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ABSTRACT

Preliminary Structural Design Optimization of an Aircraft Wing-Box

Sridhar Chintapalli

Structural weight has always been important in aircraft manufacturing industry.
Considering that a large number of candidate material and geometric shapes are available
early in the design cycle, preliminary design optimization of skin-stringer panels used to
build an aircraft wing is required to obtain the best preliminary structure before the final
design phase. The design of skin-stringer panels forms an important and major portion of
the wing-box design. The lift generated by the wings opposes the weight of the aircraft,
and thus generates bending. Depending on their location, stiffened panels that make up
the wings are therefore mainly loaded in compression and tension. Upper skin-stringer
panels are typically subjected to compressive load while the lower panels are subjected to
tensile load. The ability to resist the compressive load is assessed through a stability
study to compute the critical buckling load of the stiffened panel while the ability to
withstand the tensile load is evaluated by the Damage Tolerance Analysis. Optimization
routines have been developed for the design of upper and lower wing panels. The main
objective here is to design a stable wing-box structure more rapidly and automatically in
the most economical manner having adequate strength and stability. These optimization
routines are tested on a wing section defined at a specific span wise location of a DLR-F6
aircraft. Repeating the design process at different stations along the wing span completes

the preliminary design of aircraft wing-box.
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CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION

Structural and Multi-disciplinary Optimizations have been gaining more attention
in recent years for their contributions in the design enhancement, especially in the early
stages of product development. Structural weight has always been important in aircraft
manufacturing industry. When a modern full-loaded subsonic aircfaft takes off, only 20%
of its total weight is payload. Of the remaining 80%, roughly half is aircraft empty weight
and the other half is fuel weight. Hence, any saving in structural weight can lead to a
corresponding increase in payload. Alternately, for a given payload, saving in aircraft
weight means reduced fuel requirements. Therefore, it is not surprising that the aircraft
manufacturers are prepared to invest heavily in weight reduction. Hence, the main aim of
an aircraft design engineer is to design a stable wing structure in the most economical
manner having adequate strength and stability [1-10].

1.2 GENERAL LAYOUT OF WING STRUCTURE

A real commercial aircraft wing contains thousands of structural components.
Creation of a detailed wing model by simultaneously incorporating all the wing features
is virtually impossible. Thus, engineers rely on simplified models that provide a fairly
accurate approximation of the real wing structural behaviour. Moreover, it is rare to find
a design procedure that starts off with a detailed approach. Most commonly, the design is
a multi-step process where the initial steps contemplate simplified configurations and

each step inherits properties from the previous ones. Therefore, the importance of



obtaining initial designs is to guarantee that its best features will pass on to subsequent
steps. Figure 1-1 shows the general layout of an aircraft wing structure showing its

important components.

Figure 1-1: General layout of a wing structure [5]

Aircraft wing consists of a collection of basic structural elements like, the
stringers running along the wing span, ribs positioned at different stations along the
spanwise direction, front and rear spars and upper and lower wing skins covering these
internal components. Each of these components act like a beam and a torsion member as

a whole. For illustrative purpose, consider a box beam as shown in Figure 1-2.

y

Section A

X

Figure 1-2: Box beam with applied loads [5]
The box beam consists of stringers (axial members) that are located at the maximum

allowable distance from the neutral axis to achieve the most bending capability, and the



thin skin (shear panel), which encloses a large area to provide a large torque capability.
This design would be fine if the load is directly applied in the form of global torque, T

and bending moment, M . In reality, aircraft loads are in the form of air pressure (or

suction) on the skin, concentrated loads from the landing gear, power plants, passenger
seats, etc. These loads are to be collected locally and transferred to the major load
carrying members. It should be done with proper care, otherwise these loads may produce
excessive local deflections that are not permissible from aerodynamic considerations [5].
Using the box beam in Figure 1-2 as an example, we assume that a distributed air
pressure is applied on the top and bottom surfaces of the beam. The skin (shear panel) is
thin and has little bending stiffness to resist the air pressure. To avoid incurring large
deflections in the skin, longitudinal stringers can be added as shown in Figure 1-3 to pick

up the air loads. Figure 1-3 shows all the important elements that constitute the wing-box

in cross-sectional view.

Upper Skin

Wing-Box Lower Skin Stringers

Figure 1-3: Cross-section showing wing-box elements [6]
The stiffeners are usually slender axial members with a moderate amount of bending
stiffness. Therefore, the transverse loads picked up by the stiffeners must be transferred
quickly to more rigid ribs or frames at Sections A and B shown in Figure 1-2 to avoid
excessive deflections. The ribs collect all transverse loads from the stiffeners and transfer

them to the two wide-flange beams (spars) that are designed to take transverse shear



loads. The local-to-global load transfer is thus complete. It should be noted that besides
serving as a local load distributor, the stiffeners also contribute to the total bending
capability of the box beam.

The main function of the wing is to pick up the air loads and transmit them to the
fuselage. The wing cross-section takes the shape of an airfoil, which is designed based on
aerodynamic considerations. The wing as a whole performs the combined function of a
beam and a torsion member. It consists of axial members in stringers, bending members
in spars and shear panels in the cover skin and webs of spars. The spar is a heavy beam
running spanwise to take transverse shear loads and spanwise bending. It is usually
composed of a thin shear panel (the web) with a cap or flange at the top and bottom to

" take bending. A typical spar construction is depicted in Figure 1-4.

-cap vertical stiffener

wéb

_ -
Figure 1-4: Typical spar construction [S]

Wing ribs are planar structures capable of carrying in—élane loads and are placed
along the wing span. Besides serving as load redistributors, ribs also hold the skin-
sﬁnger to the desired contour shape. Ribs reduce the effective buckling length of the
stringers (or the skin-stringer system) and thus increase their compressive load capability.
Figure 1-5 shows the typical rib construction. It is noted that the rib is supported by

spanwise spars. The cover skin of the wing together with the spar webs forms an efficient



torsion member. For subsonic airplanes, the skin can be assumed to make no contribution

to bending of the wing-box. The total bending moment is taken up by spars and stringers.

rib vertieal stiffener
'

front spar flange rear spar

Figure 1-5: Typical rib construction [5]
Figure 1-6 presents two typical wing cross-sections for subsonic aircraft. Figure 1-6(a)
consists only of spars (the concentrated flange type) to take bending. Figure 1-6(b) (the
distributed flange type) uses both spars and stringers to take bending. To withstand high
surface air loads and to provide additional bending capability to the wing box structure,
thicker skins are often necessary. In addition, to increase structural efficiency, stiffeners

can be manufactured (either by forging or machining) as integral parts of the skin [1-6].

A 0=

(2) ®

Figure 1-6: Typical wing cross-sections for subsonic aircrafts [5]

1.3 STATE OF THE ART

The complexity of the structural configuration of an aircraft combined with a
wide range of loading and boundary conditions requires a multilevel optimization
approach. Because of its size and complexity, there is a clear need for advanced tools
integrating and accelerating the design process. Multi-disciplinary Design Optimization

(MDO) provides an efficient way to integrate all disciplines and determine a feasible



minimum weight design. Figure 1-7 shows the organization of the complete MDO
process for designing any commercial aircraft. Within the last 20 years, several in-house

MDO programs have been developed by aircraft industries [7-10].

Objective and Constraints
Functions & Sensitivities

N K

Updated Set S
of Analysis Structural responses
Model Pa- {stresses, flutter
rameters speeds, etc)
Sensitivities of structural
responses w.r.t. changes of
the design variables

Figure 1-7: Design Process automated by Multi-Disciplinary Design Optimization
Techniques {7]

The economic performance of an aircraft depends very much on its overall
weight. It is important to minimize structural weight, in order to reduce fuel consumption
and operating costs every time the aircraft flies. Modern aircraft design therefore utilises
high performance materials with high strength to weight ratios. This when combined with
efficient analysis and optimization tools, can lead to a significant increase in the strength
and reliability, while reducing the structural weight of the components. Optimization of

aerospace structures, such as fuselage sections and aircraft wings, however represents a



very complex task with literally hundreds of design variables. It is therefore not
surprising that, despite the dramatic increase in computational power over the past twenty
years, optimization is still best carried out as a multilevel process.

1.3.1 Wing-Box Design

Figure 1-8 shows the wing panels, the spars and internal ribs of the wing-box. A
panel consists of a skin, stiffened by a stringer in longitudinal direction. The number of
stringers decreases from inboard to outboard due to wing taper. Ribs are connected both
to spars and panels. The panels and spars carry global bending and torsional loads, while
the primary function of ribs is to stabilize the whole structure and transfer the local air
load into the wing-box. The most important structural sizes of the wing-box comprise the
skin thickness and the stringer height and thickness. For the purpose of applying buckling
constraints, the upper surface of the wing is subdivided into so called wing panels. Each
wing panel (stiffened panel or skin-stringer panel) is the area between two adjacent span
wise ribs and middle distance between two chord wise adjacent stringers.

The mathematical objective of the optimization process is to find a minimum
feasible weight for certain criteria. All relevant wing-box sizing criteria comprising limit,
ultimate and fatigue stresses, buckling criteria, manufacturing criteria are applied in the
form of constraints. Fatigue stress constraints are applied to all fatigue sensitive areas of
the wing-box. These areas include the lower skin-stringer panels, major wing-box joints
(inner and outer wing joint, lower front and rear panel joints), front spar web at the pylon

attachment and rear spar web at the landing gear attachment.



Rear Spar
Machined Ribs

Truss Ribs

Front Spar with
vertical and hori-
zomal stiffeners

Figure 1-8: Wing-box showing internal parts (top skin removed for better view) [7]

1.3.2 Historical Development

The design of wing skin-stringer panels forms an important and major portion of
the wing-box design. Depending on their location, stiffened panels that make up the
wings are therefore mainly loaded in compression and tension. Upper skin-stringer panels
are subjected to corhpressive load while the lower panels are subjected to tensile load.
The ability to resist the compressive load is assessed through a stability study to compute
the critical buckling load of the stiffened panel while the ability to withstand the tensile
loading is evaluated mainly by the Damage Tolerance Analysis.

Buckling criteria governs the design of almost half of the structure of most
commercial aircrafts. Automating this design process has been an area of widening
research over the last 20 years. The initial stages of research to design the compressive
structures were mostly dealt in NACA reports [11-12]. Butler and Williams [13], Butler,
Tyler and Cao [14] developed a program called VICONOPT which is used to find the

optimum dimensions of a range of blade-stiffened panels of composite or honeycomb



sandwich construction and a metal T-stiffened panel. VICONOPT (VICON with
OPTimization) combines thé analysis capability of VIPASA and VICON with a newly
developed and efficient design technique to produce designs satisfying buckling and
material strength éonstraints. Bushnell [15] developed a program called PANDA2 for
minimum weight design of stiffened composite panels for locally buckled panels. Later, a
software interface to design these structures was started by Butler [16,17]. He tailored a
design procedure for obtaining the optimum dimensions for prismatic assemblies of
laminated, composite plates which occur in advanced aerospace construction.

Veen [18,19] at Pechiney Aerospace developed a design tool called Panel. This
tool acts as a large macro, which launches the meshing and analysis of a user defined
stiffened panel configuration on a commercial finite element package of proven
reliability. The development of conceptual design methodologies to integrate with MDO
process was developed by Bombardier Aerospace. Abdo et al. [20] developed a
conceptual design methodology to design a skin-stringer compression panel. However,
the developed design methodology was more an ad hoc optimization than a formal design
optimization procedure. |

Stiffened panels as explained in the previous sections are metal sheets reinforced
by stringers, which can be bonded to the sheet by means of adhesive material or
connected to it by means of rivets or machined as an integral part of the panel. Lower
wing panels are usually designed for damage tolerance. A structural component is
damage tolerant if it can sustain cracks safely until it is repaired or its economic service
life has expired. Therefore, damage tolerance analysis provides information about the

effect of cracks on the strength of the structure. For all the high strength materials used in



aerospace industry, damage tolerance analysis can be performed using Linear Elastic
Fracture Mechanics theory (LEFM), in which case, the Stress Intensity Factor (SIF) plays-
a fundamental role. During the last four decades, a great deal of research has been
dedicated to the calculation of SIF in cracked stiffened panels [24,25].

Finite Element Method (FEM) has been extensively used for the solution of crack
problems in fracture mechanics. In the recent past, Boundary Element Method (BEM) has
emerged as a powerful numerical technique for solving crack problems. Its most
attractive feature is that the high stress gradients near the crack tip can be modelled more
efficiently in comparison with FEM. Moreover, it has been shown that BEM produces
more accurate Stress Intensity Factors than FEM [25-28].

Dowrick et. al. [29], Dowrick [30], and Utukuri and Cartwright [34] investigated
analytically the effect of patch shape, attachment flexibility and patch stiffness on the
stress intensity factor of a crack in a thin sheet. Young et. al. [31] and Young [32] used
BEM combined with the method of compatible deformations to obtain stress intensity
factor for a cracked sheet reinforced with a repair patch.

Dowrick, Cartwright and Rooke [33], Young, Rooke and Cartwright [35] used
BEM to solve problems involving continuously and discretely attached stiffeners,
respectively. In their work, the method of compatible deformations was used to combine
the boundary integral displacement equations with stiffener displacement equation. The
presence of a straight crack was implicitly considered, using special Crack Green’s
functions derived by Erdogan -[36]. This last feature, although avoiding the need for

modelling the crack geometry, restricts their application to problems involving a straight

crack [28].

10



Salgado and Aliabadi [37] presented a formulation based on the dual boundary
element method and the dual reciprocity method for the analysis of thin cracked metal
sheets to which thin metal patches and stiffeners are adhesively bonded. The stress
intensity factor is evaluated using the crack-tip opening displacement method after
finding the solution for the system of equations formulated.

Dirgantara and Aliabadi [38] presented an extension of the dual boundary element
method to analyse the crack growth in plates loaded in combined bending and tension.
Stress intensity factors are computed using the J-integral technique. Crack growth
processes are simulated with an incremental crack extension analysis based on the
maximum principal stress criterion. Crack growth incremental analysis requires,
regardless of the numerical method being used, remeshing at the end of each iteration.
Except for simple cases, where the crack paths are known in advance, remeshing can be

quite cumbersome.

1.4 MOTIVATION AND SCOPE OF THE PRESENT WORK

The MOSAIC (Multidisciplinary Optimization Standardization Approach for
Integration and Configurability) project consists of development of multi-disciplinary
design optimization (MDO) environment. This project is sponsored by Bombardier
Aerospace through Consortium for Research and Innovation in Aerospace in Quebec
(CRIAQ) to promote and perform collaborative pre-competitive industry research

projects primarily at universities. The present research work is a part of the optimization

module defined in MOSAIC project.
The loads coming from different flight conditions are converted into bending

moment and shear force distributions. These quantities vary from wing root to tip. These

11



are used to size different components of an aircraft wing, like skin thickness, stringer
spacing and dimensions, spars, web caps, ribs etc. The main objective of the present work
is to develop efficient and accurate desigq optimization methodologies to design both
upper and lower skin-stringer panels.

From the previous discussion, one can find pioneering applications in aerospace
industry where lightweight structural components are required for either cost reductions
or to increase payload. These optimizations are implemented in the early stages of MDO

process to obtain robust and optimum aircraft designs.

1.5 ORGANIZATION OF THESIS

Chapter 1 explains the importance of structural optimization in designing aircraft
structures. The advantages and necgssity of Multi-Disciplinary Optimization in aircraft
design is studied. The historical development in the design of skin-stringer panels to
design upper and lower wing panels is also studied.

Chapter 2 presents an optimization routine to obtain the optimum dimensions for
skin-stringer compression panels with minimum mass under six constraints namely,
crippling stress, column buckling, up-bending at center span (compression in skin), down
bending at supports (compression in stringer outstanding flange), inter-rivet buckling and
beam column eccentricity. Results showed good agreement with existing skin-stringer
panels taken from different aircrafts and also with the results of the conceptual design
methodology developed by Bombardier Aerospace.

Chapter 3 explains a methodology to design lower skin-stringer panels under
tensile loading using Damage Tolerance Analysis. Application of the Boundary Element

Method during this analysis is explained in detail. The objective function (minimum mass
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of a panel) and the design variables (thickness of skin and stringer pitch or panel width)
remain same as used for designing compression panels. Optimization is performed for
different skin-stringer panels and the results have been presented.

Chapter 4 presents the application of optimization process formulated in previous
chapters on a test wing section of DLR-F6 aircraft. This chapter explains the procedure to
generate the design curves from known values of aerodynamic coefficients. These
coefficients can be obtained from either wind tunnel tests or from a complete CFD
solution. The number of stringers required to support the section and the dimensions of
skin-stringer panels are calculated. The optimization routines developed in previous
chapters are used for designing the panels on upper and lower wing covers. Chapter 2
considered only compressive bending load (single load case) for designing a skin-stringer
panel on upper wing skin. The margin of safety is modified to include the effect
combined bending and torsion (multiple load case). Results are presented separately for
single and multiple load cases.

Chapter 5 presents the conclusions from this current research work along with

recommendations for the future work.
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CHAPTER 2

OPTIMIZATION OF A COMPRESSION
SKIN-STRINGER PANEL

2.1 INTRODUCTION

Considering that a large number of candidate material and geometric shapes are
available early in the design cycle, preliminary design optimization of compression skin-
stringer panels used in an aircraft wing is required to obtain the best preliminary structure
before the final design phase. A conceptual design of skin-stringef compression panels
has been developed by Bombardier Aerospace [20]. Although this conceptual design is
an efficient approach, it is rather an ad hoc optimization procedure without explicitly
minimizing the mass of the panel.

Figure 2-1 shows a skin-stringer panel, with a stringer attached to the skin. The
distance between two adjacent stringers in the chord wise direction is the width of the
panel (or stringer pitch) and the distance between two consecutive ribs in the span wise

direction is the length of the panel.

Bending Moment
b l AN
_ ) | ¥

Distributed Pressure |

{
| }

/ ol
1 {
Y | g s

Axial load

Figure 2-1: Compression Skin-Stringer panel subjected to design loads
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Now, the objective is to develop a design optimization algorithm in order to
minimize the mass of the panel while guarding against failures modes such as crippling
stress, column buckling, up-bending at center span and compression in skin, down
bending at supports and compression in stringer outstanding flange, inter-rivet buckling

and beam column eccentricity.
2.2 DEFINITION OF THE OPTIMIZATION PROBLEM

Design optimization is a technique that seeks to determine an optimum design
[22]. By optimum design, we mean, the one that meets all specified requirements but
with a minimum expense of certain factors such as weight, surface area, volume, stress,
cost, etc. Any optimization problem is defined in terms of three essential components
namely, the design variables, fhe constraints and the objective function. Design variables
are independent quantities that are varied in order to achieve the optimum design. Upper
and lower limits, usually called as side constraints are specified on design variables. The
constraints are dependent variables, typically the response quantities that are functions of
the design variables and may have a maximum or minimum limit. The third essential
component of an optimization problem, the objective function or the cost function, is also
a function of the design variables. Changing the values of the design variables changes
the value of the objective function. The solution of an optimization problem is a set of
allowed values for the design variables for which the objective function assumes an
‘optimal value’. In mathematical terms, optimization usually involves maximizing or
minimizing the objective function.

Based on the above classical definition of an optimization process, the present

optimization problem, minimum mass design of compression skin-stringer panel, is
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formulated. Before defining the optimization problem, a typical cross-section of skin-
stringer panel with important dimensions is shown in Figure 2-2. The compression

surface (skin) is stabilized by a stringer attached to the skin by fasteners (rivets).

b

S

-— +
— —;———i__L_____ ‘
i — | *
~—p 1] ?
b,

e

'}
¥

g — f

|
1 ==

Ly
S
b,

Figure 2-2: Cross-section of a typical compression skin-stringer panel

Different dimensions shown in Figure 2-2 are defined below:

t, - thickness of the skin

b, - panel width or stringer pitch

b, - effective width of the skin

b,,ty,b,.t,.b 1ot f- dimensions of the stringer

Area of the panel (4) is the sum of the areas of the skin and stringer. 4,,, area of skin, is
given by:

Ask = [sbs (2-1)

sk

which is in the range of 0.5-0.7. It is usually set to 0.5 for preliminary designs. Thus,
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|
4y = [i}fi sk (2-2)
A=A4,+4, (2-3)
Another important ratio that is required in the design optimization process is the width

ratio (BR) defined as Z—s . A suitable width ratio is set before starting the optimization.

e

2.2.1 Design Variables for the Optimization Problem
The two design variables for this problem are identified as ¢, and b,. Using ¢,
and b,, different dimensions of the stringer (for instance J-type and Z-type stringers as

shown in Figures 2-3 and 2-4) can be obtained from design practice relations or by

maximizing the moment of inertia of the panel [20].

) b, - - b, -
—l —— t N e B *z
F { | f:ﬂ}’ rfmw-———] ; i *’
bw —w-| bon—l bw — l-n-—-lw
N S— | —

‘ Ly B Ly
b, * L"——"’

b,
Figure 2-3: J-type stringer Figure 2-4: Z-type stringer

Design practice relations for J-type and Z-type stringers are given below [20]. The
numerical coefficients defining these relations are optimized by maximizing the moment
of inertia of the panel. The method of obtaining these coefficients by maximizing the

moment of inertia is explained later in section 2.3.
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J-type stringer Z-type stringer

b,=2.08,+0.68; Ift <03 b, =2.08t,+0.68; Ifr, <03
b, =1.312; Ift, >03 b, =1312; If t,>03
t,=0.7t, t,=0.7t,
b, A, —2b,t b, b
b, = [ (—=E—2L);, L= F 111 b, =b, &t, =t,
w Jts ( 377 ) e or equal flanges:b, =b, & ¢,
t b t
t,=b,| =+ b,=_|=%(4,-14b,t,) ;t,=b,| -+
be tS be
b, =0.327b,
t;=t, For unequal flanges: b, # b, &t #1,
-U. t
bw = b_e(Aﬂ O7bats) 5 tw =bw —=
t 1.327 b,

It is noted that for integrally stiffened panel, b, =0 and ¢, =0.

2.2.2 Objective Function for the Optimization of a Skin-Stringer Panel
The objective is to minimize the mass of the compression skin-stringer panel.

Mass of the panel (m,,,,,) is defined in terms of the design variables as below:

M pane (55 05) = (Ag P + Ay Py )L 2-4)
where L, p, and p, are length of the panel, mass density of the skin and stringer
materials, respectively.

2.2.3 Set of Constraints to Prevent the Failure of the Panel

The minimum of the three loads, namely, allowable buckling load of the skin-
stringer panel, allowable compression load intensity for the up-bending at panel center
span (compression in skin) and allowable compression load intensity for the down-
bending at supports (compression in stringer outstanding flange) should be slightly less

than dr equal to the design load for the panel to be safe. Calculation of these loads is
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explained in detail in section 2.4. Satisfying this condition results in conservative design

and the chances of panel failure are minimized or even eliminated [1-3].
2.3 MAXIMIZATION OF THE MOMENT OF INERTIA

Before performing the design optimization for minimizing the mass of panel, the
optimum design relations to calculate different dimensions of the stringer are obtained by
maximizing the moment of inertia of the panel. To accomplish this, different dimensions

of the stringer are expressed in terms of ¢, and b, using the constants k,,k,,k,,k,. For J

and Z-type stringers, the design practice relations are expressed as below [20]:

For the J-type stringer as shown in Figure 2-3,

b, =kt +k,; Ift, <0.3

b, =k(03)+k,;  Ift >03

t, = kit,
b, A, —2bt b b

b, = |2& (It a‘a ;_lz_e 2-5

¢ \/ts( 1+ k, ) t, |t 23)
be

bf=k4bw ; tf=tw

For the Z-type stringer as shown in Figure 2-4,

b,=kt,+k,; Ifr, <0.3
b,=k(03)+k,;  Ift, >03
t, =kit,
b b
by = \/t—e(As, -2b,t,); t—wzlt)i (with equal flanges)
t=b |l (2-6)
w— “w be
bf =ba &tf =ta
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e (ASI bata ) ; -bl =~ b—e (With unequal ﬂanges)
1+k, !

W 5

The numerical constants k,,k,,k;,k, are the design variables (except for a Z-type
stringer with equal flanges, which has k,,k,,k, as design variables). The initial values to
start the optimization are taken as k,=2.08, k,=0.688, k,=0.7 and k,=0.327 [1,20].

Having defined all the dimensions, the moment of inertia of the panel can be evaluated.
The objective here is to maximize the value of the moment of inertia while guarding
against a set of important constraints. Two important constraints are identified as below
[1-3]:
(a) t, 20.7¢t, (To prevent forced crippling)
(b) —:L =0.4 - 0.5 (To prevent rolling of the stringer)
w

The process of calculating the moment of inertia during the optimization is done
using stress-strain curves of the materials used for skin and stringer. Using an iterative
process, starting from the maximum allowable strain, the value of strain is decreased until
the desired panel length is obtained. This procedure is practical with material stress-strain
curves being a part of the entire process.

A smooth continuous stress-strain curve as shown in Figure 2-5 can be
represented by using Ramberg-Osgood equation as,

£=f—+i[“} @-7)
O-n

c, m|o,
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where ¢, E, m, o, are strain in the material, modulus of elasticity, material

characteristic number and reference stress, respectively [23].

Material B

Oy .

O
. " ‘MaterialA
(o2

{Ag
Ew €.
Straln

Figure 2-5: Stress-strain curves for skin and stringer materials [20]

For a known value of m, the reference stress o, can be calculated as,

“1/(m-1)

E

o, = aR[ij } (2-8)
R

where o is the known stress value on the stress-strain curve of the material and ¢ is
the strain corresponding too, . The stress corresponding to 0.2 % strain on the stress-
strain curve can be considered as the yield stress. This implies that for &, = 0.002, the
corresponding stress is the compressive allowable yield stress of the material. Eq. (2-7) is
re-arranged to calculate the tangent modulus of elasticity ( E,) corresponding to a stress &

as,

E, =97 - e (Zymiyt 2-9)
de o

n
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Since it is difficult to calculate the stress corresponding to a given strain by using Eq. (2-
7), the equation is re-arranged as,

Ty gyt e L E i (2-10)
c, O, o, m o,

where B =(1+1/m)""™ —~1+1/m)™ and k =0.79044m - 0.06977 .

From Figure 2-5, it is observed that, for a given strain & , the corresponding tangent
modulus of elasticity E,, and the stress o, in the skin are calculated using Egs. (2-9)
and (2-10), respectively. Similarly, E,, and o, in stringer are calculated.

Consider one skin-stringer panel as shown in Figure 2-2. The load applied on the

stiffened wide column under axial compression is given by:

Q = O g Ask + O Ast (2'1 1)
A
> 2.5 40, {_'} (2-12)
Ask Ask

The effective skin area is given as,

Ask = tsbe | (2-13)
The axial load intensity on the panel is expressed as,

N= Q (2-14)

Substituting Eq. (2-13) and Eq. (2-14) into Eq. (2-12), we obtain:

Nb, A4, »
=, +0,| 2-15
t b O sk O-sl[ A;k:l ( )

s7e

Subsequently, the skin thickness can be obtained as,

N
be
t, = (2-16)
o4 t+o [ﬁ}
!
S S Ask
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It is noted that a suitable width ratio I:b—s} is set before starting the optimization process.

e

According to the plate theory [1-3], the stress in the skin is given by,

t
Oy = KnE(b—s)2 2-17)

e

where X is the buckling coefficient and 7 = ft , is the Plasticity correction factor. The

value of K is in the range of 3.62-6.32. Effective skin width is calculated using Eq. (2-17)

as,

KnE
O sk

be =t.\'

(2-18)

The global buckling mode of failure given by Euler-Engesser equation can be written as,

2
Nz E,

- 2-19
(L/p)* —

e

where ¢, L and p= \/g are the end fixity coefficient, the length of the panel and radius

of gyration, respectively. The panel is composed of the skin and stringer elements with
different stress-strain characteristics. The tangent modulus and the value of stress in Eq.

(2-19) are the effective values and can be described as below:

O sk + o-st [}ijl
Ask
1 + I: A.\‘t ]
Ask

It is noted that equal strain ‘€’ is experienced by both skin and stringer.

Effective Stress, o, =

(2-20)
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Etsk + Etst [_l:|
Effective Tangent Modulus of Elasticity, E,, = sk (2-21)
1+ —
Ask
Substituting Eq. (2-20) and Eq. (2-21) in Eq. (2-19) and re-arranging the terms, we

obtain,

E E A
Lcal =ﬂ'\/ sk T Lust (Ast/ sk) i (2_22)

Og tO0g4 (Ast /Ask) A
where I is the moment of Inertia of panel and 4 = 4, + 4,,, is the total area of the panel.

From Figure 2-5, it can be observed that the strain is decremented from &, 10 &, 4ireq

until the required panel length is achieved, i.e. (L, = L). The optimum values for the

design variables k,,k,,k;,k, obtained during this optimization are used to define the
stringer dimensions.

2.4 CALCULATION OF LOADS

The axial load intensity N, obtained from the aerodynamic loads, is the main input
to the optimization problem. The panel length (L), the material properties of the skin and

stringer, E, o, and m (elastic modulus, allowable compression yield stress and material

characteristic index, respectively), stiffening ratio (SR), width ratio (BR) and surface load

intensity w, are the additional inputs to the optimization problem [20,21]. For a known

t, and b, values, the effective skin width is calculated using the width ratio as,

b, =2 (2-23)
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The effective stress (o, ) in the skin-stringer panel due to compressive axial load intensity

N can be obtained using Eq. (2-15) and Eq. (2-20) as,

o, __N_H 224)
t,(1+SR)| b,

2.4.1 Calculation of Column Buckling Allowable Load of the Panel, N,

Buckling allowable load of the skin-stringer compression panel is calculated as below:
(i) If the stringer is connected to the skin with standard rivets, the horizontal distance
between two rivets (taken from the rivet center line) is given by:

By =2(b, —e,) (2-25)

b

where ‘e,’ is the horizontal distance between the fastener center line and the stringer

edge. Now, the total new effective width can be written as,
b, new =b, + By (2-26)
This new effective width b,,,., should be greater than b, and hence, a constraint is
considered on the new effective width [20].
(ii) The crippling stress, o, of the stringer section is calculated using the empirical
equations. The entire section is broken down into individual segments. Segments with
width ‘b’ and thickness ‘¢ having one free edge or no free edge are identified. The
allowable crippling stress for each segment ‘n’ is calculated using the following empirical
relations [1-3] as,

(a) For segment ‘n’ with free edge,

t, VE

n

-0.7735
g
Oon =0.61210,, [2"— 2" } (2-27)
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(b) For segment ‘#’ with no free edge,

b -0.7882
n |Feyn
Ocon =1'181900yn[7’— —E—jl (2-28)

n

where o, and E, are allowable compression yield stress and modulus of elasticity of

segment ‘n’, respectively. The allowable crippling stress for the entire section of the
stringer is computed by taking the weighted average of the allowable for each segment

as,

Z bntn Ocen
g, =L nncn (2-29)

ce T antn

The cut-off or maximum crippling stress for composite sections like J-sections and
Z-sections should be limited to 0.9 o, unless test results are obtained to substantiate the

use of higher crippling stresses [3]. Hence, a constraint is placed on the upper limit value

of the crippling stress o, in the optimization routine.

The allowable column buckling stress o, is calculated using the Johnson-Euler

column buckling equation as [1-3],

Ocg =0 ————5 (2-30)
. L I N .
where I, L =T ,cand p= —A— are moment of inertia of the panel, effective length
c
between the rib supports, end fixity coefficient and radius of gyration, respectively. The
column buckling allowable load of the panel is given by:

o4
b

Nop = (2-31)

5
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2.4.2 Calculation of Rivet Pitch to Avoid Inter-Rivet Buckling

The inter-rivet buckling theory is the same as that for buckling of a flat plate or
sheet as a column with two fixed edges at each end (at rivet). Figure 2-6 shows the inter-

rivet skin buckling phenomenon [1].

— A
! g
—
—
—_— | -~
} N <l
stringer

Figure 2-6: Inter-rivet skin buckling [1]
The buckling of skin between two successive rivets is eliminated by selection of suitable
rivets and calculating the required rivet spacing or pitch in length direction of the panel.

The inter-rivet buckling stress can be estimated using Euler equation as,

2
E
o, =2t = (2-32)
5
yo,
Considering a sheet of unit width with a thickness ‘. We have,
3 .I
I=t"/12,A=t and p=\/; = p=0.288¢
2
E
= o, =—af 2 (2-33)

ir L 2
0.288¢

Considering the distance between two successive rivets, usually referred as rivet pitch to

be “s’, the inter-rivet buckling stress is given by:
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2
o, =09c¢, E, [’—] (2-34)
S

where ¢, is the end fixity coefficient. By equating the inter-rivet buckling stress to
crippling stress of the section (o, ), the rivet pitch ‘s’ is calculated. Some typical values
of ¢, taken for different rivet heads are ¢, = 4 (for flat head rivet), ¢, = 3.5 (for spot
welds), ¢, =3 (for Brazier type rivet) and ¢, = 1 (for counter-sunk).

2.4.3 Effect of Beam Column Eccentricity

In order to incorporate the effect of beam column eccentricity in the calculation of
compression bending loads N, and N, for up-bending and down-bending of the

panel, it is required to calculate the Euler inelastic buckling allowable load [1-3]. It is

calculated using Euler equation as,

N, ="k (2-35)

where E, and L, are the effective tangent modulus of the panel and the effective length

of the panel, respectively. The tangent modulus is calculated using Ramberg-Osgood
equation [23] as,

E, = E (2-36)

3 o, mt
1+—m
7 [ Oo7 }

where m, E and o,, are the material characteristic number, modulus of elasticity and

stress value corresponding to the secant modulus of 0.7E on the stress-strain curve.

Now, using Eq. (2-21), the effective tangent modulus value for the panel is

calculated as,
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_ E' skin + El stringer (SR)
"* (1+SR)

(2-37)

2.4.4 Calculation of Compression Allowable Load Intensity for Up-
Bending at the Panel Center Span (Compression in Skin), N,

An iterative process is required to obtain the value of axial compression stress oy . The
iteration steps are defined as below:

(i) Initialize the value of the axial compressive stress. A recommended initial value would

be the effective stress in the panel, o,

ooy =0, (2-38)
(ii) Find the corresponding total axial load

Pow=0Ccyd (2-39)
(iii) Evaluate the tangent modulus of elasticity for the skin material under axial

compressive stress using Ramberg-Osgood equation

E, = £ (2-40)

t skin 3 m-1
o
1+=m -2
7 |07

(iv) Obtain torsional spring parameter u;

Poa(L)?
T = a.xxal( ) (2_41)
Et skinI
(v) Calculate the bending moment parameter BM = 1(‘/2)2 corresponding to uy value
wO

from the following empirical relations [2,20]:

BM =6x107(u;)* —8x1075 (127)® +0.0007(1;)? +0.0032, + 0.0726
(for 0< uy; £11.958)
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BM =-7x107° (z)* +0.0103(sp)° —0.346(pu;)? +4.42624, —19.449
(for 11.958 < u; <18.297)

BM =1.0
(for puy >18.297)

(vi) Find the compression bending moment

M, =BMw,(L)> (2-42)

comp
Beam column eccentricity has a pronounced effect in the system stability of these types

of structures. This can be clearly observed in Figure 2-7 which has an initial eccentricity

‘e’. The value of ‘e’ is usually iT(SIE)—O [3]. In this study, a sinusoidal imperfection with

amplitude ‘e’ has been considered. The presence of this sinusoidal imperfection increases

the compressive bending moment occurring due to bending.

X Nx
//////// /

/ //N//// /
z x

Figure 2-7: Beam column eccentricity ‘e’ [3]
For a beam subjected to axial load N and with an initial sinusoidal eccentricity, ‘e’ at the

centre of the panel, the bending moment induced in the panel can be easily shown to be,

_Ne
l-y

M

(2-43)

e
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where y =Ni and N, is the Euler inelastic buckling allowable load in the column as

calculated in Eq. (2-35). Now, the total compressive bending moment is given as,

M =M omp M, (2-44)

comp
(vii) Now, calculate the corresponding bending compression stress (in skin)

M total Y

Tmax = (2-45)
where Y is the vertical position of the upper skin surface from neutral axis.
(viii) Finally, calculate maximum compression stress

O maxskin = O ¢t + b max (2-46)

Steps (i) to (viii) are repeated to make the absolute difference (AS) between the maximum

compressive stress in skin o, 4, and allowable column buckling stress oz to be
minimum or within a specified tolerance (Ao, )
AS = IO' max skin — O CBl (2-47)

At the end of step (viii), if the difference AS is greater than Ao, steps (i) to (viii) are
repeated with modified o/, as below:

Oty =0cy —0.5AS ; when 0 im > Ccs

Ocy =0y +0.5AS ; when oy in <OCcp
(ix) Calculate compression allowable load intensity N,_;, for the up-bending at panel

center span (compression in skin)

ocy 4
Nup =

(2-48)
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2.4.5 Calculation of Compression Allowable Load Intensity for Down-
Bending at Supports (Compression in Stringer QOutstanding
Flange), N,

An iterative process is required here as well to obtain the value of axial compression
stress o, . The iteration steps are listed as below:
(i) A recommended initial value here would be the axial compressive stress o
calculated in the previous section 2.4.4.

Ocp =%y (2-49)
(ii) Find the corresponding total axial load

P..=0,p4 (2-50)
(iii) Evaluate the tangent modulus of elasticity for the skin material under vaxial

compressive stress using Ramberg-Osgood equation

Etskin m—l (2-5 1)
142 [—GCD }
Oo7
(iv) Obtain torsional spring parameter
P axial (L)2
= axial 7 2-52
Hrr E 1 ( )
. — M .
(v) Calculate the bending moment parameter BM = 0 corresponding to u value
Wo

from the following empirical relations [2,20]:

BM =5x107 (uzp)* —1x107° (pe ) +0.0002(papz)? +0.0008 2 +0.0779
(for 0 < upe <17.036)

BM =0.0003(tz¢ ) —0.0193(pupz )? + 0.4255 7 —3.0216
(for 17.036 < p7 <29.281)
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BM =0.4
(for pipy >29.281)

(vi) Find the compression bending moment

M, =BMwy(L)* (2-53)

comp
Additional bending Moment induced in the panel due to sinusoidal imperfection is given
by Eq. (2-43). Hence, the total compressive bending moment becomes,

Mtotal = Mcomp + Me (2'54)

(vil) Now, calculate the corresponding bending compression stress (in stringer
outstanding flange)

M, @, +b, +t,/2+t,/2-Y)
Oy max flange — = Ia / (2'55)

(viii) Finally, calculate maximum compression stress
O max Sflange ~ Ocp O hmax Jflange (2'5 6)
Steps (i) to (viii) are repeated to make the absolute difference (AS) between the maximum

compressive stress in SKin Oy gunge @04 Orc/our frange 10 be minimum or within a

specified tolerance (Ao, ).

AS=|0'

(2-57)

max flange — @ cc/out. flange
Occ/out.flange 1S the allowable crippling stress in the stringer outstanding flange. This is

calculated using Eqgs. (2-27) or (2-28). At the end of step (viii), if the difference AS is

greater than Ao, , steps (i) to (viii) are repeated with modified o as below:

! —— .
Ocp =0cp —0.5AS ; when o >0

max flange cc/out. flange

’ .
O¢cp =0¢p +0.5AS ; when o <o

max flange cc/out. flange
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(ix) Calculate the compression load intensity N, for the down-bending at supports
(compression in stringer outstanding flange)

ocpd

N = b

(2-58)

R
The last and important constraint in the optimization routine is that the minimum value of

the 3 loads N,,,,N,,and N, should be less than or equal to the applied axial load

intensity for conservative and safe design of the panel. In other words,
Npin = Min (N, Ny s Noys) SN (2-59)
Since the objective function is minimize the mass of the panel, it is ideal to set a
value on the moment of inertia of the panel (/) greater than zero during the optimization.

This constraint ensures that the optimization process does not give the best optimum

result with ‘zero’ mass for the panel.

2.5 VALIDATION OF RESULTS AND CONCLUSIONS

The process is programmed in MATLAB [44] environment and its optimization
toolbox has been employed as optimizer. The optimizer uses Sequential Quadratic
Algorithm during the optimization. The results have been compared with existing skin-
stringer panels taken from different jet aircrafts and also with results of the conceptual
design methodology developed by Bombardier Aerospace [20,21].

(1) Table 2-1 shows the comparison of results for panel defined at bay#2 with
stringer#4 of Aircraft 1 (AC1). Table 2-2 shows the comparison for panel at bay#3 with
stringer #14 of AC1 and Table 2-3 shows the comparison for panel at bay#5 with stringer

#11 of same aircraft, AC1. The stringers used are Z-stringers with equal flanges. The
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accuracy of the optimization has been tested by repeating with different initial points. For
the above 3 test panels, Figures 2-8 to 2-10 show that, the objective function converges to
approximately the same optimum value for different initial points. Tables 2-1 to 2-3 show
that a good agreement exists between the present results and those in literature [20]. A
minimum mass of 2.1152 lbs, 3.0171 Ibs, 3.1709 Ibs has been obtained for the above 3
panels, respectively. It should be noted that the optimum values obtained for k,,k,,k, are
slightly different for the 3 panels of ACl. These constant parameters provide the
maximum value for the moment of inertia during the optimization. |

Material Properties for Aircraft 1 (AC1) are:
For Skin: o, =76000psi ; Ey =10.6e6psi;m =12
For Stiffener: o, =83000psi; E,, =10.9¢6 psi ;m = 23

(2) Optimum results for panel#2 of Aircraft 2 (AC2), panels #3 and #4 of Aircraft
3 (AC3) are given in Tables 2-4, 2-5 and 2-6, respectively. It can be observed from these
tables that a good agreement exists between the present results and those in literature. A
minimum mass of 3.8751 Ilbs, 4.3950 Ibs and 4.4652 Ibs has been obtained for the above
3 panels, respectively. The stringers used are Z-stringers with equal flanges. Again, the
optimum values for k,,k,,k; are slightly different for these 3 panels.
Material Properties for Aircraft 2 and Aircraft 3 (AC2 and AC3) are:
For Skin: o, = 68000psi ; E; =10.5e6psi;m=12
For Stiffener: o, = 75000 psi; E;, =10.5e6 psi;m = 25

(3) Optimum results for panels at bay#0-22.5, bay#106.4-127.3 and bay#274-294

of Aircraft 4 (AC4), respectively are given in Tables 2-7 to 2-9. A minimum mass of
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1.7050 Ibs, 1.9098 Ibs and 1.4659 Ibs has been obtained for the above 3 panels,

respectively. The stringers used are Z-stringers with equal flanges. The optimum values

obtained for k,,k,,k, are different for these 3 panels.

Material Properties for Aircraft 4 (AC4) are:

For Skin: o, = 75000psi ; E =10.5e6psi; m =23

For Stiffener: o, = 75000psi ; E;, =10.5¢6 psi;m = 23

Table 2-1: Comparison with Bay#2, Stringer#4 of Aircraft 1

AC1| CD | PM
N (ib/in) | 8855 | 8855 | 8855
L(in) |22.65]22.65] 22.65
b (in) | 488 | 47 |43222
t (n) | 0.15 [0.173 | 0.1477
I(in") | 0436 [ 0.440 | 0.3401
A (in?) | 1279 | 1.132] 0.9574

k1=2.0796; k2=0.6856; k3=0.7
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Figure 2-8: Iteration number vs objective function
for different initial points for Bay#2, Stringer#4 of Aircraft 1
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Table 2-2: Comparison with Bay#3, Stringer#14 of Aircraft 1

ACl | CD | PM
N (Ib/in) | 10140 | 10140 | 10140
LGn) | 267 | 26.7 | 26.7
b (in) | 426 | 427 |4.6424

t,(in) | 0.145 | 0.174 | 0.1664
I(in*) | 0419 | 0.463 0.5534
A (in?) | 1.097 | 1.124 1.1584

k1=2.0760; k,=0.6627; k3=0.7
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—¢—initial point 3
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Figure 2-9: Iteration number vs objective function
for different initial points for Bay#3, Stringer#14 of Aircraft 1

Table 2-3: Comparison with Bay#5, Stringer#11 of Aircraft 1

ACI | CD | PM
N (Ib/in) | 10594 | 10594 | 10594
L(n) | 271 | 27 | 271
b (in) | 48 | 489 | 46791

t (in) | 0.17 [ 0.186 | 0.1709
I(in*) | 0446 | 0.532 | 0.5943
A (in?) | 1272 | 1.337 | 1.1995

k1=2.0733; k,=0.6465; k3=0.7

37



-
Q
o

—O— initial point 1
—a—initial point 2
—¢initial point 3

H [o] o
o o o

Ohective function
{mass of panel in Ibs)

N
[=]

0 2 4 6 8 10 12
fteration number

Figure 2-10: Iteration number vs objective function
for different initial points for Bay#5, Stringer#11 of Aircraft 1

Table 2-4: Comparison with Test Panel#1 of Aircraft 2

AC2[ CD | PM
N (Ib/in) | 16200 | 16200 | 16200
L(in) | 260 | 260 | 260
b (in) | 50 | 49 |4.8873

t.(in) | 0.15 | 021 |0.2084
b,(in) | 1.0 | 1.13 |0.9290
t.(n) | 0.16 | 0.15 |0.1459
b (in) | 2.5 | 2.65 |2.1576
t (i) | 0.16 | 0.153 | 0.1104

k1=2.0383; k;=0.5042; k3=0.7

Table 2-5: Comparison with Test Panel#3 of Aircraft 3

AC3 | CD | PM
N (ib/in) | 18600 | 18600 | 18600
L@Gn) | 250 | 250 | 25.0
b (in) | 535 | 532 | 53260

t.(in) | 0.196 | 026 |0.2256
b(ny | 1.0 | 12 |0.9962
t (in) | 0132 | 0.185 [ 0.1579
b (n) | 25 | 2315 |2.3726
t (i) | 0.132 | 0.119 | 0.1206

k1=2.0428; k2=0.5354; k3=0.7
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Table 2-6: Comparison with Test Panel#4 of Aircraft 3

AC3 | CD | PM
N (Ib/in) | 19000 | 19000 | 19000
LGn) | 25.0 | 25.0 | 25.0
b.Gin) | 535 | 54 |5.3128
t Gn) | 0.196 | 027 |0.2298
b.Gn) | 1.0 | 125 |0.9567
t(in) | 0.132 | 0.189 | 0.1608
b (m) | 2.5 | 2519 [25221
t,(in) | 0-132 | 0.138 [ 0.1200

k1=2.0331; £,=0.4896; k3=0.7

Table 2-7: Comparison with Bay#0-22.5 of Aircraft 4

AC4 | CD | PM
N (Ib/in) | 6840 | 6840 | 6840
L(in) |22.05]22.05]| 22.05
b (in) | 3.64 | 3.89 |4.0442
t Gn) | 0.12 | 0.13 | 0.1307
A (in?) | 0796 | 0.77 | 0.7927

k1=2.0774; k2=0.6676; k3=0.7

Table 2-8: Comparison with Bay#106.4-127.3 of Aircraft 4

AC4| CD | PM
N (Ib/in) | 8333 | 8333 | 8333
L(in) |2235|2235] 22.35
b (in) | 3.73 | 3.23 | 4.0099
t.(im) | 0.14 | 0.15 | 0.1456
A (in®) | 0781 0.754 | 0.8760

k1=2.0675; k;=0.5991; k3=0.7
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Table 2-9: Comparison with Bay#274-294 of Aircraft 4

AC4 | CD | PM
N (b/in) | 4400 | 4400 | 4400
L(@n) |21.95]|21.95| 21.95
b (in) | 3.64 | 3.42 | 3.5283

t.Gn) | 0.1 |0.115]0.1294
A (in?) | 0.638] 058 |0.6846

k1=2.0703; k;=0.5988; k3=0.7

ACI- Aircraft 1

AC2, AC3- Aircraft 2, Aircraft 3

AC4- Aircraft 4

CD- Conceptual Design developed by Bombardier Aerospace
PM- Present Method
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CHAPTER 3

OPTIMIZATION OF A LOWER SKIN-STRINGER
PANEL BY IMPLEMENTING DAMAGE
TOLERANCE ANALYSIS

3.1 IDENTIFICATION OF DESIGN METHOD

The lift generated by the wings opposes the weight of the aircraft, and thus
generates bending. Depending on their location, stiffened panels that make up the wing
are mainly loaded in compression and tension. The ability to resist the compressive load
was studied in Chapter 2. The ability to resist the tensile load is evaluated mainly by the
damage tolerance analysis.

Fracture is a potentially catastrophic failure mechanism, characterized by unstable
and extremely fast crack growth and is generally the final event of a process during
which the level of structural strength is gradually reduced by the presence of growing
cracks. The starting point is often a small flaw in a region of stress concentration, which
may later develop into a crack. If the structure is submitted to cyclic loads, then the crack
grows initially at very low rates, in a process known as fatigue crack growth. Stable and
slow fatigue crack growth will take place until the crack reaches a critical length. At this
moment, the structure is no longer capable of withstanding the service loads and fracture
occurs [24,25].

For many years, the safe-life design method is used to design a structure for these
types of failures. The objective of this method is to make the time required for the
initiation of the cracks longer than the operational life of the structure. However,

initiation is a subjective concept. A great deal of uncertainty is associated with the
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laboratory determination of the time required for the crack initiation. It is virtually
impossible to ensure a crack free operational life for most structures. This lead to the
introduction of a new method called the fail-safe design. In order to prevent catastrophic
failure due to unexpected cracking, the structure is designed to be fail-safe. This can be
achieved by utilizing redundant structural components. In the event of failure of one of
the members, whether due to fracture or any other mechanism, the load is safely re-
distributed to other members.

However, despite its effectiveness in the prevention of catastrophic failures, fail-
safe design cannot be viewed as an evolutionary alternative to safe-life design, because it
does not incorporate any new method or an idea to study the mechanics of the cracking
process. The real alternative to safe-life design is the Damage Tolerance Design. The
tests and analyses required to demonstrate compliance with damage tolerance princ;iples
are based on the implicit assumpﬁon of the presence of a single isolated crack. Hence, the
main advantage in comparison with safe-life design is that it has a quantitative basis in
the form of size of a crack as opposed to the rather subjective concept of crack initiation.
Damage tolerance design also incorporates fail-safe design concepts in order to prevent
catastrophic failure in the event of a crack growing undetected [25].

Fracture Mechanics is the mathematical tool used in damage tolerance analysis to
study fatigue crack propagation. It studies materials and structures which contain flaws in
the form of detectable or visible cracks. For all high strength materials used in airframes,
Linear Elastic Fracture Mechanics (LEFM) theory can be applied [24]. The fundamental

postulate of LEFM states that, a parameter called the stress intensity factor (SIF), which
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is a measure of the strength of the stress singularity at a crack tip, can be used to

determine the crack behaviour.
3.2 FUNDAMENTALS OF FRACTURE MECHANICS

In 1920, Griffith published the first systematic investigation of the fracture
phenomenon. He studied the energy balance in a plate of elastic material submitted to a
remote stress o, containing an internal crack of size 2a. He postulated that if crack is
increased by a certain amount da, the total potential energy stored by the system
decreases due to the release of elastic strain energy, as expressed by the relation [24],

dT

= -G 3-D
where T is the total potential energy and G is the strain energy release rate. Conversely,
he stated that for fracture to occur, a certain amount of work, denoted by S, has to be
expended. According to Griffith, the energy balance of the fracture process can be

expressed as,

ZI_Z + % =0 (3-2)
where both energy terms are defined by unit thickness of the plate. In essence, the stress
intensity factor serves as a scale to define the magnitude of the stress around a crack tip.
It is a function of the crack size, the type of loading and the geometrical configuration of
the structure. The fundamental postulate of the LEFM is that the behaviour of the crack is
determined solely by the SIF. A fracture criterion based on the stress intensity factor can

therefore be written as,

K=K (3-3)
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where KX is the stress intensity factor at the crack-tip and K . is a critical value, called the

Fracture Toughness, which depends on material, loading and geometry. In other words,
fracture will occur when the stress intensity factor reaches a critical value K ,-. By
studying the elastic work around a crack tip, Irwin has a derived the relationship between
the stress intensity factor and the energy release rate which is given as below:

E for plane stress

= % 2 for plane strain (3-4)
a—r F |

where E is Young’s modulus of the plate material and v is the Poisson’s Ratio. This
relation is the key to LEFM. It provides the link between energy balance and crack tip
stress field formulations which, in practical terms, means that if the strain energy release
rate is known, the stress intensity factors can be determined. The deformation modes in a
cracked structure are characterized by the relative displacements of the crack surfaces.

Figure 3-1 shows three basic deformation modes.

» \i\_Moclel Maode I} Mode lll
opening mode sliding mode tearing mode

Figure 3-1: Crack opening modes [24]
Mode I is the opening mode or tensile mode where the crack surfaces move
directly apart. Mode II is the sliding or in-plane shear mode where the crack surfaces

slide over each other in a direction perpendicular to the crack front. Mode III is the
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tearing or anti-plane shear mode, where the surfaces move away from each other and out
of plane. Mode I and II are by far the most common in engineering problems. The
notation for the stress intensity factor generally includes a subscript which denotes the
deformation mode with which it is associated. For example, K, is the stress intensity
factor associated with deformation Mode 1. Similarly, K, and K, denote the stress
intensity factors for Mode II and Mode III, respectively [3 9].

3.2.1 Numerical Methods to Evaluate Stress Intensity Factor

Full scale testing is the preferred method for demonstrating compliance with
damage tolerance requirements. However, it is expensive and time consuming. Numerical
analysis based on Fracture Mechanics theory, has been extensively used in the aircraft
industry as an alternative to full scale testing. The Finite Element Method (FEM) or the
Boundary Element Method (BEM) can be used to perform numerical crack growth
analysis based on LEFM concepts. Regardless of the numerical technique chosen, the
design starts with creation of a complex discretized model representing the structure.
Great care is required when creating such a model. Due to the presence of cracks, the
model contains stress singularities at the crack tips and therefore the discrtization around
the crack tips has to be fine, usually requiring a large number of elements. Moreover, the
accuracy of the stiffener attachment model is very important for accuracy of the stress
intensity factor predictions in stiffened panels. Finally, several iterations each simulating
a different crack length has to be performed. The critical crack length corresponds to the
crack size at which the stress intensity factor K at the crack-tip equals or just starts to

exceed the critical value K . Using the initial and final (or critical) crack sizes, fatigue
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life of the panel is calculated. It is noted that, an initial crack is assumed to be already

present in the structure during the analysis [25].
3.2.2 Advantages of using BEM over FEM

Since its introduction in the late 1960s, BEM has matured into a powerful
alternative to FEM. BEM uses an analytical approach towards the solution taken by the
édoption of weighting functions called fundamental solutions which satisfy the governing
equation. In most cases, a formulation is obtained which does not contain integral over
the problem domain and consequently does not require domain discretization. Therefore,
only the boundary of the problem needs to be discretized into elements, resulting in
substantial reduction in model préparation time as well as in a much smaller algebraic
system of equations that needs to be solved. A fine discretization is still required near
singularities. However, it is confined to the boundaries of the problem, requiring
significantly fewer nodes and elements than FEM.

Another important feature of BEM is that the functions that represent essential
and natural boundary conditions (displacements and stresses in elasticity theory) appear
independently in the integral equation which is the basis for this method.

However, the main disadvantage of BEM is that the application to a new problem
requires knowledge of the fundamental solutions of that problem. It also requires
designing the procedures to perform all the integrations, a task that involves a great

portion of the efforts to improve the accuracy of the method. However, moving from a

certain problem to another is easy in FEM.
BEM techniques are particularly advantageous for problems involving

singularities and moving boundaries such as crack propagation problems. If there is no
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local problem and the interest is in the solution of the whole domain, it is typically said
that the application of BEM, although feasible, would not be the best option. Since the
present problem is about finding the stress intensity factor and the corresponding stress

state around the crack tip, BEM is the right choice.
3.3 INTRODUCTION TO THE BOUNDARY ELEMENT METHOD

The elastic problem can be formulated through governing differential equations
i.e., using equilibrium equations, compatibility equations and constitutive equations. The
same can also be formulated in the integral form. To do so, several theorems which can
be grouped under the generic name of reciprocity theorems are required. These theorems
involve two tensional states; one corresponds to the actual problem and the other
corresponds to an auxiliary state that can be taken in a convenient form in order to
simplify the formulation of the actual problem under consideration. The theorem of
virtual work and the second theorem of Betti are the most interesting of these general
reciprocity theorems, because they lead to the two most effective numerical methods, the
Finite Element Method and the Boundary Element Method. BEM is the area of interest in
the present problem.

Consider an isotropic elasﬁc body in space, with domain Q and boundary T,
geometrically defined in terms of Cartesian coordinate system (x;,i =1,2,3). The body is
subjected to volumetric forces acting within the domain. Rigid body movements are
prevented by the application of displacement constraints at portions of the boundary.
Under these conditions, any cubic element within the body domain is strained and

stressed to certain extent. The state of stress in an element is defined by the stress tensor

o;; . The static equilibrium equation for any such element of the body is expressed as,
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oy, j+bi =0 (3-5)
where the first suffix in o; indicates the direction of the normal to the plane on which

the stress acts and the second suffix indicates the direction in which the stress acts and b;

is the applied body force per unit volume. The state of strain in any element can be

expressed by Cauchy’s infinitesimal strain tensor & as,

1
EU =5(u,~,]~ +uj’i) (3-6)

where u; are the displacements which are assumed to be small, such that the squares and

products of their partial derivatives with respect to the cartesian axis can be neglected.
The state of stress and strain is related through stress-strain or constitutive equations of

the material as,
o =ASje +2uE; 3-7

where &;; is the Kronecker delta whose properties are,

0 i#J
Sij ={ . (3-8)

1 i=j
A and u are known as Lame’s constants. They can be expressed in terms of the material

Young’s modulus E and Poisson’s ratio v as,

A= __VE (3-9)
A+ v)(1—-2v)
E
=20+ (3-10)

It is noted that the repeated suffixes are summed. Eq. (3-7) is sometimes referred to as the

generalized Hooke’s law. Differentiating Eq. (3-7) and re-substituting it into Eq. (3-5)
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and replacing the strain components by their displacement derivatives using Eq. (3-6),
gives the well known Navier’s equation as given below:

1 1
muuj +uj,,-,.+;bj =0 (3-11)

Navier’s equation is the governing differential equation of elasticity. It enforces static
equilibrium and is expressed in terms of displacements. It is particularly convenient for
the analysis of problems in which displacement boundary conditions are to be imposed.
Frequently, however, boundary conditions in terms of stresses at the boundary have to be
specified. Tractions, denoted by ¢;, are stresses across a boundary surface. They can be
expressed as,

li = 0N (3-12)
where n; is a vector normal to the portion of the boundary surface where the tractions
are being evaluated. Tractions and Displacements are the primary variables in the direct
boundary element formulation [25,27].

3.3.1 The Boundary Integral Formulation for Elasticity
The direct boundary integral formulation for elasticity can be derived using one of

the reciprocity theorems mentioned earlier. The second theorem of Betti is used here. It is

stated as below:

Let an elastic body occupy a domain Q with boundary I'. If two distinct self-
equilibrated states, (u;,#;,b;) and (u;,t; ,b: ) exist for the body, then the work done by
the boundary tractions and body forces of the second state (*) on the displacements

produced by the first is equal to the work done by the boundary tractions and body forces
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of the first state on the displacements produced by the second. The theorem can be

proved using the divergence theorem and can be written as,

fuitidr + [ub;d= [ut;dl + [u;b;dQ (3-13)
r Q r Q

The above equation is re-arranged in the form of generalized Green’s formula as,

Jouidi —uib)dQ = [(ujt; it} ydr (3-14)
Q r

Let us consider that the domain Q is contained within a general region Q" with -

the same elastic properties and bounded at infinity by I as illustrated in Figure 3-2.

T (=)

Figure 3-2: A domain within a general region bounded at infinity [25]
The displacements u; and tractions t; are chosen to satisfy the governing

Navier’s equation given in Eq. (3-11) for the special case of a body force b;

corresponding to a unit point body force such that,

1 .

' 1«
aTZT)ui’ij +uj’ii+;bj =0 (3-15)

A unit point body force can be conveniently defined as,

bi =AX - X e; (3-16)
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where A(X - X ') is the Dirac delta function, X "e Q" is the point where the unit load is
applied, X e Q" is any field point and e; is the unit vector component corresponding to

a unit point force in the direction i applied at X ". The definition properly represents a

unit point force applied to a point in the domain o} , because the Dirac delta function has

the following property,

[g0ax - xHdQ" (X) = g(X) (3-17)
Q*

The divsplacements and traction fields, corresponding to the fundamental solutions

can be written as,
E 3

* '
Uu; —u]5,] =Uy(X,X )5,je, (3-18)

*

t; =136, =Ty(X, X )dye; - (3-19)

where U ij (X, X ') and Ty (X, X ') represent the displacements and tractions in the j
direction at a field point X, corresponding to a unit point force acting in the i/ direction
applied at the source point X U j (X, X ) and Ty (X, X ') are known functions, called
Fundamental Solutions.

Eq. (3-14) can now be re-written by substituting b,-* by the Dirac delta
representation as in Eq. (3-16), u: and t: by their fundamental solutioné represented by
Egs. (3-18) and (3-19) and defining X € O and x € T" to be the integration variables as,

Jlu: COAC = XY = U3y (X, X )b 1dX) = [0, X )t j(6) = T (0, X Yt ()} ()
Q r
(3-20)
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which corresponds to a unit point force acting in the i direction. Rearranging and using

the properties of the Dirac delta function, Eq. (3-20) becomes,

ui(X')= [Uy(n X Y j()d0(x) = [Ty (6, X Y (0)dT(x) + [U (X, X )b (X)dQAX)
r r Q
(3-21)

The above Eq. (3-21) is a well known Somigliana’s identity. It provides a continuous

integral representation for the displacements at any interior point X " in the domain Q.

The strains at any interior point can be obtained by differentiating the displacements in

above Eq. (3-21) with respect to the source point X "to give,
uig (X ) == [U e (6, Xt ()0 (x) + [T (5, X Dt 5 ()l ()
r r

— [Uy (X, X )b ;(X)dAX)
Q
(3-22)

where the derivatives of the fundamental fields Uy; ; and Tj; ; are taken with respect to

the field point. Finally, Somigliana’s identity for stresses can be obtained by substituting
Eq. (3-22) into Hooke’s law [Eq. (3-7)] resulting in the following integral equation,
oy (X') = [Dyy (2, X Y (R)AT(x) = [ Sy (x, X Y (x)dl () +
r r

. (3-23)
+ [Dyy (X, X )b, (X)dQUX)
Q

where Dy;; and Sy; contain several derivatives of Uy x and Tj; p respectively, in

addition to elastic constants.
The point force fundamental solutions used in the preceding equations are known
as Kelvin’s solutions. For an isotropic homogeneous material under plane strain

conditions, fundamental solutions as given by Cruse [25-28] are,
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1+v

U,.j(x,x )=—m

{3-av)s, 1n(r)-r.r,} (3-24)

11

T,j(x,x )=—47z(l—v)r

fa-28, +27.r Irun, ~-2)n,r, —nr 1} (3-29)

where x is the source point, x is the field point, »n is the unit outward normal to the

boundary at the field point x, and r(x,x) represents the distance between the source

point x and the field point x.

r(ex)=lrmn (3-26)
ry=x;(0) —x;(x) (3-27)

The derivative of r with respect to the field point can be evaluated as,
r;=-=4 (3-28)

The fundamental fields Dy; and Sy;; are given by,

. 1 1
Dkij(x’x )= 4ﬂ.(l_v)7{(l_2v)(5ijr,k +5kir,j —5jkr,i)+2r,ir,jr,k} (3-29)
(_or
2"6‘;[(1_2")5;]",/: +V(5ik",j +5jkr,i)_4r,ir,jr,k]
| E 1 :
Spi (X% ) =—————1+2v(nr ;v +n;r;r 3-30
k]( ) 47[(1—\/2)7‘2 ( g0k ', ,k) ? ( )
+(1-2v)(2 mrr; + njé',.k +ni5jk)—(1—4v)nk5,.j)

The fundamental solutions for plane stress can be obtained by introducing the modified

Poisson’s coefficient v' and Young’s modulus E * as defined below:

*

V=l B —EQ+v?)
1+v
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Somigliana’s identity is valid for any source point within the domain €. In order

to obtain a solution for the posed boundary value problem with the boundary element
method, it is necessary to apply the equation for a source point x el. However, when
x T, the boundary integrals in equation has a singularity, because the fundamental
solutions Uj; and Ty given in Egs. (3-24) and (3-25) are singular when r(x',x) —>0.
The same does not happen with the domain integrals which are not singular because for

source points at the boundary, r(x',X )# 0. The boundary displacement equation for ‘
source point on the boundary can be written as [25-27],
cyu,(x) = IUJ (2 ) ()T (%) = [T e x ()T () + jU,.j (X, x)b ,(X)dUX)
r r Q
(3-3D)

where the coefficient ¢;; depends on the geometry of the surface. For a smooth surface,

1

3.3.2 Numerical Solution of the Problem

In order to solve the integral equations numerically, the boundary is discretized
into a series of elements over which displacements and tractions are written at a series of
nodal points. Writing the discretized form of Boundary Integral Equation at every nodal
point, a system of linear algebraic equations is obtained. Once the boundary conditions
are applied in known values of tractions and displacements, the systefn is solved to obtain
the unknown values of tractions and displacements. Isoparametric continuous quadratic

elements are used to discrtise the boundary as shown in Figure 3-3. Considering that
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body forces are absent for simplicity, the displacement and tractions which apply over

each element ; are defined as,
u=gu’ ;t=¢t/ (3-33)

where u/ and ¢/ are the element nodal displacements and tractions, respectively.

% O element node

T8 efement end paint

Figure 3-3: Discretization of boundary using continuous quadratic elements
A 3-node continuous quadratic element as shown in Figure 3-4 is considered to
vary from -1 to +1 so that Gaussian Quadrature can be used while solving the integrals.

Special Gaussian Quadrature is used for evaluating the integrals with singularity [40].

2

¢=0
X )
T_.x} \/ ¢=-1

Figure 3-4: Three-noded continuous quadratic element
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The shape functions for a continuous quadratic element are given as,

1
#=-5¢-D
¢y =(1-&%) (3-34)
b =€+

The displacements and tractions u and t are now represented as,

(3-35)

momomouﬂ
0 40 6,04

2
40 8,0 ¢30 i
<[085 s oall 3

Discretizing the boundary and substituting Eq. (3-35) and (3-36) into Eq. (3-31), the

following equation is obtained at any nodal point on the boundary:

NE
c'u +Z( j pdDu’ =3 ( J'U,-j¢dr)tf (3-37)
j=1 T Jj=1 r;

56



Note that the summation for j =10 NE indicates summation over all the NE elements

on the boundary and I'; is the boundary of jth element. u’/and t/are the nodal

displacements and tractions in element ; .

The integrals are solved numerically, since it is difficult to integrate analytically,
particularly if the elements are curved. The interpolation functions ¢,4,,4; are
expressed in a homogeneous system of coordinates as.shown in Figure 3-4 with £ as the

local coordinate. The coordinates need to be transformed from Cartesian coordinates of
the boundary to the nodal coordinates to define curved elements and this transformation
involves a Jacobian defined as,

2- 2
i) (e - ]
ar = \/(%J +[d§) dé =|J|d¢ , (3-38)

where J is called the Jacobian.

The sYstem of equations can now be represented in compact form as,

. N_. . N

cut+Y H wl=>GVt/ : (3-39)
J= j=1

N o N

Y HIuw/ =GVt (3-40)

j=1 j=1

where N is the number of nodes. The influence matrices H and G are defined as,

H =Y [1;67 (3-41)
J l“j
yis (3-42)

Hi=H +¢t  ifi=j

57



GV=Y [u;¢J (3-43)
J I'; :

The contribution for all i nodes can now be written in a matrix form to give the global

system of equations as,

Hu=Gt » (3-44)

The coefficients ¢’ can be obtained by rigid body considerations and the vectors u and t
represent the values of displacements and tractions before applying the boundary
conditions. The boundary conditions can be introduced by rearranging the columns in
and G, by passing all unknown displacements and tractions to a vector Y on the left hand
side. This gives final system of equation as,

AY =F (3-45)
where 4 is called the coefficient matrix, Y is the unknown vector containing the unknown
displacements and tractions on the boundary and F is the constant vector. On solving the
above system of equations, all the boundary unknown values are determined. Using
Eq. (3-21) and (3-23), displacements and stresses for any point inside the body can be
obtained using the complete solution of the boundary.

3.3.3 Numerical Example to Verify BEM Formulation
BEM formulation is implemented on a simple plate with unit thickness subjected

to tensile load of o =1000kg /cm? at both the ends. The length of the plate is L = 40cm

and width is W =20cm . The value of Elastic Modulus is E =2.1e6kg/cm? and the

Poisson’s ratio is v =0.25. The boundary of the plate is divided into 8 elements. To
avoid rigid body motions, atleast 3 displacement boundary conditions should be applied

for the structure. The meshing and boundary conditions are shown in Figure 3-5.
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Figure 3-5: Boundary discretization and applied boundary conditions

Solving the system of equations, the maximum displacement at extreme nodes
was obtained as 0.009592 c¢m. This result is in good agreement with FEM result, which
was found to be 0.00982 c¢m. Figure 3-6 shows the maximum displacement in the plate

obtained using PATRAN [45].

MSC.Patran 2006 r2 26-Apr-06 20:08:41
Fringe: Default. Static Subcasé, Displacel
Deform: Default, Static Subcase, Displace

default_Fringe :
Max9.82-003 @Nd |
Min 0. @Nd 26

default_Deformation
Max 8.82-003 @Nd 1

Figure 3-6: Displacements for a plate under tensile load at both ends
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3.4 APPLICATION OF BEM TO SKIN-STRINGER PANELS

Most of the cracks in aerospace structures occur in high stress concentration
regions like cutouts, edges or fasteners. Thin sheets of fuselage and wing structures
usually incorporate stiffeners to reinforce their strength. It is therefore desirable to
include the influence of these stiffeners when theoretically analyzing cracked panels if
the results are to be applied for practical structural configurations. The Boundary Element
Method is combined with the method of compatibility deformations to analyze the stress

distributions in cracked finite sheets reinforced by bonded stiffeners [24-38].
3.4.1 Derivation of Governing Equations

Let us define a set of rectangular Cartesian coordinates x,,x,,x;. Consider a flat
isotropic sheet with a boundary described by the contour I' in x=(x,,x,) plane. The
contour I' is directed such that the interior of the sheet is to its left-hand side. Tractions
(i.e. forces per unit thickness, per unit arc length) 7, (x), where (j =1, 2) corresponds to
the directions of x;,x, on the boundary I" and the sheet is loaded internally with force
per unit arc length f,(x) from the stiffener attachment over a line, L, . These loading
conditions are accompanied by a displacement field u ;(X) at points on the boundary I.
The variables ¢;,u; and f; (j =1, 2) in the configuration satisfying the integral equation
based on Somigliana’s identity of Eq. (3-31) is written as [35],

e (xo)u(x0) = [U s (x:x0)t,(x) ds(®) — [T, (x.x4)u,(x) ds(x)
r r

+tl jU ji (X:X) f; (x) ds(x) (3-46)

S Ly
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The coefficients ¢ ;(x) of the free term on the left hand side of Eq. (3-46) represent the

contribution due to the concentrated force itself.

Expressions for the fundamental displacement solution U ,(x,x,) and the
corresponding traction distribution T ;(x,x,) may be obtained from infinite sheet

solutions. Eqgs. (3-24) and (3-25) represent the fundamental solutions for displacement
and traction respectively, obtained for a concentrated force in an intact infinite sheet, also
known as the Kelvin’s solutions [25-28]. Alternately, a fundamental solution derived by
Erdogan [36] for a concentrated force in an infinite cracked sheet may be used. If the

finite sheet to be modelled has a crack at the same location, then the conditions of

T ;i(x,x)=0=t;(x) on the crack locus makes the contribution from the crack itself

identically zero to the boundary integral in Eq. (3-46). In this case, the crack need not be
included as part of the boundary T" and the solution of Eq. (3-46) will implicitly include
the presence of the crack, along with the associated singular stress field at each crack tip.
This integral equation will be used to represent a cracked sheet, using the Erdogan

fundamental solutions as given in the Appendix.
Consider the following reinforced sheet configuration shown in Figure 3-7. An

isotropic sheet of thickness ¢, and tensile modulus E; and Poisson’s ratio v having a
straight crack located at {—a <x, £+a,x, = 0} and has distributions of traction ¢, (x)
and displacement u,(x) on its boundary I". A stiffener is bonded to the sheet over the
locus L. The stiffener exerts a line distribution of force per unit arc length f;(x),
(J =1, 2) on the corresponding locus L, on the sheet, and itself experiences an equal

and opposite reaction force — £, (x) along its length.
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Figure 3-7: A skin-stringer panel reinforced by Z-type stringer with a crack
subjected to tensile load

The material and structural parameters of the stiffener are as follows; L is the
length of the stiffener, A, is the cross-sectional area, I, is second moment of area, E,, is

the tensile modulus, G,, is the shear modulus and D,, = E [, is the transverse flexural

rigidity. The conditions that the displacements of the sheet u;(x) and the stiffener uj’ (x)
are compatible with shear deflection of the adhesive layer of thickness 4, and shear

modulus G, glued over a width w, is given in terms of f;, the interaction force per unit

length as [35,37],

[ () - uj )] - [y (1) - w; (x1)] =wi(’_’;—“[f,- ®)- £, D1 (47)

where x and x"are distinct points on the stiffener locus L, . The quantity f; (x)/w, in
the above equation corresponds to the shear stress in the adhesive layer. Combining Egs.
(3-46) and (3-47) gives the compatibility equation for points x and x on the stiffener

locus L, as,

[/ () - w (0] = AU, 1,00 AT 1,0 )ds()
r

2 . ..
= AU, [ EE + 1, &) f, G 649

s L w G

a a
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The displacements u] of the stiffener in the above Eq. (3-48) are most easily expressed

in terms of an arc length parameter y measured in the longitudinal direction from one end

as shown in Figure 3-8. The relative displacements of a thin stiffener due to a body force
distribution — £ (y) per unit length (0 < y < L, ) are given by,
u (¥) =4, (0) = [v, (¥) - (0)]cos @ - [v, () - v, (0)]sin @ (3-49)
Uy (¥) =45 (0) = [v;(¥) = (0)]sin @ + [v, (y) = v, (0)] cos ¢ (3-50)
where ¢ is the angle of orientation of the stiffener with respect to the x, -direction, and

the displacements v; and v, of the stiffener in its own transverse and longitudinal

directions, respectively are in the form of,

y
00 =—¢ {yn(0)+ f(y—n)fl(n)dn}
st T st 0 (3-51)
- @+ Lo L -n) fimdn |- yBa©)
D, |2 ¢ Y h J5 I 21
¥y
() =% (0) = {yT2<0)+ I(y—n)fz(n)dn} (3-52)
st~ st 0

where T;(y), T,(y)and M(y) represent the internal forces and moment acting over the
stiffener cross-section as shown in Figure 3-8 and f,,(0) is the rigid body rotation
consider at the stiffener starting point corresponding to y = 0. In addition, the conditions
that the stiffener is in equilibrium under the action of the body forces — f; (y) and the end

loads 7;(0), T,(L,,), T,(0), T,(L,,) and moments M(0), M(L,,) are given by,

Lgy

[Aay =Ti(L,)-T;(0) (3-53)
0
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Ly

[y =T, (L) -To(0) - (3-54)
0
Lst
Ly =0V = ML) - MO -LL,(0) . (3-55)
0
=0 7:(}”) y=

I L)

Figure 3-8: Isolated stiffener model
The end loads in above Egs. (3-53), (3-54), (3-55) correspond to the boundary conditions
for the stiffener. Setting all six values to zero will represent a stiffener with free ends.

3.4.2 Discretization and Numerical Solution of the Problem

For a given loading constraint on the reinforced sheet configuration, it is possible
to determine the complete solution for the tractions and displacements on the boundaries
of the sheet and the reaction force distribution due to the stiffener. In order to use the
equations derived in the previous section, the problem is discritized so that the integral
equations may be reduced to a set of simultaneous linear equations. The boundary I" of
the sheet is subdivided using continuous quadratic elements, each containing three nodes,
one at each end and one at the centre of tﬁe element. Hence, the boundary integrals in
Eqgs. (3-46) and (3-48) reduce to linear combinations of the nodal values of &action and

displacement. The coefficients of the nodal boundary values are in the form of integrals,
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which are evaluated numerically by Gaussian quadrature. The integrals involving the
stiffener forces f;(x) in Egs. (3-46) and (3-48) may be treated similarly to those
involving the boundary tractions ¢,(x). The locus of the stiffener reinforcement is
subdivided into quadratic elements and the integrals occurring similarly reduce to linear
sums of the nodal values of stiffener.

If the sheet boundary I' incorporates N nodes and the stiffener locus incorporates
Ns nodes, then the simultaneous linear equations will involve (2N +2Ns +1) unknowns
comprising the following: two unknowns out of ¢,,¢,,u;,u, at each node of the sheet
boundary I', two unknowns of the attachment forces f,, f, at each node on the stiffener
locus and one end condition p,,(0)of the stiffener. Hence, the required number of
equations is generated as follows:
(a) Eq. (3-46) gives 2N simultaneous linear equations by taking the source point

(collocation point) x, at each of the N nodes on I" and the unit force fundamental
solution to be inthe j =1 or j =2 direction.

(b) Eq. (3-48) gives 2(Ns—1) simultaneous linear equations by fixing the source point
x at one end (y = 0) of the stiffener in turn taking the other source point x to be at each
of the remaining nodes in the stiffener locusin j =1 or j = 2 direction.

(c) Egs. (3-53), (3-54) and (3-55) give three simultaneous linear equations for force and

moment equilibrium of the stiffener.

3.4.3 Evaluation of Stress Intensity Factor

Solving the system of equations formulated using the above set of equations, the

complete solution of displacements and tractions on the boundary and distributions of
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attachment forces on the stiffener are determined. Thus, the values of stress at any
internal point of the sheet can be obtained. Using Hooke’s Law and the linear elastic

strain displacement definitions, components of stress o, (j,k =1,2) may be expressed

as linear combinations of the partial derivatives of displacement evaluated at the internal
point, say X as,

__E 1% e O v_ up
i X (1+v) [2 {ach * +6x0k G (1-v) oxgp

X)sxl  (3-56)

where m denotes the summation of indices.

The derivatives are obtained from Eq. (3-46), and take the form of an integral formula
given by the right-hand side of Eq. (3-46) with kernals U ; (x,x,) and T ;(x,x ) replaced
by their derivatives, Gy;(x,X) and H,;(x,X), with respect to the spatial coordinate

xor (i, 7,k =1,2).

P X) = [ xX)1,(0) d5) — [Hys (%K), ds)
0k r r
+ti [Gis (xX) £, (x) ds(x) (3-57)
S Ly

where X is an internal point, xe I', i, j,k =1,2 and

Gy (x,X)=L U ;(x,X) and Hy; (x,X)=—a— T ;;(x,X) (3-58)
- Oxgy 2

When the cracked sheet fundamental solution is used, the stress is infinite at the

tips of the crack. By taking a series expansion of the differentiated kernels about either

crack tip, X=(%4,0), the kernels Gy; (x,X) and H; (x,X) depend locally on the inverse
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square root of the distance from X to the tip (Appendix). The Stress Intensity Factor can

be defined as,

K, = 1ir%,/2n r 0, (X) (3-59)
$=0

r,¢ are polar coordinates centered at the crack tip, such that X= (xatrcosg,rsing).
Kemel functions, G,;.,. and H ,:j,. , for the stress intensity factor may be analytically
extracted from the singular leading terms in the series expansions of G; and H,; about

the crack tip, i.e.

Gyi(X,ta) = 1in%,/2n r G (x,X) (3-60)
40

Hy(x,ta) = m%,/zn r Hy; (x,X) (3-61)
¢=0

From the same procedure as that used to obtain the internal stresses from Eq. (3-

56), the stress intensity factor can be obtained by replacing Gy; and Hy; by G,;i and

H ,';.,. in Eq. (3-57). Thus, the stress intensity can be calculated directly from the boundary

and attachment force solution. The integrals in Eq. (3-57) are reduced to linear
expressions in terms of the nodal values from the solution in the same way as described
previously. Since the point X, is always interior to the boundary I', the boundary
integrals in Eq. (3-57) require no special treatment and may be evaluated using Gaussian
quadrature. Provided X does not lie on one of the stiffener loci, the same approach may

be used to evaluate the integrals over L, in Eq. (3-57).

67



3.4.4 Additional Considerations

Some of the practical aspects of this method are mentioned below. These
additional considerations should be strictly followed to apply this method.
(a) When considering crack problems, nodes may not be positioned on the crack itself.
The cracked sheet fundamental solution is discontinuous across the crack locus and any

crack line nodes must lie at a small distance on one side or the other.

(b) In some configurations, stiffener locus L, or boundary I" may overlap. On such an
intersection, all nodes of I' and L, must coincide exactly.
(c) Integrals involving functions T ;;(x,xy) and H ki (X.X o) in equations may be handled

more easily in terms of the functions Y ;; (x,x,) and Z ki (X,X¢) defined by,

Y ji(xxg)= ﬁ Y ji(xxo) (3-62)
Hyi(xxg)= E%) Z1i(x.X,) (3-63)

A function Z ltji (x,x,) may be similarly defined from H,:j,- (x,x,) for calculating the
stress intensity factor. Integrating by parts, the result looks as,

du;(x)
dy

[T (xx o), (x) ds(®) = [¥ i (xx)u, (T = [V (xxo) 22y (3-64)
T T

du;(x)
dy

[Higi (00, () ds(0) =2 (xx) e, I - [Zggs (xx0) == dy (3-65)

r r

where y is a parameter which varies continuously along each element on the boundary

I". Choosing y to be local parameter in the elemental isoparametric transform (for which
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du;(x)

u,;(X) is quadratic iny ), the derivatives 3
/4

in equations may be expressed in terms of

the nodal displacements and linear derivatives of the shape functions. The forms of

functions Y j; (x,x,) and Zy;(x,x,) are simpler to the corresponding T ;; (x,X) and
H 4;;(x,X(), and are less expensive to evaluate. Details of this are given in the appendix,
It can be observed that Y ji(xXg) is of the similar form to the displacement function
U ji (x,xq).

3.4.5 Calculation of Fatigue Life of the Panel

Using the analysis in section 3.4.3, stress intensity factor for skin-stringer panel is

evaluated at the crack tip corresponding to the initial crack length a;. This process is

repeated by incrementing the crack length by a small amount (say Aa), until the critical

crack length (a_ or final crack length a f) is obtained. Critical crack length corresponds

to the crack length at which the crack tip stress intensity factor equals or just starts to

exceed the Fracture Toughness ( K- ) of the material of the skin. A general relationship

between the rate of crack propagation and the range of the stress intensity factor was first
made by P. C. Paris as part of his research work, universally known as the Paris’s Law

[24,25]. The fatigue life of the panel is determined using Paris’s Law as,
—F da (3-66)

where C}, and m,, are called Paris’s constants and AK, is the effective stress intensity

factor. The effective stress intensity factor can be written as,
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AK,=SAona (3-67)
where S is a numeric constant which depends on the geometry on the crack and Ao is

the tension stress range for constant amplitude loading. Substituting Eq. (3-66) and

integrating, we obtain a closed form solution to calculate the fatigue life of the panel] as,

1-mp/2 l-mp/2
p2 _ \-mp

a
Ny=—wT ’ (3-68)
" (SAaT) P (1-m, /2)

It should be noted that the above equation is valid only for constant amplitude loading.
3.5 DESIGN OPTIMIZATION OF SKIN-STRINGER PANEL

In order to formulate the above analysis into a general design optimization
proi)lem for a skin-stringer panel with a straight crack on the skin, the boundary

discretization of skin as well as stringer is parameterized in terms of b; and length of the
stiffener ( Ly ). Once the number of elements required to discretize the skin and stringer
boundaries is decided, it is very easy to define the coordinates of all the nodes in terms of
by and Ly as shown in Figure 3-9. Considering an initial crack of length 2a at
—a<x; £+a,xy =0, the origin is considered at the center of the crack to define the

coordinates of the nodes. Since the center of the crack and center of the panel coincide
here, it is now easy to define the location of all the nodes on skin and stiffener. It is to be
noted that the optimization is done for constant amplitude tensile loading and hence stress
is assumed to vary from 0 to a maximum value of the stress. An initial crack of length

2a; is assumed to be present in the skin. The objective is to minimize the mass of the

panel with fatigue life of the panel as constraint to obtain optimum values for design

variables ¢, and b,.
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Figure 3-9: Parametric discretization of skin-stringer panel

3.6 VALIDATION OF RESULTS

(A) The above methodology is tested on a stiffened sheet with an edge crack as
demonstrated in the work of Young et. al. [35]. The structure is shown in Figure 3-10 and

details are given below:

The rectangular sheet of thickness 0.15mm has dimensions of 0 < x; <90mm and
-90< x5 <+90mm and contains an edge-crack of length a=14.99 mm located at
0<x) <a,xp; =0. The left hand tip of the crack in the fundamental solution is located

outside the boundary of the sheet and does not affect the solution. The sheet is uniaxially

loaded with values of traction ¢, = +o (o =1GPa) on the edges at x,=+90mm and all
other tractions on the boundary are zero. A stiffener of length Ly, =120mm parallel to x, -

direction is bonded to sheet at position x; =15mm, —60 < x, <+60mm. An adhesive
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layer of thickness 0.15mm is attached over a width of 3mm on to the stiffener. The cross-

sectional area of the stiffener used is 6 mm? and the ends of the stiffener at y=0 and

y=120mm (corresponding to x, =—-60mm, x, = 60mm respectively) are loaded with

Hh0)=Tr(Ly)=0c Ay Ey / Eg , so that locally the ends automatically deform with the

sheet.
a
T sheet
TZ (Lsr )
A
—» ==t | stiffner
edge crack, a Ly
'S,
v
Lo

2
T——» 1 l
(23
Figure 3-10: Stiffened Sheet with edge crack configuration
Material properties of Sheet: Modulus of Elasticity = 70GPa; Poisson’s ratio = 0.3.

Material properties of Adhesive Bond: Shear Modulus = 0.6GPa.

Material properties of Stiffener: Modulus of Elasticity =70GPa; Shear Modulus=27GPa;

Transverse Flexural Rigidity=175 GPa/mm -4,

The boundary of the sheet is discretized using 16 quadratic elements and the

stiffener is discretized with 8 quadratic elements. The value of the normalized stress

KI
o.\7ma

intensity factor ( , where K, is the stress intensity factor at the crack tip),

obtained at the crack tip is 0.973. It is noted that the normalized stress intensity factor

obtained by Young er. al. [35] is 1.090.
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(B) Now, the analysis is used to verify the accuracy of the optimization process
on different lower wing skin-stringer panels. Since there are no existing values to
compare, the optimization is tested on the same compression panels designed for
Aircraft-2 and 3 in Chapter 2. If the values of the design variables for lower panels are
approximately around the same values of the compression panels, the optimization
process can be taken to be converging to the required solution.

The value of stiffening ratio is taken as, SR = 0.5, while the width ratio is taken
as, BR = 1 allowing he skin to be fully effective. The effective stress acting on the panel
is calculated easily from the load intensity, N using Eq. (2-24). This value of stress is
taken as the effective tensile stress acting on the lower wing panel to carry out the design
optimization with fatigue life as constraint. In actual practice, the value of stress acting on

a compressive panel is more than in tension panel.

All the panels are assumed to have an initial half crack of length a; = 0.025inat

the center of the skin. The values for Paris’s constants are taken as C,=le-12 and
m,=3. Modulus of Elasticity in tension for both skin and stringer material is taken as
E =10.3e6psi with a Poisson’s ratio of v =0.3. Fracture toughness for aluminum is
taken as, K- = 26ksi —in'/?. An adhesive material of thickness equal to the thickness of

the skin (¢,), over a width of stringer upper flange (b, ) is used to attach the stringer to
the skin. The shear modulus of adhesive used is 87000psi. The type of stringer considered
in all the 3 panels is Z-type with equal flanges.

(a) For panel#1, a constant amplitude fatigue load with a peak value of 51823 psi

is applied. The optimum dimensions for design variables obtained after the optimization
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are 0.202in and 5.973in for thickness of skin and width of panel, respectively. The final

half crack length is found to be a, = 0.0801in. The fatigue life obtained is 4361 cycles.

Table 3-1 shows the optimum dimensions for design variables for Compressive Design
(CD) as well as Fatigue Design (FD).

(b) For panel#3, a constant amplitude fatigue load with a peak value of 47692 psi
is applied. The optimum dimensions for design variables obtained after the optimization
are 0.24in and 5.89in for thickness of skin and width of panel, respectively. The final half

crack length is found to be a, =0.0946in. The fatigue life obtained is 6160 cycles.

Table 3-2 shows the optimum dimensions for design variables for Compressive Design
(CD) as well as Fatigue Design (FD).

(c) For panel#4, a constant amplitude fatigue load with a peak value of 46914 psi
is applied. The optimum dimensions for design variables obtained after the optimization
are 0.23in and 5.82in for thickness of skin and width of panel, respectively. The final half
crack length is found to be a, =0.0977in. The fatigue life obtained is 6582 cycles.
Table 3 shows the optimum dimensions for design variables for Compressive Design
(CD) as well as Fatigue Design (FD).

It can be observed from Tables 3-1 to 3-3 that the values for the design variables
obtained for Fatigue Design are in the same range of the Compressive Design. Hence, it

can be concluded that the optimization routine developed gives appropriate results.
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Table 3-1: Test Panel #1 of Aircraft 2

AC2 CD FD
compressive | compressive traction
axial load axial load on skin
(16200 Ib/in) | (16200 Ib/in) | (51823 psi)
L (in) 26.0 26.0 26.0
b, (in) 5.0 4.8873 5973
t, (in) 0.15 0.2084 0.202

Table 3-2: Test Panel #3 of Aircraft 3

AC2 CD FD
compressive | compressive traction
axial load axial load on skin
(18600 /b/in) | (18600 Ib/in) | (47692 psi)
L (in) 25.0 25.0 25.0
b, (in) 5.350 5.32 5.89
t, (in) 0.196 0.26 0.24

Table 3-3: Test Panel #4 of Aircraft 3

AC2 CD FD
compressive | compressive traction
axial load axial load on skin
(19000 /b/in)y | (19000 Ib/in) | (46914 psi)
L (in) 25.0 25.0 25.0
b, (in) 5.350 5.40 5.82
t, (in) 0.196 0.27 0.23

AC2, AC3- Aircraft 2, Aircraft 3

CD- Compressive Design using the Present Method (Refer to section 2.5 of Chapter 2)

FD- Fatigue Design
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3.7 CONCLUSIONS AND LIMITATIONS

(a) Boundary Element Method has been used to model thin, cracked, finite sheet
reinforced by bonded stiffener. It is assumed that the reinforced structure undergoes plane
deformation only.

(b) The fundamental solution used in the boundary integral equation for the sheet avoids
the need to satisfy the boundary conditions on the crack surface and leads to an exact
modeling of the crack-tip singularities.

(c) Solutions are obtained numerically by subdividing the domains of integrations into
quadratic isoparametric elements, giving a system of simultaneous linear equations in
terms of nodal values of traction and displacement on the boundary and attachment force
over the reinforced regions. Values of stfess intensity factors of the crack are
subsequently calculated numerically from integral formulae.

(d) The geometry of the configurations which may be studied is limited to cases where
the crack can be described by a single straight line and must lie at the center of the sheet.

(e) It is noted that the entire structure does not bend out of plane and it is linearly elastic.
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CHAPTER 4
DESIGN OPTIMIZATION OF A WING SECTION

4.1 DLR-F6 WING GEOMETRY
In order to test the optimization routines (developed in Chapters 2 and 3 for upper
and lower wing panels, respectively), a test wing section is taken from DLR-F6 aircraft

[41]. The actual wind tunnel model geometry of the aircraft is shown in Figure 4-1.

] X y* z - wing coordinate system
X ¥y Z -aircraft body coordinate system /

TFIT 9%

dimensions in inch

Figure 4-1: DLR-F6 Wind Tunnel Model Geometry [41]

Axes X, y, z denote the aircraft coordinate system and axes X, y* ,z  refer to the wing
coordinate system. Nacelles are located at 8.189 in from wing’s origin on either side of
the fuselage. The projected wing semi-span is 23.0571 in. The wing is defined by a

number of airfoil sections at different stations along the wing semi-span as shown in
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*
Figure 4-2, where 77 is the normalized coordinate, defined as 7 = y_* The shape of the
s
airfoil section at each station is designed according to the acrodynamic considerations.

In order to test the design optimization routines, the wind tunnel model geometry

in Figure 4-1 is scaled by a factor of A =20 to build an approximately realistic aircraft.

The wing reference area for the scaled model is S =90148 in? and the semi-span in wing

coordinate system is s  =4633in. The average chord length of the wing is

Cay =97.746 in and the mean aerodynamic chord length is Cp,,. =111.18 in.

Figure 4-2: DLR-F6 Wing showing different airfoil sections [41]
A test wing section defined by connecting two airfoil sections defined at stations
1 =0.6854 and 1 =0.7304 is selected. The length of the panel (distance between these

two stations) is L =20.8153in. The airfoil section shapes at stations 7 =0.6854 and

n =0.7304 are plotted as shown in Figure 4-3 and Figure 4-4, respectively. The front
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spar is positioned at 15% of chord and the rear spar at 65% of chord [1-3]. The enclosed

area between the spars is called the wing-box.

40 T L T T T 1 T
35+ -
. 30r -
g
-
&
®
g 25} -
3
g
N
20 -
15+ 1
10 | | 1 | 1 1 1
160 170 . 180 190 200 210 220 230 240

x-coordinate (inch)

Figure 4-3: DLR-F6 Airfoil section geometry defined at station 7 =0.6854

Figure 4-5 shows the test wing section defined between the two stations
n =0.6854 and 7 =0.7304. The important dimensions of this tapered wing section are
essentially the dimensions of skin-stringer panels that make up the wing-box. However,
obtaining the optimum web thickness value for the front and rear spars and also the
dimensions of their corresponding upper and lower web caps are not considered in this

work. Therefore, suitable approximate dimensions are assumed for them during the

analysis.
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Figure 4-4: DLR-F6 Airfoil section geometry defined at station n =0.7304

Section at 7 =0.6854

Z-coordinate
™~

y-coordinate

Section at 7 =0.7304
al

Rear Spar

Front Spar

Figure 4-5. DLR-F6 wing section defined between the
stations at 7 =0.6854 and n =0.7304
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4.2 AIRCRAFT AERODYNAMICS AND GENERATION
OF DESIGN LOADS

An aircraft flying in air is subjected to aerodynamic loads [42,43]. The lift
produced by the aircraft balances its weight and the drag force balances the thrust

produced by the aircraft as shown in Figure 4-6.

A

Lift

" Drag.

+Weight

Figure 4-6: Lift & Weight and Drag & Thrust balancing the Aircraft [42]
Figure 4-7 shows different rotational motions exhibited by aircraft. Pitching moment is

expressed about the center of gravity of the aircraft.

+ pitdj
Roll Axis

Figure 4-7: Pitch, Yaw and Roll motions of an Aircraft [42]

The loads experienced by an aircraft wing are usually expressed in terms of aerodynamic

coefficients [3,42], namely, the lift coefficient (C;), the drag coefficient (Cp), the

pitching moment coefficient (C,, ), the normal force coefficient (C ) and the tangential
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force coefficient (Cr). All these coefficients are usually calculated by wind tunnel tests

since testing an actual aircraft is quite cumbersome and expensive. Alternately, a
complete CFD solution using commercial softwares may be used for generating these

coefficients. The above coefficients are defined as below:

Lift coefficient, C; = L (4-1)
9o S
. D
Drag coefficient, Cp = —— (4-2)
G S
o g . M
Pitching moment coefficient, C), = (4-3)
9w S€C
. N
Normal force coefficient, Cy =—— 4-4)
9o S
. . T
Tangential force coefficient, C; = —— 4-5)
9o S

- where S is the wing reference area and ¢, is called the free stream dynamic pressure

calculated as,

1
4= V" (4-6)

where p and V are the density of the air and speed of the aircraft (calculated from Mach
number, Mc), respectively. Since the speed of sound varies with the density of air (or any
material it is transmitted through), one needs to determine the density of air through
which the aircraft is flying. To compute this, we use the chart shown in Table 4-1, called
the International Civil Aviation Organization Table (ICAO) [3]. It can be noticed from
Table 4-1 that as the altitude increases, the density of air decreases and so does the speed

of sound.
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Table 4-1: Variation of density of air and speed of sound with altitude

Altitude | Density of | Speed of

(feel) Air Sound
0 1.2249 340.4076

1000 1.1894 339.2758

2000 1.1548 338.0926

3000 1.1208 336.9094
4000 1.0878 335.7262
5000 1.0554 334.5429
6000 1.0239 333.3083
7000 0.9930 332.1250
8000 0.9626 330.9418
9000 0.9332 329.7072
10000 0.9044 328.5239
15000 0.7709 322.4021
20000 0.6524 316.1773
25000 0.5488 309.7982
30000 0.4581 303.2647
35000 0.3798 296.6284
40000 0.3015 295.1880
45000 0.2370 295.1880
50000 0.1865 295.1880
55000 0.1469 295.1880

The CFD solution results for wing-body-pylon-engine (wing-mounted engine)

case for a DLR-F6 aircraft wing at test conditions of Mach number, Mc = 0.75; CL = 0.5

(CL is the overall lift coefficient), angle of attack, @ =-0.0111° and Reynolds number,
Re = 0.300e7 are given in Tables 4-2 and 4-3. Table 4-2 provides the values of local lift

coefficient at different stations along the wing semi-span. For the scaled model, the local

chord length, ¢ is also given in this table. The variation of Cre along the wing span is
av

plotted in Figure 4-8. Figure 4-9 shows the variation of C; along the wing span.
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Table 4-2: Variation of Lift Coefficient (vs) 7

7= i %L_c €t ¢
K} ayv

0.1274 0.7034 0.4328 158.8756
0.1651 0.7026 0.4580 149.9319
0.2029 0.6900 0.4784 140.9653
0.2409 0.6626 0.4908 1319525
02793 0.6192 0.4926 122.8697
0.3180 0.5657 0.4864 113.6916
03572 0.5491 05141 104.3917
0.3971 0.5325 0.5483 94.9413

04377 05327 0.5698 913885

0.4792 0.5320 0.5899 88.1641

0.5219 0.5263 0.6068 84.8560

0.5657 05176 0.6212 81,4495

06111 0.5055 0.6340 77.9280

0.6582 0.4893 0.6439 742717

0.7074 0.4687 0.6502 704573

0.7589 0.4455 0.6553 66.4566

0.8133 0.4141 0.6504 62.2348

0.8711 03753 0.6353 57,7487

0.9330 03175 0.5861 52.9427

1.0000 0.2360 0.4832 477443

Table 4-3 gives the values of pitching moment coefficient about the local quarter

chord point (C ch) along the wing semi-span and is plotted in Figure 4-10. Figure 4-11

shows the variation of the lift force per unit length along the semi-span calculated using
Eq. (4-1). Integration of these values gives the variation of shear force along the semi-

span as plotted in Figure 4-12.
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Table 4-3: Pitching Moment Coefficient about Local Quarter Chord Point (vs)

n=% | M
S
0.1274 | -0.0958
0.1651 | -0.0929
02029 | -0.0939
02409 | -0.0987
02793 | -0.1071
03180 | -0.1201
03572 | -0.1374
03971 | -0.1461
04377 | -0.1381
04792 | -0.1325
05219 | -0.1280
05657 | -0.1249
06111 | -0.1231
06582 | -0.1221
0.7074 | -0.1228
0.7589 | -0.1222
08133 | -0.1203
08711 | -0.1165
09330 | -0.1128
1.0000 | -0.1093

The shear force values are then integrated to obtain the bending moment
distribution along the semi-span as shown in Figure 4-13. As expected, the shear force
and bending moment values are maximum at the wing root and minimum at the wing tip,
similar to a cantilever beam.

Subsequently, the pitching moment values about qﬁarter chord per unit length are
calculated using Eq. (4-3). These values are integrated to obtain the actual pitching
moment values along the semi-span. It is noted that the value of parameter c in Eq. (4-3)

is taken from Table 4-2 corresponding to that station. Figure 4-14 shows the variation of
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pitching moment about quarter chord point along semi-span. It is noted that the values
plotted in Figures 4-11 to 4-14 are the values for cruise condition.

The loads generated here are still not the actual DESIGN loads. They need to be
scaled up by applying suitable scaling factors as these loads are too small to be used for
sizing the wing-box. The conditions of Mach = 0.75; CL=0.5 and Re = 0.300E7 is
considered as cruise condition. Here, a design case of 2.5g maneuver is considered. These
loads are multiplied by a factor 2.5 to make them design loads [3,20]. Also an additional
safety factor of 1.5 is applied over these loads. Optimization is started with these Design

Loads considering the scaled wing geometry as defined earlier.
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Figure 4-8: C; c/C,, (vs)
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Figure 4-11: Lift Force per unit length (vs) »
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Figure 4-12: Shear Force (vs) 77
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Bending Moment (Ib-in})

Pitching Moment About Quarter Chord (Ib-in)

I~ w
[ L ] W

—
A

0.5

1 L ! 1 1 h
8.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 i
n=y*is*

Figure 4-13: Bending Moment (vs) 77
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Figure 4-14: Pitching Moment about Quarter Chord Point (vs) 7
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4.3 DESIGN OPTIMIZATION OF A WING SECTION

In order to simplify the complete design optimization of a wing section, the
process is divided into two stages. From Chapter 2, it is clear that the input design load
for optimizing a compression skin-stringer panel is N (axial load intensity). And from
Chapter 3, the axial tensile stress (o, ) acting on the wing panel is the required input for
design optimization. Considering the test section as defined in Figure 4-5, for easy
reference, let the section at station 7 =0.6854 be named as Section A and the one at
n =0.7304 be Section B. The two sections are named such that the values of shear force
and bending moment at Section A are greater than the values at Section B.

4.3.1 Initial design of wing-box: Stage-I
At a specific station along the wing semi-span, the value of the bending moment

(M) is obtained from Figure 4-13. The axial compressive load intensity acting on a panel

is calculated as [2,20],

N=M (4-7)

where c; , hg are the width and average thickness of the wing box, respectively as shown
in Figure 4-3. This value of N will be the same for any panel placed on the upper wing
cover along the chord direction. As mentioned in Chapter 2, thickness of skin (¢;) and

panel width or stringer pitch (b, ) are the design variables and mass of the panel (m p)is

the objective function in the optimization process. The same constraints are used here as
explained in Chapter 2. Once the optimum values for design variables are obtained, the
number of stringers (n,, ) required to support the upper skin of the wing-box is calculated

as,
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ny =% (4-8)

The value of n, is rounded to the nearest integer. The first stringer is placed at a
0.5b, distance from the front spar and continued with a stringer pitch of b; to arrange the
remaining stringers. It should be noted that the thickness of skin on all these panels
remains the same, i.e.#; . Now, in order to find the optimum dimensions for a lower skin-
stringer panel, the effective tensile stress acting on the lower panel is calculated using Eq.
(2-24) as,

N(BR)
o, = ———>t—
[t,(1+SR)]

(4-9)
where SR is called stiffening ratio and BR is called width ratio as explained in Chapter 2.
The value of stiffening ratio is usually taken as SR =0.5, while the width ratio is taken as
BR =1 for lower panels. Optimization of skin-stringer panels on lower wing cover is done
using the procedure explained in Chapter 3. The number of stringers n; required to

support the lower skin of the wing-box is calculated as,

m=% (4-10)
N

This value of #; is rounded to the nearest integer. These n; stringers are arranged on

lower wing skin in a similar fashion as done on upper wing skin. This completes Stage-I

and the initial design of the wing-box.

4.3.2 Final design of wing-box: Stage-11

To refine the design obtained in Stage-I, another iteration is performed by

calculating the re-distributed load acting on the panels arranged in the wing-box. Each
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panel will experience a different load intensity, N and tensile stress, o, depending on its
relative location with respect to the centriodal axes of the section. In Stage-II, the
optimization process is repeated with actual value of the load acting on each panel (N for

upper panel and o, for lower panel).

4.4 CALCULATION OF RE-DISTRIBUTED LOAD ACTING
ON WING PANELS

In order to calculate the actual load (compressive or tensile) acting on each panel,
the calculation of geometric properties of the section such as area moment of inertia and
product of inertia are necessary. Unsymmetrical beam cross-sections are very common in
aircraft structure, airfoil section being one of them. The general procedure is to find the
area moment of inertia about a set of rectangular axes (say, reference axes) and transfer
them to other inclined axes of interest [3].

4.4.1 Equation to Calculate the Bending Stress at a Point on the Section

Consider a beam having an arbitrary cross-section shown in Figure 4-15(a) [4].
The beam supports bending moments M, and M , and bends about some axis in its cross-
section which is therefore an axis of zero stress or a neutral axis (NA). Let the origin of
axes coincide with the centriod C of the cross section and that the neural axis is a distance
p from C. The direct stress o, on an element of area 4 at a point (x, y) and a distance &
from the neutral axis is,

o, =Es¢, (4-11)
If the beam is bent to a radius of curvature p about the neutral axis at this particular

section then, since plane sections remain plane after bending, we have,
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(=% (4-12)

s, =5 (4-13)

The beam supports pure bending moments so that the resultant normal load on any

section must be zero. Hence,

fo.d4=0 (4-14)
A

Replacing o, in this equation by Eq. (4-13) and cancelling the constant terms we get,
feda=0 (4-15)
4

i.e. the first moment of area of the cross-section of the beam about the neutral axis is

zero. It follows that the neutral axis passes through the centroid of the cross-section as

shown in Figure 4-15(b).

A .
Area a) (b) A

Figure 4-15: Arbitrary beam cross-section [4]
Let the inclination of the neutral axis to Cx is a (measured clockwise from Cx), then

é=xsina+ ycosa (4-16)
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From Eq. (4-13),

o, = £(xsinoz + ycosa) (4-17)

The moment resultants of the internal direct stress distribution have the same sense as the

applied moments M, and M, . Thus,

M, = o, ydd and M, = [o, xd4 (4-18)
y A
Substituting for o, from Eq. (4-17) into Eq. (4-18) yields,
M, =Esma1xy+Ecosa1xx (4-19)
p p
M. = Esina I+ Ecosa]xy (4-20)

y o ” P
where the second moments of area of the section about Cx and Cy axes are defined as,

Lo = [y*dd, I, = [x*dd, I, = [xydd (4-21)
A A4 A4

Arranging Eqgs. (4-19) and (4-20) in matrix form as,

-l
M, p|I, I, ||cose plcosa) I, I, | |M,

sina -1, I.|[M,
pleosa) 1.1, -I7\1, -1, |M,
Now, using Eq. (4-17) bending stress at any point on the cross-section is given by,

M -M/]I M1, —M,I
Ol ML) MLy ML) w29)
I, -1% .1, -1%,

g
xx

It is noted that x and y are the distances taken from section centriodal axes to the point.
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4.4.2 Calculation of Actual Design Load on Skin-Stringer Panel

Using Eq. (4-24), the bending stress in the skin and stringer elements can be
calculated by knowing the airfoil section properties. Hence, the total load acting on the
skin-stringer panel becomes [20],

Q=Agog + A0y (4-25)
It is noted that, different panels will share different magnitude of bending stress (either
compressive or tensile) depending on their relative positions with respect to the centriodal

axes of the section. For a panel on the upper wing cover, the axial load intensity can be

calculated as,

N=£ (4-26)

s

Stage-II repeats the optimization process using new values of N for all n, upper
panels and using new values of tensile bending stress for all n; lower panels to obtain the

new optimum dimensions. This completes the final design of the wing-box at a section.
The process of Stage-I and Stage-II is repeated to design the wing-box for Section A and
Section B defined earlier and thus completely define the tapered wing section as showed
in Figure 4-5. As explained earlier, the design of front and rear spar web thickness and
their corresponding upper and lower web cap dimensions are not included here. Hence,
reasonable dimensions are assumed to completely define the wing-box.

4.5 SHEAR FLOW IN TAPERED WING SECTION

In airplane wing and fuselage structures, the common case is a beam of non-
uniform section in the flange (stringer) direction. The present tapered wing section

(Figure 4-5) under consideration is also a beam with non-uniform cross-section. In cases
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where the change in cross-sectional area is fairly well distributed between the various
flange members, the shear flow results as given by the solution for beams of constant
moment of inertia are not much in error. For beams where this is not the case, shear flow
results may be considerably different from the actual shear flows [3].

Figure 4-16 shows a single cell distributed flange beam. Consider the beam acts
as a cantilever beam with the bending moment existing at section (A) being greater than
that at section (B) and that the moment produces compression on the upper surfaces. By
using the flexural stress equations, the bending stress on each stringer can be found,
which if multiplied by the stringer area gives the stringer axial load. Thus, at beam

section (B), p;, p3, p3 etc. represent the axial loads due to bending moment M. Bending

moment at section (A) is M+ A M, and hence the stringer axial loads at section (A) will be

P1+tA p1,pa+A py, p3+A p3 ete. These stringer axial loads are shown in Figure 4-16.

Figure 4-16: Non-uniform beam cross section [3]
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Now, imagine the upper sheet panel 2-2'-3'-3 is cut along the line (a-a). Free

body diagram of stringer number (3) is shown in Figure 4-17(a). Let g, be the average

shear flow per inch over the distance ‘d’ on the sheet edge bb. It has been assumed

positive relative to sense along y axis. For equilibrium of this free body,
D F, =0,hence Ap3 +¢,d =0 (4-27)

where g, =—Ap3/d.

Figure 4-17: Free body diagram of panels [3]

Free body diagram including two stringers (3 and 4) is shown in Figure 4-17(b). Again
writing equilibrium in y direction gives,

D F, =0 where Ap3 +Apy +q,d =0 or q,, = —(Ap; + Apy)/d (4-28)
Therefore, starting at any place where the value of ¢ y is known, the change in the

average shear flow at other section equals,
A
ay=-2> 4-29)

Figure 4-17(c) shows sheet panel (3-3'-4'-4) isolated as a free body. Taking moments

about corner 4 and equating to zero for equilibrium,
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ZM4. =-[1([X5J—qxbd where g, =Ap; /d (4-30)

Thus, for rectangular sheet panels between flange members, the shear flow ¢, or g,

equals the average shear flow ¢, .

4.5.1 Elastic Axis of a Wing

The elastic axis of a wing is defined as the axis about which rotation will occur
when the wing is loaded in pure torsion [6]. The shear center of a wing cross-section is
defined as the point at which the resultant shear load must act to produce a wing
deflection with no rotation. The shear force applied at shear center deflects the wing in
translation, but causes no rotation of the cross section about a span wise axis. If the wing
is an elastic structure, then the shear center of a cross-section must lie on the elastic axis.
Practical wings deviate slightly from conditions of elasticity because the skin wrinkles
and becomes ineffective in resisting compression loads but, for practical purposes, the
elastic axis may be assumed to coincide with the line joining the shear centers of the
various cross-sections. The shear center of a cross-section may be calculated by finding
the position of the resultant shear force which yields a zero twist angle. The shear center
location depends on the distribution of the flange areas and the thickness of the shear

webs.

4.5.2 Margin of Safety for Combined Compression, Bending
and Shear Load

The calculation of shear flow around the wing-box at a section is necessary if the
design of a wing panel is to be done for a multiple load case of combined compression

and torsion loads. At a wing section, all the loads are applied on the elastic axis of the
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wing. As explained earlier, elastic axis is the locus of shear centers of the section in the
spanwise direction of the wing.

For a closed section of the wing-box, it is assumed that a section wall is cut at the
center of front spar web, thus making shear flow value ‘zero’ at that point. Starting from
this point, the shear flow around the section is calculated using Eq. (4-29). It should be
noted that the shear flow values found here are the average values between Section A and
Section B of the wing section defined in Figure 4-5. The moment produced by the shear

flow (g,) on the skin between two adjacent stringers is equal in to the magnitude of ¢,

times double the enclosed area formed by drawing lines from the moment center
(centroid of the section) and their end points [3,6]. Taking moment of all forces both
external (M, ) and internal (M and M /) about centroid of the section gives,
Me=M;+M¢+M, (4-31)
Here, M, is the total moment produced by the internal shear flow. M, is the total

moment produced by the flange loads about the centroid (since the flange members are
usually inclined at an angle to the beam section, their components contribute to the

rotation of the section). M, is the moment produced by the external loads acting on the
section about its centroid calculated as,

My=Mg +V,e (4-32)
where M . is the pitching moment about quarter chord point on the airfoil section. V; is

the shear force in the vertical direction on the section and ‘e’ is the distance between the

quarter chord point and the centroid of the section. Thus, for equilibrium of the section,
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the moment M, should be applied in the opposite direction to internal shear flow. This

moment is applied as a constant shear flow around the section, whose magnitude is,

g=-—= (4-33)

24,
where A, is the enclosed area of the wing-box. Adding this constant shear flow to that of

the transverse shear, we obtain the final shear flow around the section. The shear stress

acting on the skin of any panel can be obtained as,
fi=L (4-34)

Because of the bending moment, a different end compressive stress is produced in
the panel cross-section. Hence, the total compressive stress is the sum of the compressive
stress due to direct compression and due to bending. The total shear stress is the sum of
transverse shear produced by transverse load and torsional shear produced by twisting
loads.

The interaction equation for this kind of combined loading is given by [3],
R, +(R,)? =1 (>1, the panel buckles) (4-35)

Margin of Safety (MOS) = 2 -1 (4-36)

R, +(RL)? +4(R,)?

The first ratio is the compression stress ratio given by,

fe

Compression Stress Ratio = R'c = 4-37)
c,cr

where f, is obtained from the minimum of 3 loads calculated as explained in Chapter 2

and F, ., is the critical compressive buckling stress in the skin given by,
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_ ncﬂzkcE t_s 2

= 4-38
121 -v?) b, (*+39)

ccr

where 77, is the plasticity reduction factor, k. is the buckling coefficient, v is the
Poisson’s ratio, E Elastic Modulus, ¢, is the thickness of skin and b, is the width of the

panel. The second ratio is the shear stress ratio given by,

Shear Stress Ratio= R'g = Js (4-39)
F s,Cr

where f is the shear stress in the skin obtained from Eq. (4-38) and Fy ., is the critical
shear stress in the skin given by,

nsﬂzk.\:E t_s 2

T 120-v?) b, (4-40)

s,cr

where k; is the shear constant. The margin of safety should always be greater than or

equal to zero for the structure to be safe and sustain the applied loads. It is included as a

constraint in optimization program for designing panels.
4.6 RESULTS AND CONCLUSIONS

Design optimization is tested on the tapered wing section defined by the airfoil
sections at stations 7 =0.6854 and 7 =0.7304 as shown in Figure 4-5. The imponént
dimensions of this tapered wing section are the dimensions of skin-stringer panels that
make up the wing-box. It is noted that the stringers considered here are Z-type with equal
flanges on both upper and lower wing skin of the wing-box. The length of the section
(essentially the length of the panel) is L =20.8153 in. As explained in secﬁon 4.3, the
design in done in two Stages and the results are presented for the two Stages separately.

Before presenting the results, the details of the sections at two stations are given below:
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(A) Details of Section at Station 7 =0.6854

Width of the wing-box, c;=36.0869 in

Average height of the wing-box, h; = 8.5646 in

Shear force, SF'= 7439 Ib

Bending moment, M = 0.4886e6 /b-in (about x " -axis)

Pitching Moment about quarter chord, M ,, =-1.0628e5 lb-in (about y " -axis)
(B) Details of Section at Station 77 =0.7304

Width of the wing-box, ¢; = 34.2809 in

Average height of the wing-box, A, = 8.1513 in

Shear force, SF=6132 /b

Bending moment, M = 0.3474e6 [b-in (about x " -axis)

Pitching Moment about quarter chord = -0.87895 /b-in (about y " -axis)

The drag force and the moment about the about z” -axis are assumed to be zero.
For the design of compression panels, the skin and stringer are assumed to be

made of same material with material properties as below: o, =75000psi (allowable

compressive yield stress); E =10.5¢6psi (modulus of elasticity in compression); m = 23
(material characteristic index). For the design of tension panels (lower wing panels), the
skin and stringer are assumed to be made of same material with material properties of
E =10.3¢6 psi (modulus of elasticity in tension); v = 0.3 (Poisson’s Ratio).

All the lower panels are assumed to have an initial half crack of length of a =

0.025 in at the center of the skin. The values for Paris’s constants are taken as C p =le-12
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and mp=3. The Fracture Toughness value for aluminium is taken as,

K, =26ksi —in'"?. An adhesive material of thickness equal to that of the skin (7, ), over
a width equal to that of the upper flange width (b,) is used to attach the stringer to the

skin. The shear modulus of adhesive used is taken as 87000 psi.

The results are calculated separately for single and multiple load cases. But, for
design of lower wing panels, only single load case for a Mode-I failure is considered
neglecting the shear loading.

4.6.1 Results for Stage-1

Axial compressive load intensity acting on airfoil section defined at station

n =0.6854, obtained using Eq. (4-7) is N = 1508 Ib/in. 1t is noted that this value is for

cruise condition. This cruise load is multiplied by a factor 2.5 to make it 2.5g maneuver
case load. An additional Factor of safety of 1.5 is also applied to get the actual design
load, N = 5928 Ib/in.

Upper panel dimensiqns before load re-distribution for single load case:

t;=0.13; by=4.14
n, = Z—S =36.0869/4.14 = 8.7166 ~9 (rounded to nearest integer)
s

The effective tensile stress acting on the lower panel is calculated as o, = 30400 psi .

Lower panel dimensions before load re-distribution:

t;=0.10; by=4.60

n = Z—s =36.0869/4.60 = 7.8450 ~ 8 (rounded to nearest integer)

N
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As explained in section 4.3, the first stringer is placed at a distance b;/2 from the front
spar on both upper and lower skin. The next stringer is placed at b, from here and

continued to reach rear spar using the same stringer pitch. So, from the above
calculations, 9 stringers (1-9) are needed on upper skin and another 8 on lower skin (10-

17) as shown in Figure 4-18.

b
3,

2
Wing-Box
I L h
1424 3 4 5-‘6J 74 g1 g ] “
C WL 12 13 415 1617 \}.
L e s 1—%
. ’ b
' Front Spar 10-4 ’_.Is " Rear Spar
- 5,

Z
Le 3

Sams Stnnger Fitch

Figure 4-18: Arrangement of stringers on the wing-box of section defined
at station 77 =0.6854 before load re-distribution

Similarly, design axial load intensity at station 77 =0.7304 is N = 4663 Ib/in.

Upper panel dimensions before load re-distribution for single load case:

t;=0.11in; b;=4.06 in

n, = Z—s =34.2809/4.06 = 8.4436 ~ 8 (rounded to nearest integer)

S
The effective tensile stress acting on the lower panel is calculated as o, = 28261 psi .

Lower panel dimensions before load re-distribution:

t;=0.09in; b;=4.58 in

ny = %v— =34.2809/4.58 = 7.4849 ~ 7 (rounded to nearest integer)

S
The stringers are arranged similar to the previous section and the final arrangement (1-8

stringers on upper skin and 9-15 on lower skin) is shown in Figure 4-19.
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Figure 4-19: Arrangement of stringers on the wing-box of section defined
at station 77 =0.7304 before load re-distribution

4.6.2 Results for Stage-11

The actual load acting on each of these panels is calculated as explained in section
4.4.2. Table 4-4 and 4-5 show the actual values of the design loads (V for upper panels
and o, for lower panels) acting on the panels for sections defined at stations 7 =0.6854
and 77 =0.7304, respectively. The new optimum dimensions calculated for all the upper
and lower wing panels are tabulated as below. Tables 4-6 and 4-7 have the new values of
design variables for upper and lower panels, respectively corresponding to the section
defined at station 7 =0.6854. Tables 4-8 and 4-9 contain the new values for design

variables of upper and lower panels, respectively corresponding to the section defined at

station 77 =0.7304.

Table 4-4: Actual values of the design loads after load re-distribution
acting on the panels arranged on section at 77 =0.6854

Stringer# 1 2 3 4 5 6 7 8 9

N (b/in) | 5158 | 5540 | 5776 | 5870 | 5828 | 5655 | 5354 | 4932 | 4393

Stringer# 10 11 12 13 14 15 16 17 -

o, (psi) | 30306 | 34779 | 38008 | 39901 | 40368 | 39319 | 36661 | 32306 -
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Table 4-5: Actual values of the design loads after load re-distribution
acting on the panels arranged on section at 7 =0.7304

Stringer# 1 2 3 4 5 6 7 8
N(b/in) | 4149 | 4468 | 4666 | 4747 | 4717 | 4578 | 4336 | 3993
Stringer# 9 10 11 12 13 14 15 -
o, (psi) | 29824 | 33583 | 35969 | 36880 | 36216 | 33877 | 29704 -
Table 4-6: Upper panel dimensions after load re-distribution
for section defined at station 7 =0.6854
Stringer# 1 2 3 7 8 9
tg (in) 0.12 0.12 0.12 | 0.125 | 0.125 | 0.12 0.12 0.11 0.11
b, (in) 4.09 4.14 4.16 418 | 4.18 412 | 4.10 | 4.05 3.92
Table 4-7: Lower panel dimensions after load re-distribution
for section defined at station 77 =0.6854
Stringer# 10 11 12 13 14 15 16 17
t; (in) 0.10 0.108 0.11 0.11 0.11 0.11 0.11 0.10
b, (in) 4.68 4.72 4.78 4.81 4.81 4.81 4.77 4.68
Table 4-8: Upper panel dimensions after load re-distribution
for section defined at station 7 =0.7304
Stringer# 1 2 3 4 5 6 7 8
ts (in) 0.11 0.11 0.12 0.12 0.12 0.12 0.11 0.11
b, (in) 3.97 3.99 4.07 4.08 4.07 4.06 3.97 3.92
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Table 4-9: Lower panel dimensions after load re-distribution
for section defined at station 77 =0.7304

Stringer# 9 10 11 12 13 14 15
t; (in) 0.09 0.09 0.09 0.09 0.09 0.09 0.09
b (in) 4.58 4.60 4.62 4.65 4.63 4.60 4.58

Since the stringers 9 and 17 appear near to the rear spar and that the upper and
lower web caps on the rear spar can give enough support, these stringers can be

eliminated on the section defined at 7 =0.6854. When the stringers are re-arranged; the
number of stringers needed to support the skin on upper and lower panels is less then the
initial number of stringers obtained in Stage-I. Final arrangement of stringers on the
wing-box of the section defined at station 77 =0.6854 is shown in Figure 4-20. There is
no change in the number of stringers at station 7 =0.7304 before and after load re-
distribution. Final arrangement of stringers on the wing-box of the section defined at
station 77 =0.7304 is shown in Figure 4-21. With the wing-box completely defined at two
stations 77 =0.6854 and 7 =0.7304, the design of tapered wing section is completed. It is
observed that the total mass of the wing-box of the section defined at station 7 =0.6854

before load re-distribution (Stage-I) is found to be 25.9602 Ibs.
&y
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Figure 4-20: Arrangement of stringers on the wing-box of section defined
at station 77 =0.6854 after load re-distribution
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Figure 4-21: Arrangement of stringers on the wing-box of section defined
at station 77 =0.7304 after load re-distribution

After load re-distribution (i.e. Stage-II), it is found that the mass of the wing-box
is 23.0835 Ibs resulting in saving considerable amount of mass. Similarly, at station
n =0.7304, the mass of the wing-box before load re-distribution is 20.1077 /bs, while the
mass of the wing-box after load re-distribution is 19.6692 /bs showing a significant
saving in the mass.

It can be concluded from the above results that the above defined methodology
works well to design preliminary wing-box structure effectively.

4.6.3 Design Optimization for Multiple Load Case
The shear flow values around the section defined at station 7 =0.6854 are

obtained using the procedure explained in section 4.5 and are shown in Figure 4-22.
Now, the value of shear flow on a panel becomes an input to the optimization problem.
From the values obtained for single load case, Stage-I optimization program is recalled to
calculate the new optimum dimensions for multiple load case.

Margin of safety is changed according to Eq. (4-36) to include the effect of
multiple loading on the panel. The new dimensions for upper panels for the section

defined at 77 =0.6854 are tabulated in Table 4-10.
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Figure 4-22: Shear Flow values around the section defined at 77 =0.6854

It can be observed that the optimization cbnverged to the same optimum values
for the design variables. Hence, it can be concluded that the effect of shear loading is
very small on the design of these panels.

Table 4-10: Upper panel dimensions multiple load case for section
defined at 7 =0.6854

Stringer# 1 2 3 4 5 6 7 8

tg(in) | 0.122 | 0.122 | 0.122 | 0.125 | 0.125 | 0.12 0.12 0.11
b, (in) 4.08 4.14 4.16 4.18 4.18 4.12 4.10 | 4.05
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS
FOR THE FUTURE WORK

5.1 CONCLUSIONS

Although the need for developing and integrating various design modules to form an
effective MDO process has been studied, the present work emphasizes more on structural
design optimization of an aircraft wing-box. The most important conclusions and
contributions from the current work are listed as follows:

1. An effective optimization routine has been developed to design a compressive
skin-stringer panel for a minimum mass while guarding against important failures
modes such as; crippling stress, column buckling, up-bending at center span and
compression in skin, down bending at supports, compression in stringer
outstanding flange, inter-rivet buckling and beam column eccentricity.

2. An optimization routine has been developed to design a lower skin-stringer panel
subjected to tensile load. Damage tolerance analysis principles are implemented
successfully in the. The Boundary Element Method is combined with the method
of compatibility deformations to analyze the stress distributions in cracked finite
sheets reinforced by bonded stiffeners.

3. The above optimization routines have been successfully used to design a wing-
box at any specific station of a DLR-F6 scaled model aircraft. A good preliminary
design of wing-box saving considerable amount of mass was obtained by
implementing the two stage design process. The design of upper panels for case of

multiple loading was also done successfully.
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5.2 RECOMMENDATIONS FOR THE FUTURE WORK

Although most of the important aspects have been covered in this thesis work in
designing a preliminary wing-box, other important and interesting subjects for the future
work are identified as follows:

1. Although the design of a lower wing panel for simple case of single straight crack
is a good start, it can be extended to design for a case of multiple cracks. Instead
of using adhesive material to join stringer with skin, it would be interesting to
design by replacing adhesive material with rivets (fasteners).

2. The drag force can also be included while generating the design load curves.

3. As the dimensions for spars and their corresponding web caps are taken with
reasonable assumptions, the design can be refined by taking actual dimensions for
them.

4. This design process can be repeated at different stations along the wing semi-span

to design a complete preliminary wing-box.
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APPENDIX

The fundamental equations for an isotropic material of Poisson’s ratio v and tensile

modulus E; are given below. [k =3-v/1+v and Shear ModulusG,, = E/2(1+v)]
The complex variables of field point and source point corresponding to the points x and
x, , respectively are represented as,

z=x +ix,, zyg =Xy + X, (A1)
where i* = ~1. The complex parameter S ; (J=1,2) is defined by

1

S; =m(5xj +10y;) (A2)

represents the vector force (j =1,2) per unit thickness in the fundamental solutions. A

superimposed bar will be used to denote the complex conjugation (E =X, —ix,).

The functions U ;; and Y; are of the form,

1 -
U'l +iU i =—D-(Z,Z;20,Zo)
J J 2Gsk J
Yy +i¥, =—i{1+B)Q,(z:20,20) - D, (5. 5:20020)]  (A3)

The Kelvin fundamental solutions are given by,
Q7 (z;24) = =S, log(z - z)
©, — — 2 —|z-z
Dj(z,z;2y,2¢) = —kS; log|z—zo| +Sj[%] (A4)
The fundamental solution for a crack situated at {~a < x, <+a,x, =0} involves terms

Q; and D, given by,
Q,(2;29,2¢) = Q7 (2,29) + Q% (2; 29, 20) (A5)
D,(z,2329,20) = D} (2,229, 20) + kQ(2; 29, 24) — (2329, 24) — (2 — 2)Q5 (23 20, Z)

where,

- —_— 1 N 1_ —_— —_—
Q;(Zézmzo) = —ESj [kNl(Z:ZO)_NI(Z:ZO)]__Z'SJ'(ZO —2y)N,(z,2)
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_— a J—
Qj (2;20920) =EZ'QJ(Z;ZO:ZO)

= _%(22 _az)-llz{_%sj [le (2,24)- M, (z,zo)]+ S;(zg —2)M, (Z,Z)}
(A6)

2zz, —q? +(Zz _az)l/z(zg _a2)1/2:|

Ni(z,zy) = logI: (z+(22 _az)uz)(zo +(z§ _a2)1/2)

N,(z,zy) = (zg —az)‘li(z,zo)

2 25\1/2 2 25\1/2
My(zz) =T~ a)
Z_ZO

My (2,20) = [M\(2,2) +1- 24 (2% - a*) 2 iz = z9) (A7)

The functions G, and Z,; are of the form,

. 1 0 0 - =
Gljl +lGlj2 = 2Gsk (azo + 65JD}-(Z,Z;ZO,Zo)

. i 0 0 - =
G2j1 +1G2j2 = 2Gsk (620 - a%JDj(Z,Z;Zo,Zo)

. . o @ — .
Ziy+iZy, = z{(1+k)(5—+a—_)9j (2320-20) - 2GG +1G1j2]}

. . (o & — .
sz1+zsz2=1{(1+k){é———a—_JQj(z;zo,zo)—ZG[Gm+1GU2]} (A8)

and the derivatives of the two fundamental solutions (A4) and (A5) are given by

© QT ® T 0 0

dzg z-29 z-z9 029 z-20 (z-29)° 20 z-2z9 0z

aD' — — — -_— —
azj =ky(2;24,20) —¥1(2;29,20) — (2 = 2)¥,(2; 24, 2¢)
0

_az_ =ky3(2;20,20) ~W3(2:20,20) — (2= 2)W4(2; 24, 2y)
0

GQj - GQj —
— =y (2529, 2p) Qa_—=W3(Z§zo:zo) (A9)
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where,

— 1 PR -
!//l(Z;Zo,ZO)=—E{SJQI(Z,ZO)+SJ-N2(Z,ZO)}
N | 2_2-1/2{5 CH _}
v,(2524,2p) 2(2 a’) jMz(z,zo)+SjM2(z,zo)
J— 1 J— _ - —_— J—
'//3(27;20:20)=‘E{ijQl(Z:Zo)+Sj[N2(Z’Zo)+(Zo_Zo)Qz(Z’Zo)]}

Va(2:20:20) = —%(zz — @) S, My (2,20)+ 5, [Ma (2 70) + (o - 20) B )]
(A10)
Py(2,20) = [2My (2, 20) + a* (2 —a*) "2 /(2 - z)
Q1(z,29) = (z5 —a*)? My (z,20)  (All)
01(2,20) = (M, (2, 20) ~ 2023 — a®) (M, (2,29) + 11}/(z3 — a?)"2

The kernels G,:j,. (x,xa)and Z ,:ji (x,x a) required to calculate the stress intensity factors
in Eq. (3-57) are related to four functions y/; (z,xa) (n=1,2,3,4) in the same way that
the stress kernels G,; and Z,; involve the four functions v ,(z; zo,z) (n=1,2,3,4) in

Eq (A9). The terms y/; are of the form,
1/2
‘ara)=— Z] (S, +5 )zt
¥y (Z,—a)_—i 2 (S;+S)y(z,ta)
/2

1
v,(z,ta)= —%GJ (S, +S,)v'(z,t a)

1/2
* 1« -
y3(z,ta) =§(;) (kS; +S)y(z,ta)
12?2 —
y/;(z,i a)= —2—(;] kS; +S,)y'(z,xa) (Al12)
where,
(z,* a) (zia)”z 1 "(2,% a) Fa (A13)
z,*a)= - z,ta)=
v z+a v (zF a)z? —a*)"?
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