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ABSTRACT

Simulation of a 2D pn junction in silicon thin film

incorporating quantum transport for carriers
Shahriar Al Imam

Silicon nanostructures have recently been a subject of interest demonstrating optimistic
optical properties like luminescence. The scientific community predicts quantum effects to be the
predominant cause for such optical properties of silicon nanostructures, hence it becomes prudent
to pursue the roots of such reduced dimensional devices. With this view as a motive, a simulation
model for a 2D thin film quantum confined 2D pn junction in silicon is developed in this work.

A thin film silicon layer is considered in the regime of strong confinement. A pn junction in
such a film is considered so that the carriers are confined in thickness dimension while they are
quantum mechanically transported along the device length. The transverse dimension in
considered infinitely wide for plane wave approximation. For device simulation, after a careful study
of various schemes to incorporate quantum effects (Van Dort model, Density Gradient Method,
etc.) it was decided to use the more rigorous self-consistent Schrédinger-Poisson method. Keeping
in mind the computational resource constraints, for problem formulation, decoupled 1D set of
equations for carrier transport is deployed. For electrons, the well known single-band effective
mass Hamiltonian is used while for holes, multi-band effective mass Hamiltonian with light and
heavy holes is applied (though a full 6 band k.p Hamiltonian and spin orbit interaction is required to
account for a full featured valence band, no effective work has been done to use such a
formulation for a reduced dimensional device). Overall discretization is done using the finite
element method with matrix representation of equations. The ohmic contacts in longitudinal
direction are simulated with semi infinite open boundary contacts through self energy matrix, and
broadening of energy states is incorporated. The simulation is done in Matlab as it gives the
highest flexibility (in comparison to Silvaco, Femlab and C++ with the latter being unrealistically
involved in numerical solution algorithm). For solution, instead of Wigner function or Green’s
function, a more direct wave-function perspective is taken. First the equilibrium condition was
simulated, and then extension under externally applied voltage was carried out. ‘
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As the results show, confinement of carrier in lateral dimension results in energy
quantization, and consequently subbands. As the material is degenerately doped, the number of
carrier is comparable to existing states and carriers exist in excited states also. The occupancy of
only three subbands upholds the earlier assumption that only a few subband are occupied. And
along with the retention of subband shapes along device length, validates decoupling of the
dimensions. The depletion region width is found to be more than that predicted by 3D junction
equations. This may be due to the fact that the thin film cannot fully screen the electric field.
Current voltage characteristics also do not show any significant tunneling current.
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Chapter 1: Introduction

Optical and optoelectronic properties of silicon nanostructures have
recently been a subject of interest. Though bulk silicon is an indirect
semiconductor and generally unsuitable for optoelectronic devices, structures such
as porous silicon or quantum dots have been reported to emit light. Due to the lack
of sustainability and other problems like carrier injection, controlled direct
recombination, etc. an effort is being given to understand the origin of such light
generation and to explore the scope of using silicon nanowires or quantum wells
for light emitting purposes. It is suggested that lack of long range order in
nanostructures might result in quenching of the energy dispersion characteristics
[1], and along with quantum confinement in one or more dimensions could result
in direct recombination of carriers to generate light [7]. Other possible origins
could be surface states, as surface defects may initiate localized direct
recombination and high surface to volume ratio in reduced dimensional structures
emphasizes such light generation. Some research has been done with lateral
junctions in quantum wells (mainly directed in constructing approximate
analytical models for the devicé) which demonstrates high-frequency operation
and is suggestive of the possibility of light generation. Hence, instead of
approximate analytical model, constructing a simulation model and exploring the

possibility of direct recombination for such devices in silicon is in order.



1.1 Objective

The primary objective of this thesis work is to investigate a thin film silicon
p-n junction incorporating quantum effects. As the thickness of the thin film is
reduced, it essentially becomes a quantum device with 2D electron gas (2-DEG)
having 1D confinement, and a quantum mechanical approach becomes necessary
to model such a device. Models with approximate analytic analysis are only
suggestive of features of such devices, so a numerical simulation model becomes
necessary for a more comprehensive insight. Henceforth, a simulation model is
constructed for such a device. Due to the requirement of unfeasibly huge
computational resource required in direct descretized approach for a 2D device, it
becomes prudent to search for an alternative method to develop a simulation
model. So in the process of simulating such a device, in this work, decoupled set

of 1D equation is applied to the 2D bipolar system.

1.2. Motivation

Recently conducted studies have resulted in the anticipation that a silicon
nanostructure might be a sustainable source of light [8, 11, 17-18]. But with
simple nanostructures it is yet hard to achieve reproducibility and the search for a
nanodevice in silicon for light emission is on the way. In this regard, a thorough
analysis of such reduced dimensional device is sought for. Thin films of silicon are

now possible on silicon on insulator (SOI) structure, and if thickness is reduced



below 5nm then quantum confinement occurs in that direction and this may pave
the way towards silicon optoelectronics.

Reporting of simulation results of a lateral p-n junction in quantum well in
silicon is rare. Analytic studies on other material do indicate high-frequency
operation of such a device. Other studies suggest that quantum effects could be the
origin behind electroluminescence and light emission from silicon nanostructures.
So a comprehensive simulation of a lateral p-n junction in silicon quantum well

could help find a sustainable silicon light emitting structure.

1.3. Application

Most of the SOI structures are now being used for unipolar devices. But for
photonics it becomes important to use a bipolar device for recombination of holes
and electrons. In that regard, a thin film silicon p-n junction could offer a new
possibility. Silicon light emitting device could find two very important uses:

1. Optical and electronic circuit integration to achieve integrated
optoelectronics, which now is impossible as compound semiconductor
alloys are used for optoelectronics.

2. Optical interconnect could replace slow electric interconnects, which
remain a bottleneck towards high-speed integrated chips, which (the ICs)

for a long time to come will continue to be fabricated in silicon.



1.4. Scope of thesis

In this thesis, a lateral p-n junction in a quantum confined thin layer of
silicon, i.e. a quantum well is simulated. Studies of various schemes to incorporate
quantum effects (Van Dort model, Density Gradient Method, etc.) has been made
and finally decision was made to use the more rigorous self-consistent
Schrddinger-Poisson method. Keeping in mind the computational resource
constraints, for problem formulation, a decoupled 1D set of equations for carrier
transport has been adopted. For electrons the well known single-band effective
mass Hamiltonian was used to determine the transport behavior while for holes,
after a careful analysis an appropriate effective mass Hamiltonian instead of the
more involved multi-band approach without incorporating split orbit, but
accounting for heavy & light hole effects was used. The usage of a 6-band or 4-
band Hamiltonian to reduced dimensional system is still a topic of advanced
research, and the implications are not yet assertive.

Overall, finite element method and matrix representation of equations with
semi infinite open boundary contacts through self energy matrix was used. For
programming, comparing Silvaco, Femlab, C++ and Matlab, Matlab was chosen
as it gives the highest flexibility, without the unnecessary involvement into
building libraries and algorithm to solve numerical formulation. For solution,
instead of using Wigner function or Green’s function method, wave-function

perspective was chosen. Quantum confinement along the thickness was



incorporated, plane wave approximation in transverse direction and potential
dependant state functions in the longitudinal direction is assumed. First simulation
included equilibrium condition, and then it was extended for externally applied
voltage. So the scope of the project remains to simulate p-n junction in silicon

quantum well using a 2D carrier transport model.

1.5. Organization of thesis report

The thesis report is organized chapter wise and is outlined below:

Chapter 1: Introduction — in this chapter a prologue of the work done, the
intensions, objectives, motivation, possible implications and the scope is briefed.

Chapter 2: Literature Review —this chapter presents the trend of research
community toward silicon optoelectronics. A theoretical finding for the root of
silicon luminescence and work done so far for achieving silicon
electroluminescence is highlighted. Then work done in quantum well junctions
and silicon nanostructures is also presented.

Chapter 3: Quantum Mechanics for Nanodevices — as nanodevices are
reduced in dimension, quantum confinement transpires and a quantum mechanical
approach becomes imperative for device analysis. This chapter presents some
basics of quantum mechanics as used in nanodevices.

Chapter 4: Developing the modelﬁ Methodology — in this chapter

explanation of the physical considerations made to develop a model for such a



quantum device is presented. Here for the first time (to the author’s knowledge)
decoupled set of 1D equation for simulating a 2D bipolar device is introduced.
Chapter 5: Formulating the model: Simulation —this chapter illustrates
the intrigue details of the method of formulating the model for simulation.
Chapter 6: Simulation results — in this chapter, simulation findings are
summarized.
Chapter 7: Conclusion — this concludes the report and highlights a

directive for future work.



Chapter 2; Literature review

A considerable amount of work has been done in the field of silicon
- luminescence starting from theoretical investigation of the origin of such light
emission to search for a sustaiﬁable light source in silicon. Also quite a number of
silicon nanostructures and nanodevices have been studied. A few relevant with this

research topic is presented herewith.
2.1 Light properties of silicon

2.1.1 Indirect to direct band gap material

Wherever there exists a system where electron and hole wave functions
overlap in direct and reciprocal space, there exist a finite possibility of direct
recombination and photon generation. But the luminescence strength and quantum
efficiency of emission depends upon the extent of the overlap and transition
probability. Using this viewpoint, scientists have engineered different approaches
to convert an indirect material to a direct one [1].

1. Inimpurity assisted radiation, an impurity that has an energy level in
the band gap of an indirect material is used as an intermediate state

where the electrons and holes become localized and eventually result
in radiative recombination. For this impurity level must be dispersed

in k-space to be an efficient emission center. In silicon, impurities



usually act as indirect recombination center, but isoelectronic centers
[2] and rare-earth elements [3] act as radiative center.

. In alloys, the band structure itself is engineered to transform an
otherwise indirect material to a direct material. Usually two or more
groups IV elements (e.g. Si and Ge) are alloyed to shift the energy
bands a little so that a direct transition becomes allowable.

. Quantum confinement can also increase the probability of a direct
recombination. Two such possibilities exist: in zone folding
introduced by Gnutzmann and Clausecher [4], an ultra short period
super lattice with periodicity comparable with lattice constant
induces greater overlap of conduction band states at zone edge with
valence band stafes at zone center, and hence increases the
possibility of a direct recombination. On the other hand, for quantum
confinement in one or more dimensions such overlap becomes
innate. This is thought to be the case in porous silicon and its light
emission phenomena. Qualitatively, the confinement of the carriers
in real space causes their wave functions to spread out in momentum
space, which increases the likelihood of strongly radiative
transitions. In addition, scattering at the wire or dot boundaries,
which in fact is a very likely occurrence, can supply the needed

momentum more readily in a coned structure.
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Figure 2.1: Zone folding resulting in overlapping of bands, converting an otherwise indirect bandgap
material to a direct one [1].

4. Hybrid approaches, where a direct band gap material is grown on or

joined with silicon.

2.1.2 Photo and electroluminescence in silicon

Vigorous research regarding light from silicon began with the discovery of
efficient luminescence from porous silicon [5, 6]. Since then a number of studies
have investigated the luminescence in silicon [6, 7]. Though most of the studies
involved photoluminescence, a few considered electroluminescence also.

If an electron is excited form its original state to a higher state, it gains and
stores potential energy. When the system relaxes, i.e. the electron comes back to

its original state, the extra energy is emitted as photon and we get light coming out



of the material. This phenomenon is called luminescence. If the excitement of
electron in the first place occurs due to an incident photon then the luminescence
is called photoluminescence (PL). The phenomenon is interesting in itself as to
finding the origin of photoemission from the material. But for an electronic light
emitting device, this becomes somewhat irrelevant as the excitation is provided by
light, not electrons. If an electron is excited by means of electric stimulants, then
the resulting photoemission is called electroluminescence and this is the
phenomena that one should be looking for obtaining a light emission devices.
Silicon nanocrystals have recently attracted attention as being possibly a
strong candidate to realize efficient silicon based light source operating at room
temperature [8]. The band gap in this case is enlarged with respect to bulk silicon
due to quantum confinement effects and intense visible PL at room temperature is
obtained [9, 10]. In crystalline silicon nanoparticles, the wave function of electrons
and holes have been found to be delocalized over the corresponding energy range,
which is dependant on the nanoparticle size [11]. The photoluminescence is
studied and the PL spectra have a blue shift suggestive of quantum confinement of
excitons, which proves that quantum confinement in silicon is a source of possible
light emission. Blue shift of PL energy in amorphous silicon nanowells have been
observed to occur with a decrease in well thickness [12, 13]. Silicon quantum dots
and wells have been studied for visible luminescence [14]. It is found that the PL

spectra strongly depend on well thickness.
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Figure 2.2: photoluminescence phenomena as found in silicon QW [14].

Theoretical calculations of thickness-dependence on bandgap energy for 2D
silicon wells [15, 16] have been carried out. One of the band-peak energy is
roughly consistent with theoretical calculations based on the quantum confinement
model. The results imply that emission may have been caused by radiative
recombination in silicon well [14].

Due to problems such as electrical pumping of nanostructures embedded in
an insulating matrix, very little work has been done on silicon
electroluminescence, but reports have been found for the existence of such
occurrence [8, 17, 18] in silicon. This obviously makes the case for silicon as a

prospective candidate for light emission device.
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Chen et al. fabricated pn homojunctions between heavily doped n-type
porous silicon (PS) and p type PS and formed n"p" junction with phosphorous and
boron dopants [19]. A standard mesa etch procedure was used to confirm a mesa
etched structure. Steiner et al. also fabricated PS pn homojunction [20] but this

time without etching mesa structures. In both cases EL was demonstrated.

2.1.3 Relaxation of dispersion relation in silicon

Crystalline silicon is not a source of efficient light emission at room
temperature, as its band structure has an indirect band gap of ~1.12¢V and it
shows a small exciton binding energy of about ~15 meV. In spite that a promising
approach to overcome the indirect nature of the material is the relaxation of the k-
selection rule due to the spatial confinement in low dimensional nanostructures
[21]. As the particles get confined in space, due to uncertainty principle, their
momentum gets delocalized and the dispersion relation is relaxed, thereby creating
a possibility of direct recombination.

There are several theoretical studies on size dependent decay times carriers
in silicon nanocrystals [22, 23], but no or very few studies on the decay times of
silicon quantum well is comprehensively reported.

In a study [24], the authors have investigated theoretically the optical
properties of free standing silicon quantum wires, using a realistic empirical tight
binding model. The excitonic effects are included within the effective mass

approximation which is found to be appropriate. It was seen that the exciton
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oscillator strengths for quantum wires with small sizes can be as large as that for a
direct semiconductor such as GaAs.

The excitonic effects in silicon quantum wires using simple two-band
effective mass model with parabolic electron and hole bands has been investigated
[25]. The electron and hole masses were obtained by fitting parabolic bands to the
valence and conduction band extrema. This gives an indication that using effective
mass approximation rather than Littinger-Kohn Hamiltonian for a reduced

dimensional structure is more appropriate, or at least safer.

Figure 1.3: Band dispersion relations of the H-terminated and the O-terminated silicon slabs (quantum
well) showing direct band gap nature at I" point [15]

2.2 Lateral junction in Quantum well (QW):

Silicon based inter-subband lasers have been studied [26]. It has been found
that phonon confinement reduces the scattering rate by a factor of two to four as
compared to the case of no confinement. Thus an enhancement of a factor of two

to four would be expected in the inter-subband lifetimes and their differences. This
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feature, in addition with the inherently weaker nonpolar optical scattering makes
silicon based QW structures favorable candidate for inter-subband lasers [27, 28].

A high frequency lateral junction photodiode is reported in GaAs quantum
well [29]. An analytic model is developed using the sheet concentrations of
electron and holes. The well width is 25 nm so strong quantum confinement is
absent, and a non quantum approach has been taken for the analytic model.

The idea of a two dimensional p-n junction formed as a contact between
two regions of quantum dimensional film with different types of conductivity is
proposed [30]. In this approach, a conformal mapping technique has been adopted
to propose an approximate analytic model of such a quantum well junction. In this
study also, no quantum transport mechanism is considered due to the width of the
well which is well beyond strong confinement regime. These two approaches do
not specifically deal with a particular material, so the same procedure could be

extended for any suitable material, in this case, to silicon thin films.

2.3 Models of quantum devices

Incorporating quantum effects has become more significant in recent years,
as fabrication technology reaches nano regime. But existing computational tools
mostly lack this incorporation, and various methods have been devised to achieve
this incorporation. The ones that do incorporate this effect is mostly for dealing
with the transitional devices which experiences quantum effects as parasitic

distortions to otherwise classical formulation. So race for a suitable industry grade

14



quantum device simulator is on. Due to huge computational overhead required for
a full quantum mechanical approach, methods have been developed to bypass such
extensive approaches and use some fitting techniques or use the semi-classical
models for incorporating these quantum effects. The trick remains to achieve
better accuracy to the actual device, with reduced computational load. Comparison

of the methods has been reported [31] and a few major methods are briefed here.

2.3.1 The density gradient (DG) method |

The density gradient method is an approach compatible with the drift-
diffusion treatment used in device simulators [32]. Different methods have been
proposed, one of them is presented here. It applies a quantum potential correction

in the density current expression:

jn = qDﬁn —qn#ﬁ(‘l’ —A)— y,,nk,,TV Inn, 2.1)
2 2 k T
A= _Zh__v ‘/; D'l ="_,U,,
6m \/;

The factor y has been introduced to adjust the quantum correction which
has been obtained after a few simplifications. In this way it accounts only one
mass in DG model. It could also be adjusted depending on operating temperature
and device structure (bulk, SOI, double gate). Concerning the boundary
conditions, they are the same as in a semi-classical scheme, only that at contacts,

the quantum correction is zero.
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2.3.2 Quantum Hydro-Dynamic model (QHD)

Like DG method, many formulation of this model is also available [33].
One simple illustrative presentation looks as follows: for a spatially independent
effective mass in 1D, equations are solved for carrier density p, angular
momentum p and average energy W. A full mathematical QHD description
including three moments for electron and holes, and requires seven equations
(including Poisson’s equation). The quantum correction comes from Wigner

function-corrected BTE with incorporating the Bohm potential [34] Q.

op i(&j -0 (2.22)
ot ox\m
a(pp), 8 ( pp’ a( Q) 8 (a(pp))
—_— — = —_— T )=
ot "ol m i U+3 +6x(pk) ot Je (2.2b)
2
a_Vl’_+i(PW)+i(PPkT)+&i[U+Q)_ ph ji[m_p]i[g):(w_) 229
ot 0Ox\ m ox\ m m 0x 3 12m Jox\ p 0x JOx\m ot )¢ '
2 2
wo= 30K pp” (PR 10 (1 0p (2.2d)
2 2m 24m )ox\ p Ox

2.3.3 Van Dort model:

This model was developed by Van Dort et al. and has been quite successful
in describing devices which include triangular potential well [35]. The key feature
is to concede that quantum confinement changes bandgap and hence the surface

wave function of electrons, and eventually the energy and carrier concentration.

g -y L Ae L F Az 23

s s g n (2.32)
EXM = E 7 + B3-Ae (2.3b)
Ae = f (4—;;3}—) max (E,(0)0)24 2.3¢)
n iQM - n iCONV exp [(E gQM - E gCONV ) 2 kT ] (2.3d)
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2.3.4 Self-consistent Schrodinger-Poisson model:

This model is a more accurate model of the actual quantum mechanical
phenomena as it does not approximate any correction potential, rather self-
consistently solves the basic Schrédinger’s equation with Poisson’s equation. The
only semi-classical point is the effective mass and the extension of a single
electron wave function to many-body theorem. One particular formulation of the

method adopted in SILVACO simulator is given below.

{l+exp ”}q/m m, Zl‘l‘”,| ln[1+exp p f"’} (2.4a)
E
+,/m"m,22|‘l’p,| ln{l+exp p Trz;}}

2kT

mmy,

[

V- (eVU)=@N, =N, —n(x)] @.4m) )= |0 ) filea—E:) (40

o«

Self-consistent model is vastly used to analyze the behavior of nanoscale
devices. It has long been adopted for n-type inversion layer in a silicon MOS
stfuctur_e for energy levels, population and charge distribution analysis [36]. The
same self-consistent approach has been also assumed [37] to describe a cylindrical

quantum wire for considering electronic confinement.

2.3.5 Non Equilibrium Green’s Function (NEGF) formalism

For quantum mechanical modeling of nanodevices, two formalisms are
often used to avoid the huge computational burden of direct solution of the
Schrédinger-Poisson approach. One is the Wigner Equation, commonly solved by

finite difference method. A recent study [38] of this equation with Monte Carlo
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method has shown to resolve both quantum interference and dissipation effect due
to scattering. This method has been compared with NEGF formalism based
simulator [39], and found to be equally effective for solving resonant tunneling
diodes. This indicates that NEGF is an alternative choice to solve S-P method in

quantum devices.
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Chapter 3: Quantum Mechanics for Nanodevices

The purely mathematical postulations that make quantum mechanics the
tool for actually describing nature is too intricate and exceed the scope of this
report, hence only a brief ideological perception of some of quantum mechanical
concepts as applied to nanodevice is presented here. The more used Schrédinger’s
version of the mechanics is adopted as it gives a better insight to the subject, and

provides for a practical means of modeling a nanodevice.

3.1 Energy, density and current operators

The operator associated with the system energy is called Hamiltonian.
Hamiltonian contains operations associated with kinetic and potential energies and

for a particle in one dimension can be written as:

-h* 9°
operator ——ZIEXE_ + V(x) @a.1)

Operating on wave function with Hamiltonian produces the Schrédinger’s
equation. In time independent Schrédinger’s equation, the operation may produce
specific values for energy called energy eigenvalues. This situation can be shown
in the form

H, v, =Ey, (3.2)

Where the specific values of energy are called energy eigenvalues and the

functions are called eigenfunctions.
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Two other operators are of immense importance to electrical engineers, the
electron density operator and the current operator. It is regarded that wave
function of a particle is associated with probability of finding that particle in a
particular place at a particular instance of time. In fact, the absolute magnitude of
squared wave function gives the probability density. Since the wave function is

complex in general, the probability of a particle is given by

probability « |1//]2 =yy’ (3.3)

From the requirement that wave function has to be normalized, one gets,

fww'd3r =1 (3.4)

For many body system, if a certain particle follows a certain distribution
(such as electrons follow Fermi-Dirac distribution) then the number of that particle

in a particular state is given by

n(E,)=lv. - (E,) (3.5)
So the overall particle concentration is

+00

n= _J‘n(Em_)dE =i;]|y/|2 -f(E,) (3.6)

00

For the current operator, one way is to start from consideration of current
conservation, more popularly known as the continuity equation postulating that the

change in charge density p is related to the divergence of current density J through

a% plr,t)=-V-J(rt) 3.7)
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Here it is seen that time dependence of charge density (temporal
dependence of a scalar field) is related to net current into or out of a region of

space (spatial dependence of a vector field). For a particle of charge ‘e’ one can

identify that p = ¢jy|, so that

op_ Wl ) [ .ow oy
o _ - = ~r 3.8
a a a \Va Va 9
Now from Schrddinger’s equation,
e, o,
ih—w(r,t)=| ——V>+V(r) lw(r,t) (3.9
ot 2m

Multiplying both sides by w*(r,¢).e/ih from left,

ew*(r,t)gw(r,t) = ei—z—;flr;y/*(r,t)vzt//(r,t)—e—;l—(//*(r,t)V(r)y/(r,t) (3.10)

Thus the first term of charge change rate is found. Taking the complex
conjugate of the Schrédinger’s equation and multiplying both sides by y(r,t) from

left results in the second term, finally arriving at:

Py )ei 2=V (1)~ (r ei 2=V () + 2 (7 () V(7))
ot 2m 2m ih

R h * *
=915—V'(‘V Vy -yVy ) (3.11)
m
=-V-J

So finally one finds,

J =—ei£n—(t//*Vy/—y/V 1//') (3.12)
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3.2. 3D Schrodinger’s equation

Usually solving the 3D Schrddinger’s equatioﬁ is quite engaging and
requires large calculations as a general system is coupled within itself in different
dimensions. But if the coordinates are separable then separating the 3D equation
into three sets of decoupled 1D equation is possible. Solving these three 1D
equations independently one could arrive at the final solution. This for example is

possible if potential can be separated into an x-, y- and z-dependant part such that:

U(F)=U,(x)+U,(»)+U,(z) (3.13)

Then the wave function can also be written in product form:
1//(?)=X(x)+Y(y)+Z(z) (3.14)
Where each of the right hand functions is obtained by solving a separate one

dimensional Schrédinger’s equation:

nt 4

ExX(JC)=(—%W+UX(X) X(x) (3.15a)
n d?

EY(y)= _Zn-:ijz_erUy(y) Y(y) (3.15b)
n* d?

£.2(2)= _E?wz(z))z(z) G150

The total energy E is equal to the sum of energies associated with each of
the three dimensions: E = E, + E, + E,.
In some problems it is seen that the quantities may not be separable in

Cartesian coordinates but could be separable in cylindrical or spherical
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coordinates. For example, the potential in a hydrogen atom U(F)= _q%”fﬂ’ cannot
be separable in (x,y,z), but it is separable in (7,6, ®) and the wave function may be
written in the form:
V(r.6.8) =L/ )11 (0.9) a6
Here the radial wave function f{r) is obtained by solving the radial

Schrédinger’s equation:

50)=( - L)+ L )
3.17)

So it is evident that symmetry plays an important role in solving 3D

Schrodinger’s equation, when it implies the prospect of separating the coordinates.

3.3 Multi-electron picture

The Schrédinger’s equation that is given above is for a one particle system.
But most of the real life devices have a large number of electrons and so one has
to incorporate one electron’s interaction to rest of the particles, which makes a
direct implementation of an accurate system of equations virtually impossible to
implement. Considering a system of only 2 electrons, a helium atom, calculation

of eigenstates requires solving the two-electron Schrddinger’s equation:
B0()= (0 UG+ U+ V) G 2) a1
m

Where r; and r, are the coordinates of the two electrons and U, is the

potential energy due to their mutual repulsion, U,,(5,%)=e’/4re|; -#|. This is
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more difficult to solve than the one-electron Schrodinger’s equation, but not
impossible. However, this approach quickly becomes inconceivable as size is
increased to mesoscopic system with numerous electrons of multilevel energy.

Two general approaches are there to account for such systems. One is to
consider one-electron system at a time, and for numerous such considerations,
arrive at the multi-particle picture. This single particle approach is taken in Monte
Carlo simulations. But the drawback is that it cannot account for any inter-particle
interaction. The other approach is to analyze a given system from the collective
viewpoint. The use of multi particle statistics and transport equations is adopted to
arrive at the final solution. This approach approximates the interaction among
particles better, but becomes an exceedingly involved.

One particular approach, the ‘Self Consistent Field” Method, which is
widely used in this field employs the idea of considering only one electron instead
of calculating all the interactions among different electrons and the effect of rest of
the system is considered in the so called Self Consistent Field (SCF), and one
adopts a proper SCF method to solve the system.

Much work has been done in this SCF method and many sophisticated
versions have been developed over the years. It is an amazingly well picture which
provides a reasonably accurate description of the multi-particle system. There is
no mathematically convincing way to prove the accuracy of this SCF method, but
it describes every atom of the periodic table to such extent that people have come

to rely heavily on this method.
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3.4. Self Consistent Field Method: Mesoscopic Systems

In SCF, one calculates the wave function of a particle, from an equivalent

Schrédinger’s equation for single electron, and incorporates the effect of rest of

the system to a semi-classical parameter called the effective mass, and uses a self

consistent field, which is so called because it is calculated self-consistently from

electrostatic viewpoint of the system. For submicron systems, the SCF method

translates to the following:

1.

Guessing an initial potential for the system, and calculating the state
functions of the relevant particle by solving the single particle
effective mass Schrédinger’s equation.

From the state functions, calculating the particle density using
appropriate multi-particle statistics (e.g. Fermi-Dirac distribution or
Fermi Integral for electrons and holes).

Using this particle density, solving Poisson’s equation for finding
the potential of the system.

Computing steps 1 to 3 self-consistently until convergence is
achieved.

Calculating other required parameters, once self-consistency has

been achieved.

As the system dimensions get smaller and smaller, other quantum effects

like confinement and hot electron effect starts to emerge as significant deviations
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and single electron charging effect may also become important. The dimensional
mismatch between bulk contacts and device could also play a part. Level
broadening within the device due to contacts becomes predominant. For the
regime where single electron charging energy is comparable to level broadening
and the thermal energy of the system particles, SCF method is a good

approximation. In fact it provides one of the most accurate analyses in this regime.

3.5. Hole dispersion relation

The approximation that has been used so far for finding the dispersion
relation of electron is effective mass approximation and used as single-band
effective mass Hamiltonian to describe the particle. This approximation holds
good for bulk semiconductor conduction electrons, where indéed the effect of the
whole crystal could be coupled into a semi-classical concept of effective mass and

the dispersion relation can be approximated as a parabola in the range of interest.
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Figure 3.1: Band diagram of a direct band gap material showing the valence band dispersion relation.
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The dispersion relation of a hole is not so straight forward. The
Schrodinger’s equation only deals with the non-relativistic physics of a system.
For electrons traveling at high velocities, relativistic effects can become
significant and requirements demand use of the Dirac equation instead. Typically
in solids the velocities are not high enough to require this, but the electric fields
are very high near the nuclei of atoms leading to weak relativistic effects that can
be accounted for by adding a spin-orbit correction to the Schrédinger’s equation.
Then again the optical properties of the hole at the top of the valence band gives
rise to heavy and light hole effects, making single band effective mass
Hamiltonian futile for hole dispersion relation, and a multi-band effective mass
equitation, sometimes called the full band approach is called for. This gives a

rather complicated dispersion relation for hole in the valence band.

3.6. Density of States

Electrical engineers eventually wish to describe the current-voltage
characteristics of semiconductor devices. Since current is due to the flow of
charge, an important step in the process is to determine the number of electrons
and holes in the semiconductor that will be available for conduction. Since by
Pauli’s exclusion principle, only one electron can occupy a given quantum state,
the number of carriers that can contribute to the conduction process is a function
of the number of available energy or quantum states. It should be noted that in

forming bands in solid, the band of allowed energies are actually made up of
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densely placed discrete energy levels. So it becomes an important parameter how
many states are there with a particular energy per unit volume of the solid. This
density of electronic quantum energy states are called density of states (DOS). As
in 3D there might be degenerate states with the same energy but different wave
vector k, it then is only logical to calculate the density of state in k-space and then

convert it into energy space for a more accurate result.

3.6.1 Bulk density of states

If one considers a particle trapped in a 3D potential well given by

V(x,y,z)=0 O<x<al<y<al<z<a
V(x, y,z) = for elswhere

Using the separation of variable technique the Schrddinger’s equitation can

be solved to give

2mE _

72_2
= k* =k} +k; +k! = (ni +n; +nf{?—J (3.19)

Where n,, n, and n, are integers. As negative integers yield the same wave
function with a negative value but the same probability, as long as quantum states
are concerned, only positive integers are needed for a full description of all
possible k values. Now if a 3D k-space is déﬁned, then only one quadrant of
positive k;, k, and k;, components make up possible k& states. As the quantum states

are discrete, distance between two states in k-space in a particular dimension is:
k. —k =(n + 1{1’.) ~(n, )(Ej - ( i ) (3.20)
a a a
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Generalizing for 3D, the volume ¥}, for a particular k state is Vi=(n/a)’. The
density of quantum states in k-space can now be determined. A differential volume
in k-space is given by 4rk’dk. So the differential density of quantum states in -
space is given by:

7’ dk k dk 2 (3.21)

7

Converting the states into energy space,

k)dk = 2(%)
(

k2=2mZE:>k=\/2mE dk=l —’—n—dE
h n  And the differential n\2E

Putting these values into the density of state equation in k-space,

_a(2mEN 1 , 4m’ Ny
gT(E)dE";z—( ) 2Ed = (m)/ JEdE

2
he ) h (3.22)
So the density of states in energy space becomes:
az(2mY:
_ 3.23)

3.6.2 Density of states in thin films: 2D structures

In very thin films, the quantum confinement is in one dimension, in the
direction of film thickness and one effectively deals with a case of quantum well.
In the confinement dimension, the energy becomes quantized to form discrete
subbands far apart in energy from one another, so it can no longer be assumed to
be a band in that dimension. Suppose this dimension is x direction, giving

effectively a 2D Electron Gas which is free to move in any direction in the y-z
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plane but are confined in the x dimension so that it has discrete &, values and hence
E, values. For the other dimensions’ contribution to the total energy, a similar
strategy as before can be deployed, only that this time dealing in in-plane energy

would result in;

2
2mE K =ik = +nf{£—j

- — 2 2
E=E +E, > E, =E +E h a

# such that
This is now effectively a 2D system, giving a 2D plane of k£ values with a
differential area of S,=(n/a)’ associated with each quantum state:

2akdk _ kdk

g, (k)dk = 2(%)W —

Again converting the k-space into energy space,

(EME = 911/2’"E * e = dama” g
&7 z\n A\2E X 325

So the resultant density of states is given by

(3.24)

o(B)=22"

h’ (3.26)

3.6.3 Density of state in nanowire: 1D structure

A nanowire is a one dimensional structure such that the two transverse

dimensions confine the electrons in such a way that the only dimension the
electron has a band nature left is the longitudinal direction. In the other two

dimensions, its energy is quantized and has discrete subband values, giving rise to
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2D subbands, while in the longitudinal direction, it has still the dispersion relation

given by

2mE 7t
h2 = k2 = kz2 = (nzz{—‘;-z-]

(3.27)

So for this 1D system which ultimately results in a length association with
every quantum state L,=n/a:

dk  dk

gr(k)dk =23} =1 =—a
(Z) ' (3.28)

Converting the k-space to energy space,

g, (E)IE ~al fldE =2 }Z_de

So finally the density of states can be written as

(E) 1 [2m

hV E (3.30)

3.6.4 Density of states in Quantum Dots: 0D system

A quantum dot represents a quantum mechanical potential well in three
dimensions for carriers (electrons and/or holes). It means that the electronic states
are discrete, like that of an atom. This leads to a number of properties that are
significantly different from quantum wells. These differences arise from the
discrete density of states, as opposed to the continuous density of states in
quantum wells. For example, state blocking effects (due to Pauli’s exclusion

principle) play an important role in carrier dynamics in quantum dots. Also

31



temperature dependence is very different since carriers can only be thermally
excited to a limited number of well-separated excited states. Thermal excitation of
carriers cannot therefore homogeneously broaden the states. The homogeneous
broadening, which is then due mainly to interactions with phonons, is negligible

especially at low temperatures. So the density of states results in discrete values of

energy.
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Figufe 3.2: Density of states of different dimensional systems.
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Chapter 4. Developing the model: Methodology

The problem of developing a theoretical model for a 2D pn junction device
requires solution of some inherently intrigued problems. In order to address all the
relevant issues in a proper acceptable manner, the problem at hand is first divided
into smaller problems, and then each of the problems are dealt with individually.
Consolidating all the solution in an integral manner provides the final model of the
device. In that process, the methodology adopted is illustrated in this chapter. First
it was decided better to go for a numerical analysis rather than an analytic one, as
in real devices, the numerical solution tend to give more precise results and better
describe the involved physics. Among many formulations at hand for numerical
analysis, the very well known Finite Element Method is deployed as this gives the
most straight forward physical description of the modeling, then the transport of
carriers are quantum mechanically analyzed to give a comprehensive numerical
model for such abstraction. Afterwards, the solution procedure is discussed and
Green’s Function method is adopted only for proper incorporation of the effects of

boundary.

4.1. Numerical analysis

Numerical analysis is the study of algorithms for the problems of
continuous mathematics (as distinguished from discrete mathematics) using basic

arithmetical operations like addition. Some problems it deals with arise directly
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from the study of calculus; other areas of interest are real variable or complex
variable questions, numerical linear algebra over the real or complex fields, the
solution of differential equations, and other related problems arising in the
physical sciences and éngineering.

Many problems in continuous mathematics do not possess a closed-form
solution. In these situations, one has two options left: either one tries to find an
approximate solution using asymptotic analysis or one seeks a numerical solution.
Some problems can be solved exactly by direct methods. However, no direct
methods exist for most problems. In such cases it is sornétirnes possible to use an
iterative method. Such a method starts from a guess and finds successive
approximations that hopefully converge to the solution. Even when a direct
method exists, an iterative method may be preferable because it is more efficient
or more stable.

Sometimes, continuous problems must be replaced by a discrete problem
whose solution is known to approximate that of the continuous problem; this
process is called discretization. For example, the solution of a differential equation
is a function. This function must be represented by a finite amount of data, for
instance by its value at a finite number of points in its domain, even though this
domain is a continuum. So discretization becomes key point for resource

management.
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The algorithms of numerical analysis are routinely applied to solve many
problems in science and engineering. In fact, almost all supercomputers» are
continually running numerical analysis algorithms.

As a consequence, efficiency plays an important role and a heuristic
method may be preferred above a method with a solid theoretic foundation
because it is more efficient. Generally, numerical analysis uses empirical results of
computation runs to probe new methods and analyze problems, though it of course

also employs mathematical axioms, theorems and proofs.

4.2. FEM formalism

The most-imponant factor in numerical solution to Schrddinger’s equation
is the formation of Hamiltonian matrix. Once done that, the rest part becomes
rather trivial to solve. It so happens that a quantum system about always
constitutes of a number of different energy eigenstates, which in the end gives rise
to its own set of system equations. This results effectively in a system of equations
, often linear ones, hence linear algebra comes into play. The Hamiltonian in
quantum mechanics becomes a matrix for the whole state space and finding the
diagonal representation of Hamiltonian remains the major problem. An example
would better explain the situation.

When dealing with a 1D infinite quantum well where an electron is trapped
inside, the electron energy will be quantized and it will have a finite probability

distribution of occupancy in different eigenstates. But to describe the whole
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system, all the eigenstates has to be considered. Each eigenstate gives rise to its

own wave function which is a solution of the Schrédinger’s equation.

2 2

For eigenstate 1: {———ﬁ——a-z— +U (x)}\l’1 (x)=EY¥,(x) (4.1a)
2m, Ox
' hZ 62

For eigenstate 2: {——;—2 +U (x)}\l’2 (x)= E,¥,(x) (4.1b)
2m, Ox
n o

For eigenstate n: {——;——2— +U (x)}‘{’,, (x)=E,¥,(x) (4.1¢)
2m, Ox

If all such equations are written in the following form, then with the
coefficients of the equations can be obtained for a matrix, and eventually the

whole system could be expressed in matrix formation.

Figenstate 1;{_2-]’%%+qx)}q{(x)+o.\g(x)+...w.\g(x)=m(x)+o.\g(x)+ ..... 0 @

Eigenstate 2: 0-¥(x) %%Mx)}‘ﬂ(xﬁ...+0-\I;(x)=0'\1{(x)+§\g(x)+ ..... +0-¥(x) (4.2b)

Eigenstate n: 0401+, . _;i_,g; Mx)}\l;(x)=0-‘1{(x)+0-\g(x)+ ..... B e

Thus the Hamiltonian that describes the whole system is formed.
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(4.3)

The situation is not resolved. Still a way to discretize the 2" order

differential operator into finite space is needed. A number of ways remain, but the

most widely accepted method is the Finite Element Method.

in the figure below.

Consider a function which is already discretized for numerical solution as

ﬁ)iscrete Function

Function f(x)

x=x“4/

Discrete X axis

Figure 4.1: Arbitrary discrete function.
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As it is considered to be a 1D case only, x is chosen to be the space

dimension. In this case, the function can be expressed as a vector given by:

F0)= {700 £ O ) f Oty o f 2, (5, )} (44)
Then the FEM method finds the 2™ derivative as following;:
Zofw] ==l 4270 )- £, +1) (4

For a 2D case, first a 2D (n+1) by (n+1) grid is created, where h=1/(n+1)
is the grid spacing. So the function U becomes discrete and the elements U(i,)

becomes approximate solutions at x=i*h and y=j*h. This is shown below for n=7:

‘ED domain discretization

—

j=8
In
i=7

§=6

j=5

U(4,5)

i=a

j=3

=2

=1

j=0 x

—
i=0 i=l i=2 (=3 i=4 =3 i=6 =7 =8

4"U(1J) - U-1j) - U(+1j) - U(ij-1) - U(ij+1) = b(ij)

................................................................................ -

Figure 4.2: The 5-1 point domain discretization for a 2D system.
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Then for a particular point (center of the thick stencil), in the 5-1
formalism, FEM suggests that the neighboring 4 points (as given in the thick
stencil) have to be known to find the formulation of the 2™ derivative of the point

in the middle and the formula is:

VZU(xj = 4U(xn,yn)—U(xn —l,yn)—-U(xn +1,yn)—U(xn,yn —1)—U(xn,y,l +1) 4.5

The above linear equation relating U(ij) and the value at its neighbors
(indicated by the thick stencil) must hold for / <i,j <n, giving N=n’ equations in
N unknowns. When (i,j) is adjacent to a boundary (i=1 or j=I or i=n or j=n), one

or more of the U(ix/, j+1) values is on the boundary and therefore has a value.

4.3. Single-band effective mass Hamiltonian

When talking about electrons in semiconductor, what is actually referred to
is the so called quasi particle, in this case a free to move electron in the conduction
band. The nomenclature ‘free’ is used for the fact that the electron is not bound to
its parent atom, and can move within the material with some freedom, and in the
process, it emulates somewhat the motion of a free electron. This observation then

becomes the basis of use of single-band effective mass equation.
B H()= B 19 (1) + U ()11 6

In room temperature, and in normal conditions, the electrons in the
conduction band tend to occupy the lowest possible energy. Looking at the

dispersion relation of silicon, it is seen that the electrons of interest always lies in
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the bottom part of the conduction band, which can be well approximated by a
parabolic nature, like that of a free electron. So electrons in that range have
energy:

272 h2k2 272
i k: +— i k: .7
2m 2m

x y z

E=F

cond

*

In a crystal, electrons face at least three distinct potentials: the periodic (or
near periodic in case of extremely small nanostructures) potential due to lattice
atoms, the local electric field potential due to externally applied excitations, and
the scattering potential. So instead of solving the Schrédinger’s equation using all
three potential, a semi-classical approach adopts only the potential due to
scattering and external force, and incorporates the effect of crystal potential in the
parameter: effective mass. This is called the single-band effective mass equation.
The conduction band near local minima consists only of a single dispersion

relation, so the term ‘single-band’ enters.

4.4. Full band Hamiltonian for hole

The one-band effective mass model works very well for having an isotropic
parabolic band that is well separated from the other bands. This is usually true for
conduction band in wide bandgap semiconductors. But the valence band involves
multiple closely spaced bands that are strongly anisotropic and non-parabolic.
Close to the /-point the energy dispersion can usually be expressed in the form (4,

B, C are constants)
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Ef)= B, - ak? £ [BK + C* (€K +12k2 +K2K2)

4.8)

This dispersion relation can be described by a 4X4 matrix: [h(E )]: ~PI -T , where

0 0 -5 R
- s 2t w0
R S 0
hz}’l 2 2 2
P=E, +—2;(kx +k, +kz) (4.9b)
2
Q0= hz ; 2 (kj +k; —2kf) (4.9¢)
2
=2 [l - ) v ik (4.90)
2
S = %}711[2\/5 (k. —ik, . ] (4.9¢)

Usually this gives quite accurate eigenvalues of [A(k)] near the two highest
valence bands very close to the /-point. But to get better agreement over a wider

range of the k-values and to include the split-off band, one often uses a three band

[h(k)] of the form:
[ P+Q 0 -S R -S/v2 2R ]
0 P+Q R* §* -2R -5*/\2
| r 0 P-0 0 -V20 328
[T]_ 0 R+ O P—Q —.\/5755'+ -\/EQ+ (4-10)
-8*/N2 =2R* =20 328 P+Q 0
| V2R -S/N2 -\3/25" W20 0 P+Q |
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4.5. Effective mass Hamiltonian for hole

The full-band approach, resulting in multi-band Hamiltonian for holes in
the valence band work well for a bulk device. But as it is very much involved with
different dimensions, the consequence of using this approach for a nanodevice is
still somewhat unclear and a matter of current research. So for a coarser
approximation, one uses the already given effective mass of holes in silicon and

constructs an effective mass Hamiltonian for holes to get:

2
ih—a-‘{’(r,t)=— " P (r,0)+U, (r,e)¥(r,2) @.11)
ot m,

Where U, is the valence band energy and depending upon the particular
band, m" can be for light or heavy hole. The spin interaction band split is ignored

for the present purpose.

4.6 Validity of effective mass in nanoscale

In bulk materials, most of the atoms reside well inside the surface, and a
general consideration can be made that the surface is a far away ending of an
otherwise periodic array of atoms. With this view, the crystal can be thought to be
* effectively made of only periodic atoms, giving rise to periodic potential.
Consequently, Bloch’s theorem can be applied and use of Kronig-Penny model
can be made to treat the macroscopic potential due to applied bias or macroscopic
space charge, ultimately resulting' in band diagrams of the material. A deeper

investigation into the matter reveals that in the lowest parts of the conduction
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band, the energy dispersion relation is approximated to be parabolic. Now instead
of explicitly determining the effect of the perfectly periodic crystal on conduction
electron, one incorporates the idea of effective mass, which accounts for the
crystal interaction at least near the band minima.

Effective mass is defined by analogy with Newton's second law F=ma.

Using quantum mechanics it can be shown that for an electron in an external

electric field E:
1 d’e
Cwar? o

where a is acceleration, #=h/2r is reduced Planck's constant, & is the wave
number (often loosely called momentum since k& = p/h), (k) is the energy as a
function of &, or the dispersion relation as it is often called. From the external
electric field alone, the electron would experience a force of F=¢FE, where q is the
charge. Hence under the model that only the external electric field acts, effective

mass m* becomes:

-1
m' = h{‘;—;] (4.13)
For a free particle, the dispersion relation is quadratic, and so the effective
mass would be constant (and equal to the reai mass). In a crystal, the situation is
far more complex. The dispersion relation is not even approximately quadratic, in
the large scale. However, wherever a minimum occurs in the dispersion relation,

the minimum can be approximated by a quadratic curve in the small region around
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that minimum. Hence, for electrons which have energy close to a minimum,

effective mass is a useful concept.

L 8 4]

N e o i
Ay

Figure 4.3: Parabolic band approximation of the conduction band [figure reconstructed by author)

In energy regions far away from a minimum, effective mass can be negative
or even approach infinity. Effective mass, being generally dependent on direction
(with respect to the crystal axes), is a tensor. However, for most calculations the

various directions can be averaged out.

123

NN
.

BAND GAP ENERGY (sV)
—a=*
BAKD GAP ENERGY (eV)

Il

10
DIAMETER (nm) ODIAMETER {nm)

or

Figure 4.4: Band gap energy as determined by effective mass approximation in different studies, showing
the validity range of effective mass approximation in nanoscale [21].

This concept of effective mass is valid for bulk materials where crystal can

be assumed to be periodic, but in nanostructures the periodicity is no longer there
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as dimensions get smaller. Hence the band diagram also fails for nanostructure
thereby invalidating the concept of effective mass. Experiments have shown that

well below 5nm, one can no longer use the effective mass approximation.

4.7 2D direct discretized Hamiltonian

In direct discretization, the 2D Schrddinger’s equation is considered and
using FEM the 2D Hamiltonian matrix is directly created. In this case underlying

2D equation, for example in the case of 2D electron gas, becomes:

3 h? 62®(x,z)_ h* 62®(x,z)
2m.  Ox? 2m 0z*

X z

+E,(x,2)®(x,z) = E®(x,2) 4.14)

*

This time it should be noted that two different effective mass for different
directions is used for generality and the well potential is also considered to be non
zero (more precisely, the minimum of conduction band in a 2D electron gas in
solid). The obvious effect is that the wave function now becomes 2D and the
potential function also in general becomes 2D. The problem with such solutions is
that direct discretization of the system requires huge computational resource.

Using the given algorithm for 2D FEM, one can discretize the above partial

differential equation. And the general Hamiltonian looks like below:

[, S 0 0 |
£ « 0 0
Bx,z)=] .. . . . . (4.15)
0 0 . a,, P
0 0 B ay
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The gripping factor about the Hamiltonian is that unlike the 1D case, the
elements in the matrix are not single values; instead they themselves are complete

matrices, such as,

(2, +2t,—qE (%) -t, . 0 0 ]
—, %,+2%,—qE(x) .. 0 0
alx)= . . . . . (4.16)
0 0 . A +2,—qE (x) —t,
0 0 . -, 2% +2,~qF (x)

is the one dimensional system of equations, while

—t. 0 0
0 -t .. 0 :

p= i 4.17)
0 0 ~t

is the other dimensional coupling matrix. So together, the rather simple looking

Hamiltonian is now in fact an n’ by n’ matrix.

4.8 Decoupled set of 1D equations

In this approach, the basic 2D equation remains the same as before,

3 n 62®(x,z)_.h2 0*®(x, 2)

TS R P +E,(x,2)0(x,2) = E,®(x,2) 414)

Z

But this time instead of trying to directly expand the differential operator
according to 2D FEM, the method involves decoupling of dimension variance in
an attempt to separate the dimensional dependence.

First a dimension is chosen to start with, say x. Then starting from one end,

say i=/ (as shown in figure below) mesh points are gradually considered from
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U(1,1) to U(1,7) and this 1D system is solved as an eigenvalue problem. This is

repeated for every value of i till the other end. Then the position dependant

eigenvalue (E), E,..... etc.) is used as the system potential for 1D systems starting

from say j=1(in the figure below) and is solved for points U(1,1) to U(7,1) and go

up toj=7. This gives the total 2D solution.
A

i-8
I h
37

j=6

J=3

|- U(4.5)

j=3

-2

§=1

——
a0 j=l (=2 (=3 w4 =5  {=f (=7 ie8

Figure 4.5: Using the discrete 2D mesh for the decoupled 1D system of equations.

The formal approach is as below: As before the starting point is the 2D
Schrodinger’s equation (the two dimensions being x and z):

3 n’ 62®(x,z)_ n* 0°®(x,z)
2m.  ox? 2m, 0z

X F4

+E,(x,2)0(x,z) = E,®(x,z) (4.14)

Then the differential equation is expanded in orthonormal basis function

such as:
y/(x,y)= ZJ(x—x’)¢m (x’,y)(pm (x') 4.18)

This actually is quite similar to Fourier analysis. In Fourier analysis, there
already exists the set of orthnormal functions: sinf, sin26, sin30, .., cos6, cos26,

cos36, .., and the objective becomes just to find the numeric coefficient of these
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basis functions. But in a more general case, any orthonormal basis function can be
chosen, as in this case the individual vertical slice dependence of wave function.
Instead of a given function, these basis functions have to be found from another
underlying equation. Then the coefficients could also be functions instead of
numerals, but the basic mathematical concept remains the same.

For thinvbody, which is about always a good assumption in nano regime,
quantum confinement in a particular direction introduces subbands, and only a few
subbands are usually effectively occupied. Accordingly, wavefunction is expanded
in the already mentioned orthonormal basis. The eigenfunctions and the associated
eigenenergies are obtained by solving a one-dimensional wave equation in the z-

direction within each x’ valued slice.

h2 62

——4, (x,z)+ V(x,z)¢m(x,z)= E ¢, (x,z) 4.19)
2m, Oz

It should be noted here that the position dependant eigenvalue is not the
eigenstate of the system, as eigenstate does not differ with position in the system.
This energy could be interpreted as to represent the bottom of a particular
subband, which varies with position along the channel. The envelope wave
functions are zero at the boundary for infinite potential well. By using the
orthonormal basis, the basic 2D equation can be transformed to a mode-space
basis. By retaining only a few occupied modes the computational burden can be
significantly reduced. Here it could be stated that the confinement dimension of

the device in question here is less than the bulk excitonic Bohr radius, so carriers
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are strongly confined along device thickness. This results in energy quantization in

that dimension, and eventually subbands are formed as a result.

Table 1: Bulk Excitonic Bohr radius of different semiconductor materials [tabulated by author from
various sources

Materials Excitonic Bohr radius in angstrom
Cadmium Sulfide ' 315
Zinc Sulfide 50
Lead Sulfide 204
Lead Selenide 460
Cadmium Selenide 61
Silicon 55
Zinc oxide 18
Copper Chloride 10
Indium Arsenide 340
Indium Antimonide 540
Cadmium Telluminide 100

The geometry offers yet another simplification. If it is assumed that the
shape of the confined mode does not change along the length, which is same as
assuming the potential variation within the system is slow with respect to electron
wavelength, the result is

K 9
2m: Ec?gom

(x,z)+V(x,z)<pm (x,z) =FE @, (x,z) 4.20)

So in a nutshell the algorithm could be described stepwise as follows:
1. Discretize the 2D space coordinates according to the system.
2. Choose a particular direction as the basis function coordinate and expand

the wavefunction as below:
l//(x,y) = Z 5(x —x')¢m (x', ) m(x’) 4.18)
3. Solve for each slice of the chosen coordinate as individual 1D system and

the problem reduces to 1D eigenvalue problerh:
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4.9

2 2
2, 02+ 2 12) = B () @19
2m, Oz
Using the position dependant eigenvalue from the previous equation as the
potential profile for the other dimension, solve the following equation as

another eigenvalue problem:

2 2
L gc-z—(pm (x, z)+ V(x, z)(om (x, z) =Fo, (x, z) (4.20)

Zm;
Finally find the overall wave function from the orthonormal basis function
expansion given in step 2.

Validity of decoupled set approach

A closer look into the approach reveals some significant assumptions in the

mathematics. First it has been assumed that the domain of operation is thin. This is

usually true for practical quantum devices such as a thin body MOSFET or

nanowire or even a 2D pn junction. So this assumption actually does not cause a

serious problem to its applicability in this case.

On the other hand, another important assumption is that the potential

variation with respect to the electronic wavelength is slow. This implies that the

shape of the confined subband in the transverse direction effectively maintains

same shape, and its variation in the longitudinal direction remains insignificant. In

fact the only fast varying potential that an electron faces in a practical device is the

atomic potential due to the lattice points, which ultimately is ignored by always

considering the smeared out average electronic concentration in device model.
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Though the assumptions seem quite reasonable, the effect it has may
become significant in some cases. The two inherent implications remain prudent:
subbands with different energies do not couple and some coupling information of
a subband with itself is also lost. But as it is seen, for a thin body MOSFET this

method works well [42] and also results well for a thin 2D pn junction.

4.10 Choice of representation

The choice of representation may become important for particular systems.
In formulating a theory of quantum transport there remains a choice of what
representation to use, the optimum one depends on the problem at hand. A
representation based on eigenstates is often convenient for analytical calculations
since the Hamiltonian is diagonal. On the other hand, a real space representation is
intuitively more appealing. In dealing with decoupled 1D device, it remains
convenient to use the eigenstate representation for the transverse dimensions but a
discrete real space lattice for the longitudinal direction gives better applicability.

For devices with a large (effectively infinite) cross-section, it is common to
ignore the transverse confining potential and use periodic boundary conditions in
that direction since the real boundafy conditions are believed to have minimal

effect on the observed properties. The transverse eigenstates are then given by

plane waves.
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4.11 Direct discretization: Computationally expensive

As it is seen that direct discretization imposes serious memory problem,
there has been rigorous studies how to efficiently solve the direct discretized 2D
system, more generally referred to a as 2D Poisson problem, as the operator is
Laplacian. It is not the intension of this project to give a comprehensive
comparison of different algorithms to solve, but to make the case strong for the

proposed method, only a brief discussion is introduced.

Table 2: A comparison between different types of solution to Laplace’s equation

Inv(P)*b

Jacobi

Sparse LU

CG

SOR

FFT

Multigrid

§ Lowerbound
L

Key to abbreviations:

Dense LU  : Gaussian elimination, treating P as dense
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Band LU  : Gaussian elimination, treating P as zero outside a band of half
width (n-/) near diagonal
Sparse LU : Gaussian elimination, exploiting entire zero-structure of P

Inv(P)*b : Pre-compute and store inverse of P, multiply it by source b(i,j)

CG : Conjugate Gradient method
SOR : Successive Over Relaxation
FFT : Fast Fourier Transform based method

The first column in the table identifies the algorithm, except the last entry,
which gives a simple Lower Bound on the running time for any algorithm. The
Lower Bound is obtained as follows. For the serial time, the time required simply
to print each of the N solution components is N. For the PRAM time, which
assumes as many processors as we like and assumes communication is free, it is to
be noted that the inverse inv(P) of the discrete Poisson matrix P is dense, so that
each component of the solution U = inv(P)*b is a nontrivial function of each of
the NV components of b. The time required to compute any nontrivial function of N
values in parallel is log(N).

The second column says whether the algorithm is of Type D=Direct, which
means that after a finite number of steps it produces the exact answer, or of Type
I=Indirect, which means that one step of the algorithm decreases the error by a
constant factor p</, where p depends on the algorithm and N. This means that if
one wants the final error to be € times smaller than the initial error, one must take

m steps where p"<e. To compute the complexities in the table, m has to be chosen
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so that p™ is about as small as the discretization error, i.e. the difference between
the true solution u(i*h,j*h) and the exact discrete solution U(i,j). There is no point
in making the error in the computed U(i,j) any smaller than this, since this could
only decrease the more significant error measure, the difference between the true
solution u(i*h,j*h) and the computed U(ij), by a factor of 2.

The second and third columns give the running time for the algorithm on a
serial machine and a PRAM, respectively. A PRAM can have as many processors
as needed (shown in the last column), and communication is free. Thus, the PRAM
time is a lower bound for any implementation on a real parallel machine. Finally,
the fifth column indicated how much storage is needed. LU decomposition
requires significantly more storage than the other methods, which requires just a
constant amount of storage per grid point.

This includes methods like Dense LU (Gaussian Elimination) even though
these are much slower than the fastest methods, because these slower methods
solve much more general linear systems than the much faster but more specialized
algorithms like Multigrid. This table illustrates that there is often an enormous
payoff for using an algorithm specially tuned for the system at hand. Band LU is
Gaussian Elimination specialized to take advantage of the fact that none of the
zero entries of P more than » entries away from the diagonal ever "fill-in" during
Gaussian Elimination, so we can avoid both storing them and doing arithmetic
with them. Sparse LU exploits the fact that many other entries in the L and U

factors of P are zero, and avoids both computing with or storing any zero entries.
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Inv(P)*b means pre-computing and storing the exact N-by-N inverse of P (the cost
of this pre-computation is not counted in the complexity), and then doing a matrix-
vector multiplication. On a serial machine, this is no faster than any of the
subsequent Ihethods, and uses much more storage.

Jacobi, SOR (Successive Over Relaxation) and CG (Conjugate Gradients)
éan be thought of as performing most nearest neighbor operations on the grid (CG
requires summing across thé grid too). In other words, information at one grid
point can only propagate to an adjacent grid point in 1 iteration. Since the solution
U(i,j) at each grid point depends on the value of b(l,m) at every other gﬁd point, it
take n steps for information to propagate all the way across the grid. This would
not lead to a good solution in fewer than n=V(N) steps, which is what these

methods require.

4.12 Green’s function formalism

A significant advancement with the decoupled approach could be attained if
the solution method is instead of direct, is the Green’s function method. But its
advantages are only apparent in complex systems where non-ballistic transport is
considered with incoherent scattering effects and for a more rigorous contact

analysis. It also comes into help if we are trying to simulate a 3D system. But for
simpler situation like a 2D infinite potential well, it becomes unnecessarily

overburdened.
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4,13 Self energy matrices

For the device in question, the carriers are confined in the lateral direction
so that the boundary condition assumes that the carrier concentrations, i.e. their
wave functions become zero in the silicon- oxide interface. But in the longitudinal
direction, there are two contacts which in facf inject electrons and holes to the
system and have to maintain equilibrium condition for any supplied current. So to
incorporate these contacts into the actual device, some modeling method has to be
adopted. A very suitable candidate in this case is the self energy matrix modeling
the semi-infinite leads. Here it is assumed that the contacts are so abundant in
carrier concentration that the thermodynamic equilibrium is maintained within the
contacts (considering them as reservoirs of carriers) and the Fermi level inside

remains constant.

Device RESERVOIR

Hy

Figure 4.6: Coupling between the contacts (seen as reservoirs of carriers) and the actual device [41].

The concept of self-energy is used in many-body physics to describe

electron—electron and electron—phonon interactions. In the present context,
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however, it can be used to describe the effect of a semi-infinite contact. In general,

a ‘device’ connected to a large reservoir and has an overall Hamiltonian matrix of

[H T} 4.22)
" H,

where the dimension of Hamiltonian for the contact, Hy is huge compared

to that of the device H. The overall Green’s function has the form

-1
G G 0% ) — -
o | _ (E+i0* ) -H r .
_HR

Gw Gr —t (E+io)

Here G is related to the device, while Gg is related to the reservoir. The other two
are interactions among the two. Because the concern is only about the details inside the
device and not inside the reservoir for analysis purposes, only G is of interest (and not in
Gr or Gpg or Gpp). It then becomes is straightforward to show that [40]

G=|E+i0" ) -H -3 ~[E1 - H -3}’ (4.242)
where £=1g,7" and g, = [(E +i0+)1 -H, ]_] (4.24D)

This shows that the effect of the coupling to the reservoir can be accounted
for by adding a self-energy matrix 2 to the Hamiltonian H. This is a very general
concept that allows eliminating the huge reservoir and working solely within the
device whose dimensions are much smaller. It is to be noted that unlike 0%, X is

not necessarily an infinitesimal quantity and it can be finite with a value defined

by the coupling to the reservoir.
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Arbitrary reservoir coupling can be calculated from (4.24b) in general,
resulting in coupling matrices. So to find the self energy matrix X, a huge

inversion is required:

Z(m, n) = Zr(m,y)gk (,u,t))r+ (U, n) 4.25)

e

The indices m, n refer to points within the device while y,0 refer to points
inside the reservoir. However, the coupling matrix 7 couples the points within the
device to a small number of points on the surface of the reservoir, so that only gg
(u,v) for points (u,v) that are on the surface is needed. This surface Green’s
function can often be calculated analytically assuming a given reservoir model.

For the case in hand, the self-energy can be obtained from fairly elementary
arguments without worrying about surface Green’s functions. The self-energy
matrix 2(E) that accounts for the semi-infinite lead on the left is given by (¢ being

the onsite coupling energy ¢ = #*/2m’a®)

12 - (V-1 |N)

[y ™ 0 0 0

2 (E)= |2> O 0 O O (4.26)
IN-1) 0 0 0 0
vy 0 0 0 0

where E = E, +U, +2t(1-cosk,a)
In other words all that is needed is to add a term e to H(I,1) and the semi-

infinite lead is accounted for exactly, as far as calculating the Green’s function is

concerned. In the self-energy method it is assumed that we only have outgoing
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(not incoming) waves at the ends. The fact that an actual device has incoming
waves as well from the contacts is irrelevant when calculating G, as it is the
retarded Green’s function representing the response of the system to an impulse

excitation within the device: (EI-H-X)G=1I, and hence the appropriate

boundary condition for G is that it only has outgoing waves at the ends. This
means that when calculating G it can be assumed that just outside the device (and
hence inside the contacts)

ika

W, =We (4.26)

Hence only this term (with a negative sign to incorporate outgoing wave) is
added to point 1 of the device Hamiltonian to take care of the open boundary
condition. Similarly the self-energy matrix that accounts for the semi-infinite lead
on the right has only one non-zero term at point N which is given by

Z,(N,N) =t 4.27)

The Green’s function is obtained from

G=[EI-H-%,-3,]" (4.28)

where the self-energy functions account for the open boundary conditions
exactly. It has been demonstrated that the results agree quite well with those
obtained directly using periodic boundary conditions [41].

The self-energy method is computationally more intensive, since it requires
integration over energy. However, the periodic boundary conditions in an attempt

to model the contacts, merely get rid of end effects through the artifact of

wrapping the device into a ring. An open system has a continuous energy
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spectrum, while a ring has a discrete energy spectrum. The electron density is
obtained by integrating over energy and is relatively unaffected by the
discretization of the spectrum at least at room temperature. But the difference
would be apparent, when the device comes out of thermal equilibrium. The full
power of the self-energy method becomes apparent when we model a device under

bias—a problem that cannot be handled with periodic boundary conditions.

4.14 Broadening effect

If a hanodevice is so small that the carriers get confined, then there exist
quantized energy states. In itself, this energy distribution can be calculated and
accounted for in that device. But whenever a device is mentioned, it is always
implied that corresponding contacts are there, as without the contact of the device,
which remain the connection of the device to outer world, the device is of no use.
But in the confined nanodevice, there is an inherent effect of the contacts on that
device. It broadens whatever energy levels the device might have had and must be
correctly accounted for device modeling. Depending upon the physical nature of
the contact, the coupling becomes strong or weak, which determines how the
levels inside the device will be broadened. It so happens that self-energy method
correctly addresses this issue. There are two factors that distinguish 2, and 2, from
ordinary Hamiltonians. Firstly, they are energy dependent. Secondly, they are not

Hermitian. It can be written [41]
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These self-energy terms have two effects. It changes Hamiltonian which

where H = H +

and T, =iz, - %], I, = [, - =3

changes the eigenstates and their energies. More importantly, it introduces an
imaginary part to the energy determined by the ‘broadening’ functions /7 and I7.
The former represents a quantitative change; but the latter represents a qualitative
change as regards to level broadening.

A particular representation might diagonalize H. This representation will
not necessarily diagonalize I"; and 7. Interesting quantum interference effects can
arise from non-diagonal elements of I; and 73. But if I, and I, are also
simultaneously diagonalized then the eigenenergies of (H+2;+2;) will be given
by

e—i(y,—7,)2 (4.30)

where ¢, y, and y, are corresponding diagonal elements of A, I"; and I
respectively. This could be viewed as a broadening of the energy level from a

delta function J(E-¢) into a line of the form -

Nty
(E-e) +((n-r)2f

As y, and y, are generally energy dependant coupling coefficients of

(4.31)

contacts to the device, the expression (4.31) may have a non-Lorentzian shape.
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The imaginary part of the energy implies that the wave function and the associated
probability decays with time which can be written in the form

P~ it onitf28) (-2t /20) (4.32)

|| ~ elrilmel-raizh) (4.33)

Electrons in this state will eventually discharge into the left and right leads
with time constants %/y; and A/y, respectively. Thus A/y;, and A/y, represent the
rates at which an electron initially in a particular state will escape into the left and
right states respectively, as seen from the self-energy matrix element

2(1,1) = —te™ — T(1,1) = 2sin(ka) = hv/a (4.33)
Which is quite reasonable since the rate of escape from a lattice site of size a

should be v/a.
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Chapter 5: Simulation: Formulating the model

As the theoretical basis of the device model is gradually constructed, it then
remains to implement the model in a simulator to evaluate the performance of the
model. The underlying considerations include from choosing of the software to
detailed implementation method for different parts. The details for such a

simulation are presented here.

5.1. Choice of software

Whenever the question of numerically solving some system of equations
arises, the choices become obvious. Either a versatile programming language, like
C++ is used, where basic codes for solving every bit of mathematical operation is
generated from scratch, or any of the mathematical programs can be used, which
already have the subroutines to do the intricate arithmetic and numeric operations.
Choosing a programming language for this project would have been over
ambitious as unnecessary time and effort would go into developing codes for
mathematical operations, which is not the main problem in hand. So the effective
choice was in choosing one of the mathematical software. The practical choice
was MATLAB, FEMLAB, MATHEMATICA and MAPLE. Among these, the
first two actually are adept to handling floating point operation of complex and
huge matrices, while the later two only pose good option for symbolic

mathematics. So essentially the choice was limited to two.
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Among the two, FEMLAB do better job in physical situation involving
different systems, but for this case, as only the Schrédinger’s equitation has to be
solved, MATLAB is as good. Moreover it offered flexibility of script
programming, and considering all the aspects, MATLAB was chosen.

One other important consideration came into play. Usually in more
practical cases, a device problem should be solved self-consistently, that is
iteratively and simultaneously solving Schrddinger’s equation with Poisson’s

equation, which at the moment is not possible with FEMLAB.

5.2. Device structure

The device in question is essentially a 2D device. The longitudinal direction
is considered to be the x-direction, while the lateral dimension is in the z-direction.
y-dimension is the transverse direction and the device is so wide in this direction
that the carriers in this direction are free to move and characterized by plane wave.
So in essence, the device is distributed in the x-z plane. In the longitudinal
direction, the device ends in two contacts, the Anode and the Cathode from where
electrons and holes are injected into the device. In the lateral dimension, silicon
device is sandwiched between two layers of oxide, ensuring confinement in both
sides. Half of the device is p type and rest half is n type, so the metallurgical
junction is at the middle. Doping is considered to be step type so the junction is
abrupt, so that the basic physical effects become clear. As for device is fabricated

in silicon, for confinement, the z-dimension is Snm wide, while in the longitudinal
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direction, it has a length of 100nm. So there is no confinement, but still a quantum
mechanical state function gives a good description. In y-direction, the device is

several micrometers wide so effectively it becomes large.

Figure 5.1: Schematic diagram of the device structure in 2D. The transverse direction is not shown.

5.3. Meshing

Two meshing schemes were considered, the triangular meshing and the
rectangular meshing. For triangular meshing, the formulation of the 2D laplacian
and the 1D Hamiltonian becomes involved and the basic physical aspects are
curtained, while the rectangular meshing in general has a resolution problem. But
the fact that the device is strictly rectangular in shape, made the case for
rectangular meshing.

In rectangular meshing, the grid points were set so that every feature is well
accounted for, such as the silicon-silicon oxide junction, semiconductor-metal
contact, metallurgical junction between p and n type etc. The spacing is same in
the z and x directions, and the spacing a was determined by the upper limit

AE <0.8¢ (5.1) where ¢ depends upon a.
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This is for the fact that under this limit, the actual dispersion relation
between energy and discretized momentum of carrier given by
E= 2(1 —cos ka) (5.2)
is well approximated by the continuous dispersion relation

_ nh’k?
2m'

E (53)

5.4. Lateral dimensional Hamiltonian

In MATLAB, with rectangular meshing for a 1D case in the z-direction, an
n by n Hamiltonian matrix is in order, where n is the number of discrete points in
that direction. So if the lateral width is z nm and the grid spacing is a nm, then
n=z/a. As n is increased, the size of the matrix also increases and requires more
and more computational resource. The coupling constant for the equation is

hZ

t, =—
2m;(Az)

z

(5.4)

Where 4z is the differential distance between mesh points and m,” is the z-
directed effective mass of concerned carrier, (electron or hole). This is the onsite
energy that every particle feels due to lattice, accordingly discritized into FEM
formalism.

The device is first sliced into vertical slices of width a so that we have L,/a
vertical slices. It is assumed that all quantities are constant in x-direction within
each slice, and a lateral Hamiltonian is constructed for each slice. So for a

particular slice, the actual Hamiltonian both for electron and hole becomes:
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z n-1 >

|z) 2, +U(Lx,) -, 0 0
- 0
Hz(x,.)=lz:2> :tz Ztﬁ({(z’x") N O : (5.5)
Zn—l) 0 0 ZZ+U(n—1,xn) ~t,
zn> 0 0 —t, %, +U(n,x,,)

For example, with n=>5 at the 10™ slice, the total Schrédinger’s equation in matrix

form becomes:

2w +UN0) -, 0 0 0 w1 B o o o 0 [y
~t, 2, +U(2,10) -t 0 0 v, 0 E(0 o 0 0 |{w, |(5.6)
0 -t 2,+UB310) -, 0 dw, |=| 0 0 EQM0 o0 0 ||w
0 0 -t 2 +U(410 -, v, 0 0 0 E[10 o0 ||y,
0 0 0 -t 2, +U(510)] | 0 0 0 0 E10)]|w

For the practical device in consideration, the size is n=10.

5.5. Boundary condition

It is assumed that the carrier wave functions go to zero at the
semiconductor-oxide interface; hence the Si-SiO, barrier is assumed to be
infinitely high. This may seem contrary to the practical device, but actually
accounts well for confinement. The energy difference between the materials is
quite high to confine the carrier within the device (about 8¢V in SiO, and 1.12eV.
in Si), and only a small evanescence tail exist into the oxide layer, even that can be
accounted for with a slight modification of the effective mass. The confinement is
inherent to the 1D Hamiltonian as seen here as follows.

For a particular grid point z,, the differential operator results in FEM

formalism:
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|~ (ac 7
So if the boundary point is considered where n=1 so z,=/ then

2
ylt) _ 200)-y(0)-w(2) 8

0
= ™;

Now as it can be seen that the point z=0 for which the wave function
w(0)=0 is within the oxide layer and this essentially means that there exists no
carrier within the oxide layer, and the boundary is effectively that of an infinite
well. Similar argument can be explained for the last point z=n, giving rise to same

infinite potential well boundary condition.

5.6. Energy grid

In the longitudinal x-direction, the device is coupled with two contacts,
each injecting a particular type of carrier (anode injecting hole and cathode
injecting electron). So the Schrédinger’s equation is no longer an eigenvalue
problem in this dimension, rather the wave functions for a given eigenenergy has
to be found for a corresponding longitudinal energy. The longitudinal energy is the
energy of a carrier in relevant contact that can be injected to the device. Since the
devic.e is degenerately doped, the thermal equilibrium Fermi energy lies well
within the corresponding band, and particles with any energy between Fermi
energy and the band edge can be injected with high probability. So to account for

this the longitudinal energy has to be discretized and solution has to be found for
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all such energy. Hence, for longitudinal Hamiltonian, a grid in the energy has to be
defined.

For the device in hand, the reference energy is the conduction band energy
E,, in the n side. Taking E_,=0 then the energy range for electrons remain from 0
to E,. Similarly the energy range for holes is from Eg, to E,,. The energy grid
spacing is taken to be 0.5meV, which is qﬁite typical for such calculations. In

equilibrium, Er,=EFr, while for a bias of V, it is given by Er,=Eg,+qV.

n-type p-type
Ec
p
EFn EVp
Ecn= EFp
Evn Junction

Figure 5.2: The schematic diagram of the band diagram of a pn junction under equilibrium condition with
no bias. The system Fermi potential is the same in every point of the system.,

5.7. Longitudinal Hamiltonian

In decoupled mode, the longitudinal x direction is treated separately to z
direction, and a 1D Hamiltonian is used for x directed Schrodinger’s equation. As
the device is vertically sliced for decoupling, the lateral dimensional Hamiltonian

gives the eigenvalue for each vertical slice for a particular subband, that energy
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acts as the on site effective potential for the longitudinal direction. So for a

particular subband, the Hamiltonian looks like

k) ey ) R
|x) 2.+E -t, - 0 0
szl":z> ‘:’z th':"Ez 0 0 59
X4 0 0 - %+E, -t
x) 0 0 - ~t, XA+E

This Hamiltonian is used for both electrons and holes, but for different
carriers, it has different effective mass. More over as electrons and holes are
injected from opposite contacts, the numbering of the grid points is also reversed,

i.e. an arbitrary node x,, for electron becomes x,_, for hole.

5.8. Open boundary condition and carrier injection

Semi-infinite contacts are attached to the device as anode and cathode.
Because the potential in the contacts is assumed to be uniform, the solutions in the
semi-infinite contacts are plane waves. If a unit amplitude wave is injected from
the cathode (electron), then some portion reflects from the device and some
transmits across and exits the perfectly absorbing anode contact

6, (x)=1e™ +r e ... x<0 (5.10a)
and

g, (x)=te" . ... x>L (5.10b)

Where r,, and ¢, are reflection and transmission coefficients for cathode

injection into mode m and L, is the length of the active device.
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By solving (4.20) subject to the boundary conditions, (5.10a) and (5.10b),
the wave function due to the injection of a unit amplitude wave from the cathode

is found. This translated to the matrix formation gives the self energy matrices of

dimension n by n with only one non-zero term

%, j) = —t,e*6, 6, (5.112)

(i, /)= -t,*5, 6, (5.11a)

For carrier injection a source vector term 7, is required of # by I dimension.
It has only one non-zero term accounting for carrier injection, and also the level
broadening.

7 =i[z,0,0)-2(1,1)]= 2¢, sink,a = ho(k, )/ (5.12)

So for longitudinal direction the equation that is solved is

[EI-H -3, -3, =iy, (5.13)

Similar arguments also account for holes that are injected from anode.

5.9. Steady state carrier density
Electron density for a confined mode m and with injected wave vector k, is

obtained from summing all transverse (y-directed) mode with wave vector £,

n"(k ,x =——Z|¢ (k,,x) fFD(E EFC) (5.14)

Here k, refers to the x-component of the wave vector of an electron with

total energy E in the cathode contact and the probability that the state with energy
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E is occupied within the contact is given by the Fermi-Dirac distribution fzp. This
is valid because the contacts are always under thermal equilibrium.

As only positive (or negative, depending upon the position of cathode in the
left or right) &, values are injected, so summing (5.14) over all positive k&, gives the
2D (x-y plane) charge density. As the transverse direction is virtually infinite, the
summation in that dimension can be converted to integral over transverse energy.
The longitudinal summation can also be changed into integral and the final result

can be expressed as [43]:

nl(x)= [n7(x,E,)dE, (5.15)

—00

Considering the conduction band (valence band while considering hole

calculations) as infinitely wide it can be shown that (including spin degeneracy)

[43]
m 1 2m k,T A;"(x’E' )
1, (x, E, ) = ha yﬂ_ . F—}{ (EF,c —E, )—2—”1— (5.16)

Here F_,; is the Fermi integral of order -1/2 and A." is the local density of state:
dk 2
A X, E, )=a— k 5.17
e(x /) adE,|¢m(x x] ( )

Similar calculations are assumed for hole also.

5.10. Current calculation

For the current calculation, instead of directly using the current operator,

the transmission viewpoint is adopted for its simplicity. The current due to
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injection of an electron into a particular mode m with a particular longitudinal

energy E; is found from
1,(E,)= %ZT; (W, (E)f(E-E;,) (5.18)
k_V

here T,,° is the current transmission coefficient for cathode contact, and v, is
the velocity of electron in x direction. The net current due to electrons in mode m
can be obtained by summing all transverse energy and longitudinal energy to

obtain
1, = [1,(E)dE, (5.19)

where

1 2m;kBT

F,(E, ~E,) (5.20)

Im(El)‘__%Tr:(EI)

na\ 7

The transmission coefficient for cathode in mode m is given by

TC(E[ ) — ](ransmilted =1- lr |2 (5.21)

m m
incident

From the boundary condition (5.10a) it is seen that the transmission

- coefficient can be expressed as

T (E)=1-|¢,(x=0)-1’ (5.22)

Similarly the current due to holes can be calculated and the total device

current is found by adding electron and hole current.
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5.11. Poisson’s equation formulation

The formulation of the 2D matrix is not only conceptually difficult but in
effect also quite difficult to formulate in MATLAB also, as the source term in the
system of 2D equations are not as easy to comprehend. In fact, quite some
manipulation is in order to bring the system of equations in a more standard array
orientation.

To write this as a linear system in the more standard form AU=p, where U
and p are column vectors, a linear ordering of the unknowns U(ij) has to be

chosen. For example, the natural row ordering shown below

Linearized QOrder of Unknowns on a 2D Grid
Only intarnal grid peints are unknown

o i it s s

sl 9L1u11L12

jalo oz s e
2 3 4

Figure 5.3: The ordering of unknown points in a 4X4 2D discrete space.

leads to the linear system AU=p:
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Diseretae Poiscon Probleam on 4-by-4 Grid

4-1 1 | 5 UL b(L1)
(41 -1 E u(2) h(21)
-la-n -l : U3l b(3;)
. R ot S . U(d1) b(41)
-1 4-1 A : u(L2) b(12)
Sl St A u22) h(22)
-y -ta-L -1 U(32) b(32)
________ Lo o tae: - L ued| - | ne2)
1 -1 -l U(L3) b(L3)

-1 =141 4 -1 U(23) b(23)

A e S U33) b(33)
__________ I N 3. N U(43) b(43)
| rl 4 -1 U(L4) b(LA)

E p o -bo rla-l U(24) b(24)

= A U4 b(34)

u ! ! -1 14 | U(a4) | h(a4)L

Figure 5.4: The source term reshaping and formation of the 2D matrix equation for the grid above.

It should be noted that in above mentioned example, the outer points are
boundary which we consider to be zero for wave function as our well is infinite, so

effectively the unknown points reduce to 16 instead of 25.

5.12. Biased system

Once the device under equilibrium has been simulated then the same
procedure was adopted to simulate the device under forward bias only. In this case
the reference was still chosen as E¢,=0 and for an applied voltage V, the difference
in Fermi levels were Er,=qV+Eg,. The increment of voltage was done in steps of

0.01 volts and to construct the current voltage characteristics.
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n-type

Fn

Ecn= E

E,, Junction

Figure 5.5: The schematic band diagram of a pn junction under forward bias condition. The applied
voltage creates a difference in the electrode thermo chemical potential.

5.13. Self-consistent analysis

Self consistency is achieved as the successive calculated potential profile
difference becomes lower than the preset allowed difference. As the energy grid
has been set with a resolution of 0.5meV, this in fact sets the limit to the maximum
achievable accuracy and any error resulting in lesser value is deemed acceptable.
This then sets the convergence criteria.

First an initial guess was made for the system potential. The initial guess
only plays a part in achieving convergence faster, and for a well formulated
problem does not significantly pose a problem. With the guess potential, the
quantum transport equations are solved to get the overall carrier density. Then
along with the doping profile, this is inputted to the Poisson’s equation to get the
potential of the system. Then the new potential is compared with the previous

potential, and if the difference is larger than the allowed error, the new potential

76



replaces the old one and quantum transport is solved again with this new potential.

The process goes on until self-consistency is achieved.

5.14. Flowchart

The overall algorithm can be described as follows:

1.

2.

Guess a potential profile for the whole system.

With this potential profile, calculate the vertical slice confined 1D
system equation to get the confined wave function and position
dependant eigenenergy.

Using the position dependant eigenenergy as the effective local
potential, solve the longitudinal system equation with Green’s function
formulation to incorporate contacts and carrier injection.

Calculate the carrier density in the device.

Using the carrier density and the doping profile, solve Poisson’s
equation in 2D to find the system potential.

Check whether the new calculated potential differs within the given
range with the initial potential.

If self-consistency is not achieved, repeat steps 2-6.

Once self-consistenéy is achieved, calculate current and other relevant

properties from carrier density and potential profile.
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» Guess initial
potential

Solve 1D system equations in the confined
direction for subband profile and wave functions

v

Solve the longitudinal system equations with
NEGF approach to find the charge density

Distribute the 2D charge density based on
subbands and solve Poisson's Equation to get
Nnew system: potential

Y Check for cénvergehce

Converged?

Evaluate current and other
parameters and stop

Figure 5.6: Flow chart of the decoupled system of 1D equations adopted in this work.
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Chapter 6: Simulation results

In this chapter the key simulation results are presented which demonstrate
the effect of quantum coupling. First the equilibrium characteristics are presented,

for no external bias application, and then biased characteristics is presented.
6.1 Equilibrium potential profile

6.1.1. Built-in potential

A longitudinal section is selected along the device length, through the
midpoint of the thickness, and the self-consistent potential is plotted. It can be
seen that the difference in potential in the n-side and the p-side is the built-in
potential, V},;, and as for any degenerately doped junction, the magnitude is larger

than the band gap energy.

Ensrgy (V)
=
o &

O
2
254 /

e

0
Davice Longth {x0.5 nm)

Figure 6.1: Built-in Potential along the device length axis
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In equilibrium, a degenerately doped n-type material will have an
equilibrium Fermi level within the conduction band. So the Fermi level is situated
above the conduction band edge. On the other side, a degenerately doped p-type
material will have equilibrium Fermi level within the valence band, hence it will
be situated below the valence band edge. Now as in equilibrium, it is required that
throughout the device, the Fermi energy be the same, so Fermi energy in the n-
type material is exactly equal to the Fermi energy in the p-type material. So the p-
type valence band edge will have higher energy than the n-type conduction band
edge. Hence, the p-type conduction band being above the p-type valence band by
band gap energy, E,, the difference in conduction band edge between the two sides
is given by

AE=FE, +E, +E, +E, 6.1)
So the built in potential is given by

V,=Ep +Ep, +E, 6.2)

6.1.2 Depletion region

As seen in the above figure, there remain two quasi-neutral regions where
the potential has no slope, while in the middle there exists a rise in potential from
n-side to the p-side. This rise in potential, which is equal to the built in potential, is
in fact the depletion region, where the material is depleted of free carriers. The
length of the depletion region is calculated from the point where the potential

starts to rise till the point where the potential becomes constant again. It can be

80



seen that the value of the depletion region width is about one order more than

predicted by 3D equations (which is about 2-3nm),

..............

..............

Energy (V}

40

ki)
10 Device Length (x0.5 nm)

Device Width (x0 5 rm) 3 2 .

Figure 6.2: Conduction Band of the 2D pn junction in silicon

Most probably the reason is lack of screening of the electric field by the
thin film device. Because the active device and the depleted dopant charges
confined within are very thin in width, it only screens a small part of the potential

field that surround the 3D space around the charges. For this reason the depletion

region is extended beyond the prediction of otherwise classical calculation.
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6.1.3 Lateral dependence of potential

Unlike the bulk counterpart, the results demonstrate a lateral dependence of
device potential along the confinement direction. If a section along the
confinement direction z is taken, and the potential profile is observed, this lateral

dependence is observed.

Energy (¢V)

Device Width (xD.5nm)

Device Length (x3.5nm)

Figure 6.3: 2D Band Diagram of the 2D pn junction

Most probably this lateral potential variation occurs for the quantum
confinement of carriers. As the carriers are confined within the device width, the

carriers tend to accumulate in the middle part of the thickness, and the device

edges are left with fewer carriers. But the doping remains constant in the whole
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device thickness. This gives a net charge even in the quasi neutral regions of the

device along the lateral dimension and the potential is changed in accordance.
6.2 Equilibrium carrier concentration

6.2.1 Subband

As the device dimension in the lateral direction (z-axis) is only Snm, which
is smaller than the excitonic Bohr radius in silicon, the device operates in strong
confinement regime. The results also uphold this fact as the formation of subbands

is clearly seen. The subband energies are given below.

1 1 L 1 i ] ] L I 1 L i ! 1 L L L
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Figure 6.4: Subband energy of (a) electrons in n-side, (b) holes in p-side.

As the device is thin, the earlier assumption of the application of the
decoupled mode was that only a few subbands are occupied. In the result it
becomes evident that indeed only the first 3 subbands are occupied, verifying the
earlier assumption and thereby validates the use of the decoupled system of

equations.
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6.2.2 Electron and hole concentration

The total electron and hole concentration is given below. It is clearly shown
there exists a region around the metallurgical junction where no free carriers exist.

This is the depletion region.

Electron concentration (fcm?)

Device Width (x0.5nm)

Hole Concentration ¢cm3)

Figure 6.5: Total carrier concentration with no external bias (a) electron in n-side (b) hole in p-side.
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Subband wise, the electron and hole concentration is given below. As the
device is degenerately doped, the number of available carriers is comparable to the
existing states, so more that one subband is occupied. In fact, in this simulation up
to five subbands were considered, but it is found that only the first three are
effectively occupied. Even if the higher subbands are injected with electrons and

hole from their respective contacts, they immediately occupy the available lower

subband to attain lower energy.
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Figure 6.6: Carrier concentration in the first subband (a) electron in n-side, (b) hole in p-side.
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6.3 Ivs.Vcurve

The current versus voltage curve is given below. A bias of 1.4 volts is

applied and the current is plotted for the normalized voltage.

Current (Arbitrary Unit)

l l

Nomalized Vakage

Figure 6.11: Current vs. Voltage curve of the 2D pn junction.
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Chapter 7: Conclusion and Contribution

In this work an attempt is made to formulate and investigate a 2D quantum
transport based simulation model for a thin film pn junction fabricated in silicon.
The possibility of silicon nanostructures as optically viable semiconductor remains
the main motivation, other solely electronic properties in such devices also need to
be explored in these early stages. In that respect this work can be seen as an
attempt which could pave the way for further probing.

There has been considerable work on developing quantum transport model
for unipolar device structures like MOS, but not on bipolar devices. Most of these
works concentrate on electron as carrier and at best, sometimes consider holes as
the sole carrier. But in pn junction, both electrons and holes exist and create a
junction with associated depleted region, which then creates the basic device. In
order to have light generation, it is only obvious that a device must be injected
with both electrons and holes to sustain carrier recombination. In that regard, pn
junctions in reduced dimensional system may become important. In this work, a
workable simulation model is‘ developed for the pn junction in silicon thin film,
employing a methodology which has had success in dealing with unipolar devices
only. To the author’s knowledge, no such work (simulation model of silicon based
quantum well pn junction) has been done before. So it could be pointed-out that

the contribution of this work could be listed as follows:
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e The 2D Schrédinger’s equation is decoupled for a bipolar system
into a set of 1D equation and applied simultaneously to both
electrons and holes.

e A simulation model for 2D pn junction in silicon is developed.

¢ Simulation is carried for both equilibrium and biased condition.

o Future work is directed towards modeling light emission analysis.

7.1 Discussion

In this work a 2D pn junction is investigated. First a review of work done
so far suggested that silicon can overcome its trademark of indirect bandgap
material and contribute to light emission in nanoscale, and even a 1D confinement
of a thin film could produce light. This worked as the motivation to develop a
quantum transport model for such a device. The bulk pn junction usually deploys
the drift diffusion model, incorporating the Boltzmann transport equation for
transport modeling and Poisson’s equation for electrostatics, but this approach
fails to account for the quantum nature of carriers which becomes dominant in
confined structures. To incorporate the quantum effects, a fuller quantum
mechanical approach is taken here to generate a quantum transport model for the
carriers. In this case as the system is effectively 2D, a full 2D direct discretization
becomes computationally burdensome and may become impossible to apply for a
fairly large system. So a decoupled set of 1D equations is used and the validity and

assumptions are justified for the investigated structure. As device energy states
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becomes broadened when they are connected to contacts, and to incorporate the
contacts to the device, the open semi-infinite contact method and self energy
matrices are used to introduce them in the equations. Wave injection is then
considered to treat carrier injections and the decoupled set of 1D Schrédinger’s
equation is self-consistently solved with Poisson’s equation to give a self-
consistent result. The result shows that the carriers are largely confined within 3
subbands, which validates the assumption of a few occupied subband for a thin
film, and the shape of the confined subband also remains almost the same along
the device length, thus validating the decoupled method. The built in potential is
found to be more than the band gap energy of the material as it is degenerately
doped, and depletion region is found to be extended beyond of that predicted by
3D junction model. This result is perhaps expected as similar extended depletion
region is also encountered for a metal-semiconductor junction. The current curve
shows no significant tunneling current that is seen in a tunneling diode of the same
doping level in 3D, perhaps for the extended depletion region which reduces the
tunneling probability. In the end the results show carrier confinement and energy
quantization; this could be the origin of direct recombination of the carriers to

generate light in silicon.

7.2  Future work

In this work a basic quantum transport model is applied for the carriers in a

2D thin film pn junction. In doing so the single band effective mass equation is
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used for the electrons. Since it is not clear what the formation of a full band
approach (which is more accurate for the holes in the valence band) would take for
a quantum confined structure, the multiband effective mass approach was taken
for the holes. In future, this arena needs to be investigated and a better model for
holes in confined structures could be presented. Also the effect of spin orbit
coupling could to be explored.

Hot electron effects have to be investigated further for this device. The
main mechanisms of recombination have to be examined and then the
recombination current part of the total current would be determined more
accurately.

As fabrication technologies are getting better by the day, nanowires, instead
of thin films could be readily available in near future and so a pn junction in
nanowire has to be investigated. In that case the model has to be modified for 2D
confinement. As the computing resources are also becoming more powerful, a 3D

device modeling may become feasible for such devices.
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Appendix

Sample MATAB code

Inputs (MKS Units)

Length=1e-7,
Thickness=5¢-9;
Width=5e-6;
Oxide=5e-9;
a=5e-10;
b=5e-10;
c=5e-10;
mode=5;

Volt=1.4;

% Device length in X direction
% Device thickness in Z direction

% Device width in Y direction

% Oside thickness in Z direction

% Slice width
% Mesh point distance in each vertical slice
% Mesh point distance in oxide
% Number of subbands to be considered

% Applied Voltage

Constants (units in MKS except energy in V)

K=8.61735E-5;
q=1.6e-19;
hbar=1.0544e-34;
mex=0.916;

mey=0.916;

% Boltzmann constant
% Electronic charge
% Reduced Plank's constant
% Effective electron mass in X direction

% Effective electron mass in Y direction
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mez=0.916; % Effective electron mass in Z direction

mpx=0.916; % Effective hole mass in X direction
mpy=0.916; % Effective hole mass in Y direction
mpz=0.916; % Effective hole mass in Z direction
melec=9.1e-31; % Electron rest mass in kg

T=300; % Absolute Temperature in Kelvin

epsilon0=8.8542¢-12; % Permittivity of free space
epsilonr=11.8; % Relative permittivity of silicon

epsilonox=12.8; % Relative permittivity of oxide

Calculated or chosen intermediate variables

Nx=round(Length/a); % Number of vertical slices
Nz=round(Thickness/b); % Number of nodes in device slice
Nox=round(Oxide/c); % Number of nodes in oxide
Nthick=Nz+2*Nox; % Number of nodes in each vertical slice
kt=K*T, % Thermal energy

Ae=2*mez*melec/(hbar)*2; % Coefficient of Electron Schrodinger Eq.
%Ap=2*mpz*melec/(hbar)*2; % Coefficient of Hole Schrodinger Eq.
tez=(hbar*2)/(2*mez*melec*b”*2*q); % Electron coupling constant
tex=(hbar*2)/(2*mex*melec*a”2*q); % Electron coupling constant
%tpz=(hbar"2)/(2*mpz*melec*b”"2*q); % Hole coupling constant
%tpx=(hbarA2)/(2*mpx*melec*a’\2*q); % Hole coupling constant

Efn=0.4; % Fermi energy of anode (reference value)
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Ecn=0.001;
Efp=Efn-Volt;
Ecp=0.001;
Em=zeros(Nx,mode);
U=zeros(Nthick,Nx);
Eleamax=0.125;
Eleamin=Ecn;
Elecmax=0. 125;
Elecmin=Ecp;
Eldiff=5e-4;
Elp_max=0.8*tpx;
Elp_min=0.001;
Elp_diff=5e-4;
sigmal=zeros(Nx);
sigma2=zeros(Nx);

gamal=zeros(Nx,1);

nelec=zeros(Nx,mode);

nhole=zeros(Nx,mode);

% Conduction band of cathode side (reference value)

% Fermi energy of cathode (reference value)

% Conduction band edge of n side (reference value)
% Eigenenergy in each vertical slice

% Potential profile

% Maximum injection energy for electron from anode
% Minimum injection energy for electron from anode
% Maximum injection energy for electron from cathode
% Minimum injection energy for electron from cathode
% Energy grid spacing

% Maximum injection energy for hole

% Minimum injection energy for hole

% Energy grid spacing for hole

% Self energy matrix for Anode

% Self energy matrix for Cathode

% Source matrix for electron injection

% Electron concentration in the device

% Hole concentration in the device

NE_anode=round((El_electron_anode max-

El_electron_anode_min)/El_electron_diff);% Energy Grid for electron

NE_cathode=round((El_electron_cathode max-

El electron_cathode min)/El_electron_diff);% Energy Grid for electron

NP=round((Elp_max-Elp min)/Elp diff);% Energy Grid for hole
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phiz=zeros(Nx,Nz,mode); % Eigenfunction in each vertical slice

phixa=zeros(round((Eleamax-Eleamin)/Eldiff),Nx,mode);
phixc=zeros(round((Elecmax-Elecmin)/Eldiff),Nx,mode);

nanodemode=zeros(Nx,mode);

nanodem=zeros(Nx,Nz,mode);

nanode=zeros(Nz,Nx)'; % 2 dimensional electron density for anode injection
ncathodemode=zeros(Nx,mode);

ncathodem=zeros(Nx,Nz,mode);

ncathode=zeros(Nz,Nx)'; % 2 dimensional electron density or cathode injection
eprob=zeros(Nz,Nx)'; % 2 dimensional electron probability
nelec=zeros(Nx,Nz); % 2 dimensional electron density
nhole2D=zeros(Nx,Nz,mode);

nhole3D=zeros(Nz,Nx)'; % 3 dimensional hole density
phole3D=zeros(Nz,Nx)'; % 3 dimensional hole probability

u=U; | % Calculated potential from Poisson's Equation
epsilon=epsilon0*epsilonr; % Permittivity of silicon

epsilonx=epsilon0*epsilonox; % Permittivity of oxide

2D Laplacian matrix for 2D Poisson's Equation

d=zeros(Nthick+2,Nx+2);
ind=1;
for jj=2:Nthick+1;

for 1i=2:Nx+1;
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d(jj,it)=1ind;
ind=ind+1,
end
end
d=-delsq(d);
for ii=(Nx*Nox)+1:Nx:Nx*(Nox+Nz);
d(ii,ii)=-3;
d(ii,ii-1)=0;
d(ii+Nx-1,ii+Nx-1)=-3;
d(ii+Nx-1,ii+Nx)=0;
end

dinv=inv(d);

Energy grid for longitudinal Energy

Elea=linspace(Eleamin,Eleamax,round((Eleamax-Eleamin)/Eldiff));

Elec=linspace(Elecmin,Elecmax,round((Elecmax-Elecmin)/Eldiff));

Doping profile calculation

Ndevice=-(1e21)*ones(Nz,Nx);
for ii=1:Nx/2;
Ndevice(:,ii)=1e21;

end
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Self consistent solution

for mm=0:.05:0.4;
Volt=mm,
itteration=1,
error=inf,
check=1;
while error>Eldiff
<statements>

end

Device Potential

Udevice(:,:)=U(Nox+1:Nox+Nz,:); % Potential inside the device

Uave=mean(Udevice), % For carrier injection in 1D

Lateral Hamiltonian matrix for each vertical slice

for ii=1:Nx; % For each slice...

hz=2*tez*diag(ones(1,Nz))-(tez*diag(ones(1,Nz-1),1))-(tez*diag(ones(1,Nz-
1),-1))+diag(Udevice(:,ii));

[V,D]=eig(hz);
for jj=1:mode; % For each mode in a particular slice.....
phiz(ii,:,jj)=V(.4j); Y% Wavefunctions of modes in different slices
Em(ii,jj)=D(j,jj); % eigenenergy of each mode at different slices

eprobm=abs(phiz(ii,:,jj))."2;
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end

end

Hamiltonian matrix in longitudinal direction

for ii=1:round((Eleamax-Eleamin)/Eldiff); % For each energy........
coska=1-((Elea(ii)-Uave(1))/(2*tex));
ka=acos(coska);
sigmal(1,1)=-tex*exp(i*ka);
coska=1-((Elea(ii)-Uave(Nx))/(2*tex));
ka=acos(coska);
sigma2(Nx,Nx)=-tex*exp(i*ka);
gamal=diag(i*(sigmal-sigmal’));
for jj=1:mode; % For each mode in a particular longitudinal energy

hx=(2*tex *diag(ones(1,Nx))+diag(Em(:,jj)))-(tex*diag(ones(1,Nx-
1),1))-(tex*diag(ones(1,Nx-1),-1));

G=Elea(ii)*eye(Nx)-hx-sigmal-sigma?2;

phixa(ii,:,jj)=-1*G\gamal,;

n(:,jj)=((sqrt(2*mey*melec*kt/pi))*(abs(phixa(ii,:,jj)). 2) *(fermi(Efn-
Elea(ii),-0.5)))/(hbar*2*pi*gamal(1,1));

1).72)).*(sqrt(2*mey*melec*kt/pi)). *(fermi(Ef-Ele(ii),-0.5));
end
nanodemode=n+nanodemode;

end
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Calculating 2D electron density

for 1i=1:Nx;
for jj=1:mode;
nanodem(ii,:,jj)=nanodemode(ii,jj) * ((abs(phiz(ii,:,jj)))."2);
end
end
for ii=1:mode;
nanode=nanodem(:,:,ii)+nanode;

end

Poisson’s Equation

rho=[zeros(Nox,Nx);(nanode'-Ndevice);zeros(Nox,Nx)];
rthovect=reshape(rho',[],1);

u=dinv*rhovect;

beta=-q*a"2/epsilon;

u=beta*u;

Upoisson=reshape(u,[],Nthick)'./[epsilonx *ones(Nox,Nx);epsilon*ones(Nz,Nx);ep

silonx *ones(Nox,Nx)];
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