The Design and Implementation of
‘a Scalable Secure Multicast System

Zhao Yu Chi

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements for
the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

August 2006

© Zhao Yu Chi, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-20773-4
Our file Notre référence
ISBN: 978-0-494-20773-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

The Design and Implementation of

a Scalable Secure Multicast System

Zhao Yu Chi

Multicast is an efficient way to distribute data to multiple receivers simultaneously.
However, security, scalability, and group management issues still prevent the wide
deployment of multicast due to the open ﬁlodel of multicast group membership. Our
research group has developed frameworks for multicast protocols to solve these
problems. Nevertheless, most work was concentrated on one aspect of the whole
multicast system, and most of the achievements were architecture design, specification,
and validation. In this thesis, a Scalable Secure Multicast System is designed, and a
Multicast ljata Security module is implemented. The Séalable Secure Multicast System,
which integrates two major achievements in our research group, makes great efforts
toward providing a scalable and secure multicast system for the real world. The
implementation of the Multicast Data Security module proves the feasibility of proxy
encryption with multicast and achieves a satisfactory performance in the Linux kernel. A
new key distribution scheme based on prbxy encryption is proposed to further improve

the scalability and security of multicast communication.

iii

Acknowledgements

First and foremost, I wish to express my gratitude to my supervisor, Dr. J. William
Atwood, for his expert guidance, continued support and financial assistance during this
research and the preparation of this thesis. The comments and time given by Dr. David K.

Probst and Dr. Lata Narayanan have greatly improved and clarified this work.

Special thanks should be given to my friends and my student colleagues for their

assistance and encouragement.

Finally, my deepest appreciation goes to my parents, my wife and my sister, for their

love, encouragement, and support.

iv

Table of Contents

LR 413 (0 L4 T RO OO 1
1.1 MOBIVALON......couirireiieeenenrirneenresse st easestsseisteesessessassbessentesbeestsrnssnessassessessessesnessesaons 1
1.2 Scope 0f the TheESiSccvvvuiviriiniiiiiiiii e 2

2. Overview of MUItICaStccccceviireienenriitienic it ssesesaenns 3
2.1 Multicast and Group COMMUIECAON MOGEL «..cvvveereereeeeeeoneseeesreemsesionseraesnesssessens 3
2.2 Internet Group Management Protocol (IGMP)........cccevvvurerecreceneerinnncennesnnsseesennes 5
2.3 Protocol Independent Multicast - Sparse Mode (PIM-SM)........cccevvecveerieernrceesencnns 7

3. Scalable MUltiCast........c.cceeveivirineniiiiineiiinisennisiriisssesessesesesessessersssesssnsssssssseses 8

4. Secure Multicast .. 13
4.1 Security Architecture for the Internet Protocol.......cccocveveevveriveerinceinenininnenseesennne 13
4.2 The Multicast Group Security Architecture............ceeerirreerenrecmnrerruesnecasrasseesessenns 15

4.2.1 The Centralized Multicast Security Reference Framework............cccocvrveuene 15

4.2.2 The Distributed Multicast Security Reference Frameworkcccccveevvrene 19
4.3 The Multicast Security Group Key Management Architecturecooueererererernnes 20
4.4 KeY UPAALES...cccveerreerieirrreiniversseerorersssensessersssaesssessesssessssnsesnesssesssnssssasessassasssssesones 22
4.5 The ProxXy ENCryPtionsccecveeivirneisncnininisnernennemiesseinesseisesssnssesisensessssensossns 23
4.6 The Scalable Infrastructure for Multicast Key Management (SIM-KM)............... 25
4.7 Key and Security ASSOCIAtION......cccevvureerrteriirirsterateseesiesessnessteseessssesssensesssssssones 26

5. Building Blocks Used in the Implementation...........c.ccoceerevrevcnricnenesionieseneresencnns 28
ST XORP ...ttt ettt ettt s s s ae e s st b s e e sn e aseesaaes 28

5.1.1 Overview of XORP........ccocevieivrenrininninnisieiensiosossseesessessessssasssssosssssssssnes 28

5.1.2 Interaction with IGMP and PIM-=SMccoovrvricimiiiernnnneeeninmneesinmieensrssseens 32

5.1.3 Extension Needed to XORP........cocovnininininiiniinneisni. 34
5.1.3.1 PIM-SM Interface Extension........cccecvrevrnnreverniernnn TN 34
5.1.3.2 PIM-SM Client Interface EXtensioncccceevvnrnneninicensiseneninens 35

5.2 The Netfilter / Iptables 37
5.3 The Linux Kernel Module and Data Structures........c.cccooeevveviirinieinenencninssnnenens 38
5.4 RSA Algorithm and Proxy RSA e 40
5.5 Scalable and Secure Multicast SYSLEMc.cccveuerrrnrerrerreiersenseensessesesersmsessssseserees 41

. The Design and Implementation............ccoreererrerirenseinisnnereninneereennsssssssssesssssessessessasaess 43
6.1 The High-level Design......cccceeveriernrerernreniriieieneenecsesressasrssseseesssssssssonsssessnseessesss 43
6.2 The Design of the Multicast Data Security Moduleccoouvvereerrercerrcsveserienses 49
6.3 Ilnplementation Issues Concerning GSAScccevvemiienirccirinsnienineiiesseesns 53
6.4 Data Structufes Used in the Implementationccceevcvnircnnnereninnnneneenniensnneees 54

" 6.5 The Implementation of the Multicast Data Security Module.........cccoocccunviveniruenns 55
6.5.1 The Implementation of the Sender Module..........c.cccevvvinerinnniniincnnnninnens 58

1 6.5.2 The Implementation of the Receiver Module..........cccvvirveeenincnrinnnenreenenns 61
6.5.3 The Implementation of the Router Moduleccceeeveereeveenennnenceenenrenneens 63

6.6 Proﬁy RSA Algorithm and Implementationcccccvvevenenrenincnnnnenreeeerenienes 64
6.6.1 Implementation ISSUES.c.cceeverererireiniiinennerserierernsiesseesssesssesnsssnessessnensens 64

| 6.6v.2 Key Size and Limitations.......cccvccverevreinveeriineressisreesisesrseessersssesssessasessnssonesses 65

6.7 Additional Key Management and Multicasi Testing ToOlS.....ccccecivrerenrenceenrencneenns 66
6.7.1 Multicast Key Management TOOIS.........c..coorreiicrereriereninnnnnininnesnissenninees 66

6.7.2 GUI Multicast Sender and Receiver Programs.ccccecvevreevvecieereenserveennnes 68

7. Testing the Multicast Data Security Module...........cccooevvrnirerinnnnniinnnninnon

7.1 Testing Environment

7.2 Testing and Results ..

--

R R R Y R R YRR TN Y

8. Scalable Key Managementccovvvveeeiuernenmionnesnesnesnsreeseesssnsssessssssossessasssssssossnsses

9. Conclusion and FUUIE WOTK....cocvceeeiiiiiiiriiiiitieieeeissiceneessesseeeesisesssssassseesssesssrenseses

9.1 Conclusion...............

9.2 Future Work.............

--

--

vii

List of Figures

Number Page
Figure 2.1 Unicast and MultiCast.........cccceceinenniinininininecnniiininee oo 4
Figure 3.1 Distribution Trees in a Large Network.........ccoccvieevinvinnninninennenennon. 9
Figure 3.2 Distribution Trees in a Hierarchical Structure............ccccvverevievervenireniennenceneens 9
Figure 3.3 Hierarchical Topology 11
Figure 4.1 Centralized Multicast Security Reference Framework..........cccoceeenereeevercrnens 16
Figure 4.2 The Distributed Multicast Security Reference Frarnework...; 19
Figure 4.3 Group Key Management ArchiteCturecccccceiermmirnenecennninennecreneesensenneens 22
_ Figure 5.1 XORP Process Model...........ccceeevereurruiaens eese et eenssenessstesasssenessssessessess I U
Figure 5.2 Netfilter/Iptables HOOKScccovevuerersirrenenrisenienenineneenesessiesesesssessessssessaseesens 38
Figure 6.1 NetWork TOPOLOZY......cccveeeriererivinenreriensuerersecaenionesssssesssersessssssessesssesssessessens 44
FIUIE 6.2 SENAETccvevueiieeiiriiecerenecereentrsteseessereestssessseesesessesstonsesssssessnessesesssssssssessaseons 45
FigUIE 6.3 RECEIVET......eouecviereeiiicireneenertsesieesssoseenssssssestsrassessessasessessessesassessensassssesasses 46
Figure 6.4 Router (Mesh NOE)covevvreerieeneineneeneinreenennenessennesisserssssesssessssssesssessnens 47
Figure 6.5 Router (Service NOGE).......ccccrviivrireenineniinnienrineeninresetsnisnessessseressssssssessessseseens 48
Figure 6.6 Packet manipulation technoiogiés .. 50
Figure 6.7 Module’s registration POINtS.........ccceeveeeereeresreserseresinsrereniesersesessessesessessosseesees 52
Figure 6.8 ESP Packet FOrmat.........cccevvveevveniineenerneniieniereneeseseseesseesssesssesssssesssssnsessenns 55
Figure 6.9 Flowchart of the Sender Module............ccooveevevreneereeereienreesieneeerereesenesnsseeseennes 59
Figure 6.10 From UDP Packet to ESP Packet.........cccorvevuevererrenrennienecnvenseneeressnessersssnenses 60
Figure 6.11 Flowchart of the Receiver Module..........ccceeererneererienierenrenrenenneessnsnessereenees 62

viii

Figure 6.12 Flowchart of the Router MOQUIEccevvermiverricnrenersresesererrsssesessasesesens 63

Figure 6.13 Key Message FOrmat.........coeivevrieiinciiinennennrennennisesssiessessnsnessssessessesssesns 67
Figure 6.14 Multicast Sender..........cccecieiiiriiiioniriretinecteene et stesnscssesessens 69
Figure 6.15 Multicast RECEIVETccivvuriieriniriniiieneesrsnensstsessssnnsissereessssesnssscssassessssens 70
Figuré 7.1 Network Configuration...........ccceeeviiviirenenrininiinnnnnorinnesessseesesessssssssesssnsensss 71
Figure 7.2 Logical Network TOpOologyccoiviveniininieninniiniiecinineennineniesescessesenesnens 72
Figure 7.3 Packet Delay......c.cocvciivrruinieriieniiceneenineereneneereseeestsessteesssessessessassessassesnes 74

ix

Table of Acronyms

AAA Authentication, Authorization, and Accounting
AH Authentication Header

API Application Programming Interface
AS Autonomous System

BGP Border Gateway Protocol

BSR Bootstrap Router

CGC Controi Group Controller

CLI Command Line Interface

CPU Central Processing Unit

DATA Data Security SA

DES Data Encryption Standard

DGC Data Group Controller

ESP Encapsulating Security Payload
FEA Forwarding Engine Abstraction
GCKS Group Controller and Key Server
GSA Group Security Association

GUI Graphical User Interface

HSPL High Speed Protocols Laboratory
IETF Internet Engineering Task Force
IGMP Internet Group Management Protocol
IP Internet Protocol

IPC Interprocess Communications

X

IPsec
IP-TV
IS-IS
MBoné
'MFEA

MLD

NTP
OSPF
PC
PIM-SM
QoS |
REG
REKEY
RFC
RIB

RIP

RSA

SA
SIM-KM
SN

SNMP

Security Architecture for the Internet Protocol
Internet Protocol Television

Intermediate System to Intermediate System
Multicast Backbone

Multicast Forwarding Engine Abstraction
Multicast Listener Discovery Protocol

Mesh Node

Multicast Proxy Encryption

Network Time Protocol

Open Shortest Path First

Personal Computer

Protocol Independent Multicast - Sparse Mode
Quality of Service |
Registration SA

Re-key SA

Request For Comments

Routing Information Base

Routing Information Protocol

Rendezvous Point

Ron Rivest, Adi Shamir and Len Adleman
Security Association

Scalable Infrastructure for Multicast Key Management
Local Group Services Node

Simple Network Management Protocol

xi

SPI

TCAM

TCP

UDP

XORP

Security Parameters Index

Ternary Content Addressable Memory
Transmission Control Protocol

User Datagram Protocol

eXtensible Open Router Platform

XORP Resource Locater

xii

Chapter 1

“Introduction

1.1 Motivation

For many years, multicast [1], demanded by the next generation network services, has
been attracting many researchers’ attention due to its efficiency in data delivery between
multiple senders and receivers. However, due to the native open model of multicast,
security, scalability, and group management issues still prevent vthe wide deployment of
multicast [2]. The High Speed Protocols Laboratory (HSPL) at Concordia University has
developed frameworks for multicast protocols to solve these problems. However, most
work is concentrated on one aspect of the whole multicast system, such as managing
membership, securing communication, or identifying participants, and most of the
achievements are architecture design, specification, and validation. Therefore, we need a
system for experiments and demonstrations of the work that has been done. The Scalable

Secure Multicast System explores such a system.

In this thesis, a Scalable Secure Multicast System is designed, and a Multicast Data
Security module is implemented. The system combines two major achievements in the
HSPL, “Hierarchical poology for Multicasting” [3] and “Proxy Encryptions for Secure
Multicast Key Management” [4], so that the system can provide multicast data security

for very large groups. This design also follows most of the guidelines described in

-1-

RFC3740 [5], the Multicast Group Security Architecture, in order that the demonstration
is compatible with standards. The data security module runs in the Linux kernel, captures
specified multicast data packets, and performs proper security transformations on these
packets using a proxy RSA [6] algorithm. A new key distribution scheme based on proxy
encryption is proposed to further improve the scalability and security of multicast
communication. Extensions to the eXtensible Open Router Platform (XORP) [7] are

proposed. These can be used for future experiments, developments, and demonstrations.
1.2 Scope of the Thesis

The thesis starts with reviewing, in chapter 2, the multicast technologies, including the
group communication module, Internet Group Management Protocol (IGMP) [1], and
Protocol Independent Multicast Sparse—Modé (PIM-SM) [8]. Then, the approach that was
developed:in our research group to improve.the scalability of multicast is given in chapter
3. In chapter 4, technologies related to securing group communication are introduced.
Chapter 5 presents the building blocks used in our implementation, including the routing
platform, kermel module, and encryption algorithm. The design and detailed
implementation are presented in chapter 6. In chapter 7, the evaluation and performance
are discussed. A new key distribution scheme based on proxy encryption is proposed in

chapter 8. Finally, in chapter 9, the thesis is ended with conclusions and further work.

Chapter 2

Overview of Multicast

Multicast, also called group communication, provides an efficient way to distribute data
to multiple receivers. An overview of multicast and the group communication model is
given in section 2.1. In sections 2.2 and 2.3, a local group management protocol, IGMP,

and a multicast routing protocol, PIM-SM, are introduced respectively.
2.1 Multicast and Group Communication Model

Group communication [1],bas opposed to the classical one-to-one communication, is a
way to send a set of data to multiple receivers simultaneously. An increasing number of
applications, such as audio-on-demand, video-on-demand, IP-TV, tele-conference,
distance-education, multi-playér gaming and file update or distribution, inspire the
development of multicast technology [9]. Short-term and long-term sblutions have been

proposed, and a lot of progress has been made in research, implementation and

deployment [2].

IP multicast was first introduced by Steve Deering in 1988, and it was first widely
applied to “audiocast” at the 1992 IETF meeting [10]. To support multicast on top of

traditional networks, the Multicast Backbone (MBone) was created, which consisted of

host-to-host unicast tunnels [11]. With the development of group communication, most

newly produced routers naturally support multicast.

In unicast, when multiple receivers require the same data, a sender has to send out
multiple cépies of data to them one by one, as shown in Figure 2.1(a). However, in case
of multicast, the sender sends out only one copy of the data to immediate multicast
routers, and the routers in the network forward the data only to the ports that connect to

interested receivers, as shown in Figure 2.1(b).

i [L
(b) Multicast

(a) Unicast
Figure 2.1 Unicast and Multicast

The efficiency of multicast comes from two factorS: fewer packets sent from a source
and fewer packets forwarded within the network [12]. A considerable amount of time and

bandwidth could be saved when the number of receivers is large enough.

Multicast is based on the concept of a group, which consists of an arbitrary number of

interested participants. The group is open to everybody, having no physical or

geographical boundaries [1]. Anybody can join in a multicast group, without any
authorization; a host can belong to many different groups without any restriction; a
source can send multicast data to a group at any time, even though it is not a member of
the group; the grdup is dynamic and one can join or leave a multicast group at any time;
the number and identity of group members are known neither to the sources nor to the

receivers [1].

A Multicast group is identified by an IPv4 class D address or an IPv6 address starting
with “OXxFF.” Ipv4 class D addresses fall in the range from 224.0.0.0 through
239.255.255.255 [1]. These addresses only appear as destination addresses in IP packets.
Unlike a unicast address, a multicast address is dynamically assigned to a group at

present [1].
2.2 Internet Group Management Protocol (IGMP)

IGMP [1] is the IPv4 protocol that is widely used to manage the group membership
between hosts and their immediate neighbor routers. It is to inform the nearest multicast
router in the same LAN about the presence of hosts interested in the traffic sent to a
group,. so. .that these edge routers can forward multicast data only to these ports
connecting receivers [1]. Even though there is more than one host in the LAN, the router
sends only one copy to them. When there is no receiver connected to a port, the router

stops forwarding corresponding traffic to the port. Currently, there exist three versions of

IGMP.

IGMPv1 specification is described in RFC1112 [1]. Two types of messages, Host
Membership Query and Host Membership Report, are defined. Hosts send out the Report
message to explicitly join in a multicast group. The destination address of the Report
message is 224.0.0.2, indicating all routers on the subnet. Routers periodically send out
Query messages to check if there is any host still interested in the specified group. The
destination address of the Query message is 224.0.0.1, indicating all hosts on the subnet.
If the router has not received any Query response from hosts connected to a certain port
for a predefined time, it stops forwarding data to that port. This time-out leave

mechanism wastes time and resource [9].

RFC2236 specifies the IGMPv2 [13]. It works the same way as version 1, except
adding an explicit Leave message. Hosts can send out a Leave message to indicate
leaving the group. After receiving this message, routers query if there is any remaining
receiver interested in this group connected to this port. If no replies are received, the
router stops forwarding corresponding multicast data. The amount of traffic and wasted

time are reduced [13].

The latest IGMP version is v3 defined in RFC3376 [14]. It added support for “source
filtering,” which enables the receiver to specify which group and source it wants to join
or which group and source it is not interested in [8]. The Report message includes two
modes: INCLUDE and EXCLUDE. The join and leave group operations can be indicated
by sending a message in EXCLUDE or INCLUDE mode respectively with empty source

address list. This new feature was added for supporting single source multicast [14].

2.3 Protocol Independent Multicast - Sparse Mode (PIM-SM)

PIM-SM [8] is a multicast routing protocol designed to be deployed in a large scale
network where receivers are spread out thinly [8]. PIM-SM is a protocol independent
multicast routing protocol, which means that routing decisions are based on whatever

underlying unicast routing table exists.

In PIM-SM, routers have to join and ‘leave a multicast group explicitly [11]. A router
does not forward multicast packets to downstream routers if they do not send a join
message to announce their interest. Per-group Rendezvous Point (RP), as a “meeting
place” forv sources and receivers, is applied to create RP-rooted shared tree [8]. Each
router should have the information about which routers are RPs and the mappings of
multicast groups to RPs before bcom‘munication. This information can be obtained
dynamically by the Bootstrap Router (BSR) Mechanism [8]. Routérs that want to join a
group send an explicit Join message toward the RP of the group. All the intermediate
PIM-SM routers on the path toward the RP join the group. A single shared tree, rooted at
the RP, is built for each group. The tree is a reverse shortest path tree, because the join
messages follow a reverse path from receivers to the RP. Sources have to register with
the RP by sending Register messages before distributing multicast data. The intermediate
PIM-SM routers on the path join the group and build a delivery path from the source to
the RP. Multicast data are sent from sources to the RP, and are distributed from the RP,
the root of th¢ shared tree, to receivers. A source-based tree can be created if receivers

have shorter paths toward the source than passing through the RP [8].

Chapter 3

ScalableMulticast

The early multicast technologies had limitations in scalability [11]. Many short-term and
long-térm Vsolutions have been proposed; however various problems still exist [11]. To
address these problems, the High Speed Protocols Laboratory (HSPL) at Concordia
University has developed a hierarchical topology framework. In this chapter, this

framework will be discussed.

In a large network, there may be many large groups, and each group has a lot of
group members and many intermediary multicast enabled routers. The senders of these
groups may be in different locations, and distribution trees may have to share some of
these routers. As an example shown in Figure 3.1, there are three groups, and some
- receivers are interested in different groups. Some multicast enabled routers, black dots,
are in the middle of the network, and shared by different distribution trees. Some local
multicast enabled routers, circles, are in the same LANs as receivers. That means that

they are directly connected to receivers.

B Sender [] Receiver

@ Multicast Enabled Router
Q Local Multicast Enabled Router

— GroupA -~~~ GroupB ---- Group C
Figure 3.1 Distribution Trees in a Large Network

We can ofg‘anize the distribution trees into a hierarchical structure, as shown in Figure
3.2. It has four-level structure, including Senders, Multicast Enabled Routers, Local

Multicasf Enabled Routers, and Receivers

B Sender @ Multicast Enabled Router

[Receiver Q Local Multicast Enabled Router
Figure 3.2 Distribution Trees in a Hierarchical Structure

-9.-

The hierarchical topology framework is based on the previous structure, and consists
of a small number of senders, pre-deployed mesh nodes, and a large number of local

groups that have a local server node and some receivers in each local group [3].

As shown in Figure 3.3, there are four main components in the framework. Pre-
deployed Mesh Nodes (MNs) are the core part of the topology. They can automatically
be configured as the root of a group and shared by different groups. A small number of
Senders are directly connected to MNs. They can be in different locations. Local Group
Services Nodes (SNs) are distributed in the network to control and manage receivers.
They are multicast enabled routers or hosts for the networks without multicast routers. On
the edge of the topology are a large number of Receivers, which are organized into local
groups. Each local group is managed by an SN, which is connected to other SNs or MNs
toward a root node. ‘A multicast forwarding tree is rooted at an MN that is directly
connected to a Sender, and consists of MNs and SNs as intermediate nodes and Receivers

as leaf nodes [3].

-10-

Mesh Node

Local Group Service Node

Sender

Receiver

Omoe

Figure 3.3 Hierarchical Topology [3]

The Mesh approach was originally proposed in the IETF draft, named ‘“Reliable
Multicast Transport Building Block: Tree Auto-Configuration” [15]. It has .some
advantages over traditional approaches, such as shared tree and source-based tree [3]. A
fixed root and an additional backup root of a forwarding tree required in traditional
approaches are not necessary in the Mesh network. With the auto-configure functionality
of the Mesh approach, a root can be chosen dynamically if changes occur in the network
topology. Mesh Nodes configured in different Autonomous Systems (ASes) can further
improve the scalability of a multicast network. However, the original Mesh approach has
a limitation that receivers have to be bound with Mesh Nodes. Our hierarchical topology

framework eliminates this drawback by introducing the concept of a Local Group [3].

Receivers in a LAN are organized into a group that is managed by a local group
controller. This controller, a Local Group Service Node (SN), can be a router or a host if

the nearest router is not multicast enabled. The SN is an intermediate node in a

-11-

forwarding tree. Receivers are directly connected to the SN, and the SN also can be the

parent node of other SN [3].

Our group has developed the algorithms used in automatically configuring Mesh
Nodes and Local Group Service Nodes. The functionalities of the components in the
topology are defined, and the node joining processes are also presented. Further

information can be found in [3] and [15].

-12 -

Chapter 4

Secure Multicast

To apply a multicast system in the real world, security is an essential functionality to
avoid unauthorized access. In this chapter, current secure technologies are introduced,
including the Security Architecture for the Internet Protocol [16] discussed in section 4.1,
the Multicast Group Security Architecture, RFC3740, [5] introduced in section 4.2, the
Multicast Security Group Management Architecture, RFC4046, [17] described in section
4.3, the Proxy Encryptions for Secure Multicast Key Management [4] summarized in
section 4.4, and the Scalable Infrastructure for Multicast Key Mahagement [18] reviewed
in section 4.5. Then, section 4.6 ends with a discussion of symmetric key and asymmetric
key encryptions in a secure multicast syétem, and the proposed modifications to

RFC3740 and RFC4046.

4.1 Security Architecture for the Internet Protocol

The Security Architecture for the Internet Protocol (IPsec) defines a suite of protocols for
securing traffic at the IP layer by using cryptographic technologies [16]. IPsec is designed
to Support interoperable, high-quality, cryptographically based security communication
for IPv4 and IPv6 applications [20]. IPsec provides security services at the IP layer by
enabling a system to select thé required security protocols, determine the algorithms to

use for the services, and put in place any cryptographic keys required to provide the

-13 -

requested services [16]. IPsec can be applied to protect one or more traffic flows between

two hosts, between two security gateways, or between a security gateway and a host.

The set of security services provided by IPsec include access control, connectionless
integrity, data origin authentication, detection and rejection of replayed packets,
confidentiality, and limited traffic flow confidentiality [16]. Since these security services
are provided at the IP layer, they can be used by any higher-layer protocol, such as TCP

and UDP.

IPsec uses two protocols to provide secure traffic: Authentication Header (AH) [21]
and Encapsulating Security Payload (ESP) [22]. The AH provides connectionless
integrity, data authentication, and an optional anti-replay service. The ESP protocol may
provide confidentiality and traffic flow confidentiality. It also may provide
connectionless integrity, data origin authentication, and an anti-replay service. Both AH
and ESP are vehicles for access control, based on the distribution of cryptographic keys

and the management of traffic flows relative to these security protocols [20].

These protocols may be applied alone or in comBination with each other to provide a
desired set of security services in IPv4 and IPv6. Each protocol supports two modes of
use: transport mode and tunnel mode. In the transport mode the protocols provide
protection primarily for upper layer protocols; in the tunnel mode, the protocols are

applied to tunneled IP packets [20].

The concept of a Security Association (SA) is defined in the architecture. An SA is a

simplex “connection” that provides security services to the traffic carried by it [16]. Itis a

-14-

set of policy and cryptographic keys that provide security services to network traffic that

matches that policy [5].
4.2 The Multicast Group Security Architecture

The Multicast Group Security Architecture, described in RFC 3740, outlines the security
services required to secure large multicast groups [5]. It explains various elements used in
the architecture, and defines Multicast Security Reference Frameworks to organize these

elements [5].

Two designs of the Reference Frameworks are shown in the RFC for different
scalability requirements. They are a centralized design for small groups, and a distributed

design for large groups.
4.2.1 The Centralized Multicast Security Reference Framework

The Centralized Multicast Security Reference Framework is designed for a small
multicast group. It is a basic Reference Framework, and shows the functional areas,

functional elements, and the relationships between them [5].

-15-

FUNCTIONAL
AREAS

Multicast
Security
Policies

Group Key
Management

Multicast
Data Handling

Policy
Server

Group Ctrl /
Key Server

A

A4

Receiver

Sender

Figure 4.1 Centralized Multicast Security Reference Framework [5]

The blocks in Figure 4.1 are functional entities and the arrows are the interfaces

between them.

The functional entities include the Policy Server, the Group Controller / Key Server,
the Sender and the Receiver. They are organized into three functional areas, including the

Multicast Security Policies, the Group Key Management, and the Multicast Data

Handling [5].

The Multicast Security Policies area involves aspects of policy in the context of
multicast security [5]. Due to the complexity of multicast communication, Multicast

Security Policies should involve more consideration and provide more information than

-16 -

point-to-point transmission. Open topics still exist in several areas, including policy

creation, high-level policy translation, and policy representation {5].

The Group Key Management area covers how to securely distribute and refresh
keying material [5]. The keying material includes the keys to a group, the states of the
keys, and other security parameters regarding the keys. A Group Security Association
(GSA), which is the multicast counterpart of a unicast Security Association (SA), is
deﬁned in »this Reference Framework, and GSA, which will be described further below, is

an essential element for group key management [5].

The Multicast Data Handling area includes the secure treatment of multicast data by
the senders and receivers. Typically, the multicast data need to be encrypted and /or
authenticated. In this architecture, data encryption can be achieved using a similar
scheme to the one used in IPsec. To achieve data integrity and source verification,
multicast authentication takes two flavors: group authentication, and source
authentication and data integrity. Group authentication aims to guarantee that the data are
sent from a node that has the group key. Source authentication and data integrity
guarantee that the data are generated by the trusted sender and are not modified by

anyone else [5].

Security Associations for group key management are more complex than point-to-
point key management algorithms. Group management may require up to three or more
SAs; however, point-to-point communication usually uses two SAs for key management

and data protection. A Group Security Association (GSA) is a bundling of SAs that

-17-

together define how a group communicates securely. A GSA may be a superset of SAs or

an aggregation of SAs. Three categories of SAs are defined in GSA [5]

- Registration SA (REG):- A separate bi-directional unicast SA between the
GCKS and each group member, no matter whether the group member is a

sender or a receiver or acting in both roles.

- Re-key SA (REKEY): A single multicast SA between the GCKS and all of the
group members. It cannot be negotiated, because it is uni-directional and all the

group members must share it.

- Data Security SA (DATA): A multicast SA between each multicast source
speaker and group’s receivers. It is obtained from the GCKS, and is shared
among the group members. There may be as many Data SAs as there are

multicast sources allowed by the group’s policy.

Working iﬁ the Multicast Secuﬁty Policies functional area, the Policy Server is in
charge of the creation and management of security policies for a given multicast group. It
incorporates the Group Controller and Kéy Server (GCKS) entity to install and manage
the security policies regarding the membership and keying material for this given

multicast group [5].

The GCKS represents both the entity and functions used to issue and manage the
keying material regarding a multicast group. It belongs to the Group Key Management

functional area. User authentication and authorization checks on group members are

-18-

included in GCKS. Group Controller and the Key Server can be implemented in a single

element or separated into different functional entities.

The Sender and the Receiver belong to the Multicast Data Handling functional area.
They must interact with the GCKS regarding group and key management, including user
and/or device authorization, obtaining key material at the beginning, obtaining re-keying
updates, getting security parameters and other messages regarding key and group

management [5].
4.2.2 The Distributed Multicast Security Reference Framework

The Distributed Multicast Security Reference Framework meets the scalability

requirements of a large group that exists across wide geographic regions of the Internet

[5].
FUNCTIONAL
AREAS

Multicast ; .

Security Policy »| Policy

Policies Server ‘ Seliver

Group Key Group Ctrl / r‘ » Group Ctrl /

Management Key Server Key Server

T x
Receiver

Multicast

Data

Handling y y
Sender . | Receiver

Figure 4.2 The Distributed Multicast Security Reference Framework [5]

-19 -

As shown in Figure 4.2, Policy Servers sécurely interact with each other to keep the
security policies consistent. Each GCKS can interact with one or more Policy Servers,
and all GCKS entities interact with each other to provide the functionality required in the
Group Key Management functional area. Senders and Receivers work as in the
Centralized Reference Framework, except they may communicate with different GCKS

entities [5].

The Multicast Group Security Architecture is “end to end”, and it is independent of
multicast routing protocols, such as PIM-SM. It also does not require any IP multicast
admission control protocols, such as IGMP or MLD. Therefore the group management of

this architecture is independent of IP multicast group management [5].

4.3 The Multicast Security Group Key Management

Architecture

To support a variety of application, transport, and network layer security protocols, a
common architecture for multicast security key management is defined in RFC 4046
[17]. It also defines the Group Security Association (GSA) and describes the key
management protocols to help establish a GSA [17]. Frameworks and guidelines given in
RFC 4046 provide a modular and flexible design of group key management protocols for

a variety of different settings that are specialized to application needs [17].

The main goal of a group key management protocol is to securely provide group
members with an up-to-date Security Association (SA). This SA that contains the needed

information for securing group communication is called the Data SA [17]. To achieve

-20 -

such a goal, a Registration protocol and a Rekey protocol are defined. The Registration
protqcol is a unicast protocol exchanging information between the Group Controller and
Key Server (GCKS) and a joining receiver. After the joining member is authorized, the
GCKS provides the information for initializing the Data SA and the information for
initializing the Rekey SA to the joining member. The Rekey protocol is used between the
GCKS and group members to update or change the Data SA. The Data SA may be
periodicaliy updated based on the group policy or may be changed in the case where one
of the following events happens: the group membership changes, the group policy
changes or the key expires. The Rekey protocol can be a unicast protocol or a multicast

protocol, protected by the Rekey SA [17].

The overall design of Group Key Management Architecture is shown in Figure 4.3.
Each group member, a sender or a receiver, uses the Registration protocol to get
authorized and authenticated access to a particular group, its policies, and its keys. The

GCKS distributes the Rekey information to members by the Rekey protocol [17].

-21-

Policy
Infrastructure

I

Authorization
Infrastructure

I

Registration or
De-registration
Protocol

Sender(s)

A

GCKS e

Rekey
Protocol

(Optional)

Registration or

- De-registration

Protocol

Receiver(s)

Data Security Protocol

T

Figure 4.3 Group Key Management Architecture [17]

4.4 Key Updates

-22.-

To make communication secure, we should have an efficient way to update keys as
necessary. In unicast, the key updates involve only two nodes, the sender and receiver.

However, in multicast, it is complicated, since there may be thousands of group

In multicast, a leaving member should not have access to the later data, that is called
perfect forward secrecy. A joining member should not have access to earlier data, that is
- called perfect backward secrecy. In a symmetric key system, the sender and receiver

share the same encryption / decryption key. If we want to ensure perfect forward secrecy

and perfect backward secrecy, we have to update the key for the whole group when a
group member joins or leaves. The simplest way to do this is to send a unicast update to
each member. If the changes happen in a very large group, it would cost a lot of

bandwidth and time to re-key the whole group in this way.

To build a scalable secure multicast system, we should reduce the amount of key
update traffic. We can divide a distribution tree into sub-trees, and only update the sub-
trees that have changes. Proxy Encryption allows us to update the key for only a part of
the distribution tree. Mukherjee and Atwood [4] discuss various other approaches to key

traffic reduction.
4.5 The Proxy Encryptions

Proxy cryptography [18] waskintroduced by Blazé and Strauss in 1998. It works for
asymmetric key encryptions. Proxy encryption can transform ciphertext corresponding to
one key into ciphertext for another key without revealing any information about secret
decryption keys or the clear text [23]. This makes it possible that a non-trusted
intermediary router or host can transform an encrypted message into another form

without the knowledge of the original message or the secure keys.
The operations of asymmetric proxy encryption can be described as follows:

Two keys, e and d, are created by a key generation algorithm for encryption and
decryption respectively, so that message m=D(E(m,e),d), where E(m,e) is the
encryption function of message m using encryption key e and D(c,a’) is the decryption

function of ciphertext ¢ using decryption key d. The sender generates message m and

-23 -

sends out the encrypted message ¢ =E (m,e). The receiver gets ciphertext ¢ and decrypts
it to the original message m =D(c,d) When it is necessary to perform proxy
transformation in an intermediary router, the proxy encryption key generation algorithm
produces two proxy decryption keys d, and d,, so that m=D'(T(c,d,),d,), where
T (c,d,)is the transformation function of ciphertext ¢ using proxy decryption key d, and
D'(¢',d,) is the proxy decryption function of transformed ciphertext c'using proxy
decryption key d,. Then, the intermediary router transforms the ciphertext ¢ to ¢’ using
the ¢' =T(c,d,) function, and the receiver decrypts the transformed ciphertext ¢’ to the

original message m using the m = D'(¢',d,) function [18].

To apply proxy encryption in multicast, the sender can encrypt and send data using
E(m,e) function all the time, no matter whether there is a router that performs
transformation between the sender and the réceivers or not. Initially, all receivers decrypt
data using the decryption function D(c,d) with key d. When it is necessary to perform
transformation in a intermediary router, the decryption key d is split into two parts, key
d, and d,. The intermediary router performs transformation function T(c,d,) with the
transformation key d,on data to the group. Receivers in the sub-tree rooted at the router

| perform the proxy decryption function D'(c’,dz) with key d,. Other receivers can still

use key d to decrypt data. The key update happens only in the specified sub-tree, and the
sender and other receivers are not affected. When it is necessary to re-key the whole
group, all transformations are stopped, and all group .members receive new keys and

work as in the beginning,

-24 -

Several encryption schemes can be used for proxy encryption, including El Gamal,
RSA, and IBE [23], and formal notations and proofs were discussed in 2003 [23]. In this

thesis, the proxy RSA algorithm was used for data protection.

4.6 The Scalable Infrastructure for Multicast Key

Management (SIM-KM)

Taking advantage of the proxy encryption and the subgroup technology, the Scalable
Infrastructure for Multicast Key Management (SIM-KM) provides an efficient key
management for large scale multicast communication [19]. It was presented in 2003, and |
it allows key updates to be distributed only in a sub-treé, and makes re-keying less
expensive. SIM-KM defines three types of operational entities, including Group
Manager, Control Group Controller (CGC) and Data Group Controller (DGC). To
securely distribute and update keys, detailed operations are presented for different

scenarios in [19].

The Group Manager is configured with group and access control information. The
access control information includes a list of identities of potential group members, a list
of CGCs that have the capability to allow members to join, and a list of excluded Group
Controllers that will not receive messages [19]. A Group Manager can be dynamically
elected from among the CGCs in case of a fault. The CGC is a trusted group controller,
and it stores the Group Manager’s address, the access control list, the lists of CGCs and
the key information [19]. It is responsible for membership authentication and
authorization. The CGC can apply the proxy encryption function on specified multicast

traffic on request. The DGC is an un-trusted entity in the network, and it does not have

-25-

access to keys to any clear text message. It can transform an encrypted message from one
form to another using proxy encryption algorithm with a proxy encryption key received

from a CGC [19].

The CGC and the DGC perform the proxy transformation function on a given
multicast traffic flow, when it is necessary to change the key in a sub-tree. The
transformaﬁon on a group is dynamically enabled, based on the changes to the
distribution tree. In the path from a sender to a receiver, the transformation must take
place only once for a given group [19]. A CGC or a DGC in a higher position in the tree
has higher priority to perform transformation, because it can cover more receivers in the

sub-tree rooted at it.

Detailed operation steps for each possible scenario are discussed in Mukherjee and

Atwood [19]. These scenarios include group create, member join, member leave, data

transmission, re-keying, batching, and shutdown.
4.7 Key and Security Association

RFC3740 defines the Re-key SA and the Data Security SA, and requires that they are not
negotiatedb and but are shared within a group [5]. RFC4046, following the guidelines in
RFC3740, further discusses the GSAs and key management protocols. It requires that the
GCKS creates keys and downloads them to each member in the entire group and all
members in the group share the same set of keys [17]. Therefore, the encryption keys,
which‘ are. 'essential elements in SAs, are the same in the group and the encryption

algorithms are symmetric.

-26.-

However, in our system, we use the proxy encryption, which is a variety of the
asymmetric key encryption. The senders, routers and receivers use different keys, so the

GSAs in senders, routers, and receivers are different.

The usage of proxy encryption makes it‘ possible that an intermediary router can be
involved in the data protection, and the keys for senders and receivers can be managed
separately. With the power of modern processors, it is possible to perform an asymmetric
encryption algorithm, such as the proxy encryption algorithm in this thesis, to protect

data on-the-fly.

In order to work with asymmetric key encryptions, the RFC3740 and the RFC4046
need to be modified. In the RFC3740, the limitation that all group members must share
the same set of Re-key SA and Data Security SA should be eliminated. The SAs could be
different not only in a sender and a receiver, but also among receivers in different
subgroups. The Re-key SA and Data Security SA could be either multicast or unicast. In
RFC4Q46,_ 1_:he SAs in all the group members should be allowed to be different. The key
distribution mechanism should allow different sets of keys to be distributed. The key
messages could be unicast or multicast. The Rekey protocol could distribute different

keys for different sets of participants.

The multicast system in this thesis, which will be discussed in chapter 6, is based on
an asymmetric encryption and subgroup key management. The keys are different not only
between a sender and a receiver, but also among receivers in different subgroups. The

Rekey messages are unicast or multicast, and are different for different subgroups.

-27-

Chapter 5

Building Blocks Used in the Implementation

The implementation in this thesis took advantage of some existing platforms and
techndlogies. The eXtensible Open Router Platform (XORP) [24] as a software router
implementation was used in the system, and it will be introduced in section 5.1. Since the
data security subsystem is implemented in the Linux kerﬁel using Netfilter/Iptables [25]
and RSA [6] encryption algorithm, these tecMoloées will be introduced in the following
sectioﬁs. In section 5.5, the problem that can be solved using these building blocks is

discussed.

5.1 XORP

5.1.1 Overview of XORP

The eXtensible Open Router Platform (XORP) is an open source software router
platform, running on common hardware [24]. It is designed to be a stable research tool
and an exténsible deployment platform. The latest version, Release 1.2, can be built on
FreeBSD-6.1, OpenBSD-2.8, Linux with kernel 2.6.X, MacOS X 10.4 and Windows

Server 2003 [7].

XORP consists of two subsystems. The lower-level subsystem manages the

forwarding paths and provides APIs for the higher-level subsystem to access. The higher-

-28-

level subsystem includes unicast and multicast routing protocol processes, routing
information base and management processes. The lower-level subsystem decides how a
packet is routed according to the routing tables imported from the higher level; the higher

~ level communicates with other routers and generates the routing tables [7].

The loWer-level subsystem runs inside an operating system kernel. The native
forwarding engine provided by FreeBSD or Linux is used for packet processing by
default. In addition, the Click modular router [31], a software architecture for building
flexible and configurable routers with high packet forwarding rate, can be used for this
propose. APIS provided by XORP abstract the low level interfaces and provide minimal

dependencies on the underlying forwarding system [7].

The higher-level subsystem, running in user space, uses a multi-process afchitecture
with one process per routing protocol and additional support processes. These processes
can run on different hosts in a distributed fashion, and they exchange information using a
novel inter-process communication mechanism, called XORP Resource Locaters (XRLs)
[26]. XRLs are similar to URLs in concept and transparent to the underlying transport

protocols.

-29-

IPC | Router :

IGMP/MDL

Figure 5.1 XORP Process Model [24]

Figure 5.1 shows the processes in XORP [7]. For simplicity, only the main
communication flows used for routing information are showﬁ as arrows, and the control
flows between processes are not shown. There are four core processes that are
particularly worthy to mention. They are the IPC finder [27], the Router Manager [28],
the Routing Information Base (RIB) [29], and the Forwarding Engine Abstraction (FEA)

[30].

The IPC Finder, as an IPC redirector, is needed by the communication method used
among all XORP components [24]. It contains mappings between abstracted application

requests and these components. Each of the XORP components registers with the IPC

-30-

Finder so that the finder can assist XRL communications between these XORP
components. If a component wants to communicate with another component, it does not
need to know explicitly the location of that process, or how to communicate with it. The
calling component just sends an XRL request to the finder, and the finder forwards the

request to the proper component [27].

The Router Manager is a process that manages the router as a whole. It maintains the
configuration information, starts/stops other processes, such as routing protocols and
SNMP process, monitors and restarts any failing processes. It also provides the interface

for the CLI module to manage the router configuration [28].

The Routing Information Base (RIB) process holds routing information provided by
routing pfocesses running in XORP, and arbitrates which routes should be used to
forward packets [24]. The winning unicast routes are propagated to the Forwarding
Engine Abstraction (FEA) process and hence on to the underlying forwarding engine.
Multicast routing information is not propagated to the FEA, since it is only used for

providing topology information to multicast routing protocols [29].

The Forwarding Engine Abstraction (FEA) process provides a platform independent
interface to the basic routing and network interface management functionality [7]. It
abstracts the details of underlying forwarding path implementation, so the forwarding
engine can be native FreeBSD or Linux kernel, Click modular router [31], or other
approaches. The FEA performs four separate roles: interface management, forwarding
table management, raw packet I/O, and TCP/UDP socket I/O. The FEA contains a logical

part, Multicast Forwarding Engine Abstraction (MFEA), which abstracts the underlying

-31-

multicast forwarding engine and provides a consistent interface to multicast related

modules such as PIM and MLD/IGMP [30].

Other modules, such as BGP4+, OSPF, RIP, PIM-SM and MLD/IGMP, implement
user-level routing protocols. They interact with the RIB to exchange routing information
using XRL. The CLI provides a consistent command line interface to users; the SNMP

process enables a XORP router to be managed through SNMP [7].

5.1.2 Interaction with IGMP and PIM-SM

XORP implements three multicast-relevant protocols, MLD, IGMP and PIM-SM. The
MLD and IGMP are implemented in one module called MLD/IGMP, and PIM-SM is
running in another module called PIM-SM. These three protocols provide XRL

interfaces to other XORP modules.

Normally, a XORP module provides two types of XRL interfaces to other modules.
The first type, called a protocol interface, provides functions that can be called by other
modules; the second type, called a protocol client interface, enables other modules to be
informed when events that they are interested in happen [32]. XORP provides an XRL
interface specification and tools to assist with generation of C++ code from interface

specifications [26].

The MLD/IGMP module provides these two types of interface. Other modules: can
call the functions specified in the MLD/IGMP interface specification, which can be found

in “xrl/interfaces/mld6igmp.xif’. These functions include Start/Stop or Configure

-32-

MLD/IGMP process, or Send/Receive MLD/IGMP control packets to/from the routing

module [33].

The MLD/IGMP client interface, specified in “xrl/interfaces/mld6igmp_client.xif”,
enables modules to receive the changes to local multicast membership. Other modules
register in the MLD/IGMP process using the XRL interface, and implement the client

interface functions that are called when corresponding events happen.

Practically, the register and de-register functions specified in the protocol interface
speciﬁcatioﬁ are add protocold(), add_protocol6(), delete protocol4(), and
delete_protocol6(). The callback functions that are specified in the protocol client
interface specification and should be implemented by client modules are
add_membership4(), add_membership6(), delete_membership4(), and
‘delete._membership6(). The functions with suffix 4 are used for IPv4, and the functions

with suffix 6 are used for IPv6.

The PIM-SM mpdule only provides the first type of interface, the protocol interface.
It includes the methods to Start/Stop/Configure PIM-SM, to Send/Receive PIM control
packets to/from the routing unit, or to get protocol-related statistics [34]. It does not
provide an interface to allow other modules to register with it, and there is no protocol

client interface.

-33-

5.1.3 Extension Needed to XORP

To obtain the changes to distribution tree as they occur, PIM-SM protocol interface
should be extended and a protocol client interface should be added. In this section the

extensions to XORP protocol interface and client interface are discussed.

5.1.3.1 PIM-SM Interface Extension

The extended XRL protocol interface should allow other modules to register interest with
PIM-SM. The interested modules will receive Join/Prune information for the particular
virtual interface (vif). “add_protocol4” is used to register interest for IPv4 protocols;
“add_protocol6” is used to register interest for IPv6 protocols; “delete_protocol4” is
used to deregister interest for IPv4 protocols; “delete_protocol6” is used to deregister

interest for IPv6 protocols.
The added XRL Interfaces Specification segment is shown as follows:

interface pim/0.1 {

add_protocol4 ? xrl_sender_name:txt \
& protocol_name:txt & protocol id:u32 \
& vif_name:txt & vif index:u32

add_protocol6 ? xrl_sender name:txt \
& protocol_name:txt & protocol id:u32 \
& vif_name:txt & vif_index:u32

delete_protocol4 ? xrl_sender name:txt \
& protocol _name:txt & protocol id:u32 \

& vif name:txt & vif_index:u32

-34-

delete_protocol6 ? xrl_sender_name:txt \
& protocol_name:txt & protocol_id:u32 \

& vif_name:txt & vif_index:u32

}

The arguments are described as follows:

xrl_sender name: a text string that indicates the XRL name of the originator of this
XRL.

protocol name: a text string that holds the name of the protocol to add/delete.

protocol_id: an unsigned 32-bit integer that represents the ID of the protocol to
add/delete (both sides must agree on the particular values).

vif_name: a text string that holds the name of the vif that the protocol is added
to or deleted from.
vif_index: an unsigned 32-bit integer that represents the index of the vif that

the protocol is added to or deleted from.

5.1.3.2 PIM-SM Client Interface Extension

The XRL protocol client interface is used for clients to receive distribution tree change
information. “add_subtree4” is used to inform clients of receiving an IPv4 Join message
from a downstream router; “add_subtree6” is used to inform clients of receiving an IPv6
Join message from a downstream router; “delete_subtree4” is used to inform clients of
receiving an IPv4 Prune message from a downstream router; “delete_subtree6” is used to
inform clients of receiving an IPv6 Prune message from a downstream router;
“leave_tree4” is used to inform clients of sending an IPv4 Prune message to an upstream
router; “leave_tree6” is used to inform clients of sending an IPv6 Prune message to an

upstream router.

-35.

The added XRL protocol client interface specification segment is shown as follows:

interface pim/0.1 {

add_subtree4 ? xrl_sender_name:txt \
& vif name:txt & vif index:u32 \
& source:ipv4 & group:ipv4
add_subtree6 ? xrl_sender name:txt \
& vif name:txt & vif index:u32 \
& source:ipv6 & group:ipvé
delete_subtree4 ? xrl_sender name:txt \
& vif name:itxt & vif index:u32 \
& source:ipv4 & group:ipv4
delete_subtree6 ? xrl_sender_name:txt \
& vif_name:txt & vif index:u32 \
& source:ipv6 & group:ipv6
leave_tree4 ? xrl_sender name:txt \
& vif name:txt & vif index:u32 \
& source:ipv4 & group:ipv4
leave tree6 ? xrl sender name:txt \
& vif_name:txt & vif_index:u32 \
& source:ipv6 & group:ipv6

}

The arguments are described as follows:

xrl_sender_name: a text string that indicates the XRL name of the originator of this
XRL.

-36 -

vif name: a text string that indicates the name of the vif where the event

happened.

vif_index: an unsigned 32-bit integer that represents the index of the vif.

source: an address structure that holds the source address that has been
joined/pruned.

group: an address structure that stores the group address that has been
joined/pruned.

5.2 The Netfilter / Iptables

Netfilter is a packet filtering framework inside the Linux 2.4.x and 2.6.x kernels [25]. As
the successor of the previous Linux 2.2.x ipchains and Linux 2.0.x ipfwadm, it provides

similar APIs to allow packet filtering, network address translation, and packet mangling.

Netfilter provides a series of hooks to allow kernel modules to register callback
functions with the network stack in the Linux kernel [26]. A hook is a set of rules that
specify how to process each passing packet. Every packet that meets a rule will be
forwarded to the specified callback function. In the Netfilter framework, there are five
hooks, Pre-routing, Forward, Post-routing, Input, and Output. Figure 5.2 shows the
positions of hooks in the Netfilter framework. The boxes are the hooks; the diamonds

show the route decision; the arrows indicate the flows of packets [27].

-37-

N\

Post-routing —>

—bl Pre-routing |

Figure 5.2 Netfilter/Iptables Hooks [27]

The pre-routing hook processes inconiing packets before routing code. Prior to that,
only a few simple consistency checks are pefformed, including checks with regard to the
version, length, and checksum fields in the IP header. All incoming packets addressed to
the local host pass the Input hook. All incoming packets that are not addressed to the
local »host pass the Forward hook. All outgoing packets generated by the local host pass
the Output hook. Post-routing hook can be used to manipulate all outgoing packets before

they are sent to the lower layer [25].

5.3 The Linux Kernel Module and Data Structures

Linux provides an interface to allow a user to add a piece of code into the system kernel
so that this code can be executed faster, avoiding context switches. This piece of loadable
code is called a Linux kernel module [35]. A kernel module works in the operating
system kerhel, so there are some restrictions. The only functions that a kernel module can
call are the ones provided by the kernel, and there are no standard libraries to use.
Compared to a user-space program, a kernel module has limited stack area to use. It can

be as small as a single 4096-byte page, and it has to be shared with other kernel

-38-

functions. Coding a kernel module should be done very carefully, because a fault in the

module may crash the whole operating system [35].

An important structure, which is at the core of the network subsystem of the Linux
kernel, was used in this thesis. That is the socket buffer, “sk_buff” [36]. A socket buffer is
the buffer that holds network packets in the Linux kernel. A packet received by a network
card is stored in a socket buffer and then passed to the network stack. The Linux kernel
uses the socket buffer to represent and manage a packet all the time [36]. A socket buffer
consists of two parts, packet data and management data. The packet part stores the data
actually transmitted over a network including the MAC header, IP header, and IP
payload. The management data contains additional data that are not stored in an actual
packet but are necessary for processing in the Linux kernel. These data include pointers,

timers, and information exchanged between protocol instances [36].

The Linux kernel provides operations on socket buffers; only the operations relevant

to the implementation in this thesis are introduced in this section [36].

“skb_copy expand()” creates a new and independent copy of the socket buffer and
packet data; the user can indicate the space reserved before and behind the packet data by

passing “newheadroom” and “newtailroom” respectively.
“kfree_skb()” frees the specified socket buffer and related data structures.

“skb_pu()t” appends data to the end of the current data range of a packet and update

the corresponding data structures. It is useful in our case, because in the implementation

-39.

UDP packets should be encapsulated into ESP packets, and trailers of ESP packets are

needed to be generated at the end of these packets.
5.4 RSA Algorithm and Proxy RSA

The RSA algorithm [6], named after its inventors Ron Rivest, Adi Shamir and Len
Adleman, 1s the most widely used asymmetric cryptosystem. It can be used to provide
both security and digital signatures, and its security is based on the difficulty of factoring
large numbers [6]. The RSA algorithm is so powerful that it has become the de facto

standard for industrial-strength encryption, especially in the Internet.

The RSA algorithm is used in a Public key cryptosystem, and it uses two different
keys: Public Key and Private Key. The Public Key is used to encrypt plain text; the
Private Key is used to decrypt cipher text and reveal the original message. Public and
Private keys are generated in pairs éo that only a specific pair of keys can perform the

encryption and decryption functions. Any keys other than the specific pair will not work

[6].
Public Key and Private Key can be genérated by the following steps [6]:
1. Generate two large random primes p and g, each roughly the same size.
2. Compute n = pq and ¢ = (p-1)(g-1).

3. Select a random integer e, 1< e < ¢, such that the greatest common divisor of e

and ¢ is equal to 1.

4. Compute the secret exponent d, 1< d < ¢, such that ed = 1(mod ¢).

-40 -

5. The Public Key is (n, €) and the Private Key is (n, d). The values of p, g, and ¢

should also be kept secret.

To send a confidential message, the sender represents the plain text message as a
positive integer m , and computes the cipher textc = m* mod n using the Public Key (n, e),
then sends the cipher text ¢ out. To reveal the original message, the receiver uses the

Private Key (n, d) to computem = ¢ modn [6] [37].

It is worth mentioning that the message m should be smaller than the modulus n,

0 < m < n[6], otherwise the algorithm will fail.

To apply RSA in proxy encryption, we need to split the decryption key 4 into two

parts d,and d, such that d =d,d,(mod¢)[23]. The intermediary entity gets the proxy
transformation key (d,,n) and the receiver uses the new decryption key (d,,n). They

perform the identical decryption algorithm to the original one to process received

messages, and the receiver can reveal clear messages as normal [23].
5.5 Scalable and Secure Multicast System

With the existing technologies and platforms outlined in the previous sections, we can
build a scalable and secure multicast system. The system has a hierarchical topology
structure and follows most of the guidelines in the MSEC Working Group. Encryption
keys are managed by SIM-KM, which follows most of RFC 4046. The data propagated in
the network are prbtected according to IPsec. The routers in the network run XORP,
which enables IGMP and PIM-SM. Hosts report their interest by IGMP, and routers

distribute multicast data based on multicast routing tables calculated by PIM-SM. The

-41 -

multicast security module works in the Linux kernel, protecting multicast data using

proxy RSA encryption on request.

-42 -

Chapter 6

The Design and Implementation

With the technologies discussed in previous chapters, a multicast system can be built to
demonstrate the works in the HSPL. The high-level design of the Scalable Secure
Multicast System in section 6.1 provides an overview of the system. In section 6.2, the
design of the Data Security Module that is implemented in this thesis is described. The
implementation issues of Group Security Association (GSA) and the data structures used
in the implementation are discussed in section 6.3 and 6.4. In section 6.5, detailed
implementation information of the Multicast Data Security module is provided. In section
6.6, implementation issues related to key size are discussed. In the last section of this

chapter, 6.7, additional key management and testing tools are presented.
6.1 The High-level Design

The Scalable Secure Multicast System is designed to secure traffic for large multicast
groups. The network topology of the system is based on the hierarchical topology
framework. [3] discussed in Chapter 5. The Scalable Infrastructure for Multicast Key
Management [19] approach is used for key management. Multicast data are protected by
the proxy encryption scheme. This system follows most of the guidelines of the Multicast
Group Security Architecture [S] and the Multicast Security Group Key Management

Architecture [17].

-43 -

B Sender @ MeshNode @ Server (Policy/Key/AAA)
[0 Receiver Q Secure Group Service Node

Figure 6.1 Network Topology

The topology of the Scalable Secure Multicast System is shown in Figure 6.1. Some
Senders are directly connected to Mesh Nodes, which are pre-deployed in the network.
The Mesh Nodes can be the root nodes of the multicast distribution trees. They are native
multicast routers with additional software, and are the core of the network. Several Group
Server Nodes are distributed in the system. They can be multicast enabled routers with
additional functionality or hosts for the sub-networks that lack multicast capacity routers.
A lot of receivers, as leaf nodes, are directly connected to the Group Server Nodes.
Servers can be connected to either Mesh Nodes or Service Nodes. They can be Policy

Servers [5], AAA Servers or Key Servers.

A sender in the system is responsible for generating multicast traffic securely. Figure

6.2 shows the overall design of a sender.

Secure Multicast Agent

Group Controller

Session
Announcement

Multicast
Application

Key
Management

User Level
...... Multicast SN U I

»| Data Security | Kernel Level

\ 4

Figure 6.2 Sender

The boxes are the functional modules, and the arrows show multicast data flows. A
_sender is an un-trusted entity in the system, so it should get authorized and authenticated
before actually joining the group. The Group Controller module performs such
functionality. Besides, the module performs Session Announcement as the function
required for a sender. The Key Management module handles GSAs and receives re-
keying messages. The Multicast Data Security module encrypts data for given groups

using security information provided by the Key Management module.

A receiver, as a client, is an un-trusted entity in the system. Its main goal is to receive

data correctly. Figure 6.3 shows the overall design of a receiver.

-45-

Secure Multicast Agent

Group

Multicast Controller
Application

Key
Management

- User Level
FENN NP SUOUPURRNON RO Multicast Foceo oo e e,

Data Security Kernel Level

x

Figure 6.3 Receiver

The Group Controller module interacts with a Service Node (SN) router to verify its
End User Identifier and Host Identifier [38] [39], join/leave a group, and obtain
information for the Key Management module. The Key Management keeps
communicating with the SN router regarding key changes and managing security
information after the group is established. The data decryption function is performed in
the Multicast Data Security module based on the information installed by the Key

Management.

A Mesh Node router, as a core router, should provide high-speed transport, so it
should perform as few functions as possible, besides routing and forwarding. In our
system, the main functions added to a MN router are to perform the tree

auto-configuration algorithm and group management.

- 46 -

Secure Multicast Agent

Group
Controller

Tree
Management

Multicast ' User Level
SRR R Routing | oo famcmec e

l I Kernel Level

Figure 6.4 Router (Mesh Node)

As shown in Figure 6.4, it does not manipulate passing multicast data and just
forwards them based on multicast routing table, so these functions can be user-space
processes in XORP. The Group Controller is used to authenticate and authorize senders
and to prdcess session announcements. The Tree Management module performs the Tree
‘ Auto-conﬁgure algorithm to construct a Mesh, and builds the distribution tree rooted at

the nearest MN to a sender. Details of these operations can be found in [3].

A Service Node router performs most of the add-value functions in our system. It is a
node in the distribution tree, forwards multicast data and transforms these data on
request. The high-level desig11 blocks are shown in Figure 6.5. The boxes are functional

modules, and the arrows indicate the multicast data flows.

-47 -

Multicast
...... Routing

Secure Multicast Agent

Group
Controller

Tree
Management

Key
Management

Multicast
Data Security

)

=

User Level

Kernel Level

The. Service Node router may be trusted or un-trusted. In a trusfed router, the Group
Controller module communicates with Policy Servers and AAA Servers to obtain the
group policies and group access control information. It processes receivers’ and other SN
routers’ Join/Leave requests, and provides group change information to the Tree
Management module. The Tree Management module takes part in building the
distribution tree for a given group. The Key Management module interacts with Key

Servers to get updated keying material. The Multicast Data Security module transforms

Figure 6.5 Router (Service Node)

passing multicast data on request.

In an un-trusted router, the Group Controller module merely forwards these requests

to a trusted router and acts according to its decision. The other modules perform the same

functions as in a trusted router.

-48 -

The Service Node routers next to the Mesh Node routers are the boundary routers that
perform proxy transformation function in distribution trees, because the Mesh Node
routers do not have such functionality. If the transformation is required to be performed

in a higher level in a tree, the key server should update the key for the whole group.
6.2 The Design of the Multicast Data Security Module

The Multicast Data Security Module is an essential part of the whole system. It falls in
the Multicast Data Handling functional area defined in RFC3740. This module covers the

security-related treatment of multicast data by the senders, routers, and receivers for large

groups.

The module interacts with other modules in the system and performs data security
trénsformation on given multicast traffic flows. This transformation performs processor
intense encryption operations and applies on every matched packet. If the module works
in user-space, it will involve two context switching times for each packet, copying a
packet from kernel to user-space and copying the transformed packet back from
user-space to system kernel, so a user-space module to process every matched packet
would have unacceptable performance. Taking the performance issue into account, the

main functionality of the module works in the operating system kernel.

There are a number of low-level packet manipulation technologies in Linux, such as
libpcap, tcpdump, Ipchains, and Iptables. All of them provide interfaces to allow a user to
capture specified packets and apply some operations on them. However, the packets

captured by a user are copies of the original packets, and these original packets will be

- 49 -

processed as normal in kernel, as shown in Figure 6.6 (a). If there is no mechanism to
prevent the original packets from being forwarded, the end user will receive more than

one copy of these packets. This is undesirable.

v Y

4
i
<

v

)

(a) Packet Capturer (b) Packet Filter (mangling)

Figure 6.6 Packet manipulation technologies

To overcome it, Netfilter/Iptables, using packet filter technology, is applied in our
system. It provides functionality that allows users to manipulate interesting packets in the
Linux kernel. As shown in Figure 6.6 (b), the matched packets are forwarded to a user
defined module, and this module decides how to process them: accept, deny, or alter.
Using this scheme, only one copy of the data can be received by a receiver efficiently, so
the Multicast Data Security Module uses Iptables as the low-level packet manipulation

‘mechanism,

As described in Chapter 5, Iptables has 5 hooks where users can register interest.
Registering in a certain hook allows users to examine only the specified type of flows.
Since the hosts that run the module may be at different positions in a distribution tree,
such as sender, router,‘ or receiver, we should find a proper scheme to register their

interest.

-50-

At a sender’s side, the traffic that needs to be protected should be encrypted right
after the packets are generated, so the security module registers its interest in the
OUTPUT hook. At the receiver’s side, the module should be only interested in the traffic
addressed to the local host, therefore the INPUT hook is used to match these packets. As
the result, the Iptables has fewer traffic flows to check; the performance can be further

improved consequently.

In a router, the process becomes more complicated. Normally, a multicast router
receives one copy of traffic flow, and it may send out multiple copies of this flow through
different output ports based on the multicast routing tables. In our system, if a router is
involved in protecting a multicast traffic flow, all the participants in the sub-tree rooted at
this router should get the same data. That means that all the outputs are identical.
Therefore the module in a router should transform multicast data before the packets are
copied, otherwise multiple output streams should be transformed independently with the
same operations. In Netfilter/Iptables, there are two hooks that meet this requirement.
They are PRE-ROUTING and FORWARD. Considering the fact that the router could act
as a receiver to monitor the traffic at the same time, the PRE-ROUTING hook is used in a

router. The hooks used for the Multicast Data Security module are shown in Figure 6.7.

-51-

—>| Pre-routing Route Forward Post-routing]——>

]
[For ré)uters J @
A 4
(For receivers_} _____ ¢ Input Output<|---- [_f_qr_senders]

l T

Figure 6.7 Module’s registration points

From Figure 6.7, the traffic flow can be observed in a host. If the host has only one
role to perform, the flow is clear. If a router also needs to receive the same traffic besides
transforming it, the host first transforms the traffic received from the PRE-ROUTING
hook. After route decision, the host receives traffic from the INPUT hook and decrypts
these packets, then sends it to the upper-layer application. The module is not designed for
a host that routes the packets sending from itself, that is, the host acts as a sender and a
router, because it is not feasible in practice. In the case that a host acts as a sender and a
receiver, multicast packets from the upper-layer application are matched at the OUTPUT
hook and then sent to the module to encrypt. After encryption and route decision, packets
are sent to the INPUT hook (this is not shown in the figure), because the host, as a
receiver, joined the group that it is sending to. Then these packets are forwarded from the
INPUT hook to the module, and decrypted there. Finally, packets are sent to the upper

layer from the INPUT hook.

-52-

6.3 Implementation Issues Concerning GSAs

A Group Security Association (GSA), which contains the needed information for
securing group communication, is a set of Security Associations (SAs), including
Registration SA, Re-key SA, and Data SA [5]. The first two categories of SAs ensure that
the group keys and other needed information are installed and distributed securely.
Therefore, they are designed to be implemented outside the Multicast Data Security

Module. In this module, we need only to deal with the Data SAs.

The Data SAs in our module includes the following attributes: group addresses,
protocol numbers, destination port numbers, Security Parameter Indexes (SPIs),
algorithms, key lengths, and keys. These attributes are divided into two parts. One part is
used for me_itching packets to a given session, and another part is used for protecting data
to the session. In the current implementation in this thesis, the algorithm and the key
length are fixed. Only the RSA algorithm encryption is implemented and the length of the
keys is 32 bits. Taking the advantage of the packet matching mechanism in Iptables, this
implementation uses the first part of the information, including group address, protocol
number, and port number or 'SPI, to match needed packets, and sends matched packéts to

the module along with needed security information.

At the sender’s side, the Data Security SAs for a given groﬁp include group IP
addresses, protocol numbers, destination port numbers,‘ encryption algorithms, key
lengths, and keys. They are installed into Iptables’ OUTPUT hook as a rule using the
Iptables’ user-space interface. The group IP address, protocol number, and port number

are used to match packets, and the key is used to encrypt matched packets.

-53-

Ina roﬁter, the Data Security SAs contain group IP address, protocol number, SPI,
algorithm, key length, and keys. Since the multicast packets transmitted in the network
are encapsulated into ESP packets, the router has no idea about the original port number.
The SPI should be assigned by a Group Controller/Key Server, and it is unique for a
given grouin, so the combination of group address and SPI can distinguish the multicast

traffic flow that should be transformed.

The situation at the receiver’s side is similar to that in a router. The incoming packets
are encapsulated using ESP, and the group address and SPI are used to match these
packets. However, the difference is that output packets of a receiver are UDP/TCP

packets rather than ESP packets for a router.
6.4 Data Structures Used in the Implementation

There are three important structures in the implementation in this thesis. One defines the
information shared between user-space and kernel-space Iptables modules. The other two

define the ESP packet formats.

The structure “ipt MPE_info” defines the information needed by the Iptables kernel
module. It includes algorithm, key (e/d, n), key len, SPI, and seq. Most of the information
is the part of the Data SAs, including the algorithm, key, key length and SPI. The “seq”
field that holds the sequence number for a given multicast flow required by ESP is used
only in the kernel module. When a user or Key Management module wants to specify a
traffic flow to be protected, an Iptables rule is installed using user-space interface with

parameters. Some of these parameters, such as address, port number, and SPI, are used

-54 .

by Iptables to match packets, and other parameters, such as SPI, and key, are stored in an
instance of this structure. This instance is associated with the rule. Every packet that
satisfies the rule is sent to the module with a pointer to this instance as a parameter.
Therefore, the security information can be shared between user-space and kernel-space.
The kernel module can receive a matched multicast packet with proper transformation

information in this structure.

-0 15 31

Security Parameters Index (SPI)

Sequence Number

Payload (variable)

Padding (variable)
Pad Length | Next Header

Figure 6.8 ESP Packet Format [22]

ESP packet format [22], as shown in figure 6.8, is defined by two structures. One is
ESP header, and another is ESP trailer. The format follows the specification in RFC4303.
The header includes a SPI field and a Sequence Number field. The trailer structure

contains Pad Length and Next Header.

6.5 The Implementation of the Multicast Data Security Module

The Multicast Data Security module in the Scalable Secure Multicast System is
implemented as an Iptables module. This module includes two parts: user-space shared

library and kernel-space extension module. The user-space part receives parameters

-55-

required for securing a given group, and installs the corresponding rules into the Iptables

framework. Then the kernel module can receive all packets that match the given rules

from Iptables. The kernel module can decide how to manipulate these incoming packets

based on security parameters and the role of the host where the module is running.

The user-space library is used to control the kernel model. It is called by the Iptables

user-space interface. The user-space library starts from a function called “_iniz() ”, which

is automatically called upon loading. In this function, “register_target()” is called, with a

“iptables_target’

" structure as parameter, to register the kernel module with Iptables.

The iptables_target structure is defined by Netfilter/Iptables, and is an important data

structure for extending Iptables. Some important fields are described as follows:

Jame:

.extra_opts:

.help:

nit:

.print:

final_check:

the name of the user-space library, for our case, the .name is “MPE”
(Multicast Proxy Encryption). The name should be the same as the

name for the kernel module.

a pointer to an “option” structure, which contains the command line

option arguments.
a pointer to a function that prints out help information.

a function pointer that can initialize extra space in the “iptables_target”
structure.

a pointer to a function that is called by the chain listing code to print the

target information. The information includes the key and algorithm.

a pointer to a function that is called after the command line has been
parsed. This function gives us a chance to make sure that all parameters

have been specified. In our case, the validity of the key is checked.

- 56 -

.parse: a pointer to a function that is used to verify if arguments are used
correctly and set the values used by kernel module. This function will

be called one or more times, depending on the number of arguments.
The Ipfables kernel module is the main part of the implementation. It includes an
implementation of multicast proxy encryption and part of the IPsec ESP protocol. The
module receives all packets that meet the rules specified by the user-space program, and

appropriately transforms them.

As an Iptables kernel extension, the module calls the “ipt_register_target()” function
in the module initialization function, “init()”’, to register itself as a Iptables target. An
“ipt_target” structure is passed as the parameter of the target registration function.

Important fields in this structure are described as follows:

name: A string that holds the module name, this name should be the same as
the name specified in the user-space library. In our case, the name is
“MPE”.

checkentry: A pointer to a function that checks the specifications for a rule. In
practice, the validity of the key pair is checked, and the table that the
module is called from should be the “mangle” table.

target: A pointer to a target function, which is the core function of the module.
It takes the socket buffer, the hook number, target information, and user
information as parameters. The socket buffer stores the packet that
should be processed in this module. The target information points to an
“ipt MPE_info” structure that contains security information for the
packet in the socket buffer. The hook number indicates where the

packet comes from.
The Multicast Data Security kernel module has different behaviours depending on the

roles in distribution tree (sender, router, or receiver). The role can be determined by the

-57-

hook where the module is associated. Detailed implementation for these three roles will

be discussed in the following three sections.

6.5.1 The Implementation of the Sender Module

A sender in the Scalable Secure Multicast System generates multicast packets, performs
required security transformation, and sends these packets out. The data security module
in a sender captures every packet that needs to be protected, encrypts it and encapsulates
it into an ESP packet, and then sends it back to the protocol stack. The flowchart of the

kernel module is illustrated in Figure 6.9.

-58-

incoming UDP packet

!

Calculate padding_len,
expansion_len, and data_len

;

Create a larger packet, copy skb
header, and set pointers properly

y

Set vales in IPsec ESP header

Encrypt data part of
data using RSA
Encrypt data using Encrypt padding part
RSA algorithm of data using RSA
»i I
v

Set vales in IPsec ESP trailer
(padding_len and next_header)

y

Set protocol to IPPROTO_ESP and update tot_len in

IP header, and re-calculate IP checksum

y

Free the original packet and set the packet
buffer pointer to the new packet buffer

Return IPT_CONTUNUE to
let the packet to be sent out

Figure 6.9 Flowchart of the Sender Module

-590 -

The matched incoming UDP packet is sent from OUTPUT hook by Iptables. Since in
this module a UDP packet will be encapsulated into an ESP packet, the sizes of data
structures used for transformation should be calculated first. The RSA algorithm is a
block cipher, so the transformed packet needs padding to fill the new packet to the size
required by the RSA algorithm. The padding length, “padding len”, is the size of
padding added into the new packet. The expansion length, “expansion_len”, is the size of
the ESP packet, including the lengths of UDP header, ESP header, payload with padding,
and ESP trailer. The “data_len” indicates the lengtim of payload that can be encrypted

without padding. The transformation and these lengths are illustrated in Figure 6.10.

UDP Packet
IP Header | UDP Header ' Data
E E padding len
ESP Packet ' A
R (e R -
Header | Header Trailer
= —~ N
data_len Block size
— _
—~

expansion_len

Figure 6.10 From UDP Packet to ESP Packet

After determining the new ESP packet size, “skb_copy_expand()” is called to create a
new and independent copy of the original socket buffer and packet data. The socket
buffer and IP header are copied into the new buffer, so it is unnecessary to create a new
IP header. Then, an inline function, “skb _pui()”, is called to append data to the end of the

current data range of the new ESP packet. This function increases the pointer “tail” and

- 60 -

reserves the space for later use. Before manipulating the new packet, pointers to new IP

header, ESP header, and ESP trailer should be set properly.

Values in ESP packet are set in order. Firstly, the fields in ESP header are set,
including SPI and sequence number. Secondly, the UDP packet is encrypted using the
RSA algorithm and put into the ESP payload field. If the packet needs padding, the data
is separated in two parts to be encrypted. Finally, the padding length and next header in

ESP}trailer are set.

After filling the ESP packet, the IP header needs to be updated. The protocol field is
set to “/PPROTO_ESP”. The total length of IP packet, “tot_len”, is updated by adding IP
header length and expansion length. IP checksum is re-calculated based on the new
packet. Now, the original socket buffer can be freed by calling “kfree_skb()’’; then, set the
original socket buffer pointer to the new socket buffer so that the kernel can continue
processing this packet with the transformed data. The last thing for this module is giving

this packet back to kernel by returning “/PT CONTINUE”.

6.5.2 The Implementation of the Receiver Module

A receiver in the Scalable Secure Multicast System receives multicast packets from the
wire, performs required security transformation, and sends these packets to the upper-
layer application. The data security module in a receiver performs almost the reverse
process as in a sender. It captures every packet that is protected, de-capsulates and
decrypts it from an ESP packet, and sends back to the protocol stack. The flowchart of

the receiver kernel module is illustrated in Figure 6.11.

-61 -

Incoming ESP packet

A 4

Get padding_len, and
calculate data_len

Decrypt ESP payload
using RSA algorithm

Y

Set protocol to IPPROTO_UDP and update tot_len
in IP header, and re-calculate IP checksum

y

Return IPT_CONTUNUE to let the
packet to be sent to upper-layer

Figure 6.11 Flowchart of the Receiver Module

The incoming packets for a receiver are always ESP packets captured from the
INPUT hook. Similar to that in the sender end, before performing decryption, size of data
structures should be calculated and pointer should be set properly. The decryption task is
relatively easier, because the packet data length satisfied the size required by the RSA
algorithm after transformation in the sender end. After decryption and de-capsulation,
the IP header should be updated. The protocol field is set to “/PPROTO_UDP”, and the
IP packet 1ength and checksum are re-calculated. Finally, this module sends this packet

back to the kernel protocol stack by returning “/PT_CONTINUE”.

At the receiver’s side, a new socket buffer is not created, due to two reasons. First, the
output UDP packet is smaller than the input ESP packet, so no extra space is needed.

Second, the ESP header is located after the IP header and before the UDP header and

-62 -

data, so the module can use the ESP header’s space and the decrypted data can be written
right after the IP header without overwriting the data that have not been processed. Such

an approach not only saves space, but also improves the performance.
6.5.3 The Implementation of the Router Module

A router in the Scalable Secure ‘Multicast System performs required security
transformation on specified passing multicast data packets. The data security module in a
router captureé every ESP packet that needs to be transformed, transforms it with a
transformation key, and sends it back to the protocol stack. The functionality performed
in the router module is relatively simple, because the transformations between UDP and
ESP are left to the sender and receiver. The flowchart of the router kernel module is

illustrated in Figure 6.12.

Incoming ESP packet

v

Transform ESP payload
using Proxy RSA algorithm

Re-calculate IP checksum

Return IPT_CONTUNUE to
let the packet to be routed

Figure 6.12 Flowchart of the Router Module

Upon receiving an ESP packet from PRE_ROUTING hook, this module sets the

pointers properly. Then the payload in the ESP packet is transformed based on the

-63 -

multicast Data SAs associated with current traffic flow. Similar to the receiver end, the
transformation task is relatively easier, because the ESP payload length matches the size
required by the RSA algorithm after transformation in the sender end. There is also no
new socket buffer needed, because the transformed data block is written to the same
offset as the original one, and no overwriting can occur. After transformation, checksum

in IP header is re-calculated, and the packet is sent back to the Linux kernel.

6.6 Proxy RSA Algorithm and Implementation

6.6.1 Implementation Issues.

The core function in implementing RSA algorithm is performing modular exponentiation.

The modular exponentiation problem can be represented that given base m, exponent e,

and modulus 7 to calculate ¢, such thatc = m*modn .

A straightforward approach to compute the c is to calculate m°directly, then to take

the result modulo n. This method requires O(e) multiplications to complete, and needs a

very large-space to hold the result of m°. Moreover, the module is implemented in Linux
kernel where only plain C can be used, so there is no power function, “pow()”, available
as in standard C library. Therefore this approach cannot be applied in this

implementation.

An optimized binary left-to-right approach, which significantly reduces both the

number of operations and memory usage, is used in this kernel module [41]. To

computec=m*modn, let e, s bits long, be represented in base 2 ase=a, a,, - a,a,,

-64 -

Then, the problem can be solved in a computer with fewer operations and less memory

usage by [41]

s—1 s—1

a;

¢=m*(modn)= H(mzi) (modn)= H((mzi)al (mod n))(mod n)
i=0 i=0

The running time complexity of this approach isO(loge) [41]. In implementation,

this method can be further optimized by scanning over the exponent bits from left to

right.
6.6.2 Key Size and Limitations

The size of the RSA key determines the Strength of the confidence level and the key
lifetime. In general, a longer key can provide better protection and has longer lifetime.

However, there are several implementation issues that affect the key size.

In genéral, a longer key requires more generation time, and encryption and decryption
with a longer key take more CPU cycles. The router that performs the multicast proxy
transformation may process multiple multicast traffic flows at the same time; however,
simultaneously, it may perform other tasks, such as unicast and multicast routing, packet
forwarding; and network management. Therefore, the transformation should not take too
much time, and thus the key should not be too long, even in a platform with hardware
cryptographic accelerators. Considering the possibility of low power receivers, such as
low-end PCs or Set-Top-boxes, in a multi-media multicast session, the strength of the

RSA key should not affect the QoS.

-65 -

Generating a strong RSA key requires high cost of CPU cycles. In a large Scalable
Secure Multicast System, new keys may often be required due to the changes of network
topology and group membership. Splitting a large key for proxy encryption also needs a
lot of processor power, so the size of key for the Scalable Secure Multicast System

should not be too large.

The RSA algorithm is a block cipher, which divides the bit stream into blocks of a
given size and the encryption algorithm acts on that block to produce a cryptogram block.
If the block size is bigger than the packet size, one block will span two or more packets.
In the case that one packét involving a block is lost, all other packets that contain part of
this block cannot be decrypted succéssfully. Practically, due to the factor that the
message m should be always smaller than modulus n, the block size of RSA algorithm is
slightly bigger than the size of a key. Therefore, the length of the key should smaller than

the size of one packet.

Another implementation issue that limits the key size is that the padding length field
of an ESP packet is 8 bits [22]. That means that the maximum padding size is 255. This

fact limits the length of key to 255 bits, if packet fragmentation is unacceptable.

6.7 Additional Key Management and Multicast Testing Tools

6.7.1 Multicast Key Management Tools

To verify the correctness of the multicast data security module, several multicast key -

management tools were developed. They are not an implementation of the Key

- 66 -

Management module in the multicast system, but some functions can be used in the

future Key Management implementation.

The “mkeygen” program randomly generates and outputs encryption and decryption
keys for RSA algorithm. This program also splits the generated decryption key, and

output proxy decryption key pairs for routers and receivers.

A dae;non program, “mkeyd”, running in the background, receives key update
messages sent by “mnewkey” or “mrekey” and manages Iptables rules, which contain
security information for given groups. The “mmnewkey” issues new key messages to
senders and receivers; the “mrekey” sends out specified proxy decryption key messages
to routers and receivers. The key message is put in a UDP packet, and the packet format

is shown in Figure 6.13.

Role of the receiver

Group address

Port number / SPI

Key (e/d)

Key (n)

Figure 6.13 Key Message Format

The first field, 32 bits, indicates that the message is for a sender, a router, or a
receiver. Because the same daemon is used for receiving key messages in all hosts, the

daemon has to know how to install the key information into Iptables from such a field.

-67 -

The group address field stores the address of group. The next 32 bits is used for
destination port number if the host acts as a sender, or is used for SPI if the host is a

router or a receiver. The last two fields hold the key pair for the RSA algorithm.

6.7.2 GUI Multicast Sender and Receiver Programs.

A GUI multicast user space program was developed to make testing easy. This program
was written in script language, Python [42], so it can be easily modified to meet various
requirements during testing. Another advantage of this program is that it is platform

independent, so it can run on the Linux or Windows without any change.

The program can work as a sender or a receiver based on the command argument,
“-s” for starting as a sender and “-r” for starting as a receiver. If there is no argument,
selectibn window appears to allow the user to choose. The sender sends out specified size
of packet to a multicast group at a defined interval. To avoid overloading the ‘network, the
packet generation rate is set to one packet per second by default. Parameters that can be
specified from the user interface are group address, port number, TTL, packet size, and
packet geﬁération interarrival time. As shown in Figure 6.14, the default values for group
address, port number, TTL, packet size, and interarrival time are 224.0.8.115, 2006, 3,
128 and 1 respectively. Information of the sending packet is displayed in the window,
including the source address, the destination group addresses, the first 16 bytes of the

packet and the packet size.

- 68 -

Figure 6.14 Multicast Sender

In case that user wants to generate packets quickly, there will be a lot of output
information. To avoid decreasing the ﬁerformance by printing out too much information,
only one “S” is printed out for each packet. The sender and receiver agree that the
destination port numbers that less are than 2000 are used for this purpose. When a user
speciﬁeé an interarrival time less than 0.2 sécond for a group w1th a port number larger

than 2000, the program changes the port number to 1999 automatically.

At the Receiver end, users can specify the group address and port number of the
multicast traffic they want to receive. When the receiver receives a packet, it prints the

information of the packet.

-69 -

cepser

Figure 6.15 Multicast Receiver

As shown in Figure 6.15, the first two fields indicate the source address and the group
address. Foilowing that are the first 16 bytes of the payload of the packet, the size of the
received packet and the delay of it. When a packet with a destination port number less
than 2000 arrives, only one “R” is printed out. A dot in the window indicates that a time-

out (2 seconds by default) occurs.

-70 -

Chapter 7

Testing the Multicast Data Security Module

In section 7.1, the development and testing environment in the HSPL is described.

Validation and performance measurement are given in section 7.2.
7.1 Testing Environment

The implementation in this thesis was developed in the HSPL. Three hosts and two
switches are used for development and testing. The three hosts, Alder, Oak, and Forest,
have identical basic hardware and software configuration: Intel Pentium II 350 MHz
CPU, 64Mb Memory, SMC 10/100 Ethernet Network Card, Redhat Linux 7.3 Operating

System with Linux-2.4.32 Kernel, and Gee-2.96 C/C++ compiler.

132.205.62.16/28 132.205.62.0/28

132.205.62 132.205.62.4 132.205.62.1

132.205.62.

$132.205.48.98

_ _Aler Oak Forest

Figure 7.1 Network Configuration

-71 -

The network configuration is shown in Figure 7.1. Alder and Oak are connected in the
same sub-net 132.205.62.16/28; Oak and Forest are in another network, 132.205.62.0/28.
Oak works as a router in between. The development networks have access to the outside

through Forest. The logical topology of the network is shown in Figure 7.2.

Sender/Server Router Receiver/Client

Figure 7.2 Logical Network Topology

7.2 Testing and Results

The testing procedure is described as the follows:

Without any transformation/encryption, the receiver could receive correct multicast
data from the sender via the multicast enabled router, which runs XORP. That means that
the sender, router, and receiver work well in the traditional way. Using a packet sniffer
provided by Linux, Ethereal, to capture the packets in the network, it can be observed that

the multicast packets for the given group are UDP packets.

After enabling the security modules and installing proper keys in the sender and
receiver, the receiver couid receive correct data.» The packets captured by Ethereal were
ESP packets. When the key was changed in the sender or receiver, the data could not be
received. The reason is that the UDP packet, which was sent by the sender’s application,
including UDP header and payload, is encrypted using RSA algorithm. If it is deérypted

with an incorrect key, the port numbers in the UDP header will be changed to an

-72 -

unexpected value. Moreover the UDP checksum is incorrect, and the packet will be
dropped silently. These mean that the RSA algorithm and ESP protocol work in the
module. To further validate the implementation, the module in the sender was disabled;
then the receiver could get the correct data. The reason is that the sender sent out UDP
packets without the security module enabled, and the module in the receiver was
configured to manipulate ESP packets, so these UDP packets that arrived at the receiver
did not satisfy any rule and were forwarded to upper-layer application. The result
obtained from the packet sniffer confirmed that the packets for the given group are UDP
packets during that period. When only the module in the receiver was disabled, the
Receiver application could not receive any packet for the given group. The reason is that,
without the security module, the receiver could not understand the ESP packets that were

sent by the sender.

After enabling the security module in the router, installing a proper proxy
transformation key in the router, and updating the decryption key for the receiver, the
receiver can receive correct data. The packets captured by Ethereal were ESP packets. If
the key waé changed in the sender, router or receiver, the receiver could not receive any
multicast data from the given group. The reason is the same as the previous case. If the
module in the router was disabled, the receiver could not receive any multicast data from
the given group. The reason is similar to using an incorrect decryption key in the

receiver. These mean that the Proxy Encryption works in the security module.

The implementation demonstrated that the Proxy Encryption works with multicast

and it is transparent to traditional multicast applications.

-73-

To test the performance of the implementation, packet delay is recorded. Before
testing was started, the sender’s and receiver’s clock were synchronized using Network
Time Protocol (NTP), which can achieve an accuracy of microsecond level. The packet

‘generation interarrival time was set to 0.5 second. The relation between packet size and

delay is shown in Figure 7.3.
Packet Delay.
B) L] L 1 T
~& - With Proxy RSA Encryption B
AN With RSA Encryption g < i
-3 - Without Encryption (Copying) P
—&— Without Protection vt
6F et -
. ' /j:'r"
g o A7 '
& 4y - T

D ‘ s) . 1]]
100 200 300 400 500 600 700
- Packet Size (Bytes)

Figure 7.3 Packet Delay

The solid line shows the relation in the scenario without any data protection. The
dash-dot line represents the scenario without RSA encryption. It shows how much delay
can be introduced by encapsulation and de-capsulation. The dotted line represents the
scenario where the sender and receiver performed RSA algorithm on data. The dashed

line shows the scenario where the sender, router and receiver joined the transformation.

-74 -

The delay increases with the growth of packet size in all scenarios, because bigger
packets take more time to be propagated and processed. In the last two scenarios,
encryption and encapsulation introduced additional delay. The increments of delay in
these two scenarios also increase with packet size. In practice, the delay differences from
scenario 1 and scenario 3 are proportional to the packet size: 1.0 ms (from 1.1 ms to 2.1
ms) fdr 128-byte packets, 2.02 ms (from 1.38 ms to 3.40 ms) for 256-byte packets, and
5.03 ms (from 2.12 ms to 7.15 ms) for 640-byte packets. The increments of delay in the
last two scenarios are very close, around 0.2 ms difference. That means that the
participation of the intermediary router does not affect the performance too much. The

proxy security module achieves a satisfactory performance.

=75 -

Chapter 8

Scalable Key Management

In practice, asymmetric key encryptions, such as RSA, are not used to protect data
packets; however, symmetric algorithms, such as DES, are applied for this purpose,
because they are several orders of magnitude faster than RSA in sqﬁware
implementations [43]. Keys for asymmetric algorithms must be longer for equivalent
resistance to attack than for symmetric algorithms. As claimed by RSA Security, 1020-bit
RSA keys are equivalent in strength to 96-bit symmetric keys [44]. It is too expensive to

apply asymmetric key encryptions to protect multicast data on-the-fly.

Since proxy encryption can transform ciphertext for one key into ciphertext for
another key; we can apply proxy encryptions for key distribution, so that only valid group
members in a sub-tree can reveal new decryption keys. The algorithms used to protect

multicast data can be symmetric ones. The following steps describe the procedure.

1. Initially, all group members share the same encryption/decryption key. The
Data SAs, in senders and receivers, are the same, and they use the same
symmetric algorithm and key d. All receivers and Service Nodes share th¢
same Re-key SA. In this Re-key SA, there are two keys. One asymmetric key

'r is used to protect Re-key messages, and it works for proxy encryption

-76 -

algorithm. Another key u is used to protect the update for the previous key. It

can be an asymmetric key or a symmetric key.

2. When group membership changeé, a Key Management server sends a unicast
Key Update message to a Service Node at a minimum sub-tree that can cover
this change. The message contains key r; split from 7, and is protected by w.
The Service Node updates key r to r;. Then, the Key server sends a unicast
Key Update message protected by key u to each valid receiver in that sub-tree.
This key message holds th¢ proxy decryption key r; split from r. Therefore,
the Service Node holds key ry, receivers in the sub-tree know key r;, and the

~ remaining receivers have key .

3. Then the key server sends a multicast Re-key message that should be
decrypted by the key r to all group members. All members, except members
in that sub-tree, receive the message and update the encryption/decryption key
d. Upon receiving the Re-key message, the Service Node transforms the
inessage for key r to message for key r,, and distributes the message to the
sub-tree. All receivers in the sub-tree, including invalid ones, can receive the
Re-key message, but only the va_lid receivers know key r;, and can reveal the

updated key in this message.

All group members, including senders, valid receivers and invalid receivers, can
receive the multicast Re-key message. However, only the members who have a valid

Re-key SA can reveal the new key.

-77 -

This key distribution schema can guarantee the perfect forward secrecy aﬁd perfect
backward secrecy with a light traffic. It isolates group changes, which are introduced by
joining and leaving, in a sub-tree, and apply twice key updates. The first update is the
unicast key update that happens only in the changed sub-tree, and can be received only by
vaiid fecei\}ers. It is used to update the key to the second update. The second update is
sent in multicast manner, and all members can receive it. Due to the transformation in a
Service Node, the second update received by these receivers in the sub-tree should be
decrypted by the key in the first update message. Therefore, in a large group, key

messages could be fewer than sending unicast key messages to all valid group members.

Také an example to illustrate the efficiency. In a traditional scenario, DES algorithm
is used to protect multicast data and Re-key messages, and the key length is 96-bit. The
size of a Re-key message is about 300 bits, including packet headers and cdntrol
information. Thé number of group members is m. When a change occurs, a key server

would send 200m bits.

In a scenario with our key distribution scheme, the DES algorithm is used to protect
multicast data and the first key updaté messages, and the key length is 96 bits. The
message size is about 350 bits. Re-key messages, the second key updates, are protected
by the proxy RSA algorithm. To achieve an equivalent key strength, 1020-bit RSA key is
used. The Re-key message size is about 1300-bit. The group has m members, and the
average sub-tree size is g. When a change occurs, joining or leaving, the key server sends
g+1 RSA key updates to the sub-tree members, including the Service Node and valid

receivers (g + 2 for joining and g for leaving, and we assume that they have an equal

-78 -

chance to happen). After that, it sends one multicast DES key update to all members.

Therefore, the message that the key server should send is
1300(g + 1) + 300 = (1300g + 1600) bits.

When apply our key distribution scheme in a large group with 2,000 group members,
and the avérage sub-tree size is 50, the amount of data would be send for each key update
is 1300 x 50 + 1600 = 66,600 bits. In a traditional case, the amount of data should be sent
is 200 x 2000 = 400,000 bits. Therefore, 400,000 — 66,600 = 333,400 bits, about 83% of
traffic, could be saved. The amount of key update traffic in our scheme depends on the
size of sub-tree, and does not depend on the size of the whole group, so our scheme can

be applied in large-scale multicast groups.

If apply proxy encryption only inv key distribution, the system conform to the Data SA
requirements in and RFC 3740 and RFC 4046. All group members, including senders and
receivers, hold the same Data SA and share the same encryption / decryption key.
However, the Re-key SAs should be different in a group, and key messages could be

unicast and multicast.

The group address for multicast Re-key messages could be the same as the multicast
data, and use a different destination port number. Our implemented Multicast Data
Security module can be used to capture these Re-key packets, and perform proxy

transformation on them.

-79 -

Chapter 9

Conclusion and Future Work

9.1 Conclusion

Multicast is an efficient way to distribute data to multiple receivers simultaneously. The
security and scalability issues prevent multicast from being applied widely in the Internet.

In this thesis, we presented a Scalable Secure Multicast System to explore such an area.

The design explored a scalable and secure multicast system, which integrated two
major achievements in our research group, the Hierarchical Topology for Multicasting
and the Scalable Infrastructure for Multicast Key Management. The system guarantees
the confidence of the multicast data, and provides the capability to be expanded for a

large-scale application.

The investigation in XORP allows us to integrate our future development into a real
router platform. The XRL interfaces provided by XORP allow new modules to
communicate with the existing components efficiently. The extension proposed in this

thesis enable other modules to interact with PIM-SM.

The implementation demonstrated that the proxy encryption for multicast works well.
The security module works in the Linux kernel, and uses Iptables’ packet matching

mechanism. The kernel module has a user-space interface, which allows the module to be

-80-

configured dynamically. The module can achieve a satisfactory performance in a
common platform. It proofed the concept of proxy encryption with multicast in software.
In hardware implementation, technologies, such as Ternary Content Addressable
Memory (TCAM) [45] and cryptographic accelerators can be applied to achieve high
packet processing rates. Additional programs and tools help validation and testing, and

can be applied in future projects.

The new key management approach, applying proxy encryption in key distribution,
isolates key updates in a sub-tree, and improves the scalability of multicast key
management. It can guarantee perfect forward secrecy and perfect backward secrecy with

very light traffic.

The Scalable Secure Multicast System made great efforts toward providing a scalable
and secure multicast system for the real world. The implementation of our modules

proved the feasibility of proxy encryption with multicast.
9.2 Future Work

The efforts in this thesis are just the start of providing a secure multicast system in the
real world. The design of the system and the proposed key distribution scheme needs to
be further refined. In this thesis, only the Multicast Data Security module was
implemented. Other modules, Group Controller, Key Management, and Tree

- Management, should be implemented and integrated into a whole system.

The testing and demonstration were done only in HSPL. To demonstrate and test in a

large network, the Tree management module should be implemented, so that the

-81-

distribution tree can automatically be built; the Key Management module should also be
implemented, so that keys can automatically be generated, split, and distributed to group
members upon the changes to networks. However, it is difficult to fully test the system in
an actual big network, because it is impractical to have thousands of group members and

hundreds of routers run Linux and the modules that we developed.

The modules were designed assuming that proxy encryption would be used for
protecting multicast data. If proxy encryption is only used for protecting Re-keying
messages, and then the sender and receiver modules need to be able to perform
symmetric encryption and decryption on the data in addition to asymmetric encryption
and decryption. The routers only need to do proxy transformation on Re-keying

messages. It is not much work to add this generalization.

‘The current Multicast Data Security module implementation is based on the Linux
kernel 2.4.x. The Click Modular Router can be used as part of the Data Security module
implementation, so that the system can be built on most of versions of Linux and

FreeBSD.

-82-

Bibliography

(1]

[2]

[3]

[4]

[3]

(6]

[7]

[8]

S. Deering, “Host Extensions for IP Multicdsting,” RFC 1112, Internet Engineering

Task Force, August 1989.

C. Diot, B. N. Levine, B. Lyles, H. Kassem and D. Balensiefen, “Deployment
Issues for the IP Multicast Service and Architecture,” IEEE Network,

January/February 2000.

T. Wang and J. W. Atwood, “Hierarchical Topology for Multicasting,” In
Proceedings of IASTED Conference on Computer Systems and Applications (CSA

2004), Banff, Canada, 2004.

R. Mukherjee and J. W. Atwood, “Proxy Encryptions for Secure Multicast Key
Management,” In Proceedings of the 28™ IEEE Conference on Local Computer

Network (LCN 2003), Bonn / Koenigswinter, Germany, October 2003.

T. Hardjono and B. Weis, “The Multicast Group Security Architecture,” RFC 3740,

Internet Engineering Task Force, March 2004.

R. L. Rivest, A. Shamir, and L. M. Adleman. “A Method for Obtaining Digital
Signatures and Public-key Cryptosystems,” Communications of the ACM, pp.

120-126, 1978.
“XORP Design Overview,” XORP technical document, http://www.xorp.org/.

D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson,

C. Liu, P. Sharma and L. Wei, “Protocol Independent Multicast-Sparse Mode

-83-

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(PIM-SM): Protocol Specification,” RFC 2362, Internet Engineering Task Force,

June 1998

C. Diot, W. Dabbous, and J. Crowcroft, “Multipoint Communication: A Survey of
Protocols, Functions, and Mechanisms,” IEEE Journal in Selected Areas in

Communications, vol. 15, no. 3, April 1997.

S. Casner and S. Deering, "First IETF Internet Audiocast," ACM Comp. Commun.

Rev., pp 92-97, July 1992.

K. C. Almeroth, “The Evolution of Multicast: From the MBone to Interdomain

Multicast to Internet2 Deployment,” IEEE Network, January/February 2000.

S. Paul, “Multicasting: Empowering the Next-Generation Internet,” IEEE Network,

January/February 2000.

W. Fenner, “Internet Group Management Protocol, Version 2,” RFC 2236, Internet

Engineering Task Force, Noverber 1997

B. Cain, S. Deering, I. Kouvelas, B. Fenner and A. Thyagarajan, “Internet Group
Management Protocol, Version 3,” RFC 3376, Internet Engineering Task Force,

October 2002

D. M. Chiu, S. J. Koh, M. Kadansky, B. Whetten and G. Taskale, “Tree Auto-
Configuration Building Block for Reliable Multicast Transport,” Internet-Draft

(Expired), Internet Engineering Task Force, December 2003.

S. Kent and K. Seo, “Security Architecture for the Internet Protocol,” RFC 4301,

Internet Engineering Task Force, December 2005.

-84 -

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. Baugher, R. Canetti, L. Dondeti, and F. Lindholm, “Multicast Security (MSEC)
Group Key Management Architecture,” REF 4046, Internet Engineering Task

Force, April 2005.
M. Blaze and M. Strauss, “Atomic Proxy Cryptography,” Eurocrypt, 1998.

R. Mukherjee and J. W. Atwood, “SIM-KM: Scalable Infrastructure for Multicast
Key Management,” In Proceedings of the 29" IEEE Conference on Local Computer

Networks (LCN 2004), Tampa, FL, November 2004.

K. Y. Fung, “Network Security Technologies Second Edition”, ISBN:

0-8493-3027-0, Auerbach Publications, pp. 133-136, 2005.

S. Kent, “IP Authentication Header (AH),” RFC 4302, Internet Engineering Task

Force, December 2005.

S. Kent, “IP Encapsulating Security Payload (ESP),” RFC 4303, Internet

Engineering Task Force, December 2005.

A. Ivan and Y. Dodis, “Proxy Cryptography Revisited,” Network and Distributed

System Security Symposium (NDSS), February 2003.

M. Handley, O. Hodson and E. Kohler, “XORP: an Open Platform for Network

Research,” First Workshop on Hot Topics in Networks, October 2002.

R. W. Smith, “Advanced Linux Networking,” ISBN: 0201774232, Addison Wesley

Professional, June 2002,

“XRL Interfaces: Specification and Tools,” XORP technical document,

http://www.xorp.org/.

-85-

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

“Netfilter Hacking HowTO,” Netfilter technical document,

http://www.netfilter.org.

“XORP Router Manager Process (rtrmgr), ” XORP technical document,

http://www.xorp.org/.

“XORP Routing Information Base (RIB) Process,” XORP technical document,
http://www.xorp.org/.

“XORP Forwarding Engine Abstraction,” XORP technical document,
http://www.xorp.org/.

The Click Modular Router Project, http://www.read.cs.ucla.edu/click/.

“An Introduction to Writing a XORP Process,” XORP technical document,
http://www.xorp.org/.

“XORP MLD/IGMP Daemon,” XORP technical document, http://www.xorp.org/.
“XORP PIM-SM Routing Daemon,” XORP technical document,
http://www.xorp.org/.

J. Corbet, A. Rubjni and G. Kroah-Hartman, “Linux Device Drivers, Third

Edition,” ISBN: 0-596-00590-3, O'Reilly, February 2005.

K. Wehrle, F. Pahlke, H. Ritter, D. Miiller and M. Bechler, “The Linux Networking
Architecture: Design and Implementation of Network Protocols in the Linux

Kernel,” ISBN: 0-13;177720-3, Prentice Hall, August 2004.

A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, “Handbook of Applied

Cryptography” ISBN: 0-8493-8523-7, CRC Press, October 1996.

-86 -

[38]

[39]

[40]

[41]

[42]

[43]

R. Moskowitz and P. Nikander, “Host Identity Protocol Architecture,” Internet

Draft (Work in Progress), Internet Engineering Task Force, March 2006.
J. W. Atwood, “4n Architecture for Secure Multicasting,” Submitted, 2006.

“Netfilter Extensions HOWTO,” Netfilter technical document,

http://www.netfilter.org.
“Modular Exponentiation,” http://www.answers.com.

D. Ascher and M. Lutz, “Learning Python, 2nd Edition,” ISBN: 0-596-00281-5,

OReilly, December 2003.

L. L. Peterson and B. S. Davie, “Computer Networks: A System Approach, Third

Edition,” ISBN: 1-55860-832-X, Elsevier Inc., 2003.

[44] RSA Labs, “4 Cost-Based Security Analysis of Symmetric and Asymmetric Key

Lengths,” RSA Labs Bulletin,

http://www.rsasecurity.com/rsalabs/node.asp?id=2088

[45] D. E. Taylor, “Survey & Taxonomy of Packet Classification Techniques,” Tech.

Rep. WUCSE-2004-24, Department of Computer Science & Engineering,

Washington University in Saint Louis, May 2004.

-87-

