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ABSTRACT
Embedding the New York Stock Exchange

Randall Best

Given data in a time series we will create a phase space using methods based
upon the work of Takens and Whitney. Our phase space will be approximated using
a single record observed s(n) of the New York Stock Exchange. This procedure of
creating a phase space will create a complete vector space by defining s(n) to be the
first coordinate, s(n + T) the second and s(n + (Dg — 1)T) the last coordinate, where
T is a suitable delay and D is the embedding dimension. The observed phase space
will be shown to be chaotic in its behavior and a reconstructed attractor in the phase
space will provide us with predictions of future the stock market prices.

All algorithms for computation are written in Borland C++ version 5.
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1 Theory of Abstract Spaces

In the first chapter we will review all the general concepts of topological and metric
spaces that will be needed in the following chapters. This will encompass all proper
definitions and theorems as well as any proposition or lemmas that will have any bearing in

further chapters.

1.1 Topological Spaces

In the following section we will discuss the notion of a topological space and the general
properties of open and closed sets. It will then be followed by the definition of metric spaces

in the following section.

Definition 1.1.1 : A topological space (X, F) is a nonempty set X of points together
with a family 7 of subsets (which we shall call open) possessing the Jollowing properties:

DNXeFDeF
2)X, € FandX; € FimplyX;NX; € F
3)X; € Fimplies U X; € F, wherei € I and I is any set of indices

The family F is called a topology for the set X.

Now that we have the definition of a topology we can see that there are automatically
two types of topologies. The first is the trivial topology that contains only two open sets, the
empty set @ and the set X itself. The other is the discrete topology where any point X forms

an open set.

Definition 1.1.2 : A pointx € Xis called a point of closure of the set E if every open set

O containing x meets E, i.e., has a nonempty intersection with E.



The definition of a closed set in a topology X is a subset O such that O = O where O is
the set that contains all the points of closure for O. Now that we defined what a open and

closed set are we can look at some of the properties of sets in a topology.

Proposition 1.1.1 : The complement of an open set is closed and the complement ofa

closed set is open.

In topological spaces we can consider the idea of a limit. A sequence (x,) is said to have
a limit x if there exist an integer N such that for any open set O that contains x we have
xp € Oforalln > N. Now, we can define continuity for functions that map one topological

space into another.

Definition 1.1.3 : A mapping fof a topological space (X, .F) into a topological space
(Y, S) is said to be continuous if and only if the inverse image of every open set is open,
thatis,ifY € S= f1(Y) e £

Continuing along this line we can define the idea of a homeomorphism.
Definition 1.1.4 : 4 homeomorphism between two topological spaces is a one-to-one
continuous mapping of X onto ¥ for which f! is also continuous. The spaces X and ¥ are

said to be homeomorphic if there is a homeomorphism between them.

We will now move to the foundations of metric spaces.



1.2 Metric Spaces

The following section will define and discuss all main concepts of metric spaces that will
apply in our discussion. We will first definé the idea of metric spaces and then redefine what

it is to be a open and closed set in a metric space.

Definition 1.2.1 : A metric space (X,d) is a space X together with a real-valued
Junctiond : X x X —+R, which measures the distance between pairs of points x and yinX

We require that d obeys the following axioms:

N0<dx,y) <oVxyeX x+yand dix,x) =0VxeX
i) dx,y) =dy,x) Vx,y e X
iii) d(x,y) < d(x,z) +d(z,y) Vx,y,z € X

Such a function d is called a metric.
Examples of metrics on R are

1) d(x,y) = [x —y| (Euclidean metric)
2)d(x,y) = x* ~ 3|

for R?

1) d(x.y) = J(x1 —y1)* + (x2 - y2)? (Euclidean metric)
2) d(x,y) = | x1 = y1| + | x2 -~ y2 | (Manhattan metric)

Notice that for both metrics in R? as points move away from each other the distance
always increases. (Note that we will be doing most of our work in the most familiar of the

metric spaces, the Euclidean space.)

In topological spaces we had a notion of a open set and a closed set. In metric space we



can also define open sets and closed sets under different rules of operation. The open set is
defined as follows.

Definition 1.22 : The Let S — X be a subset of a metric space (X,d). S is open if for
eachx € S there is an € > 0 such that B(x,£) = {y € X : d(x,y) < &} = S.

From the definition of a open set we have that in a metric space (X,d), the set X will
always be open. The proof is quite trivial and can be stated easily. Let us take a point x € X.
Then V & > 0, B(x,€) < X since x € X is nonempty and therefore the set X will be open.
Before we can define what it is to be a closed set we will have to state the meaning of limits

In a metric space.

Definition 1.2.3 : A sequence {x.}%., of points in a metric (X,d) is said to converge to a
point x € X if, for any given number € > 0, there is an integer N > 0 so that

d(xn,x) <€ foralln > N.

In this case the point x € X, to which the sequence converges, is called the limit of the

sequence, and we use the notation

x =lim x,.

D

Definition 1.2.4 : LetS < X be a subset of a metric space (X,d). A point x € X is called

a limit point of S if there is a sequence {x,}Z., of points x, € S\{x} such that lim x, = x.
n--o

Now, that we have the definition of limit points consider a set S such that S contains all
its limit points. Such a set S we would call closed.

Definition 1.2.5: LerS < Xbe a subset of a metric space (X,d). The closure of S,
denoted S, is defined to be 5= SU {limits points of S}. S is closed if it contains all of its



limit points, that is, S =S . S is perfect if it is equal to the set of all its limit points.

We know the complement of a open set is closed and the complement of a closed set is
open in a general topological space. We may ask whether this holds in metric spaces. To
answer this question consider a open set S < X in a metric space (X, d) and suppose we have
a sequence {x,} € X\S with a limit x € X. If the limit x is in S then in any B(x,&) withe > 0
we would have ax, € X\S, and S would not be open. This is a contradiction and therefore x
must be contained in X\S which proves that X\S contains all its limit points and thus is a
closed set.

To prove that the complement of X\S, meaning S, is open we must show that there exist
B(x,€) < S for some € > 0. If we assume that S is not open then for an x € S there is no
B(x,e) < S. Thus we can construct a sequence x, € B(x, +-) N (X\S) for every integer
n = 1,2,3,...., which is a sequence in X\S and has a limit in X\S. This contradicts x € S and
therefore S is open.

Now let us further our definitions by considering the idea of subspaces. Take a subset S
of a metric space (X, d). If we restrict the metric d to subset S then we call S a metric space
and a subspace of the metric space X. This is to say that we take the distance between the
points of S as we do for the space X. An example of this is the space of R? which is a
Euclidean metric space, and the set (x,0) which is would be a subspace under the metric
(R?,d). You may ask why concern ourselves with the subspaces? The reason is that the
properties of the closure or whether a space is open or closed is all relative to what the space
is contained in. Let us consider the metric space R and the opensetS = (0,1). Then a
subspace O which is the (0, 1-] has a closure of [0, +] in R and a closure of (0, 1] in S.

Proposition 1.2.1 : Let X be a metric space and S a subspace of it. Then the closure of
E relative to S is E N S, where E denotes the closure of EinX AsetA < Sis closed
relative to S ifand only if A = S N\ F with F closedin X . AsetA — S is open relative to §
ifand only of A = § N O with O open in X.



1.3 Equivalent and Homeomorphic Metric Spaces

In the embedding theorem we deal with functions that maps one metric space into
another metric space. Therefore we will introduce some key concepts of mapping from one
metric space to another. We start with the idea of what it means for one metric to be

equivalent to another one. We define this as follows.

Definition 1.3.1 : Two metrics di and d; on a space X are equivalent if and only if there

exist constants 0 < ¢; < ¢3 < o such that

cidi(x,y) < da(x,y) < cadi(x,y), V(x,y) e XxX

An example of two equivalent metrics. Let ¥; = {x € R2 : 0 <x; < 1,0 <x; < 1} and
letd\ = Euclidean metric and d; = Manhattan metric. These metrics d; and d- are
equivalent in ¥; but in the space R? they are not (as then c; becomes infinite). We can ask
when are two metric spaces equivalent. For example, let us take ¥; and stretch one of
corners to infinity and call this space Y2. Are (¥1,d)) and (¥3,d:) equivalent metric spaces?

We define equivalence between metric spaces as follows.

Definition 1.3.2 :Two metrics spaces (X\,d1) and (X2,d,) are equivalent if there is a
Junction h : X| — X, that is one-to-one (i.e. h is invertible), such that the metric donX I

defined by

d(x,y) = d2(h(x),h(»)), V(x.y) € Xi
is equivalent to d;

We can see the (¥1,d) and (¥2,d>) are not equivalent. This follows from the fact that
the definition of equivalence requires the deformation 4 to be bounded. Finally, we define a

continuous function from one metric space to another.



Definition 1.3.3 :4 functionf : X; ~ X, from a metric space (X1,d,) into a metric space
(X2,ds) is continuous if, for each € > 0 and x € X,, there is a§ > 0 so that

di(x,y) < 6 = d2(Ax) y)) <e

Iff is also one-to-one and onto, and thus invertible, and if also the inverse f-! of f is

continuous, then we say that f is a homeomorphism between X; and X,. In such a case we

say that X,and X; are homeomorphic.

If we again reconsider (¥1,d:) and (¥,d>), we know that they are not equivalent but we

can see that they are homeomorphic.

The poiat swexhed © infinity

Xy

The awve spces X, ad Xy are bomsemerphic becawe they
have e sams wpuiegy.

Figure 1



1.4 Complete Metric Spaces

We are now at a point were we can separate and categorize metric spaces. One of these
categories that will play a important role in what follows is the class of compact spaces.
Before we can define compact spaces and their properties we will introduce notions of

Cauchy sequences, convergence, and completeness.

Definition 1.4.1: A sequence {x,}7., of points in a metric space (X.d) is called a
Cauchy sequence if, for any given number € > 0, there is an integer N > 0 such that

d(xn,xm) <€ VY nm>N.

This can be pictured in ones mind as follows: as we move alone a sequence the points
become closer and closer to each other. This does not necessarily mean that they are
approaching a point. What can happen is that they are approaching a point that does not
exist. Next we move to the idea of convergence.

From the definition of a convergent sequence it follows easily that any sequence of
points {x»}.; in a metric space (X, d) that converges to a point x € X isa Cauchy sequence.

The inverse is not necessarily true. That is why we introduce a notion of a complete space.

Definition 1.4.2 : A metric space (X,d) is complete if every Cauchy sequence {xn}%, in
X has alimitx € X.

Any Euclidean space R” of any dimension # > 1 is a complete metric space.



1.5 Compactness

The idea of a compact space and of compact subspaces will play an important role in our
definition of the embedding. Before we define compactness we must first consider a notion
of subsequence. A subsequence of a sequence {x,}2, is a sequence of the form
Xn,sXn;Xny, ..., Where the n; are natural numbers with n; < n; < ns.... Now, we define the

compact set.

Definition 151 : LetS — Xbe asubset of a metric space (X,d). S is said to be compact
if every infinite sequence {xn}y., in S contains a subsequence having a limit in S.

Now that we have defined what is meant by a set being compact we will state the
properties and proposition that come along with the sets being compact. One of these
propositions is the relation between totally bounded sets and compact sets which states that
any complete metric space which is closed and totally bounded is also compact and vice
versa. To define the idea of totally bounded we must define what it is to be bounded.

Definition 1.5.2 : LetS — X be a subset of a metric space (X,d). S is bounded if there is

a point a € X and a number € > 0 so that
d(a,x) < eforallx € X.

Definition 153 : LetS < X be a subset of a metric space (X,d). S is totally bounded if,
Jor each € > 0, there is a finite set of points {y1,y3,-...yn} < S such that whenever x € X,
d(x,yi) < & for some y; € {y1,y2,....yn} < S. This set of points {y1,¥2,....yn} is called an

&-net.
We are now able to state and prove the main theorem of this section.

Theorem 1.5.1 : Let(X,d) be a complete metric space. Let S — X. Then S is compact if



and only if it closed and totally bounded.

Proof  LetSbe closed and totally bounded and let {x; € S} be an infinite sequence
of points in the set S. Since S is totally bounded we can find a finite number of balls with
radius 1 which cover S. Since we have a finite number of balls one of the balls must contain
an infinite number of the points of the sequence {x; € S}. Let this ball be called B and
choose a point x, that exist inside B;. Since S N B, is again totally bounded we can
continue in the same way to choose another point xy, in a ball B, such that Ny > N, and B,

contains an infinite number of points from {x,} and is of radius % This can be continued

and so as to create a nested sequence

B 5B, >B3>DB{>Bs>Bs>B7>Bs.... By > .......
where B, has the radius of —2—,}7 and a we have a sequence of integers {N,}>, such that
xn, € By. It is easy to see that {xw, } ., is a Cauchy sequence. Since S is closed and

complete {x,} converges to a point x in S and therefore S is compact.

Now, let § be compact and suppose that there does not exist e-net for S for an £ > 0.
Then, there exist an infinite sequence of points in the sequence {x,} € § with d(xi,xj) > ¢
forall i # j. We also know that the sequence must posses a convergent subsequence {xw,}
which is also a Cauchy sequence. Since {x,} is a Cauchy sequence we have a pair of
integers N; and N; with N; # N; so that d(xy,xx,) < e. This is a contradiction, so S is closed
and bounded. This completes the proof.

10



1.6 Connectedness

In this section we will discuss the concept of connectedness and what is meant bya
space being connected. We start with the idea of a connected sets in a topological sense. To
define connectedness we must first define disconnectedness.

Definition 1.6.1 : Ifaset X is said to be disconnected if there exists a pair of open sets
Oy and Os such that

DOINO, =6
2)XC01ﬂ02
3)XNO1#0andXNO, + 6

If a set X is not disconnected then it is called connected. We can also say that a space X
is connected if and only if the only subsets of X that are both open and closed are the sets @
and X. Connected can also be defined in a local sense with the definition of locally

connected.

Definition 162 : Letxe X Then, X is said to be locally connected at x if in every
neighborhood U of x there exist a neighborhood Vofxsuchthat Vc Uand UNVisa
connected set. X is locally connected ifit is locally connected at each of its points.

A metric space (X, d) is connected if and only if the only two subsets of X that are
simultaneously open and closed are X and #. A subset S — X is connected if the metric space
(S,d) is connected. S is totally disconnected provided that the only nonempty connected
subsets of S are subsets consisting of single points. We now proceed to the idea of

pathwise-connected and disconnected subsets.

Definition 1.6.3: LerS c Xbe asubset of a metric space (X,d). Then S is
pathwise-connected if, for each pair of points x and y in S, there is a continuous Sunction

11



S :[0,1] = S, from the metric space ([0, 1], EucIidean) into the metric space (S,d), such
that f{0) = xand 1) = y. Such a function fis called a path from x to y in S. S is
pathwise-disconnected if it is not pathwise-connected.

An example of a locally connected space is the set (F igure 2)

{trcos L) 1x = 0} 0 {-1,1] x [0]}.

Figure 2

Let § < X be a subset of a metric space (X, d). We can define two types of

pathwise-connected sets, namely the simply connected and the multiply connected.

1) A pair of points x,y € S are simply connected if given any two paths fp and f connecting

x,y in S, we can continuously deform f; to f; without leaving the subset S.
2) A pair of points x,y € S are called multiply connected if they are not simply connected.

Jo can be continuously deformed to f; if we can create a function £ that continuously maps
the Cartesian product [0, 1] x [0, 1] into S and such that function g can be expressed as g(s, ¢)

for (0 < s.f < 1) where

1) g(s,0) = fo(s)(0<s < 1)

12



g, 1) =fils)(0<s<1)
3)g(0,) =x(0 <t<1)

4)g(l,t) =y(0<t<1)

13



2 Fractals

In the following chapter we will discuss the idea of a fractal space, the best space for us
to work in. We will show most of our work in metric space R? but a more general definition

of compact subsets will be used in our fractal space.
2.1 Fractal Space

Definition 2.1.1 : Let (X,d) be a complete metric space. Then 7{X) denotes the space
whose points are the compact subsets of X, other than the empty set.

We will now define a distance on the space H(X). For x € X and B € H(X) we define
the “distance™ d(x, B) = min{d(x,y) : y € B}. One may ask why should the minimum exist.
This can be seen by looking at the function f : B — R defined by

f») = d(x,y) forally € B.

fis continuous as a transformation from the metric space (B, d) to the metric space R. Let
P = inf{f(y) : y € B}. We know that {y) > 0 for all y € B, and therefore P has a finite
value. We now take a infinite sequence of points {y» : n = 1,2,3...} < B where
Sn) = P < L for each positive integer n. Since B is compact and y, is a sequence in B, we
have that {y, : n = 1,2,3...} would have a limit € B. Using the continuity of f we must
have that f{y) = P and therefore {d(x,y) : y € B} will have a minimum value.

Now we define the distance from a set 4 € H(X) to a set B € H(X) by
d(A,B) = max{d(x,B) : x € A}. (Note: d is not a metric and is not symmetric).

Definition 2.1.2 : Let (X,d) be a complete metric space. Then the Hausdor{f distance
between points A and B in 74 X) is defined by

h(A,B) = d(4,B) Vv d(B.4),

14



where x V y denote the maximum of the two real numbers.

We will show that A is a metric on the space H(X). To prove & is a metric on the space
H(X) we must show that A is a real-valued function and obeys the three axioms of a metric
space. We know that A is a real-valued function by the fact d(4, B) = max{d(x,B) : x € A}
which is a real-valued function. Now we will prove the following three axioms of a metric

space.

(1) Let A,B € H(X). Then h(4,B) = d(a,b) for somea € A,b € B,by the fact 4 and B are
compact, so 0 < h(4,B) < o.

Let A € H(X). Then h(A,A) = d(A,A) V d(A,A) = d(4,A) = max{d(x,A) : x € A} =0
Let A,B € H(X).IfA + Bthen h(A4,B) = d(A,B) V d(B,A)
= max{d(x,B) : x € A} V max{d(x,4) : x € B} > 0.

(2) Let A,B € H(X). Then h(A,B) = d(A,B) v d(B,A) = d(B,A) V d(A,B) = h(B,A).

(3) Let 4,B,C € H(X). Then forany a € A
d(a,B) = min{d(a,b) : b € B} < min{d(a,c) +d(c,b) : b € B}Vc e C
= d(a,c) + min{d(c,b) : b € B}Vc € C, so we have that
d(a,B) < min{d(a,c) : c € C} + max{min{d(c,b) : b€ B} : c € C}
= d(a,C) + d(C,B), and then we know d(4, B) < d(4,C) + d(C, B).

Similarly
d(B,A) < d(B,C) +d(C,A),whence
h(A,B) = d(A.B) v d(B.A) < d(B,C) vd(C,B) +d(A4,C) v d(C,A)
= h(B,C) + h(4,C).

Therefore all three axioms are proved and 4 is a metric on the space H(X).

15



2.2 Contractions

In our discussions of fractals we have not really defined what it is to be a fractal or
outline the structure of a fractal. This is due to the infancy of the idea of fractals and the

complexity of the issues that surround the idea of fractals. One tool that can help us give
some restrictions is the idea of contraction mappings.

Definition 2.2.1 : A transformationf : X ~ X on a metric space (X,d) is called

contractive or a contraction mapping if there is a constant 0 < s < 1 such that
d(flx).f[y)) <se.d(x,y) Vx,yeX
Any such number s is called a contractivity factor for f.

For a more practical idea of contraction mappings we must discuss the idea of

contraction mappings on complete metric space.

Definition 2.2.2 : Letf: X — X be a transformation on a metric space. A point x; € X
such that f{xy) = xr is called a fixed point of the transformation f.

As example, let us consider the mapping

The point 01 is a fixed point of w. It is easy to check that
2
0 0
I L T L
2 2

16



Theorem 2.2.1: [(The Contraction Mapping Theorem).] Let f : X - X be a contraction
mapping on a complete metric (X,d). Then f possesses exactly one fixed point x; € X and,
moreover, for any point x € X, the sequence {f m(x) :n=0, 1,2,...} converges to xr.
That is, '

lim f*"(x) =x;, foreachx € X.

To prove the contraction mapping theorem, we will first establish some inequalities. Let
Jbe a contraction mapping and consider two iterations f3(x) and f2(x). Then
d(f3(x).f*(x)) < s+d(f2(x)fx)) < s* » d(f(x),x) for any x € X. To generalize let

d(f*"(x).S*"®)) < 5"« d(fix).S ()
be true for the iterations f *"(x) and f°™*(x), where c is any positive number. Then
(@) m1e@)) < 50 d(f (). () < 57 e d(f (X))
and we can state by induction that
d(f*(x).f*(x)) < s™Vd(xform) (x)
where the notation m A n stands for the smallest of the integers 7 and m.
We are now ready to prove the contraction mapping theorem
Proof To prove the contraction mapping theorem we will first prove that f*(x) has a limit

and that this limit is unique. Let us consider an x € X. Using the triangle inequality we

have

d(x.f%(x)) < d(xAx)) +d(Ax)S2x)) + - + d(fEV(x),f%(x))

17



< d(x,flx)) + sd(x,fix)) + s2d(x fx)) + --- + s¥d(x,fx))

< (1 +s+52+--- +s)d(x,AAx))

< (1-5)7"'d(x Mix)),

where 0 < s < 1 is the contraction factor of /- Using the previously shown inequality we can

rewrite the previous statement as
d(f*(x).f*(x)) < s™d(x,fo" ) (x) < s™™(1 - 5)d(x Ax)).

This shows that {f °"(x)} :o is a Cauchy sequence and thus, it converges to a point x; € X,

since X is complete.
lim £°"(x) = xs.
=0

What is left to prove is that x/is a fixed point of f and unique. It is quite easily seen that xris
fixed by the fact that

j(xf) =j(li£f°"(x)) ___unﬂfo(»l)(x) = x/.

Continuity of fis proved below in Lemma 2.2.1.. To show that x/ is unique, we assume that
there exists another fixed point y, f{yy) = yr. Given this, we have that

d(xsyy) = d(fix;),d(ys)) < sd(xpyy)
= d(xpyy) < sd(xpyy)
= d(xs,yr) = sd(xpyr) <0
= (1 -5)d(xsy) <0

by the fact that fis a contraction mapping. Therefore s is equal to zero and we have that

Xr=yr

Some other information which can be drawn from the properties of contraction mapping
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Lemma 2.2.1: Letw : X - X be a contraction mapping on the metric space (X, d).

Then w is continuous.

Proof We know that if a function / : X; — X, from a metric space (X,,d) into a metric
space (X3,d,) is continuous then, for each € > 0 and x € X, thereisa é > 0 so that

di(x,y) <6 = d(flx).y)) <e.

Given that d(f{x),fly)) < sd(x,y) we can see that if 5§ = £ we have d(x,y) < & implies
d(f(x).f(y)) < € and therefore fis continuous.

Lemma 222 : Letw : X —+ X be a contraction mapping on the metric space (X,d) Then

w maps (X)) into itself.

Proof Since that w is continuous for any nonempty subset S of a space H(X) we have that
w(S) is also nonempty. Let us take point {y,} such that {y, = w(x,)}, where
{x»} € H(X) is a infinite sequence of points in S. We know that x, has a convergent
subsequence {xv, }since § is compact and therefore there exist an convergent subsequence
{¥n.}. Also since § is compact the subsequence converges to a point ¥ € S and by the
continuity of w the subsequence {yw, } converges to y = w(x) € w(S). Therefore w maps

H(X) into itself.

Lemma 223 : Letw : X — X be a contraction mapping on the metric space (X,d) with
a contractivity factor s. Then w : 2AX) - (X) defined by

w(B) = {w(x) :xe B} VBe HX)

is a contraction mapping on (H(X), h(d)) with contractivity factor s.
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and finally

Lemma 224 : Let(X,d)be ametric space. Let {w, : n = 1,2,...N} be contraction
mappings on (7(X),h(d)). Let the contractivity factor for w, be denoted by s, for each n.
Define W : 7AX) - X) by

W(B) = wi(B) Uw2(B)U ... Uwa(B) = Upy wa(B)  foreach B € H(X).

Then W is a contraction mapping of H(X) with contractivity factor

s = max{s, : n=1,2,...,N}.

Proof We demonstrate the claim for N = 2. An inductive argument then completes the
proof. Let B,C € H(X). We have

h(W(B), W(C)) = h(w1(B) Uw2(B),w1(C) Uw2(C))
< h(w1(B) Uwi(C)) V h(w2(B) Uw2(C)) < s1A(B,C) V s2h(B,C) < sh(B,C)

This completes the proof.
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2.3 Iterated Function System (IFS)

We will now continue with the idea of contraction mappings and introduce Iterated
Function Systems (IFS), a finite set of contraction mappings.

Definition 2.3.1 : A (hyperbolic) iterated function system consists of a complete metric
space (X, d) together with a finite set of contraction mapping w, : X - X, with respective
contractivity factors s,, for n = 1,2,...,N. The abbreviation IFS is used for “iterated
function system.” The notation for the IFS just announced is {X;wn,n = 1,2,...,N} and its

contractivity factor is s = max{sp : n = 1,2,...,N}

What is meant by hyperbolic is that if linear map 4 on R” has no eigenvalues of absolute
value one it is hyperbolic. An example of an IFS is the mapping

W= {R;+x+3,+x,4x+ L}. The action of this mapping can be seen in the following

472
figure.

(0,13 . 1
VWKIO , 1D g~ ‘
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Figure 3

The contractivity factor is -;— since this is the maximum of all contraction factors.

We can also define an IFS on a metric space in a more general way by adding a
condensation transformation. Define a transformation w, : H(X) = H(X) on a metric space
here (X.d) by wo(B) = C for all B € H(X) where C € H(X). Then w, is called a

condensation transformation. Now let us define a general IFS on a metric space.

Definition 2.3.2 : Let {X;wi,w2,...,w,} be a hyperbolic IFS with contractivity factor
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0<s<l.Letw, : MX) - MX) be a condensation transformation. Then
{X;wo,w1,W2,...,wn} is called a hyperbolic IFS with condensation, with contractivity

Jactor s.
We summarize the facts about the IFS in the following theorem.

Theorem 2.3.1: Let {X; wa,n = 1,2,...,N} be a hyperbolic iterated function system
with contractivity factor s. Then the transformation W : 7{X) - (X) defined by

W(B) = Up.; wa(B)

Jor all B € H(X), is a contraction mapping on the complete metric space (H(X),h(d)) with

contractivity factor s. That is
h(W(B),W(C)) <se<h(B,C)
Jor all B,C € H(X). Its unique fixed point, A € H(X), satisfies
A = W(4) = Ur wa(4)

and is given by A =lim W °*(B) for any B € H(X). A is called the attractor of the IFS W.
n--0
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2.4 Fractal Dimension

The idea of a fractal dimension comes from the need to distinguish between the fractal
spaces. When we look at fractal spaces we see that upon magnification they do not loose
complexity, they may even become more complex. So how are we to find the dimension of
such a space? First, let us consider a line and separate it into L pieces where 7 is a positive
integer. When magnified n times we get an object that looks like the original object. The
same goes for a square or cube but the square needs a magnification of n? with each piece
having an area of L-and the cube needs a magnification of n’ with each piece having an area

of 7',- We now see that the exponents for the magnification of area are also the dimension of

these objects. With this idea in mind we do the same to the fractal spaces in hope of finding

the dimension.

Definition 2.4.1: LetA € 7AX), where (X,d) is a metric space. For each ¢ > 0 let
M4, €) denote the smallest number of closed balls of radius £ > 0 needed to cover A. I

D =i InAN(4,¢)
e~0 ln(l/e)

exists, then D is called the fractal dimension of A. We will also use the notation D = D(4)

and will say “A has fractal dimension D.”

A more detailed explanation of what is written above follows. Let B(x, €) be a ball
around x with a radius €. For any 4 € H(X) there exist a finite covering by such balls since
A € H(X) and is therefore compact. Let A(4,€) denote the smallest positive integer ¥ such
that 4 < UY, B(x,€). Then

Ve P = M4, e)
In(Ve?) = In(M4,¢))
In(¥) + Din( 1) = In(M(4,€))
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_ In(M4,€)) ~In()

(1)

D

since In(¥) goes to zero as € —+ 0 we are left with D =lim InM4,e) }
(%) o LU In(l/e)

We can also restate the above definition for a discrete variable ¢,,.

Theorem 24.1: LetA € MX), where (X,d) is a metric space. Let €, = Cr" for real
numbers 0 <r < 1andC > 0, and integersn = 1,2,3,.... If

b =im { lnlﬁ(ff;:)") } ’

then A has fractal dimension D.

Some other methods of finding the fractal dimension are as follows.

Theorem 2.4.2 : (The Box Counting Theorem) Let A € 7{R"), where the Euclidean
metric is used. Cover R™ by closed square boxes of side length (1/2"), as exemplified in

figure I for n = 2 and m = 2. Let A/;(A) denote the number of boxes of side length (1/2")
which intersect the attractor. If

. In(N»(4))
D =lim { nm  J’

exists, then A has fractal dimension D.

Theorem 2.4.3 : Let (X,d) be a complete metric space. Let A € A X). Let Me) denote

the minimum number of balls of radius & needed to cover A. If
=k InMVE) . - }}
D =lm {s""{ in(1E) - < @9
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exists, then D is called the fractal dimension of A.

2.5 Hausdorff-Besicovitch Dimension

The last method of finding a fractal dimension that we will discuss is called the
Hausdorff-Besicovitch Dimension. This method is not readily used due to its difficulty in
computation when working with experimental data.

When working with the Hausdorff-Besicovitch dimension we work in the Euclidean
metric space (R™,d) where m is a positive number. Let 4 — R™ be bounded. Then we use

the notation
diam(A) = sup{d(x,y) : x,y € A}.

Let0 < € < ,and 0 < p < . Let 4 denote the set of sequences of subsets {4; = A}, such

that 4 = U2, 4;. Then we define

M(A4,p,e) = inf< 3 (diam(A;))* : and diam(4;) <& fori = 1,2,3,...}

]
with
M(4,p) = sup{M(4,p,€) : € > 0}.

Theorem 2.5.1 : Let m be a positive integer. Let A be a bounded subset of the metric
space (R™, Euclidean). Let A(A,p) denote the function of p € [0,®) defined above. Then

there is a unique real number Dy € [0,m} such that

® ifp < Dyand p € [0,)

M(4,p) =
(4.p) {0 ifp > Dyand p € [0,)
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The corresponding real number Dy that occwrs is called the Hausdorfj-Besicovitch of the set
A.

Theorem 2.5.2 : Letm be apositive integer. Let {R™; w1, w,..wx} be a hyperbolic
IFS, and let A denote its attractor. Let w, be a similitude of scaling factor s, for each
n € {1,2,3,...,N}. If the IFS is totally disconnected or just-touching, then the
Hausdorff-Besicovitch dimension Dy(A) and the fractal dimension D(A) are equal. In fact
D(A) = Dy(4) = D, where D is unique solution of

f: Isal® = 1, D € [0,m].

=]

If D is positive, then the Hausdorff D-dimensional measure M(A, Dy(A)) is a positive real

number.

2.6 Lyapunov Exponents

Given a fixed point x; of a one-dimensional map f where lf'(x) | = b > 1, the orbits of

any two points x,y near x; will separate at a rate of b for each iteration. Therefore if we look
at a periodic point after k iteration we have to look at the derivative of the £ iterations of the
map which by the chain rille is the product the derivatives at the & points of the orbit. If this
product of derivatives A is greater then 1 then the average rate of separation would be equal
toAT per iterate. The Lyapunov number is introduced to quantify this average multiplicative
rate of separation of the points very close to x;. The Lyapunov exponents is just the natural
logarithm of the Lyapunov number. Therefore a Lyapunov number of 2 (a Lyapunov
exponent of In2) for the orbit of x; would have all nearby points x double their distance with

every iterate. If the Lyapunov number were -%— the distance between the orbit x; and all

nearby points would be halved.
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Definition 2.6.1 : Letfbe a smooth map of the real line R. The Lyapunov number L(x1)
of the orbit {x,x3,X3......} is defined as

L) <lim (f el o)D) *
if the limit exists. The Lyapunov exponent h(x, ) is defined as
h(xr) =lim (Un){In}f Ge1)| + ... + bnlf (xe)]]
if this limit exists.
They are two forms of periodicity that we consider.

Definition 2.6.2 :Let fbe a smooth map. An orbit {x1,x3,...Xn,...} is called asymptotically
periodic if it converges to a period orbit as n —+ co; this means that there exists a periodic

orbit {y1,y2,....Yks 1,2, --- } Such that
lim [x, —ys| =0

The orbit with the initial condition x = -%— of fix) = 4x(1 - x) is asymptotically periodic

since after two orbits it goes to the fixed point 0. The term eventually periodic describes the
case where the orbit lands precisely on the periodic orbit.

We now consider the Lyapunov exponent for the space of R™ where m > 1.

Definition 2.6.3 :Let fbe a smooth map on R™, let J, = Df*(vo), and fork=1,..,mlet
ri be the length of the k™ longest orthogonal axis of the ellipsoid J,U for an orbit with
initial point vy. Then r} measures the contraction or expansion near the orbit of vo during

the first n iterations. The kth Lyapunov number of v, is defined by

27



Li =lim (r7)*

if this limit exists. The kth Lyapunov exponents of vq is hy = InL,.

Figure 4

It is through the Lyapunov exponent that we are able to evaluate if a mapping is chaotic

in its behavior.

Definition 2.6.3 :Letfbe a map of R™, m > 1, and let {vo,v;,v, ...y be a bounded orbit
of /- The orbit is chaotic if

1. it is not asymptotically periodic

2. no Lyapunov number is exactly one, and
3. Ll(Vo) > 1.
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3 Predicting the NYSE

In this are last and final chapter we will introduce and use the idea of embedding to
create a space that embodies the characteristics of the New York Stock Exchange (NYSE).
What we hope to show is that the NYSE does not just move in some random order but that it
is chaotic and there is a method to its madness.

3.1 The Embedding Theorem

When discussing a system that is considered a dynamical systems we are talking of a set
of rules from which the evolution of any point is dictated by a set of rules. An example of a
dynamical system can be as simple as the equation expressed by the one-dimensional circle

Ax,y) = sin?(x) + cos2(y).

If the system is a set of equations where the rules are differential equations it is a flow
and when the rules are discrete difference equations the system is referred to as a map. The
evolution of a dynamical system is best described in its phase space, a coordinate system
whose coordinates are all the variables that are entered into the mathematical formulation of
the system. In short, the variables necessary to completely describe the state of the system at
any given moment. If the system is a particle of mass m, then its state at any given moment
is completely described by its speed v and the position r relative to some fixed point. Thus its
phase space is two dimensional with coordinates v and r.

In studying the mathematical dynamical systems and of nonlinear deterministic systems
we know that random looking behavior can arise from simple nonlinear systems. Such
dynamics which we term chaotic exhibit complicated strange attractors that are fractal sets
with positive Lyapunov exponents. If we are given a system recognizing the chaotic behavior
is easy as producing its Fourier spectra of the evolution of one of the variables and as well it

is fairly straightforward finding its Lyapunov exponents. However, when dealing with
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controlled experiments where we can not control all the variables or uncontrolled systems
(like the weather) where the numbers of variables and mathematical formulation are not
exactly known, the behavior of the system seems unformulated and the predictability of the
system becomes extremely difficult. One of the most examined systems is that of a time
series. For example Stock Market prices are expressed in a time series where at any given
moment the stock has a designated value. But how do we unfold the prices to get back to the
original system or at least reconstruct a system that simulates the original? And what of the
problem of overlapping from the image projecting from a higher dimension to a lower
dimension? These problems only increase the difficulty of prediction. For example, suppose
that all trajectories in a phase space R? are attracted to a periodic cycle which we will call 4
and which is contained in R*. Then there is a measurement map that measures the distance

between any two points x1,x; € R* and expresses it in R2.
M(x1,x2) = (V1,y2)

where y; and y; are expressed in R2. This reconstructed space perceives the distance
between points but how well does it preserve the properties of 4?2 An example can be given
quite easily by three diagrams. Let us take a mapping M that maps R? to R2. In Figure 5 we
can see the case where the information of R? is not lost to R? due to the one-to-one mapping
and preserves differential information. In Figure 6 we see two points x;and x; in R? are
projected to one point in R? and, therefore, we have a loss of some information since the it is
not one-to-one. In Figure 7 we also see that we can have a one-one map yet still loss some
information because of a loss of a differential point x in R? when project down into R?,
where it is not differential at x and therefore losses some ability to forecast information. The
reason why M having a one-to-one property is so useful to us is that its future evolution
which is completely specified by a point in phase space is not lost. What is meant by this is
that if x is a point in phase space where an event occurs soon after this point, then the same
event must occur soon after M(x) if M is a one-to-one mapping. Although most of the
interest lies in the case when 4 is a an attractor of a dynamical system, the main question can

be posed more generally. Let 4 be a compact subset of Euclidean space R, and let M map Rt
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to another Euclidean space R". Under what conditions can we be assured that A4 is
“embedded” in R” by a map M? This can be stated by the fact that 4 can be embedded by M
if it is a smcoth (Here, as in the remainder of the paper, the word smooth will be used to
mean continuously differentiable, C') diffeomorphic from A4 onto its image M(A).

Figure 5 Figure 6

Figure 7

Definition 3.1.1 :Let A be a compact subset of a euclidean space R*. Then a smooth map

F on A is an immersion if the derivative map DF(x) is one-to-one at every point x € A.

When working with the embedding theorem we have to assume two things. First that the

mapping F is a flow in a Euclidean space R* governed by an autonomous system of k
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differential equations and secondly that all trajectories are asymptotic to an attractor A. By

an autonomous system we mean a system of the form:

il =ﬁ (xl 1 X2, "-Qxll)

iz =ﬁ(xl ,xz’ "'sxﬂ)

in =j;l(xl X2,y '"vxﬂ)a

i.e., there no time varying forces acting on the dynamical system from the outside and that
the vector field fis stationary. This means that no two trajectories corresponding to two
evolutions from two different initial conditions cross through the same point in phase space.
Now we deal with the three theorems that make up the foundations of the embedding

(3

theorems we use.

Theorem 3.1.1 :(Whitney Embedding Prevalence Theorem.) Let A be a compact smooth
manifold of dimension d contained in R*. Almost every smooth map R* - R**\ is an
embedding of A.

Theorem 3.1.2 :(Fractal Whitney Embedding Prevalence Theorem.) Let A be a compact
subset of R* of box-dimension d, and let n be an integer greater than 2d. For almost every
smoothmap F : R - R,

1) F is one-to one on A; and

2) F is an immersion on each compact subset C of a smooth manifold contained in A.
Definition 3.1.2 :If® is a flow on a manifold M, Tis a positive number (called the
delay), and h : M —~ Ris a smooth function, define the delay-coordinate map

F(h,®,T) : M ~ Rby

F(h,®.T)(x) = (A(x), A(®1(x)), A(x), A(P27(x)), ... A(x), A( D (n1)7(x))).

32



Theorem 3.1.3 : (Fractal Delay Embedding Prevalence Theorem.) Let ® be a flow on an
open subset U of R*, and let A be a compact subset of U of box counting dimension d. Let
n > 2d be an integer, and let T > 0. Assume that A contains at most a finite number of
equilibria. no periodic orbits of ® of period T or 2T, at most finitely many periodic orbits
of period 3T,4T,...,nT, and that the linearization of each periodic orbit has distinct

eigenvalues. Then for almost every smooth function h on U,

1) F(h,®,T) is one-to one on A; and

2) F(h,®,T) is an immersion on each compact subset C of a smooth manifold contained
inA.

The conclusion from the above theorem is that any smooth manifold of dimension m can
be smoothly embedded in #n = 2m + 1 dimensions. Also embedding the data in a dimension n
where n > 2m + 1 preserves the topological properties of the attractor. More importantly the
embedding is a diffeomorphism (a differentiable mapping with a differentiable inverse )-
Therefore we can recreate a space that simulates the original space and use our reconstructed
space to predict future trends in the NYSE. This reconstructed space will be constructed
using coordinates made from the observed variable (NY SE)

y(n) = [s(n),s(n + T),s(n +27),....].

In this equation s(n) will give value of the observed variable and T will be the time interval

for a reasonably amount of time to pass to create independence between s(n + kT) and

s(n+ (k+1)T),k = 0.
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3.2 Average Mutual Information

Let us consider data that is arranged in a time series. For example the temperature of the
day or the value of a stock. These pieces of information are the product of many forces that
can not be seen. Stock prices react to many outside variables such as the economic health of
companies and countries. But obtainable forecasts do not begin to include all the other
outside obstacles as volcanic eruptions and population. All we can say is that the price of a
stock one day has a relation with the price of the next stock the next. When the price goes up
people might buy or people might sell, no one is sure of the outcome but the relation
between days, weeks or months does exist. So if we were to try to forecast any future trends
how can this be done? One way to do this is to try to recreate the system that produces the
prices of the stocks. As mentioned, given a time series we can try to create a phase space that
simulates the output of our time series. The first step in constructing a phase space is to find
the time interval that creates independence between values of observed variables. By the
Fractal Delay Embedding Prevalence Theorem we must find the dimension of the data to
create the phase space y(n) = [s(n),s(n + T),s(n + 27), ....]). The ideal would be that each of
our coordinates would be independent of each other but since prices always affect the
outcome of the next price we should be looking for a more lenient form of independence.
This is where the idea of average mutual information comes in. We are looking for the time
period in our interval when the prices come not totally independent but independent enough.
This notion of information among measurements comes from Shanon’s idea [see 6] of
mutual information between two points a; and b; drawn form two sets 4 and B respectively.
What is meant by mutual information is the amount that is learned by a; about b;. This is

expressed as follows

PAB(aisb')
logz[ Py(a;)P B(ij) ] )

where P 4p(a,b) is the joint probability density for measurements 4 and B resulting from the
values of a; and b;. P4(a) and Pp(d) are the individual probability densities for the
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measurements of A and B. Remembering the basic statistics, if we have 4 being completely
independent of B, then P 4s(a:,b;) = P4(a:;)Pp(b;) and the amount of mutual information is

zero. To find the average of all the measurements between our sets we write

_ Y P4s(a;, b))
I —E P4s(ai, b;) logz[m],

Given a time series s(n) we can look for the associated information by letting 4 to be

equal to s(n) and B to s(n + T), where T represents an amount of time.

)= Y P(s(n),s(n+71))log, Pl(,ff,s;l)) P?_(,’E: +T)72)) ]

s(n) s(n+T)

We will now use this idea on the index prices of the New York Stock Exchange (NYSE)
to see if there is any form of Mutual Information shared between data that is expressed
between the weekly data from the week of the 8% of January 1965 until the April 1% 1999.
Before using the data we must first make sure that the data given is independent of any
outside contamination. Looking at the NYSE we know that as the economy grows so will the
stock prices. Therefore we have to c_ietrend the index by filtering out the economic growth.
The are many methods of achieving this goal, such as Ping Chen [see 7] method of filtering
out the internal rate of growth over the period and Edgars Peters of filtering the Consumer
Price Index. We have chosen the following method

s; = log(N;) — (alog(CPI;) + ¢)
where

s; = the detrended value of the NYSE
N; =the NYSE price on week i
CPI; = The CPI on week i.
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The values of a and ¢ are constant and were derived using the Least Squares Method on
the NYSE against the CPL The figure below shows the result of our detrending. Note the
wave like cycles which appear to be non-periodic.

Figure 8

Now that we have our information we must find our time interval for independence. This
is done by plugging in increasing values of 7. We first test the mutual information of the sets
s(n) and s(n + 1) and then move on to s(n) and s(n + 2) and so forth. As we let the value of
T increase we look for the point where our information becomes independent enough. Below
we map s(n) versus s(n + 1). We can see that the line moves in a circular motion which
shows us the first sign that there is a underlying symmetry to the information which at first

seemed to have none.

Figure 9: A 2 dimensional map of current detrended NYSE versus the
one week later detrended value of the NYSE.
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The question remains at which point will the value of T be enough to create
independence if the function tends to zero. By the suggestion of Fraser [see 8] we choose the
value of T to be the first minium of the average mutual information. A more detailed
justification of this method is beyond the scope of this paper.

o - ~ w - ("] L] ~ - -
——— s

1T 3 § 7T 98 M 13 1 17 9N N % T B3N B X YN

Figure 10: The first minimum occurs when T = 8. [Alog 1]

We are given that the time period for T should be 8. Below we map s(n) versus s(n + 8)
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3.3 Dimension of the Phase Space

To be able to create a proper phase space we must have the dimension of our data. This
is done using the most simple method to compute when considering immense amounts of
data, the box counting method. We use this method by finding the natural density of the data.
Taking into consideration that the volume occupied by a sphere of a certain radius 7, in a
dimension d, behaves as r¥ we use the idea that we can get the dimension by looking at the
density of points when we examine the distance between points in phase space. Image our
data as a cloud of points. If we are to find the density of this cloud one would start with
looking at each point in the data and then counting how many other points fall within a
certain radius. This idea is expressed by the correlation function

. M K ¢
cg.n =43 [% 3 6 - ly(n) -.v(k)l):l :

K=1

For simplicity sake we use the correlation function when ¢ = 2 and 6(u) being the Heaviside

function

1 fu>0
O(u) = . .
{0 ifu<O

Given that the radius r tends towards zero, we have
C(q’ r) ~ r(Q'I YDq

where D, defines the fractal dimension when it exists. Therefore

D, = lim log[C(q,r)]

roman @ —1)log[r]”

Since we are dealing with a finite number of points and we also can not literary take r

towards zero. Therefore we concentrate on the slope of log[C(q,r)] versus log[r] to give us
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the limit of r.
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Figure 12: A mapping of log[C(gq,r)] versus log[r] for the 65 values of 7 where
Hn) = [s(n),s(n + T),s(n +27),s(n + 3D)]. Estimating the
slope gives us that the fractal dimension is .466.

In the following figure we found that the fractal dimension linearizes around .95
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Figure 13: Fractal dimensions are found for each dimension of
¥(n) = [s(n),s(n +T),s(n + 2T),....]. We find that
at dimension 10 the fractal dimension starts to linearize.
Therefore we let are phase portrait be an array of dimension 10. [Alog 2]

39



3.4 Lyapunov Exponents of the NYSE

Given that we are dealing with a finite number of points we cannot take n - ® as
Definition 2.6.3 suggests. Therefore we must come up with a new method. If U is the unit
sphere in R™ and A is an m x m matrix, then the orthogonal axes of the ellipsoid AU can be
computed in a straightforward way.

Theorem 3.4.1 : Let N be the unit disk in R", and let A be an m x m matrix. Let
53,....5% and vy, ...,vm be the eigenvalues and unit eigenvectors, respectively, ofthem xm

matrix AAT. Then

1) vi,...,vm are mutually unit vectors: and

2) the axes of the ellipse AN are s;v; for 1 < i < m.

This allows us to take the square roots of the eigenvalues of the matrix 447 to be the
lengths of the axes. Combining this with Definition 2.6.3. we find the Lyapunov exponents
of the transformation matrix A4, in section 3.5, in 10 different places. An average of the

Lyapunov exponents gives

A1 =2.651

Az = 2.2846

A3 = 1.649

As = 1.2835

As = 1.2053 x 102
As = 25378

A7 =.76599

Ag = .94052

A9 = 91746

Ao = 35882

Given that we have some 4; > 1 we have that the NYSE is chaotic in its nature.
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3.5 Estimating and Predicting the Time Series

Given that T = 8 and the dimension 10 we can create the following phase portrait
y[n] = [s(n),s(n + 8),s(n + 16),....,s(n + 72)]

Since our function is chaotic in nature we know that all orbits will follow some form of
pattern as they move about the attractor. If we would like to know about a persons habits, we
could look at his friends. Similarly, we will look at the closest “friends” of a point in the
phase space to see where the point is going. What we mean by “friends” are the nearest
neighbors. Take a point in the phase space and look at the k nearest points. Denote the k*
nearest point to y(n) by y*(n) and the next point in the trajectory by y(k,n + 1). Note that
y(k,n + 1) is not necessarily equal to y*(n + 1). Let z¥(n) be the distance between y(n) and
y*(n) and z*(k,n + 1) the distance between y(n + 1) and y(k,n + 1). Then, the change from
z*(n) to z¥(k,n + 1)could be given by a matrix A.

z(k,n + 1) = Jz5(n)

For example if we have the dimension of y(n) equal to 3 we then can write that

oF) OF) oF,;
ds(n) oas(n+T) os(n+2D)
J= OF> oF, OF>
Os(n) Ods(n+T) Os(n+2D7
oF; oF; OF3
| Os(n) Os(n+T) Os(n+2T) |

Where F is the transformation such that y(n + 1) = F(y(n)) for all n. Let z; (k,n + 1) be the
first coordinate of z(k,n + 1) then

:l(k9n +1)= 'agf._nl):f(n) + %1(;;;—):5('1) + ai(Lnl)zk(n)

and we can rewrite the equation as
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OF)
z21(L,n+1) zl(n) zi(n) zi(n) a;I(:)
z21(2,n+1) | =| z{(n). zi(n) z}(n) m

z13,n+1) zi(n) z3(n) zi(n) oF,
Os(n +27) _

where z¥(n) is the k* coordinate of the r* closest neighbor. Similarly for the coordinates 2
and 3. We can write this system of equations as 4 = BC and the entries of the matrix B are
provided from the original time series

£ = {s(me+ (r = 1)T) = s(n + (r - 1)T)},
n is the n value associated with the kzk neighbor to y(n), anda = 1,2, ..., (dg - 1) where dg
is the embedding dimension. Similarly, the entries of the matrix A are given by the equation
z(ln+1) = {s(m+ 1+ -1)N)-s(n+ 1+ -1)T)).

oF; oF, and OF;
os(n)’ os(n+T)° Os(n+27)

Therefore what is left is to invert B to obtain
Using this idea we can try to predict the future outcomes of the NYSE by using4d asa

projection of future outcomes. Since B may not always be invertible we will use the Linear

Least Square Solution by Householder Transformations.
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3.6 Linear Least Square Solution

In Linear Least Square Solution by Householder Transformations we are given three

matrices such as
Auxl = Bmcnxl

and asked to find the matrix C when A4 and B are known. To do this we look to minimize C
by using the norm f|4 — BC||. This is done by creating a O such that

R
OB=R=
(m—n)xn
where we can write

4 -BCll = llc- @BC]|

where ¢ = O4, Q70O = I'and R is an upper triangle matrix. In short the Householder
transformation lets B = B(!) and B@),B®), . B be defined as follows

B®1) = pig®)y  wherek=1,2,....n.
P® is a symmetric, orthogonal matrix of the form
P& — 1 Bu® y®T

where the elements of P®*) are derived so that a,(f,'") = Ofori = k+1,...,m. Therefore, P*)

is generated as follows
L
m . 2 2
o = (E (a%™) )
ik
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B = [ox(or+ o) T
uP = sgn (a,‘i")) (Uk + Ia,(;’” I)

u® = a$ fori > k.

A note worthy piece of information is that we must take enough nearest neighbors to make B
a non-singular matrix.

3.7 The Prediction

figure 14: Prediction over the a 12 week period
The top line represents the NYSE
The bottom line represents our prediction. [Alog 3]

From the above figure we can see that both lines move in convex manner. The bottom
line moving in an emphasized manner of the actual value. The first and second week
predictions are fairly accurate with the bottom line falling away for the weeks to follow. I
believe that the prediction that is made using the Embedding Theorem and Householders
method well give accurate answers for the first two weeks after this the prediction will starts
to loss accuracy but will still hold the movements of the market to rise or fall. To prove this

one must have one thing. Money to burn.



Algorithms in C++

cAlog 1

Average mutual information with joint probability of s[n] and

s[n+1]

#include <iostream.h>
#include <conio.h>
#include <math.h>

void main( ) {double answer, count = 0, turns = 0, P[3000], SUMIT[3000];
int TIME;

SUMIT[0]=1000;
// Probability for S[n] ALGOR 1//
for(inti=1; i <=412; i++)
{ P[i]=0;

for(int j = 1; j <= 412; j++)

{ if(s(j] == sli])

P[] =P[i}+1;}
P[i]=P[i}/412;}

/I Average mutual Information ALGOR 2//
for(int T= 1; T <= 40; T++)
{  SUMIT[T}=0;
for(intn = 1; n <=411; n++)
{ ifiln + T > 412) break;
for(int j = 1; j <= 412; j++)
{ if(j + T > 412) break;
if(s[n}==s[j] && s[n + T} ==s[j + T))
count=count+];
turmns=turns+1;}

answer = count/turns;
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count=0;turns=0;
double IT = answer * log10(answer/(P{n]*P[n+T]))}1og10(2);
SUMIT[T] = SUMIT[T] + IT;}
cout<<"\n"<<SUMIT[T]; _
iffSUMIT[T-1] < SUMIT[T]){ TIME = T-1;cout<<"nTIME "<<TIME; getch();}}
return;}

Alog 2
JFinding the _fLractal QDimension

#include <iostream.h>

#include <conio.h>

#include <math.h>

void main( ){

int PHI;

double CQR =0, CQRTOTAL =0, CQTOTAL([71], R[71];
double DENUM;

double SUM1, SUM2 =0;

for (int ADD =0; ADD < 11; ADD++)
{DENUM =412 - ADD * 8;
double r = -.60206, radius = .25, NUM1 = 0, NUM2 = 0, NUM3 =0, NUM4 = 0;
for( int COUNT = 1; COUNT <=69; COUNT++)
{ for( int COUNT]1 = 1; COUNT1 <= DENUM; COUNT1++)
{for( int COUNT2 = 1; COUNT2 <= DENUM; COUNT2++)
{for(int COUNT3 = 0; COUNT3 <= ADD; COUNT3++)
{SUM1 = s[COUNT2 + 8*COUNT3] - sfCOUNT1 + 8*COUNTS3];
SUM2 = SUM2 + SUM1*SUM1;}
if(radius - SUM2 >=0)
PHI=1;
else
PHI=0;



CQR =CQR + PHI;

SUM2 =0;}
CQliTOTAL =CQRTOTAL + CQR;
CQR =0;}

CQRTOTAL = CQRTOTAL/(DENUM*DENUM);
CQTOTAL[COUNT] = logl10(CQRTOTAL); RICOUNT] =r;
r=r-.005;

radius = pow(10,r);

CQRTOTAL =0;}

for(int COUNT = 1; COUNT <= 69; COUNT++)

{ NUMI1 =NUMI1 + R[COUNT]*CQTOTAL[COUNT];
NUM2 =NUM2 + R[COUNT]J;
NUMS3 =NUM3 + CQTOTAL[COUNTJ;
NUM4 = NUM4 + R[COUNT]*R[COUNT];}

double A = (69*NUMI - NUM2*NUM3);
double B = (69*NUM4 - NUM2*NUM2);
cout<<"\n FRACTAL DIMENSION FOR "<< (ADD+1) <<" "<< A/B;}
getch();
return;}

Alog 3
Linear _feast Square Solution by Souseholder “7ransformations.

#include <iostream.h>
#include <conio.h>

#include <math.h>
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double INNER_PRODUCT(int START, int ROW, double A[]J[16], double Bf][(16], int
COLUMNI, int COLUMN?2)
{ double SUM=0;

for(int i = START; i <=ROW; i++)
SUM = SUM + A[i][COLUMN1]*B[i][COLUMN?2];

return SUM; }

double INNER_PRODUCT I(int START, int ROW, double A[][16}, double B[], int
COLUMNI)
{ double SUM= 0;

for(int i = START; i <= ROW; i++)
SUM = SUM + A[i][COLUMN1]*BI[i];

return SUM; }

double INNER_PRODUCT?2(int START, int ROW, double A[][16], double B[], int

COLUMNI)
{ double SUM=0;

for(int i = START; i <= ROW; i++)
SUM = SUM + A[COLUMN1][i]*B[i];

return SUM; }
void main()
{//Nearest Neighbors
int VALUEN,NN[52], M = 20, DIM = 10, TIME = 8 ,POINT = 328, NUMBER = 400;

double SUM1, SUM2, TEMP, DISTANCE[52];

for(int z=1; 2<=12; z++)
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{ for(int COUNT = 1; COUNT <=M; COUNT++)
DISTANCE[COUNT] = 10;

for(int N = 1; N <= NUMBER; N++)
{ if(N + (DIM-1)*TIME > NUMBER ) break;

SUM2 =0;
{ for(int COUNT=0; COUNT < DIM; COUNT++)
{ SUML = s[POINT + TIME*COUNT] - s[N + TIME*COUNT];
SUM2 = SUM?2 + fabs(SUM1);}

for(int COUNT = 1; COUNT <= M; COUNT++)
{ iffSUM2 < DISTANCE[COUNT])
{ TEMP = DISTANCE[COUNT];
VALUEN = COUNT;
for(int GREATEST = 1; GREATEST <= M; GREATEST++)
{ iff TEMP < DISTANCE[GREATEST])
{ TEMP = DISTANCE[GREATEST];
VALUEN = GREATEST;}}
NN[VALUEN] =N;
DISTANCE[VALUEN] = SUM?2;

for(inti=1;i <=M; i++)
{ for(intj=1; j <M; j++)
{ iffDISTANCE[j]>DISTANCE(i])
{ TEMP = DISTANCE[i];

VALUEN = NN[iJ;
DISTANCE[i]=DISTANCE[j];
NN[i]=NN[];
DISTANCE[j}J=TEMP;
NN[j]=VALUEN;} } }break;}}}}

double QR[45][16];
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double A[45][16];

for(int i = 1; 1 <= M-1; i++)
{ for(int COOR = 1; COOR <= DIM; COOR-H—)
A[i][COOR] = s[POINT + TIME*(COOR - 1)] - s[NN[i+1] + TIME*(COOR - 1)];}

for(inti = 1; i <= M-1; i++)
{ for(int COOR = 0; COOR < DIM; COOR++)
QR([iJ[COOR + 1] = A[i][COOR + 1};}

int JBAR,SUBLPIVOT[20];
double
BETA,SIGMA,ALPHAK,ALPHA[ZO],QRKK,YDO],Z[ZO],SUM[ZO],R[ZO],GAMMA;

/[Finding Y

for(int j = 1; j <= DIM; j++)

{ SUM[j] = INNER_PRODUCT(1,M-1,QR,QR,j,j);
PIVOT[] =j;}

for(int k = 1; k <= DIM; k++)
{ SIGMA = SUM[k]; JBAR =k;
for(int j =k + 1; j <= DIM; j++)
{ iflSIGMA < SUM(j])
{ SIGMA = SUM[L;JBAR =j;}}

if(JBAR !=k)
{ SUBI=PIVOT(k]; PIVOT[k]=PIVOT[JBAR]; PIVOT[JBAR]}=SUBIL;
SUM[JBAR]=SUMI[Kk];SUM[k]=SIGMA;
for(inti=1; i <=M-1; i++)
{ SIGMA=QR([i][k]; QR[i][k]=QR[i][JBAR];
QR[i][JBAR]=SIGMA;} }

SIGMA =INNER_PRODUCT(k.M-1,QR,QR .k k);
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if(SIGMA < 1e-20 && SIGMA > -1e-20)
{cout<<"n SINGULAR "<<k; break;}
QRKK = QR[k][k];

iflQRKK <0)

ALPHA[k] = sqrt(SIGMA);
else

ALPHA[k] = -sqrt(SIGMA);

ALPHAK =ALPHA[X];

BETA = 1/(SIGMA - QRKK*ALPHAK);

QR[k][k]QRKK-ALPHAK;

for(int j =k + 1; j <= DIM; j++)
Y[j}=BETA*INNER_PRODUCT(k,M-1,QR,QR k.j);

for(int j =k + 1; j <= DIM; j++)

{ for(int i =k; i <= M-1; i++)
QR[] = QR[i][] - QRAK]* Y(il;
SUM(j] = SUM[j] - QRIK]G]*QRIk](j];}}

/fFind R//
for(int i = 1; i <= M-1; i++)
R[i] = s[POINT + 72] - s[NN[i + 1] + 73];

for(int j = 1; j <= DIM; j++)
{ GAMMA = INNER_PRODUCTI(j, M-1, QR, R, j)/(ALPHA[] * QRGIGD;
for(int i =j; i <=M-1; i++)

R[i] = R{[i] + GAMMA*QR{i][j};}
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ALPHA(i];

16]

Z[DIM] = R[DIMJALPHA [DIM];
for(inti =DIM - 1;i>=; i--)

Z[i] =-(INNER_PRODUCT2( + 1, DIM, QR, Z, i) - R[i]) /
for(int i = 1; i <= DIM; i++)

Y[PIVOTTi]] = Z[i};

NUMBER =NUMBER + ;
POINT =POINT + 1;

SINUMBER] = (Y[1] * s[NN[2]] + Y[2] * s[NN[2] + 8] + Y[3] * s[NN[2] +
+ Y[4] * s[NN[2] + 24] + Y[5] * s[NN[2] + 32]

+ Y[6] * sINN[2] + 40]+ Y[7] * s[NN[2] + 48]
+ Y[8] * s[NN[2] + 56] + Y[9] * s[NN[2] + 64]

+Y[10] * sINN[2}+ 72] );
cout<<"n "<< s[NUMBER];
getchQ;}
getchQ);
return:}
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2&(0 Glﬂ]

DATE NYSE | CPI LOG(NYSE) LOG(CPI) Si = log Ni-( a logCPI;) +¢)
650108 | 45.95 | 31.22 1.662285516 | 1.494432899 012
650205 | 46.98 | 31.25 1671913012 | 1.494850022 0.13
650305 | 46.78 | 31.25 1.670060217 | 1.494850022 0.13
650402 | 46.66 | 31.28 1.668944734 | 1.495266744 0.13
650507 483 | 31.37 1.683947131 | 1.496514519 0.14
650604 | 46.74 | 31.45 1.669688708 | 1.49762065 0.13
650702 | 4553 | 316 1.65829765 | 1.499687083 0.11
650806 | 46.13 | 31.63 1.663983455 | 1.500099192 0.12
650903 | 47.26 | 31.57 1.674493717 | 1.499274582 0.13
651001 | 48.21 | 31.63 1.683137131 | 1.500099192 0.14
651105 | 49.57 | 31.68 1.695218919 | 1.500785173 0.15
651203 | 49.32 | 31.74 1693023068 | 1.501606922 0.15
660107 | 50.37 | 31.86 1.702171951 | 1.503245771 0.15
660204 | 50.64 | 31.86 1.704493697 | 1.503245771 0.16
660304 | 48.55 | 32.03 1.686189234 | 1.505556939 0.14
660401 | 48.76 | 32.14 1.688063697 | 1.507045872 0.14
660506 | 47.49 | 32.29 167660217 | 1.509068045 0.12
660603 | 46.54 | 32.32 1.667826379 | 1.509471352 0.11
660701 | 46.36 | 324 1666143427 | 1.51054501 0.11
660805 455 | 3252 1658011397 | 1.512150537 0.10
660902 | 41.81 | 32.66 1621280168 | 1.51401618 0.06
661007 | 39.37 | 32.75 1595165415 | 1.515211304 0.03
661104 | 4353 | 32.86 1.638788667 | 1.516667559 0.08
661202 | 43.44 | 32.89 1.637889817 | 1.517063873 0.07
670106 | 44.71 | 32.92 1.65040467 | 1.517459827 0.09
670203 | 47.73 | 32.92 1678791434 | 1.517450827 0.11
670303 | 48.37 | 32.95 1.684576087 | 1.517855419 0.12
670407 49.1 33 1.691081492 | 1.51851394 0.13
670505 | 51.85 | 33.09 1.714748761 | 1.519696767 0.15
670602 | 49.56 | 33.18 1.695131298 | 1.520876382 0.13
670707 | 50.91 | 33.29 1.706803097 | 1.522313795 0.14
670804 | 53.22 | 33.43 1.72607487 | 1.524136377 0.15
670901 | 52.15 | 33.55 1.717254313 | 1.525692525 0.14
671006 | 54.05 | 33.61 1.732795698 | 1.526468512 0.16
671103 | 50.96 | 33.72 1.707229419 | 1.527887566 0.13
671201 | 52.52 | 33.81 1.720324717 | 1.529045171 0.14
680105 | 53.57 | 33.92 1.728921646 | 1.530455844 0.15
680202 | 51.67 | 34.04 1.713238462 | 1.531989551 0.13
680301 | 49.58 | 34.15 1.695306522 | 1.533390708 0.11
680405 | 51.79 | 34.3 1.714245911 | 1.53529412 0.13
680503 | 55.06 | 34.41 1.740836207 | 1.536684673 0.15
680607 | 57.11 | 34.53 1.75671216 | 1.538196578 0.17
680703 | 56.88 | 34.7 1.754959588 | 1.540329475 0.16
680802 | 54.18 | 34.87 1.733839001 | 1.542451947 0.14
680906 | 56.63 | 34.98 1.753046562 | 1.543819805 0.16
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