AN AGENT SYSTEM UPON SEMANTIC WEDB
TECHNOLOGIES TO PROVIDE A FUNGAL GENOMICS

DATA WAREHOUSE

FARzAD KOHANTORABI

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FoOr THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

SEPTEMBER 2006

(© FArRzAD KOHANTORABI, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-20776-5
Our file Notre référence
ISBN: 978-0-494-20776-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

An Agent System upon Semantic Web Technologies to Provide a

Fungal Genomics Data Warehouse

Farzad Kohantorabi

Biologists and bioinformaticians are accustomed to going through analysis steps in
which they employ multiple data sources such as protein sequence and protein in-
teraction databases. However, biological sources have a distributed. dynamic, and
heterogeneous nature and finding the right source of data is not an easy task. There-
fore, the need for integrated biological data sources has received a fair amount of
attention from both computer and biology communities in the recent years.

In addition to that, access to biological data and service sources has become an
issue in the recent years due to the use of inconsistent terminologies. That is, biolog-
ical vocabulary is diverse in nature, and people do not use the same terminology to
describe their data and services. Therefore, finding the right service and interpreting
data received from multiple data sources is an issue.

In this research, we build a data warehouse containing integrated fungal genomics
data for multiple fungi species from multiple sources, a data schema for the integrated
data, transformers for changing the data from external sources to the integrated data

schema, and an agent based ETL system for the data warehouse.

11

Acknowledgments

No one successfully finishes his mission alone and I am not an exception. I would like
to acknowledge my supervisor, Dr. Gregory Butler, for his genuine knowledge, timely
support. and exceptional scientific vision and understanding. Without him this work
would never see the light of the day.

In addition, I would like to acknowledge my family for what they have been in
my life. My parents put a tiredless effort in bringing me up and showing me the way
of life, and my brothers never left me alone in the hard days and they always helped
me move forward. Without my family T would never be the person I am now.

Finally, I would like to thank my friends who supported me in all the stages of my
life. Specially A Arasteh who helped me in this thesis by taking the time and effort
to proofread this text. In addition to him, A Shaneh, B Zamani, M Behbahani, K
Hamidya, P Farzadmanesh, A Abarahamian, A Avanesh, N Javaher, M Fatahian, I
Rajaee, M Zolmajd and his lovely wife is a short list of their names. 1 treasure your

friendship.

Thank you all

L%?%a/ L%yéw/ﬁm/a'

v

Contents

List of Figures viii
List of Tables xi
1 Introduction 1
1.1 FungalWeb Project oo 5

2 Tools and Background 8
2.1 Ontology o 8
2.1.1 What is an Ontology? 9

2.1.2 How to Design an Ontology? 10

2.2 RACER 11
221 nRQL . o ., 12

2.3 FungalWeb Ontology 13
24 DECAF e 16
2.4.1 DECAF Architectureo 18

2.4.2 Middle Agentso 21

2.4.3 Messagingin DECAF 21

2.5 The Matchmaking Agent System 23
2.5.1 Provider Agents 24

2.5.2 Seeker Agents L 26

2.6 BioXRT 29

2.7 Extract Transform Load 33
The Data Warehouse 36
3.1 Data 38
3.1.1 Taxonomy e 39
3.1.2 Genes and Proteins L 40
3.1.3 Gene Ontology o 40
3.1.4 Gene Ontology Annotation 41
3.1.5 FunCat 42
3.1.6 Enzyme Classification, 42
3.1.7 Metabolic Pathways 43
3.1.8 ImterPro 43
3.1.9 ImterProScan 44
3.1.10 Saccharomyces Genome Database 44
3.2 Architecture 46
3.3 Loading the Data Warehouse 46
3.4 Facts L 48
3.5 Access ... 49
The Agent System 51
4.1 The Service Ontology o 54
4.2 The Architecture L 54
4.3 An Example Provider Agent 57
4.3.1 DECAF and Matchmaker Code 58
432 ETLCode 62
Discussion and Conclusion 69
5.1 Related Worko 69

vi

511 SRS . . o e
5.1.2 TAMBIS o
5.1.3 Biozon
514 Tavernao
52 Conclusion
5.2.1 Evaluation
5.2.2 Future Worko
Bibliography

A Configurations

A.1 BioXRT

B Data Files

vii

70
74
81

98
101
103

105

113

113

119

List of Figures

[Y

NeoRENe I e

11
12
13

UniProt search result screen
An example of a clags hierarchy in an ontology
nRQL examples from the FungalWeb ontology [SNBHBO5]
FungalWeb ontology sources [SNBHBO5]
Sample DECAF agent plan in the plan editor
DECATF system architecture [GDMO3]
Provider agent’s plan [ASO5]
An example of a provider agent’s advertisement
Seeker agent’s plan [ASO5] L
An example of a ConceptBasedQuery query
An example of an nRQL query
A sample BioXRT input file from FungalWeb project.
These two classes of data show an example of BioXRT’s parent and |
child relation in the FungalWeb data warehouse. org_feature is where
we keep features of an organism, one of which is a gene feature. Details

of a gene feature is kept in gene.xrt which is a child class of org_feature.

viii

14

15

16
17
18
19

26

27

29

30
31

FungalWeb's BioXRT web query interface. The screen shot shows the
list of available classes of data. Users can select a class and query the
selected class against any arbitrary set of columns. They can also do
a keyword search. The example shows how the search screen can be
used to find all Neurospora species. 33
The example shows the result of the search for Neurospora species.

The results are rendered by BioXRT’s TBrowse engine which produces

tabular data views in BioXRT.. 000 34
An example ETL graph taken from the CloverETL website. 35
Example query in the BioXRT interface of the data warehouse 49
The results of the example query 50
The service ontology L 5%

Architecture of the agent system in respect to the provider agent and

their accessibility Lo o 56
Architecture of the agent system in a broader context 57
The ETL graph for converting Gene records 64
TAMBIS three layer mediator/wrapper architecture, [BBB*98] . .. 75

The GRAIL representation of the TAMSIB Concept Model [BBB*98] 77
The TAMBIS Graphical User Inteface - The navigator screen with
protein structure in the middle, [BBB*98] 78
The TAMBIS Graphical User Interface — A screen shot of the GUI

when the user is setting query attributes for the motif term, [BBB*98] 79

Biozon graph of biological entities 83
Documents’ data scheme hierarchy 84
Documents’ relation hierarchy 84
Biozon’s sample profile page 89
Biozon search panelo oo oo 90

1X

32
33
34

36

Biozon's fuzzy search oo 93

Sculf Workbench — Model Explorer 98
Sculf Workbench — Diagram View 99
Sculf Workbench ~ Service Explorer oL 100

JMeter test case used to evaluate the performance of the data warehouse101

List of Tables

9

10
11
12
13
14
15
16
17
18
19
20

Glycosylation sites for Mucin-1 human protein 3
The size of data obtained from various sources [SNBHBO05] 15
Fungal species in the data warehouse 39
List of the yeast data stored in the data warehouse 45
Data warehouse size in terms of records 48
List of databases accessible through the SRS [ZLAE0O] 71
Biozon document types Lo 85
Biozon relation types oL 86
Biozon database contents L. 87
Performance measurement of the data warehouse 102
eC2g0.XTt . L L L e 119
ec_hierarchy.xrt 119
ecnodes.Xrt . ..o 119
enzyme pathway.xrto L 120
funcat.xrt 120
funcat_hierarchy.xrt 120
funcat nodes.xrt L 120
GENES.XIt e e 121
proteins.xrto 121
go_hierarchy.xrto 121

Xi

21
22
23
24

26
27
28

go_annotation.xrt oL 0oL Lo 121
gomnodes.Xrt L 122
interpro2go.xrt Lo L 122
interpro_scheme.xrto Lo 122
MUPS2g0.XTt oL 122
orgasnims.Xrt 122
interpro_protein.xrto 123
interpro_gene.xXrt Lo Lo 123

xii

Chapter 1

Introduction

Computational data has become a primary source of new biological insights, and
bioinformatic software now contributes significantly to biological initiatives. Nowa-
days, a daily life of a bioinformatician typically starts by querying biological databases
for annotations, sequence similarities and so on, and it continues by examining the
results and inferring new findings.

Baker et al. [BBB*98] explain that when a biologist needs to ask questions, he
takes cortain steps to find the answers, First, he needs to find which sources might
have the relevant information. He continues by examining the content of the sources
to find whether not they are good enough to answer the questions. Next is to find
the proper way of querying each source. After that is the communication with the
selected sources. Then after, he needs to interpret the format of the returned result.
At the same time, he may also need to ask complex questions. And finally, he needs
to integrate the results if they are from multiple sources.

The above mentioned steps are the rough generalization of the reality; however,
they are applicable to most scenarios. As an example, Shaneh et al. [SB0O6] are
interested in predicting the Glycosylation sites [dfG] in certain proteins, and they are

using improved neural network techniques for this purpose. It’s needless to say their

neural network needs proper training data.

A google search for protein databases will list quite a few protein databases
that are a good candidate for building their training data. InterPro [AAB*01],
UniProt [BAW™05], Protein Data Bank (PDB) [BWEF¥00], the Human Protein Ref-
erence Database (HPRD) [PNA*03] are examples of such databases. A closer study
of these databases show that InterPro and PDB are perfect matches for building the

training data.

Frandaccdssian Protein Mo o Banih jé}rgarzéss*{: MEme Tadel Growg UiniRaisa s a0 o ratihed Fleldy
Polypeptide
oopep . 930 Commernt==2uc
N-acetylgalactosaminyltransferase 5 |
ATP-dependent protease La 754 Soghrntas ook Gene Mame=>muc
) v . ' Protein
Mucin-1 precursor 1255 Name==MUC
: . - Protein
129435 © Muoin-1 precursor 475 Wame==MUC

Figure 1: UniProt search result screen

Therefore, what Shaneh et al. need to do is to search for the selected proteins in
the InterPro database. For example, imagine one of the proteins is Mucin. A search in
the UniProt web site will result in the Figure 1!, in which a list of proteins related to
Mucin is shown. Lets say that the MUCI_HUMAN protein is a good candidate for the
training data. A click on the MUCI_HUMAN link navigates to the description page
of the protein, in which a description of regions in the protein is provided. Table 1
shows the relevant Glycosylation site data from the description page. Table 1 shows
the beginning position and the end position of the site. Therefore, we will need the
sequence of the protein to find out the exact sequence of the protein, and eventually
the data for the neural network is ready. (For the sake of simplicity it is assumed
that only the window around the Glycosylation site is enough for the neural network.
The original work may be consulted for exact details of the algorithm and the feeds

to the neural network).

IThe picture has been modified from its original forin to better fit in this page.

Feature Description Begin End
GLYCOSYLATION SITE N-linked (GleNAc...) (POTENTIAL) 957 957
GLYCOSYLATION SITE N-linked (GlcNAc...) (POTENTIAL) 975 975
GLYCOSYLATION SITE N-linked (GleNAc...) (POTENTIAL) 1029 1029
))
))

GLYCOSYLATION SITE N-linked (GleNAc¢ POTENTIAL) 1055 1055
GLYCOSYLATION SITE N-linked (GleNAc POTENTIAL) 1133 1133

Table 1: Glycosylation sites for Mucin-1 human protein

As is in the case of UniProt and PDB, many popular biology databases provide
websites where people submit their queries and construct the dataset they need for
their research. There are even data warchouse systems that integrate data from
multiple sources and provide them in an uniform system; therefore, they save the
integration time for their users. Biozon [BY06b] is an example of such systems.
However, these sources have been accommodated for human access, and they do not
provide convenient interfaces for software programs.

In recent years, there have been relevant initiatives to fill this gap. For example,
ToolBus [YENSO05], EBI web services [PSK*05], DDBJ web services [MS00], NCBI
eFetch [eFe], and BIND [BDWT01] offer services that computer prograins can use to
retrieve biological data and perform their computation. However, these services are
tightly coupled to the definition of their data, and locating and using the right service
is still a problem.

There is an ongoing debate in the life sciences community on the use of multi-
agent systems in the field of life sciences. Burger [Bur| discusses that there are firm
evidences that multi-agent systems have something to offer that other svstems do not.
He points out that, specifically in the field of Semantic Web. all the significant work
in the scientific community has been done on multi-agent svstems, and the Semantic
Web is a proven candidate to solve some of the existing problems in the area.

The problem of distributed and heterogeneous data sources is a classical data
integration problem that has been addressed by three types of programs: portal

oriented systems, mediator oriented systems, and data warehouse oriented systems.

In this research, a fungal genomics data warehouse is built for a rich set of fungi
species. Furthermore, an integrated data schema for the data stored in the data
wareliouse is designed and used by a useful set of transformers that change the format
of external data to the integrated data schema.

In addition to the data warchouse, an agent system that maintains the data ware-
house and is aimed to provide access to the data warehouse in a distributed envi-
ronment is introduced. The agent system is powered with ontologies for the sake of
locating services according to their service concept and data concept, thus making
the search for services more accurate and more successful.

The use of ontologies in the research involves the introduction of a service ontol-
ogy and a data ontology that are both shared between service seekers and service
providers. In the context of a data warchouse, as an integrated database, the service
ontology contains generic services such as retrieve. A parameter that is passed to
the service is a query involving the data ontology. In this case there is a separation
between the service ontology and the data ontology. Alternatively, specific services to
retrieve genes or proteins could be available. In this case, the service ontology (below
the generic retrieve service) mirrors a subset of the data ontology.

The agent system in this research works as an ETL engine for the data warehouse.
That is, it goes to the external sources and fetches the data, transforms the data
according to its integrated data schema and using the developed transformer objects,
and loads it to the data warehouse. The agent system is flexible in accepting new
ETL agents that integrate new data types into the data warehouse.

The data warehouse is the first in its kind to build an integrated fungal genomics
database from multiple species. The data warehouse has about 4 million records from
21 fungi species. New data is still added to the data warehouse, and it is expected
the final size will be around 10 million records. In addition, the data warehouse is the

first that stores multiple classifications of its data and the mapping between them.

1.1 FungalWeb Project

The first years of bioinformatics was spent on the storage issues, management, and
analysis of biological data. However, bioinformatics has now entered into a new cra in
which a large volume of data is either manually or computationally being generated,
diverse range of data types exists, and data access/manipulation has become an issue.
After all. data sources are becoming more distributed, they are in different forms and
formats, and new versions of data are out more frequently [BBHO4].

As a result of the changes in bioinformatics, people are now becoming more con-
cerned by the level of computer skills a biologist needs to acquire in order to benefit
from the currently available biological knowledge sources. This concern brings into
attention the need for systems that ease access to the biological knowledge. A proper
candidate to provide technological enhancement in this respect is Semantic Web.
Sematic Web is a recent challenge for using meta data level information to access
knowledge across a collection of sources.

FungalWeb, “Ontology, the Semantic Web, Intelligent Systems for Fungal Ge-
nomics” is a research project at Concordia University, McGill University, and Uni-
versité de Montréal that aims to bring the power of ontologies, machine learning, and
natural language processing to the Fungal Genomics area.

In principal, FungalWeb is comprised of the following components:

e Ontology: Ountologies are now an integral part of knowledge base systems. On-
tologies help humans and computers understand the knowledge obtained from
different sources. FungalWeb introduces an ontology which feature fungal and
enzynie specific concepts and data. More details of the FungalWeb ontology are

provided in the rest of this thesis.

e Agent System: Accessing multiple sources of data to conduct complex queries

is an issue in a distributed data space, which is the case in the biological data.

Agent systems have proven uscful for such issues. The FungalWeb project comes
with an agent svstem that wraps multiple sources of biological data and provides

access to them. The main concern of this thesis is the agent system.

o Text Mining: A vast amount of scientific knowledge exists in the form of free
text, most of it is in the scientific papers. Selecting the right textual source for
acquiring the required knowledge is an issue when it has to be done by human
forces. An automated computer system which is able to scan textual sources
and recommend relevant ones will save a lot of time and increases quality in
the process of knowledge acquisition. FungalWeb project employs computa-
tional linguistic approaches to analyze scientific texts and extract/index their

knowledge.

e Relational Data Mining: Relational data mining is becoming a promising ap-
proach for situations where data mining has to span multiple sources. The
nature of biological literature and data encourages using such approaching as
the biological data is highly correlated, and inferring knowledge needs examin-
ing multiple sources at the same time. FungalWeb project employs probabilistic
relation data mining to build regulatory networks, which helps with validating

laboratory experiments.

The main concern of the FunalWeb project is fungal species. FungalWeb project
is also affiliated with the Fungal Genomics project in the Concordia University. The
Fungal Genomics project aims to find new genes for fungal species and the function
of enzymes produced by those genes. In the long run, it is planned that an integrated
system built on the top of the FungalWeb project’s components will help the Fungal
Genomics project.

The FungalWeb project was funded by Génome (Québec, and it has been awarded

the second prize at the International Semantic Web Conference in the category of Se-
mantic Web Challenges 2005. More informations of the FungalWeb project is available

online at http://www.cs.concordia.ca/FungalWeb/.

-~J

Chapter 2

Tools and Background

This research depends upon the existence of specific tools. This chapter brings a brief

introduction to those tools and to related research.

2.1 Ontology

In recent years managing the flow of information has become an issue because the
information sources are numerously being made available, and the size of the avail-
able information is increasing at a fast pace. Moreover, the recent advances in the
technology has easced the process of producing new information out of existing infor-
mation, and it has introduced caser ways of sharing the new information (and the
knowledge).

However, people tend to use different terminologies when they talk about things
in the same domain. An example is the biology domain, in which people use totally
different terminologies to refer to the same things. For exawmple, a residue and an
amino acid refer to the same thing in a protein sequence. Therefore, the need to agree
on a consistent terminology is a must in order to enable information and knowledge
sharing. Without such an agreement, it is possible that at some point people do not

understand the domain knowledge that comes from other people.

An ontology [NMO1] is a formal agreement on the terminology of a specific domain.
People may develop an ontology to agree how the shared information should be read.,
reasoned, and interpreted. With the proper ontology it is understandable that the
term residue and the term amino acid refer to the same thing in a protein sequence.

In addition, ontologies are not only to be used by humans. A significant benefit of
ontologies is that they help computers understand the semantics of the information
they take from external sources. For example, ontologies are a great improvement for
agent systems where large amount of data from different sources is distributedly pro-
cessed, and ontologies enhance business to business transactions in the e-Commerce

systems.

2.1.1 What is an Ontology?

An ontology is a description of concepts (or interchangeably Classes) in a specific
domain, properties (also referred to as slots, roles or attributes) of each concept,
and restrictions of each property (also referred to as facets or role restrictions). In
addition to this abstract definition, an ontology may have instances (also referred
to as individuals) of each concept. All together, one may refer to an ontology as a

knowledge base of a domain.
FungalWWebOntology Class Hierarchy

Fungi
sREnammyeota

Arnorphothecs (7 e
S Rporospora (7
s Concotrematacear
v zoccotrermna
sonionvbacear
& Chasnothecs ¢ :
Solernphors (7 nsisnos
Cmrenelialee

Figure 2: An example of a class hierarchy in an ontology

Classes in an ontology are the domain concepts. For example, Fungi is a general
class for all fungi species. It is also possible to specialize a class by subclassing.
Subclassing is the process of introducing new classes that break down a general class.
For example, Ascomycota and Microsporidia are two subclasses of Fungi, which
means they are both Fungi but they are different (the specialization of the Fungi
concept). Figure 2 shows a portion of the FungalWeb ontology [SNBHBO05], which

will be discussed later in this chapter.

2.1.2 How to Design an Ontology?

There is no restriction on how to design an ontology, and it is totally up to the
domain expert’s design decision what the concepts should be and so on. However,

Noy et al. [NMO1] suggest the following steps:

e Determine the domain and scope of the ontology: During this step you limit

the border of concepts you want to include in the ontology.

e Try to reuse existing ontologies: It is a good idea to integrate the currently
available ontologies and add to them. As an instance, the FungalWeb ontology

integrates the Gene Ontology [ABB™00] and TAMBIS ontology [BBB98].

e List the terms you need in the ontology: Go through the things you may need

in the ontology.

e Create your class hierarchy: This step is to find out what terms you want to

introduce as a class and in what order you want to arrange them.
e Define the slots.
e Define the restrictions on the slots.
e Create instances if there is a need for any.

10

The fine points of each step above is out of the scope of this thesis, but [NMO1]
can be consulted for a complete description of each step.

Finally, in terms of software support for ontologies, there arce some graphical user
interfaces for developing ontologies. Protégé (http://protege.stanford.edu/) is a
successful application that helps with the design and development of ontologies. In
addition to the designers, there are other applications that facilitate use of ontologies.
The RACER server [HMO1] is an example of such an application, which will be

discussed in more details in this thesis.

2.2 RACER

The advent of the Semantic Web has brought new challenges into the area of knowl-
edge representation, and it has lead to introduction of new knowledge representation
languages such as DAML+OIL [MFHS02] and OWL [HHH"03]. These languages
have enough facilities to represent knowledge in a graph or tree manner. In addi-
tion, in order to add more power, some of these languages have been equipped with
description logics so that large fragments of the language can be expressed [HMO03].
OWL DL is an example of such a language.

RACER (Renamed A-Box and Concept Expression Reasoner) [HMO1] is an in-
ference engine for description logic languages, and it is an essential to add practical
experience to the description knowledge languages. As a reasoner, the RACER sup-
plies a query language that facilitates asking description logic queries.

From the implementation point of view, the RACER comes as a standalone server
which is able to load DAMLA+OIL and OWL files and lets the users query the loaded
knowledge in its query language. The communication between a user client and

the RACER server is possible through the traditional HTTP and TCP protocols.

11

The RACER communication protocol is fairly straightforward and the proper lan-
guage specific nnplementations are available online. For example, JRacer is the
Java wrapper of the RACER server’s protocol. A list of currently available RACER
APIs is available online at http://www.racer-systems.com/products/download/
nativelibraries.phtml.

The RACER server is also compatible with currently available description logic
protocols, and it responds to the programs that talk in DIG protocol [BMCO03]. The
DIG protocol is a least common denominator description logic protocol of the existing
protocols, and it enables applications to talk to description logic servers over HTTP.

Although DIG is a need as a standard and it covers all the standard description
logic queries, it can not cover system specific queries. As a result, the RACER server
supports an additional TCP protocol that is different from DIG, and it is more like
the KRSS [PSS93]. This additional protocol enables spontaneous user interactions.

In addition to the protocols, there are applications that provide either shell or
GUI access to the RACER server. Examples of such applications are RICE [MCHO03],
Ontoligent [BSBH06] and OntoXpl [HLS04].

The description of the inference types that the RACER server supports is beyond

the scope of this thesis, and more details can be found in [HMO03].

2.2.1 nRQL

RACER can be used to query concepts and individuals of an ontology. However, the
RACER query language has limited support for ontology individuals and it supports
concepts more. The new RACER Query Language (nRQL) [HMWO04] is an extension
of the RACER query language with the support of querying individuals.

The nRQL query language modifies and adds to RACER querying facilities for
individuals. For example, one can use variables inside nRQL queries to retrieve a list

of individuals or form complex queries on them. Details of nRQL specification can

12

be found in [HMWO04].

The combination of RACER, nRQL, and a simple GUI gives users enough facilities
to ask their questions and expect an answer in a reasonable time. Figure 3 shows an
example of this combination for the FungalWeb ontology. FungalWeb ontology is a
unique ontology in the area of fungal genomics. Section 2.3 discusses the FungalWeb
ontology in more details.

Figure 3 shows how the RACER server answers nRQL queries of the FungalWeb

ontology.

2.3 FungalWeb Ontology

Fungi are now increasingly used in industry. However, the appropriate support for
such industrial usage is still in its early stages, and it needs further developments.
Baker et al. [BWSNT05] mention that many decisions in R&D teams are made on
the basis of incomplete knowledge. To fill this gap, they suggest that a range of
interdisciplinary ontologies should be introduced. The suggested range covers taxon-
omy, gene discovery, protein family classification, enzyme characterization, enzyme
improvement, enzyme production, enzyme substrates, enzyme performance bench-
marking, and market niche [BWSN*05].

The FungalWeb ontoloy is an example of such an ontology, which has been devel-
oped in the Computer Science and Software Engineeringdepartment of the Concordia
University as part of the FungalWeb project.

The FungalWeb ontology [SNBHBO05] is the integration of the available on-
tologies, the available databases, the domain expert knowledge, and the data ob-
tained from various web sites. The resources for the FungalWeb ontology in-
clude [BWSNT05]: taxonomy databases such as NCBI taxonomy WBBT06] and
NEWT [PPFBO03|, NCBI literature databases, enzyme databases such as BRENDA

13

1- Give me all the instances of Neolectaceae?

retrieve (7x) (7x |http:

Answer: (((?x |http://a.
((?x |http://a.

//a.com/ontology#Neolectaceael)

com/ontology#Neolecta_irregularis|))
com/ontology#Neolecta_vitellinal)))

2- All Agaricales have been reported to have enzyme Laccase?
retrieve (?x) (AND (?x |http://a.com/ontology#Agaricales|)
(?x |http://a.com/ontology#laccasel
lhttp://a.com/ontology#Has_been_reported_to_have_enzyme|))

Answer: (((?x |http://a.
((?x |http://a.
((?x |http://a.
((?x |http://a.
((?x |http://a.
((?x |http://a.
((?x |http://a.
((?x |http://a.

com/ontology#Lentinus|))
com/ontology#Coprinopsis_cinereal))
com/ontology#Schizophyllum_commune|))
com/ontology#Agaricus_bisporusl))
com/ontology#Coprinus_cinereus|))
com/ontology#Pleurotus_sajor-cajul))
com/ontology#Lactarius_paperatus|))
com/ontology#Marasmius_quercophilus|)))

3— Which enzymes are being used in baking and brewing?

retrieve (7x) (AND (AND

Answer: (((7x |http://a.

(?x |http://a.com/ontology#Enzyme|)

(?x |http://a.com/ontology#Baking|
[http://a.com/ontology#Is_being used_inl)

(?x |http://a.com/ontology#Brewing|
http://a.com/ontology#Is_being used_in})

com/ontology#Proteasel)))

4— All enzymes have been reported to be found in Neurospora Crassa?
retieve (?x) (AND (7x |http://a.com/ontology#Enzyme|)
(?x |http://a.com/ontology#Neurospora_crassal

|http://a.com/ontology#Has_been_reported_to_be_found_in|)

Answer: (((?x |http://a.
((?x |http://a.
((?x |http://a.
((?x |http://a.
((?x |http://a.

com/ontology#Xylanasel))
com/ontology#Cellulasel))
com/ontology#Pectinasel))
com/ontology#Lipasel))
com/ontology#Laccasel)))

Figure 3: nRQL examples from the FungalWeb ontology [SNBHB05]

14

‘ !
: o L . ~ i
TAMBIS H+ ”}Iacruhlnleuﬂe ‘;Fm\gai“?eh\3 ~Industrial - | |Commercial

l ﬁh\"._ - Paﬂ 5 _'__J"'j r)ntolog}r ."‘ Speflﬁt‘ anﬂn f"‘)"‘ E}m}}ne
—— Ea L T t1 Vendors

I N.\"xﬂ |

| J— g,.f‘" . "\"\ J

! " Enzyme ", l’.f"‘}?ungzif ™., “Enzyme ™~

| . Classification / *. Taxonomy./ Epecﬂicaﬁon S

| e =Y !

e e A § ==

T iz" VA / -
Gene Ontology L i .
EC oy Timﬂm NEWT SwissProt| |BRENDA

Figure 4: FungalWeb ontology sources [SNBHB05]

Source Name Instances Concepts
BRENDA & SwissProt 105 35
EC & GO 1296 198
NCBI Taxonomy Database 10870 3340
TAMBIS 0 22
Commercial Enzyme Vendors 401 6

Table 2: The size of data obtained from various sources [SNBHB05]

enzyme database [SCET04] and Enzyme Nomenclature Database, Saccharomyces
Genome Database (SGD) [HBC*], Neurospora Crassa Genome Database [Neu],
the available information from commercial enzymes [Bai00], and the existing bio-
ontologies such as Gene Ontology [ABB700] and TAMBIS [BBB*98]. The integration
of the existing ontology involves merging, mapping, and partially copying instance
data from those ontologies. Figure 4 shows the existing sources of the FungalWeb
ontology.

The integration process of the FungalWeb ontology has been manual, during which
the data (ontology instances) has been transformed into FungalWeb specific concept
schema and the concepts have been carefully unified. As of November 2005, the size of
the ontology is 3667 concepts and 12686 instance, for which the details are in Table 2.

More details on the FungalWeb ontology can be found in Shaban-Nejad’s master’s

15

thesis [SNO5].

2.4 DECAF

DECAF (Distributed, Environment Centered Agent Framework) [GDMO03] is a Java-
based software engineering approach to build intelligent distributed agent systems.
From a user perspective, the DECAF framework differs from other agent development
frameworks by hiding the repeating complexities that agents systems rely on, such as
communication structures, and letting users focus on the domain specific issues.

In DECAF, agents are defined in terms of their objectives and the set of ac-
tions that should be followed to reach each objective. DECAF supports both clas-
sical Al black and white objectives and weight oriented objectives [GDMO03]. In the
current DECAF implementation, objectives are defined in the task reduction trees
(HTN [EHN94}).

In addition, DECAF comes with a graphical user interface called PlanEditor which
facilitates design of agent objectives. The output of the graphical user interface is a
plan file that is the programming language representation of the agent’'s objectives
and actions. The plan file is an input to the DECAF corc modules, which will be
discussed later. Figure 5 shows an example agent plan designed in the PlankEditor.

The plan in Figure 5 contains one objective updateDatabase which has three input
parameters: DataOntology, SourceOntology, and URI. The objective is reachable by
completing three actions: ExtractExternalInformation, TransformTheData, and
LoadItIntoDatabase. The outgoing message of each action is redirected to the in-
put of the next action, thus forcing a sequence, except the last action’s output which
is connected to the output of the task and indicates that the end of the last ac-
tion is the end of the task. In addition, the lines from the objective inputs to the

ExtractExternalInformation action indicates those parameters should be delivered

16

[SourceOntoloay |
.~ 1 URI

[DataOntoloy]

::::,/ ,/‘/‘ /

-
e o
o o
el ”}:’f f/‘f
. ﬁx'; /x' ‘/_,.r

.r,_.r’xx e
e - T ‘
EDataDmomgg ﬁxffactExtewrnapﬁnfurmation _f_l}_ij

/

/

//

/

oML TransformTheData

%,

Figure 5: Sample DECAF agent plan in the plan editor

to the action.
As one can see in Figure 5. the agent task reduction trees are defined by putting
together the plan building blocks. The building blocks are fairly standard and the

cuwrrent implementation of DECAF supports the followings:

e Task: Tasks are agent objectives, and they are the actions we can expect an
agent to do. Tasks break down into subtasks and actions. The success of an
agent’s task depends on its Characteristic Accumulation Function (CAF). CAF
indicates what sequence of successful subtasks or actions is good enough for

a successful finish. Current implementation of DECAF supports the following

CAFs:

— AND: all the subtasks and actions should successfully finish.
— OR: at least one subtask or action should successfully finish.

— XOR: at most one subtask or action should successtully finish.

17

— SUM: the subtasks that maximize the task value should successfully finish.

e Action: Actions are implementation by a task. A task can have many actions,

and the lines between the actions set the order of the actions.

e non-local-action: A non-local-action is something that the agent does not do
but is necessary for the completion of its task. Non-local-actions can be tasks
of other agents. What happens is that usually an outgoing message will be sent

to the non-local-actions and the results are returned back as another message.

e Library: Libraries are reserved for non agent codes, and they are not currently

implemented. Next releases of DECAF will fully support this type.

Defining agent plans is fairly straightforward. and it is out of the scope of this

thesis. However, more details can be found in [McGO1].

2.4.1 DECAF Architecture

The DECAF architecture comprises 5 modules and 7 data queues, as shown in Fig-
ure 6. Each of the modules performs a specific task within the DECAF system,
and the modules work concurrently to execute agent plan files and response to the

incoming KQML messages.

Agent Initialization

The agent initialization module is the starting point of an agent life cycle within
the DECAF system. That is, the agent initialization reads the agent’s plan file and
extracts the agent’s definition. Then it loads the agent’s task reduction tree into the
Task Templates Hashtable for further access.

In addition to loading the agent, the agent initialization calls the agent’s _startup

task to enable the agent to initialize itself. The last thing for the agent initialization

18

Incoming KOML messages

DECAF Task and Control Sirvchuges

;f Incoming * £7- Objeclives ™ 7 Task 7 Agendas T
P‘i‘f‘%ﬂ‘-‘»‘* Quene, Wggouene s 0 N0 Quene S N Quene S
T, FTN ‘\ ‘ *‘\'\\

. ~ : N s N
LY . Ly 4 ‘ :
Agent v g
Initialization Dispatcher Planner Scheduler EX(‘/(1§t¢ 1y

! Task Templates A7 Pending e e - N :
: S Hushlalle o <Achion Quens o Results Ovene 7 i
._\.
. T ‘.

Promain Faets and Beliets -
| Action Modules

Figure 6: DECAF system architecture [GDMO03]

is to register the agent in an Agent Name Server and establish the required network

sockets and the communication for the agent.

Dispatcher

In DECAF, inter-agent communications are handled with KQML messages. Once a
message created, it is put in the Incoming Message Queue. The dispatcher module is
responsible for picking up the messages from the Incoming Message Queue and taking
the right action. The dispatcher’s current implementation makes three decisions based

on the status of the message:

e If the message is a part of an ongoing conversation, the dispatcher finds the
relevant pending action from the Pending Action Queue and enables the action

by sending the appropriate message.

19

o If the message is a part of a new conversation, then the dispatcher creates a
new objective and puts it in the Objective Queue so that the planner picks it

up later.

e If the message contains any sort of error, the dispatcher generates appropriate

error message and returns it.

Planner

The planner reads the Objective Queue and instantiates the appropriate task object
for each objective. The planner uses the Task Templates Hashtable to find out which
task should be instantiated. After instantiating the task, the planner puts the task

in the Task Queue. The Task Queue contains a list of tasks to be completed.

Scheduler

The scheduler monitors the Task Queue to find out which tasks are ready to be exe-
cuted and in what order they should be executed. In the current implementation the
scheduler employs the first-come-first-served method to pick tasks, but an algorithm
that considers the task cost function, duration, and some other utility functions is a
suitable enhancement.

However, having sclected a task from the Task Queue, the scheduler puts the task

in the Agenda Queue so that the task will be executed.

Executor

The executor picks actions from the Agenda Queue and executes them. Once an
action finishes. it returns an action outcome which will be placed in the Action Result
Queue. After that, the framework distributes the results from the Action Result
Queue to the tasks that are waiting for the results in the Task Queue, and the

executor moves on processing next actions in the Agenda Queue.

20

2.4.2 Middle Agents

Middle agents are the agents that support other agents in an agent system. The
middle agents facilitate agent activities that are common in agent systems. The

DECAF framework has the following middle agents:

e Matclinaker: The matchmaker is an agent that lets other agents find cach other.

In essence, the matchmaker works as a yellow pages for agents.
e Broker: The broker agent acts as a white pages for agent services.

e Proxy: A proxy agent connects a local Java applet to the agents in a DECAF

system.

o Agent Name Server: The agent name server is the agent version of the Domain
Name Server, by which an agent name is resolved to an IP address and a port

number. This agent is an integral part of DECAF’s communication system.

o Agent Management Agent: The agent management agent allows listing of the
agents in a distributed space. This will help administrators check agents’ status
while they are spread geographically. The agents need to be registered in the

same Agent Name Server so that the Agent Management agent lists them.

2.4.3 Messaging in DECAF

The DECAF framework significantly relies on the agent communication. That is,
agents activate each other’s services by sending a message, and it is possible that an
agent’s objective is reached by making a chain of communication with other agents.
Therefore, messaging plays an important role within the DECAF system, and the
DECAF needs a messaging protocol that supports agent-to-agent talks and at the

same time it supports continuous conversations.

21

DECAF uses a special formatted message called KQML. Each KQML message

coutains the following ficlds:

Performative: this field specifies the tyvpe of the message. The performative is
“achieve™ unless it is one of the standard DECAF message types. The “achieve”
performative is the way that an agent uses another agent’s objective to reach

its objective.
Sender: this field indicates the name of the sender agent.
Receiver: this field indicates the name of the receiver agent.

reply-with: this field enables the support of continuous conversations. With
this field, agents can talk to each other and refer to a conversation name so that
they keep track of the conversation. This field is filled with the sender so that

the receiver replies with the same value in the in-reply-to field.

in-reply-to: this field reminds the receiver that this message is a part of an

ongoing conversation. The sender puts the value of reply-with field in this field.
language: this field is the messaging language. It is usually “DECAF”.

ontology: this field specifies the name space of the conversation. It is possible
that agents use different ontologies; therefore, there is a need to agree on the
content of the message. Agents that talk in the same ontology agree that they
are using the same language and they have the same view of concepts. After

all, this field ensures that the conversation goes on meaningfully.

content: this field contains the content of the message. In the case that the
performative of a message is “achieve”, this field specifies the name of the task
that should be done with the set parameters that should be passed to the task.

The parameters are separated in the content by pairs of :keyword value, and

22

the standard parameter :task task_name specifies the name of the task in the
receiver agent. Figure 8 shows an example of sending a KQML message in

DECAF.

2.5 The Matchmaking Agent System

Matchmaking is the part of the DECAF framework that is responsible for connecting
a service request to its appropriate server agent that fulfills the request. Therefore,
the matchmaker component plays an important role within the agent system, and
the better the matchmaker works the more efficient and useful the agent system is.
However, the success of the matchmaker component is dependent on the success of
the matching algorithm it employs.

Standard implementation of the DECAF matchmaker component uses basic string
comparison techniques to find a match. That is, each service agent registers in the
matchmaker component with a static string that describes the service, and the match-
maker adds the given service description in a local database. Then after, the match-
maker matches service requests with the string descriptions it has in the local database
to find a match. Althongl this approach works, it is highly dependent to the clar-
ity of the service descriptions and the terminology agreements between the seeker
and provider agents. Al-Shaban et al. [ASHO05] discuss that string comparisons are
inefficient and incomplete, and they offer a replacement that is based on ontologies.

The Matchmaking Agent System [ASO05] replaces the standard matchmaking
mechanism of the DECAF, and brings the power of ontologies into the matching
process. The logic behind the new matchmaker is that a special upper ontology,
namely the service ontology, is shared between the seekers and the providers, and it
contains all the possible service domains that the seckers and the providers would

need!. After that, the providers are able to describe their service in terms of the

IThe service ontology needs to be updated if a new area of service is introduced. In theory, it is

23

concepts in the service ontology, and the seekers are able to look for a service by
posing their request in terms of the concepts in the service ontology. This way the
service ontology is the language that the seekers, the providers, and the matchmaker
use. However, this changes the standard way of registering in the agent system and
looking for an agent. In addition, it enforces certain design requirements on the

agents.

2.5.1 Provider Agents

Provider agents are the ones that offer a service. Therefore, they need to register in the
watchmaker so that other agents find them and use their service. The Matchmaker
Agent System requires provider agents to extends a certain plan file. This plan file, as
shown in Figure 7, contains the required tasks that the matchmaker needs to trigger.

As shown in the Figure 7, the provider agents need to implement standard DECAF

_startup and _shutdown tasks. These tasks bound the provider agents life cycle:

e The _startup task is responsible for registering the provider agent in the agent
system. At this stage, the provider agent sends an advertise message to the
matchmaker component, and tells the matchmaker to where its service belongs
in the service ontology’s tree of concepts. For example, a provider agent spe-
cialized in finding protein sequence similarities might tell the matchmaker that
its service is classified nnder the http://a. com/ontology#BLAST concept. This
causes the matchmaker to store the concept name and the agent name in its
internal database for later retrieval. Figure 8 shows an example code snip-
pet of a provider agent’s advertisement by which the provider agent tells the

matchmaker that it provides the BLAST service.

e The _shutdown message unregisters the agent in the matchmaker agent.

the best to define the service ontology in a way that it covers all services in a hierarchy so that it
does not need frequent updates.

24

Trountl mmTest deeper |

SRt

el Ei‘(%?taﬁifl P,

T]

KN i
Lty D]

o T i
ML mm advertiss [0k
£

bl

P & kN
f/«)y_)‘ \ s\
& £ %
A 5 x\ x\
/ s \‘ N,
s hS '
L o 4 \ 5
barameters] aetiste | O el N
- T BN - erositer_oastonawer
b oy
it

s

Figure 7: Provider agent’s plan [ASO5]

However, in addition to the standard tasks, the provider agents need to implement,
two additional tasks, deeper and activate.

The deeper is called by the matchmaker agent to check whether not the agent
is able to fulfill the seeker’s need. The importance of this task will be discussed in
the next section where the role of the seeker agents is illustrated. The provider agent
receives an nRQL query for this task, and it checks if its service meets the requirement
specified in the nRQL query. The nRQL query may specify a data type or it may
be a more specific description of the service the seeker is looking for. Note that the
service ontology contains the general service domains, and it is not specific. As a
result, the agents register themselves under general concepts in the service ontology,
such as http://a.com/ontology#BLAST, and they can later in this task specify their

specialization, if there is any. For example, a provider agent might run the given

public ProvisionCell Action(LinkedListQ Plist, Agent Local)

{
String message = new String(Util.getValue(Plist, "MESSAGE"));

KQMLmsg outKQML = new KQMLmsg(message) ;
outKQML.addFieldValuePair("performative", "achieve");
outKQML.addFieldValuePair("sender", Local.getName());
outKOML.addFieldValuePair ("receiver", "Matchmaker") ;
outKQML.addFieldValuePair ("ontology", "Matchmaker");
outKQML.addFieldValuePair("language", "DECAF");
outK(QML.addFieldValuePair("content",

":task advertise"+

" :keywords "+encode("http://a.com/ontology#BLAST")+

" :ontology mmTest");

return new ProvisionCell(outKQML.getKQMLString(),"0K");

Figure 8: An example of a provider agent’s advertisement

nRQL query against a data ontology which defines the problem domain’s elenients
and decide whetlier not it is able to fulfill the request. In the previous example, the
provider agent might need to agree with the seeker agent that it finds the sequence
similarity only between proteins and not genes.

In addition to the deeper task, the provider agents have to implement the
activate task, in which the actual service is implemented. The seeker agents call
activate task when they know to which agents they should talk.

More details of the provider agents can be found in [AS05].

2.5.2 Seeker Agents

The seeker agents are the computer softwares that need the provider agents service.
The seeker agents can be a part of a bigger application, the implementation behind

a web service, or the code behind a user interface. Likewise the provider agents, the

seeker agents have to extends a certain plan file as shown in the Figure 9.

o1 senker petinswer | OK

s,
. e s
/ T, .
& 5 . priion
AR _“_,,_,wE MOML e Ask o DK
Start QKT g:}

b

Figure 9: Seeker agent’s plan [AS05]

The seeker agent’s scenario starts by the standard _startup task, in which the
seeker tells the matchmaker what service it needs. This is done by sending two
queries to the matchmaker. The first querv is a ConceptBasedQuery and the second
query is an nRQL query. The ConceptBasedQuery queries the service ontology and
it specifies the domain of the service. For example, the ConceptBasedQuery might be
“I am interested in the agents that find sequence similarities”. The RACER [HMO1]

query of such question looks like the one presented in the Figure 10.

27

(CONCEPT-DESCENDANTS |http://a.com/ontology#Sequence_Similarityl)

Figure 10: An example of a ConceptBasedQuery query

The nRQL query specifies the service in more details. Unlike the ConceptBased-
Query that is processed by the matchmaker, the nRQL query is processed by the
provider agent. Therefore, there should be an agreement between the provider agent
and the seeker agent so that the provider agent understands what the seeker agent
is asking about. For example, the seeker agent might specify “I am interested in
services that performs on the proteins”. The nRQL query of such question looks like

the Figure 11.

(RETRIEVE (7X) (?X |http://a.com/ontology#Protein|
|http://a.com/ontology#performs_onl))

Figure 11: An example of an nRQL query

The matchmaker agent first processes the ConceptBasedQuery by running the
query against the service ontology. The result of the query is the list of the ser-
vice concepts in which the seeker agent is interested. For example, the query in
the Figure 10 returns the http://a.com/ontology#BLAST concept (assuming there
is only this concept under the http://a.com/ontology#Sequence_Similarity con-
cept). Then, the matchmaker queries its internal database to find out which provider
agents have registered to provide this concept’s service. Next, the matchmaker calls
the deeper task of each provider agent and sends the given nRQL query to the
provider agent. After that, the provider agent runs the nRQL query on an arbitrary
ontology and retrieves the list of the ontology instances in which the seeker is inter-
ested. The provider agent examines the list of the ontology instances to see whether

not it performs its service on that ontology instance. For example, the nRQL query

28

in the Figure 11 returns the http://a.com/ontology#Protein instance (assuming
the arbitrary ontology is designed in such a way), and the provider agent returns
positive answer to the matchmaker, confirming that it is able to provide the service
for this type of entity?. After the matchmaker receives an answer from a provider
agents it moves on to the next provider agent in the list till it finishes the whole list
and extract a list of agent names that fulfill the seeker’s need.

Once the matchmaker has the list of proper provider agents, it calls the getAnswer
task of the seeker agent to let it know to which agent it should send activate message.
At this point the matchmaking is done and the secker agent is able to talk to the
proper provider agents.

More details of the seeker agents can be found in [AS05].

2.6 BioXRT

Large volume of biological data is being produced each day, and the appropriate com-
puter support to electronically publish and manipulate biological data is still missing.
Diversity of available data formats and limited computer knowledge of hiologists are
some of the obstacles in the way of building such computer systems. BioXRT [ZDKS],
previously known as XRT, is a simple but still powerful data warehouse that aims to
fill this empty gap.

In a nutshell, BioXRT is a data warehouse designed to accept biological data and
provide basic means of accessing it. Moreover, BioXRT is easy for biologists to use
because it does not require advance computer/database skills, and it is proper for
biological data because its input format covers most popular biological data formats.

Setting up BioXRT is pretty straightforward and it can be handled easily by going

through installation steps of the installation guide. Even if the installation steps are

2The rest of this thesis shows how the provider agents use the FungalWeb ontology [SNBHB(5)
to provide biological services.

29

too much for biologists, they can be done once by a computer technician, and it is
ready to load the input data. Loading data into BioXRT's database is also as easy
as preparing the input files and running the appropriate BioXRT script to bulk load

the data.

Loading Data

BioXRT accepts quite a few number of well-known formats such as Microsoft Excel,
XML. and flat tab-delimited BioXRT. These formats mostly represent data in a tab-
ular manner® which is a popular format among biologists [AVB01], and it is close
to the way BioXRT represents the input data to the users. Furthermore, BioXRT
provides a loader script for each of these input formats. These scripts are responsible
for reading the input files and load themn into BioXR1"s internal database. The loader
scripts erase the content of the internal database before loading the new set of data.,

so each load is a complete update.

organisms.xrt

ID LongName Order Phylum Kingdom
178477 Botryandromyces ornatus Laboulbeniales Ascomycota Fungi
231773 Trichoderma sp. T-105 Hypocreales Ascomycota Fungi
205608 Buellia submuriformis Lecanorales Ascomycota Fungi
193039 Patescospora separans Jahnulales Ascomycota Fungi
4984 Bullera variabilis Tremellales Basidiomycota Fungi
322976 fungal sp. 32.40 Unknown Unknown Fungi
307330 fungal sp. TRN236 Unknown Unknown Fungi
246499 Xylaria sp. F12 Xylariales Ascomycota Fungi
116810 Physcia albinea Lecanorales Ascomycota Fungi

Figure 12: A sample BioXRT input file from FungalWeb project.

Each BioXRT input file stands for a class of data within the data warehouse. The

class is the relevant BioXRT term for a table in the relational database’s terminology.

3Even though XML is not a tabular format but it can be mapped to a tabular representation
with trivial transformation rules.

30

Each input file declares the list of columns as attributes of the class, and each file
should have an ID column, which is the unique identifier of entities within this class
of data. Figure 12 shows an example of a BioXRT input file, in flat tab-delimited
format. where columuns are separated by the tab character, and the first row lists
column names. The sanmple in Figure 12 shows a snippet of organisms class’s input
file in the FungalWeb data warehouse. The class represents the taxonomy of fungi
species.

As described earlier, BioXRT avoids advance computer complexities so that bi-
ologists can make the most of it. Therefore, BioXRT does not support inter-data
relations as perfect as most relational databases do. However, BioXRT supports the
parent—child relation between classes. Such a relation in BioXRT is defined by using
a special naming convention for the columns; The column that is keeping the parent
id (foreign key) names as P_ID/pc where pc is the name of the parent class, and it
keeps the values of the parent ID column. Figure 13 shows an example of this relation,

where gene.xrt is representing child data of org_feature.xrt.

Accessing The Data

Accessing loaded data in BioXRT starts from the search screen, as shown in Figure 14.
The search screen gives the users the ability to perform basic querics and keyword
searches on a specific class of data. In addition, users can tweak their result set
by selecting the appropriate columns. The search screen is simple enough to be
understood by many users; however, it does not support constructing cross class
queries.

The search screen needs to be configured. This level of configuration enables the
publishers to partially hide their data and/or control how the search screen looks.
Appendix A.1 shows the complete configuration file for FungalWeb's search screen.

Once a search is run within the search screen, the BioXRT renders the results using

31

org_feature.xrt

ID TaxID start end type comment source

1 162425 1213° 1726 gene MIT Broad Institute
2 162425 5806 3397 gene MIT Broad Institute
3 162425 9062 6382 gene MIT Broad Imstitute
4 162425 7822 1972 gene MIT Broad Institute
gene.xrt

ID P_ID/org_features TaxID GenelD name

1 1 162425 ANO0O1.2 protein ...

2 2 162425 ANOOO2.2 protein ...

3 3 162425 AN0O003.2 protein ...

4 4 162425 ANOCO4.2 protein ...

Figure 13: These two classes of data show an example of BioXRT’s parent and child
relation in the FungalWeb data warehouse. org_feature is where we keep features
of an organism, one of which is a gene feature. Details of a gene feature is kept in
gene.xrt which is a child class of org_feature.

its TBrowse engine, which is a simple tabular data renderer, as shown in Figure 15.
It is possible to configure the TBrowse to link out the results to external sources,
which is an essential feature for the biological data. This configuration should be
done within the search screen’s configuration file, where the columuns for each class of
data is defined.

In addition to the TBrowse result pages, BioXRT offers full page view of its data
with the XView component. The XView is a XML-based data renderer. That is,
XView reads a XML file as the template for the output, and it populates the template
with the data it fetches from BioXRT’s internal database and renders the output.
XView is capable of joining multiple classes of data in the same page; therefore, it is

a good way to show the parent and child data.

Caomenrdia PungadWeb Databnee

Table Browser

MOUTCLT Codursnes: {Hoedd O] for i it-se o tions

| Concordia FungalWeb Database ~

Keywand:

iNeursspora

i>enes :
Proteins L
G0 Hierarchy Nodes N
GO Modes
Funcat Hierarchy Nodes Coduom Filters FOAND T DR
Funcat Nodes <
Funcat Information x
MIPS to GO mapping vt o
EC Hierarchy Modes ‘ v iz v
EC Modes

ECs in Pathways

E(C to GO mapping vl

Submit © Resst

Figure 14: FungalWeb’s BioXRT web query interface. The screen shot shows the list
of available classes of data. Users can select a class and query the selected class against
any arbitrary set of columns. They can also do a keyword search. The example shows
how the search screen can be used to find all Neurospora species.

2.7 Extract Transform Load

A data warehouse is a collection of in-house and external data that have been gathered
for the aim of providing a rich set of data (usually restricted to a specific domain),
a high level of accuracy, and maximum data accessibility. A data warehouse can be
any well-known database engine or it can be a hardware that is optimized for data
access and large volume manipulation purposes.

One of the challenges in the process of building a data warehouse is populating
the data inside the data warehouse and maintaining the data warehouse. Extract
Transform Load (ETL) refers to the stage in data warehousing that data should be
taken from an external source and integrated in the data warehouse.

The ETL, as the name explains, has three major steps:

e Extract: The first step is to obtain the data. Most data warehouse systems take

33

1 INeurospora sublineolua Sordariales Ascomycom ungi

2 |Nenrspora calosparn Sordariales Ascomyeota Fungi

3 INeurospora saati-tlorn Sordarinkes Ascomveota Fungi

4 iNenrospora hapsidophora Sordariales Ascornyeota Fungs

“H

Newrospora sp. FGSC 8834 Sordariales Ascomyoodn Fungs

Figure 15: The example shows the result of the search for Neurospora species. The
results are rendered by BioXRT’s TBrowse engine which produces tabular data views
in BioXRT.

the data from different sources. Therefore, the data comes in different formats
and accessing them can be different. For example, a data might be available in

a text file and the other might be the backup file of an RDBMS.

e Transform: It is possible that the data taken from outside does not comply
with the data warchouse format or schema. In this case the data needs to be
transformed to the current format and schema. The transformation rules can

be fairly standard. Some of such rules are:

Loading only certain columns of the source data

— Changing parameters in the case they are different from the ones in the
data warehouse. For example, if a source data keeps A as “active” and D

as “deleted” but the data warehouse keeps boolean values.
— Parameterizing values in the case the source does not parameterize.

— Computing new values based on the values from the source data. For

example, retrieving GenBank IDs from NCBI for genes.
— Merging data from different tables/sources.
— Summarizing multiple rows of the source data.

— assigning primary keys to the source data.

34

— Creating multiple rows of data for a single row from the source.

e Load: This step loads the transformed data into the data warehouse.

In recent vears, the ETL has turned to a standard process of data warehousing
applications, and there are working ETL libraries for most programming languages.
CloverETL (http://cloveretl.berlios.de/) is an example of such libraries.

CloverETL is a Java based ETL library that enables Java applications to build
an ETL engine by putting together ETL building blocks. In CloverETL, application
designers need to form an ETL graph by connecting ETL components. The graph

visualizes flow of data during the ETL process.

Transformation

NODEs
T R
[-\ _4} C / NODE
DATA FLOW

™,
P

Figure 16: An example ETL graph taken from the CloverETL website.

The ETL graph has some input nodes that are CloverETL supported input for-
mats, and it has some output nodes that can be either text files or any standard
relational database. The ETL components connect the input nodes to the output
nodes. Figure 16 shows how Copy, Sort, Filter, and Reformat components have been
used to transform the input data to the output, and how the transformation has been

split in two paths of the graph.

Chapter 3

The Data Warehouse

Biological databases and analysis tools are the result of research efforts, and they are
diversely scattered through the world. Easy access to biological databases and anal-
ysis tools is an important factor in the success of new biological initiatives. However,
the distributed nature of biological databases and analysis tools makes the process of
knowledge extraction inaccurate and hard-to-achieve. That is, these databases pro-
vide different focuses of the same data, they employ different representation format
(plain text, formatted text, XML, and so on), they are available in different foris
(relational databases, text files, XML, and so on), and they have different approaches
to data manipulation [SKSB00].

As a result, new enhancements in biology and bioinformatics are highly dependent
on the successful development of integrated database systems. The ongoing work
to integrate multiple databases and analysis tools categorizes integrated database
systems into three distinguishable groups. Yona et al. [BY06b] explain that most
integrated database system are either portal oriented systems, mediators, or data
warehouses.

Portal oriented systems are characterized by the fact they do not store the original

data, but they store indexes of the data in the external databases. Therefore, portal

36

oriented systems are fast in searching through their integrated data. In addition to
the indexes, portal oriented svstems keep a link of the original data so that they can
navigate the user to the original data. In theory, users need to follow the link to access
the original data. However, it is also possible that the link is transparent to the user,
and the system follows the link to give the user the original data (it happens ecach
time the user tries to access the data and the system does not offload the original
data). The integration of cross-database relations is an optional characteristic of
portal oriented systems. SRS [EA92] and Entrez [SEOK96] are examples of portal
oriented systems.

Mediator oriented systems are like the portal oriented systems in the sense they do
not store the original data of the external databases. However, mediator systems keep
a schema of the external databases, and they talk to the external databases to run a
query. What the mediator systems do is that they let the user query the integrated
database as if it were a single database. Then the mediator system uses the schema
to find out which exterual databases should be consulted to fulfill the user guery,
and it creates and sends the appropriate query to each source. Upon receipt of the
result from each source, it uses the schema again to integrate the results and return
it to the user. In theory, mediator systems easily integrate new databases. However,
mediator oriented systems’ speed is highly dependent to the speed of external sources,
and they are not performance efficient when multiple sources are involved. Discov-
eryLink [HKR*00], BioMediator [MHTHO01], and TAMBIS [BBB*98] are examples
of mediator oriented systems.

Warehouse oriented systems are an alternative to mediator oriented system and
portal oriented system. Warehouse oriented systems integrate the data from the ex-
ternal database inside their internal database. Warehouse oriented systems introduce
a new data schema which covers the data schema from all external databases and sup-

ports the entity relation between data of the external databases. Warehouse oriented

37

systems are performance effective, and they are significantly more efficient in complex
queries than the other two systems. However, maintenance is a major concern for
warehouse oriented systems. Biozon [BY06b] and GUS [DCBT01] are examples of
warehouse oriented systeins.

As a part of the FungalWeb project this research aims to build a data warehouse
system that provides access to fungal genomics data as instances of the FungalWeb
ontology. Moreover, the data warehouse system includes a data warehouse and an
agent system which manipulates the data warehouse and provides access to it. In
this chapter we focus on the data warehouse and the next chapter is dedicated to the

agent system.

3.1 Data

The data warehouse holds data of a selected range of fungal species that have either
industrial significance or research importance. Table 3 shows the list of currently
integrated fungal species.

In addition to the fungal species. the data warehouse includes some classification
information which is independent of fungal species, but it elaborates the features and
functions of the selected fungal species. In a nutshell, the data warehouse contains the
taxonomy of fungal species, fungal genes and proteins, Gene Ontology classification,
FunCat, Enzyme Classification, metabolic pathways, InterPro, InterProScan, and
Saccharomyces Genome Database data. Appendix B explains the structure of the

data file for each of these data.

38

Species NCBI Taxonowny ID
Aspergillus niger 5061
Aspergillus nidulellus 162425
Laccaria bicolor 29833
Coprinus cinereus 5346
Trichoderma reesei 51453
Pichia stipitis 4924
Phanerochaete chrysosporium 5306
Nectria haematococca 140110
Neurospora crassa 5141
Magnaporthe grisea 148305
Botrytis cinerea 40559
Ustilago maydis 5270
Aspergillus terreus 33178
Rhizopus oryzae 64495
Coccidioides immitis 5501
Saccharomyces cerevisiae 4932
Candida albicans 5476
Cryptococcus neoformans 40410
Eremothecium gossypii 33169
Gibberella zeae 5518
Schizosaccharomyces pombe 4896

Table 3: Fungal species in the data warehouse

3.1.1 Taxonomy

A taxonomy classifies species in terms of their order, phylum, and kingdom in a hi-
erarchical tree. In a taxonomy, parent species generalize children species. For exam-
ple, Fungi generalizes Ascomycota, Basidiomycota, Chytridiomycota, Fungt incertae
sedis, Glomeromycota, Microsporidia, Zygomycota, and Unclassified Fungi. In the
data warehouse we keep the taxonomy of fungal species, and the taxonomy has been
taken from NCBI’s taxanomy database (http://www.ncbi.nlm.nih.gov/Taxonomy/

taxonomyhome . html/).

39

3.1.2 Genes and Proteins

Genes and proteins are the fundamental information of a species. In an organism,
genes carry the information of the organism, and they control the physics and behavior
of it. Gene products are of significant importance in study of an organism, and they
explain the source of organism changes. Proteins are one of the genes’ products.
Proteins are the chemically active units of organisms, and they cause functions of
organisms.

The data warehouse includes the genes and the proteins of Neurospora crassa, Co-
prinus cinereus, Asperqgillus nidulellus, Magnaporthe grisea, Botrytis cinerea, Ustilago
maydis, Aspergillus terreus, Rhizopus oryzae, Saccharomyces cerevisiae, and Coccid-
ioides immitis fungal species. In addition, the data warehouse includes the proteins of
Aspergillus niger, Laccaria bicolor, Trichoderma reeset, Pichia stipitis, Phanerochaete
chrysosporium, and Nectria haematococca fungal species, for which the genes were not
available. As a step toward linking the genes and proteins in the data warehouse to the
external sequence databases we have used NCBI BLAST service [MMO04] to find the
GenBanks identifiers of the proteins and genes and store them in the data warehouse.
GenBank identifiers are widely accepted unique identifier of sequences.

The genes and the proteins have been taken from multiple sources, some which
are Fungi Genome Initiative at MIT Broad Institute (http://www.broad.mit.edu/
annotation/fgi/) and the US Department of Energy Joint Genome Institute (http:

//www.jgi.doe.gov/).

3.1.3 Gene Ontology

Gene Ontology (GO) [ABB*00] is an ongoing community work to standardize the
vocabularv of genes and gene products. Like other classification schemes, GO catego-

rizes the gene vocabulary in a tree which starts with three major categories: biological

40

process, cellular component, and molecular function. The GO schema has been origi-
nally started by collecting vocabulary from different databases such as Saccharomyees
Genome Database (SGD) [HBC'] and Mouse Genome Database (MGD) [EBK05}:
however, it is the primary classification for thie new biological databases. In addi-
tion to the classification, GO offers the mapping between GO classification and other
classifications such as EC and FunCat. The mapping helps with relating the other
classifications to each other through the GO classification.

The data warehouse stores the GO classification and the mappings from the GO
classification to EC, InterPro, and FunCat classfications. Where possible, the GO

has also been used across the stored data.

3.1.4 Gene Ontology Annotation

Genes and their products can be annotated according to the Gene Ontology. The an-
notation involves the comparison of a source gene or a gene product to other genes or
gene products. This helps characterizing unknown genes and unknown gene products
by relating them to known ones. Gene Ontology annotation is a standard process,
for which more information is avaiiable online at http://www.geneontology.org/
GO.annotation.shtml.

The data warehouse includes the result of Gene Ontology annotation of As-
pergillus nidulans, Aspergillus niger. Candida albicans, Cryptococcus neoformans, Er-
emothecium gossypii, Gibberella zeae, Magnaporthe grisea, Neurospora crassa, Sac-
charomyces cerevisiae, Schizosaccharomyces pombe, Ustilago maydis, and Mycotorula

lipolytica.

41

3.1.5 FunCat

The Functional Catalogue (FunCat) [RZM™04] is a quite recent effort from Munich
Information Center for Protein Sequences (MIPS) to standardize protein function vo-
cabulary. That is, FunCat categorizes functions of proteins from prokaryotes, unicel-
lular eukaryotes, plants, and animals into a tree. Existence of FunCat helps biologists
and bioinformaticians assign function codes to regions of proteins, and exchange their
assignments without the need to clarify the functions.

The data warehouse in this research stores the FunCat classification, and where
applicable it stores the mapping between FunCat definitions to the Gene Ontology
definitions. This way, other classifications can be mapped to the available FunCat
classification through the Gene Ontology. |

In addition to the classification, the data warehouse stores the assigned FunCat
definitions to the fungal proteins. These assignments help researchers find the function
of unknown proteins by finding the similarity between the proteins with unknow

functions and proteins with known function.

3.1.6 Enzyme Classification

Enzyme classification [Bai00] is yet another hierarchical classification for enzymes.
The classification is based on the recommendations of Nomenclature Cominittee of
the International Union of Biochemistry and Molecular Biology (IUBMB, http://
www.iubmb.unibe.ch/). The enzyme classification assigns a unique EC (Enzyme
Commission) number to each enzyme type so that it can be used and referred to in
other databases. Other fields include: name, alternative names, catalytic activity,
cofactors, link to protein sequences in the SWISS-PROT, link to human diseases
associated to an enzyme'’s deficiency.

The data warehouse stores the EC classification, and it uses EC numbers where

applicable. In addition the data warehouse includes the EC to GO mapping so that

42

it can be mapped to other classifications through GO classification.

3.1.7 Metabolic Pathways

A metabolic pathway is a chain of chemical reactions that are catalyzed by enzymes.
Metabolic pathways may result in a final chemical product, or they may trigger other
metabolic pathways. Study of metabolic pathways has an important significance in
the understanding of what happens in a living organism.

The data warehouse integrates the metabolic pathways of the KEGG database [KEG99)].
Furthermore, the main focus of the data warehouse in metabolic pathways is which

enzyme types are used in the metabolic pathways.

3.1.8 InterPro

InterPro [AAB7'01] is an integrated source of signature databases such as
PROSITE [HBB*06], PRINTS [Att02], ProDom [CSGKO00], and Pfam [BBD*00].
Signature databases help with understanding newly annotated proteins by examin-
ing their similarities with characterized proteins. The InterPro database covers the
information of protein families, protein domains, and functional sites. Furthermore,
the Interpro database contains the the functional description, annotation, literature
references, and the link to the integrated databases for each entry. The InterPro
also comes with a classification schema which is a tool for sharing its vocabularies,
as it is in the case of other classifications. Furthermore, the terms in the InterPro
classification are mapped to the terms in the GO classification.

The data warehouse contains the InterPro classification, and its mapping to the
GO classification. We use the InterProScan (see next section for more information)

to predict functions of fungal proteins and genes against the InterPro database.

43

3.1.9 InterProScan

InterProScan [PSK105] is an analysis application which predicts the functions of an
unknown protein or gene by examining its similarity against the data in the InterPro

database. InterProScan in essence is a wrapper around the following applicaitons:

FingerPRINTScan [SFA99] for searching PRINTS database.

ProfileScanner for searching the profiles of the PROSITE database.

Ppsearch [Fuc94] for pattern matching in PROSITE database.

HMMP{fam for scanning protein sequences in Pfam database.

InterProScan is able to perform arbitrary set of the above applications on a se-
quence and report any similarities while including the evidence for each similarity.

The data warehouse contains in-house computed results of the InterProScan ap-
plication on all the fungal sequences it has. The InterProScan has been run by all its

application in order to build most comprehensive set of fungi computed signatures.

3.1.10 Saccharomyces Genome Database

Saccharomyces Genome Database (SGD) is a comprehensive source of Saccharomyces
cerevisiae yeast. The SGD database includes genes, proteins, homologies, functions,
and expression data and it is maintained and curated by the SGD people. The SGD
database is freely available at http://www.yeastgenome.org/ web site, and it is
available in simple text format.

Table 4 shows the list of the data we have integrated from the SGD database.

The data has been transformed from the SGD flat text files to the BioXRT’s format.

44

Data Class

Description

annotation_change

best_hits

biochemical pathways
chromosome
chromosonie_length
clone

dbxref

domains

emotif

gene_association

gene literature
genetic.map
go_protein_complex_slim

go_slim_mapping

interations
intergenic_seq

orf_dna
orf_geneontology
orf_protein
orf_sequence
pdb_homologs
PORF _Yeast_GP
protein_properties
psi_blast
registry_genenames

SGD_features
yeast_est_seq
yeast_gb_seq and
yeast.nrpep_seq
yeast_GP _seq

It specifies the features that have been either re-
moved or merged into another feature.

Blast results for the genes and proteins
Biochemical pathways

Chromosomes and their sequence

Length of the chromosomes

Contains information about yeast clones from
Washington University in St. Louis and the
ATCC.

The relation between SGD entries and other
database such as SWISS-Prot

List of predicted domains

List of motifs

GO annotations

The literature reference to the yeast genes
Genetic mapping data

It maps yeast gene products to the Macromolec-
ular Complex GO-Slim terms.

It maps yeast gene products to the GO-Slim
terms.

List of sequences that are not associated to a fea-
ture

ORF DNAs

GO annotations for ORF's

Homologies with the PDB data
List of primers for the partial ORF's

Results of the PSI Blast

A central repository for the Saccharomyces gene
names

List of chromosomal feature in the SGD

List of EST sequences

Saccharomyces sequences from other databases

List of primers for the entire ORFs

Table 4: List of the yeast data stored in the data warehouse

3.2 Architecture

The architecture of the data warehouse is fairly simple and straightforward. We use
BioXRT as our data warchouse backbone. BioXRT is chosen because it has a simple
structure, it is easy to update its content, it is popular within biologists’ community,
and it provides a simple but yet comprehensive web interface to access the data
warehouse.

The access to the data warehouse is limited to the agent system boundary. Agents
and the BioXRT web interface are the standard ways of accessing the data. In the
long run, agent are supposed to also provide web service access to the data. In terms
of maintenance, again agents are responsible for maintaining the data inside the data
warehouse. Therefore, the data storage and access is totally transparent to the users.

The data warehouse is populated and updated by the agent system. Each update
of the data warehouse takes bulk loading of the whole data sets which takes about
half an hour with the current datasets. Therefore, the preferred update method is

nightly schedules as new data is provided.

3.3 Loading the Data Warehouse

In the early stages agents were not been used to populate the data warehouse, but a
set of Java applications transformed the data from its original form to the BioXRT
flat-tab-delimited text files. However, the same set of Java applications are preferred
to be used in the ETL process of the data transformation and population.

Certain transformation steps were applied in order to transform each described
set of data to the BioXRT format. Some of the trasnformation steps are as de-
scribed below (the code for the transformers are available online at http://www.cs.

concordia.ca/~f_kohant/thesis/tsource.zip:

46

e Genes and proteins: Many sequence databases are available in the FASTA for-
mat. Therefore, a separate FASTA converter for genes and proteins has been
developed to transform sequences from the FASTA format to the BioXRT for-
mat. The FASTA converter reads the standard FASTA files with a set of
sequences and assigns each sequence a unique identifier. The next step in
transforming genes and proteins is to find the GenBank identifier for each
sequence. A Java toolkit has been developed for this purpose (accessible at
http://www.cs.concordia.ca/~f_kohant/ncbiblast/). The Java toolkit en-
ables users to queue their BLAST jobs on the NCBI's BLAST server, and re-
trieve the results. The transformer code for this part uses the results of the

NCBI's BLAST for finding the GenBank identifiers.

e InterProScan data: After the gene sequences and protein sequences are ready,
they are submitted to the InterPro’s InterProScan server to find the match-
ing regions of the submitted sequences against the InterPro database members.
The transformer for this part uses the EBI web services [PSK*03] to post Inter-
ProScan jobs on the server. Upon completion, the results of each job is returned

as an XML which the transformer parses and stores in a separate BioXRT file.

e Metabolic Pathways: KEGG offers its dataset in XML format. An specialized
KEGG XML transformer was developed for this part to transform the metabolic

pathways to the BioXRT format.

e Classification data: Some classifications such as Gene Ontologyv are available
in the XML format. A specialized XML transformer was developed for each
of them. The rest were available in text format for which the appropriate
transformers were developed. The mapping between the classifications and GO
classification is also available in text format for which again the appropriate

transformers were developed.

47

After the BioXRT files are ready, theyv are bulk loaded in the BioXRT by the

provided shell scripts.

3.4 Facts

Table 5 lists the size of the 7 biggest data sets loaded into the data warehouse. The
total size of the data warehouse is currently 3,828,228 records. However, the data is
still being transformed and it is expected the total amount will come to around 10
million records.

The current amount of data takes around 6 hours to load into BioXRT. Loading
time is the time BioXRT needs to parse the input and store the records inside its
internal database. The load time is once per update, and the data is accessible
instantaneously after it is loaded. Note BioXRT startup is fast and it is not effected
by the amount of data it has in its storage. It is worthy to mention BioXRT spends
most of the loading time indexing the input data and not parsing it. Therefore, a

faster and tuned database engine will reduce the 6 hours loading time.

Data Size (records)
Gene Ontology 975,637
Proteins 248.085

GO Annotations 243,729
Genes 109,006
FunCat Signatures 53,045

SGD 939,651

InterProScan (Proteins) 1,157,662

TOTAL 3,828,228

Table 5: Data warehouse size in terms of records

Finally, the data warehouse takes around 5 gigabytes of disk space in the BioXRT’s

internal database, MySQL.

48

3.5 Access

The data warehouse is currently accessible by the BioXRT web interface. As an
example, imagine one is looking for “All Neurospora Crassa proteins whose function
has something to do with Hydrolase™. He/She will need to go to the query page, as
shown in the Figure 17, and select the FunCat information data type from the list in

the bottom left side of the query page.

Concordia FungalWeb Database

Table Browser

Source: Cobunns: (Hold Cul for mult-selection)
| Concordia FungalWeb Database e
Kewword:
éhvdmlas&
Tubles:
Crganisms had
Organisms’ Features
Genes
Praoteins »
GO Hierarchy Modes .
GO Modes
Funcat Hierarchy Modes Colaran Filiers *OAND T OR
C4 ' ike v crassa
MIPS to GO mapping | MIE h
EC Hierarchy Nodes j v iz -
EC Nodes b =7
ECs in Pathways : kT
EC to GO mapping !
Submit Reset

Figure 17: Example query in the BioXRT interface of the data warehouse

Thenafter, he/she will need to specify the query criteria. The bottom right side

controls of the query page provide column based criteria. In this example, proteins

49

of Neuropora Crassa is the first part of the question, so he/she will need to set the
forth column (organism name) to contain Crassa word. In addition, having a relation
with Hydrolase function is the next part of the question. Lets assume that the user
is not so sure in which column he/she should look for Hydrolase. As a result, he/she
will need to put Hydrolase in the keyword text box at the top left side of the query
page. This lets the user look for Hydrolase in all of the columns.

Pressing submit will take the user to the results shown in Figure 18, in which the
proteins are listed. Note in this class of data, FunCat numbers are used to describe the

actual function of the protein. One may also go further and look for the corresponding

GO classification of the protein function.

preshadsde Femarybeomanste hyvdeokise

2R LTSRS AT T el IERE prodabds Formey booioaeviats baydeoshos
RN NI N Se A5 A b Mo rasss prbsabde Yanary lioerond et bydroluse
EER IR LENEERS S B R RS A B oviing prnbabie fesmryhooioscrane bvdradase
5 IR LS EL I R F oot pvbable bumnary b ciosceiay hoodrodes
RS TN AR R 0708 LT reiwed o ubspmarm cavbexybaermmingd bvdeokng
TR RSBV A Noovassa cefated 1 ubaguitin carboorl it bvdrobpe
o A14 SRS N [N S I refusd o ubiguion corleeo bermine lyvdeobae
1 &5144 JroSG e LIS Dia B rassd gyl epossde vdeodase

UmeBedl D6 Moo ranng prabeble epoxade vdrolase

Pree SA0 Dl 08 B prenbudle epaosds Bvdvolase

i {0 0% 03 M s pnbubie epoaide vdrolse

peRSir g 00 B orrasss sk B A Bvdpokise

TN A A IS i Beoryness L ITT) fi“‘i» siabane
el RN InoRB ey TLLO M prmssa acetyio s hvdrotise
EEER B T WHE S [IR S s b T A deodaes

Figure 18: The results of the example query

In addition to the BioXRT web interface of the data warehouse, one may use SQL

to query the data inside the BioXRT’s internal relation database.

50

Chapter 4

The Agent System

Agent systems have been around in the Life Sciences for a while, and the currently
available agent systems such as BioMAS [DKST02] have proven useful on manipulat-
ing dynamic databases [Bur]. As a part of the FungalWeb project, in this research
an agent system has been introduced in order to maintain the data warehouse and
provides access to the data in the data warehouse.

The agent system has been developed in DECAF agent framework. Therefore, it
is a plan-driven agent system that benefits from intelligent scheduling and distributed
nature of the DECAF.

In terms of agent types, the agent system is comprised of two different sets of
agents. The first set of agents accesses and updates the data warehouse. This serves
as instance data for the FungalWeb ontology [SNBHBO05]. The entities in the data
warehouse match the foundational concepts in the ontology. The agents that update
the data warehouse have explicit knowledge of a range of data resources: the agents
know how to query the data resource, transform results, and load the data into
the data warehouse. The agents that access the data warehouse use the ontology
query language, nRQL [HMWO04], for RACER [HMO01]. One can also access the data

warehouse through the native interface.

o1

The second set of agents that is being developed is to create a distributed data
space where agents can access the entities (matching the concepts in the ontology)
either via the data warehouse or via the distributed data resources. This is transparent
to the users.

The agent system is unique in its kind due to its general agent types. Although
the current implementation provides access to fungal genomics information, the agent
system can be expanded to cover other information that is semantically categorized
in an ontology. This compares to the agent types in other currently available agent
systems. For example, the BioMAS agents are responsible for: basic sequence annota-
tion, functional annotation, and processing of expressed sequence tags (ESTs) [Bur].
The effort for adding the support for a new service in such agent systems requires
design change and code implementation while we argue that the effort required to
integrate new service or new databases is competitively minimal in our agent system.

In terms of design, all of the agents in the agent system extend the provider plan
of the matchmaker agent system (see section 2.5), and they register themselves in
the matchmaker system using concepts from the service ontology. In addition, the
agents refer to the FungalWeb ontology to understand the exact type of the service
the seeker agents are inquiring about. Recall that the design of the matchmaker
agent systemn encourages use of two ontologies for finding an agent service. The first
ontology narrows down the list of candidate agents based on the domain of service they
provide, and the second ontology is in the hands of the provider agents to understand
the seeker agents’ inquiry. After all, the second ontology is an agreement between the
provider agents and the seeker agents on the specialization of general service domains
in the service ontology.

Using two ontologies for finding agent services introduces two interesting issues
that are worth discussing here. First, service seekers and service providers should

have the same service ontology and the data ontology (a more appropriate term for

the second ontology in this research) so that they can work together. otherwise there
need to be a matching mechanism to match concepts in one ontology to the other.
However, this is not the case in the agent system we are designing because both sides
are sharing the same service ontology for the matchmaking agent system, and for
the data ontology which is the FungalWeb ontology here. As a result, it is always
guaranteed that both sides are using the same set of concepts.

However, one may argue that convincing people to use the same set of ontologies
is an optimistic assumption. We contend that biological ontologies are now becoming
results of community work, and they are maintained to be consistent in the future.
Open Biomedical Ontologies (OBO) [OBO] is an example of such community works.
As a result. individual groups that are building their own ontology can extend OBO’s
ontology and remain consistent with other ontologies in the domain, so the FungalWeb
ontology is going to be.

The second interesting issue is how the service ontology and the data ontology
can be cmployed together to locate a service. Currently what we do is that we define
generic services in the service ontology, regardless of concepts in the FungalWeb
ontology. After that, generic services have parameters by which service concepts are
linked with data concepts in the FungalWeb ontology. For example, a retrieve
service on the service ontology might have a class parameter, like gene, which comes
from the FungalWeb ontology. Essentially this parameter specifies the service, and
it is passed to the provider agent. The advantage of this approach is that we do not
need to worry about ontology maintenance, and the drawback is that services are
not specific, therefore harder to implement and maintain. However, there is another
approach that merges the FungalWeb ontology into the service ontology, and the
result is a third ontology that contains specialized versions of the generic services. For
example, imagine that retrieve service is a generic service in the service ontology,

and it operates on Gene and Protein concepts from the data ontology. After merging

with the FungalWeb ontology, the third ontology will have two versions of retrieve
service: retrieve_gene and retrieve_protein. The benefit of this approach is that
services are specific. but the drawback is that the third ontology should be maintained

against the changes in either of the ontologies.

4.1 The Service Ontology

A part of this research is the integration of a biological service ontology into the match-
maker’s service ontology. This enables our provider agents register in the matchmaker
and seeker agents find them.

We extend the BioMoby [WL02] service ontology, as shown in Figure 19. This
makes the service ontology consistent with the currently developed service ontologies
in the field of biology. For the moment, the service hierarchy in Figure 19 covers all
the services of the developed agents in the agent system. However, integration of new

services may need modification of the service ontology.

4.2 The Architecture

The architecture of the agent system has been influenced by the matchmaker agent
system’s requirements. Figure 20 shows the architecture in respect to the provider
agents and their accessibility.

The lines in the Figure 20 show the communication between the components, and
the directions specify the direction of either message or data request. A standard
scenario starts with the advertisement of a provider agent and registration of the
provided service concept from the service ontology in the matchmaker’s database.
Upon completion of the registration, a seeker agent can send a message to the match-

maker providing two queries, a RACER query and an nRQL query. Having the

i

IviceClas

k)
o]

hicapplicationService
¥ analysiz
4 alignmenrt
% align_zequence
¥ glokal _aligriment
o multiple_global _alignment

pairwise_global_alignment
¥ L local_alignment
- multiple_local_alignment
 pairwise _loval_aligrment
¢ glign_structurs
k| calculation
L dnatdeting Temperature

proteinlzoelsctricPoirt

preteirddoleculardieight
clustering

¥ 1 lovate_feature e

¥ by _pattern_matching
g1 fird_sequence_features

Wog predict_property

Jredict location

B predict_sequence_featurs

. predict_structure
F L conversion
’ by _summarization
¥ dersgistration
B A by_translation
dizplary
¥4 format_parsing
format_validation

¥ ohject_manipulstion

Y

v

% collection_services
- fitering
- grouping
© merging
- splitting
% 1 databaze_services
deleting
Finzerting

upcating

o database_search
© 0 multiple_dlatakxase_search
B term_Jookup

:_dlatabase
infrastructureService
redgistry Transaction
registration

resaclution

Figure 19: The service ontology

[
(&3]

1- Racar Cuery

- : MAS
ARGl 5 Intermal DB

Service Ontology

- Provider- S 2 Racer
Agents Query
platchmaking

7 gy System o s

- = O~ Regisler o ¥

el . 3 rROL , e
S . G- B { ; e "g i
Seeker > Agent 3.1- RQL “&
Agent Name .- : ‘ RACER Servar

§- Service
Specitication.

FungalWeb
Ontology

Figure 20: Architecture of the agent system in respect to the provider agent and their
accessibility
RACER query in hand, the agent system consults the service ontology and its in-
ternal database to get a list of registered provider agents. Next, the matchmaker
sends the nRQL query to the provider agents in the list to find out which ones are
able to fulfill the seeker’s need. The provider agents run the nRQL query against the
FungalWeb ontology to semantically understand what exactly the seeker is looking
for and they reply back positive to the matchmaker if applicable. After that, the
matchmaker sends the list of approved agents to the seeker. The seeker then consults
the OWL-S component to find the appropriate way of querving each provider agent
and then it contacts the provider agents.

Moreover, Figure 21 shows the agent system architecture in a broader context.
The seeker agents are out of the scope of the agent system, and they only share the
service ontology and the FungalWeb ontology with the agent system. The agents in

the system are categorized in the three types of:

e ETL agents that update the data warehouse. They retrieve the data from the

Caltiothe
Frovdider
Agent

Lansed

v ENGXIRT

{ Felrisve
Drats

e

|

Exvtornat Dalabases

7

"~ FungalWeb +
Sarvice Ontology

Figure 21: Architecture of the agent system in a broader context

data warehouse, transform the data to the data warehouses format, and load

the transformed data into the data warehouse.

e Data Access agents that provide access to the data in the data warehouse. They
use the FungalWeb ontology as the way to understand in what exact data the

seeker 1s interested.

e Other agents that range from computational agents to external source agents.
The computational agents may provide access to biological computational ser-
vice as a transparent database, and the external source agents have been tar-

geted on providing access to the data is not integrated.

4.3 An Example Provider Agent

As an example of provider agents in the agent system we explain how geneAgent
fetches data from external sources and loads it into the data warehouse. The ge-
neAgent is chosen because it is an updater agent, and it explains how new updater

agents should be developed.

o7

10

11

13

14

15

16

The design and implementation of the gencAgent have two sides. One side is the
steps should be taken for DECAF and Matchmaker Agent System compatibility and

the other side is the steps should be taken to load the data into data warehouse.

4.3.1 DECAF and Matchmaker Code

In order to get the geneAgent to work in the DECAF framework it has to have a plan
file. Therefore, the first step is designing the agent plan file. As discussed before,
provider agents extend the matchmaker system’s provider agent plan file, shown in
Figure 7. In the case of the geneAgent we do not need to define new tasks in the
agent plan, and the whole logic can be developed in the check action. Therefore,
copying the provider agent’s plan file is good enough. Next, the DECAF framework
generates the Java code for the agents. The Java code has method bodies for the
actions inside the plan file, and the methods need to be populated with appropriate
method.

The first method to implement is the _startup action. In this method, the agent
notifies the matchmaker agent, and registers itself in the system. The code below is

the implementation of the _startup action for the geneAgent.

import taems.Agent;

public class geneAgent_Startup
{

public geneAgent_Startup()
{
}

public ProvisionCell Action(LinkedListQ Plist, Agent Local)
{
KQMLmsg outKQML = new KQMLmsg();
outKQML.addFieldValuePair ("performative", "achieve");
outKQML.addFieldValuePair("sender", Local.getName());
outKQML.addFieldValuePair("receiver", "Matchmaker");
outKQML.addFieldValuePair("ontology", "Matchmaker");

=4

58

=1

9

outKQML .addFieldValuePair ("language", "DECAF");
outKQML.addFieldValuePair("content", ":task advertise" +
" :keywords object_manipulation" +
" :ontology " + "geneProvider");

return new ProvisionCell (outKQML.getKQMLString(), "OK");

The code simply creates a new KQML message and sends it to the matchmaker
agent. The message triggers the advertise task of the matchmaker agent, and it
provides the task with the appropriate set of parameters. The task parameter spec-
ifies the advertise task of the matchmaker should be invoked. Furthermore, the
keyword parameter specifies the service of this agent, which is a general concept such
as object_manipulation in this case. The service concept matches those in the
service ontology as shown in Figure 19.

Having registered in the matchmaker, the agent needs to implement the deeper
action to let the seeker agents understand its service. The primary goal of this
method is to confirm the service availability with the matchmaker agent, thus the
seeker agents. As discussed before, we use the FungalWeb ontology to agree on the
fungal genomics terminology with the seeker agents. That is, the provider agents in
this agent system expect to receive an nRQL querying the instances of FungalWeb
ontology.

The code below shows the implementation of deeper action for the geneAgent.

import jracer.*;

public class geneAgent_deeper

{
String RACER_ADDRESS = "127.0.0.1";
int RACER_PORT = 8088;

String Answer = "";

public geneAgent_deeper()

33

34

35

36

37

38

48

49

50

51

52

54

public ProvisionCell check(LinkedListQ Plist, Agent Local)

{
String Count = Util.getValue(Plist, "count");
String RQL = Util.getValue(Plist, "RQL");
String AgentsNames = Util.getValue(Plist, "AgentsNames");
String origiSender = Util.getValue(Plist, "origiSender");
String ID = Util.getValue(Plist, "ID");
String Decoded_RQL = decode(RQL);

RacerClient Rclient = new RacerClient (RACER_ADDRESS,
RACER_PORT) ;

try
{
Rclient.openConnection();
try
{
Answer = Rclient.send(Decoded_RQL);
if (Answer.matches("NIL"))
{
// This means that there’s no Answer for the RQL
Answer = "SORRY",;
t
+
catch (RacerException e)
{
e.printStackTrace();
}
Rclient.closeConnection();
+
catch (Exception e)
{
e.printStackTrace();
}

Answer = encode(Answer);

if (Answer.indexOf ("http://a.com/ontology#Gene") == -1)
Answer = "SORRY";

60

56 KQMLmsg outKQML = new KQMLmsg(Q);

57 outKQML.addFieldValuePair ("performative", "achieve");
58 outKQML.addFieldValuePair ("sender", Local.getName());
59 outKQML.addFieldValuePair ("receiver", "Matchmaker");
60 outKQML.addFieldValuePair ("ontology", "Matchmaker");
61 outKQML.addFieldValuePair ("language", "DECAF");

62 outKQML.addFieldValuePair("content", ":task deeper" +
63 " :count " + Count +

64 " :RQL " + RQL +

65 " :AgentsNames " + AgentsNames +

66 " :answer " + Answer +

o7 " :origiSender " + origiSender +

68 " ID " + ID);

69

70 return new ProvisionCell (outKQML.getKQMLString(), "0K");
71 }

72

73 public String encode(String query)

T4 {

75 char oldch = ’(’;

76 char newch = ’<’;

77

78 query = query.replace(oldch, newch);

79 oldch = ’)7;

&0 newch = ’>7;

81 query = query.replace(oldch, newch);

82 oldch = ’:7;

83 newch = ’$’;

81 query = query.replace(oldch, newch);

85

86 return query;

87 }

88

89 public String decode(String query)

90 {

a1 char oldch = °(’;

92 char newch = ’<’;

93

94 query = query.replace(newch, oldch);

95 oldch = 7)7;

96 newch = ’>7;

o7 query = query.replace(newch, oldch);

98 cldch = ’:7;

99 newch = °$7;

61

160

101

102

103

104

query = query.replace(newch, oldch);

return query;

In the code, first a connection is made to the Racer server, and the nRQL query
is sent to it. Racer server runs the query and returns back the results to the agent.
Note that the Racer should load the FungalWeb ontology first or it will not be able
to return any result.

The code checks the returned answer. The agent’s answer is sorry if there has
been no answer for the nRQL in the FungalWeb ontology. If not, the agent check if
the user query covers the gene concept, and if so it returns a positive answer to the
matchmaker.

Besides the process of confirming user request, note that the Count, AgentNames,
RQL, origiSender, and ID fields in the KQML message play the role of matchmaker’s
memory of the seeker agent’s request. The matchmaker creates a list of agents based
in the ConceptQuery it receives from the seeker agent. Then it sends the nRQL to
each of the agents in the list, but it does not keep the list in its memory. This makes
the matchmaker a stateless agent, and it makes the matchmaker agent robust. After
this step, the geneAgent is good to go and it can be run within the matchmaker agent
systeni. However, the activate action should be implemented to provide the actual

service.

4.3.2 ETL Code

The service of the geneAgent is to fetch FASTA files for a gene and load it into the

database. For this particular agent this is done in two steps.

62

The first step downloads a remote file and uses the FastaGeneConverter trans-
former class to change the FASTA format to the tab delimited format. The Fasta-
GeneConverter gets a FASTA file and uses the BioJava library (http://biojava.
org/) to interpret the FASTA file and twn it iuto the destination format. The
code assures the new IDs that are assigned to the genes are unique. The code for
the FastaGeneConverter is too big to be here; however, it can be downloaded from
http://www.cs.concordia.ca/~f_kohant/thesis/tsource.zip.

After the tab delimited file is ready, the agent needs to process the content of the
records and modifv them. In this particular example, the agent needs to find the
GenBank ID of the retrieved genes. At this stage, the geneAgent uses Clover ETL
to convert the data. Clover ETL is a Java based ETL framework. The use of such
frameworks makes the agent system code standard and easy to understand. However,
you may have noticed that the Clover ETL has not been used for the first step. The
reason is that for the moment the Clover ETL does not support raw text files as input
in a straight way. Later releases may support such situations and are appropriate for
the first step.

In order to use the Clover ETL framework, an ETL graph should be designed.
Clover ETL comes with a graph designer as a plugin for Eclipse IDE. Figure 22 shows
the graph used for the geneAgent. The graph for converting new gene files consists of
two paths that are merged together before constructing the output. The first path is
responsible for formating new records and the second path is responsible for removing
duplicate entries.

Having the appropriate ETL graph in hand, the agent needs to load and run
the graph. The following code snippet loads the graph and runs the process in the
geneAgent. One problem with the current version of the Clover ETL is that it does
not have a straightforward way of setting values in the graph. The only possible way

is the GUI, and it does not work for our agent system. Therefore, we tend to modify

63

0

ﬁ??

Filker - remove genes

%
(2
Fid

Simple Gather

ﬁ»«igé‘

nevs gere.xrt

Vg

Faormat - GenBank I

reerted fasta

Figure 22: The ETL graph for converting Gene records

the graph XML file before loading it. Clover ETL graph files are standard XML files,

and their manipulation is trivial.

13

14

15

16

17

Defaults.init();
ComponentFactory.init();

TransformationGraph graph = new TransformationGraph();
TransformationGraphXMLReaderWriter graphReader =
new TransformationGraphXMLReaderWriter(graph);

setInputFileName ("geneAgent.grf", "converted fasta",
"somefastafile.fasta");

setTaxID("geneAgent.grf", "Filter - remove genes",
"13432");

InputStream in = new FileInputStream("geneAgent.grf");

if (!graphReader.read(in))

{
System.err.println("Could not load the graph!");
return;

+

if (!graph.init())

{
System.err.println("Graph initialization failed!");
return;

¥

64

I
~1

graph.run(); ’

Upon execution oi the graph the two paths start processing their inputs. In the
first path the data in the gene.xrt is read and passed to a filter component. The filter
component examines if the TaxID column of the record is different from the organism
that is currently being processed. It also checks the source of the data. That is, the
combination of TaxID and source fields constructs a unique key for the FASTA files
that are taken from a specific source. The following XML snippet shows the filter

clement i the ETL graph XML file:

<Node enabled="enabled" guiHeight="0" guiName="Filter - remove genes"
guiWidth="0" guiX="288" guiY="83" id="FILTERO" type="FILTER">
<attr name="filterExpression'">TaxID!=4556
or source!=MIT Broad Institute</attr>

</Node>

The records that satisfy the filterExpression condition pass through this com-
ponent and reach the merger component. The merger component is responsible for
gathering the data from the first path and the second path.

The second path of the graph reads the converted fasta file and pass the records
to the GenBank ID transformer. GenBank ID transformer is a custom transformer
that submits a gene sequence to the NCBI Blast web site and extracts the GenBank
IDs from the results. The code below shows the code for GeneGenBankIDTrans-

former.java transformer.

package org.concordia.cs.fungalweb.data.etl.transformers;

import org.jetel.component.DataRecordTransform;
import org.jetel.data.DataRecord;

import org.jetel.data.GetVal;

import org.jetel.data.SetVal;

import org.concordia.cs.fungalweb.ncbi.gblast.ResultListener;

65

21

22

23

24

25

36

37

38

39

40

41

42

43

44

45

46

48

49

50

52

import
import
import

public

{

org.concordia.cs.fungalweb.ncbi.qgblast .NCBIRunner;
org.concordia.cs.fungalweb.ncbi.qgblast.NCBIBlastScheduler;
org.concordia.cs.fungalweb.ncbi.gblast.result.Hit;

class GeneGenBankIDTransformer extends
DataRecordTransform implements ResultListener

public boolean transform(DataRecord[] source, DataRecord[] target

{

for (int i = 0; i < source.length; i++)

{
DataRecord source_data_record = sourceli]
DataRecord target_data_record = target[i]

2

3

String seq = GetVal.getString(source_data_record,

"sequence");

NCBIBlastScheduler.getInstance() .queueBlast(seq, null,

this, "blastn");

while (!resultReturned)
try
{
wait (2000);
}
catch (InterruptedException e)

{
e.printStackTrace();

// It is possible that no match is found
// then we have nothing to do here.

if (hit == null)

{

return true;

// In the case OtherIDs is null from the
// it istaken from the NCBI
if (GetVal.getString(source_data_record,
trim() .length() == 0)
SetVal.setString(target_data_record,
hit.getDefinition());

for the gene,

original source
"OtherIDs") .

"OtherIDs",

SetVal.setString(target_data_record, "GeneID",

66

63

64

65

66

67

hit.getId());

I
return true;
}
public void resultsReturned (NCBIRunner runner)
{
hit = runner.getHit();
resultReturned = true;
b

protected booclean resultReturned = false;
protected Hit hit;

The code uses the NCBI Blast Java Toolkit to schedule a Blast request on the
NCBI web site. The NCBI Blast Java Toolkit, developed during this project, is a
Java wrapper for the NCBI Blast web API. The toolkit is able to schedule all of
the Blast algorithms on the NCBI web site, and it provides means of tweaking the
parameters. Furthermore, the toolkit uses multi threading techniques to check server
for the availability of results. The toolkit has also been tuned so that it does not
violate the usage policies of the NCBI server.

The transformer sets the value of two fields. First. it sets the value of the the
OtherGenelIds fields if it is empty. The FASTA transformer fills this field with the
key it extracts from the FASTA file. However, not all of the FASTA files include keys
for their sequences, and this value can be filled with the description field in the Blast
result. The second field the transformer sets is the GeneID field which should be filled
with the GenBank ID returned in the Blast result.

After all of the records are processed by this transformer, which can take fairly a
long time, their are redirected to a merger component, and they are merged with the

filtered genes.

Finally, the merger component merges the results and send them to the tab de-
limited file writer. Till this point the gencAgent is done. The new XRT file is later

loaded into the data warchouse using the BioXRT’s bulk loader script.

68

Chapter 5

Discussion and Conclusion

In this chapter we compare our agent system and data warehouse with other related
works to magnify the differences and explain the current trends in the domain. More-
over, the chapter finishes by summarizing the work, stating our contribution, and

evaluating the data warehouse.

5.1 Related Work

As explained in the Chapter 3, the integrated database systems are classified in the
three types of portal oriented systems, mediators, and data warehouses. A part of
this research is a data warehouse. This section brings an example of a system for
each of these types in order to compare the types and discusses the pros and cons of
each system against the data warehouse developed in this research. Taverna has also
been explained here as a new initiative in accessing biological services; thevefore it is

a comparison to the service oriented aspect of this research.

69

5.1.1 SRS

Sequence Retrieval System (SRS) [EA92] is an example of a commercial portal ori-
ented system. What SRS does is that it does not offload the data from external
databases to its internal database, but it builds an internal repository in which it
keeps indexes of the original data. In addition to that, SRS stores indexes of relations
between the external data. This gives SRS the power to offer a reasonable suit of
query tools to its users.

The philosophy behind the SRS is that it models the external data in an object-
oriented mwanner. That is, it defines a class for cach concept data in the external
sources, and the objects of the classes mirror the original data. The classes play the
role of the meta data in the system, and they store enough information to enable SRS
query the external data and access it. In addition to classes, SRS assigns parsing rules
to classes so that the SRS knows how to access the data and interpret it. The SRS
also introduces a scripting language. lIcarus, for object and rule definition.

One key feature of the SRS is connecting data through indexed links. The indexed
links are defined based on the explicit and implicit relation of data in multiple external
sources. For example, an entry in the SWISS-PROT database can be linked to the
ENZYME database by the EC number (implicit relation), or the same entry can be
linked to an entry in PDB by the same accession number it has in both databases
(explicit relation). It is possible the links be a part of the SRS queries as they are
bi-directional, are weighted, and can be combined with logical operators to form more
interesting queries. For example, “give me all proteins that share InterPro domains
with my protein” [ZLAEQO] is possible by linking SWISS-PROT to InterPro and back
to SWISS-PROT.

The SRS comes with a server which respondes SRS requests, and a web inter-
face which facilitates user queries. The current version of the SRS indexes over 400

databases, some of which has been listed in the Table 6.

70

Sequence

InterPro & Related

SeqRelated

TransFac

Protein3DStruct

Genome

Mapping

Mutations

SNP

Metabolic Pathways

EBML
SWISSPROT
SWALL
REMTREMBL

InterPro
PFAMA
PRINTS
BLOCKS

TAXONOMY
UTR
HTG_QSCORE

TFSITE
TFGENE

PDB
FSSP

HSAGENES

RHDB
OMIMMAP

MUTRES
OMIMOFFSET
HUMAN
OMIMALLELE

MITSNP

dbSNP_Population

dbSNP_SNP
HGBASE

PATHWAY
EMP
UCOMPOUND
BRENDA

EMBLNEW
SPTREMBL
IMGT

InterProMatches
PFAMB
NICEDOM
PFAMSEED

GENETICCODE
UTRSITE
TFFACTOR

TFMATRIX

DSSP

MOUSE2HUMAN

RHEXP
RHPANEL

MUTRESSTATUS

SWISSCHANGE
MITBASE
HUMUT

dbSNP _Contact

dbSNP_Publication

dbSNP_PopUse

HGBASE_SUBMITER

LENZYME
MPW
UIMAGEMAP
UREACTION

ENSEMBL
TREMBLNEW
IMGTHLA

PROSITEDOC
PFAMHMM
PRODOM
PROSITE

EPD
EMESTLIB

TFCELL
TFCLASS

HSSP

LOCUSLINK

RHMAP

OMIM
EMBLCHANGE
P53LINK

dbSNP _Method
dbSNP _Assay
dbSNP _IndUse
SNPLink

LCOMPOUND
UPATHWAY
ENZYME
UENZYME

Table 6: List of databases accessible through the SRS [ZLAE0OQ]

Advanced Features

The SRS provides the common features of a portal system. However, it also offers
some advanced features that are unique in its kind. Few examples of such features

are [ZLAEOO]:

o Multiple subentries: Looking at data as a flat set of entries limits the schema
specification, therefore query abilities. As a result, the SRS allows definition
of multiple subentries per entry within the system. Subentries are logically
independant concepts of the domain that elaborate an existing concept. An ex-
ample of subentries can be the elements of Feature Tables in sequence databases
such as SWISS-PROT [ZLAE(00]. Publication references are another relevant

example.

e Virtual data fields: The SRS employs an on-the-fly algorithin to retrieve data
on demand instead of storing them. This is made possible by introducing virtual
data ficlds which arc in essence the place holder of the original data. Virtual
data fields are methods which lazy parse the source data upon receipt of a data
access request. The use of virtual data fields enables runtime customization of

the original data based on the view layer.

o Composite views: Composite views create dynamic views of result sets when
they are froin multiple sources and there needs to be a nice way of viewing
them. For example, a gene may need a customized view to be shown with its

metabolic pathways.

e Integration of data analysis application: Not only does the SRS provide access
to remote data as if they were local, but the SRS also supports access to compu-
tational services. This way, the result of computational services can be treated

as a dynamic database, and users can pipeline the results of such services in

72

their query results integration. CLUSTALW [HTH(94] is an example of such

service which is integrated in the SRS.

Programing Interface

As an enhancement in the new version of SRS (SRS6), “SRS Objects” las been
made available as means of accessing SRS services in the programing languages. This
enables C++, Java, Phyton, and Perl application developers to access SRS services
through native APIs. This way. developing a customized application is a preferred
wayv unless the provided web interface fits. The SRS people have used the programing
interface to provide a web interface and a web service version of their InterProScan
service [PSKT05].

In addition to the programing APIs, the SRS provides CORBA access to its server.
This way, a distributed network of applications can communicate to the SRS server

and perform their biological queries.

Discussion

Portal oriented systems are different from data warehouse systems in the sense they
do not store the data and they do not have a schema for the data. The former causes
portal oriented systems to be slower than warehouse oriented systems, and the latter
limits their querying power.

Portal oriented systems redirect their users to the original source; therefore, ac-
cessing the data is still slow and users need to understand the data in the original
form. In addtion, portal oriented systems are not as useful as data warehouse sys-
tems are for computer programs as computer programs need to follow the links to
the original data to access the content. Although SRS has proxy objects to provide
transparent access to original data, it does not improve the performance as still there

is a delay to fetch the data.

73

In addition, SRS does not function properly if the original data’s schema changes.
That is, the proxy objects” code and the customized rendering components’ code is
dependent to the original data’s schema, and they need to change when the original
schema changes.

Furthermore, portal oriented svstems can not offer enhanced cross database search
as they do not have any schema of the integrated data. On the contrary. data ware-
house oriented systems have a schema of their integrated data and they offer enhanced
querying over their integrated data.

Despite all above, portal oriented systems are fairly flexible in integrating new
data sources. That is, they do not need to transform the data and they do not need
to integrate them. Moreover, they always present the latest data as they redirect

requests to the original source.

5.1.2 TAMBIS

The Transparent Access to Multiple Bioinformatics Information Sources (TAMBIS)
is a mediator oriented system that provides transparent access to biological sources.
Therefore, TAMBIS [BBB*98] is the bridge between users and external sources and
it provides data source transparency by introducing a collection of biological termi-
nology and a mapping from those terminologies to data in external sources. In order
to do this, TAMBIS employs the classical mediator/wrapper architecture [Wie92], as
illustrated in Figure 23.

The first layer in the architecture is the knowledge base of biological terms and
concepts. and a user interface. The user interface provides enough facilities for users to
combine the biological concepts from the knowledge base and form their queries. The
second layer is the mediator layer which identifies which sources should be contacted
to answer the given query, and it also translates the query to the proper source-

dependent destination external sources. The third layer is the wrapper over the

~1
ISy

~\
J

Knowledge-Driven Graphical User Interface
§ Laverl

+ * Query formulation

Biological Concept Maodel

A T/
L4 A S
Y Y - e aners
 declarative query
f”"/ﬁ T -
V o
) Query
e Transformation
3 Laver 2
Source Model /,N' < .
Querv planning and
translation
\ {source mediation)
\‘)
\ & /
ordered execution
Laver 3

plan

Query execution

\"/’r
i,

(wrapped sources)

Source

Figure 23: TAMBIS three layer mediator/wrapper architecture, [BBBT98]

external data sources. Wrappers provide data structure and communication tools for
the external sources.
The three layers of TAMBIS architecture rely on the existence of five main com-

ponents underneath the architecture of the system:

e The biological Concept Model
e The graphical user interface

e The Source Model

o The Query Transformation Module

e The Query Execution Module

The Biological Concept Model

The TAMBIS biological Concept Model is a set of biological termis that can be used
as a standard language for expressing and communicating ideas between people, and
it has enough terms to cover protein and nucleic acids, their component parts and
their structures, biological functions and processes, tissues, and taxonomy.

One decent feature of the terminology in the Concept Model is that it is compo-
sitional. That is, the basic terms can be recursively combined together to form com-
posite terms. For example, the three terms ‘Motif’, ‘isComponentOf’, and ‘Protein’
can be combined together to form the composite term ‘Motif which isComponentOf
Protein’. Furthermore, the composite term ‘Motif which isComponentOf Protein and
hasFunction Hydrolase’ can be formed by combining the previous composite term,
the terms ‘hasFunction’, and ‘Hydrolase’.

The other feature of the TAMBIS Concept Model is its support of the subsumption
relations, also known as ‘isa’ relations. As an instance, ProteinSequence ‘isa’ Sequence
in the Concept Model.

The two above feature and more are available because TAMBIS uses GRAIL DL
language [RBGT97] to define its Concept Model. The GRAIL DL, developed in the
Manchester University, is an ‘isa’ language which allows definition of compositional
and recursive models. Figure 24 shows a fragment of the GRAIL representation of the
TAMBIS Concept Model. In the Figure, ‘Motif’ is the main term and it is combined
with the 'isComponentOf’ term. |

TAMBIS uses the Concept Model to define a data schema for external data
sources, as a language for constructing user queries, to enhance user interaction with

its graphical user interface, and finally to integrate data from different external data

76

isCeomponentCf frasOreanisimSonrce

Protein Orzanisn
hasFunction
Funcuion
SequenceComponent B Poecilia
S) e ' reticulata
%, o
. A
. i vdrolase
Saquencelomponent 1slomponentDs
Protelin :
~ H
i -~ i
§ ~ ;& i
f e i
£ ., . . .
§ g Motif hasFunction Hydrolase.
f
i

“

Motif Zzlomponentdf Protein

Mot if ~ 4
- S ’ - - -
« ZaComponientdF (Protein hasdy

PoeoiliaRetioulata) hasFunction Hydrolases.

3

Figure 24: The GRAIL representation of the TAMSIB Concept Model [BBB*98§]

source.

The User Interface

As described earlier, the Concept Model terms are used to form user queries, and
Concept Model terms are defined in the GRAIL DL language. Therefore, biologists
need to learn GRAIL in order to use TAMBIS. However, learning a computer language
is an unnecessary overhead for biologists. To remove this overhead TAMBIS comes
with a form based graphical user interface that enables constructing user queries by
choosing terms from the Concept Model.

As illustrated in Figure 25, the user interface provides a term navigator by which

users can look for a term and select it, and they are provided with the related terms

77

TN avigator

txahignedin
aligrrment iz DetarminedBy

rrethod of L tnactuns

structure = Structure

Figure 25: The TAMBIS Graphical User Inteface - The navigator screen with protein
structure in the middle, [BBB*9§]

to the selected term. In the Figure 25, the selected term, protein structure, is shown
in the center of the navigator and all related terms are rendered around the main
term. By clicking on the related terms, the user goes further in details and constructs
a more complex query.

In each step of constructing the query the user has the option to specify details of
the selected term to enrich the query. Figure 26 shows a screen shot of the GUI by
which the user is adding details to the criteria of the motif term. The GUI consults the
Concept Model to gives the user appropriate suggestions. For example, in Figure 26
the GUI suggests that a motif can be combined with either a ‘protein’ or a ‘nucleic
acid” with the ‘isComponentOf’ term. Having selected ‘protein’, the user constructs
the query ‘find all protein motifs’.

Finally, the GUI supports query maintenance during which the user is able to go

78

e
hesdocessionbumber

& aecezzion number

4|

hasFunction

21 tislogival furstion
btk
hasDrganismSources

2] organisim classification
bt |

izdssocixadwith

Al solatutar modification
specific biocherical provess

k|

i

isComponent Of

ALY nisoteic Boid
protein

b |

Figure 26: The TAMBIS Graphical User Interface — A screen shot of the GUI when
the user is setting query attributes for the motif term, [BBB*98]

back in each step and add more details or remove some terms.

Query Planning and Translation

The TAMBIS user interface helps users ask their questions in terms of the GRAIL
language. However, the GRAIL language has no knowledge of the external sources,
and the query itself can not be used to retrieve data from them. Therefore, TAM-
BIS needs a transformer layer that transforms and redirects GRAIL queries to the
appropriate external sources. The query planning and translation does this job in the
TAMBIS.

The query planning and translation does its job by transforming the given GRAIL
query to a Collection Programming Language (CPL) [Won95] execution plan. The

CPL is a functional language that supports manipulation of complex data types such

79

as lists and sets. which are suitable data structures for the biological data. CPL
has been extended by some tools such as BioKliesli [BDH795] to add support for
biological data. In TAMBIS, the CPL and BioKliesli combination plays the role of
a multiple database language and the support for sending queries to the external
sources and pipelining the results.

The query planning and translation phase is comprised of three steps. The first
step is to transform the GRAIL query into a Query Internal Form (QIF). This trans-
formation is suggested because the nested structure of the GRAIL queries introduces
an implication on the evaluation order of concepts. Therefore, the GRAIL query
should be transformed to an unnested form, the QIF. The QIF is a list of tuples
(Base, Variable, Criteria, Cost, Cardinality) each of which is a part of the GRAIL
query. The Base in the tuple is the term from the GRAIL language. The Variable is
the name of the variable to store the results of this part of the GRAIL query. The
Criteria is the criteria that the user has set for the term in the GUL The Cost is
an estimate cost of running this part of the GRAIL query, and it is computed by
the program. The Cardinality is the size of the result set, and it is also set by the
program. As an example, the user is querying ‘find all motifs in Poecilia reticulata
(guppy) proteins’. The GRAIL form of the query will be ‘Motif which isCompo-
nentOf (Protein which hasOrganismSource PoeciliaReticulata)’, and the QIF form of
the GRAIL query will be [(Motif, Motif-1, [{isComponentOf Protein, Protein-1)], -1,
1), (Protein, Protein-1, [(hasSourceOrganism PoeciliaReticulata, null)], -1, -1)].

The next step of the query planning and translation is the query planning. The
query planner scans QIF to find the most promising query parts to run, and it repeats
till it find the answer to all query parts. This step of query planning and translation
takes CPL functions and the availability of external sources into consideration and
decides which CPL functions should be used to assemble the results of the query.

The last step of the query planning and translation is the code generation. This

80

step takes the results of the last step and generates the CPL code that runs the user

query. For example, the generated CPL code for the previous user query looks like:

{Motif-1|
\Protein-1i<get-sp-entry-by-os(‘ ‘POECILIA+RETICULATA’’),

Motif-1<-do-prosite-scan-by-entry-rec(Protein-1)}

After the CPL code is generated, it is run and the results are rendered as a HTML

- page.

Discussion

Mediator oriented systems do not store the original data; therefore, they are slower
than data warehouse oriented systems. That is, mediator oriented systems need to
go to the original source to fetch the data, and they need to wait for all the sources
to respond before they can integrate the results and give it back to the user.

In addition, mediator oriented systems are dependent to the data schema in the
original source, and they need to change their schema and code to accept changes
in the original data sources’ schema. On the contrary data warehouse oriented sys-
tems are independent of the the original data schema as soon as they store the data
according to their schema.

Despite the above, mediator oriented systems always present the latest data from
the original sources as opposed to the data warehouse systems which present the data

they have stored.

5.1.3 Biozon

Biozon, Golan Yona et al. [BY0G6D], is an ongoing research in the cemputer science
department of the Cornell University. Biozon is a knowledge base for biological in-

formation such as proteins, structures, domain families, protein-protein interactions,

81

and cellular pathways. In addition, not only does Biozon keep this information but
also Biozon integrates them by establishing their relationship. Thus, the problem of
linking similar data does not exist in the Biozon’s database.

Moreover, Biozon is a warehouse oriented system that keeps its data in a graph,
where biological entities are nodes of the graph and their relations are the edges.
Using graphs, Biozon has been able to offer powerful search facilities to its users such
as complex queries and fuzzy searches. These searches will be discussed in more depth
in this section.

In addition, in order to make Biozon publicly available, Biozon is accessible via

http:\\www.biozon.org, where online users can:

e Browse and navigate through biological entities aud sce their profile pages,

where each entity is shown in its biological context.

e Form and run complex and fuzzy queries, which will be discussed in more details

later in this report.
e Rank their search results so that they get closer to what they are looking for.
e Export and distribute their research result using their online accounts.

e Use online analysis tools.

The Data Model

As described earlier, Biozon stores its data in a graph where biological entities are
graph nodes and their relations are the edges. Figure 27 shows an example of a
subgraph in which a protein is shown with its corresponding sequence, the DNA
sequence that encodes it, and the interactions it is involved in.

Although a graph is a good way to store data that are highly interconnected and

mutually related, graphs per se do not have a data schema. Thus, it is not easy to

82

A protein manifests
a structure _

Proteins involved in

. | N, oA interaction
A DNA sequence that B, l
encodes a protein B ™ o

Figure 27: Biozon graph of biological entities

update them and/or integrate new data types into them. However, biological data are
being generated at a high speed daily, and new data types are introduced every now
and often. Thus. as a major concern, Biozon should be so flexible that it can easily
update its graph and incorporate new data types. To solve this problem, Biozon uses
a hierarchical data scheme approach to assign type to its graph nodes and edges. That
is, each node in the Biozon’s graph belongs to a certain class that is in documents’
class hierarchy, as shown in Figure 28. Similarly, each edge in the Biozon’s graph
is of a class node in the relations’ class hierarchy, as shown in Figure 29. These
class hierarchies feature the inheritance. by which subclasses inherit parent class’s
attributes. This simplifies maintenance and expandability of typing.

Documents node is the root of documents’ class hierarchy which implies the fact
that each biological entity in Biozon is a document, some of which has been listed
in Table 7. Documents class has three attributes: DoclD, Timeline, and Marked.
DocID is a unique identifier for the document which is unigque in the whole Biozon
graph. Timeline is a time tag which shows to where in the Biozon’s life time this
document belongs. That is, Biozon does not physically remove the old documents,

and it tracks to which dataset each document bhelongs. This may result in a larger

83

Daonuments

—r"‘ﬂ’ﬂ/ﬁd—*‘\ﬁqu‘ﬂq‘_ﬂh

. AR
singular 587 partal BARATAIS

= -.._\ P ’ Pt
N /] . SN e pdd ZN’;’;:&L

CTUCTME SRGUEDCE erachivn pathway fssue focus

/\\ ; genbank IETPIS

anane nuckee

|
!

domatln
i il / ™
cinsier fanuly

coneaet R sequende 5
TN domam
Gomgin prown

famev Taaly

enzyie

faduly

unigens

Figure 28: Documents’ data scheme hierarchy

graph, but at the same time it gives the users the option to rerun the queries they
have run on a certain dataset which has been updated through time, assuring that
they will have the same results as they have had at that time. Finally, the Marked

attributed is used for detecting deleted and active documents.

Relations

L=t

I T

COITDISES o -] e N .
DU s tornzaron CONES sl aesoriles erw

BN AN ~
profeln—doma: FEne-eNCIInIon * ™~
* : zo classification
s \
Y chister menersinp -
\ .

enendes manfeszs
,f»/—‘“""”"’p—’\\ /
wLgene - pIORM aunns - nuclede fanisly emberhip N - \;"-n
g i - ') .
“ . .
comyles elements \ RonEe Pro: :nyc‘lex(
1 !

—
& =313

IR

sl

earme Sty domads iy PO elements

IHEIICTNG elenreits upgens clasey by expresaion
AFENens
sytwriag

Figure 29: Documents’ relation hierarchy

Documents class has two subclasses: object and descriptor. Objects are Biozon's
physical entities (such as a sequence), logical entities (such as a domain), or sets (such
as a protein family). On the other hand, descriptors describe objects. They contain
the information needed to explain what the object is, where from it has been taken,

and so on. It is possible that an object has relation with many descriptors.

84

Document Type Representation Atomic Units

protein sequence string amino acids
nucleic acid sequence string nucleic acids
protein family sot proteins
pathway set protein families
domain ordered pair sequence coordinates
domain family set domains
interaction set proteins, nucleic acids
descriptor text characters
structure list 3D coordinates
unigenere cluster set nucleic acids (ETSs)

Table 7: Biozon document types

As described earlier, Biozon identifies the type of its entity relations by assigning a
class to each relation from relations’ class hierarchy. That is, it is not only important
that two entities are related but it is important that how they are related. This
will give more flexibility in forming complex queries which will be discussed later.
Moreover, the relations in the hierarchy are defined based on the object they refer.
For example, similarity relation is between two proteins, and it defines which one
is similar to which. Similar to the documents’ class hierarchy, the relations’ class
hierarchy starts with the Relations node, and it subclasses to other classes based
on the diversity of the relations in the Biozon datasets. Table 8 shows some of the
relations that are currently used in Biozon.

Not only do relations give meaning to the way two entities are related but also
they have attributes that give more depth to the entities’ relation. For example, when
a protein is described by a GO number, and the mapping to the GO number has some
evidences, those evidences are attributes of the 'describes.go’ relation that the protein
has with the GO number. For the moment, Biozon does not support querying these

relation’s attributes, but that is a nice feature to add in the future.

Relation Type

Referring Documnent

Referved Document

manifests protein structure
describes descriptor any object
encodes.nucleic nucleic acid protein
encodes.unigene unigene cluster protein
similarity protein protein
contains.unigene unigene cluster nucleic acid
contains.interaction interaction protein, DNA
contains.pathway pathway enzyme family
contains.enzyme-family enzyme family protein
contains.domain-family ~domain family domain
comprises.domain domain protein
expresses.unigene unigene cluster tissue
hierarchy.go go term go term
describes.go go term protein

Table 8: Biozon relation types
Datasets

Biozon’s internal database contains two kinds of data: source data and derived data.
Source data is the data that has been taken from external databases such as SWISS-
Prot and KEGG. On the other hand, derived data is the data they have computed
internally from the source data. As of now, Biozon’s derived data is similarities
between proteins sequences, similarities between protein structures, and similarities
based on gene expression data. Table 9 shows a list of Biozon’s database content by
August 2005.

One of the challenges that Biozon people should face is that they should compute
these derived data when they update their source data. This can be time consuming
and can cause consistency problems in Biozon’s data warehouse. However, Yona et
al. [BYOGb] discuss that they implemented protocols to run updates on their internal

database in such a way that everything is working after.

Browsing entities in Biozon

For the moment, web interface is the only interface to the Biozon's database. In

the web interface, each entity has a profile page in which all the related information

86

Data Type NR Record Count Sources

nucleic acid sequences 42,686,711 GenBank, BIND

protein sequences 2,062,061 UniProt, GenPept, PDB, BIND
protein structures 32,637 PPDB

interactions 155,090 BIND, Biozon (predicted), DIP¢
enzyme families 3,944 UniProt, PIR, GenPept, SCOP
pathways 142 KEGG

unigene clusters 185,543 NCBI

domain families 181,500 InterPro, Biozon(predicted)
sequence alignments 5,000,000,000+ Biozon

structure alignments 8,250,286 Biozon

non-similarity relations 136,972,705 All

descriptor documents 58,176,040 All

words indexed 1,627,747,755 All

Table 9: Biozon database contents

to the selected entity is shown. In details, the profile page shows the other entities
that have a relation with the selected entity. In addition, the profile page shows a
list of descriptor documents that are in relation with the selected entity. Thus, the
profile page shows a broader biological context of the selected entity. That is, the
researchers can see the whole information available about the selected entity in one
shot. Figure 30 shows a screen shot of the profile page of a protein that is associated
with the breast cancer.

As Figure 30(a) shows, the profile page begins with a summary part that contains
the alternate names of the entity and the other general information of the entity.
Next, it shows the actual physical record behind the entity, which can be shown in
a picture, by a sequence, or in a table. The profile page continues with the related
descriptor documents. Finally, the profile page ends by listing the related entities of
the selected entity. In the case of the example shown in Figure 30(d), the only related
entity is the nucleic acid sequence that encodes the selected protein.

Although Biozon shows all the related information in the profile page, Biozon does
not load the content of descriptor documents for both performance and Ul reasons.

First, loading those related information can be expensive while the user may not be

87

interested in viewing those information. Second. each of those descriptor documents
need a special view: For example, a GO entry will need a graph image while a TrEMBL
entry fits best in a tabular Ul Showing all these different views at the same time will

confuse the user.

Searching Entities in Biozon

Biozon’s web interface comes with a type specific search by which users can search
entities of a specific type. This is done by clicking on a type’s icon on the Biozon’s
search panel, Figure 31. Next, the user is given a form in which he/she can set
different criteria fields. The criteria fields come from all the sources from which the
selected type has been taken. For example, while searching for a protein, the user can
specify that the protein should have a specific GI number, which is NCBI's Genlnfo
number, and also it should be assigned to a speciic GO munber, which comes {rom
the Gene Ontology.

Criteria fields are different from one entity type to another one, but the fields
generally fall into four categories: identifiers (accession numbers, gene names, etc),
descriptors (keywords, GO terms, etc), physical properties (length, or resolution),
and taxonomy. However, some entity types do not have all these four categories. For
example, a UniGene query page contains only an identifiers section and a descriptors
section.

Another search facility in Biozon’s web interface is the Quick Search, by which
users can keyword search all the entities in the Biozon. This feature is similar to
NCBTI's Entrez search, but Biozon’s quick search also searches on the relations, and
at the same time it considers the relation between entities (it returns the results based
on the relations that they have with each other) while as described earlier the Entrez
is a portal oriented system and does not keep the relation hetween entities. Thus,

Biozon returns more relevant results, and, as Yona et al. [BY06a] claim it is the best

88

e afirib

vraon

FMFUMHFZTY KYFFRLEISD LEYVFSENHK QLSNVDKYIP IFTIPLETEY ARTVHIZSUG VARLATLLGL EEMTLETQLL ©

OQEGVASVEGT SOLUPIES STAGCRTHAY SSPALORLEN LLOEILLIVE

AEFGVLIET R

SACKRNIGNS LLESRGHNSKT EY
GTEHAZDTHD EARRLOMPED

LENGHYLERL EYRYDIIVEN CHRESAIFYIL

FHVEHHEYRY IVEFLAZLER

PLIDITHYID

PRLNNSHYED DRAHTLDDNS ZWHSLIDPAYYD

LALLEQLENR KLFTGRLRY LOVHACURLA

¢ TYPVITRERF SRORFTVRIE HOPWSEIARD ICEULEDALY

1
FRLEVEVTGL ISMHSATHIG CREGLITIVN DTEHQHEDLY

REQKIVRONE VAKKYENALE Y

TR, Y,

¥ AWEBLIHFCEY LYVEIRTL %

WTPLATAQTT OHBOHLY

CEDRAPFNYS LECHIVGYIN LYKRDKDOHR YELOHEIDP HEIHLEZAAY

PHIGHLEERY LOIVEDEGG

(b) The physical object

D

seriptor Documents

(c) Related descriptor documents

SMugiels soid seasenus 1

(d) Related objects

Figure 30: Biozon's sample profile page

89

Figure 31: Biozon search panel

quick search tool available so far.

Complex Searches

Performing multiple-entity cross-database queries is not something new between bio-
logical researchers. That is, biologists are accustomed to querv diflerent data sources
to find relevant information of an entitv. However, the basic search feature that all
biological databases have does not satisfy this need. Although there are some cross
database search tools like SRS [EA92], BioMediator [MHTHO1], Columbia [TRM*05],
and DiscoveryLink [HKR700], they use the explicit links that are between the dif-
ferent databases and they do not infer the actual relationship that these different
databases’ contents have. The only exception is Columbia because it links Swiss-Prot
protein sequences and PDB chains using similarity.

However, Biozon uses a different strategy to form cross-database queries, which it
calls complex queries. Biozon uses its internal graph to form complex queries. That
is, the users, through the web interface, define a query graph in steps. The query
graph is comprised of query nodes and query edges. Each query node has a data type
and some criteria fields, and they together specify which entities should be selected for

cach query node. In the same fashion, query edges show how the query nodes relate

90

to each other. In addition, web interface makes sure that the query graph, which is
built step by step, is connected at each step. That is, users can not add query nodes
that have no edge to any of the currently added query nodes. Next. Biozon runs the
query for each query node, and theun it tries to find the isomorphic graph between the
union of result graphs and the query graph. At this stage, the relationships defined in
the query graph will cause the irrelevant entities to be excluded from the final result.

As an example, a complex query can be “Find all the proteins that are associated
with breast cancer, and they have a known 3D structure that has a structure with
less than 2 A precision”. This complex query returned 2 proteins in the Biozon’s

October 2005 database.

Fuzzy Searches

Biological data has not been studied completely, and in some cases there is not enough
information available about some biological entities. For example, there might not
be enough information about functional use of a certain protein. However, biologists
have been successful to predict such cases by studying the similar entities. That is,
for example, functional use of a protein might be similar to the functional use of its
similar proteins.

As described earlier, Biozon stores and updates similarity information of its source
data. These similarity data, which are a part of Biozon’s derived data, are used by
the Biozon’s fuzzy search, by which users can look for a specific, for example. protein
and at the same time Biozon will look for the other proteins that are similar to
it. The reason behind calling this search fuzzy is that Biozon stores a confidence
number (e-value) for its similarity relations; therefore, users can specify their desired
confidence score while running fuzzy searches. As an example, a user may want to
look for proteins that are similar to a protein with P08195 accession number while

the confidence score is 1le-100.

91

Another good point about fuzzy search is that it can be run instantaneously.
Each run of fuzzy search is equal to running the given query plus running BLAST on
proteins to find similar proteins to the query answer. However, Biozon does not need
to compute them at the run time because it stores those similarity relations. Thus,
running such a query will be like any normal query, and it should run decently fast.
This becomes more important when the result of the given query is a set of entities.
In this case, fuzzy search will return the result set and all other similar entities that
are similar to either of the result set’s members. Obviously, running BLAST for each
of the result set’s members would take a lot of time, while Biozon can carry the results
out at a reasonable time using its offline similarity data.

In addition to normal fuzzy searches, Biozon is also able to form fuzzy complex
searches. That is, in some cases, the available biological data is so partial that complex
queries do not return any result. For example, Figure 5 shows a fuzzy complex search
on enzyme family with EC number 1.1.1.1 which at least has one protein with known
structure and that the protein is involved in a certain interaction. The circles in Fig-
ure 32. A show that the normal complex search has no result (there is no intersection
between the result circles), but the fuzzy search in FiguretefBiozonFuzzySearch. B
returns an answer because the protein result set is containing similar proteins as well.
Another way to include more proteins in the result is to tune the e-value parameter
of the fuzzy search. The bigger the e-value is the more similar proteins are found;
thus, the intersection between the results is bigger.

For the moment, as explained by Yona et al. [BY06a], fuzzy search employs the
results of BLAST, expression profile similarity, and structural similarity of proteins.
Online users have the ability to choose which one of these data to use in their fuzzy
searches. In addition, when the results are ready, an indicator will show whether the
result has been included by the fuzzy search or it is the result of the query itself.

Moreover, the indicator also shows which similarity method has been used for each

92

EC Family 1010

Structures

Figure 32: Biozon’s fuzzy search

fuzzy result entry.

Ranking

Some databases offer sorting facilities for their results. However, their sorting is
mostly based on the techniques that are not useful in the biology context. For exam-
ple, alphabetical sorting is not always a good way of sorting especially when the query
has been run among different datasets. At this stage, there is a need for sorting the
results in a way that most proper or relevant entities stand at the top of the results.

Biozon, ranks its results by using PageRank [PBMW9S], which is similar to the
method that Google uses to rank its results. The way that Biozon uses PageRank
is that it looks inside its result graph and tries to find the subgraphs that are most
connected to the important data, or the same way it looks for the subgraphs that
are most connected. Biozon people call these subgraphs Hubs of Knowledge hecause

they are believed to have the most important knowledge in themselves.

93

User Account

In the Biozon’s web interface, users can open user accounts, where they can save their
queries and rerun them later. This is useful when a user needs to rerun a saved query
that hie/she has done in the past. and he/she wants to have the same results, no
matter how many times Biozon's database has been updated since then. In addition
to saving and rerunning queries, Biozon users can export and dowunload their query
results.

In addition, Biozon has an access privilege system, by which users can be restricted
from accessing private datasets. This will give Biozon more flexibility and choice over

the kind of datasets it can incorporate.

Analysis tools

Although web interface is the only Biozon's interface, Biozon has some analysis tools
which are exposed as services. For the moment Biozon has the following services up

and running:
e Users can submit a sequence and get a list of similar sequences.

e Users can submit a sequences and Biozon predicts its domain structure by using

Nagarajan et al. [NY04]’s algorithm.

e Biozon has a service that explores different paths in its graph to map human

and mouse EST sequences to their protein product.
Some other tools like Meta-DP [SF05] are using Biozon's analysis tools and it is
expected that more tools start using it in the future.
Discussion

Biozon stores the data in a complex structure such as a graph. Addition of new

data sources and data types needs change of the graph. On the contrary, in the

94

data warehouse developed in this project, the data is stored in a simple structure,
triple of (class, attribute, value). It is effortless to incorporate a new type in the data
warchouse, and it only takes defining a new BioXRT input file and loading it into the
data warehouse.

In addition, computer programs that access the Biozon graph need to support
new types, whereas the computer programs (in the case of this research the agent
system) do not need to change when a new type is integrated.

Despite the above, Biozon does not need to update the whole database when a
new type is available while the data warehouse loads the whole data whenever an
update is available.

However, all the three types of the systems described above (portal oriented,
mediator oriented, and data warehouse oriented) need to resolve potential ambiguities
in the source data identifiers. In the data warehouse we store the GenBank ID for
the genes and proteins because GenBank 1D is accepted as a unique id for the genes

and proteins.

5.1.4 Taverna

Web services have recently become the main tool for providing programmatic access
to biological sources and tools [Ste02], and more organizations are now providing web
services. XEMBL [WRR02], openBQS [Sen], Soaplab [SRO03], and DDBJ [MS00]
are examples of such web services. As a result of the availability of web services,
the need for a workflow system for obtaining data from one service and using it in
another service is growing.

Taverna [OAF*04] is an open source workflow system designed for biological re-
searchers to build their own workflows. Taverna workflows are defined as a graph
of processors whose output data is the input data to another processor. Taverna

is consist of a graphical interface and a Simple Conceptual Unified Flow Language

95

(Scufl). The graphical interface is where users build their workflows and the Scufl is
the language representation of those workflows.

The absence of a standard language to semanticly define workflows led Taverna
people to develop their own workflow langnage, Scufl.. Scufl is a high level conceptual
XML language that is able to semanticly define the specification of data, processes
and resources and put them together to form a workflow. In Scufl, each work is

consist of there parts:

e Processors: Processors are the task units. A processor has a name, a list of input
data. and a list of output data. During the workflow’s execution, each proces-
sor can be in either state of initializing, waiting, running, complete, failed, or
aborted. Based on the nature of the task, there are different type of processors.

The current available types are:

— Arbitrary WSDL type: This type is the general web service tvpe. Most
of the information of a WSDL process is extracted from the web service’s

WSDL file.
— Soaplab type: Thie type is a wrapper for the Soaplab services.

— Talisman type: Talisman processes can invoke a Talisman [Oin03] session.
The process need to specify the URL of a Talisman’s tscript file in which

the service description are defined.

— Nested workflow type: This type enables invocation of another Scufl work-
flow. This way. Scufl workflows can act as modules which enables reusabil-
ity and extensibility.

— String constant type: This processor type has no input and a single output
which is the string constant. This processor can be used as a way of sharing

constants between different processors.

96

— Local processor type: This type is useful when a custom code process is
needed in between the workflow. Local processors are Java codes that
implement Taverna’s interface. Execute SQL Query. XPath from Text,
Write Text File, and Send an Email are examples of Taverna’s predefined

local processors.

Each workflow itself can have a set of input and a set of outputs. Workflow
imputs and outputs are annotated by different types of metadata. That is they,
they can be associated to a MIME type (which can later be used for rendering
purposes), a semantic type from the "?Grid bioinformatics ontology {(WSG*03],

and an arbitrary text description.

e Data links: Data links are the connection between processors, and they carry
data from one processors to another one. A data link is connected to either the
source processor’s output data or the workflow’s input data, and it is connected

to either the destination processor’s input or the workflow’s output.

e Coordination constraints: Coordination constraint control the execution order
or the processors that are not connected with data links. Data links show
the dependency of processors and the order they should run; however, some
processors do not provide data for each other but they still need to run in a

specific order. This processors connect with coordination constraint.

Scufl Workbench

Learning a computer language is not an easy task for biologists; therefore, Taverna
comes with a graphical user interface for design and execution of Scufl workflows. The
workbench provides enough facilities to design a new workflow from scratch without

having any Scufl knowledge.

The Sculf workbench is consist of three main parts. First part is the model explorer

i which the workflow is shown in a free of processors, as shown in Firgure 33.

anced DI
workflow e e ;
load = Loadfromweb 7 %Save | Mew subworkflom ¥ W Offline . Reset &
Wtorkflow obiect] Retries j Delay j Backaff j Threads§ Critical §

= Weorkflow model .

-y workFlow inputs

o Workflow outputs
4 predicted_genes
Processars

W os_format : Fasta 1] 0 1 1 I
~@,, value :
W embl.ﬂuccmumber embl Acchiumi 0] 1 1
4, walue ek
= @ name : sequence |] 1 1
@, walue
=

Morganﬁm arabldopfls 0 0 1 1

Figure 33: Sculf Workbench — Model Explorer

The next part is the diagram view where a graphical view of the designed workflow
is illustrated, Figure 34. The diagram view provide a set of options that help with
the illustration of the workflow. For example, it can expand nested workflows. The
diagram view draws the workflow by using the Dot tool from GraphViz [GN00], and
it is readonly.

The last part is the service explorer, as shown in Figure 35. This is where the
available processors are listed, and users can add a processor to the workflow by
dragging and dropping processors from this window to the model explorer. The

service explorer provides a basic text search facility over the list of the processors.

5.2 Conclusion

Recent enhancements in the technology have made the process of generating new

biological data from the existing data sources easier than ever, and it has given it a

98

=01 x

Qave as 2 fhe] , - ic¢” Configure diagrarmn
™ @A:
emblAccH umber -

a5 fofmat sfs:urmaﬂi s«rs_,gevtEm bR ecar
seqret_toFasta [narne l arganism
- glimmerm
Workflow utputs
predicted_genes |7 -
..................... ' -]
Rendering dane.

Figure 34: Sculf Workbench — Diagram View

recursive nature. That is, the new data sources are later the basis of other hiological
data sources. This has changed the life of biologists and bioinformaticians. After
all, a daily life of a biologist or a bioinformatician involves discovery of data sources,
analyzing them, and moving on to the next source.

In addition, biological sources have a distributed, dynamic, and heterogeneous
nature, and finding the right source of data is not a trivial task. Therefore, the
need for integrated data sources of biological data grows as the time passes by. In
addition to that, many data discovery and analysis tasks done by biologists can be
done by computer programs; therefore, computer programs also need to have access
to biological data sources and other bhiological computer programs.

This has been relatively an active field of research for many research teams in the
recent years, and many have been successful in developing integrated systems that
provide appropriate interfaces for both humans and computer programs. However,

this has lead to the vast availability of biological services with no catalog. and it has

99

=3

Search list | R Watch loads

¥ getAREXGFPImage ot
= 7 atidb.org
* st getInsertionswWirhOffsetasGFFEvAGICode -
@é getTranscripk=equenceBy TranscriptCode - @
: W qetGOACCsByAGICode - tabkes an &
- W getABRCCadeBy aTHMUmber - ret
@ getTranscriptCodesByAGICode - ¢
<t 0etGOTermsByAGICade - 12

——— et

4 o ' | id

Figure 35: Sculf Workbench — Service Explorer

complicated the process of finding the right service. It is even worst when the diversity
of biological vocabularies is taken into consideration. That is, even though there are
service catalogs, they are not practical because people use inconsistent vocabularies
to refer to the cataloged services.

However, the promise in the field is that a combination of agent systems and the
semantic web works fine to solve the problem. In this research we introduce a data
warehouse which contains fungal genomics data, and an agent system that maintains
the data warehouse.

The data warehouse is the first in its kind to store integrated data from multiple
fungal species. In addition, the data warehouse is the first data source on fungal
species that stores multiple classification schema (EC, GO, InterPro and FunCat)
and the mapping between them. In addition, we also developed an agent based ETL
system for the data warehouse systems.

Furthermore, the data warehouse defines a data schema for the integrated data,
as described in Appendix B. Moreover, this research involves creation of a list of data
sources that contain the input data to the data warchouse, and it involves definition
of transformers that change the format of the input data to the design data schema.

The current state of the project is that we have a data warehouse filled with more

than 4.000,000 records of data. In addition, the agent system is able to maintain the

100

data warelhiouse in terms of integrating new data into it. In more details, the agent
system contains the ETL agents and it is ready for the integration of data providing

agents.

5.2.1 Evaluation

We have evaluated the performance of the data warehouse by setting up a JMeter
test case. JMeter is a Java based tester software developed by Apache people (http:
//jakarta.apache.org/jmeter/). JMeter is able to define a test suite by putting
together test components, and it is able to simulate user interaction with the system.

In the case of the data warehouse, we need user interactions with the BioXRT web
interface in terms of sending standard HTTP requests and measuring the response
time. Figure 36 shows the test case we used to measure the data warehouse response
time.

file Edit Hun Qoptions Heip

i;» Test Plan K
L7 Thread Group Wor Bémgh
b HTTF Regquest Defaults Lo Name: WorkBench

CHT TR Cookie Manager
@ %7" Fandom COrder Controller

T OHTTE Request

urTE Feguaest

arkBench

Figure 36: JMeter test case used to evaluate the performance of the data warehouse

The test case contains a Thread Group which creates a number of uscrs that
concurrently send requests to the BioXRT server and they do not stop until the test
is stopped manually. The HTTP Requests Default and HTTP Cookie Manager node
set the default HT'TP request behavior (server name and so on) and enable cookies

respectively.

101

The Random Order Controller picks one of the HTTP request at a time ran-
domly and runs for the user. This component has been used so that the BioXRT
and its database engine will not be biased by the sequence of requests they receive.
Under this component there are two HT'TP requests to the BioXRT server. One is
a query that looks for “All the Neurospora Crassa proteins such that their functions
has something to do with Hydrolase” and is measured for performance. The other

HTTP request is a random query to make sure BioXRT is not biased.

Users Average (s) Median (s)
10 19.3 17
50 83.5 73.9

Table 10: Performance measurement of the data warehouse

Table 10 shows the results of the test case. The test has run on a Pentium 3 Ghz
with 1 gigabyte of memory. Furthermore, web server, BioXRT, MySQL database (the
database engine to which BioXRT stores the data) and JMeter application all have
run on the described machine, and they have not been tuned for performance (default
settings only).

The results show BioXRT is able to respond in a reasonable time. Note the results
show the performance at a peak time which requires more online users than what is
the table because a user needs to read the data before he/she runs another query. In
a low traffic situation the data warehouse responds on average within 3 seconds for
the measured query.

In terms of scalability our data warehouse system and agent system are fairly
scalable. The data warehouse relies on existing relational database engines and web
servers which are highly scalable. The agent system also works in a distributed
manner and it is always possible to plugin new agents as new power is needed.

We have not done any evaluation of the agent system and usefulness of the data
warehouse because a good and fair evaluation requires a team of domain experts and

supporting softwares for making inquiries from the system. However, we believe the

102

data warehouse and the agent system saves biologists’ time by giving them a data set
for which biologists would need to go to multiple data sources.

In addition, our experience with the system shows use of agents for the develop-
ment of such systems reduces the effort and the cost. Furthermore, agent systems
add to the extendability. the flexibility and robustness of the system as opposed to

plain Java objects.

5.2.2 Future Work

Biological data is being generated at a fast pace. Integrating new data as it is made
available is a primary goal of developing ETL agents. Therefore, in the future new
set of data can be integrated in the data warehouse using the current ETL agents,
and new ETL agents may also need to be developed to support more data types.

Furthermore, the ETL agents rely on the developed transformer codes that have
the knowledge of data sources. The process of writing new ETL agents involves
development of new transformer codes. A nice improvement in this area can be
development of template oriented transformers that need a minimal effort to support
integration of new data type/sources.

In addition, development of computational agents is a must addition. Computa-
tional agents are able to run a remote service and provide the results as a transparent
data source. An example would be development of an agent that provides results of a
blast request as a data sct. Computational agents may also use ETL agents to offioad
the result of the computations in the data warehouse.

Another nice feature is development of a web service wrapper for the agent system.
For the moment, only agent codes that communicate in KQML protocol are able to
use the agent system. However, a web service wrapper makes the agent system visible
to a wider range of users.

It is also a vision of this research to represent the data in the data warehouse as the

103

instances of the Fungalweb ontology. However. RACER requires instances in its own
storage which includes the concepts (the TBoxes) and the instances (the ABoxes).
Therefore, to apply ontology-based access to the data we are required to use RACER
and to load the instances into RACER from the data warehouse. In this case there
needs to be the appropriate code to read the data warehouse and generate an OWL
file that connects the data warehouse to the concepts in the FungalWeb ontology.
This takes the definition of the mapping between the data warehouse schema to the
concepts in the FungalWeb ontology. We discuss that this mapping is possible because
the loaded data in the data warehouse is related to the concepts in the FungalWeb
ontology. That is, we use the FungalWeb ontology as the data ontology in the agent
system. Therefore, concepts of the FungalWeb ontology are used to tell ETL agent
what exact data should be load into the data warehouse.

Finally, development of enhanced update procedures is a nice addition to the
data warehouse and the agent system. A complete data load phase may take more
than a day. An incremental update policy can be emploved to avoid this delay.
One candidate for such update policies is development of partial data loads in the
BioXRT database. Another feasible policy is to divide the datasets to two sets of
more-frequently-changed and less-frequently-changed sets and update only the more-

frequently-changed set.

104

Bibliography

AAB01]

[ABB*00]

[AS05)

[ASHO5]

[Att02]

[AVBO1]

[Bai00]

[BAW*05]

R. Apweiler, TK. Attwood, A. Bairoch, A. Bateman, E. Birney,
M. Biswas, P. Bucher. L. Cerutti, F. Corpet, MD. Croning, R. Durbin,
L. Falquet, W. Fleischmann, J. Gouzy, H. Hermjakob, N. Hulo,
I. Jonassen, D. Kahn, A. Kanapin, Y. Karavidopoulou, R. Lopez,
B. Marx, N.J. Mulder, T. Oinn, M. Pagni, F. Servant, C.J. Sigrist,
and E.M. Zdobnov. The InterPro database. an integrated documenta-
tion resource for protein families, domains and functional sites. Nucleic
Acids Research, 29(1):37-40, 2001.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M.
Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris,
D. P. Hill, L. Issel-Tarver, A. Kasarskis, 5. Lewis, J. C. Matese, J. E.
Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. Gene ontology:
tool for the unification of biology. The Gene Ontology Consortium. Nat
Genet, 25(1):25-29, May 2000.

A. Al-Shaban. Using semantic web technologies for matchmaking soft-
ware agents representing web service description. Master’s thesis, Con-
cordia University, 2005.

A. Al-Shaban and V. Haarslev. Applying Semantic Web Technologies
to Matchmaking and Web Service Descriptions. In The Proceedings of
The Montreal Conference on eTechnologies 2005 (MCeTech2005), pages
97-104, Montreal, Canada, January 2005.

T. K. Attwood. The PRINTS database: a resource for identification of
protein families. Briefings in Bioinformatics, 3(3):252-263, 2002.

F. Achard, G. Vaysseix, and E. Barillot. XML, bioinformatics and data
integration. Bioinformatics, 17(2):115-125, February 2001.

Amos Bairoch. The ENZYME database in 2000. Nucleic Acids Research,
28(1):304-305, 2000.

A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeckmann,
S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin,
D. A. Natale, C. O’Donovan, N. Redaschi, and L. L. Yeh. The Universal
Protein Resource (UniProt). Nucleic Acids Research, 33:D154. 2005.

105

BBB*98]

BBD+0(]

[BBHO-]

[BDH*95]

[BDW+01]

[BMC03]

[BSBHO6]

Bur]

[BWEF+00]

[BWSN*05]

[BY064a]

[BYO6)]

P. G. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton. and R. Stevens.
TAMBIS-Transparent Access to Multiple Bioinformatics Information
Sources. In Int Conf Intelligent Systems for Molecular Biology. vol-
ume 6, pages 25-34, Montreal, Canada, June 1998.

A. Bateman, E. Birney, R. Durbin, S. R. Eddy, K. L. Howe, and E. L.
Sonnhammer. The Pfam Protein Families Database. Nucleic Acids Re-
search, 28:263-266, 2000.

C. J. O. Baker, G. Butler, and V. Haarslev. Ontologies, semantic web
and intelligent systems for genomics. 2004.

P. Buneman, S. B. Davidson, K. Hart, C. Overton, and L. Wong. A
data transformation system for biological data sources. In Proceedings
of the Twenty-first International Conference on Very Large Databases,
Zurich, Switzerland, 1995. VLDB Endowment, Saratoga, Calif.

G. D. Bader, [. Donaldson, C. Wolting, B. F. Ouellette, T. Pawson, and
C. W. Hogue. BIND — The Biomolecular Interaction Network Database.
Nucleic Acids Research, 29(1):242-245, January 2001,

S. Bechhofer, R. Moller, and P. Crowther. The DIG Description Logic
Interface. In Proceedings of the International Workshop on Description
Logics (DL-2003), Rome, Italy, September 2003.

C. J. O. Baker, X. Su, G. Butler, and V. Haarslev. Ontoligent Interactive
Query Tool. In Proceedings of the Canadian Semantic Web Working
Symposium, volume 2 of Semantic Web and Beyond: Computing for
Human Fxperience, pages 155-169, Quebec City, Quebec, Canada, June
2006. Springer Verlag.

A. Burger. Agent Technologies in the Life Sciences.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weis-
sig, I. N. Shindyalov, and P. E. Bourne. The Protein Data Bank. Nucleic
Acids Research, 28(1):235-242, January 2000.

C. J. O. Baker, R. Witte, A. Shaban-Nejad, G. Butler, and V. Haarslev.
The FungalWeb Ontology: Application Scenarios. In Eighth Annual
Bio-Ontologies Meeting, pages 1-2, Detroit, Michigan, USA, June 24
2005.

A. Birkland and G. Yona. Biozon: a hub of heterogeneous biological
data. Nucleic Acids Research, 34:D235-D242, 2006.

A. Birkland and G. Yona. Biozon: a system for unification, management
and analysis of heterogeneous biological data. BMC' Bioinformatics, 7.
2006.

106

[CSGKOO]

[DCBH01]

[dfG]

[DKS*02]

[EA2]

[EBK*05]

leFe]

[EHN94]

[Fuc94]

[GDMO3]

[GNOO]

'HBB*06)

F. Corpet, F. Servant. J. Gouzy, and D. Kahn. ProDom and ProDom-
CG: tools for protein domain analysis and whole genome comparisons.
Nucleic Acids Research, 28(1):267-269, 2000.

S. B. Davidson, J. Crabtree, B. P. Brunk, J. Schug, V. Tannen, G. C.
Overton, and C. J. Stoeckert Jr. K2/Kleisli and GUS: experiments
in integrated access to genomic data sources. IBM Systems Journal,
40(2):512-531, 2001.

Wikipedia definition for Glvcosylation. http://en.wikipedia.org/
wiki/Glycosylation.

K. Decker, S. Khan, C. Schmidt, G. Situ, R. Makkena, and D. Michaud.
BioMAS: A Multi-Agent System for Genomic Annotation. International
Journal of Cooperative Information Systems, 11(3):265-292, 2002.

T. Etzold and P. Argos. SRS — an indexing and retrieval tools for flat
file data libraries. Computer Applications in the Biosciences, 9(1):49-57,
1992.

J. T. Eppig, C. J. Bult, J. A. Kadin, J. E. Richardson, J. A. Blake,
and the members of the Mouse Genome Database Group. The Mouse
Genome Database (MGD): from genes to mice — a community resource
for mouse biology. Nucleic Acids Research, 33:D471-D475, 2005.

Accessible at: http://www.ncbi.nlm.nih.gov/entrez/query/
static/eutils_help.html.

K. Erol, J. Hendler, and D. S. Nau. Semantics for hierarchical task-
network planning. Technical report, University of Maryland at College
Park, College Park, MD, USA, 1994.

R. Fuchs. Predicting protein function: a versatile tool for the Apple
Macintosh. Computer Applications in the Biosciences, 10(2):171-178,
1994.

J. R. Graham, K. S. Decker, and M. Mersic. DECAF - A Flexible
Multi Agent System Architecture. Autonomous Agents and Multi-Agent
Systems, 7(1-2):7-27, 2003.

E. R. Gansner and S. C. North. An open graph visualization system
and its applications to software engineering. Software — Practice and
FEzxperience, 30(11):1203-1233, 2000.

N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. De Castro, P. S.
Langendijk-Genevaux, M. Pagni, and C. J. Sigrist. The PROSITE
database. Nucleic Acids Research, 34(Database issue), January 2006.

107

HBC]

[HHH*03)]

[HKR+00]

[HLS04]

[HMO1]

[HMO3]

[HMWO4]

[HTHGY4]

[KEG99]

McGO1]

E. L. Hong, R. Balakrishnan, K. R. Christie. M. C. Costanzo, S. S.
Dwight, S. R. Engel, D. G. Fisk, J. E. Hirschman, M. S. Livstone,
R. Nash, J. Park, R. Oughtred. M. Skrzypek, B. Starr, C. L. Theesfeld.
R. Andrada, G. Binkley, Q. Dong, C. Lane, B. Hitz, S. Miyasato,
M. Schroeder, A. Sethuraman, S. Weng, K. Dolinski, D. Botstein.
and J. M. Cherry. Saccharomyces Genome Database. Accesible at:
http://www.yeastgenome.org/.

F. V. Harmelen, J. Hendler, 1. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. OWL web ontology language reference, 2003.

L. M. Haas, P. Kodali, J. E. Rice, P. M. Schwarz, and W. C. Swope.
Integrating life sciences data-with a little garlic. In BIBE '00: Proceed-
imgs of the 1st IEEE International Symposium on Bioinformatics and
Biomedical Engineering, page 5, Washington, DC, USA, 2000. IEEE
Computer Society.

V. Haarslev, Y. Lu, and N. Shiri. OntoXpl - Intelligent Exploration
of OWL Ontologies. In Proceedings of the 2004 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence (WI 2004), pages 624-627,
Beijing, China, September 2004.

V. Haarslev and R. Méller. Description of the RACER System and its
Applications. In Description Logics, 2001.

V. Haarslev and R. Moller. Racer: A core inference engine for the
semantic web. In Proceedings of the 2nd International Workshop on
FEuvaluation of Ontology-based Tools (EON2003), pages 27-36, Sanibel
Island, Florida, USA, oct 2003.

V. Haarslev, R. Moller, and M. Wessel. Querying the Semantic Web
with Racer + nRQL. In Proceedings of the KI-200/ International Work-
shop on Applications of Description Logics (ADL’04), Ulm, Germany,
September 2004.

D. Higgins, J. D. Thompson, D. G. Higgins, and T. J. Gibson.
CLUSTALW: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting position-specific gap penalties
and weight matrix choice. Nucleic Acids Research, 22:4673-4680, 1994.

KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Re-
search, 27(1):29-34, 1999.

F. McGeary. DECAF Programming: An Introduction. University of
Delaware, Department of Computer and Information Science, April
2001.

108

IMCHO03]

IMFHS02]

[MHTHO1]

[MMO4]

[MS00]

[Neu]

INMO1]

INY04]

[OAF+04]

[OBO]
[Oin03]

[PBMWOS]

[IPNA*03]

R. Moller, R. Cornet, and V. Haarslev. Graphical interfaces for Racer:
querying DAMLA-OIL and RDF documents. In Proceedings of the In-
ternational Workshop on Description Logics (DL-2003), Rome, Italy,
September 2003.

D. L. McGuinness, R. Fikes, J. Hendler, and L. A. Stein. DAML+OIL:
An Ontology Language for the Semantic Web. 17(5):72-80, 2002.

P. Mork, A. Halevy, and P. Tarczy-Hornoch. A model for data integra-
tion systems of biomedical data applied to online genetic databases. In
AMIA Annual Symposium, pages 473-477, November 2001.

S. McGinnis and T. L. Madden. BLAST: at the core of a powerful and
diverse set of sequence analysis tools. Nucleic Acids Research, 32(Web-
Server-Issue):20-25, 2004.

S. Miyazaki and H. Sugawara. Development of DDBJ-XML and Tts
Application to a Database of cDNA. Genome Informatics, pages 380—
381, 2000.

Neurospora Crassa Database. Accesible at http://www.broad.mit.
edu/annotation/fungi/neurospora/.

N. F. Noy and D. L. McGuinness. Ontology development 101: A guide
to creating your first ontology. Technical report, Stanford Knowledge
Systems, Laboratory Technical Report KSL-01-05, Stanford Medical In-
formatics Technical Report SMI-2001-0880, March 2001.

N. Nagarajan and G. Yona. Automatic prediction of protein domains
from sequence information using a hybrid learning system. Bioinformat-
ics, 20(9):1335-1360, 2004.

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, Ke. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna:
a tool for the composition and enactment of bioinformatics workflows.

Bioinformatics, 20(17):3045-3054, 2004.
Accessible at http://obo.sourceforge.net/main.html.

T. Oinn. Talisman-rapid application development for the grid. Bioin-

formatics, 19(1):212-214, June 2003.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford Digital
Library Technologies Project, 1998.

S. Peri, J. D. Navarro, R. Amanchy, T. Z. Kristiansen, C. K. Jonnala-
gadda, V. Surendranath, V. Niranjan, B. Muthusamy, T. K. Gandhi,

109

[PPFBO3]

[PSK 05]

[PSS03]

[RBG*97]

[RZM+04]

SB06]

[SCE+04]

[Sen]

M. Gronborg, N. Ibarrola, N. Deshpande, K. Shanker, H. N. Shiv-
ashankar, B. P. Rashmi. M. A. Ramya, Z. Zhao, K. N. Chandrika,
N. Padma, H. C. Harsha, A. J. Yatish, M. P. Kavitha, M. Menezes,
D. R. Choudhury, S. Suresh, N. Ghosh, R. Saravana. S. Chandran, S. Kr-
ishna. M. Joy, S. K. Anand, V. Madavan, A. Joseph, G. W. Wong, W. P.
Schiemann, S. N. Constantinescu, L. Huang, R. Khosravi-Far, H. Steen,
M. Tewari, S. Ghatlari, G. C. Blobe, C. V. Dang, J. G. Garcia, J. Pevs-
ner, O. N. Jensen, P. Roepstorff, K. S. Deshpande, A. M. Chinnaivan,
A. Hamosh, A. Chakravarti, and A. Pandey. Development of human pro-
tein reference database as an initial platform for approaching systems
biology in humans. Genome Res, 13(10):2363-2371, October 2003.

I. Q. H. Phan, S. Pilbout, W. Fleischmann, and A. Bairoch. NEWT, a
new taxonomy portal. Nucleic Acids Research, 31(13):3822-3823, 2003.

S. Pillai, V. Silventoinen, K. Kallio, M. Senger, S. Sobhany, J. Tate,
S. Velankar, A. Golovin, K. Henrick, P. Rice, P. Stoehr, and R. Lopez.
SOAP-based services provided by the European Bioinformatics Insti-
tute. Nucleic Acids Research, 33(1), July 2005.

P. F. Patel-Schneider and B. Swartout. Description Logic Specification
from the KRSS Effort. Working version (draft), 1993.

A. L. Rector, S. Bechhofer, C. Goble, I. Horrocks, W. A. Nowlan, and
W. D. Solomon. The GRAIL Concept Modelling Language for Medical
Terminology. Artificial Intelligence in Medicine, 9:139-171, 1997.

A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs,
I. Tetko, U. Guldener, G. Mannhaupt, M. Miunsterkotter, and H. W.
Mewes. The FunCat, a functional annotation scheme for systematic
classification of proteins from whole genomes. Nucleic Acids Research,
32(18):5539-5545, 2004.

A. Shaneh and G. Butler. Bayesian Learning for Feed-Forward Neu-
ral Network with Application to Proteomic Data: The Glycosylation
Sites Detection of the Epidermal Growth Factor-Like Proteins Associ-
ated with Cancer as a Case Study. In Advances in Artificial Intelligence,
volume 4013 of Lecture Notes in Artificial Intelligence, pages 110-121.
Springer Verlag, 2006.

I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn,
and D. Schomburg. BRENDA, the enzyme database: updates and major
new developments. Nucleic Acids Research, 32(Database-Issue):431-433,
2004.

M. Senger. Bibliographic query service.

110

[SEOK96]

[SFO5]

[SFA99)

[SKSBOO]

[SNOS]

[SNBHBO5)

[SRO03]

(Ste02]
"TRM*03]

WBB*06)

[Wie92]

G. D. Schuler, J. Epstein, H. Ohkawa, and J. A. Kans. Euntrez: Molec-
ular Biology Database and Retrieval System. Methods in Enzymology,
266:141-161. 1996.

HK. Saini and D. Fischer. Meta-DP: domain prediction meta-server.
Bioinformatics, 21(12), 2005.

P. Scordis, D. R. Flower, and T. K. Attwood. FingerPRINTScan:
intelligent searching of the PRINTS motif database. Bioinformatics,
15(10):799-806, 1999.

C. Schonbach, P. Kowalski-Saunders, and V. Brusic. Data warehousing
in molecular biology. Briefings in Bioinformatics, 1(2):190-198. 2000.

A. Shaban-Nejad. Design and Development of an Integrated Formal
Ontology for Fungal Genomics. Master’s thesis, Concordia University,
March 2005.

A. Shaban-Nejad, C. J. O. Baker, V. Haarslev, and G. Butler. The
FungalWeb Ontology: Semantic Web Challenges in Bioinformatics and
Genomics. In Semantic Web Challenge - Proceedings of the 4Jth Inter-
national Semantic Web Conference, volume 3729 of LNCS, pages 1063
1066, Galway, Ireland, November 2005. Springer-Verlag.

M. Senger, P. Rice, and T. Oinn. Soaplab - a unified Sesame door to
analysis tools. In S. J. Cox, editor, UK e-Science All Hands Meeting,
pages 509-513, September 2003.

L. Stein. Creating a bioinformatics nation. Nature, 417:119-120, 2002.

S. Tril, K. Rother, H. Muller, T. Steinke, I. Koch, R. Preissner, C. From-
mel, and U. Leser. Columbia: an integrated database of proteins, struc-
tures, and annotations. BMC bioinformatics, 2005.

D. L. Wheeler, T. Barrett, D. A. Benson, S. H. Bryant, K. Canese,
V. Chetvernin, D. M. Church, M. DiCuccio, R. Edgar, S. Federhen,
L. Y. Geer, W. Helmberg., Y. Kapustin, D. L. Kenton, O. Khovayko,
D. J. Lipman, T. L. Madden, D. R. Maglott, J. Ostell, K. D. Pruitt,
G. D. Schuler, .. M. Schriml, E. Sequeira. S. T. Sherry, K. Sirotkin,
A. Souvorov, G. Starchenko, T. O. Suzek, R. Tatusov, T. A. Tatusova,
L. Wagner, and E. Yaschenko. Database resources of the National Center
for Biotechnology Information. Nucleic Acids Research, 34(Database
issue), January 2006.

G. Wienderhold. Mediators in the architecture of future information
systems. [EEE computer, 21(3):38-50, March 1992.

111

WL02|

[Won95]

[WRR02]

[WSG+03]

[YENS05]

[ZDKS]

[ZLAE00]

M. D. Wilkinson and M. Links. BioMOBY: an open source biological web
services proposal. Briefings in Bioinformatics, 3(4):331-341, December
2002.

L. Wong. The collection programming language reference manual. Acces-
sible at ftp://ftp.cis.upenn.edu/pub/papers/limsoon/cpl-defn.
ps.gz (last accessed on June 26, 2006), October 1995.

L. Wang, J. J. Riethoven, and A. Robinson. XEMBL: Distributing
EMBL data in XML format. Bioinformatics, 18:1147-1148, 2002.

C. J. Wroe, R. D. Stevens, C. A. Goble, A. Roberts, and M. Green-
wood. A suite of DAML+OIL ontologies to describe bioinformatics web
services and data. International Journal of Cooperative Information Sys-
tems. special issue on Bioinformatics and Biological Data Management,
12(2):197-224, July 2003.

B. Y., J. D. Eckart, E. K. Nordberg, and B. W. S. Sobral. ToolBus -
An Interoperable Environment for Biological Researchers. In METMBS,
pages 274-280, 2005.

J. Zhang, G. E. Duggan, R. Khaja, and S. W. Scherer. Generalized bi-
ological database platform based on cross-referenced tables (XRT). Ac-
cessible at http://projects.tcag.ca/bioxrt/ (last accessed on July
3, 2006).

E. M. Zdobnov, R. Lopez, R. Apweiler, and T. Etzold. The EBI SRS
Server: Recent Developments. In German Conference on Bioinformat-
1cs, pages 139-148, 2000.

112

Appendix A

Configurations

A.1 BioXRT

Search Screen

configuration file for pre-defined tables for BioXRT DB

xrt_db = fungalweb
host = localhost
port =

user =xXrt

pass =123

description = Concordia FungalWeb Database

page header <h>Concordia FungalWeb Database</h2>

#bgcolor = #EBF5F5

width = 780

TOWS = 20

rows2choose = 10 20 50 100 200 O
layout = hHtml

default table =

show back =1

link_target =

below are the table definitions
table key in the square brackets

113

24

25

26

27

28

29

30

31

32

35

36

37

38

39

40

41

42

43

44

45

46

A7

48

49

50

51

52

53

[organisms]

view_id = V0001
title = (Organisms
main_class = organisms

keyword min len = 0
keyword examples =
filter examples =

C1. = 0::LongName: :Name
C2. = 0::0rder: :0Order

C3. = 0::Phylum: :Phylum
C4. = 0::Kingdom: :Kingdom

lorg_feature]

view_id = V0002
title = Organisms’ Features
main_class = org_feature

keyword min len = 0
keyword examples =
filter examples =

C1. = Q::start::Start

C2. = 0::end::End

C3. = 0::type: :Type

C4. = 0::comment: :Comment
Ch. = Q::source: :Source
[gene]

view_id = V0003

title = Genes

main_class = gene

keyword min len = 0
keyword examples =
filter examples =

C1. = 0::TaxID: :Taxanomy ID
C2. = 0::GenelD: :Gene ID
C3. = 0::name: :Name

Ca. = (::sequence: :Sequence
C5. = 0::source::Source
[protein]

view_id = V0004

title = Proteins

main_class = protein

keyword min len = 0
keyword examples =
filter examples =

114

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

109

11v

111

112

113

C1l. = 0::TaxID: :Taxanomy ID
C2. = 0::ProteinID: :Protein ID
C3. = 0::name: :Name

C4. = 0::sequence: :Sequence
C5. = 0::source: :Source
[go_hierarchy]

view_id = V0005

title = GO Hierarchy Nodes

main_class

go_hierarchy

keyword min len = 0

keyword examples =

filter examples =

C1l. = 0::parent::G0 Tree Node
C2. = 0::descendant: :Descendant
[go_nodes]

view_id = V0006

title = GO0 Nodes

main_class = go_nodes

keyword min len = 0

keyword examples =
filter examples =

C1. =0
C2. =0
C3. = 0::
C4. =0
C5. =0

[funcat_hierarchy]

::GO: :GO Number
: :name: :Name

name_space: :Name Space

::definition::Definition
i:alternative_ids::Alternative IDs

view_id = V0007

title = Funcat Hierarchy Nodes
main_class = funcat_hierarchy

keyword min len = 0

keyword examples =

filter examples =

Cl. = 0::node: :Funcat Tree Node
C2. = 0::descendant: :Descendant

C3.

[funcat_nodes]
view_id

title
main_class
keyword min len =

Il

It

0

0::1evel: :Level

V0008
Funcat Nodes
funcat_nodes

115

114

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

133

134

136

137

139

140

141

142

143

144

145

146

147

148

149

150

keyword examples
filter examples

C1l. = 0::node: :Funcat Node

C2. = O::description::Description
[funcat]

view_id = V0009

title = Funcat Information
main_class = funcat

keyword min len = O
keyword examples =
filter examples =

C1. = 0::TaxID: :Taxanomy ID

C2. = 0::ProteinlD: :Protein ID

C3. = 0::funcat::Funcat Number

C4. = 0::organism_name: :0rganism Name
C5. = O::protein_name: :Protein Name
C6. = 0::sequence: :Sequence

Cr. = (::source::Source

[mips2go]

view_id = V0010

title = MIPS to GO mapping

main_class = mips2go

keyword min len = 0
keyword examples
filter examples =

Cl. = 0::FuncatID::Funcat ID

C2. = 0::GolD::GO ID

C3. = O::funcat_description::Funcat Description
C4. = 0::go_description: GO Description
[ec_hierarchy]

view_id = V0011

title = EC Hierarchy Nodes

main_class ec_hierarchy
keyword min len = O

keyword examples =

filter examples =

C1. = 0::parent::EC Tree Node
C2. = (::descendant: :Descendant
C3. = 0::1level::Level
[ec_nodes]

view_id = V0012

116

1wy |[title EC Nodes
w0 |main_class ec_nodes
161 |keyword min len = 0O

w62 | keyword examples =

163 filter examples
164 |C1. = 0::EC: :EC Number

ws [C2. = 0::definition::Description

166
167 | lenzyme_pathway]

ws [view_id = V0013

o [title = ECs in Pathways
170 |main_class enzyme_pathway
171 |keyword min len = 0

172 {keyword examples =

173 (filter examples =

e |CL. = 0::EC::EC Number

s 102, = 0::pathway_number::Pathway Number
176 | C3. = 0::pathway_title::Pathway Title
1wr |C4. = (::pathway_category: :Pathway Category
178 |C5. = 0::pathway_link: :Pathway Link

179

wo | [ec2go]

181 view_id = V0014

152 |title = EC to GO mapping

183 |main_class = ec2go

134 |keyword min len = O

185 |keyword examples =
16 |filter examples =

w7 |C1. = 0::EcID::EC Number
ws |C2. = 0::GoID::GO Number
1y [C3. = 0::go_description::G0 Term Description

190
w1 | [interpro_scheme]

w2 |(view_id = V0015

93 |title InterPro Scheme
194 {main_class interpro_scheme
195 |keyword min len = O

196 |keyword examples =

197 |filter examples =

198 |C1. = 0::InterProlD::InterPro ID
109 1C2. = (O::short_name: :Short Name
200 [C3. = 0::name: :Name
2010 |C4. = 0::type: :Type

203 | [interpro2go]

117

204

205

206

207

208

209

view_id = V0016

title = InterPro to GO mapping

main_class = interpro2go

keyword min len = O

keyword examples =

filter examples =

C1. = 0::InterProlID::InterPro ID

C2. = 0::GolID::GO0 ID

C3. = 0::interpro_description::InterPro Description
C4. = 0::go_description::G0 Description

118

Appendix B

Data Files

This appendix explains the structure of the BioXRT data files.

Column Description

ID BioXRT ID

EcID Enzyme Category-1D
GolD Gene Ontology ID

go_description Corresponding Gene Ontology description

Table 11: ec2go.xrt

Column Description

ID BioXRT ID

parent Parent EC node

descendant Descendent node in the tree
level Depth of the descendant node

Table 12: ec_hierarchy.xrt

Column Description
1D BioXRT ID
EC EC node ID
definition EC node definition

Table 13: ec_nodes.xrt

119

Column Description

ID BioXRT ID

EC EC ID

pathway_number Pathway ID

pathway title Pathway title

pathway_category Pathway category

pathway _link The link to the kegg’'s pathway profile page

Table 14: enzyme_pathway.xrt

Column Description

ID BioXRT ID

TaxID Taxonomy ID of the organism

ProteinID Protein for which this function has been assigned
funcat Functional category of this assignment

organism._name organism name

protein_name protein name

sequence protein sequence

source The source from which this assignment has been taken

Table 15: funcat.xrt

Column Description

ID BioXRT ID

node FunCat node 1D

descendant Descendant FunCat node
level Depth of the descendant node

Table 16: funcat_hierarchy.xrt

Column Description
1D BioXRT 1D
node FunCat node ID

description The corresponding definition of the node

Table 17: funcat_nodes.xrt

120

Column Description
ID BioXRT ID
TaxID Taxonomy ID of the organism
GenelD GenBank ID of the gene
OtherIDs Other databases’ ID for this gene
name Gene name. It’s been either taken from the original source
or from the GenBank unless the original source has the name
sequence Gene DNA sequence
comment Other data taken from GenBank and source data
source The name of the source data’s institute.
Table 18: genes.xrt
Column Description
ID BioXRT ID
TaxID Taxonomy 1D of the organism
ProteinID GenBank 1D of the protein
OtherIDs Other databases’ ID for this protein
name Protein name. It’s been either taken from the original source
or from the GenBank unless the original source has the name
sequence Protein RNA sequence
comment Other data taken from GenBank and source data
source The name of the source data’s institute.
Table 19: proteins.xrt
Colunmn Description
ID BioXRT ID
ProteinID Protein ID studied in this annotation
TaxID Taxonomy ID of the organism whose protein is studied
GOID Gene Ontology assignment

EvidenceSource Evidence source. For example a UniProt protein

Evidence Evidence type

Aspect Gene Ontology aspect: Modelcular Function, and ...
Table 20: go_hierarchy.xrt

Column Description

ID BioXRT 1D

parent Gene Ontology term

descendant Descendant Gene Ontology term

Table 21: go_annotation.xrt

121

Column Description

ID BioXRT ID

GOID Gene Ontology term

name Name of the term

name_space Gene Ontology aspect: Molecular Function, and ...
definition Definition of the term

alternative_ids Alternative Gene Ontology terms

Table 22: go_nodes.xrt

Column Description

ID BioXRT ID

InterProlD InterPro ID

GolD Gene Ontology term 1D
interpro_description InterPro node description
go_description GO term description

Table 23: interpro2go.xrt

Column Description

ID BioXRT ID

InterProlD InterPro node ID
short_name Short name

name full node name

type node type: Domain, and ...

Table 24: interpro_scheme.xrt

Column Description

1D BioXRT ID

FuncatID FunCat node ID

GolD Gene Ontology term
funcat_description FunCat node description
go_description Gene Ontology term description

Table 25: mips2go.xrt

Column Description

1D BioXRT ID
LongName Organism’s full name
Order Order

Phylum Phylum
Kingdom Kingdom

Table 26: orgasnims.xrt

122

Column Description
ID BioXRT ID
XRTID The protein file’s BioXRT ID
ProteinID GenBank protein ID
ProteinOtherIDs Other protein IDs taken from original sources
TaxID Taxonomy ID for the organism
Start Start of matching area
End End of matching area
Score E score
Status Status
Evidence Evidence for the matching
MatchID Matched protein’s ID
MatchName Matched protein’s name
DatabaseName The database from which the matched protein is taken
InterProlD InterPro ID for matching
InterProName InterPro name for matching
InterProType InterPro type of matching
Table 27: interpro_protein.xrt
Column Description
ID BioXRT ID
XRTID The gene file’s BioXRT ID
ProteinID GenBank gene ID
ProteinOtherlDs Other gene I1Ds taken from original sources
TaxID Taxonomy ID for the organism
Start Start of matching area
End End of matching area
Score E score
Status Status
Evidence Evidence for the matching
MatchlD Matched gene's ID
MatchName Matched gene’s name
DatabaseName The database from which the matched gene is taken
InterProlD InterPro ID for matching
InterProName InterPro name for matching
InterProType InterPro type of matching

Table 28: interpro_gene.xrt

123

