127800
Apr 150000 135900 135900 135900
2 May 178000 160200 160200 160200
Jun 196000 176400 176400 176400
Jul 187000 168300 168300 168300
Aug 147000 132300 147000 132300
Sep 133000 119700 133000 119700
Oct 137500 123750 137500 137500
Nov 149200 134280 149200 149200
Dec 191500 172350 191500 191500
Jan 176400 176400 176400 176400
Feb 164250 164250 164250 164250
Mar 169000 152100 152100 152100
Apr 178000 160200 160200 160200
3 May 205000 184500 184500 184500
Jun 223000 200700 200700 200700
Jul 214000 192600 192600 192600
Aug 173500 156150 156150 156150
Sep 160000 144000 160000 144000
Oct 164500 148050 164500 164500
Nov 176200 158580 176200 176200
Dec 218500 196650 218500 218500
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Appendix 3
LINGO program for Deterministic Production Planning Model

MODEL:

! Thig model calculates and maximize the profit, under given constraints,
of a brewing company which Processes and packs the beer in 3 different
types and concentrations of bottles;

SETS:
I INITIALIZING VARIABLES;
BOTTLES / 1,2,3/:CARRYING_COST_INI, CARRYING_COST_FINAL, PROPORTION;

MONTHS / JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC/:ORDER_COST,
TOTAL_SETUP, MAX_INI_TINVEST, MAX_FINAL_INVEST, TOTAL_INVESTMENT, Z;

LINKS (BOTTLES, MONTHS) : SALES_COST, PRODUCTION_COST, UNITS_PRODUCED,
PURCHASE_COST, BOTTLE_INI__INVENTORY, FINAL_COST, FINAL_INVENTORY,
BOTTLE_PURCHASED, DEMAND, MAX_INI_INVENTORY, MIN_INI_INVENTORY,
MAX_FINAL_INVENTORY, UNITS_SOLD;

ENDSETS

1 Maximize Total profit = Total Sales - Production Cost - Raw Materials Inventory Cost —
Finished Products Inventory Cost - Purchase Cost;

Max =

@SUM (LINKS(i,t): SALES_COST(i,t)*UNITS_SOLD(i,t)}) -

@SUM (LINKS(i,t): PRODUCTION_COST (i, t)*UNITS_PRODUCED(i,t)*(1 + 0.1 +
.02)) -

@SUM (LINKS(i,t): CARRYING_COST_INI(i)*
PURCHASE_COST (i, t) *BOTTLE_INI_INVENTORY (i,t)*(1 + 0.15 + 0.15)) -

@SUM (MONTHS(t): Z(t)*5000) -

@SUM (LINKS(i,t): CARRYING_COST_FINAL(i)*
FINAL_COST (i, t) *FINAL_INVENTORY (i, t)) -

@SUM (LINKS(i,t): PURCHASE_COST(i,t)*BOTTLE_PURCHASED({i,t)*(1 + 0.15 +
0.15));

! SALES CONSTRAINTS;

! This constraint implies that the total unit manufactured will be equal
to the total units sold(+ or - inventory) of all the items for each month;

@FOR (BOTTLES (1) :

108



UNITS_PRODUCED(i,1) - FINAL_INVENTORY(i,l) - UNITS_SOLD(i,1) = 0);
@FOR (BOTTLES (i) :
@FOR (MONTHS(t) |t #GT# 1:
FINAL_INVENTORY (i,t-1) + UNITS_PRODUCED(i,t) - FINAL_INVENTORY(i,t)
- UNITS_SOLD(i,t) = 0));

@FOR (BOTTLES(1):
@FOR (MONTHS (L) :
UNITS_SOLD(i,t) <= FINAL_INVENTORY(i,t) + UNITS_PRODUCED(i,t)));

@FOR (BOTTLES(1):
@FOR (MONTHS (t):
UNITS_SOLD(i,t) <= DEMAND(i,t)));

! PRODUCTION CONSTRAINTS;

@FOR (MONTHS(t) :
@SUM (BOTTLES(1):
0.001* (UNITS_PRODUCED(i, t)))<= TOTAL_SETUP (t)*24%22);

! RAW MATERIALS INVENTORY CONSTRAINTS;

! The inventory for the empty bottles should not be less than the minimum
inventory allowed as the safety stock;

@FOR (BOTTLES (1) :
@FOR (MONTHS(t):
BOTTLE_INI_INVENTORY (i, t) <= MAX_ INI_INVENTORY (i,t)));

I Total investment on initial inventory should be less than the maximum
budget for the initial inventory;

@FOR (MONTHS(t):

@SUM (BOTTLES (i) :
CARRYING_COST_INI (i) *PURCHASE_COST (i, t) *BOTTLE_INI_INVENTORY (i,t)* (1
+ 0.15 + 0.15)) <= MAX_INI_INVEST(t));

! FINISHED PRODUCTS INVENTORY CONSTRAINTS;

! The inventory for the final bottles should not exceed the maximum
inventory possible in the given space for the final product;

@FOR (BOTTLES (1) :

@FOR (MONTHS(t):
FPINAL_INVENTORY (i, t) <= MAX_FINAL_INVENTORY(i,t)));
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! PURCHASE CONSTRAINTS;

] Total amount spent on purchasing the raw materials should be lesg than
the maximum total investment allowable;

@FOR (MONTHS(t) :

@SUM (BOTTLES (i) :
PURCHASE_COST (i, t) *BOTTLE_PURCHASED(i,t)*(1 + 0.15 + 0.15)+
(z(t)*5000)) <= TOTAL_INVESTMENT(t));

! The amount of bottles purchased and carried forward from the previous
month inventory should be eqgual to the sum of bottles produced and carried
over to the next month's inventory;

@FOR (BOTTLES (1) :
BOTTLE_PURCHASED(i,1) - UNITS_PRODUCED(i,1) -~
BOTTLE_INI_INVENTORY (i,1) = 0);

@FOR (BOTTLES (i) :

@FOR (MONTHS(t)| t #GT# 1:
BOTTLE_PURCHASED (i, t) + BOTTLE_INI_INVENTORY (i, t-1) -
UNITS_PRODUCED(i,t) - BOTTLE_INI_INVENTORY(i,t) = 0 ));

@FOR (MONTHS(t):
@SUM (BOTTLES(1):
BOTTLE_PURCHASED(i,t)) <= 1000000*Z(t));

@FOR (MONTHS(t) :
@BIN (Z(t)));

DATA:

CARRYING_COST_INI =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'CARRYING_COST_INI');

CARRYING_COST_FINAL =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'CARRYING_COST_FINAL');

ORDER_COST =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'ORDER_COST');

TOTAL_SETUP =
QOLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'TOTAL_SETUP');

MAX_INI_INVEST =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'MAX_INI_INVEST');

MAX_FINAL_INVEST =
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@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'MAX FINAL_INVEST');

TOTAL_INVESTMENT =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'TOTAL_INVESTMENT"') ;

PROPORTION =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'PROPORTION') ;

SALES_COST =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'SALES_COST');

PRODUCTION_COST =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'PRODUCTION_COST');

PURCBASE_COST =
@QOLE ('C:\Documents and Settings\Vibhor\My

Documents\Research\Vibhor\DatalA.XLS', 'PURCHASE_COST');
FINAL_COST =

@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'FINAL_COST');
DEMAND =

@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'DEMAND');

MAX_INI_INVENTORY =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'MAX_INI_INVENTORY');

MIN_INI_INVENTORY =

@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'MIN_INI_INVENTORY') ;
MAX_ FINAL_INVENTORY =

@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'MAX_FINAL_INVENTORY');
ENDDATA

END
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LINGO program for Stochastic Production Planning Model

MODEL:

SETS:

POINITIALIZING VARIABLES;

BOTTLES / 1,2,3/:CARRYING_COST_INI, CARRYING_COST_FINAL, PROPORTION;

MONTHS / JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC/:0RDER_COST,
TOTAL_SETUP, MAX_INI_INVEST, MAX_FINAL_INVEST, TOTAL_INVESTMENT, Z;

LINKS (BOTTLES, MONTHS) :SALES_COST, PRODUCTION_COST, UNITS_PRODUCED,
UNITS._PRODUCED_1, UNITS_PRODUCED_2, PURCHASE_COST, BOTTLE_INI_INVENTORY,
BOTTLE_INI_INVENTORY_11, BOTTLE_INI_INVENTORY_22, FINAL_COST,
FINAL_INVENTORY, FINAL_INVENTORY_11, FINAL_INVENTORY_22, BOTTLE_PURCHASED,
BOTTLE_PURCHASED_1, BOTTLE_PURCHASED_2, DEMAND, MAX INI_INVENTORY,
MIN_INI_INVENTORY, MAX_FINAL_INVENTORY, DEMAND1l, DEMAND2, DEMAND3,
UNITS_SOLD1, UNITS_SOLD, UNITS_SOLD2;

ENDSETS

1 Maximize Total profit = Total Sales(TC) - Production Cost(PC) - Raw Materials Inventory
Cost(RMIC) - Finished Products Inventory Cost(FPIC) - Purchase Cost(PUC);

Max = - 1 *

@SUM (LINKS(i,t): PRODUCTION_COST(i,t)*UNITS_PRODUCED(i,t)*(1 + 0.1 +
.02)) -

@SUM (LINKS(i,t): PURCHASE_COST(i,t)*BOTTLE_PURCHASED(i,t)*(1 + 0.15 +
0.15)) + (

@SUM (LINKS(i,t): SALES_COST(i,t)*UNITS_SOLDL(i,t)))*0.2 - {

@SUM (LINKS(i,t): CARRYING_COST_INI(i)*
PURCHASE_COST (i, £) *BOTTLE_INI_INVENTORY_11(i,t)*(1 + 0.15 + 0.15)) +

@SUM (MONTHS (t): Z(t)*5000) +

@SUM (LINKS(i,t): CARRYING_COST_FINAL(i)*
FINAL_COST (i, t)*FINAL_INVENTORY_ 11(i,t)))*0.2 + (

@SUM (LINKS(i,t): SALES_COST(i,t)*UNITS_SOLD(i,t)})*0.2 - {

@SUM (LINKS(i,t): CARRYING_COST_INI(i)*
PURCHASE_COST (1, t) *BOTTLE_INI_INVENTORY(i,t)*(1 + 0.15 + 0.15)) +

@SUM (MONTHS(t): Z(t)*5000) +

@SUM (LINKS(i,t):CARRYING_COST_ FINAL (i) *FINAL_COST(i,t)*FINAL_INVENTORY
(i,t)))*0.2 + (

@SUM (LINKS(i,t): SALES_COST(i,t)*UNITS_SOLD2(i,t)))*0.6 - (

@SUM (LINKS(i,t): CARRYING_COST_INI(i)*
PURCHASE_COST (i, t) *BOTTLE_INI_INVENTORY 22(i,t)*(1 + 0.15 + 0.15)) +

@SUM (MONTHS(t): Z{(t)*5000) +

@SUM (LINKS(i,t): CARRYING_COST_FINAL(i)*
FINAL_COST(i, t) *FINAL_INVENTORY_22(i,t)))*0.6;
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! SALES CONSTRAINTS;

! This constraint implies that the total unit manufactured will be egual
to the total units sold(+ or - inventory) of all the items for each month.
This holds true for all the scenarios.;

@FOR (BOTTLES (1) :
UNITS_PRODUCED(i,1) - FINAL_INVENTORY_11(i,1l) - UNITS_SOLD1(i,1) =
0);

@FOR (BOTTLES (i) :

@FOR (MONTHS (t) |t #GT# 1:
FINAL_INVENTORY_11(i,t-1) + UNITS_PRODUCED (i,t) -
FINAL_INVENTORY_11(i,t) - UNITS_SOLD1(i,t) = 0));

@FOR (BOTTLES(1):
UNITS_PRODUCED(i,1) - FINAL_INVENTORY(i,1) - UNITS_SOLD(i,1l) = 0);

@FOR (BOTTLES (1) :

@FOR (MONTHS(t) |t #GT# 1:
FINAL_INVENTORY (i, t-1) + UNITS_PRODUCED(i,t) - FINAL_INVENTORY(i,t)
- UNITS_SOLD(i,t) = 0));

@FOR (BOTTLES(i):
UNITS_PRODUCED(i,1) - FINAL_INVENTORY_22(i,1) ~ UNITS_SOLD2(i,1) =
0);

@FOR (BOTTLES (i) :

@FOR (MONTHS (t) {t #GT# 1:
FINAL_INVENTORY_22 (i, t-1) + UNITS_PRODUCED(i,t) -
FINAL_INVENTORY_22 (i, t) - UNITS_SOLD2(i,t) = 0));

! Units sold do not exceed the sum of the number of units produced and the
units available in the inventory at the end of the month;

@FOR (BOTTLES (1) :
@FOR (MONTHS(t) :
UNITS_SOLD1(i,t) <= FINAL_INVENTORY_11(i,t) + UNITS_PRODUCED(i,t)));

@FOR (BOTTLES (i) :
@FOR (MONTHS (t) :
UNITS_SOLD(i,t) <= FINAL_INVENTORY{(i,t) + UNITS_PRODUCED(i,t)));
@FOR (BOTTLES(1):
@FOR (MONTHS (t):
UNITS_SOLD2(i,t) <= FINAL_INVENTORY_22(i,t) + UNITS_PRODUCED(i,t)));
! Units s0ld do not exceed the demand of the products;
@FOR (BOTTLES(i):
@FOR (MONTHS (t) :
UNITS_SOLD1(i,t) <= DEMAND1(i,t)));

@FOR (BOTTLES (1) :
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@FOR (MONTHS (t):
UNITS_SOLD(i,t) <= DEMAND2(i,t)));

@FOR (BOTTLES(i):
@FOR (MONTHS(t) :
UNITS_SOLD2(i,t) <= DEMAND3(i,t)));

! PRODUCTION CONSTRAINTS ;

! Units produced are less than or equal to the capacity of the production
set-up;

@FOR (MONTHS(t) :
@SUM (BOTTLES (1) :
0.001* (UNITS_PRODUCED(i,t)) )<= TOTAL_SETUP(t}*24%*22);

! This is used to assign zero value to a binary variable which represents
the Ordering Cost when there is no purchase;

@FOR (MONTHS(t):
@SUM (BOTTLES(i):
BOTTLE_PURCHASED(i,t)) <= 1000000*Z(t));

! RAW MATERIALS INVENTORY CONSTRAINTS;
! Bottle initial inventory cannot exceed the maximum capacity;

@FOR (BOTTLES(1):
@FOR (MONTHS(t) :
BOTTLE_INI_INVENTORY_11(i,t) <= MAX_INI_TINVENTORY(i,t)));

@FOR (BOTTLES(1):
@FOR (MONTHS(t):
BOTTLE_INI_INVENTORY(1,t) <= MAX_INI_INVENTORY(i,t)));

@FOR (BOTTLES(i):
@FOR (MONTHS(t) :
BOTTLE_INI_INVENTORY_22(i,t) <= MAX_TINI_INVENTORY(i,t))):;

I Total investment on initial inventory should be legs than the maximum
budget for the initial inventory;

@FOR (MONTHS(t) :

@SUM (BOTTLES (i) :
CARRYING_COST_INTI (i) *PURCHASE_COST (i, t) *BOTTLE_INI_INVENTORY_11
(i,£)*(X + 0.15 + 0.15)) <= MAX_INI_INVEST(t));

@FOR (MONTHS(t):

@SUM (BOTTLES(i):
CARRYING_COST_INI (i) *PURCHASE_COST (i, t)*BOTTLE_INI_INVENTORY (i, t)*(1
+ 0.15 + 0.15)) <= MAX_INI_INVEST(t));
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@FOR (MONTHS(t) :

@SUM (BOTTLES(1i):
CARRYING_COST_INI (i) *PURCHASE_COST (i, t)*BOTTLE_INI_INVENTORY_22
(i,£)*(1 + 0.15 + 0.15)) <= MAX_INI_INVEST (t)):

! The amount of bottles purchased and carried forward from the previous
month inventory should be equal to the sum of bottles produced and carried
over to the next month's inventory;

@FOR (BOTTLES(1):
BOTTLE_PURCHASED(i,1) - UNITS_PRODUCED(i,1l) -
BOTTLE_INI_INVENTORY_11(i,1) = 0);

@FOR (BOTTLES (i) :

@FOR (MONTHS(t)| t #GT# 1:
BOTTLE_PURCHASED (i, t) + BOTTLE_INI_INVENTORY_11(i,t-1) -
UNITS_PRODUCED(i,t) -  BOTTLE_INI_INVENTORY_11(i,t) = 0 ));

@FOR (BOTTLES(1):
BOTTLE_PURCHASED(i,1) - UNITS_PRODUCED(i,1) -
BOTTLE_INI_INVENTORY(i,1) = 0);

@FOR (BOTTLES (1) :

@FOR (MONTHS(t)| t #GT# 1:
BOTTLE_PURCHASED (i, t) + BOTTLE_INI_INVENTORY (i,t-1) -
UNITS_PRODUCED(i,t) - BOTTLE_INI_INVENTORY(i,t) = 0 ));

@FOR (BOTTLES(1):
BOTTLE_PURCHASED(i, 1) -~ UNITS_PRODUCED(i,1)} -
BOTTLE_INI_INVENTORY_22(i,1) = 0);

@FOR (BOTTLES (1) :

@FOR (MONTHS (t)| t #GT# 1:
BOTTLE_PURCHASED (i, t) + BOTTLE_INI_INVENTORY_22(i,t-1) -
UNITS_PRODUCED (i, t) - BOTTLE_INI_INVENTORY_22(i,t) = 0 ));

! FINISHED PRODUCTS INVENTORY CONSTRAINTS;

I The inventory for the finished products should not exceed the maximum
inventory possible in the given space for the final product;

@FOR (BOTTLES(i):
@FOR (MONTHS (t):
FINAL_INVENTORY_11(i,t) <= MAX_FINAL_INVENTORY (i, t)));

@FOR (BOTTLES (1) :
@FOR (MONTHS (t) :
FINAL_INVENTORY (i, t) <= MAX FINAL_TINVENTORY (i, t)));

@FOR (BOTTLES(1):

@FOR (MONTHS(t) :
FINAL_INVENTORY_22(i,t) <= MAX_FINAL_INVENTORY(i,t)));
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! PURCHASE CONSTRAINTS;

! Total amount spent on purchasing the raw materials should be less than
the maximum total investment allowable;

@FOR (MONTHS(t):

@SUM (BOTTLES(i):
PURCHASE_COST (i, t) *BOTTLE_PURCHASED (i, t)*(1 + 0.15 + 0.15) +
(Z(t)*5000)) <= TOTAL_INVESTMENT(t));

@FOR (MONTHS(t) :
@BIN (Z(t)));

DATA:
! GIVEN DATA;

CARRYING_COST_INI =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\DatalA.XLS', 'CARRYING_COST_INI');

CARRYING_COST_FINAL =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'CARRYING_COST FINAL');

ORDER_COST =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\vVibhor\DatalA.XLS', 'ORDER_COST');

TOTAIL_SETUP =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'TOTAL_SETUP');

MAX_ INI_INVEST =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'MAX_INI_INVEST');

MAX_ FINAL_INVEST =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'MAX_FINAL_INVEST');

TOTAL_INVESTMENT =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'TOTAL_INVESTMENT') ;

PROPORTION =

@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'PROPORTION');
SALES_COST = :

@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'SALES_COST');
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PRODUCTION_COST =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'PRODUCTION_COST');

PURCHASE_COST =
@OLE ('C:\Documents and Settings\Vibhor\My

Documents\Research\vVibhor\Data.XLS', 'PURCHASE_COST');
FINAL_COST =

@QOLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'FINAL_COST');
DEMAND1 =

@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'DEMAND1');
DEMANDZ2 =

@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'DEMAND2');

DEMAND3 =
@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'DEMAND3');

MAX_INI_INVENTORY =

@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'MAX_INI_INVENTORY');
MAX_FINAL_INVENTORY =

@OLE ('C:\Documents and Settings\Vibhor\My
Documents\Research\Vibhor\Data.XLS', 'MAX_FINAIL_INVENTORY');
ENDDATA

END
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