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ABSTRACT
Adaptive Neural Networks Control for Unknown Flexible Joint
Robots and Piezoelectric Actuators

Han YAO

In the thesis, motivated by the well-known universal approximation capability
(input-output mapping) of the neural network (NNs), we have proposed adaptive NN
controllers for a Rigid Link Flexible Joint (RLFJ) robot manipulator with unknown
nonlinearities and piezoelectric actuator with unknown hysteresis, respectively.

For a RLFJ robot manipulator, the dynamic model is decomposed into two different
time scale models by using integral manifold method. The control torque consists of two
terms: slow and fast terms for two time scale models. A composite NN-based control
strategy is proposed for the position and velocity tracking of the manipulator. Two
multilayer NNs are used to approximate two unknown nonlinear functions. These two
NNs are tuned on-line without any off-line training. The stabilities of composite control
system have been proved. The boundedness of NN weights and control signal of systems
are guaranteed. Simulation results verify the developed control algorithms.

The feedforward multilayer NN is also further investigated to approach the
complicated nonlinear function in proposed hysteresis dynamics, which is described by
Duhem model. An adaptive NN compensator is designed for unknown hysteresis in a
piezoelectric actuator. A pre-inverse hysteresis function is well-structured and the effect
of the actuator hysteresis is cancelled. The simulation results are also presented to show

the effectiveness of the developed adaptive control scheme.
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Chapter 1 Introduction

1.1 Motivation

Over the last decade, interest in the control of robot manipulators has increased
significantly, since they are commonly used in the manufacturing industry such as
painting, welding and material handling in the manufacturing industry. In order to
increase the productivity and meet the high tolerance requirement, it is essential for the
manipulators to follow the desired trajectories as close as possible at the fast operational
speed. Many control strategies have been developed for the control of robot manipulators,
such as exact compensation of nonlinearities, robust adaptive algorithms, variable
structure theory etc. [1]-[4]. These control methods share the common feature that the
robot dynamics are modeled by the rigid link rigid joint (RLRJ) equations of motion.
Unfortunately, experimental evidence indicates that the assumption of perfect rigidity is
never satisfied exactly in the real world. As a result, those control strategies, which is
designed for RLRJ robot manipulators, is inadequate for the RLFJ robot manipulators.
The flexibility limits the system performance and introduce undesirable inaccuracies or
oscillations. In some cases, joint flexibility can even lead to instability if it is neglected in
the control design.

To deal with these problems, a number of control schemes based on the flexible
models have been developed to control flexible-joint robots. These methods include
feedback linearization [5, 6], singular perturbation techniques [7], sliding mode [8], and
robust adaptive controller approaches [9, 10]. However, these existing control schemes

have some drawbacks such as the complexity in deriving the expression of the control



signal and the computational cost of implementation.

On the other hand, several smart material-based actuators have been widely utilized
in today’s manufacturing industrial system like robot manipulator. Those smart actuators
fit well for micro-positioning devices in precision manufacturing engineering because of
their fast response, low-order and stronger driving force. However, hysteresis is common
in all these actuators, such as piezoceramics and shape memory alloys (SMAs). It
deteriorates both static and dynamic performance of systems, sometimes, even leading to
oscillation and instability. Therefore, designing control methods to compensate for the
hysteresis nonlinearity associated with piezoelectric actuator plays an important role in
the construction of these smart structures.

Recently, many NN controllers with closed-loop stability [11, 12, 13, 14] have been
proposed for various control applications, due to its ability of universal function
approximation. In the thesis, NN based controllers are developed for both controlling of a

RLFJ robot manipulator and compensating the hysteresis in piezoelectric actuators.

1.2 Literature review
1.2.1 Control strategies for RLFJ robot manipulator

More and more robot manipulators in today’s industry use compact Harmonic driver
as joint. It is used to replace the heavy and bulky drives because it can achieve better
mechanical structures, improve mobility, and offer the same gear ratios with much
smaller gear sizes [15,16]. All those advantages come from the utility of the non-rigid
flexible spine, which naturally results in increased flexibility at the robot joints. As a

result, robots with harmonic drivers will exhibit significant joint flexibility.



Actually, experimental and simulation studies on industrial robot manipulators
showed that these are two different flexibilities exist in robot manipulators: link
flexibility and joint flexibility [17, 18, 19, 20]. Both of them have a significant influence
on robot dynamics. Link flexibility, which refers to the elastic links, results in a
deflection of the link. Joint flexibility, which refers to the elastic joints, results in a
difference between the joint angle and the actuator shaft angle. Since link flexibility
depends on the link stiffness and length, it can be suppressed by increasing the links'
cross-sectional moments of inertia. On the contrary, joint flexibility cannot be
compensated as easily as link flexibility. As a result, the performance of a robot
manipulator depends on this control system to suppress the joint flexibility [21]. That is
the reason why, in real applications, robot manipulators always be treated as rigid-links
interconnected by elastic joints. Thus, the joint flexibility should be taken into account in
both modeling and control designing if high performance is to be achieved.

From the modeling point of view, flexibility introduces fast dynamics and additional
degrees of freedom. The motor shaft angle is no longer equivalent to the link angle and
the order of the related dynamics becomes twice that of rigid robots. A more complicated
mathematical model is needed to describe the behaviour of the RLFL robot manipulator
[22,23].

On the other hand, from the control designing point of view, those control schemes
for rigid robots, such as exact compensation of nonlinearities, robust adaptive algorithms,
variable structure theory, need to be adjusted for the high performance when the joint
flexibility is taken into account [24,25]. The control problems of flexible joint robots are

more challenging if uncertainties such as unknown payload variations and external



disturbances, unknown parameters in the system dynamics, are considered. Many
researches have focused on the control of flexible-joint robot manipulators such as
feedback linearization, singular perturbation, backstepping based control scheme, and

Neural Network based control strategies.

Feedback linearization
Feedback linearization is a well-known control approach for nonlinear systems.
Usually, it consists of two parts: nonlinear feedback terms to cancel the nonlinearities and
a designed control strategy for the equivalent linear closed-loop system. Feedback
linearization [3, 4, 17] is widely used to design the controller for rigid robot manipulator.
A feedback linearization approach [3] is used to calculate the computed torque control
signal and work as an inverse dynamics as shown Figure 1-1. The unknown dynamic
nonlinearities in the manipulator model such as load, link mass parameters, and friction
parameters are estimated on-line. A globally stable adaptive control scheme is designed

with the computed torque.



QOuter loop |

In feedback linearization, the position, velocity and acceleration of both links and
joints need to be measured due to the exact cancellation for the system nonlinearities
need to be measured. Moreover, the full knowledge of robot manipulator dynamic is

needed and it’s unrealistic for the precise knowledge of all the states. An asymptotic
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Figure 1-1 Computed-torque control scheme

observer [2] is designed based on only the position measurement of both link and joint to

estimate the joint speed. The convergence of a trajectory is ensured when the nonlinear

observer gain constant satisfies the suitable inequalities. However, the design of the

nonlinear observer is very complicated and easily subject to the disturbance.

In summary, feedback linearization algorithm is an option for rigid or flexible robot

manipulator control. The control performance depends on the knowledge of system

dynamics and states. For a precise tracking trajectory, an observer is required to estimate

the unknown system parameters and states.



Singular perturbation

Usually, the joint stiffness is large comparing with other parameters in a flexible
joint robot manipulator. Therefore, most singular perturbation control schemes are
designed under the assumption of weak flexibility. As a result, the robot manipulator
dynamics can be decomposed into two different time scale models: fast subsystem and
slow subsystem by using the singular perturbation algorithm. Then a corrective term is
plugged into the control law for slow subsystem (rigid robot manipulator) to compensate
the fast subsystem (joint elasticity). The singular perturbation algorithm is widely used
for the control strategy of the flexible joint robot manipulators.

In the category of singular perturbatioh techniques, the integral manifold scheme in
the context of composite control has been investigated [21, 24, 25]. The integral manifold
is a tool for reducing the order of the model, for example a 2n-order system dynamics can
be described by an n-order mathematical model. The approaches start with strategies
dealing with the flexible joint robot with known parameters and are later on extended to
the integration of composite control and corrective control methods to cope with flexible
joint robot with unknown parameters—so called “adaptive integral manifold” approach.
Research efforts have been focused on dealing with the effects of un-modeled dynamics
and system parameter variations using the reduced order model of the flexible-joint
manipulators. Although the reduced order model has the same order as the rigid robot
manipulator, the effects from flexible joints have already been considered in the model.

The concepts of feedback linearization, singular perturbation, integral manifold and
composite control have all been used for adaptive control of flexible joint robot

manipulator [24]. A corrected slow subsystem is augmented by a dynamical controller to



ensure an asymptotic tracking capability. With the corrective term, the close loop
dynamics of system become a linear system dynamics. The tracking problem becomes
tracking the slow output and stabilizing the corrected fast subsystem by using dynamic
output feedback. The major advantage of the proposed strategy is that the only
measurements required are tip positions, joint positions, and joint velocities. The new
strategy allows for smaller tip position tracking errors and its implementation does not
require any measurement of change rates of deflection variables with time. However, the
control law is too complicated to implement in the real-time control. Thus, the symbolic
manipulation software and fast real-time control technology is indispensable.

The algorithm includes the rigid control scheme for slow subsystem and a corrective
term for fast subsystem. It is also known as composite control algorithm because it
consists of two different control systems. A simple correction term is added to the control
law to damp out the elastic oscillations at the joints [25]. In this way, the fundamental
properties of rigid robot dynamics may be exploited to design adaptive control laws for
flexible joint robots that are robust to parametric uncertainty. The advantages of
composite control scheme are: first, the scheme is roughly the same as rigid adaptive
control scheme; second, the implementation of the controller needs only position and
velocity of joint, the acceleration and jerk measurements are unnecessary.

More recently, the singular perturbation method and the sliding mode control
techniques are combined to achieve classical control objectives for nonlinear flexible
joint robot manipulators with parametric uncertainties [26]. An observer is designed for
estimating the immeasurable components of the vector state of the controll law.

Furthermore, the observer-control scheme is applied to a model of a permanent magnet



stepper motor for regulating the angular position.

In summary, the approach using integral manifold approach can reduce the order of
the flexible robot manipulator dynamics by decomposing the system model into fast
subsystem and slow subsystem. With the compensation of a corrective term for fast
subsystem, those conventional control strategies for rigid system can be used in the
flexible case. No acceleration and jerk measurements are needed. That is the reason why
this thesis follows the same idea. The seeming drawbacks of the traditional integral
manifold method are its complexity in deriving the expression of the slow control and the
computational cost of implementation. These problems are more pronounced in the
adaptive integral manifold method [7]. Although the current advances in symbolic
software and parallel computing technologies have facilitated the computationally
intensive control algorithm, the symbolic computation remains intractable as it hinges on
the robot’s nonlinear model that is hard to be identified and verified. Moreover, the
symbolic computation of symbolic has to be carried out again whenever the RJFL robot

is changed.

Backstepping based control scheme

The backstepping technique starts from a known state space dynamics x = f(x,u).

A series of fictitious inputs signals &, &,,...,&, are defined to create series of new

dynamics x=f(x,&), &=&, &=¢,...,& =u. Thus, the original system is
described by a chain of integrators. With the knowledge of global asymptotical stability
of the error equationx = f(x,£), a series of error terms are defined and a series of

integrators are added into their input. As the result, a new feedback law for the



augmented system is developed and global asymptotical stability of system is guaranteed.
Recently, backstepping technique is used for developing the control scheme of the
flexible joint robot manipulators.

A backstepping control scheme is presented for flexible joint robot manipulators, and
asymptotic stability is ensured regardless of the joint flexibility value, which means the
results are not restricted to weak joint elasticity [18]. The control input is computed using
link and motor shaft position and velocity measurements. Joint position and velocity
tracking errors converge to zero with all the signals in the system remaining bounded.
However, the approach needs the inverse inertia matrix of the robot manipulator to
eliminate the link acceleration measurement. Therefore, the complicated control law is
needed to calculate the inertia matrix.

In summary, the backstepping based control strategy can be used to design the
controller for flexible joint robot manipulators without any restriction on the magnitude
of the joint flexibility or the need for acceleration measurements. The globally
asymptotically stable position tracking is guaranteed. No prior system knowledge is
needed. The seeming drawbacks of the backstepping based control strategy are: first,
complicated control law is indispensable and the computation burden is intensive; second,
persistent excitation of input signal for parameter adaptation is needed. These issues still
need to be analyzed for the further utility of this approach in flexible joint robot

manipulator.

Neural Network based control strategies

With the universal approximation property and learning capability [27], NNs have



been proved a powerful tool to control complex nonlinear systems with parameter
uncertainties such as RLFJ robot manipulator. Many researches have proposed to design
various NN based control schemes for the RLFJ robot manipulator.

With different structures, NNs can be decomposed into two types: feedforward and
recurrent. Both of them can be used in direct control for the RLFJ robot manipulator.
Recently, many NN controllers with closed-loop stability [11, 12, 13, 14] have been
proposed for various control applications. Due to its ability of universal function
approximation, NN has been successfully used to design controllers for RLFJ robot
manipulators [8, 28, 29]. Not like the traditional control strategies, NN based controller
does not need the completely formulated mathematical model, which usually is
unavailable or complicated.

NNs can be used to approximate the inverse nonlinear function to compensate the
flexible nonlinearities [8, 28]. In the above work, off-line training is used to obtain the
preliminary weights. Kwan et al. [11] proposed a robust NN backstepping control method
shown as Figure 1-2 for nonlinear systems and applied it to RLFJ robots without weak
elasticity assumptions. The NNs are used to approximate two very complicated nonlinear
functions. The controller does not require either a linear parametrizable model or an
off-line learning phase. The persistent excitation condition of certain signals is not

necessary either.
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A recurrent NN approach is presented for the motion control of constrained flexible
manipulators [30]. The developed control scheme can adaptively estimate the underlying
dynamics of the manipulator using recurrent NN. Based on the error dynamics of a
feedback controller, a learning rule for updating the connection weights of the adaptive
recurrent NN model is obtained.

In summary, with the universal approximation property and learning capability, NNs
have been proved a powerful tool to control complex nonlinear systems with unknown
parameters. It is widely used with adaptive robust control for guaranteed stability of
systems. The common usage of NNs is to estimate or approximate unknown nonlinear
dynamics. The Lyapunov theory is always used with NN to ensure stability of the entire

system, the convergence of the tracking error and boundedness of NN weight matrix.

1



1.2.2 Hysteresis Dynamic model

In today’s industry, the smart actuators are normally used because of their fast
response, low-order and stronger driving force. Hysteresis is common in all the smart
material-based actuators, such as piezoceramics and shape memory alloys (SMAs).
Hysteresis is general nondifferentiable, nonlinear, and unknown nonlinearity. In the other
words, a general hysteresis model is difficult to obtain due to its complexity. Many
different mathematic models are built to describe the hysteresis behaviour such as:
Preisach model, Prandtl-Ishlinkii model, and Duhem model. Those models can be
classified into two different groups. The first one is called physics-based such as
Jiles-Atherton model [31]). The other one is called phenomenology-based such as
Preisach operator [32]. Physics-based model are built on principles of physics, while
phenomenology-based model just produce behaviours similar to those dynamics without
any physical meaning. This section will give a brief introduction for some of these

hysteresis models.

Preisach model
The basic idea of Preisach model is to represent a large class of hysteresis operators

as an average of relays [32,33]. For a pair of thresholds (8, «) with S <a, consider
a simple hysteresis operator y, [u {1(¢), which is shown in Figure 1-3. With
¢ e{-1, 1}, the function

-1, u(®y< g
v(O) =7p.lu ClO=1 1, u(®)>a (1.1)
v(t), pLu®)La
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Figure 1-3: Preisach hysteresis model

Although in general the Preisach model does not provide physical insight into the
problem, it provides a means of developing phenomenological models that are capable of
producing behaviors similar to those of physical systems. For example, magnetostriction
phenomenon is a strong coupling between magnetic properties and mechanical properties
of some ferromagnetic materials. It is rate-independent when the input frequency is low.
Hysteresis, which is exhibited by magnetostrictive actuators, can be modeled by the

Preisach operator [32].

Prandtl-Ishlinkii model
The Prandtl-Ishlinkii (PT) model is commonly a rate-independent backlash operator.

It can be described as follows [34]

y(0) = H,[x,5,)(t)

= max{x(t) —r, min{x(f)+ 7, y(t - T)}} (1.2)

where x is the control input, y is the actuator response, » is the control input



threshold value or magnitude of the backlash, and T is the sampling period. The initial

consistency condition of the PI operator is

y(0) = max{x(()) —r, min{x(0)+r,y, }} (1.3)

The PI model is formulated to describe the elastic-plastic behaviour [35]. The
elementary operator in the PI hysteresis model is a rate-independent backlash or
linear-play operator. The main advantage of PI model is its less complexity. Thus, due to
its suitability for real time applications and the existence of a closed form solution for its
inverse, it is commonly used in the modeling of backlash between gears with one degree

of freedom.

1.2.3 Control strategies for hysteresis

There is an increasing usage of piezoelectric actuators in precision machining due to
their fast response, low-order and stronger driving force. An unavoidable nonlinearity of
these actuators is hysteresis, which refers to the input-output relation between two
time-dependent quantities that cannot be expressed as a single-value function [36]. It is
the key factor limiting both static and dynamic performance of the piezoelectric
actuators.

Hysteresis is general nondifferentiable, nonlinear, and unknown. In the other words,
a general hysteresis model is difficult to obtain because of the complexity of hysteresis
phenomenon. The existence of hysteresis will reduce the accuracy, introduce oscillation
and even cause the instability to the control system. Thus, it poses a challenge to the
controller design. Various approaches are designed to compensate the hysteresis such as

inverse hysteresis compensation, hysteresis partition compensation, and direct control

14



without constructing a hysteresis inverse.

Inverse Hysteresis Compensation
For eliminating the effect of hysteresis, one common method is to build a

feedforward inverse hysteresis function, as shown in Figure 1-4

(2% 7 :
pd i [ y
R "M / —Ey plant
€
Cpd + v Tpr Y
S » plant ——p

Figure 1-4 Inverse hysteresis compensator

The input control signal can be described as
T,=T,,+te,
where e, is the residue error caused by the mismatching of the inverse model.

Based on different hysteresis dynamic model, such as the Duhem model, and the
Preisach model, various inverse compensators [32, 37, 38] are designed. A parameterized

hysteresis model is presented and an adaptive hysteresis inverse is developed, which is
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capable of achieving a linear parameterization [37]. Another proposed controller contains
a feedback linearization control with a reference model and a sliding-mode control [38].
A fixed point and closest-match algorithm for approximately inverting the Preisach
operator is also presented [32].

NN is also a powerful tool for hysteresis compensation. Feedforward NN models are
used to describe the hysteresis behaviour in different frequencies with the knowledge of
some properties of magnetic materials, such as loss separation property to allow the
separate treatment of quasi-static and dynamic hysteresis effects [39,40]. The proposed
feedforward NN models for vector dynamic hysteresis are fast, require no large data set,
and apply standard NN algorithms. Taking [41] as another example, a modified
Luenberger observer and a NN are used to identify a general model of hysteresis. Then
the identification approach provides stable adaptation of the system. A recurrent NN is
designed [42] to compensate an unknown hysteresis.

In summary, inverse hysteresis compensation is a fundamental approach to
hysteresis. The basic idea of inverse hysteresis compensation is to construct an inverse
feedforward hysteresis to remove the effect of hysteresis phenomena. Then, the output

approximately approaches to the reference trajectory.

Hysteresis Partition Compensation

Hysteresis can be divided into two parts [43]: linear part and disturbance part as

shown in Figure 1-5
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Figure 1-5 Hysteresis partition compensator

The input control signal can be described as
T,=CT,+d,
where ¢ is a constant slop, d, is the disturbance caused by the hysteresis, which is

bounded.

In summary, an observer is usually designed in hysteresis partition compensation to
estimate those unknown states such as disturbance of the unknown hysteresis, excitation
force, and its derivative. For tracking the reference trajectory, the control scheme
contains an adaptive controller, a reference model, and a nonlinear observer. The

controller includes two parts: equivalent control and switching control. The equivalent



control is constructed to perform the desired control behavior; the switching control is

employed to ameliorate the robust performance.

Direct control without Hysteresis Inverse

In direct control method, a control strategy is designed for the whole system, which
is considered by fusing the hysteresis dynamics into the plant dynamics. Based on the
solution properties of the differential equation of hysteresis dynamic model, a robust
adaptive control algorithm can be developed without constructing a hysteresis inverse
[44].

In summary, the adaptive direct control algorithm can deal with a class of nonlinear
dynamic systems preceded by unknown hysteresis nonlinearities without constructing a
hysteresis inverse. The control law ensures global stability of the entire system and

achieves both stabilization and tracking within a desired precision.

1.3 Research objectives and main contributions of this thesis
1.3.1 Research objectives

In this thesis, the robot manipulator is considered as a two-link RLFJ robot
manipulator. The dynamic model of the system is derived by Lagrangian formulation.
The hysteresis is described by the Duhem model. NN presented in the thesis is
feedforward Multilayer perceptron (MLP). The main research objectives of this thesis
are:

1) To develop an NN based composite adaptive approach for a RLFJ robot

manipulator with unknown nonlinearities.



2) To design an adaptive estimator and a NN to build a dynamic pre-inversion
hysteresis compensator to compensate the effect of hysteresis.
3) To design a controller by fusing the hysteresis compensate strategy with the

adaptive control scheme for a piezoelectric actuator proceeding with hysteresis

1.3.2 Main contributions

In this research, NN based adaptive control schemes are extensively studied for

different nonlinear systems. The main contributions are summarized as:

Two multilayer NNs is used in each of fast and slow controllers to approximate two
explicit nonlinear functions in rigid model and flexible joint model to alleviate the
symbolic computational burden.

For the flexible-joint based component of the fast controller, a fictitious variable is
introduced in the design of the fast NN controller to provide sufficient damping for
the fast dynamics.

The hysteresis compensator is designed to reduce the effect of hysteresis by
constructing a pre-inverse function. Since the pre-inverse function is constructed
without considering the plant dynamics, this compensator can work within many
different systems.

All the NNs in both RLFJ robot manipulator control and piezoelectric actuator with
the hysteresis are developed to be tuned on-line without prior offline training.

All the NNs’ weight matrix update rules in both RLFJ robot manipulator control and
piezoelectric actuator with the hysteresis are designed using the Lyapunov theorem

extension [45] to ensure the system stability. It has been proven that the proposed NN
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controller guarantees the boundedness of tracking errors and weight updates.

1.4 Thesis Outline

The thesis is organized as follows:

In Chapter 2 some mathematical preliminaries is introduced. The mechanism and
structure of feedforward MLP is given.

In Chapter 3, the development of the adaptive NN based controllers for both rigid
and flexible joint robots are detailed and the system stability is proved.

In Chapter 4, the numerical implementation of the RLFJ controller is carried out and
the simulation result is given

In Chapter 5, the NN based compensator for hysteresis is designed and combined
with an adaptive controller for piezoelectric actuator. The whole system stability is also
proved.

In Chapter 6, the numerical implementation of the hysteresis compensator is applied
to an adaptive controller for a piezoelectric actuator and the simulation result are given

In Chapter 7, some possible future work and conclusion are given.

1.5 Conclusion

In this chapter, several issues regarding the design and implementation of the NN
based adaptive controllers for both RLFJ robot manipulator and piezoelectric actuator
with hysteresis are discussed. The motivation of the thesis is provided. An extensive
literature review on RLFJ robot manipulator and actuator hysteresis is given. The

research objective and contribution are presented in the thesis.
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Chapter 2 Mechanism and Structure of Neural Network

Artificial Neural Networks (ANNs) are inspired by the structure and functions of the
biological neural networks (BNNs) [46, 47, 48]. ANNs have some capabilities of BNNs,
such as storing information, processing information, self-learning, and justification. The
NN have been explored to approximate any function with arbitrary degree of accuracy
[49]. It can be trained to solve problem such as complex function approximation, pattern
recognition, classification and identification.

Neural networks can be categorized into two major types: feedforward networks and
recurrent networks. Although recurrent NNs have demonstrated strong nonlinear
characteristics in a large amount of research works, they suffer from the lengthy training
processes, which are not suitable for real-time control implementation. In the literature,
feedforward NNs are most popularly used for nonlinear system identification. A typical
example is the MLP, which is utilized to identify the dynamic characteristics of a
nonlinear system. The main characteristic of MLP—fast convergence makes it prime
candidate for adaptive control of nonlinear systems. In this Section, the mechanism and
structure of MLP are introduced. We also investigate the augmented MLP for

approximating the piecewise continuous function.

2.1 Mathematical Preliminaries

Given A= la,.jJ, B e R™" the Frobenius norm is defined by

|4l = (4" =3 a; @.1)
ij
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with #r(-) the trace. The associated inner product is (A , B)F =tr(A"-B) . The

Frobenius norm is compatible with the 2-norm so that "Ax"2 < ||A|| - ||x|

,, with AeR™

and xeR”.

2.2 Feedforward MLP

MLP is a network of simple neurons called perceptrons. The perceptron computes a
single output from multiple real-valued inputs by forming a linear combination according
to its input weights and then possibly putting the output through some nonlinear

activation function. The output is defined as
Ve =0(Q - X,) 2.2)
i1
where the o() is activation function of the neuron, » is the number of inputs to the

neuron k, @, isthe weight matrix. In general, we choose o(:) as the following three

types:

1. Threshhold function an example of which is

] if x20
=10 irx<o0

This function is also termed the Heaviside function.

2. Piecewise Linear

1 if x> Y4
o(x)=<x if u>x>-4
0 if x<-Y

3. Sigmoid Examples include
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o Logistic function whose domain is [0,1]

o(x)=——

1+e

o The hyperbolic tangent whose domain is [-1, -1]

—Qx

—€

cr(x)=1
l1+e

—as

o Algebraic sigmoid function whose domain is [-1, -1]

o(x)=

X
It has been proved that any sufficiently smooth function can be approximated
arbitrarily closely on a compact set using a two-layer NN with appropriate weight [50, 51,
52]. For the purpose of adaptive control design, this property of neural network is always
used to approximate continuous unknown nonlinear functions.
In this thesis, we will adopt a three-layer feed-forward neural network to work as a
part of our controller for the robot manipulator. Figure 2-1 shows the structure of a

three-layer neural network.
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Figure 2-1 Three-layer neural network structure

In Figure 2-1, we denote that x=[x, x, .. x,]' the input layer
o()=[c(), o(), .. o(),]" the hidden-layer; and y=[y, v, .. y, 1 the
output layer. If we define the three-layer weight matrix and bias vectoras V' =v,,,, b,

and W' =w_ ., b, respectively, the output of MLP is obtained as

n2

nl
Yi= ZI:ij ) O-l:zani X+ bvj| + bwi| Jj=12,.n3 (2.3)
i=1

k=1
Or in matrix form
y=W". oWV’ -x+6,)+86, 2.4
Here the activation function between input-layer and hidden-layer is set as purelin

and the activation function between hidden-layer and output-layer is defined as o(:).
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We can add the bias b, into the weight matrix V' =v _,  as the first column and set

the input vector as x=[x, x, .. x,,]° with x,=1. Handling the b, and
W' =w,, ., inthesame way, we have
y=W" oV’ x) 2.5)
Let S be a compact set of R", define C"(S) be the space such that the
map f(x):S—>R" is continuous. The NN (Eq. 2.5) can approximate function
f(x)eC"(S), xeR" as
fx)=w" oV -x)+e&(x) (2.6)
where £(x) a functional restructure error vector. If the nominal value of weight matrix

WT does exist to prove &(x)=0, we claim that f(x) is in the range of neural
network.
Remark 2.1: The nominal weight matrix is bounded by known constant
w|<w, 2.7
Remark 2.2: Assume restructure error vector &£(x) is bounded by known constant

leG < ey 2.8)

2.3 Augmented Feedforward MLP
2.3.1 Mechanism and Structure

Although MLP is proved to approximate the sufficiently smooth function to any
accuracy, it needs large number of NN nodes and training iterations to approximate

non-smooth functions (i.e. piecewise continuous), which are very common in most real
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industrial control systems. Such examples are friction, hysteresis, backlash and other
motion control actuator nonlinearities. For these piecewise continuous functions, the
feedforward MLP needs to be augmented to work as a function approximator. Results for
approximation of piecewise continuous functions or functions with jumps are given in
[53, 54].

Let § be a compact set of R", define C"(S) be the space such that the
map f(x):S—>R" is continuous. The NN Eq. (2.6) can approximate a function
f(x)eC"'(S), xeR", which has ajump at x=c¢ and is continuous from the right as

f)=W" oV -x)+ W, - oV,”  (x—c)]+&(x) (2.9)

where o(-), @(-) are the activation functions with &(-) a sigmoid basis function and

0 x<c

@() has the definition ¢(-)= (1_ oo Y , €(x) is a functional restructure
x2c
1+e'“"‘]

error vector and W7, W,T and V7, V" is an ideal constant weight matrix. The

structure of the augmented feedforward MLP is shown in Figure 2-2
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Figure 2-2 Augmented MLP structure

In this thesis, it is assumed that there exists such a weight matrix that ||g(x)|| En

with constante, >0, for allx € R", and the norm of the matrix is bounded by a known

constant |[W|<w, with W, >0.
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2.3.2 Piecewise continuous function-examples

Friction is a nonlinear phenomenon, which exist in almost all robot manipulator. It
depends on the system’s internal state such as contacting surface, lubricant, and
temperature. It can affect the overall performance of robot manipulator, including both
static and dynamic stability. It introduces tracking error and causes even system
instability.

The friction is usually modeled as a piecewise continuous function of velocity and

friction torque, which depends on the sign of velocity.

A Eriction [N
o [Nmj Viscous Friction

Ik

r

Mult-Vahuated ZLMM,,M’ K
a ZewoVelaBly ¢ SN sirbeck Effect

.
e

Constant Vielocity [m.d;‘.éﬁ

= f/f/ff“_‘r) Static Friction Level

Figure 2-3 Fiction description [55]

i

Coulomb Friction Level

The friction models such as Coulomb friction and viscous friction are introduced in

[56] as.
. dz
F(q)=0'0-z+0'1—d?+0'2-v (2.10)

where o, is the stiffness, o, is a damping coefficient and o, is a term account for
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viscous friction; v is relative velocity between the two surface. z is a internal state of

the system and it has the form as
z =g(v)-sgn(v) (2.11)

The friction model given Eq. (2.10) and Eq. (2.11) is characterized by function 8(*)

and parameters o,, o,, and o,. A detailed friction model for industrial controller
design is also given in [56] as:

F@@)=lay+a, ¢+ a,(1- 7] sgn(g) (2.12)
where «,,q, represent static friction; «, represents the viscous friction.

Friction model in Eq. (2.12) is highly nonlinear and discontinuous at zero. It can be
approximated by the augmented feedforward MLP in Eq. (2.9). Moreover, it is found that
the presented augment feedforward MLP has the ability to approximate functions with

jumps suitably [53,54].

2.5 Conclusion

In this chapter, the structure and the main definitions of the MLP are introduced. An
important mathematical preliminary is given for the further utility. The basic mechanism
and structure of feedforward MLP used in function approximation are given. An
augmented feedforward MLP structure for piecewise continuous function approximation

is also introduce with an example.
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Chapter 3 NN based Adaptive Controller Design for RLFJ Robot

Manipulator

A large number of control strategies have been proposed for the control of robot
manipulators because of their widely usage in today’s industry. When taking joints’
elasticity into account, integral manifold can reduce the order of the flexible robot
manipulator dynamics by decomposing the system model into fast subsystem and slow
subsystem. As a useful tool for designing the control schemes for RLFJ robot
manipulators, its seeming drawbacks are complexity in deriving the expression of the
slow control and the computational cost of implementation. In this chapter, a composite
approach to adaptive NN controller is propdsed for the RLFJ robot manipulator with
unknown nonlinearities. Those computation burdens are avoidable by using the NN as

the function approximator

3.1 Robot Dynamic model

An accurate dynamic model is very important for designing the model-based control
scheme. There are several approaches have been used in deriving the dynamic model of a
nonlinear system such as Lagrangian formulation and Newton-Euler equation. This
Section provides the background required for the robot manipulator, which is derived in
the Lagrange-Euler equation formulation. Some important properties of the robot

dynamic model are introduced.
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3.1.1 Lagrange’s Equation and Model Expansion

Lagrange’s Equation is a most frequently used method for a conservative system [57]

doL oL __
diog  og G-

where g the joint variables is generalized coordinates, 7 is torque and force on the

joint, and the lagrangian is the different between the kinetic energy K; and potential

energy P
L=K,-P (3.2)
A
iy
@) &, e ull
—
-~
-
_’/
-
a, 7
8
0 x

Figure 3-1 Two-link RR manipulator

In Figure 3-1, the robot manipulator is a two-link RR arm. To make the question
easier, we assume that the link mass are concentrated at the end of the links. We can write

the robot manipulator dynamic equation in vector and matrix form as
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|:(m, +my)a,” +m,-a,’ +2m,a,a, -cos@, m,-a,” +m,a,a,-cosb, [él}
m,-a,’ +myaa, -cosb, m,-a,’ 6,

_{—mza,a2(29.19'2 +0'22)sin¢92j|+{(m1 +m,)g-a,-cos, +m,g-a, cos(, +02)}
mya,a, -0," -siné, m,g-a,-cos(f, +6,)

=, (3.3)

Define

2

2 2 2

m +m)a’ +m,-a,” +2maa, cos, m,-a,” +maa, cosb.

M(q)=|:( 1 2) 1 X 2 2 2M1¥2 2 2 2 2¥1¥2 2 (3.4)
m,-a,” + mya,a, - cosb, m,-a,

C g
- +
V(q,Q) =|: ’7'22611612(29]9'22 aiz )Sln02:| (35)
mya,a, - 6, -sin6,
+ -a, -cosé + “a, 6 +6.
G(q) = (m, +m,)g-a,-cosb +m,g-a, -cos(6, +6,) (3.6)
m,g -a, -cos(6, + 6,)
and considering friction and disturbances, Eq. (3.3) can be rewritten as
M(q)-G+V(g.9)+G( D+ F(+T =7 (3.7

where M(gq)e R™ the inertia matrix, V(q,q) € R™" the coriolis and centripetal vector,

G(g)e R the gravity vector, F(q) the friction,and 7, the disturbance.

3.1.2 Properties of the Robot Dynamics
Properties 3.1: boundedness of the inertia matrix

From the definition of inertia Matrix M(q) in Eq. (3.7), it’s obvious that M(q) is
a symmetric, positive-definite and a nonlinear function of ¢ and it’s bounded by
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where m,, m, areknown positive constants

Properties 3.2: skew symmetry

The coriolis and centripetal vector V'(g,q) can be written as
V(9:9)=V.(9:9)¢ (3.9)
The matrix M -2V, is skew-symmetric.

g"-(M-2V,)-¢g=0 (3.10)

Properties 3.3: gravity, friction and disturbance boundedness
From the robot manipulator dynamic model, the bounds on the gravity term, friction

term, and disturbance can be dertved

IG(a)] < 8,(9) @.11)
IF@| < £ gl + 4, (3.12)
I, < a, (3.13)

where g,(q), f,. d,, a, arepositive scalars.

3.1.3 Dynamics with Joint Flexibility
In reality, the robot manipulator joint motor coupled to a load through a shaft that

usually has significant flexibility as shown in Figure 3-2.
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If the motor inertia defined as a diagonal matrix J =J" e R™", the joint damping
term as a diagonal matrix B=B" € R”", and the stiffness coefficients matrix as a

diagonal matrix K =K" € R™, the flexible joints robot manipulator system dynamic

model becomes
M(q)-G+V,(4,9) ¢+ G(@+F(@+T, +K-(g-9,)=0 (3.14a)
J-G;+B-q,-K-(g—q,)=7 (3.14b)
where ¢,4,§ € R" refer to the link position, velocity and acceleration, respectively,
4;,9;,4; € R", the motor shaft angle, angular velocity and angular acceleration,

individually, T, € R” the load disturbance, and 7 the control torque.

When taking the joints flexibility into account, we need to double the state variables
in the dynamic model. This causes that the dynamic model of a flexible joint robot is of
order four instead of order two for a rigid robot. Thus, the control problem becomes more

complicated when the joint flexibility is considered.
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Since joint stiffness is large compared with other parameters, we assume
K=Ky (3.15)
where y is a small parameter representing the inverse of stiffness and K, is on the
order of 1. Suppose J and B are very small and on the same order of . The rigid
model can be derived from Eq. (3.14a) and Eq. (3.14b) by assuming no elasticity at the
joints (i.e. y =0) andis given by:
(M(Q)+J]G+V, (0.9 +Bl- 4+ GO+ F(D+T, =7 (3.16)
Since the J and B are very small comparing with M(q) and V(q,9), Eq. (3.16)

becomes Eq. (3.7).

3.2 Control Objective
The control objective is to develop a position-tracking controller for an unknown
RLFJ robot dynamics Eq. (3.14a) and Eq. (3.14b) so that the link position follows a

desired trajectory. The tracking error of the robot is defined as
e(t) =q,(t)—q() (3.17)
where ¢q,(f) e R" is the given desired trajectory, which is continuous, and its derivatives

up to higher order are bounded.
A filtered error is defined as

r=é+A-e (3.18)

where A=A7 >0

The elasticity at the joints is large enough so that the system can be decomposed into
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a “slow” subsystem and a “fast” subsystem. From [22], the control signal 7 for the

whole system has the form as

T=T,+7,
where 7, is the slow partand 7, is the fast part, which is defined as:
7, =K, (4-4,)
Usually, we choose
K, =K, [y

with K, on the order of 1.
Define z as the difference between the link and motor position
z2=49,-9
The RLFJ robot manipulator dynamics becomes
M(q)-G+V,(4,9) §+G(D+F(H+T,-K-z=0

J-q;,+B-q,+K-z=71

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

Substituting control signal 7 Eq. (3.19), Eq. (3.20) and Eq. (3.22) into system Eq.

(3.24), one obtains:
JZ+(B+K,) z+K-z=1,-J-G—-B-q
Define an integral manifold as # = K -z and rewrite Eq. (3.25) as
J-h+(B+K,)h+K-h=K(t,~J-§-B-§)
where h=h(t,7,9,9,).

Under the assumptions Eq. (3.15) and Eq. (3.21), one obtains

y - J h+y-(y-B+K,) h+K, -h=K(t,—J-§—B-§)
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An approximate reduced-order flexible model can be derived by using a power series

expansion of the integral manifold h and control 7, around y =0. It is found that the
slow control component 7, is independent of fast control component 7. Let us denote:

h=hy+yh +0%*)
T, =1, +y 1, +0(*)

(3.28)
where 7, is the control input to the rigid model, 7, is the corrective torque term for
compensating the effects of y, the vector A, represents a zeroth-order approximation of
h andthe h represents the first order correctionto 4.
By substituting Eq. (3.28) into Eq. (3.26), we get
I b +0G )+ y(y-B+KDhy+ 7> 0B+K b +0(r )+ K, - hy+ y Kby +O(%)
=K, 1,+yK, 1, +0O(y*-KJ - §-KB-g (3.29)
By equating terms of the same powers of y on both sides of Eq. (3.29), we get
y' terms: K, -hy+Kh =K, 7, (3.30)
7’ terms: Kh =K, t,-KJ-§—KB-§ (3.31)
From Eq. (3.30), we obtain:
h=K'(K,-7,-K, h) (3.32)
and Eq. (3.31) is written as :
hy=K (K, 7,-KJ-§—KB-§) (3.33)
Eq. (3.32) tells us that the corrective control 7, relates to 4, and rigid control 7,
relates to A, .

From Eq. (3.27), the integral manifold » becomes:
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h=(z,~J-§—B-§)~K'[y -J-h+y-(y-B+K,) k] (3.34)
After substitution for K-z in Eq. (3. 23) and usage of Eq. (3.28), the system Eq.

(3.23) is rewritten as
M(q)-G+V,(4,9) ¢+ G(@)+ F(+T,
=7,-J-§=B-4-y-K'[r-J -hy+(y- B+ K,) h]+0(") (3.35)
The variables /4, and 4, are “fast” variables; the link variables ¢ and ¢ are
“slow” variables. Moreover, the rigid model Eq. (3.16) is obtained by setting y =0.
The control task is to design 7, and 7, so that the link position of robot follows
the desired trajectory. Both 7, and 7, are derived with complicate expression

especially in the adaptive integral manifold method [23]. In control application, NN is
usually used as a tool for modeling nonlinear function due to their universal function
approximation capability. In order to alleviate the symbolic computational burden in

calculating 7, and 7,, two three-layer MLP are utilized to approximate two complicate

nonlinear functions to form the control signals 7z, and 7,.

3.3 Rigid Joint Case

The control signal 7, is designed by considering the rigid joint model Eq. (3.16).

Combining the filtered error Eq. (3.18) and system dynamics Eq. (3.14a) and Eq. (3.14a),
one may obtain:

(M+J]-F=F -V, +Blr—7,+1T, (3.36)
where F, isa complicated nonlinear function defined as

Fy=M(q) (G, +A&)+V,(9,9) (4, + Ae) + G(q) + F(q) (3.37)
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Motivated by the universal approximate capability of NN, we utilize a

first-layer-fixed MLP to approximate the nonlinear function F, Eq.(3.37).

Fy=f(x)=W, o™ x)+&(x) (3.38)
Fy= fox) =W, -o(r" - x) (3.39)

o7 . T T

where x = [q g q c']'dT da sgn(q)” l}r , input-layer weight matrix V7 is
pre-fixed and W, is the estimated output-layer weight matrix W, .
Define the weight estimation error as
ARLARA (3.40)
The RLRJ controller is designed as
r,=F+K,r (3.41)
where r is the filtered error and K, is a gain matrix.
The update rule of the NN is designed as
W=T.oV x)- —k-T-|-W (3.42)

where '=T">0 and £>0.

The stability of controller is proved in the following theorem.

Theorem 3.1
For a RJRL robot Eq. (3.16), the NN controller Eq. (3.41) and update rule Eq. (3.42)

are applied. For a desired trajectoryg,(f), it is assumed that its time derivatives up to
third order are continuous and bounded. The controlled system’s filtered error r(¢) is

bounded and the tracking error e(¢) converges to a small neighbourhood around zero by
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appropriately choosing suitable gain matrix K.

Proof

Define the Lyapunov function as
L =%r7-[M+J]-r+%tr(VI~/T-F"-W)ZO (3.43)

where M, J are defined in Eq. (3.14a), Eq. (3.14b), and we have Eq. (3.8),
r=r’">0.

Differentiating Eq. (3.43) yields

L =%(7”T -[M+J]-r+rT.[M+J].r')+%rT-M-r+-é-tr(n7T-r—‘ AW T

=rT-[M+J]-i‘+%rT-M-r+tr(WT-F"-W). (3.44)
Introducing Eq. (3.36), Eq. (3.41) and Eq. (3.42), one gets:
L =r[-V, + B+K)r+F, +TL]+?lz-rT Mr+0fW" T (T o™ x)- ¥ +k T |- W)
+tor W T (-T-o(V" -x)r" +k-T- ||r" W]

=—rT-(KV+B)-r+rT-VIN’T~0'(VT-x)+VT'(TL +€0)+%”T'(M“2Vm)"’

+t{-W" o (r" - x) "+ W k-]
=—r" (K, +B)-r+r" (T, + &) +k-|r|- tr{W " (W -W)]
=T (K, +B)-r+r" (T, + &) + k- |- 7T -w =7 (3.45)
Since B is very small compared with X, its influence can be omitted. The

minimum eigenvalue of gain matrix K, is A, . Thus we have

vmin
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Ly S Aomie I+ @y + ) + k- P =77

S —ﬂ’v min

7+l (ag + &) + keI [P - 7))

<~y I+, + &)+ [, ke ]

~] e

s n -2

WZ
< A M -5 2

where a, + ¢, isthe upper bound of 7, +¢,.

If we have
> RIS e e ) 349
Or
l|V’~’H>W~/2+\/WN2/4+(ad +ey)/k (3.47)

, we can prove that I, negative. Inequality (3.52) shows that if the control gain K, is

chosen large enough so that

kWAt (a,tey)
l r

v min

(3.48)

where b, >0 represents the radius of a ball inside the compact set C, of filtered error

r(?).

Thus, any trajectory r(f) starting in compact set C, ={r| ||r"£b,} converges
within C, and is bounded. Then tracking error e(f) converges to a small

neighbourhood around zero. According to the standard Lyapunov theorem extension [43],
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this demonstrates the UUB (uniformly ultimately bounded) of both #(¢) and W.

3.4 Flexible Joint Case

Introducing tracking error Eq. (3.39) into system Eq. (3.35), we get
M-#==V, r+Fy—t,+T,+J -§+B-g+y -K'[y-J hy+(y-B+K,) h] (3.49)
From Eq. (3.28), we obtain:
M- r=-V r+F~-ty—-y-1 —0(7/2)+TL +
y K7y Ty (- BHK,) R+ KK TG+ B-g]) (3.50)
If the nonlinear function F, is defined as
F=K'ly-J-by+(y - B+K,) - h]+K;' K [J-§+B 4] (3.51)
, we derive the error dynamics as:
M7=V r+F—ty—y-1,-0()+y-F+T,. (3.52)
To implement F, Eq. (3.51), we need to compute 4, and /,. They can be
obtained by differentiating Eq. (3.33) and using ¢ from the rigid model Eq. (3.16).
Since A, is a nonlinear function related to rigid control 7,, F, is highly complex
nonlinear functionof 7z, ¢, ¢,and ¢.
Again, we utilize a second first-layer-fixed MLP to approximate the nonlinear
function F, Eq. (3.52).
F=4(0) =W ot y)+&() (3.53)
where y = [TOT g §¢" §" I]T.

The corrective term is designed as:
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n=F+K, ¢ (3.54)
where ¢ is a fictitious variable, which will be designed later.

Substituting the control strategy Eq. (3.41) and Eq. (3.54) into the error dynamics

Eq. (3.52), one obtains:
M i=-V, r+F—1,—-y-1,-00*)+y -F+T,
Mb=-V, +K)r-y-K,-o+F,+y-F +T, (3.55)
Design fictitious variable as
o=17,—-K z (3.56)
Using Eq. (3.28) and Eq. (3.24), one has
p=1,—(r,~J-§—B-@)+[Ky*-J -h+K 'y (y-B+K,) k]

g=-y 1,-0(")+y- (K y-J -h+K '(y-B+K,)-h+K, K;'(J-§ +Bg)]

(3.57)
Using Eq. (3.51), we get
o=y -F-y7,-00" (3.58)
Similarly, with the control strategy Eq. (3.54), and Eq. (3.58) becomes
o=y-F-7-K, ¢ (3.59)

Now, we have two different NNs based controllers—one is the first slow part 7,
based on a rigid NN F, function and the other is the second slow part 7, based on the
corrective NN F, function. The composite control scheme is shown as:

r=rs+2'/=TO+7~TI+O(y2)—Kfz' (3.60)

With Eq. (3.41) and Eq. (3.44), the overall control scheme is derived as shown in
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Figure 3-3

r=(F+K, r+y (F+K, 9)-K,z .

9 ¢ PD + t=B 4k, r +
+ :;P Controller "
- +
) o
| — PD |t~ 5 |gain
i » AN Controller "gl ¥
AR ) +
B
gy A | gain | Kz
""“1’8»! 1 &
5, ~TW~
g » Fi
,,,,,,,,,,,,,,,,, R g%in 1y =&y2
Figure 3-3 NN Controller structure
Choose the update rule for those weight matrix respectively as
W, =T,-0,(V" -x)- " —k-T,-|¢|- 7, (3.62)
Wi=T o,V ») (0" +r) kT, ¢ - 7, (3.63)
where ¢ =[rT ¢T]r,F=FT>0 and k>0,
and the weight matrix errors are derived as:
Wy =W, =-T,-0,(7" - x)-#" +k-T,-|&|- ¥, (3.64)
W= =-T-a('" - »)-(¢" +r)+k T, -|¢| - W, (3.65)
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For comparison, to design a controller by traditional singular perturbation strategy,
the procedure is much more complicated, tedious and time-consuming [24]. Firstly, the
system dynamics must be rewritten in form of designed integral manifold and new
system internal variables. Secondly, the recovery of the rigid model needs to be satisfied
by calculating the initial values of a series of new system coefficients. Thirdly, by using
Taylor series expansion around the zero of the integral manifold, the reduced-order
flexible model is obtained. Still, a series of new timers need to be computed recursively
by the form of differential equations. Finally, the controller for rigid case and corrective
term for joint flexibility is designed.

Another control strategy is also proposed to combine NN with traditional control
scheme for flexible joint robot [13]. Three fictitious error terms and control signal is
designed. Then, three NNs are used in those three new error dynamics. Not only the
controller structure but also the weight matrix update rules are more complex than our
controller.

Remark 3.1: The NN controller design algorithm was motivated by the integral
manifold method. In integral manifold procedure, an iterative algorithm has been
proposed to solve the manifold to which the slow dynamics converges by using Taylor
series expansion around the zero of the inverse of stiffness. The procedure becomes very
tedious and time-consuming. For different robots with different nonlinear models, the
procedure has to be repeated. While the proposed NN controller does not need such
computations and are applicable to different robots with different parameters due to the
on-line tuning.

Remark 3.2: No off-line weight tuning is needed. The initial estimation values of the
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weight matrix Vf{)r and W]T are set to zero. At the beginning, the controller becomes a
PD controller. The control scheme does not guarantee that 7, and W,T converge to the
true values of W," and W,” . From the above theorem, we may claim that the

boundedness of W, , W, and r(tf) arc guaranteed. Thus, the tracking error e(f) is

guaranteed to approach to zero.

Theorem 3.2

For a RJFL robot Eq. (3.14a), Eq. (3.14b), the NN controller Eq. (3.61) and update

rule Eq. (3.64), Eq. (3.65) are applied. For a desired trajectory g¢,(?), it is assumed that

its time derivatives up to third order are continuous and bounded. The controlled system’s

filtered error r(¢) and fictitious variable @(¢) are bounded and the tracking error e(r)
will converge to a small neighbourhood around zero by appropriately choosing suitable

gainmatrix K,, K ,and K,.

Proof

Define the Lyapunov function as

1 - Y T 1 =T -1 57 V4 ~T -1 53
L, =—2—r -M-r+—2—(p -(o+—?:tr(Wo T ~WO)+—2-tr(W] I, W) =20 (3.66)
Differentiating the above function yields

L, =-;—(fT~M'r+rT~M-i’)+%rT~M~r+—g—(¢T-¢7+¢T-(p)

'*'?,;'tr(ﬁ/’()T’ro—1 ~VI~/O+VI~/0T-FO_]-Wo)+—§tr(VI71T-F1'1~I/I~/]+VI~/IT'I‘1_‘ Wl)
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L, =rT-M-i”+%rT M-r+y-@ - o+orW, T, -V?())+y'tr(V71T.ﬂ_l '7’1.71)
(3.67)
Introducing Eq. (3.55), Eq. (3.59), Eq. (3.64) and Eq. (3.65), we obtain:
L=V, + K=K, o+ Fyty - Fleor’ Mor iy (Fi=K,-0)
+ o) TN Ty oV - x) 1" + k- T, W)
+y-0fW LT (0 y) 0" =T o (V7 - p) " + kT || W]

=—rT-Kv-r—rT~Ku~¢+rT-ﬁo +rT-}/~I?; +—;—rT'(M—Vm)~r

~7-9" K, oty  F+ul-W, o -x)-r" + W k|- Wy)]
AU ARSI AR TGRS IR L ANLE RO
=" K,-r=r" K, -o+r" FE,+¢r" -y FE—y-o" K, -o+y-9p" - F
oty R B A ) -7 kA )
=1 K, r=r" K, -o+r (g+&)-y-¢" K, -o+y-9" &

+ (W, k|- W) +y - er BT k|- )

K

K ~ N
Defining Q =|: OV I”{ } and W =diag{W, y-W,}, W=W —W ,we acquire:
)/c

L=-&.0-8+r (e +&)+y @ - +k-|&|- (W -W-W" W) (3.68)

Thus we have

L <Al +el- e + kel w0 w - 7],

L <=2+l e + k-] 7], -7 - 7], (3.69)
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where 4 is the minimum eigenvalue of O and &, = maxq.s0 + £1| 7~|£1|), Wy, is

0 min

the bound of the ideal weight matrix W,
And o), w75 <, - -,
We have

L2 < _/‘{’Q min

R TR = R S

Ly <Al Vg I~ £ =K, W =[], 0

and A0 min "5“ —&y k- (”W”F Wy - HW”FZ)
2
A Bl 2 (], -y
If we have
ﬂQmin' 5"—81\’ _k.W 2 >0
Iel> k- W,/v:/4 + &y (3.70)
Q min

or

||”~’HF >Wy[2+ W, [4+ey [k (3.71)

, we can prove L, negative. Inequality (3.71) shows that if the control gains X 0 K,»

and K, are chosen large enough so that

kW' /4+e
———————-—')’1/ N<b¢
0 min

where b, >0 represents the radius of a ball inside the compact set C, of filtered error
s().
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Thus, any trajectory &(¢) starting in compact set C, = {r,"| "/,’" < bg} converges
withinC, and is bounded. According to the standard Lyapunov theorem extension [45],

it demonstrates the UUB (uniformly ultimately bounded) of both &(¢) and W.
The overall NN controller structure is shown as Fig. 3.1. The control algorithm is

summarized as the following steps.

Step i With Eq. (3.17), and Eq. (3.18), the filtered error r(¢) is obtained.

Step ii Following the control strategy Eq. (3.41), the control signal 7,(¢) is calculated.
Step iii The fictitious variable ¢(#) is obtained by Eq. (3.56).

Step iv Following the control strategy Eq. (3.54), control signal 7,(¢) is computed.

Step v The overall control signal 7(¢) is calculated using the control scheme Eq. (3.19),

Eq. (3.20), and Eq. (3.35).

3.5 Conclusion

The dynamic model of RLFJ robot manipulator is decomposed into two different
scale models by integral manifold theory. The control objects are also defined. In the
proposed adaptive NN controller, which is designed for a RLFJ robot manipulator with
unknown nonlinearities, two NNs are used to approximate two complicated unknown
nonlinear functions in both fast and slow control components. No off-line training is
required for NNs. The control algorithm and the weight matrix update rule are derived
from Lyapunov theorem extension. The stability and the boundedness of tracking error of

this unknown RLFJ robot manipulator have been proved. Simulation results in chapter 4
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show that the proposed NN controller outperforms the adaptive composite control

method and can be applicable to unknown flexible robots with a larger range of stiffness.
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Chapter 4 Simulation results

In this chapter, the effectiveness of the proposed control scheme is demonstrated on a
two-link RLFJ robot manipulator, which can be described in the form of Eq. (3.14a) and

Eq. (3.14b), in which

a+b-cos(q,) c+—121~cos(q2)

M(q) =
c+—-2—~cos(q2) c
g sing) —2-(dy ) sinay)
Vm(q,q')=
5"?1'Sin(%) 0
o) = d - cos(q,)+e-cos(q,)
@)= e-cos(q; +9,)

F(g) = {35+1.1. e_so.l‘i'| +0.9(1- e"ﬁslq"l )} -sgn(q,)
(38+1.0- 7%l +0.951 - ™M1} . 5gn(g,)

a=0"-my+1> (m +m,) b=2.1-1,-m, c=1"-m,

d=(m, +m2)'l1'go’ e=m,-l, g,
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The parameter values are shown in Table 4-1.

Table 4-1 Parameter values of RLFJ system

System Parameters Values
Link 1 length (m) 1
Link 2 length (m) 1
Mass of link 1 (kg) 0.8
Mass of link 2(kg) 23
Gravity acceleration (m/s2) 9.8

4.1 Control performance of rigid case
Assuming the elastic coefficient y =0, the dynamic model of rigid joint robot
manipulator is given by Eq. (3.21). The inputs to the NNs are given by
x=li" o ¢ i 4 s 1f
A |
Two input reference signal are chosen as desired two joints positions:

¢y =2-sin(0.17-¢t) andgq,, =3-sin(0.1z-¢#). The control objective is defined as to
make the rigid joint robot joint angle ¢=[q, g¢,] follow the given desired joint
trajectory g, =[q,, g,,J - The gains are selected as: A =[20 1], K, =diag{50 50},

I, = diag{lO 10}, and k =0.1. The system responses under the control of the proposed

NN-based controller are shown in Fig. 4-1.
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Figure 4-1 Performance of NN controller with y =0, K =diag{l00 100}
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(2) Actual (dashed line) and desired (solid) joint ¢, angles (b) Error ¢, -gq,,
(c) Actual (dashed line) and desired (solid) joint ¢, angles. (d) Error ¢, —gq,,,

(e) Bounded control torque of joint u, (f) Bounded control torque u,

4.2 Control performance of flexible case
The flexible joint parameters are J =diag{0.3 0.3}, B =diag{0.02 0.02} ,
K =diag{100 100}. The inputs to the NNs are given by

T T T

x=li" ¢ g a7 a) sen@ 1f
y=l' o & & 1]
Two input reference signal are chosen as desired two joints positions:

g,y =2-sin(0.17-¢) andg,, =3-sin(0.17-t). The control objective is defined as to

7

make the flexible-joint robot joint angle ¢=[g, g¢,] follow the given desired joint

trajectory g, = [q,, ¢,.] - The gains are selected as: A = [20 l]T , K, = diag{SO 50},
K,=diagl5 5}, K,=diag3 3}, T,=diag{l0 10}, T, =diag{20 20}, and
k =0.1. The system responses under the control of the proposed NN-based controller are

shown in Fig. 4-2.
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Figure 4-2 Performance of NN controller with K = diag{l00 100}

(a) Actual (dashed line) and desired (solid) joint ¢, angles

(c) Actual (dashed line) and desired (solid) joint g, angles.

(b) Error ¢, —q,,

(d) Error q,—q,,,



(e) Bounded control torque of joint %, (f) Bounded control torque u,

For a comparison of performance, we have implemented the adaptive manifold
scheme [23] by using the same control parameters. The simulation results are shown in
Fig. 4-3. Please note that an unknown friction term is added in the robot model, which

makes the control problem more challenging than that in [23].
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Figure 4-3 Performance of adaptive integral manifold scheme [23]
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The simulation results show that the proposed NN-based controller outperforms the
adaptive manifold approach with simpler implementation. The NN is tuned on-line

without any preliminary off-line training.

4.3 Robustness test

In order to test the robustness of the controller, we change the system parameters to

l,=12m, [,=08m, m =1lkg, m,=2kg and apply the same NN-based controller

to the system. The system responses are shown in Fig. 4-4.
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Figure 4-4 Performance of adaptive integral manifold scheme [23] controller with 20%

change of system parameters

(a) Actual (dashed line) and desired (solid line) joint g, angles (b) Error ¢, —¢,,

(c) Actual (dashed line) and desired (solid line) joint g, angles (d) Error ¢, —g,,

For a comparison of performance, we still change the system parameters to
L=12m, [,=08m, m,=lkg, m,=2kg and implemented the same adaptive

manifold scheme [23]. The system responses are shown in Fig. 4-5.
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Figure 4-5 Performance of adaptive integral manifold scheme [23] controller with 20%

change of system parameters

(a) Actual (dashed line) and desired (solid line) joint g, angles (b) Error g, —¢q,,

(c) Actual (dashed line) and desired (solid line) joint ¢, angles (d) Error ¢, —q,,

From the above results, we observe that the proposed NN controlled system gives a
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good response when the system parameters are changed within 20% percent range. The

test results show that the NN controller owns the ability to deal with the system

uncertainties.

4.4 Stiffness parameter

Further simulation runs have been carried out to test the effect of stiffness variation

to the controller.

We run the same controller using two stiffness parameters:

K = diag{300 300} andK =diag{30 30}. The system responses are shown in Fig. 4-6

and 4-7. The results demonstrate that the proposed controller can deal with relative large

range stiffness change.
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Figure 4-6 Performance of NN controller with stiffness parameters K = diag{300 300}
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(a) Actual (dashed line) and desired (solid line) joint g, angles (b) Error g, —gq,,

(c) Actual (dashed line) and desired (solid line) joint ¢, angles (d) Error ¢, —gq,,
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Figure 4-7 Performance of NN controller with stiffness parameters K = diag{30 30}
(a) Actual (dashed line) and desired (solid line) joint ¢, angles (b) Error ¢, —¢,,

(c) Actual (dashed line) and desired (solid line) joint ¢, angles (d) Error ¢, —q,,
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4.5 Conclusion

Fig. 4-1--4-7 shows the simulation results of applying the NN controller to RLFJ
system for tracking desired signal. We can see that a very good tracking performance is
obtained. The NN controller can indeed improve the tracking performance without
resorting to high-gain feedback. In addition, we do not even need to know the explicit
parameters of system. Moreover, the NN controller can be implemented in a wide
stiffness parameter range. This is a significant advantage since the NN controller can be

applied to any type of flexible or rigid robots with little modification to gain parameters.
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Chapter 5 NN based Adaptive Compensator Design for unknown

Hysteresis

With the increasing usage of piezoelectric actuators in precision machining, many
researches have been focused on the compensator design based on various hysteresis
models since it is an unavoidable nonlinearities of these actuators. In this chapter, an NN
based adaptive compensator is proposed for a piezoelectric actuator with unknown
hysteresis. By analyzing the solution of the differential dynamic model of hysteresis [58,
59], which is described by Duhem model, a dynamic pre-inversion compensator is built

to cancel the effect of the hysteresis.

5.1 General Duhem model

Many different mathematic models are built to describe the hysteresis behaviours
such as: Preisach model, Prandtl-Ishlinkii model, Duhem model. Among these, the
Duhem model and Preisach model are most popular in recent research because both of
them are capable of representing many forms of hysteresis and mathematically tractable
for design control. Considering its capability to provide a finite-dimensional differential
model of hysteresis [58,59], this thesis will adopt classical Duhem model in a
piezoelectric actuator. Some important properties of the Duhem model are also
introduced in this Section.

As shown in Figure 5-1, 7, is the actuator output, 7, is the control input.

br
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Figure 5-1: Piezoelectric actuator with hysteresis

The Duhem model is used to describe hysteresis H(f) , which appears in

piezoelectric actuator, by the following mathematical model as shown in Figure 5-2

Vo o ey =7 122
= ¢ ’dtl WA Tpr]"'dt g(v)

5.1
or it can be write as
gﬂz{a-[f(v)—rp,]+g(v), 50
dv —a-[f(v)-7,]1+g(), v<0 (5.2)

where a is positive number.

Hysteresis

Figure 5-2: Duhem hysteresis model
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The Duhem model is a rate independent operator, with input signal v,v and output
signal 7,.In Eq. (5.2), g(v) can be defined as the slope of the model, and f(v) can
be defined as the average value of the different between upward side and downward side.

Property 5.1: f(v) is a piecewise continuous, monotone increasing, odd function
with a derivative f'(v), that is not identically zero. For large value of input v(¢), there
exist a finite limit f'(c0);

JW)==f(=v), limf'(v) <o (5.3)

Property 5.2: g(v) is a piecewise continuous, even function with limiting g'(c0)

for large value of input v(r),
g(v) =g(-), limg'(v)<oo (5.4)

It’s has been shown that Duhem model can describe a large class of hysteresis in
varies materials, such as magnetic, shape memory alloy, which are unavoidable in

actuator. One widely used pair of functions of f(v)and g(v) are

a-v,+a,(v-v,)  for V>V,
f(v)= a,-v for |v| <v, (5.5

—a,-v,+a,(v+v,) for v<-v,

gv)=a, (5.6)
with v>0, a>0, a,>0, 1>a,>0

Introducing Eq. (5.5) and Eq. (5.6) into Eq. (5.1), we have
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a-va v, +a,(v-v,)-7,]+a,v
a-va,-v-r,]+a;-v
a-vl-a,-v,+a,(v+v,) -7, ]+a,v
—a-v[r, —a, v, —a,(v-v)]+as v
—a-V[r, —a -vl+a,v

s

—a-V[r, +a v, —a,(v+v)l+a,-v

Eq. (5.7) can be solved for 7,

-

a,-v—f v20 and v>v,
a; - v—f v20 and |v| <v,
a, v—fy v20 and v<-vy,
T, =3
pr .
a, V- fu v<0 and v>v,
a; V= fos v<0 and |v| <v,
a, v— fy v<0 and v<-v,
with

-

4

\

which is a complex nonlinear function.

Tprv=(a1'Z1+a2'Zz)'V
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v20
v>0
v20
v<0
v<0

v<0

S =(a, v, —T,,,O)~e—“(v'v°) - e'“'vﬂ)(% —a)-e*Sd¢
S =(a, v, _Tpro)'e"“(v“"’) —e J:)(a3 —a,)-e*“d¢ +(a,—a,)-v, V20 and v<-v,
S =(a, v, -—rpro).ea(v-vo) — eV J:,(% —az).e-a-é’dg —(a,-a,)-v, V<0 and v>v,

Jas=(a, vy —7,,) e ea'v'l:)(% —a)-e*d¢

Sos =8y vy =7, =& [ (ay—ay)-€79dS +(ay @)y, V<O and v<-v,
0

and
and
and
and
and

and

V>V,
|v| <v,
V< -y,

5.7
V>V,

]v| <v,

v< =V

(5.8)

S =(a,v, —rp,0)~e'“(”"”°) -e Jj (a,—a,)-e*°dl —(a,~ay)-v, v20 and v>v,
L

v20 and |v|£vs

v<0 and |v| <v,

(5.9



_(le'Zx'Z3+f;2'Zx'Z4+f;3'Zl'Zs+f24'Z2'Zs'*'fzs'xz'ltz"'fza'xz‘zs)

(5.10)
where is a indicator functions: _Jb =0 _J0 v20 v
d FAT0 veo 22T v<0” BT 0 veo”
)1 ]v|£vs 1 v<y,
e = 0 |v|>vs’ s = 0 v2—y,
Following the definition of the indicator functions, we get
LX=0, n+20=0L% 2 2=0, x+2,+¥=1, Zkz':)(k (5.11)

By defining 3, =%, = %; =%, = X¥s =0, we have
fpr =(al'Z1+a2.ZZ)'v

‘(f21'Zl'Za"'fzz'7(1'?(4'*'].{23'751'Zs"'fu'lz'lz"‘fzs‘lz'7(4+f26‘?(2'7(5)

(5.12)

Remark 5.1: From the definition of y,, the indicator function is a step function,
which jump between 2 values: 0 and 1. As a result, ¥, =0 except those jump points, at
which j#, — o0, For convenience, we set j, =0 at these jump points. Actually, the

updating rule for the NN controller is stopped in these skip-point and all the parameters
are kept as the last updating values. That is to say, when controller works under those

conditions, it will skip those time steps.

5.2 Control Objective

In order to eliminate the effect of hysteresis to the whole piezoelectric actuator
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system, an NN based hysteresis compensator is design to make the real control signal 7,
approach the desired control signal 7, . Figure 5-3 shows a schematic of inverse control,

where H(-) represents the Duhem model. The input to H(-) is obtained through
inversion of HI(-). The goal of the hysteresis inverse function is to guarantee the

integrated system stability make the error between the reference trajectory 7,, and the

achieved trajectory 7, approach zero.

, r. =7
...f}i,m(.)_v_.lm(,) r_

Figure 5-3: Structure of hysteresis compensator

5.3 Compensator design for Hysteresis

In presence of the unknown hysteresis nonlinearity, the desired control signal 7,
for the piezoelectric actuator is different with the real control signal 7,,. Define their

€ITor as

T, =TT, (5.13)

Differentiate Eq. (5.13), yielding

T =t~ (5.14)

pr pr

With Eq. (5.12), we have

T,=7,,—K, v+F (5.15)

pr
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where F, =/, 1 13+ fn 20 'Z4+f23 X Xs +fz4'Zz‘Z3+f25 X2 'Z4+f26 WARVAY
and K, =a,-y,+a, 1,
Again, we utilize a second first-layer-fixed MLP to approximate the nonlinear

function F;.
Fy =W, o W)+ W oV (h=cy)]

W @ulV | (=) Wy @V < (B =33)]1+ &,(h) (5.16)
where h:[rpd T V V l]r, T, 18 the initial value of the control signal, VZT,
VfZIT, VmT, and VmT are input-layer weight matrix, W,", WmT, szzT, and
WﬂzT are output-layer weight matrix, c,,, ¢, and ¢, are jump points, and o(:),
0,(), @,(),and @,,(-) are the activation functions. Output-layer weight matrix WZT ,
Wf21T, WmT, and WmT are trained the same way, including threshold weights. Weights

v, Vﬂ]T, VmT, Vf23Tand threshold ¢,,, ¢y, ¢, are fixed.

To construct a reasonable hysteresis model, the following properties will be utilized:

Property 5.3: There exist known constant a,,, and a,,, such that a, and aq,
satisfy a,,a, e[amin A -

Property 5.4: Unknown nonlinear function F, is bounded by a known constant

TAR:E

Then, design a compensator as the Figure 5-4 shown

v=gdk, T, T, WZT o, (V7 'h)+Wf21T '¢21(Vf21T -h)

+ szzT : ¢22[Vf22T (h=v )]+ Wf23T : ¢23[Vf23T (h+v)l} (5.17)
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2
where A= ami‘j is an estimated constant, which satisfy 0< 2<1 with the known
o}

~

a -a,

boundary of a,,a,€[a,, a,.], k, is a positive constant, &, &, is the estimated

value of a,, a, and W, szlr, WmT, and er are the estimated output-layer

weight matrix W,", Wﬂlr, szzT,and er.

T

Hysieresis

L R S

Hystoronis
Compensator

Figure 5-4 Hysteresis compensator structure

Introducing Eq. (5.16), Eq. (5.17) into Eq. (5.15), we get

o=k 1K, T (= oK) g + (= KW, oV )+ W, o (VT k)

or

7.
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+(1-4-K,) {WfZIT P (szzT -h)+ I/f/fzzT '¢22[Vf22T “(h=v)]+ anr ‘¢23[Vf23T (h+v)l}

+ W/ZIT ' ¢21(Vf21T ~h)+ szzT g2 [szzT “(h=v)]+ WfBT '¢23[Vf23T (h+v)]+&,(h)

(5.18)

where v, =w, - WzT (5.19a)
szlT = leT - W/le (5.19b)
W =W, W, (5.19¢)

Wi =W, =W,y (5.19d)

If we choose weight matrix update rule as

W, =T, 0,07 -h)-%, +k, - Ty [ 7, (5.20a)

Wi =T @V )T 4 b Ty [ (5.20b)

Win =T 0l (=%, 4k Ty [ )20 (5.20¢)

Wiy =T 0l (41 %+ Ty [ (5.20d)

where T, =0, >0, T, =0, >0, [, =T, >0, I,,=T,,3">0 and k, is

a positive constant

Define
Ohv,)=W," - c(V" -h)

+ W/le %% (VfZZT “h)+ szzr : ¢22[Vf22T (h=—v)}+ szsr ’ ¢23[Vf23T (h+v,)] (5.21)
And

Ohv,)=W," - c" -h)
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W 0V D)+ oV - (h=v N+ Wy, o[V -(h+v)]  (5.22)
We get
7, =k, K, T+ (1= K, ¢+ (1= - K,) - O(h,v)+ O(h,v,) + £,(h)  (5.23)
And the control rule Eq. (5.17) become

V=1, T, 4y + O] (5.24)
Design the update rule of estimator as

p=Proj(it, —n-%, @[t +6hy)) (5.25)

where 7 is positive constant. The Proj(-) is a projection operator, which is defined as

follows:
R=Proj(ft, —n-F, - f-[¢,,+0O(hv,)]=
0 if a=1 and 7%, -[t,,+6Mhv)]<0

2
if (hn_) <p<l1
a

—0F e[+ OY,)] or =1 and 07, [t,,+60v,)]=0

2
or ﬂz(am‘“J and n-?pr-[r'pd+@(h,vs)]S0

2
0 if ﬁ:[“mmj and 1%, (2,5 +O,v,)]>0
(5.26)
5.4 Composite adaptive controller and Hysteresis compensator

To provide precision control for piezoelectric actuator, we will integrate the

hysteresis compensator with an adaptive robust controller.
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For a piezoelectric actuator, the system dynamic model can be identified as a

second-order linear model coupled with a hysteresis [38]
m-y(O+b-y(O)+k-y(O)=k-c 7,00 (5.27a)
(0= ()] 527
where y(f) denotes the position of piezoelectric actuator, m, b, k denote the mass,
damping and stiffness coefficients. The hysteresis A(¢) is described by the Duhem
model as Eq. (5.5).
Given a desired position of piezoelectric actuator y,(f) € R", which is continuous

and its derivatives up to higher order are bounded, the tracking error of the piezoelectric

actuator is defined as
e, (t) =y,(t) - y(1) (5.28)
A filtered error is defined as
r,@)=¢e,(+A,-¢,() (5.29)
where A, =A pT >0 a designed parameter matrix.
Differentiating 7,(#) and combining it with the system dynamics Eq. (5.27a) and

Eq. (5.27b), one may obtain:
m . b mo . . b . 1
E'I"p :—'];'rp_rpd +n'(yd +Ap'€p)+7€—:-z'(yd +Ap'€p)+z'yd (530)
The tracking error dynamics can be written in other form as
m . b
—];—‘—C'-‘rp:—n‘rp-Tpd‘i‘YdT'ap (531)

where Yd=b}d+/\p~ép y,tA, e y,,]7 as the input signal, and define

73



1

P c

and 6, . are some known real numbers.

Design the adaptive controller as
oA
Tpa =K,y 1, +Y, -0,
The updating rule is designed as

6, = Projép @, -8-Y,r)

where S is positive constant adaptation rate diagonal matrix,

-

T
o :[fj— —k—é— ~—] eR® and we have 0
-c e

<0,

pmin

lf épi =

<0

p max

)

p max

i=12,3 where &

and [-(Y,

if apmin < gpi < ep max

A

{Projép(ép, _ﬂ'Yd'rp)}i=<“ﬁ'(Yd'rp)i or epiz

or pr =
qf gpi =

6

p max

6

pmin

0

pmin

and f-(Y,-
and f-(Y,-
and f-(¥,

B=

pmin

(5.32)

(5.33)

¢-e and
-1, <0
r); 20
1) <0
-r,); >0

(5.34)

Now, considering the piezoelectric actuator system with hysteresis nonlinearity. The

overall control strategy of integrated controller is shown in Figure. 5-5
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[ -1 Adaptive
! I
I | robust
¢ rubust |
| controller
ir—™ feedback |
| R .
H I T : fz- b4
7 | f gain :|___|_ﬂd_§, HI() L H(E ' Zy| Piezoelectricl 4
Ko | ] actuator
+ ] '
| e
“““““““““““ - Hysteresis
Compensator

Figure 5-5 Adaptive robust controller with hysteresis compensator structure

Theorem 5.1

For a piezoelectric actuator system described by Eq. (5.27a) and Eq. (5.27b) with
unknown hysteresis Eq. (5.1), with a desired trajectory g,(¢), the system tracking error
e,(?) is bounded with the adaptive robust controller and NN based compensator, which
has the structure described in Eq. (5.32) and Eq. (5.24), respectively. The adaptive robust

controller and the NN based compensator will tune following updating rule Eq (5.33), Eq

(5.34) and Eq (5.18), Eq (5.25), Eq (5.26). Assume there exists sufficiently large compact

set Q, e R*, i=1,...,n such that Z,eQ, forall ¢20. Then, the tracking error e, (f)

will converge to a small neighbourhood around zero by appropriately choosing suitable

gain matrix k,, and k,.

Proof

Define the Lyapunov function as
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1.
28

2

L= o+ ?pf+-;--tr(@Trz“@)+£;(ﬂ-Ka)2+ 6,-0, (8,-6,)

N |-

1m
2 k-c
(5.35)

We have L, 2 0'—/;’%%,, = —%—?—c—.rp — T, + v, -8,. Differentiate Equation (5.35),

yielding
m

N . — ~ s 1 . . 1 a A
L, = b+ T T, + (OTT, ‘®)+;(y—1<a).,,+z.(9p—ep)T.ep (5.36)

Introducing control strategies Eq. (5.23), Eq. (5.32), and the update rule Eq. (5.33),

Eq. (5.18), Eq. (5.25) into Lyapunov function Eq. (5.36), that is

+ i@ -1, &) +%(;¢ CK)Proj(f, ~n-%, il + W, oV B
+-;--(ép -8, -Proj; (6, ~B-Y,r,) (5.37)
From updating rule Eq (5.26), and Eq (5.34) we get
%(ﬁ—Ka) Prof(t, —n-%,- fi-Tty +O)

A

ST (B -pK,) b, 0T (- 0K,) O

A

<-F(-p-K)t, 0-7-(1-4-K) 6
1,5 o .
E.(ep -8,)" -Proj; (8, —B-¥,;-r,)<s—B-(6,-6,) Y, r,

So, we have
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L, < —(;l"—cnuk,,d)-rp2 —ky- 0K, B[ +E |- en = [EJr@76) (5.38)
Y N R A 1 PR AN TN EED)
where K, =k, a,, and @y =W,  + W,y +W oy + W sy
If we have
2
o> = '®NK,,/4 — (5.40)
Or
“I/IN/2||>W,V/2+\/W,\,2/4+.9N/kp1 (5.41)

We can prove L3 negative. Inequality (5.41) shows that if the control gain k,, and £,

is chosen large enough so that

2
k0, /4-¢, <h
Kb

(5.42)

where b, >0 represents the radius of a ball inside the compact set C, of filtered error
7,.(0).

Thus, any trajectory y,(¢) starting in compact set C, = {r| I < br} converges
withinC, and is bounded. Then filtered error of system 7, (r) and the tracking error of
the hysteresis 7, (f) converges to a small neighbourhood around zero. According to the

standard Lyapunov theorem extension [45], this demonstrates the UUB (uniformly

ultimately bounded) of r,(#), 7,(f) and 0.
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5.5 Conclusion

In the proposed adaptive NN compensator for unknown hysteresis, an augmented
feedforward MLP are used to approximate a complicated piecewise continuous unknown
nonlinear functions. No off-line training is required for the NN. The control algorithm
and the weight matrix update rule are derived from Lyapunov theorem extension. With
the designed adaptive controller for piezoelectric actuator, the stability of the integrated
system and the boundedness of tracking error of the piezoelectric actuator with unknown
hysteresis have been proved. Simulation results in chapter 6 show the effectiveness of the

proposed NN compensator in detail.
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Chapter 6 Simulation results

In this chapter, the effectiveness of the hysteresis compensator is demonstrated on a
piezoelectric actuator described by Eq (5.27) with unknown hysteresis.
The coefficients of the dynamic system and hysteresis model are identified in Table

6-1.

Table 6-1 coefficients of the piezoelectric actuator and hysteresis model

System Parameters Values
m (mass coefficient) 0.016
b (damping coefficient) 1.2
k (stiffness coefficient) 4500
c 0.9
a, 6
a, 2
a, 0.5
2 6

6.1 Control Performance of Hysteresis Compensator
Assuming piezoelectric actuator works without the hysteresis and controlled by the
proposed adaptive controller. Two input reference signal are chosen as desired two joints

positions: y,, =2-sin(0.17-¢) and y,,=3-sin(0.17-¢). The control objective is

defined as to make the output signal y=[y, y,] follow the given desired
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trajectory y, =[y,, y,.J - The gains of system controller are selected as:
p= diag{O.l 0.1}, k,i= diag{SO 50}. The system responses under the control of the

adaptive controller are shown in Fig. 6-1.

q arror
3 . 0.2 3
2 0.15
1 0.1}
0 0.05
-1 0
2 0.05
-3 - Reference -0.1
—————— Actual
K 5 rrorer10 15 20 013 10 20 30 40 50
time(s) time(s)
(@) )
0.2 RMS error g
0.15
0.1
0.05
8 10 20 30 40 50
time(s)

()
Figure 6-1 Performance of NN controller without hysteresis
(a) The actual control signal (dashed line) with reference (solid) control signal

(b) Error ¢ —g, (c) RMS Error g —g,

The responses of the same system with hysteresis but no compensator are shown in
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Fig. 6-2. In which, the gains of system controller are selected as: g = diag{().l 0.1},

k,, =diag{50 50}.

error q

4’0 50

2Otime(e*.)?;0
(@) (b)

25 RMS error q

2
15

1
05

| L. (RN

20‘time (3)30 40 50
()
Figure 6-2 Performance of NN controller with hysteresis but without compensator

(a) The actual control signal (dashed line) with reference (solid) control signal

(b) Error ¢ —q, (c) RMS Error ¢ —gq,
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The responses of the same system with hysteresis and hysteresis compensator are shown

in Fig. 6-3. In which, the gains of system controller are selected as: S = diag{O.l 0.1},
k= diag{SO 50} . The gains of hysteresis compensator are selected as:

K, = diag{20 20}, k,=diag{l00 100}, T, =T

' =Ty =T,y =diag{l0 10}, and

n=diag{0.1 0.1},

N

error ¢

[45)

- N

-3 — Reference
------ Actual 0 ‘ ‘ .
L 5 time(s)10 15 20 b 10 T 40 50
(a) (b)
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RMS error q

0.35
0.3
0.25

02
0.15
014

|
|
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f

LRI

tlme(s)

()

J
|

| o N

0 50

Figure 6-3 Performance of NN controller with hysteresis and hysteresis compensator

(a) The actual control signal (dashed line) with reference (solid) control signal

(b) Error ¢ —gq,

(¢c) RMS Error g —-gq,

The compensator’s input and output curve, the hysteresis’s input and output curve, and

the desired control signal and real control signal curve are given in Fig. 6-4.
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Figure 6-4 Performance of NN controller with hysteresis and hysteresis compensator

The compensator’s input signal u, (¢) and output signal v(f) curve

The hysteresis’s input signal v(¢) and output signal u,(¢f) curve

The desired control signal u,, (¢) and real control signal u,(¢) curve
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6.2 Conclusion

Fig. 6-1--6-4 shows the simulation results of applying the hysteresis compensator to
piezoelectric actuator system with unknown hysteresis for tracking a desired signal. We
can see that a very good tracking performance is obtained. The NN based compensator
can indeed improve the tracking performance by cancel the effect of hysteresis. In
addition, it is a significant advantage since the NN compensator can be applied to any

type of system dynamics to remove the hysteresis phenomena.
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Chapter 7 Conclusions and Future work

In the thesis, adaptive neural network (NN) controllers for a Rigid Link Flexible
Joint (RLFJ) robot manipulator with unknown nonlinearities have been proposed. A two
link RLFJ robot is studied using the proposed control schemes. The simulation results
reveal that the presented NN controller can indeed improve the tracking performance
without resorting to high-gain feedback. In addition, we do not even need to know the
explicit parameters of system. Moreover, the NN controller can be implemented in a wide
stiffness parameter range. This is a significant advantage since the NN controller can be
applied to many type of flexible or rigid robots with little modification to gain
parameters.

A piezoelectric actuator is also studied for the application of NN based hysteresis
compensator. The simulation results reveal that the proposed NN compensator achieves
good tracking precision with stabilization with parameter uncertainty. The compensator is
design separately for removing the effect of hysteresis phenomena. Hence, it can work
with other controller in various nonlinear systems proceeding with hysteresis.

The main contributions of this research are summarized as:

1) In RLFJ controller design, two NNs are utilized to alleviate the symbolic
computational burden by approximating two complicated nonlinear function of
both fast subsystem and slow subsystem.

2) A fictitious variable is introduced in the design of adaptive NN controller to
provide sufficient damping for the fast dynamics when dealing with joint

elasticity in fast subsystem.
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3) An augmented NN is used to approach a piecewise continuous nonlinear
function in hysteresis compensator design.

4) An NN based inverse hysteresis compensator is developed to cancel the
hysteresis effect.

5) The hysteresis compensator is used in a piezoelectric actuator with an adaptive
controller to track the desired trajectory.

6) All the NNs developed in both RLFJ robot manipulator control and piezoelectric
actuator with the hysteresis are turned on-line. No offline trainings are needed.

7) The system stability, boundedness of tracking errors and NN weight matrix in
both RLFJ robot manipulator control and piezoelectric actuator with the
hysteresis are guaranteed by Lyapunov theorem extension.

Possible future works are list as follows:

1) Due to the potential benefits to space robot and industrial applications, the
demands of flexible link robot manipulators are increased. The possible next
step research is to take the Link elasticity into account in these flexible link
robot manipulators.

2) In order to operate in real-time with high precision, the payload is an extremely
important issue for industrial application. The further research will be the
investigation for NN based control strategy with respect to a time varying
payload at the end of a robot manipulator.

3) Some assumptions are made for the hysteresis Duhem model during the
hysteresis compensator design. The NN based inverse hysteresis compensator

for general Duhem model and other hysteresis model will be the further
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research area.

This actual control signal of piezoelectric actuator is needed for the proper work
of NN based inverse hysteresis compensator. In reality, this signal is difficult to
measure. The possible next step research is to remove the necessity of this

signal.
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