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ABSTRACT

Fuzzy Logic Based Assignable Cause Diagnosis Using Control Chart
Patterns

Sujikumar Vijayakumar

Control charts are widely used in manufacturing and non-manufacturing processes to
monitor process average and to reduce variations in quality characteristic. The variations
could be either due to common causes, which are inherent nature of the process and
unavoidable, or assignable causes which can be diagnosed for rectification. The state of
the process, i.e., whether or not the process is statistically in control, is traditionally
judged using control limits and unnatural patterns exhibited on control charts. These
unnatural patterns, in addition to help in determining the process state, also provide hints
on possible assignable cause(s) whenever the process goes out of control. However, there
are certain ambiguities associated with this traditional method, such as judging the
process state when a point falls exactly on or very near to control limits and vagueness in
interpreting unnatural patterns when multiple patterns co-exist on the control chart and

relating them to assignable cause.

Fuzzy logic has been proved to be an excellent tool for handling such ambiguities
and vagueness by quantifying the uncertainty mathematically. A fuzzy inference engine

is developed for X chart, based on a chart pattern — cause relationship network. The

il



domain of assignable causes is categorized based on the nature of the shift they can
produce, and accordingly related to chart patterns. Each link in the network is represented
by a fuzzy inference system which determines the intensity of each cause in the interval
[0-1] based on degree of presence of each pattern. All the evidence supporting each cause
from the unnatural patterns are aggregated using fuzzy connective operators (max,
algebraic sum) and causes are prioritized accordingly so that when process goes out of
control, the investigation can be done for the cause having highest priority. The
developed fuzzy inference engine is tested with different combinations of unnatural
patterns and the results are compared with manual interpretation of control charts and

with results from a control chart software tool (MINITAB).

1ii



This thesis is
dedicated to my parents

v



Acknowledgements

I thank my supervisor, Dr. Kudret Demirli for his wholehearted support. His able
guidance has been instrumental in the completion of this work, and without it, I would
not have been able to come this far. I am thankful to Dr. Yong Zeng, Dr. Akif Bulgak and
Dr. Ali Akgunduz for their suggestions in the final stage.

I thank my parents Mrs. Suganthy and Mr. Vijayakumar, for their love and support and
Dr. Vaidehi Marthandam for her prayers. I cannot adequately express my gratitude to
them.

I thank my sister Mrs. Shabna and my brother in law Mr. Sreeman for their moral
support. Their encouragement and pep-talks went a long way into making this work
successful.

I thank my friend Ms. Pramodha for her constructive criticism of this text at every stage.
Her suggestions on the linguistics of this thesis were truly helpful.

I finally thank all my other friends for their encouragement.



TABLE OF CONTENTS

(1)  List of Figures X
(i1)  List of Tables Xiii
(iii)  Abbreviations XV
(iv) List of Symbols Xvii

Chapter 1 - Introduction 1

1.1 Background 1

1.2 Problem Definition 2

1.2.1 Ambiguities and vagueness in determining the process state using 3

control charts

1.2.2 Problems in using sensitizing rules 3
1.2.3 Ambiguities and vagueness in diagnosing the assignable cause 4
using control chart patterns

1.3 Literature Survey 5
1.4  Motivation and Proposed Methodology 8
1.5  Thesis Outline 9
Chapter 2 — Review of Control Charts 11

2.1  Shewhart Control Charts 11

vi



2.2

23

3.1
32

33

3.4

2.1.1 Variable control charts

2.1.2 Attribute control charts

Other Control Charts

2.2.1 CUSUM control chart

2.2.2 EWMA control chart

Stages in Control Chart Implementation
2.3.1 Phasel

2.3.2 Phasell

Chapter 3 — Control Chart Patterns and Assignable Causes
Basic Western Electric Rules
Using Sensitizing Rules
Control Chart Patterns
3.3.1 Out of Control Limits (OCL)
3.3.2 Freaks
3.3.3 Run
3.3.4 Trend
3.3.5 Cycle
3.3.6 Stratification
3.3.7 Instability
3.3.8 Stable Mixtures
3.3.9 Grouping

Average Run Length and False Alarm

vii

11

12

13

14

15

18

18

19

21

21

22

24

24

25

27

28

30

30

31

32

33

33



35

4.1

4.2

43

Assignable Cause Diagnosis
3.5.1 OCAP and Root cause analysis

3.5.2 Use of chart patterns in assignable cause search

Chapter 4- Fuzzy Logic Based Assignable Cause Diagnosis in X chart

Introduction to Fuzzy Set Theory

4.1.1 Fuzzy set

4.1.2 Membership functions

4.1.3 Fuzzy inference system

4.1.4 Fuzzy rule base and inference

4.1.5 Defuzzification

Design of Fuzzy Inference Engine

4.2.1 Network model of chart-pattern cause relationship and components
of fuzzy inference engine

4.2.2 OCL-CI FIS module

4.2.3 OCL-C2 FIS module

4.2.4 OCL-C3 FIS module

4.2.5 FRI-C2 FIS module

4.2.6 FR2-C2 FIS module

4.2.7 R-C2 FIS module

4.2.8 T-C3 FIS module

Aggregation of Results from FIS Modules

4.3.1 Max aggregation

viil

35

35

37

41

41

42

42

44

46

48

49

49

53

57

61

63

66

70

73

77

80



5.1

52

5.3

54

5.5

5.6

5.7

5.8

5.9

5.10

5.11

6.1

6.2

4.3.2 Algebraic sum aggregation

Chapter 5 — Test Cases and Results
Test Case 1 (OCL)
Test Case 2 (Run)
Test Case 3 (Trend)
Test Case 4 (OCL and FR2)
Test Case S (OCL, FRI and FR2)
Test Case 6 (OCL, FR2 and Run)
Test Case 7 (FRI, FR2 and Trend)
Test Case 8 (OCL, FRI, FR2 and Trend)
Test Case 9 (OCL with partial Run and partial FR/)
Test Case 10 (OCL with partial Trend)

Comparison of Results

Chapter 6 — Summary, Conclusions and Future Work

Summary and Conclusions

Future Work

References

X

80

82

83

88

93

98

102

106

110

114

118

122

126

129

129

133

134



Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6

Figure 4.7

List of Figures

Selection of Control Charts

OCL Pattern

Freak 1 Pattern

Freak 2 Pattern

Run Pattern

Trend Pattern

Cyclic Pattern

Stratification

Instability

Stable Mixture

Grouping

Cause-Effect Diagram
Triangular Membership Function
Trapezoidal Membership Function
Fuzzy Inference System

inputX Membership Functions
outputY Membership Functions

Fuzzy Inference and Defuzzification

Network Model of Chart Pattern — Cause Relationship

17

24

26

27

28

29

30

31

32

32

33

37

43

44

45

47

47

48

50



Figure 4.8

Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 4.27
Figure 4.28
Figure 4.29

Figure 4.30

Degign of Fuzzy Inference Engine

OCL-CI FIS

Input Membership Functions of OCL-C! FIS
Output Membership Functions of OCL-C! FIS
Inference and Defuzzification in OCL-C! FIS
Response Curve for OCL-C! FIS

OCL-C2 FIS

Output Membership Functions of OCL-C2 FIS
Inference and Defuzzification in OCL-C2 FIS
Response Curve for OCL-C2 FIS

OCL-C3 FIS

Output Membership Functions of OCL-C3 FIS
Response Curve for OCL-C3 FIS

FRI-C2FIS

Input Membership Functions of FRI-C2 FIS
Inference and Defuzzification in FRI-C2 FIS
Response Curve for FRI-C2 FIS

FR2-C2 FIS

Input Membership Functions of FR2-C2 FIS
Inference and Defuzzification in FR2-C2 FIS
Response Curve for FR2-C2 FIS

R-C2FIS

Input Membership Functions of R-C2 FIS

X1

52

53

54

35

56

57

58

58

60

60

61

62

63

64

64

65

66

67

68

69

70

71

71



Figure 4.31
Figure 4.32
Figure 4.33
Figure 4.34
Figure 4.35
Figure 4.36
Figure 4.37
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9

Figure 5.10

Inference and Defuzzification in R-C2 FIS
Response Curve for R-C2 FIS

T-C3 FIS

Input Membership Functions of 7-C3 FIS
Output Membership Functions of 7-C3 FIS
Inference and Defuzzification in 7-C3 FIS
Response Curve for 7-C3 FIS

X Chart for Test Case 1

X Chart for Test Case 2

X Chart for Test Case 3

X Chart for Test Case 4

X Chart for Test Case 5

X Chart for Test Case 6

X Chart for Test Case 7

X Chart for Test Case 8

X Chart for Test Case 9

X Chart for Test Case 10

xii

72

73

74

74

75

76

77

84

90

95

100

103

107

111

115

119

123



List of Tables

Table 1.1 Literatures in Fuzzy Logic with Other Approaches in Pattern 8

Recognition and Causal Diagnosis

Table 5.1 Data for Test Case 1 84
Table 5.2 Results from Fuzzy Inference Engine for Test Case 1 85
Table 5.3 Data for Test Case 2 88
Table 5.4 Results from Fuzzy Inference Engine for Test Case 2 91
Table 5.5 Data for Test Case 3 94
Table 5.6 Results from Fuzzy Inference Engine for Test Case 3 96
Table 5.7 Data for Test Case 4 99
Table 5.8 Results from Fuzzy Inference Engine for Test Case 4 101
Table 5.9 Data for Test Case S 103
Table 5.10  Results from Fuzzy Inference Engine for Test Case 5 104
Table 5.11  Data for Test Case 6 106
Table 5.12  Results from Fuzzy Inference Engine for Test Case 6 108
Table 5.13  Data for Test Case 7 110
Table 5.14  Results from Fuzzy Inference Engine for Test Case 7 112
Table 5.15  Data for Test Case 8 114

Table 5.16  Results from Fuzzy Inference Engine for Test Case 8 116

Xiii



Table 5.17

Table 5.18

Table 5.19

Table 5.20

Table 5.21

Data for Test Case 9

Results from Fuzzy Inference Engine for Test Case 9
Data for Test Case 10

Results from Fuzzy Inference Engine for Test Case 10

Comparison of Results

Xiv

118

120

122

124

126



Alg Sum
ARL
ARL,;
ARL,
CL
CUSUM
EWMA
FIR

FIS

FR1

FR2
GMA

GMP

LCL
MF
MR
MSM
o/p

OCAP

Abbreviations

Algebraic Sum

Average Run Length

Out of control Average Run Length
In-control Average Run Length
Center Line

Cumulative Sum

Exponentially Weighted Moving Average
Fast Initial Response

Fuzzy Inference System

Freak 1

Freak 2

Geometric Moving Average
Generalized Modus Ponens

Input

Lower Control Limit

Membership Function

Moving Range

Maximal Similarity Method

Output

Out of Control Action Plan

XV



OCL

SL

SNo

SPC

UCL

Out of Control Limit

Run

Sigma Line

Sample number

Statistical Process Control
Trend

Upper Control Limit

Xvi



@

U
pa(x)

#5(x)

Ci

CcI*

Cly Clp, Clc¢
C2

C2%*

C24, C2, C2¢
3

Cc3*

C34 C35 C3c
Ci

C

FR1,4 FRIp FRIc

FR24, FR2p, FR2¢

List of Symbols

Aggregation operator

Process mean or Target mean

Degree of membership of element x in the fuzzy set A
Degree of membership of element x in the fuzzy set B
Isolated Causes

Prioritized Isolated Causes

Output fuzzy sets for Isolated causes (C1)

Shift Causes

Prioritized Shift Causes

Output fuzzy sets for Shift causes (C2)

Gradual Causes

Prioritized Gradual Causes

Output fuzzy sets for Gradual causes (C3)
Cumulative sum of deviations below mean
Cumulative sum of deviations above mean

Input fuzzy sets for FR1 pattern

Input fuzzy sets for FR2 pattern

Xxvii



L

n

OCL,;, OCL; OCL;
R

R Ry R;

T, T, T;

x|

Decision interval

Reference value or Slack value

Width of the control limits in EWMA charts
Sample size

Input fuzzy sets for OCL pattern

Range

Input fuzzy sets for Run pattern

Input fuzzy sets for Trend pattern
Probability of type II error

Constant for EWMA control chart

Standard deviation

Probability of type I error

Sample Mean

Xviii



Chapter 1

Introduction

1.1 Background

Statistical process control (SPC) techniques are widely used in manufacturing and
other processes to monitor and control process variability. SPC uses statistical signals to
detect variations in the process, identify the sources of variation, improve performance and
to maintain control of processes at required quality levels. A collection of several tools
exist in SPC such as Histograms, Check Sheets, Control charts, Pareto charts, Cause-effect
diagrams, Scatter diagrams and Defect concentration diagrams. Out of these, Control
charts, developed by Dr. Walter A. Shewhart in the1920s, are considered as one of the most
technically sophisticated SPC tools. Control charts are used to monitor variations in
product quality. Causes for variations in the process are of two types. The first type is
‘Common cause variation’, which are inherent nature of the process. Little can be done to
eliminate these variations. The other is ‘Assignable cause variation’, which indicates that
there is a specific cause that can be identified and eliminated to restrict the variations within

the required limits.

The presence of such assignable causes can be detected by unnatural patterns from
the control charts. Tests for these unnatural patterns are governed by various rules such as

the traditional Western Electric rules [1], Nelson rules [2] and other additional sensitizing



rules. Once an unnatural pattern is detected, the process is said to be Out-of-Control due to
some assignable cause(s). Actions should be initiated to identify the cause and remove it.
Careful investigation is required to identify the root-cause of the problem and to prevent
recurrence, instead of taking shallow measures for a cosmetic solution. Process experts use
tools such as cause-effect diagrams (Ishikawa diagram), check sheets etc., to investigate the
root-cause. The idea of using control chart patterns as signals to identify the cause has been
proven as a promising method for faster and easier diagnosis. A matrix is prepared relating
the control chart patterns to assignable causes that were found in the past. This acts as a
guiding tool while searching for an assignable cause. However, there are uncertainties,
ambiguities and vagueness associated in the process of determining whether or not the
process is in control, and in searching for an assignable cause. This will be discussed in the

following section.

1.2 Problem Definition

Generally, operators lack the knowledge to interpret signals from control charts and
to use them for identifying assignable causes. It is essential to clearly identify the unnatural
patterns exhibited on control charts, as these unnatural patterns indicate not only the
presence of an assignable cause but also the nature of such a cause. Ambiguities and
vagueness may arise in determining the process state and in searching for the assignable

cause from the control chart patterns.



1.2.1 Ambiguities and vagueness in determining the process state using

control charts

A process is declared as ‘out of control” when one or more points fall outside the
control limits or when a non-random pattern is observed on the control chart. Such a
decision is supported by rules (Western Electric [1], Nelson’s [2] or other sensitizing rules
etc) built on statistical techniques which are based on the low probability of occurrence of
non-random patterns. However, it may be difficult to make a decision about the process
state when a point falls exactly on one of the control limits, or very near the control limits.
There is some uncertainty and vagueness associated in determining whether or not there is
a shift in the process mean when a point falls exactly on the control limits or near the

control limits.

1.2.2 Problems in using sensitizing rules

Control charts are implemented to a process in two phases. Phase 1 involves
establishing trial control limits and removing initial process variations and once the
established limits are tested in phase 2, these control limits are used to monitor future
production. In phase 1, sensitizing rules [1] [2] are used to increase chart sensitivity in
order to detect the process shift earlier. Sensitizing rules are not usually used in phase 2 as
they lead to problems of increased false alarms and decreased average run length.
However, sensitizing rules help to detect any unnatural pattern present, which present

useful information in assignable cause diagnosis, in the control chart. Such information is



lost by abandoning the use of sensitizing rules, costing extra effort and time in investigating

the assignable cause.

1.2.3 Ambiguities and vagueness in diagnosing the assignable cause using

control chart patterns

As mentioned earlier, patterns in the control can give indications on the assignable
cause present. Each non-random pattern has a set of causes associated with it. Sometimes
there is scope for ambiguity when multiple non-random patterns co-exist for an out of
control situation. For instance, the pattern ‘Trend-up’ is said to have occurred when an
increase is observed for seven consecutive points. If the seventh point lies outside the upper
control limit (UCL), then the process is said to be out of control by two tests, hence causing
an ambiguity in distinguishing between the assignable causes of these two patterns which

are the Trend-up and the point outside of the control limit.

Another problem is that there are chances to get misleading results due to
misinterpretation of non-random patterns. For example, if six consecutive points are
increasing and the sixth point falls beyond the upper control limit, the test indicates that the
process is out of control because of one point falling beyond the control limit, while the
actual pattern could be a run-up. So while diagnosing for an assignable cause, we might be
misguided into looking for the cause(s) for one point falling beyond control limit instead of
looking for the causes for a run-up. If we could quantify the uncertainty to indicate the

extent to which each non-random pattern exists, and the degree to which each associated



cause 1s present, it will facilitate easy decision making. Fuzzy logic has been proven as an
excellent tool for handling such uncertainties. The following section surveys the application
of fuzzy logic in control charting and in the subsequent section the methodology is

proposed to handle such problems using fuzzy logic.

1.3 Literature Survey

The theory of fuzzy sets, introduced by Dr. Lotfi A. Zadeh in 1965 [3], has found
extensive applications in various fields of engineering and science especially over the past
two decades. Until then, modeling complex physical systems using the traditional
mathematical models had always been a challenge, especially, when the system had to deal
with imprecision, vagueness, ambiguities and uncertainties. Fuzzy sets and fuzzy logic
yielded impressive results in handling such systems. In this section we review the
applications of fuzzy sets and fuzzy logic in the field of SPC, focusing more on control

charting and causal diagnosis.

Researchers started exploring the possibility of extending fuzzy logic to control
charting in the mid 1990s. Kahraman et a/ [4] used triangular membership functions to
define various unnatural patterns. A fuzzy test is defined for each unnatural pattern using
the membership value of the i" sample, number of points for the unnatural pattern
considered and a threshold limit to confirm the presence of the unnatural pattern. But the
membership function used is a simple triangular fuzzy membership function, common to
define all the patterns. Zalila et al [5] proposed a fuzzy supervision method for SPC which

could alert operators on the process state using visual signals. These visual signals are



generated using a fuzzy rule base which monitors the process center and state of dispersion.
The output from this system is in the form of colored light signals indicating the process

state.

Wang and Rowlands [6] developed a fuzzy rule based inference system based on
zone rules in control charts. The input variables are the degree of membership of a point in
each zone represented as fuzzy sets, and the output is the process state, mapped by eleven
fuzzy If-Then rules. This approach provides improved results in terms of interpretation of
data and consistency, as the numeric output from the fuzzy system indicates whether or not
action should be taken, if the process is out-of-control. Another excellent application of
fuzzy logic to control charting for individuals was developed by Tannock [7]. In this
approach, two fuzzy sets namely, centered fuzzy set and random fuzzy set are used. Three
typical unnatural patterns: shift, trend and cyclical patterns are examined using these two
fuzzy sets. The membership function of the centered fuzzy set assumes the OC curve of the
equivalent Shewhart control chart, which considers the mean and standard deviation of the
incoming distribution. The membership of the random set is determined by calculating the
correlation coefficient of the series window at sample number » with the previous window
n-1. The absolute value of correlation coefficient is subtracted from unity to obtain the
degree of membership, such that highly correlated data are not considered to be very
random. However, all these approaches [4], [5], [6] and [7] use fuzzy logic only in
analyzing the control chart patterns to determine the process state. Diagnosing the
assignable cause from the signals from the patterns has not been explored in these

approaches.



Hsu and Chen [8] suggested a new approach using fuzzy logic and genetic
algorithms to diagnose the assignable cause using the signals from unnatural patterns. The
system comprises of a knowledge bank and a reasoning mechanism. The knowledge bank
contains the membership functions of unnatural symptoms described by Nelson’s rules and
knowledge of cause-symptom relations. The fuzzy cause-symptom relation matrix is
constructed with the help of a new approach called maximal similarity method (MSM). In
the MSM approach, an optimization problem is formulated for constructing the fuzzy
relational matrix, and genetic algorithms are used for faster search techniques. However,
this system involves increased computational complexities due to the global search for the

optimal solution for constructing the fuzzy relational matrix.

Several other methods have been developed for causal diagnosis based on observed
fuzzy symptoms by integrating fuzzy logic with other approaches such as neural networks,
belief networks based on Bayesian theory, Dempster-Shafer theory (Evidence theory) and
possibility theory. Literature available in these areas is summarized in Tablel.1. However,
there are certain problems associated with these methods, such as the large volume of data
required to train neural networks; knowledge of prior probability and conditional
probability distributions required for belief networks based on Bayesian theory; subjective
judgment on degrees of belief and computational complexities in evidence propagation in
networks for belief networks based on Dempster-Shafer theory, and data required to train

possibilistic networks.



Fuzzy-Neural Fuzzy- Fuzzy- Possibilistic
Networks Bayesian belief Dempster belief
networks Shafer belief networks
networks
Pattern (9] [10] - - -
Recognition
Causal [11] [12] [13][14] [17] (18] [19][20]
Diagnosis [15][16]

Table 1.1 Literatures in Fuzzy Logic with Other Approaches in Pattern Recognition

& Causal Diagnosis

1.4 Motivation and Proposed Methodology

Considering all the shortcomings mentioned in the previous sections, our objective
is to develop a unified system that can monitor the process state by analyzing the control
chart patterns and to utilize the signals given by these unnatural patterns in diagnosing the
assignable cause, with the help of fuzzy logic, to overcome the problems mentioned in
Section 1.2. The main purpose of the system is to provide a framework to quantify the
uncertainty to indicate to what extent each non-random pattern exists and to what degree

the associated cause could be present, so as to facilitate easy decision making.

A fuzzy inference engine is developed for X control chart, composing of two
modules, Fuzzy Inference System (FIS) modules and Aggregation module. The FIS

modules are developed based on a chart pattern-cause relationship network shown in



Figure 4.7. The assignable cause domain is categorized according to nature of shift each
cause can produce and is related to the chart patterns accordingly. Each link in the network
is modeled by a fuzzy inference system (FIS), taking the chart pattern as an input variable
and the respective cause as an output variable, each represented by fuzzy membership
functions. The influence of each pattern in its respective cause is quantified through the

fuzzy inference system with the help of fuzzy If-Then rules in the interval [0-1].

Once the evidence for each cause from its respective pattern is obtained, the values
are aggregated in the aggregation module to determine the total evidence on each cause.
The causes are then prioritized according to their value of aggregated evidence and listed in |
order for each point plotted on the control chart. On observing a point falling outside three
sigma limits, the process is said to be out of control and the investigation for assignable
cause can be initiated beginning with cause having highest priority. In this way, the
aforementioned ambiguities can be resolved by quantifying the uncertainty using fuzzy
logic, enabling a more guided approach in monitoring the process and diagnosing the

assignable cause through SPC.

1.5 Thesis Outline

Chapter 2 contains a brief review on various types of control charts in use such as
Shewhart control charts, CUSUM (Cumulative Sum) control charts and EWMA
(Exponentially Weighted Moving Average) control charts, selection of type of control
charts and the stages in implementation of control charts. In Chapter 3, various types of

unnatural patterns detected on a control chart, rules for detecting these patterns and



statistical basis for defining these patterns are discussed. Usage these sensitizing rules and
their effect on average run length and false alarm are briefly outlined. Also, traditional
methods for taking action during an out-of-control situation and the advantage of using

chart pattern as hints to diagnose the assignable cause are mentioned.

In Chapter 4, the design of the fuzzy inference engine is explained. Its modules in the
FIS component, along with membership functions, rule base and response curves are
detailed. Finally, the Aggregation module is explained. In Chapter S, the developed fuzzy
inference engine is tested with various test cases containing different combinations of
unnatural patterns. The results of the fuzzy inference engine are compared with manual
interpretation and results from statistical software (MINITAB). Finally, the summary,

conclusions and future work are presented in Chapter 6.

10



Chapter 2

Review of Control Charts

2.1 Shewhart Control charts

Control charts are mainly of two types, variable control chart and attribute control
chart. A quality characteristic that can be measured on a numerical scale is called a
variable. A quality characteristic which cannot be measure on a numerical scale and can

only be characterized as ‘conforming’ or ‘non-conforming’ is called an attribute.

2.1.1 Variable control charts

While controlling a variable quality characteristic, it is necessary to monitor both
the mean value of the quality characteristic and its variation simultaneously. Most
commonly used variable control charts are X chart, which monitors the mean value, and R
chart, which monitors the variation. Samples of smaller sizes (usually 3 to 7) are collected
and the mean and range of each sample is calculated and plotted on the chart. Sometimes, S
chart is used instead of R chart, when it is desired to estimate the process standard
deviation directly and when the sample size is moderately large (10 or 12). Since Xand R

charts are generally used with smaller sample size, the magnitude of shift detected in the
process is from moderate to large say, on the order of 20 or larger. Selecting the samples or

subgroups plays an important role in the use of X and R charts. As X chart monitors

between-sample variability, samples should be selected in such a way that, if assignable

11



causes are present, chances for shifts in process average between samples is maximized. On
the other hand, R chart monitors the within-sample variability. Hence samples should be
selected in such a way that it minimizes the chances for variations within the sample. The
Sample data collected keeping in mind this idea, is termed as rational subgroup. There are
occasions when sampling is not necessary, in cases where 100% inspection is done where
the production rate is very low, or automated inspection methods are used. In such
circumstances, it is economically feasible to plot every single unit produced on the control
chart. Control charts for individuals are used in such occasions. The usage of CUSUM or
EWMA charts is recommended when it is desired to detect process shifts of smaller

magnitude.

2.1.2 Attribute control charts

Control charts for attributes are used where the outcome of inspection is either
‘defective’ or ‘non-defective’. Four types of attribute charts are commonly used, p chart,
np chart, ¢ chart and u chart. The p chart is called the control chart for fraction non-
conforming. The percentage of nonconforming units is calculated per sample, where the
sample size is large, say 100. Since the p chart uses samples of data collected over a period
of time, the sample size could vary. Therefore, variable-width control limits or control
limits calculated based on average sample size or control limits for standardized control
chart are used. The np control chart is plotted based on the number of non-conforming
units in each sample. This is more advantageous than the p chart in that the percentage of
non-conforming units need not be calculated. However, this requires equal sample size.

The ¢ chart, also known as defects-per-unit chart, is plotted by calculating the number of
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non-conformities found in each unit. Sometimes a product, by virtue of its nature, cannot
be classified as a ‘non-conforming unit’ even if it has one or two non-conformities. In such
cases, C charts are used, following a Poisson distribution. The ¢ chart, also known as
average defects per unit chart, is plotted based on average number of non-conformities per

unit.

In Shewhart charts, whether or not the process is in control, is determined by a
point falling outside the control limits and from the tests for various unnatural patterns.
These unnatural patterns, in addition to determining the process state, provide information
on nature of assignable cause that could be present. The details of various unnatural

patterns and its relationship with the type of assignable cause are discussed in Chapter 3.

2.2 Other Control Charts

The variable and attribute control charts presented in the previous section, called
Shewhart Control charts, are incapable of detecting shifts magnitude lower than say 1.50 or

less. Despite the use of additional sensitizing rules, these charts fail to monitor the process
state by looking at the entire sequence of points. Moreover, usage of additional sensitizing
rules increases the sensitivity of these charts, thereby reducing the average run length
(number of in-control points plotted before getting an out of control point), and increasing
the frequency of false alarms. CUSUM (cumulative sum) and EWMA (Exponentially
Weighted Moving Average) charts are used as alternatives where detection of smaller shifts

is of interest.
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2.2.1 CUSUM control chart

CUSUM stands for cumulative sum. Like Shewhart control charts, CUSUM charts
are also used to monitor both process mean and variability. The cumulative sum of the
deviation from the target value both above and below the target is monitored continuously
though out the sequence of points. Control limits are calculated using tabular or algorithmic
CUSUM or by V-mask method, although former is generally preferred due to certain
advantages over the latter, as V-mask method is not suitable for one-sided process control,
difficulty in determining extent of backward arms of V-mask making the interpretation of
chart difficult, ambiguities associated with & and f# in V-mask procedure, non-availability
of the fast initial response (FIR) feature used in CUSUM to increase chart sensitivity at

process start-up.

CUSUM charts are desirable because of their ability to detect even small shifts of
desired magnitude, as control limits are calculated based on the magnitude of the shift
intended to be detected. Control limits depend on selection of two parameters: K (reference
value or slack value or allowance) and H (decision interval). Usually, the value of K is
chosen as half the magnitude of the shift to be detected, and H five times the process
standard deviation. The cumulative sum of deviations that are greater than K are
accumulated as C;* for deviations above mean, and C; for deviations below mean, for the
i.’h sample. If either C;" or C; exceeds the value of H, the process is said to be out of control.
Even though CUSUM charts are capable of detecting smaller magnitude of shift, they are

not effective in detecting shifts of larger magnitude. Hence CUSUM charts are combined
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with Shewhart control charts to improve its sensitivity for larger shifts. Combination of
these charts is achieved by placing Shewhart control limit in CUSUM chart at 3.5 ¢ from

the center line.

The only criterion to determine whether or not the process is in-control in
CUSUM charts is to check if the accumulated deviations exceed the decision interval as
there are no other unnatural patterns defined to be monitored to check the process state as
in Shewhart control charts. Since there are no different unnatural patterns to be monitored
as in Shewhart control charts, the possibility of narrowing down the domain of assignable
cause(s) to be looked for, based on the type of unnatural patterns exhibited on the control

chart is ruled out.

2.2.2 EWMA control charts

Exponentially weighted moving average (EWMA) charts are easier to set up and
operate when compared with CUSUM charts. This method uses the weighted average of all
previous samples with their weights decreasing in geometric progression with their ages.
Hence EWMA charts are also known as Geometric Moving Average (GMA) charts. These
charts are considered as ideal control charts for individual observations, as it uses weighted
average of all samples, thereby making it insensitive to normality assumption. Control
limits are calculated based on selection of values for two parameters: L, the width of the
control limit in units of multiple of standard deviation and A, a constant between 0 and 1.

Usually, the value of L is chosen as 3, and 4 between 0.05 and 0.25. The general idea is to

15



use smaller values of 1 to detect smaller magnitude of shifts. Nevertheless, EWMA charts

are more capable than CUSUM charts in detecting larger shifts when choosing 4 > 0.1.

The control limits in EWMA charts are calculated for every point plotted on the
chart and it reaches steady state as more points are plotted. Like CUSUM charts, EWMA
charts can also be used with Shewhart control charts to increase the sensitivity for larger
shifts. Also, like CUSUM charts, an out of control situation in EWMA charts is identified
by a point falling outside the control limit and there are no other unnatural patterns to be
looked for. Hence, when an out of control situation is identified, like CUSUM charts,
EWMA charts also do not provide any insight on assignable causes, as there are no
unnatural patterns exhibited on the control chart that could describe the nature of assignable
cause present. Due to these shortcomings, Shewhart charts are widely used except in cases

where the intended magnitude of shift to be detected is very small.

The decision on the type of control chart to be used, hence, mainly depends on the type of
quality characteristic to be controlled. It also depends on other factors such as magnitude
of shift intended to be detected and the cost of collecting samples. A graphical guide for

selection on type of control chart is given by Montgomery [21] as in Figure 2.1.
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Figure 2.1 Selection of Control chart

Once the type of control chart to be used is decided, it is necessary to select the
chart parameters, such as sample size, sampling frequency and control limits, called design
of control chart. While selecting these parameters, in addition to considering statistical
criteria, economical factors such as cost of sampling, cost associated with investigating out
of control situations, cost of correcting assignable causes and cost of allowing non-
conforming units to reach the customer are to be considered. Such a process is called the
economical design of control chart, and extensive research is being done in this area to
improve the performance of the control charts. However, it is beyond the scope of this
work and our problem is focused on the ambiguities in analyzing unnatural patterns

exhibited by the control charts and using these unnatural patterns to determine the nature of
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assignable causes that could be present. Various unnatural patterns that can be observed on
Shewhart control charts, their relationships with the nature of the assignable cause, and
how to make use of these patterns in detecting the assignable cause are discussed in
Chapter 3. The following section explains the stages in implementation of control and how

decision rules are used in each stage for monitoring the process.

2.3 Stages in Control Chart Implementation

There are two stages in implementing control charts. They are generally termed as
Phase-I and Phase-II. Phase-I is concerned with the initial setting up of the control chart
and fixing of parameters such as control limits, and bringing process mean and standard
deviation in-control. Once the process mean and standard deviation are brought under

control, Phase-II, which is monitoring the process mean and standard deviation, begins.

2.3.1 Phasel

Phase I of the control chart implementation involves selecting the appropriate type
of control chart and selecting control chart parameters such as control limits, sample size
and sampling frequency. Phase I continues until the process is initially brought under
control. For example, if we are using X'and R chart, a trial run is made, and at least 25 to
30 samples are collected. From these samples, the mean values and control limits for Xand
R chart are calculated and charts are plotted. While setting up these control charts, the R
chart should be brought under control first before analyzing the X chart, as the control
limits of the X chart depend on the value of R. It is meaningful to adjust the process mean

to any desired value, by adjusting the input process parameters once the process variability
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is brought under control. If the R chart is not under control, then the out of control points
on the R chart are eliminated and new values for R and hence, new values for control limits
on both X'and R chart are calculated. This is an iterative process in phase I and repeated

until reasonable control limits are established and the process is brought under control.

2.3.2 Phase 11

Once a reliable set of control limits are established from phase-I and the process is
brought under control, then the control charts are used to monitor future production and to
look for any assignable cause that might arise in future. While monitoring the production
for an in-control process, even though the use of sensitizing rules to determine whether or
not the process is under control could help to detect smaller shift in process mean earlier, its
is not generally advised [21]. The reason for this is that due to the increased the sensitivity
of the control chart, there is a possibility of reduced Average Run Length (ARL) and
increased probability of false alarms. Instead, it is generally advised to use CUSUM or
EWMA charts, if the magnitude of shift to be detected is very small. Use of various
sensitizing rules and its effect on Average run length and false alarms are discussed in
chapter 3. Generally, once the process reaches an in-control state from phase-I, only 3¢
limits are used to decide whether the process is in control. These limits are also known as
action limits. The search for assignable cause is initiated only when a point falls beyond

action limit. It is customary to use 20 limits as warning limits.

Some of the zone rules/sensitizing rules discussed in chapter 3, such as two or more

consecutive points falling beyond waming limits (20), indicate that process mean has
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shifted and hence search for assignable cause should be initiated. But, as mentioned earlier,
the use of sensitizing rules might increase the frequency of out-of-control signals, and
initiating the search for assignable cause every time will not be cost-effective and feasible.
Nevertheless, signals from the sensitizing rules are treated as warning signals and instead of
searching for assignable cause every time, actions such as increasing the sampling
frequency, sample size or sometimes 100% inspection are initiated to make sure that
process mean has really shifted and that it is not a false alarm. If the control chart continues
to give unnatural patterns, it increases the confidence that there is really some assignable
cause that had changed the process mean. Though the use of sensitizing rules has been
criticized for an in-control process in phase-II, it could help us detect the unnatural patterns
exhibited on control chart, which provides hints on the nature of the assignable cause that

could be present.
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Chapter 3

Control Chart Patterns and Assignable Causes

When a process is in-control, points plotted on control chart follow a random
pattern in the normal distribution. About 68% of the points plotted are distributed
randomly within 1o from centerline and 28% of them between 16 and 20, 4% of them
between 20 and 3o and 0.27% of the points beyond 3c. When the process goes out of
control, the random behavior of the chart changes and some unnatural patterns are
exhibited on the control chart. These unnatural patterns can be detected by a set of rules
called zone rules or sensitizing rules. The following sections discuss various sensitizing
rules and the statistical reasons for framing these rules in terms of its low probability of

occurrence.

3.1 Basic Western Electric Rules

The Western Electric Handbook (1956) [1] suggests the following set of rules to
detect the unnatural patterns on a control chart. If one of the following situations are
observed on the control chart, it indicates that process mean has been shifted.

¢ One point outside three sigma control limits
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e Two out of three consecutive points beyond two sigma limit on same side of
center line

e Four out of five consecutive points beyond one sigma limit on same side of center
line

¢ Eight consecutive points plot on one side of center line

3.2 Using Sensitizing Rules

Sensitizing rules will be of more help in phase-I, initially to bring the process in-
control. Once the process gets stabilized, use of these zone-rules/sensitizing rules, other
than point falling beyond three sigma limits could lead to increased chart sensitivity
resulting in decreased average run length (from 370 to 91.25, with these four Western
Electric Rules) and increased false alarms. If there are ‘n’ decision rules used to judge the
process state, each having probability of type I error o; , then the overall probability of

false alarm a is given by the expression,
a=1-]]0-a) 3.1)
i=l

Equation (3.1) requires that the sensitizing rules be independent. But this requirement is
not satisfied in the case of sensitizing rules as there are many possibilities for different

unnatural patterns to co-exist, having common points in them.
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Hence to avoid the problem of increased false alarms, instead of concluding the
process is out of control resulting from tests by sensitizing rules, they shall be taken as
warning signals. Action such as increasing sampling frequency or sample size, called
adaptive sampling measures shall be taken to make sure whether or not the process mean
has indeed shifted. If these unnatural patterns persist, the shift in the process mean
becomes apparent. By this way we can detect smaller shifts earlier, without
compromising for increased false alarms. Hence the search for assignable cause can be

initiated with confidence using the hints provided by these unnatural patterns.

Alternatively, it is generally suggested that, if smaller shifts are of interest,
CUSUM or EWMA charts be adopted. But the problem with CUSUM or EWMA charts
is, first, these charts are not capable of detecting shifts of larger magnitude. Second, the
criterion to decide whether or not the process is under control in CUSUM or EWMA
charts, is governed by a single rule, a point falling beyond the control limits and there are
no other rules, that require us to detect any other unnatural patterns, that could be of great
help in determining the assignable cause. For cases, where both small and large shifts are
of interest, combination of CUSUM/EWMA and Shewhart charts is used. From the
viewpoint of assignable cause diagnosis, usage of these sensitizing rules could help us in
narrowing down the assignable cause list. The definitions for various unnatural patterns
and the statistics behind the definition of these patterns are discussed in the subsequent

sections.
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3.3 Control Chart Patterns

Apart from the basic Western Electric rules, there are many other rules define
various unnatural patterns that can be detected on Shewhart control charts. These patterns
are defined based on their lower probability of occurrence. Most commonly found
unnatural patterns are Out of Control Limits (OCL), Freaks, Run, Trend, Cycle,

Stratification, Instability, Grouping and Stable mixtures.

3.3.1 Out of Control Limits (OCL)
Pattern definition:
One or more points fall beyond three sigma control limit.

UCL
+3o

+20

+lo

CL

-20

+30
LCL

Figure 3.1 OCL Pattern

This is the conventional rule for concluding that process has gone out-of-control.
For a normal distribution curve, 99.73% of all points fall within three sigma limits.
Hence, the probability of a point falling beyond three sigma control limits is 0.0027. Due

to this low probability, occurrence of such event is considered as rare. Even though the
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probability is very small, there is a possibility to observe a point beyond three sigma
control limits, even when the process remains under control. The frequency of such an
occurrence is given by ARL, (Average Run Length), which is defined as average number
of points to be plotted within control limits before getting an out of control signal. It is

given by the expression

o =1/0.0027 ~ 370

A false alarm is expected once every 370 points on the average. If the frequency
of observing a point beyond three sigma limits is higher, then there is an assignable cause

associated with this pattern.

3.3.2 Freaks

The second and third rules of Western Electric rules define freak patterns. For our

convenience we shall name them as Freak 1 and Freak 2.

Freak 1 Pattern Definition:

Four out of five consecutive points fall beyond one sigma limit on the same side of the

center line.
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Figure 3.2 Freak 1 Pattern

From the properties of normal distribution curve, the probability of observing a
point beyond one sigma is 0.16. Hence the probability of observing four out of five

consecutive points beyond one sigma is given by,

P (4 out of 5 beyond 1g) =5 (0.16 x 0.16 x 0.16 x 0.16 x 0.84) = 0.0028

This is same as the probability of observing a point beyond three sigma control limit.

Hence, it is also considered as an unnatural pattern

Freak 2 Pattern Definition

Two out of three consecutive points fall beyond two sigma limit on the same side of center

line.
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Figure 3.3 Freak 2 Pattern
From the properties of normal distribution, the probability of observing one point
beyond two sigma limits is 0.023. Hence the probability of observing two out of three

consecutive points beyond two sigma limits is given by

P (2 out of 3 points beyond 20) = 3 (0.023 x 0.023 x 0.997) = 0.0016

The probability of occurrence of this event is very small compared to the
probability of observing a point beyond three sigma limit. Hence it is considered as an

unnatural pattern.

3.3.3 Run
This pattern is defined by the fourth rule of Western Electric rules.
Pattern Definition:

Eight or more consecutive points on one side of centerline
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Figure 3.4 Run Pattern

From the properties of normal distribution curve, the probability of observing a point on
one side of centerline is 0.5. Hence the probability of observing eight consecutive points

on one side of center line is given by,

P (8 points on one side) = (0.5)8 =(0.0039

Though the Western Electric rules suggests eight consecutive points on onside of
centerline, many other literature {22] [23] suggest seven consecutive points on one side
(with probability 0.008) shall be considered in this work as a test for earlier detection of

shift.

3.3.4 Trend
Pattern Definition:

Seven or more points continuously increasing or decreasing
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Figure 3.5 Trend Pattern
The probability of seven consecutive points increasing (or decreasing) can be calculated
as follows.
P(7 increasing) = P (I*' > base point) x P(2" > I")x ...... xP (7" > 6")
P (I"' > base point) < 0.5

P> 1% <05

.........

.........

P(7">6" <05
Therefore,
P (7 increasing) < (0.5)" = 0.008
From this it is confirmed that the probability of getting seven points increasing or
decreasing in a row is always less than 0.008, making this pattern a rare event and thus

forming yet another unnatural pattern.
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3.3.5 Cycle

This kind of pattern exhibits systematic changes in the process. It can be
identified by repetitive patterns observed on the control chart over a period of time.
Though some literature defines fifteen points in a row alternating up and down as a cyclic
pattern, it is not necessary that every other point fluctuates up and down to represent a
cyclic pattern. It could be any number of points representing repetitive forms, say,

sinusoidal, wavy, etc.

UCL
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Figure 3.6 Cyclic Pattern

3.3.6 Stratification

This pattern arises when too many points are crowded near center line with
absence of points near the control limits.
Pattern Definition

If fifteen or more consecutive points falls between + 1o zone
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---------------------------------------------------

Fig 3.7 Stratification
From the normal distribution curve properties, the probability of observing a point within
1o zone is 0.6826. Hence the probability of observing 15 points consecutively is given

by,

P (15 points in 1) = (0.6826)"7 = 0.00325

This is almost equal to the probability of getting a point out of control limits. Hence there
could be some assignable cause present resulting this rare event.

3.3.7 Instability

This type of pattern on the control chart can be recognized by erratic fluctuations
or zigzag distribution of points with frequent ups and downs. This pattern is also known
as unstable mixture. There is no exact definition to detect this pattern clearly. Although
the characteristics of the pattern can be explained as, more than one-third of the plotted

points lying outside 1o limits, with an erratic zigzag pattern.
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Figure 3.8 Instability
3.3.8 Stable Mixtures
Stable mixture pattern also contains erratic zigzag pattern, but it differs from
unstable pattern in a manner that there will be no or very few points in the center of the
control chart. Many points will be crowded near the upper and lower control limits,
fluctuating up and down. Again, there is no exact rule to define this pattern. This pattern

generally indicates mixture of two distributions.
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Figure 3.9 Stable Mixture
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3.3.9 Grouping

This pattern is classified by clusters of points on the control chart, indicating the
presence of several distributions. This pattern also has no exact definition and can be
identified as groups or bunches of points on the control chart.

UCL

+30
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LCL

Figure 3.10 Grouping

3.4 Average Run Length and False Alarm

Average run length is defined as the average number of points plotted on the chart
before getting one point outside three sigma limits. Since there is a possibility of getting a
point outside three sigma control limits when the process is in control and out of control,
ARL is accordingly further defined as in-control ARL (ARL,) and out of control ARL

(ARLy).
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e ARL,
In-control ARL (ARL,) is defined as the average number of points plotted on the
control chart before getting a point outside three sigma limits when the process is in-

control. It is calculated by the expression,

ARL = l/a (3.2)
where ‘a’ is the probability of getting a point outside of three sigma control limits when

process is in control, in other words, the probability of false alarm.

e ARL,
Out of control ARL (ARLY1) is defined as the average number of points plotted on
the control chart before getting a point outside of three sigma limits when the process is

out of control. It is given by the expression

ARL = 1/(1-f) (3.3)
where ‘S’ is the probability of getting a point inside three sigma control limits when
process is out of control

In our future discussions ARL refers to in-control average run length. As
mentioned earlier, for a Shewhart control chart with three sigma control limits, under
normal distribution, the value of average run length is 370, given by the equation (3.2).
As per the discussion in the Section 3.2, the value of average run length reduces with
increase in number of sensitizing rules. The equation for computing the overall

probability of false alarm based on the number of sensitizing rules used is given by
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equation (3.1). However, calculation of overall probability of false alarm and the average
run length using equation (3.1) will not be appropriate, due to lack of independence in

sensitizing rules.

Only the patterns Out of Control limit (OCL), Freaks, Run and Trend are taken in
to consideration in this work due to certain reasons such as lack of exact definitions for
other unnatural patterns like cycle, stable and unstable mixtures, grouping etc, and the

complexity associated in identifying those patterns.

The problem of false alarms can be eliminated to a considerable extent by two
methods. First, by using adaptive sampling measures, the alarm signals given by the
control chart can be verified to see whether or not it is a true indication of process shift.
Second, on getting an out-of-control signal, it can be verified for false alarm by checking
it with average run length. If the number of in-control points plotted on the control chart
after the previous out of control point is close to average run length then the chances of
getting false alarm is high. Even after the adaptive sampling measures continue to show
unnatural patterns, it is a clear indication of presence of assignable cause and actions

should be initiated to search and remove the assignable cause.

3.5 Assignable Cause Diagnosis

3.5.1 OCAP and Root cause analysis

OCAP stands for Out-of-Control Action Plan, which is basically a document

containing the sequence of steps to be carried out when an out-of-control situation arises,
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including various checkpoints and corrective action. It contains list of potential causes
and also the actions taken in the past to eliminate the assignable cause found, which can
act as a step-by-step guide to how to act on an out-of-control situation.

There is another well known traditional and effective tool to identify the
underlying root-cause, commonly known as ‘Fishbone diagram’ or ‘Ishikawa diagram’
or ‘Cause-Effect diagram’. Usually a team, involving people who have good knowledge
about the process such as managers, process engineers, operators will conduct a
brainstorming to list out all the possible causes and put them categorically in the fishbone
diagram. A typical model of a fishbone diagram is given in Figure 3.11.

Generally the list of possible causes that could have resulted in an out-of-control
situation is categorized under Machines, Methods, Materials, Measurement and Man
(widely known as 5Ms). Each of the potential causes is analyzed and unlikely causes are
eliminated, finally narrowing the list down to most likely causes. Then further
investigations are conducted to identify the right cause and necessary corrective action is
implemented. One of the biggest drawbacks of this method is that it is time consuming
and it requires involvement of too many people having expertise about process under

investigation.
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Figure 3.11 Cause-Effect Diagram

3.5.2 Use of chart patterns in assignable cause search

In order to simplify the process of assignable cause search, hints provided by the
control charts through unnatural patterns can be used. This section explains the
relationship between different unnatural patterns and the respective assignable cause
producing that pattern. This chart pattern-assignable cause relationship can be established
either from past experience or from the guidelines on general chart pattern — cause
relationships. These general guidelines on chart pattern-cause relationships are available
in the literature. [22] has en extensive discussion on various unnatural patterns that can be

detected on Shewhart control charts with suggestions on list of causes for each pattern.
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[21] and [23] also contain comprehensive suggestions on use of these unnatural patterns

in finding assignable causes.

The Chart pattern-Cause relationship is established based on the nature of shift
produced by the cause. Accordingly, assignable causes are categorized in to three

divisions based on three modes of shift exhibited by the unnatural patterns. They are,

e Isolated Causes

Isolated causes are those that will cause a single measurement to vary
drastically, resulting in one particular point falling outside the control limits
producing an OCL (out of control limits) pattern on the control chart. These
causes have one-time effect. The possible causes that comes under this category
are
. A mistake in measurement, recording or plotting
- Damage in handling
. Defect in raw material used for that unit alone

. False alarm

o Shift causes
These causes produce a considerable shift in the process mean. These can

be identified by the Freak and Run patterns on the control chart. They indicate
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that some event has taken place that has affected a few samples causing a drift in

the mean. Usual causes that could produce this effect are,

Tool break

Change in raw material or supplier
Change in inspection methods or standards
Adjustments made in machine settings

Introduction of new workers or inspectors

¢ Gradual causes

These causes tend to change the process mean gradually over time, and

produce increasing or decreasing trends on the control chart and are identified by

the trend pattern. Trend patterns are produced by causes such as,

Gradual introduction of new raw-material
Loosening fixtures

Operator fatigue

Machine tool wear

Gauge wear

Environmental changes

By categorizing the whole domain of the assignable causes into sub-categories,

the search for assignable causes using chart patterns becomes more focused as these chart

patterns indicate what type of cause could have changed the process. It helps to reach at

the root cause sooner, minimizing the effort required to investigate the whole domain of
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potential causes, provided the unnatural patterns shown on the control chart are
interpreted correctly.

Interpretation of unnatural patterns becomes complex if more than one patterns
co-exist. In such cases, it would again increase the list of causes to be investigated. Also,
in situations such as having four points continuously increasing and fifth point falling
beyond the control limit, the user would tend to interpret that as a OCL pattern, which
actually could be a trend pattern identified pre-maturely. This could mislead the
assignable cause search wasting effort, time and money. To handle such ambiguities, a
fuzzy inference engine is developed which could prioritize the causes based on the

unnatural patterns present.

40



Chapter 4

Fuzzy Logic Based Assignable Cause Diagnosis in

X Chart

Fuzzy set theory and fuzzy logic has been an excellent tool for handling
ambiguities and vagueness associated with real-world applications. Before presenting the
design of fuzzy inference engine, a brief introduction to fuzzy set theory and

terminologies are presented.

4.1 Introduction to Fuzzy Set Theory

Fuzzy set theory was introduced by Dr. Lotfi Zadeh in 1965 [3], considering the
problems associated with classical two valued logic (0 and 1). It provides a natural
framework for representing and manipulating the ambiguities associated with real-world
applications. The classical set theory allows the entities to be represented by crisp values,
either zero or one, forcing us to consider either true or false. But in real world situations

there is always some uncertainty prevails.

For example, consider the statement, ‘The distance is far’. In classical logic, this
has to be represented as either, 1, considering the statement as true or, 0, by considering it
false, which requires us to define the term “ar’ in exact numbers. In reality, the

understanding of the term ‘far’ is subjective and varies with the context. Hence, if the
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value of distance 1s given say, &, then the truth or compatibility of the statement with
far’ is a matter of degree between 0 and 1, determined by the membership function.
Fuzzy set theory allows us to define the term far’ mathematically and evaluate to what
degree the statement is compatible with the term ‘far’ when a value of distance is given.

The fuzzy sets and other important concepts in fuzzy set theory are defined as follows,

4.1.1 Fuzzy set
Let X be the universal set. A fuzzy subset A, is characterized by its membership
function
pa: X —» [0-1] 4.1
which associates with each element x of X a real number u4(x) in the interval [0-1], with

Ha(x) representing the grade of membership of element x in the fuzzy set 4.

4.1.2 Membership functions

Membership function is the characteristic function represented mathematically
that assigns the grade of membership to its elements. It could be defined as a discrete set
or as a continuous function. Some of the most common membership functions for

continuous universe of discourse are triangular and trapezoidal membership functions.

¢ Triangular membership function
Triangular membership functions are the simplest form of membership
functions to represent and manipulate. A single point, x=a, at peak, has the highest

value of degree of membership. They are represented by the general equation,
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Ha(x)=

Ha(x)

(x—(a-b))/c ¥(a-b)<x<a
1-(x—a)/c ifa<x<(a+c) 4.2)
0 otherwise

v

a-h h a+c

Fig 4.1 Triangular Membership function

e Trapezoidal membership function

This kind of membership function is suitable to define a fuzzy set where more

than one element has highest degree of compatibility to the fuzzy set defined. The

general equation for trapezoidal function is given by,

1, (x)=1

(x—(a-c))/c ifla-c)<x<a

1 ifa<x<b
l—(x—=b)/d bSx<(b+d) (43
0 otherwise
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~—

Ha(x)

v

h h+d
Fig 4.2 Trapezoidal Membership function

Triangular and trapezoidal membership functions are used in our fuzzy inference
systems, due to its simplicity in representation and manipulation. There are other
membership functions available such as Gaussian membership functions, sigmoid
membership functions, Pi-shaped membership functions, S-shaped membership

functions, Z-shaped membership functions etc.

4.1.3 Fuzzy Inference System (FIS)

Fuzzy inference system maps input variables to output variables through a fuzzy
rule base. The components of a fuzzy inference system involve input variables and its
membership functions, fuzzy rule base, output variables and its membership functions.
The steps involved in fuzzy inference system are fuzzification, inference and
defuzzification. The input value is fuzzified by the membership functions defined for the

input variables and the degree of membership is calculated. The commonly used methods
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of inference are Mamdani and Sugeno type of inference. Out of these two, Mamdani-type
[24] is more commonly used as compared to Sugeno-type inference [25] [26]. These

methods differ in the way the output value is calculated.

In Mamdani-type inference, the output variables are defined as fuzzy sets and
final output value is determined by a defuzzification method, whereas in Sugeno model,
the output values are defined as a polynomial of input variables and the final output value
is determined using weighted average of data points. Sugeno type of reasoning is best
suitable to cases where a structured fuzzy model has to be developed from a set of

available input and output data.

The fuzzy inference Engine developed in our model uses Mamdani-type of
inference. A typical Mamdani-type inference system, from MATLAB [27] fuzzy logic

toolbox, is shown in the figure 4.3.

ExampieFiS

(manmdant)

2 rules

outputyY (2)

inputX (2)

System ExarmpleFIS: 1 inputs, 1 outputs, 2 rules

Figure 4.3 Fuzzy Inference System
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4.1.4 Fuzzy rule base and inference

This forms the core of the inference engine, which actually does mapping of input
variables to output variables. A collection of fuzzy rules is called a fuzzy rule-base. A
fuzzy rule is represented by an If —Then statement containing input fuzzy sets in the
antecedent and output fuzzy sets in the consequent. The general syntax of the fuzzy If-

Then rule is,

If XisAThenYis B

where A is a fuzzy set of input variable X and B is the fuzzy set of output variable Y. If
there are more than one input/output variable, they can be combined using AND/OR
operators, which are essentially a t-norm or t-conorm operators [28]. Most commonly

used t-norm and t-conorm operators are ‘min’ and ‘max’ functions respectively.

The inference part consists of combination of two operations implication and
composition. In Mamdani type of inference ‘min’ operator is used for implication and
‘max-min’ operator is used for composition. The inference process can be explained with
a following example. Consider that input variable, inputX, shown in the FIS Figure 4.3,
has two fuzzy sets, 4 and B defined as triangular membership functions shown in the
Figure 4.4. The output variable, outputY, has two fuzzy sets C and D, again as triangular

membership functions as shown in Figure 4.5. Let fuzzy-rule base is defined as

If inputX is A Then outputY is C
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If inputX is B Then outputY is D

A B
1L 4
0.8} 3
a
=
g 0.6} 4
H 0.4 W
02t 4
0
L L H 1 1 1 1 A ]
0 1 2 3 4 5 6 7 8 9 10
inputX
Figure 4.4 inputX membership functions
T T ¥ T T 1 T T T
C D
1
0.8
Q
o
g 0.6
k)
5 0.4
0.2
0
t ! L 1 - L i [ '
01 02 03 04 05 06 07 08 089
outputY

Figure 4.5 outputY membership functions
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If the value of input variable is given, say 5, it is fuzzified and its the degrees of
membership function in each input fuzzy set (u4(x) and up(x)) is calculated to determine
the firing strength with which projected on the output fuzzy set, represented as shaded

region in the output fuzzy sets in figure 4.6.

oY = 048t

o

Figure 4.6 Fuzzy Inference & Defuzzification

This is achieved by implication operation and the shaded regions in the output

fuzzy set are aggregated by ‘max-min’ operator, called composition.

4.1.5 Defuzzification
After implication and aggregation the output is still in the form of a fuzzy set and

it has to be defuzzified to get a single crisp output value. There are various methods
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supported to defuzzify the output fuzzy sets such as, centroid, bisector, middle of
maximum (average of maximum value of the output sets), largest of maximum and
smallest of maximum. Among them, the most popular method is centroid. In this method,
the final single crisp output value is determined by calculating the center of area of
aggregated shaded region in output fuzzy sets. It is represented by a vertical line in the

aggregated output region in the Figure 4.6.

4.2 Design of Fuzzy Inference Engine

4.2.1 Network model of chart pattern-cause relationship and components of
fuzzy inference engine
The fuzzy inference engine is developed keeping in mind the problems due to

ambiguities associated with interpretation of control chart patterns in

e determining whether or not the process is in-control
e if the process goes out of control, ambiguities in relating the control chart

patterns to assignable causes.

To resolve this, the fuzzy inference engine is designed based on the chart pattern—cause
relationship, represented as a network in Figure 4.7, determine the intensity of the causes
based on the patterns exhibited on the control chart. The network is developed based on
the discussions in Section 3.5.2., on using the control chart patterns to minimize the effort
spent in assignable cause search by categorizing the causes according to the nature of

shift they could produce.
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Figure 4.7 Network Model of Chart pattern — Cause Relationship

C1 - Isolated causes OCL - Out of control limit
¢ A mistake in measurement, recording or plotting FR1 - Freakl
e Defect in raw material used for that unit alone FR2- Freak2
e Damage in handling R-Run
¢ False Alarm T-Trend

C2 - Shift Causes

e Tool break
Change in raw material
Adjustments made in machine settings
Change in inspection method or standards
Introduction of new workers or inspectors

C3 - Gradual Causes
¢ Gradual induction of new raw material
Loosening fixtures
Operator fatigue
Machine tool wear
Gauge wear
Environmental changes
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The top nodes in the network C1, C2 and C3 represent isolated causes, shift
causes and gradual causes respectively. The lower nodes represent unnatural patterns Out
of Control-limits (OCL), Freak 1 (FR1), Freak 2 (FR2), Run (R) and Trend (T). The links
represent the causal relationship between the respective nodes, each link modeled by a
separate fuzzy inference system (FIS). The whole inference engine is developed using the
software, MATLAB. Each FIS has the pattern as input variable and the cause as an
output variable. Each FIS determines the intensity of the cause, on the scale of [0-1],
based on the degree of presence of its input pattern. Then finally the output from all the
FIS is aggregated, by the method described in Section 4.3., and the causes are ranked in
order, based on their intensity. Hence the assignable cause investigation shall be started

with the causes having highest intensity of presence.

Any assignable cause, if present, may produce a point outside the control limit, at
the beginning of its characteristic pattern, in the middle or as a final point completing the
definition of its characteristic pattern. Therefore once observing a point beyond control
limits and concluding prematurely that the assignable cause is an isolated cause, could be
misleading. Due to the possibility that OCL pattern might arise within the patterns of
other causes it has been linked to other causes with lower influence of causality modeled
by fuzzy if-then rules and membership functions. Once obtaining further evidence from
the presence of other underlying patterns, the intensities of the causes from the presence
of other underlying patterns are also collected and aggregated using the methods
described in Section 4.3. The degree of presence of OCL determines intensity of isolated

causes, degree of presence of FR1, FR2 and Run determines the intensity of presence of
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shift causes and degree of presence of Trend patterns determines the intensity of gradual
causes, thus, dividing the fuzzy inference engine in to seven individual fuzzy inference
systems as sub-modules and one aggregation module. The block diagram of the fuzzy

inference engine design is given in Figure 4.8.

Fuzzy Inference Engine

Input OCL —» Ct Output
° Process
OCL — 2 E state &
Control . 4 =) rank
Chart 1| & | RI—>C2 — 5 — ranked
= = assignable
Data E TRz — 2 £ causes
Z g
= R — C2 B
en
OCL—» C3 <
T —» C3

Figure 4.8. Design of Fuzzy Inference Engine

The following assumptions were made in designing the fuzzy inference engine.
o The process is in phase-II of control chart implementation, i.e., initial variations in
the process are removed and the process is brought under control and the data is
monitored to look for any assignable cause that might arise in future.

e The R-chart is brought under control before looking for unnatural patterns in X-

chart.

¢ Adaptive sampling measures are taken before investigating for assignable causes

to ensure whether or not it’s a false alarm.
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As it is assumed that the process is operating in phase II, the estimates of process
mean and standard deviation are known, and hence the control chart data, input to the
fuzzy inference engine constitutes process mean (u), standard deviation (o), sample size
(n) and sample measurements (x;). The data is checked by each pattern recognizing FIS
modules and its intensity on the assignable cause is determined. The design of each FIS

module is explained in the following sections.

4.2.2 OCL - CI FIS module

The function of this FIS module is to determine the intensity of OCL pattern on
isolated causes (C;). The fuzzy inference system for this module is shown in the Figure
4.9. It has one input variable (input OCL), one output variable (C/) and rule base

contains three fuzzy if-then rules.

ocL 1

(mamdani)

3 rules

OCL (3)

System OOLC1: 1 inputs, 1 outputs, 3 rules

Figure 4.9 OCL-C1 FIS
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The sample measurement (x;) from the input data is taken and the dispersion from
the process mean in terms of multiple of standard deviation unit is calculated using the

equation,

. _ |xi - ,U|
input  OCL =— (4.4)
o

4.2.2a) Input membership functions

The input variable is fuzzified by three membership functions, OCL1, OCL2 and
OCL3, two triangular and one trapezoidal function respectively, defined as shown

in the Figure 4.10.

Figure 4.10 Input membership functions of OCL-CI FIS
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The range for the input data is taken as [0-4] in multiple of standard deviation units, so
that it allots the degree of membership for every point in the control chart, from zero for a

point lying on center line up to 4o deviation, in three different fuzzy sets.

4.2.2b) Output membership functions

The membership functions for the output variable ‘CI’ are defined over the range
[0-1.3], measuring the intensity of the cause present according to the degree of pattern
present. ‘CI’ has three triangular membership functions, namely, Cl4, Clp and Clg,

defined as shown in the Figure 4.11.

A B C
1t 4
0.8 B
o
2
g 0.6~ E
5
§ 0.4} -
0.2} .
0
1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2
C1

Figure 4.11 Output Membership Functions of OCL-C1 FIS
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4.2.2¢c) Fuzzy rule-base
The intensity of the cause increases with deviation from the center line, reaching
the maximum value of 1 when deviation is 3¢ from the center line, and thus the three

input fuzzy sets are mapped to the three output fuzzy sets by the following if-then rules.

o If (input_ OCL is OCLI) then (Cl is A)
o If (input OCL is OCL2) then (CI is B)

e If (input_OCL is OCL3) then (CI is C)

The inference process with the above mentioned rules is explained, with an input value of
3 in standard deviation units, as shown in the Figure 4.12. It reaches the maximum value

1.0.

Figure 4.12 Inference and Defuzzication in OCL-CI FIS
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4.2.2d) Response curve

The values of output generated by this FIS for each input in the specified range

can be obtained from the response curve as plotted in Figure 4.13.

02 L L L 1 L L 1

Figure 4.13 Response Curve for OCL-CI FIS

4.2.3 OCL-C2 FIS module

This FIS module determines the intensity of OCL pattern it imparts on shift
causes (C;). Design of OCL-C2 FIS module is shown in Figure 4.14. The input variable is
the same as OCL-CI module, calculated from equation (4.4) and the input membership
functions for OCL is same as defined in Figure 4.10. Also the output membership

functions for C2 is defined in the same way for CI, and it is shown in Figure 4.15.
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Degree of membership
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0.4
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(mandani)

3 rules

OCL (3)
System OCLCZ: 1 inputs, 1 outputs, 3 rules
Figure 4.14 OCL-C2 FIS
) ] 1 ] [ ]
A B C
1 1 i H i 1
0.2 0.4 0.6 0.8 1 1.2

C2

Figure 4.15. Output Membership Functions for C2
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4.2.3a) Fuzzy rule-base

As explained earlier, OCL pattern could be one of the any points in other
unnatural pattern. But the amount of intensity it imparts on shift or gradual causes is
relatively lower than their respective characteristic patterns such as freaks, run or trend,
and lower than the intensity it imparts on isolated causes. This is achieved through the
rule-base established for OCL-C2 FIS. The presence of shift causes or gradual causes will
be determined on aggregating additional evidences from their respective characteristic

patterns.

o If (input OCL is OCLI) then (C2is 4)
o If (input OCL is OCL2) then (C2 is B)

e If (input_OCL is OCL3) then (C2 is B)

The highest fuzzy set in the input variable OCL3 is mapped to lower fuzzy set of output
variable C2, thus restricting the amount of intensity it imparts to C2. This can be viewed
through rule viewer, in Figure 4.16., for an input value of 3 in standard deviation units,
the intensity of C2 obtained is 0.6, as compared to 1.0 it imparted for C/ in OCL-CI

module.
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Figure 4.16Inference and Defuzzification in OCL-C2 FIS

4.2.3b) Response curve

The response curve as shown in the Figure 4.17., shows that C2 remains constant
at 0.6, after 1.5 standard deviation units of input. Further presence of shift causes can
only be confirmed on obtaining additional evidence from the respective characteristic

patterns of shift causes.

0.65 T T T T y -

0.6

0.55} 1
os} B

y oa4sf .
0.4} =
0.35f i

0.3 B
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0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 4.17 Response curve for OCL-C2 FIS
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4.2.4 OCL-C3 FIS module

The function of this FIS module is to determine the intensity of gradual causes by
the OCL pattern. The design of this module is represented in Figure 4.18. This module is
designed in a similar way as that of OCL-C2 module. The input variable is calculated by
equation (4.4) and the input membership functions are same as that of Figure 4.10. The
output membership function for C3 is also designed similar to that of C2 & CI, as shown

in the Figure 4.19.

ocL 3

(mamdani)

3 rules

OCL (3)

System OCLC3: 1 inputs, 1 outputs, 3 rules

Figure 4.18. OCL-C3 FIS
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Figure 4.19. Output Membership functions for OCL-C3FIS

4.2.4a) Fuzzy rule-base

. The fuzzy rule-base is designed similar to that of OCL-C2 FIS module.

o If (inputr OCL is OCLI) then (C3is A)
o If (input OCL is OCL2) then (C3 is B)

o [If (input OCL is OCL3) then (C3 is B)
As explained earlier, OCL pattern does not impart the same strength of intensity

to gradual causes as Trend pattern does. The presence of gradual causes will be

confirmed only if further evidence from the trend pattern is reinforced.
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4.2.4b) Response curve

The response of this OCL-C3 module is same as that of the OCL-C2 FIS module. It

is shown in the Figure 4.20.
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Figure 4.20 Response Curve for OCL-C3 FIS module

4.2.5 FRI-C2 module

Freak 1 pattern is produced when four out of five consecutive points fall beyond
one sigma control limit on one side of center line. This pattern is an indication of
presence of shiff cause. The design of FR1-C2 FIS is shown in the Figure 4.21. The input
variable ‘FRI’ is determined by maintaining a sample-window of five consecutive
samples and checking each point for a value greater than one sigma. The number of
points above and below the one sigma lines, within the sample-window, is stored

separately and the higher value is taken as the input.

63



FR1 (3)

System FR1c2: 1 inputs, 1 outputs, 3 rules

Figure 4.21 FR1-C2 FIS

4.2.5a) Input membership functions
As the sample-window is fixed as five, the input data range is [0-5] and three

membership functions FR1,, FRIpand FRI are developed as shown in Figure 4.19.

Degree of membership

Figure 4.22. Input Membership Functions for FR1-C2 FIS
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4.2.5b) Output membership functions
The output variable, C2, is represented by the membership functions, C24, C2B

and C2C, same as that of OCL-C2 FIS module, as in Figure 4.15.

4.2.5¢) Fuzzy rule-base
More the number of points completing the definition of FR1 pattern, stronger the

indication of presence of shift causes. Hence the three input membership functions are
mapped to three output membership functions respectively as,

o If(FRIis FRI1,) then (C,is 4)

o [If(FR!is FRIp) then (C,is B)

o If(FRIis FRI¢) then (C,is C)
For example, if the input value for ‘FRI’ is 3, the inference process is shown in the

Figure 4.23, gives 0.75 for the output variable C2.

mis3

Figure 4.23. Inference and Defzzification in FR1-C2 FIS
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4.2.5d) Response curve
The response curve increases with the increase in number of points defining the
pattern and it reaches the maximum value 1.0 when the input for FRI is four. The

response curve is shown in the Figure 4.24.

0.9 B

0.8~ E

0.7+ i

Cc2

0.6+ 4

0.5 J
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Figure 4.24. Response Curve for FRI-C2 FIS

4.2.6 FR2-C2 module

Freak 2 pattern is produced when two out of three consecutive points fall beyond
two si-gma control limit on one-side of center line. This pattern is also an indication of
presence of shift cause. The design of FR2-C2 FIS is shown in the Figure 4.25. The input
variable ‘FRI’ is determined by maintaining a time-frame window of three consecutive
samples and checking each point for a value greater than two sigma. The number of
points above and below the two sigma lines, within the time-frame window, are stored

separately and the higher value is taken as the input. The input variable membership
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functions are shown in the Figure 4.26. The output membership functions for C2 are

same as in Figure 4.15.

FR2.2

(mamdani)

3 rules

FR2 (3)

System FR2c2: 1 inputs, 1 outputs, 3 rules

Figure 4.25 FR2-C2 FIS

4.2.6a) Input membership functions

Since the sample-window is taken as three, the input data range is taken as [0-3]

with three membership functions as shown in Figure 4.26.
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Figure 4.26 Input membership functions of FR2-C2 FIS

4.2.6b) Fuzzy rule-base
Similar to FR1-C2 module, FR2 pattern also has the same fuzzy relation with C2.

More clear the presence of FR2, higher the indication of presence of FR2. The fuzzy rule

base for this module is defined as,

o If (FR2is FR2,) then (C;is 4)
o If (FR2is FR23) then (C;is B)

o If(FR2is FR2c) then (Cis C)

Since two points out of three falls beyond two sigma limit, when the input value becomes
two, giving rise to a complete freak2 pattern, the intensity of C2 becomes 1.0. This

inference is shown in the rule viewer diagram in Figure 4.27.
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FR2e2

Figure 4.27. Inference and Defuzzification in FR2-C2 FIS

4.2.6¢) Response curve

FR2 pattern also has the same effect on C2 as that of FR1 pattern. More complete
the definition of FR2 pattern on the control chart, clearer the indication of presence of
shift cause. Hence, as per the definition of FR2, the pattern is defined completely when
the input value reaches two, and the corresponding output value for C2 reaches maximum

of 1.0, which can be seen from the Figure 4.28.
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Figure 4.28. Response Curve for FR2-C2 FIS

4.2.7 R-C2 FIS module

This FIS determines the intensity of shift cause presence due to Run pattern. The
design of FIS is shown in the Figure 4.29. The Run pattern is defined as seven or more
consecutive points falling on one side of center line. Here the sample-window is
maintained for seven samples and ‘consecutive’ points above and below the center line

are calculated and highest value is taken as the input variable ‘R’.
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3 rules

R (3)

System RCZ: 1 inputs, 1 outputs, 3 rules

Figure 4.29. R-C2 FIS

4.2.7a) Input membership functions

- As the sample window is taken as seven, the input variable in terms of number of
consecutive samples on the same side of centerline, within the sample-window is
represented using three membership functions as shown in the Figure 4.30 with the input
data range [0-10]. The output membership function for shift cause variable is same as

represented in Figure 4.15.

Figure 4.30 Input Membership Functions of R-C2 FIS
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4.2.7b) Fuzzy rule-base

The three input membership functions of Run variable is mapped to three output

membership functions as

o If(RisR,) then (C;is A4)

o If(RisR;) then (C;is B)

o If(RisR;) then (C;is C)

The inference process for the input value seven is shown in the Figure 4.31.

Figure 4.31. Inference and Defuzzification in R-C2 FIS
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4.2.7¢) Response curve
From the Figure 4.32., it can be seen that the value of C2 increases with the
increase in value of R and reaches the maximum of 1.0 when the input value is seven,

number of points indicate the clear presence of Run pattern.
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Figure 4.32. Response Curve for R-C2 FIS

4.2.8 7T-C3 FIS module

This module determines the intensity of gradual causes based on the presence of
trend pattern. A trend pattern is observed when seven or more consecutive points are
continuously increasing or decreasing. The design of T-C3 module is shown in the Figure
4.33. The input value is calculated by maintaining a sample window of length eight, and
checking each sample with the previous for an increase or decrease in the value, and
simultaneously, storing the number of consecutive increasing points and decreasing

points within the sample window in separate variables.
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System T_3: 1 inputs, 1 outputs, 3 rules
Figure 4.33 T-C3 FIS

4.2.8a) Input membership functions
The sample window length for the trend pattern is eight and hence the input data

range is taken as [0-10]. Three membership functions are defined over that interval to

represent the input variable as shown in the Figure 4.34.

Degree of membership

Figure 4.34 Input Membership functions for T-C3 FIS

74



4.2.8b) Output membership functions

The output variable C3, gradual cause, is represented by three triangular
membership functions as shown in the Figure 4.35. The membership functions of C3 is
slightly different than those of C2 and Cl1, as these membership functions are fine tuned

for earlier detection of trend pattern, due to its longer sample window length compared to

other patterns.
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Figure 4.35 Output Membership Functions of T-C3

4.2.8¢) Fuzzy rule-base

The fuzzy rule-base is formed in a similar way to that of previous modules,
mapping the three input membership functions to three output membership functions, so
that when the input increases showing the presence of trend pattern stronger, C3 increases

correspondingly.
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e If(Tis T1) then (Csis 4)
o If(Tis T2) then (C;is B)

o If(Tis T3) then (C;is C)

The inference and defuzzification values for the input value of seven are shown in

the Figure 4.36.

Figure 4.36 Inference and Defuzzification of T-C3 FIS

4.2.8d) Response curve

The response curve for this module is shown in the Figure 4.37. From the graph it
can be seen that as the input value reaches seven, on detection of a complete defined

pattern of trend, the value of gradual cause reaches maximum of 1.0. As described in the
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Section 4.2.8b., the membership functions are fine tuned so that the inference system

gives higher response at the initial stage itself on detecting the trend pattern.
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Figure 4.37 Response Curve of T-C3 FIS

4.3 Aggregation of Results from FIS Modules

- The output from each FIS module gives the evidence on presence of each cause in
the range [0-1], based on degree of presence of its characteristic pattern. All the evidence
has to be aggregated to compute the overall evidence and to rank the causes, so that the
search for assignable cause shall be made beginning with the cause having highest
likelihood of presence. As each cause has varying number of input patterns, aggregation
has to be carried out in such a way that all the aggregated evidence is also within the

range [0-1].i.e.,

[0-1] & [0-1] —— [0-1] 4.5)
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Mere summing up of the evidence will lead to incorrect results. This requires certain

properties to be fulfilled while choosing the aggregation operator.
Let ‘@’ represents the aggregation operator and it should be
e Monotonic, which requires continuously increasing in the interval [0-1]
A@B<C&D, whereA <CandB <D (4.6)
e Commutative, which requires
A®B=B &4 4.7)
e Associative, which requires the aggregated value should not depend on the order
of aggregation
AB&C)=A&B)&dC (4.8)
e Existence of a unit 0, which requires the aggregated values be within the interval
[0-1]
(0 & B)=B for all B in [0-1] (4.9)
In fuzzy set theory, t-norms and t-conorms are used as connective operators for ‘AND’
and ‘OR’ respectively, satisfying the above mentioned properties. A detailed discussion
on different t-norms and t-conorms and their properties as fuzzy connectives are available
in the literature Gupta and Qi [28], Dubois and Prade [29], Fodor and Reubens [30] and
Mizumoto [31]. However, t-norms are not suitable for our case as they are not optimistic
aggregators in the sense, the weight of the evidence is reduced than the weight of its

highest operand after aggregation. Hence T-conorms are used to aggregate the evidence

from each FIS. There are two type of evidence each causal node is getting,
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o Evidence from its characteristic patterns
e Evidence from other patterns which may appear as a part in its characteristic

pattern (OCL in our case).

From the network model in Figure 4.7, isolated causes node, C1, has input only from
its characteristic pattern, which is OCL. Shift causes and Gradual causes receives input
from OCL pattern apart from its own characteristic patterns. Also, shift causes node has
three of its own characteristic patterns. Hence the aggregation is carried out in two
stages. In the initial stage, the evidence from the characteristic patterns of a particular
cause is combined using ‘Max’ operator. In the second stage, this evidence is combined
with the evidence from other patterns using ‘Algebraic sum’ operator,

Let the output from each FIS be identified under the name of the FIS itself.

e OCL CI
e OCL C2
e OCL C3
o FRI C2
e FR2 C2
e RC2

e« T C3
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4.3.1 Max Aggregation

In the network we have considered, only shift cause (C2) has more than one
characteristic pattern (FRI, FR2 and Run). As all these patterns indicate the presence of
same cause, maximum of the evidence is taken, to avoid over imposing of the evidence.

Let ‘Max_C2’ be the aggregated evidence for C2.

Max_C2 = FRI C2 & FR2 C2 & R C2

= Max (FR1_C2, FR2_C2, R_C2) (4.10)

4.3.2 Algebraic sum aggregation
This is the second stage of aggregation. The algebraic sum operator is defined by
Equation (4.5).
a@b=a+b-ab (4.11)
Nodes C2 and C3 uses this step of aggregations to combine the evidence from its
characteristic patterns (Max_C2 for C2 and T_C3 for C3) with OCL pattern as described
below.

Let C2* and C3* be the final values of C2 and C3, respectively, after aggregation.

C2*

Max_C2 & OCL_C2 (4.12)

C3* = T_C3 ® OCL_C3 (4.13)
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Since isolated causes, C1, has only one input, from its characteristic pattern OCL,

no aggregation process is involved with C1 node. Hence,

CI* = OCL _CI (4.14)

where C1* is the final value of isolated causes.

Thus the fuzzy inference engine gives the final output as C/* C2* and C3* in the range
[0-1] after aggregation, representing its degree of presence. When any of these values
reaches its maximum, it indicates that process mean is shifted and the assignable cause
investigation could be initiated with the cause having maximum value. It also indicates
what pattern or combination of patterns caused the process to go out-of-control with the
weighted assignable cause domain that could have possibly caused the out-of control
situation. The developed FIS engine is tested with control chart data containing various

combinations of patterns and the results are discussed in the next chapter.
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Chapter 5

Test Cases and Results

The fuzzy inference engine developed is tested with control chart data containing
various combinations of unnatural patterns. Each test case is developed considering a
particular unnatural pattern or a combination of unnatural patterns taken from the
network in Figure 4.7. The test cases and test data were developed considering the
assumptions made in Section 4.2.1. As per these assumptions, process is operating in
phase-II. The process average and standard deviation are known. The control chart data
(test data) for each test case is developed using the software MINITAB [32] using
random data generated under normal distribution by specifying mean and standard

deviation.

Control charts are plotted using MINITAB. Sensitizing rules (tests) pertaining to
the unnatural patterns that are interested in detecting (OCL, FR1, FR2, Run & Trend) are
selected to determine the intensity of assignable causes.

The Disadvantages in using common control charting software are,
e They can only detect whether or not the process in under control. No
further information on possible assignable causes is given
e Use of sensitizing rules in determining the process state could lead to

increased false alarms.
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e Ifitis decided to not use these sensitizing rules, then useful information
on the type of unnatural patterns present to diagnose the assignable cause

cannot be obtained.

These pitfalls can be overcome by the fuzzy inference engine developed. The output from
the fuzzy inference engine is compared with the manual interpretation of charts and using
the chart in determining the process state and analyzing chart patterns in assignable cause

search.

Each test case is discussed along with the results from the fuzzy inference engine.
Initially, to understand the performance of the fuzzy inference engine, simple test cases
are considered containing only one unnatural pattern at a time. The initial three test cases
were taken considering one characteristic pattern for each cause at a time. The later test
cases taken contain different combinations of all the patterns. Since it is assumed that the
process is operating in phase II, the test data was generated with process mean 50.0 and

standard deviation 1.0 with a sample size of 5 for all the test cases.

5.1 Test Case-1 (OCL)

In this first test case, a common and well known unnatural pattern, OCL, a point
falling beyond outer control limits is considered. The test data was generated using
MINTIAB with the mean value as 50.0, standard deviation as 1.0 and a sample size of
five. The data generated is given in the Table 5.1 and its control chart, plotted using

MINITAB is given in Figure 5.1
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Data: 4=50,0=1.0,n=5

Sample | X, X, X3 X4 X5 Mean
No
1. 50.7387 49,5947 49.5849 49.2320 50.9549 50.0211
2. 49.3567 50.8175 49.3406 49.4535 48.8772 49,5691
3, 49.4348 51.1365 51.0497 50.0943 51.1910 50.5813
4, 49.1990 50.5684 49,3381 51.1209 50.4775 50.1408
S. 49.0848 49.3550 492542 49,2287 49,7714 49,3388
6. 50.2280 50.4704 49,9426 49,9962 53.1599 50.7594
7. 50.6425 52.1969 50.0847 49.7479 49,7048 50.4753
8. 50.8166 51.8717 51.6397 53.4504 50.2349 51.6027
Table 5.1 Data for Test Case 1
Xbar Chart of C3, ..., C5
52.04
1
51.5
// +3SL=51.342
>1.07 +25L=50.894
e
o
$ 505 A\ /\/ +1SL=50.447
g /S >~/ _
£ 50.0- | X=50
é N/
49,5 \./ -151.=49.553
49.0- -251L=49.106
-35L=48.658
48.5- T T T T T T T T
1 2 3 4 5 6 7 8
Sample

Figure 5.1. X Chart for Test Case 1
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MINITAB Result:

Results for: Case1_OCL.MTW
Xbar Chart of C1, ..., C5

Test Results for Xbar Chart of C1, ..., C5

TEST 1. One point more than 3.00 standard deviations from center line.
Test Failed at points: 8

Results from Fuzzy Inference Engine

Mean:50.0000 Sigma:1.0000 Sample_Size:5
SNo | Cause | OCL FR1| FR2 | Run | Trend Max | Alg_ | Cause
Sum | Priority
1 ilp 004 |0 0 1 0
values
C1 0.25 0.25 0.25 C2:(Run), c3*,
c2 025 [0.35 |025 |0.38 0.38 053 | ¢
C3 0.25 0.3 0.30 0.47
2 ilp 096 |0 0 1 1
values
ci 0.46 046 046 gf,‘R““)’ 3,
C2 046 [0.35 [025 |0.38 0.38 0.66
C3 0.46 0.3 0.3 0.62
3 ilp 1.3 1 0 1 1
values
C1 0.54 0.54 0.54 | C2*(FR1), C3*,
c2 054 |043 [025 [0.38 0.43 0.74 | C1*
C3 0.54 0.3 0.30 0.68
4 ilp 0.31 1 0 2 1
values
C1 0.25 0.25 0.25 | C2*(Run), C3*,
C2 025 |043 |025 |048 0.48 061 | C1
C3 0.25 0.30 0.30 0.47
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5 ilp 147 |1 0 1 2
values
c1 0.59 0.59 0.59 | c2*(FR1), C3*,
C2 059 043 [025 [0.38 0.43 077 |ct
c3 0.59 0.41 0.41 0.76
6 ilp 169 |2 0 1 1
values
c1 0.67 0.67 0.67 | C2*(FR1), C3*,
c2 060 |056 |025 |0.38 0.56 082 | C
C3 0.60 0.30 0.30 0.72
7 ilp 106 |3 0 2 1
values
C1 0.48 0.48 0.48 | C2¢(FR1), C3*,
c2 048 |075 | 025 |0.48 0.75 0.87 | ¢V
c3 0.48 0.30 0.30 0.64
8 ilp 358 |3 1 3 1
values
C1 1 1 1 C1*, C2*(FR1),
c2 0.6 075 | 060 |0.56 0.75 090 |C3¥
c3 0.60 0.30 0.72
Process out of control:
C1-1.0000

Table 5.2 Results from Fuzzy Inference Engine for Test Case 1

The results from the fuzzy inference engine for every point plotted on the control
chart are given in the Table 5.2. The first column indicates sample number and the first
row of every sample in the table gives the input values of each unnatural pattern. For
example, sample 1 has OCL pattern input of 0.047 (measure of dispersion from center
line in terms of standard deviation units, calculated as per equation 4.4), FR1 pattern
input 0 (determined as per Section 4.2.5), FR2 pattern input 0 (determined as per Section
4.2.6), Run pattern input 1 (as per Section 4.2.7) and Trend pattern input of 0 (as per

Section 4.2.8).
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The subsequent rows C1, C2 and C3 show the values each cause received from its
unnatural patterns as represented in the network diagram though its corresponding FIS
module. “Max” column represents the Max aggregation of characteristic patterns of same
cause, which in our case, only for C2, maximum of FR1, FR2 and Run pattern values is
taken. For C1 and C3 the value remains the same, as it contains only one characteristic
pattern. In ‘Alg_Sum’ column, algebraic sum aggregation is performed as explained in

Section 4.3.2. Finally, causes are prioritized based on the aggregated evidence.

When the aggregated evidence for a cause reaches the maximum of 1.0, the
process is said to be out of control and the cause having the maximum value is given the
highest priority. The ambiguities in situations where all the causes reach maximum of 1.0
when all patterns co-exist together, as in some of the cases tested later, is resolved by the
fuzzy inference engine. This is done by prioritizing the causes based on the probabilistic
values of its characteristic patterns. The cause of the characteristic pattern having highest
probability of occurrence (as per Section 3.3) is given the highest priority. The prioritized
causes are listed in order (starting with the highest) in the last column of Table 5.2. Since
shift causes (C2) has many characteristic patterns, the pattern influencing C2 to the most
(the pattern corresponding to C2 in the ‘Max’ column) is given in the brackets next to

C2*,

The results from test case 1 show that sample 8 has the isolated cause at
maximum value of 1.0, hence making the process out of control. Accordingly cause

priority is ordered as C1*, C2* and C3* as per their value of aggregated evidence. The
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investigation for assignable cause is conducted starting with the cause having highest
priority. The performance of the fuzzy inference engine is tested with various other test

cases, with different combination of patterns in the following test cases.

5.2 Test Case 2 (Run)

In this test case the shift cause characteristic pattern ‘Run’ is considered. The
parameters of the control chart remaining the same, the sample data is given in the Table
5.2 and the control chart from MINITAB is given in Figure 5.2 with the output generated
from MINITAB. The test rule for detecting a Run pattern in MINITAB is defined as nine
or more consecutive points on one side of center line. Observing nine consecutive points
on one side of center line has a lower probability (0.5° = 0.0019) than observing eight
consecutive points (0.5° = 0.0039) on one side of the center line. It means chances of
detecting the shift is more in latter case compared to former. For this test case MINITAB
shows that the process is in-control and no unnatural pattern is detected. But the output
from fuzzy inference engine show that run pattern is detected and hence presence of shift

causes with maximum value of 1.0.

Data: y=50,0=1.0,n=5

Sample | X, X, X3 X4 Xs Mean

e 1. 45.8504 51.5015 50.0084 49.6865 49.9424 49.3979
2. 51.4859 52.5719 50.4062 48.4897 50.1307 50.6169
3. 50.5363 53.1283 49.5771 50.2932 50.0845 50.7239
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Sample | X, X, X; X4 Xs Mean

e 4. 52.8048 52.7215 51.7870 48.5275 49.3996 51.0481
5. 49.1027 50.8896 48.9389 49.7564 48.2330 49.3841
6. 48.8958 52.4114 51.0855 48.3104 49.0380 49.9482
7. 51.2322 50.4726 49.1889 49.6465 48.7237 49.8528
8. 47.0161 49.0403 50.7732 51.1620 47.0539 49.0091
9. 50.0082 52.0126 50.2318 50.6496 52.3304 51.0465
10. 50.1550 49.3009 51.4115 51.0635 50.2256 50.4313
11. 48.7763 48.5632 48.1658 50.1236 49.4177 49.0093
12. 50.5327 50.7294 50.8167 51.4960 51.3382 50.9826
13. 50.8436 51.0526 48.3579 49.9998 50.8643 50.2237
14. 50.7566 50.0173 49.2853 50.0981 50.6453 50.1605
15. 49.8980 51.4502 49.1314 50.2680 50.2477 50.1990
16. 50.5441 49.8908 50.3852 53.5696 48.4198 50.5619
17. 49.8169 52.9305 50.8563 50.5612 48.1090 50.4548
18. 48.9334 51.2682 50.6664 50.1519 50.4290 50.2898

Table 5.3 Data for Test Case 2
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Xbar Chartof C1, ..., C5

51.54
+35L=51.342
51.01 r/./?\ /?\ /*\ +25L=50.894
c 50.54 / \ [ / u’\-: +1SL=50.447
SR VATERY
@ 49.5 1 ‘ y \/ \/ -1SL=49.553
49.04 'y -25L=49.106
-351.=48.658
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1 3 5 7 9 11 13 15 17
Sample
Figure 5.2. X Chart for Test Case 2
MINITAB Result:

[No patterns detected in MINITAB result window]
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Results from Fuzzy Inference Engine

Mean:50.0000 Sigma:1.0000 Sample_Size:5
Alg_ | Cause
SNo | Cause | OCL | FR1 FR2 | Run | Trend | Max Sum | Priority
i/
1 vaﬁues 134 |1 0 1 0 C2*(FR1), C3*,
C1 0.55 0.55 0.55 | g1+
Cc2 0.55 | 043 |0.25 [0.38 0.43 0.75
C3 0.55 0.30 0.30 0.69
ilp
2 values | 1.37 |1 0 1 1
C1 0.56 0.56 0.56 C2*(FR1), C3*,
C2 0.56 | 043 |[025 [0.38 0.43 0.75 | c1*
C3 0.56 0.30 0.30 0.69
ilp
3 values [ 1.61 |2 0 2 2 C2*(FR1), C3*,
C1 0.64 0.64 0.64 |c1*
Cc2 060 |056 |0.25 {048 0.56 0.82
C3 0.60 0.41 0.41 0.76
ip
4 values [ 234 |3 1 3 3 C2*(FR1), C3*,
C1 0.81 0.81 0.81 | cq*
Cc2 060 |0.75 | 060 |0.56 0.75 0.90
C3 0.60 0.60 0.60 0.84
ilp
5 values | 1.37 |3 1 1 1 C2*(FR1), C3*,
C1 0.56 0.56 0.56 | ¢q*
Cc2 0.56 |0.75 060 [0.38 0.75 0.89
C3 0.56 0.30 0.30 0.69
ilp
6 values [0.11 |3 1 2 1 C2*(FR1), C3",
C1 0.25 0.25 025 |cq*
Cc2 0.25 |0.75 {060 {048 0.75 0.81
C3 0.25 0.3 0.30 0.47
i/ *
7 variues 032 |2 0 3 1 gﬁn()'j R1&
C1 0.25 0.25 0.25 | c3+, c1*
Cc2 0.25 |0.56 |0.25 |[0.56 0.56 0.67
C3 0.25 0.3 0.30 0.47
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i'p

8 values | 2.21 2 1 4 2 C2*(Run),C1*,
C1 0.79 0.79 0.79 |3+
C2 060 | 056 1060 {0.63 0.63 0.85
C3 0.60 0.41 0.41 0.76
ip
9 values [2.34 |2 1 1 1 C2*(FR2),C1%,
C1 0.81 0.81 0.81 |3+
C2 060 (056 | 060 |0.38 0.60 0.84
C3 0.60 0.30 0.30 0.72
ilp
10 values [0.96 |1 1 2 1 C2*(FR2), C3*,
C1 0.46 0.46 046 |1
C2 046 |043 [0.60 {0.48 0.60 0.78
C3 0.46 0.30 0.30 0.62
ip
11 values | 2.21 2 1 1 2 C2*(FR2),C1%,
C1 0.79 0.79 079 |} c3*
C2 0.60 |056 |060 [0.38 0.60 0.84
C3 0.60 0.41 0.41 0.76
ilp
12 values [2.19 |2 1 1 1 C2*(FR2),C1%,
C1 0.78 0.78 0.78 | c3*
C2 060 [056 |060 |0.38 0.60 0.84
C3 0.60 0.3 0.30 0.72
ilp
13 values | 0.50 |2 1 2 1 C2*(FR2),C1%,
C1 0.25 0.25 025 |3+
C2 0.25 [ 056 [0.60 |0.48 0.60 0.70
C3 0.25 0.30 0.30 0.47
i'p
14 values | 0.35 |1 1 3 2 C2*(FR2), C3*,
C1 0.25 0.25 025 |1
C2 025 {043 |060 |0.56 0.60 0.70
C3 0.25 0.41 0.41 0.56
ip
15 values | 0.44 1 0 4 1 C2*(Run), C3*,
C1 0.25 0.25 0.25 | ¢1
C2 0.2 043 |0.25 [0.633 0.63 0.72
C3 0.25 0.30 0.30 0.47
ilp
16 values | 1.25 |2 0 5 2
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ct 0.53 053 053 [ covrun), ca*,

C2__ |053 | 066 |025 [074 074 o088 |c1
c3  |o53 041 loa1 o072
ilp
17 jvalues |1.01 |2 0 6 1
C2*(Run), C3*,
c1__|oa47 0a7_oar | &2 Run)
C2__ |047 056 [025 [083 083 |09
c3  loar 030 [030 [063
ilp
18 |values | 0.64 |2 0 7 2
C2*(Run), C3*,
ct_ |oa3s 034|034 | g2 Run)
C2__ 1034 [056 |025 |1 1 1
c3  los4 041|041 o061

Process out of control:C2-1.0000

Table 5.4 Results from Fuzzy Inference Engine for Test Case 2

From the results in Table 5.4, C2 reaches the maximum value 1.0 for sample 18
due to the run pattern. The causes are ordered in the sequence C2*, C3* and CI*
according to their aggregated values. It has to be noted that output from MINITAB has

not detected any pattern.

5.3 Test Case 3 (Trend)

In this test case, only the characteristic pattern for gradual cause, ‘Trend’, is
considered. The test data is given in Table 5.5 and the MINITAB resuits and control chart
which shows a decreasing trend are given in Figure 5.3. The test for ‘“Trend’ pattern in
MINITAB is designed for detecting six consecutive points, increasing or decreasing, as
opposed to seven points suggested in literature. Seven consecutive increasing or

decreasing points is considered as Trend pattern in this work.
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The probability of occurrence of six points in a row all increasing or decreasing is
more than that of the occurrence of seven points, and hence concluding the process is out
of control on observing six points may lead to increased false alarms and reduced average
run length. The output from MINITAB shows that the process is out of control from
sample 15. The output from fuzzy inference engine, as given in the Table 5.6, shows that
process went out of control at sample 16, reaching the maximum value for gradual cause,

1.0, at sample 16.

Data: y=50,0=1.0,n=5

Sample | X, X, X3 X4 Xs Mean
No

1. 45.8504 51.5015 50.0084 49.6865 49.9424 49.3979

2. 51.4859 52.5719 50.4062 48.4897 50.1307 50.6169

3. 50.5363 53.1283 49.5771 50.2932 50.0845 50.7239

4. 52.8048 52,7215 51.7870 48.5275 49.3996 51.0481

5. 49.1027 50.8896 48.9389 49.7564 48.2330 49.3841

6. 48.8958 524114 51.0855 48.3104 49.0380 49.9482

7. 51.2322 50.4726 49.1889 49.6465 48.7237 49.8528

8. 47.0161 49.0403 50.7732 51.1620 47.0539 49.0091

9. 50.0082 52.0126 50.2318 50.6496 52.3304 51.0465

10. 50.1550 49.3009 51.4115 51.0635 50.2256 50.4313
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Sample | X, X, X; Xy X5 Mean
No
11. 48.7763 48.5632 48.1658 50.1236 494177 49.0093
12. 50.5327 50.7294 50.8167 51.4960 51.3382 50.9826
13. 50.8436 51.0526 48.3579 49,9998 50.8643 50.2237
14. 50.7566 50.0173 49,2853 50.0981 50.6453 50.1605
15. 49.8980 51.4502 49.1314 50.2680 50.2477 50.1990
16. 50.5441 49,8908 50.3852 53.5696 48.4198 50.5619
Table 5.5 Data for Test Case 3
Xbar Chartof C1, ..., C5
51.54
+35L=51.342
51.01 +25L=50.894
5 50.51 +15L=50.447
@ 50.0- .\'/.\ X=50
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3
49.0- \, | 25L=49.106
3
-3S1L=48.658
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Figure 5.3. X Chart for Test Case 3

95




MINITAB Result:

Xbar Chart of Case3_Trend.MTW

Test Results for Xbar Chart of C1, ..., C5

TEST 3. 6 points in a row all increasing or all decreasing.

Test Failed at points:

15,

16

Results from Fuzzy Inference Engine

Mean:50.0000 Sigma:1.0000 Sample_Size:5
Alg_
SNo | Cause | OCL | FR1 FR2 | Run | Trend | Max Sum | Cause Priority
i/
1 vaF:ues 0.41 0 0 1 0 C2*(Run),C3",
C1 0.25 0.25 025 | c1+
Cc2 0.25 (035|025 |0.38 0.38 0.53
C3 0.25 0.30 0.30 0.47
ilp
2 values | 034 |0 0 2 1 C2*(Run), C3*,
C1 0.25 0.25 0.25 |cq*
C2 0.25 | 0.35 [0.25 | 0.48 0.48 0.61
C3 0.25 0.30 0.30 0.47
i'p
3 values | 0.79 |0 0 3 1 C2*(Run), C3%,
C1 0.40 0.40 040 | cq*
C2 0.40 |0.35 | 0.25 | 0.56 0.56 0.74
C3 0.40 0.30 0.30 0.58
ilp
4 values | 097 |0 0 1 1 C2*Run), C3",
C1 0.46 0.46 046 | cq~
C2 0.46 10.35 025 |0.38 0.38 0.67
C3 0.46 0.30 0.30 0.62
i'p
5 values 0.002 |0 0 1 1 C2*(Run), C3*’
C1 0.25 0.25 025 |c1*
Cc2 0.25 10.350.25 |0.38 0.38 0.53
C3 0.25 0.30 0.30 0.47
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i'p

6 values [0.28 |0 0 1 1 C2*(Run), C3*,
C1 0.25 0.25 0.25 | cq*
C2 0.25 {035 [0.25 |0.38 0.38 0.53
C3 0.25 0.30 0.30 0.47
ip
7 values | 2.07 |1 1 2 2 C2*(FR2), C3*,
C1 0.76 0.76 0.76 | c1*
C2 060 |0.43 060 |048 0.60 0.84
C3 0.60 0.41 0.41 0.76
ip
8 values | 0.01 1 1 3 1 C2*(FR2), C3*,
C1 0.25 0.25 025 |1+
C2 0.25 |0.43 | 060 | 0.56 0.60 0.70
C3 0.25 0.30 0.30 0.47
ilp-
9 values | 1.97 |1 1 1 2 C2'(FR2), C3%,
C1 0.74 0.74 0.74 | c1*
C2 0.60 |0.43 060 |0.38 0.60 0.84
C3 0.60 0.41 0.41 0.76
ilp
10 values | 1.70 |2 0 2 1 C2*(FR1), C3*,
C1 0.67 0.67 0.67 |cq*
C2 0.60 |0.56 | 0.25 | 0.48 0.56 0.82
C3 0.60 0.30 0.30 0.72
ilp .
11 values | 1.20 |3 0 3 2 C2*(FR1), C3",
C1 0.52 0.52 052 |cq*
C2 0.52 |0.75 1025 |0.56 0.75 0.88
C3 0.52 0.41 0.41 0.72
ip
12 values | 076 |3 0 4 3 C2*(FR1), C3%,
C1 0.40 0.40 040 |cq*
C2 040 {(0.75]0.25 |0.63 0.75 0.85
C3 0.40 0.60 0.60 0.76
ilp
13 values 0.09 3 0 1 4 c2*(FR1), cs*’
C1 0.25 0.25 025 | cq*
C2 0.25 |0.75 {0.25 |0.38 0.75 0.81
C3 0.25 0.75 0.75 0.81
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ilp
14 values | 0.74 |2 0 2 5
C1 0.38 0.38 }0.38 03:, C2*(FR1),
C2 0.38 | 0.56 |025 |0.48 0.56 0.73 c1
C3 0.38 0.83 0.83 0.89
i'p
15 values | 1.17 |1 0 3 6 C3*, C2*(Run),
C1 0.51 0.51 0.51 c1*
C2 051 043|025 |0.56 0.56 0.78
C3 0.51 0.90 0.90 0.95
i'p
16 values |2.30 |2 1 4 7 C3*, C2*(Run),
C1 0.80 0.80 |0.80 | cq=
C2 060 |0.56 | 0.60 | 0.63 0.63 0.85
C3 0.60 1 1 1
Process out of control:C3-1.0000

Table 5.6 Results from Fuzzy Inference Engine for Test Case 3

From the results of the fuzzy inference engine Table 5.6, the trend pattern is
detected by the fuzzy inference engine at samplel6, thereby prioritizing the gradual

causes (C3*) over the other two causes.

5.4 Test Case 4 (OCL and FR2)

In this case the combination of two unnatural patterns, OCL and Freak 2 is
considered. OCL is the characteristic pattern of isolated causes (C2) and Freak 2 is the
characteristic pattern of shift causes. Accordingly, the output from MINITAB shows the
presence of two unnatural patterns and so does the fuzzy inference engine, giving the
values of CI (isolated causes) and C2 (shift causes) at the maximum value 1.0. In such

circumstances where more than one cause reaches the maximum value 1.0, prioritization
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is done based on the higher probability of occurrence of the patterns. The test data is
given in the Table 5.7 and control chart is shown in the Figure 5.4. The results from the

fuzzy inference engine are shown in Table 5.8.

Data: y=50,0=1.0,n=15

Sample X1 Xz X3 X4 X5 Mean
No

1. 50.7387 49.5947 49.5849 49.2320 50.9549 50.0211
49.3567 50.8175 49.3406 49.4535 48.8772 49.5691
49.4348 51.1365 51.0497 50.0943 51.1910 50.5813
49.1990 50.5684 49.3381 51.1209 50.4775 50.1408
49.0848 49.3550 49.2542 49,2287 49.7714 49.3388
50.2658 51.4124 52.0780 49.9458 51.0676 50.9539
50.3587 51.4124 52.0780 51.2457 51.0676 51.2325
50.8166 51.8717 51.6397 53.4504 50.2349 51.6027

P N D B W

Table 5.7 Data for Test Case 4
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Xbar Chart of C1, ..., C5

52.0-
1
51,5-
5. / +35L=51.342
51.07 +25L=50.894

=

g 505 A +15L=50.447
% 50.0- / \ / X=50
NS N/

2954 <7 -151=49.553

49.04 -25L=49.106
-351L=48.658
48.5- T T T T T T T T
1 2 3 4 5 6 7 8
Sample
Figure 5.4. X Chart for Test Case 4
~
MINITAB Result:

Test Results for Xbar Chart of C1, ..., C5

TEST 1. One point more than 3.00 standard deviations from center line.
Test Failed at points: 8

TEST 5. 2 out of 3 points more than 2 standard deviations from center line
(on

one side of CL).
Test Failed at points: 7, 8
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Results from Fuzzy Inference Engine

Mean:50.0000 Sigma:1.0000 Sample Size:5

Al
SNo | Cause | OCL | FR1 FR2 | Run | Trend | Max Sugrﬁ Cause Priority
i/
1 variues 004 [0 0 1 0 C2*(Run), C3*,
C1 0.25 025 1025 |cq*
C2 0.25 |0.35 0.25 |0.38 0.38 ]0.53
C3 0.25 0.3 0.30 047
i'p
2 values [ 096 [0 0 1 1
C1 0.46 0.46 | 0.46 C2*(Run), C3*,
C2 0.46 | 0.35 0.25 |0.38 0.38 1066 |c1*
C3 0.46 0.3 0.30 ] 0.62
ilp
3 values | 1.3 1 0 1 1 * *
Ct 0.54 0.54 |0.54 gf*(FR”’ ¥
C2 0.54 | 0.43 0.25 | 0.38 0.43 ]0.74
C3 0.54 0.3 0.30 ]0.68
ip
4 values | 0.31 1 0 2 1
C1 0.25 0.25 ]0.25 C2*(Run), C3*
C2 0.25 10.43 0.25 | 0.48 048 ]061 ]Jc1*
C3 0.25 0.3 0.30 047
i'p
5 values | 147 |1 0 1 2 C2*(FR1), C3*,
C1 0.59 059 1059 |cq*
C2 0.59 |0.43 0.25 ]0.38 043 ]0.77
C3 0.59 0.41 0.41 ]0.76
ilp
6 values | 213 |2 1 1 1 C2*(FR2), C1*,
C1 0.77 0.77 1077 | ¢c3*
Cc2 0.60 | 0.56 0.60 |0.38 0.60 ]0.84
C3 0.60 0.30 0.30 ]o0.72
i'p
7 values [ 275 |3 2 2 2 C2*(FR2), C1*,
C1 0.91 0.91 ]091 |c3*
C2 0.60 [0.75 1 0.48 1 1
C3 0.60 0.41 0.41 ]0.76
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Process out of control:C2-1.0000

ilp
8 | values |[358 |3 3 3 3 C1,  C2'(FR2),
ct 1 1 1 c3*
c2 060 | 075 |1 0.56 1 1
c3 0.60 060 |0.60_|0.84

Process out of control:C1-1.0000
Process out of control:C2-1.0000

Table 5.8 Results from Fuzzy Inference Engine for Test Case 4

The results from fuzzy inference engine are shown in Table 5.8. In this case the
FR2 pattern is identified at sample 7 causing C2* to reach the maximum valuel.0 and
hence it is given the highest priority. At sample 8, both the isolated and shift causes reach
the maximum value of 1.0 due to OCL and FR2 patterns. In such circumstances
prioritization is done based on probabilistic values of the patterns (as per Section 3.3).
OCL pattern has higher probability of occurrence (0.0027) compared to FR2 pattern

(0.0016) and hence C1* is prioritized over C2*.

5.5 Test Case 5 (OCL, FR1 and FR2)

In this test case the combination of three unnatural patterns OCL, FR1 and FR2, is
considered, in which OCL is the characteristic pattern of isolated causes and both FR1
and FR2 are the characteristic patterns for shift causes. The outputs from both MINITAB
and the fuzzy inference engine show the presence of all three patterns and the fuzzy
inference engine prioritizes C2 again, as it receives additional evidence supporting C2
from FR1, as similar to the previous test case. The test data is shown in Table 5.9 and the

control chart is shown in Figure 5.5.
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Data: 4=50,0=1.0,n=35

Sample X] Xz X3 X4 Xs Mean
No
1. 50.7387 49.5947 49.5849 49.2320 50.9549 50.0211
2. | 49.3567 50.8175 49.3406 49 4535 48.8772 49.5691
3. 49.4348 51.1365 51.0497 50.0943 51.1910 50.5813
4. 49.1990 50.5684 49.3381 51.1209 50.4775 50.1408
5. 49.0848 49.3550 49.2542 492287 49.7714 49.3388
6. 50.2280 50.4704 49,9426 49,9962 53.1599 50.7594
7. 50.6425 52.1969 50.0847 49.7479 49.7048 50.4753
8. 50.1587 51.4124 52.0780 49.8457 51.0676 509125
9. 50.8166 51.8717 51.6397 53.4504 50.2349 51.6027
Table 5.9 Data for Test Case 5
Xbar Chartof C1, ..., C5
52.04
1
51,5
/ +351=51.342
_ >1.07 +25L=50.894
1]
$ 50.51 A +1SL=50.447
% 50.0- e | X=50
&
49.5 1 -151=49.553
49.04 -25L=49.106
-351=48.658
48'5- T T T T T T T T T
1 2 3 4 5 6 7 8 9
Sample

Figure 5.5 X Chart for Test Case 5
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MINITAB Result

Results for: Case2_FR2_FR1_OCL.MTW
Xbar Chart of C1, ..., C5

Test Results for Xbar Chart of C1, ..., C5

TEST
Test

TEST
(on

Test

TEST

Test

1. One point more than 3.00 standard deviations from center line.
Failed at points: 9

5. 2 out of 3 points more than 2 standard deviations from center line

one side of CL).
Failed at points: 9

6. 4 out of 5 points more than 1 standard deviation from center line (on
one side of CL).
Failed at points: 9

Results from Fuzzy Inference Engine

Mean:50.0000 Sigma:1.0000 Sample_Size:5

Al
SNo | Cause | OCL | FR1 FR2 | Run | Trend | Max Sugrﬁ Cause Priority
i/
1 vaﬁues 004 |0 0 1 0 C2*(Run), c3*,
C1 0.25 025 1025 |1+
C2 025 [0.35 [0.25 |0.38 0.38 | 0.53
C3 0.25 0.30 0.30 | 047
ilp
2 values [ 096 |0 0 1 1
C1 0.46 0.46 | 0.46 C2*(Run), C3*, C1*
C2 0.46 |0.35]0.25 |0.38 0.38 |0.66
C3 0.46 0.30 0.30 {0.62
ilp
3 values | 1.3 1 0 1 1
C1 0.54 0.54 |0.54 C2*(FR1), C3*, C1*
C2 0.54 [043]0.2 0.38 043 ]0.74
C3 0.54 0.30 0.30 }0.68
ilp
4 values | 0.31 |1 0 2 1
C1 0.25 0.25 ]0.25
Cc2 025 [0.43 025 |048 0.48 | 0.61
C3 0.25 0.30 0.30 ]0.47 | C2*(Run), C3* C1*
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ilp
5 values | 147 |1 0 1 2
C1 0.59 0.59 |]0.59 C2*(FR1), C3*, C1*
C2 0.59 |043 1025 |0.38 043 ]0.77
C3 0.59 0.41 041 1076
ilp
6 values | 169 |2 0 1 1
C1 0.67 0.67 |]0.67 C2*(FR1), C3*, C1*
C2 060 |0.56 [0.25 |0.38 0.56 | 0.82
C3 0.60 0.30 0.30 ]10.72
ilp
7 values | 1.06 |3 0 2 1
C2 048 10751025 |0.48 0.75 ]0.87
C3 0.48 0.30 0.30 | 0.64
ilp
8 values | 204 |3 1 3 1 C2*(FR1), c1*,
C1 0.75 075 075 |c3*
C2 060 |0.75 | 0.60 | 0.56 0.75 ]0.90
C3 0.60 0.30 0.30 10.72
ilp
9 values | 3.58 |4 2 4 2 C2*(FR1&FR2),
C1 1 1 1 c1*, C3*
C2 060 |1 1 0.63 1 1
C3 0.60 0.41 041 ]10.76
Process out of control:C1-1.0000
Process out of control:C2-1.0000

Table 5.10 Results from Fuzzy Inference Engine for Test Case §

The results from the fuzzy inference engine are shown in the Table 5.10. In this

case both FR1 and FR2 are identified and along with OCL at sample 9, thus giving both

C1 and C2 at maximum value 1.0. Since FR1 (the characteristic pattern of shift causes)

has the higher probability of occurrence (0.0028) compared to OCL (0.0027 as per

Section 3.3), shift causes (C2*) are prioritized over isolated causes (C1*).
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5.6 Test Case 6 (OCL, FR2 and Run)

On a further attempt to test with more characteristic patterns of shift causes (C2),
another combination of shift cause patterns, FR2 and Run along with OCL pattern is
considere&. Again, as described earlier, MINITAB test for run is detected at ninth
consecutive point falling on one-side of centerline and hence the result from MINITAB
shows the presence of only two out of three patterns considered. On the other hand,
results from the fuzzy inference engine show the presence of all three patterns and since
OCL is preceded by other two unnatural patterns FR2 and Run, presence of shift causes
are confirmed with a maximum value of 1.0. The test data is given in Table 5.11 and the

control chart is shown in Figure 5.6

Data: y=50,0=1.0,n=5

Sample | X, X2 X3 X4 Xs Mean

N 1. 50.2681 48.5294 49.0512 50.0176 50.7473 49.7227
2. 51.1256 49.6924 50.4742 51.0484 49.0525 50.2786
3. 50.2721 49.1841 49.7142 49.9592 49.4854 49.7230
4. 48.7486 49.7143 48.8453 49.4014 48.8658 49.1151
5. 49.2317 50.2178 47.8083 50.7124 48.4915 49.2923
6. 51.4859 52.5719 50.4062 48.4897 50.1307 50.6169
7. 50.5363 53.1283 49.5771 50.2932 50.0845 50.7239
8. 50.1550 49.3009 514115 51.0635 50.2256 504313
9. 52.8048 52.7215 51.7870 48.5275 49.3996 51.0481
10. | 50.7566 50.0173 492853 50.0981 50.6453 50.1605
11. | 50.0082 52.0126 50.2318 50.6496 52.3304 51.0465
12. | 50.8166 51.8717 51.6397 53.4504 50.2349 51.6027

Table 5.11 Data for Test Case 6
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Xbar chart for test case 6

20— T T

+35L=51.342
. — A +25L=50.894
0
g A / v _
B 50.0- X=50
3 N
49,54 \// - | -15L=49.553
49.0 e -25L=49.106
-35L=48.658
48.5- T T - T T T T T T T S T
1 2 3 4 5 6 7 8 9 10 11 12
Sample
Figure 5.6. X Chart for Test Case 6
MINITAB Result:

Test Results for Xbar Chart of C1, ..., C5

TEST 1.

Test Failed at points: 12

TEST 5.

(on

one side of CL).

Test Failed at points: 11, 12

One point more than 3.00 standard deviations from center line.

2 out of 3 points more than 2 standard deviations from center line
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Results from Fuzzy Inference Engine

Mean:50.0000 Sigma:1.0000 Sample_Size:5

Al
SNo | Cause | OCL | FR1 FR2 Run | Trend | Max Sugm— Cause Priority
i/
1 vaﬁues 062 {0 0 1 0 C2*(Run), C3*,
C1 0.33 033 1033 [+
Cc2 0.33 1035 10.25 0.38 0.38 10.58
C3 0.33 0.30 0.30 }0.53
i'p
2 values | 062 |0 0 1 1 C2*(Run), C3*,
C1 0.33 0.33 1033 |1~
C2 0.33 1035 |0.25 0.38 0.38 ]0.58
C3 0.33 0.30 0.30 J0.53
ilp
3 values [ 061 |0 0 1 1 C2*(Run), C3*
C1 0.33 033 1033 |e¢1*
C2 0.33 [ 0.35 [0.25 0.38 0.38 ]0.58
C3 0.33 0.30 0.30 ] 0.53
i'p
4 values | 1.97 |1 0 2 2 C2*(Run), C3%,
C1 0.74 0.74 1074 |cq*
Cc2 060 043 10.25 0.48 0.48 ]0.79
C3 0.60 0.41 0.41 | 0.76
ilp
5 values | 1.58 |2 0 3 1 C2*(FR1&Run),
C1 0.63 0.63 ]0.63 c3*, C1*
C2 060 1056 |0.25 0.56 0.56 ]0.82 '
C3 0.60 0.30 0.30 }0.72
ilp
6 values | 1.37 |2 0 1 2 C2*(FR1), C3*,
C1 0.56 056 }0.56 |cq*
C2 0.56 | 056 |0.25 0.38 0.56 ]0.81
C3 0.56 0.41 0.41 ]0.74
i'p
7 values | 1.61 2 0 2 3 C3*, C2*(FR1),
C1 0.64 0.64 |064 |cq*
C2 060 |0.56 |0.25 0.48 0.56 ]0.82
C3 0.60 0.60 0.60 (0.84
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i'p
8 values [ 096 |2 0 3 1 C2*(FR1&Run),
C1 0.46 0.46 | 0.46 c3*, C1*
C2 046 {056 |0.25 0.56 0.56 ] 0.76
C3 0.46 0.30 0.30 ]0.62
ilp
9 values [234 |3 1 4 1 C2*(FR1), C1*,
C1 0.81 0.81 1081 |c3*
C2 060 |0.75 10.60 0.63 0.75 ]10.90
C3 0.60 0.30 0.30 ] 0.72
ilp
10 values [ 035 |3 1 5 1 C2*(FR1), C3",
C1 0.25 025 1025 |cq*
C2 0.25 |0.75 | 0.60 0.74 0.75 | 0.81
C3 0.25 0.30 0.30 | 047
i'p
11 values 234 |3 2 6 1 C2*(FR2), C1*,
C1 0.81 0.81 081 |c3*
C2 060 {075 |1 0.83 1 1
C3 0.60 0.30 0.30 ]0.72
Process out of control:C2-1.0000
if
12 vaﬁues 3.58 |3 2 7 2 C2*(FR2&Run),
C1 1 1 1 c1*, C3*
C2 060 075 |1 1 1 1
C3 0.60 0.41 0.41 10.76

Process out of control:C1-1.0000

Process out of control:C2-1.0000

Table 5.12 Results from Fuzzy Inference Engine for Test Case 6

The results from the fuzzy inference engine are shown in the Table 5.12. This

case is also similar to that of previous test case, however with different combination of

patterns. FR2 pattern is identified at sample 11 and FR2, Run along with OCL patterns

are identified at sample 12. In this case, Run pattern of shift causes has the higher

probability of occurrence (0.008 as mentioned in Section 3.3) thus making shift causes

highest in the priority.
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5.7 Test Case 7 (FR1, FR2 and Trend)

causes is considered to compare the response of the fuzzy inference engine with other
methods. Here FR1 and FR2 patterns of shift causes and Trend pattern for gradual causes
are considered. All three patterns are detected by MINITAB except for that the trend
pattern is detected in its sixth point itself (sample 12). Now, the result from the fuzzy
inference engine gives both the causes (C2 and C3) a maximum value of 1.0, prioritizing
C3* over C2* Here this prioritization is done based on the probability of occurrence of
characteristic patterns. As explained in section 3.3, trend pattern has the higher
probability of occurrence than FR1 and FR2. Presence of trend pattern reinforces the

gradual causes over shift causes. The test data is given in Table 5.13 and control chart is

In this case a combination of characteristic patterns from both shift and gradual

shown in Figure 5.7.

Data: y=50,0=1.0,n=5

Sample | X; X, X3 X4 Xs Mean

~ 1. 50.7387 49.5947 49.5849 49.2320 50.9549 50.0211
2. 49.3567 50.8175 49.3406 49.4535 48.8772 49.5691
3. 49.4348 51.1365 51.0497 50.0943 51.1910 50.5813
4. 49.1990 50.5684 49.3381 51.1209 50.4775 50.1408
5. 49.0848 49.3550 49.2542 49.2287 49.7714 49.3388
6. 49.0409 48.7372 48.8515 48.8099 49.9312 49.0742
7. 49.3567 50.8175 49.3406 49.4535 48.8772 49.5691
8. 50.4653 50.0439 49.3196 50.2429 49.2853 49.8714
9. 49.1990 50.5684 49.3381 51.1209 50.4775 50.1408
10. 50.6425 52.1969 50.0847 49.7479 49.7048 50.4753
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11. 52.5712 49,4842 51.0704 51.3932 49.2886 50.7615
12. 50.2658 51.4124 52.0780 49.9458 51.0676 50.9539
13. 50.3587 51.4124 52.0780 51.2457 51.0676 51.2325
Table 5.13 Data for Test Case 7
Xbar chart for test case 7
+35L=51.342
5109 - - | +25L=50.894
g 50.54 - +151=50.447
$ -
ﬁ' 50.04 X=50
& 4954 - -15L=49.553
49.04 -2S51L=49.106
-35L=48.658

1 2 3 4 5 6 7 8 9 10 1 12 13

Figure 5.7. X Chart for Test Case 7

MINITAB Result:

Test Results for Xbar Chart of C1, ..., C5

TEST 3. 6 points in a row all increasing or all decreasing.
Test Failed at points: 12, 13

(on
one side of CL).
Test Failed at points: 13

one side of CL).
Test Failed at points: 13

TEST 5. 2 out of 3 points more than 2 standard deviations from center line

TEST 6. 4 out of 5 points more than 1 standard deviation from center line (on
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Results from Fuzzy Inference Engine

Mean:50.0000 Sigma:1.0000 Sample_Size:5

Alg_

SNo | Cause OCL | FR1 FR2 | Run Trend | Max | Sum | Cause Priority
ilp

1 values 004 |0 0 1 0 C2*(Run), C3*,
C1 0.25 0.25 ] 0.25 | cq*
C2 0.25 {0.35 0.25 |[0.38 0.38 | 0.53
C3 0.25 0.30 0.30 | 0.47
ilp

2 values 096 |0 0 1 1 C2*(Run), C3*,
C1 0.46 046 [0.46 | cq*
C2 0.46 | 0.35 0.25 |0.38 0.38 | 0.66
C3 0.46 0.30 0.30 | 0.62
i'p

3 values 1.3 1 0 1 1 C2*(FR1), C3",
C1 0.54 0.54 1054 | cq*
C2 0.54 | 0.43 0.25 |0.38 0.43 10.74
C3 0.54 0.30 0.30 | 0.68
ilp

4 values 0.31 1 0 2 1 C2*(Run), C3*
C1 0.25 0.25 025 | ¢+ ’ ’
C2 0.25 |0.43 0.25 | 0.48 0.48 ] 0.61
C3 0.25 0.30 0.30 [ 0.47
ilp

5 values 147 |1 0 1 2 C2*(FR1), C3*
Cc1 0.59 0.59 | 0.59 | ¢4+ ’ ’
Cc2 0.59 |0.43 0.25 10.38 0.43 10.77
C3 0.59 0.41 0.41 1 0.76
ilp

6 values 207 |2 1 2 3 C2*(FR2), C3*
C1 0.76 0.76 | 0.76 | ¢+ ’ ’
Cc2 0.60 | 0.56 0.60 | 0.48 0.60 | 0.84
C3 0.60 0.60 0.60 | 0.84
i’p

7 values 096 |2 1 3 1 C2*(FR2), C3*
C1 0.46 046 | 046 | c1* ’ ’
Cc2 046 | 0.56 0.60 | 0.56 0.60 ] 0.78
C3 0.46 0.30 0.30 | 0.62
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if
8 vaFI)ues 028 |2 1 4 2 C2*(Run), C3*
C1 0.25 025 10.25 |cq+
Cc2 0.25 | 0.56 0.60 |0.63 0.63 {0.72
C3 0.25 0.41 0.41 | 0.56
ilp
9 values 031 |2 0 1 3 C3*, C2*(FR1),
C1 0.25 0.25 ] 0.250 | cq*
C2 0.25 |0.56 0.25 |0.38 0.56 | 0.67
C3 0.25 0.60 0.60 ] 0.70
ilp
10 values 1.06 |1 0 2 4 C3*, C2*(FR1),
C1 0.48 0.48 1048 | cq*
C2 0.48 | 0.43 0.25 104 0.43 {0.73
C3 0.48 0.75 0.75 1 0.87
Vp c3*
11 values 1.70 | 2 0 3 5 cz*iFR1 &Run),
C1 0.67 0.67 |0.67 | cq*
C2 0.60 | 0.56 0.25 | 0.56 0.56 | 0.82
C3 0.60 0.83 0.83 | 0.93
ip
12 values 213 |3 1 4 6 C3*, C2*(FRY),
C1 0.77 0.77 {077 | ¢+
C2 0.60 |0.75 0.60 | 0.63 0.75 | 0.90
C3 0.60 0.90 0.90 { 0.96
i/p c3*
13 values 275 |4 2 5 7 C2*2FR1 &FR2),
C1 0.91 0911091 [cq*
C2 060 |1 1 0.74 1 1
C3 0.60 1 1 1
Process out of control:C2-1.0000
Process out of control:C3-1.0000

Table 5.14 Results from Fuzzy Inference Engine for Test Case 7

Now, the result from the fuzzy inference engine, as shown in Table 5.14 gives

both the causes (C2 and C3) a maximum value of 1.0 due to FR1, FR2 (for C2) and

Trend (C3). As explained in the Section 3.3, Trend pattern has the higher probability of

occurrence than FR1 and FR2. Hence C3* is prioritized over C2*.
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5.8 Test Case 8 (OCL, FR1, FR2 and Trend)

In this case, the fuzzy inference engine is tested when an OCL pattern is preceded
by the characteristic patterns of both shift and gradual causes. FR1 and FR2 patterns for
shift causes and Trend pattern for gradual causes preceding the OCL pattern is considered
in this case. The test data used in this case is similar to that of test case 7, except that the
last point (samplel3) falls outside the upper control limit. The test data is given in Table

5.15 and control chart is given in Figure 5.8.

Data: p=50,0=1.0,n=5

Sample | X; X, X3 X4 Xs Mean

~ 1. 50.7387 49.5947 49.5849 49.2320 50.9549 50.0211
2. 49.3567 50.8175 49.3406 49.4535 48.8772 49.5691
3. 49.4348 51.1365 51.0497 50.0943 51.1910 50.5813
4. 49.1990 50.5684 49.3381 51.1209 50.4775 50.1408
5. 49.0848 49.3550 49.2542 49.2287 49.7714 49.3388
6. 49.0409 48.7372 48.8515 48.8099 49.9312 49.0742
7. 49.3567 50.8175 49.3406 49.4535 48.8772 49.5691
8. 50.4653 50.0439 49.3196 50.2429 49.2853 49.8714
9. 49.1990 50.5684 49.3381 51.1209 50.4775 50.1408
10. | 50.6425 52.1969 50.0847 49.7479 49.7048 50.4753
11. 52.5712 49.4842 51.0704 51.3932 49.2886 50.7615
12. 50.2658 51.4124 52.0780 49.9458 51.0676 50.9539
13. | 50.3587 51.4124 52.5780 51.2457 51.1676 51.3525

Table 5.15 Data for Test Case 8
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Figure 5.8. X Chart for Test Case 8
MINITAB Result:

Test Results for Xbar Chart of C1, ..., C5

Test Failed at points: 13

TEST 3.

Test Failed at points: 12, 13

TEST 5.

(on
one side of CL).

Test Failed at points: 13

TEST 6.

{on
one side of CL).

Test Failed at points: 13

6 points in a row all increasing or all decreasing.

TEST 1. One point more than 3.00 standard deviations from center line.

2 out of 3 points more than 2 standard deviations from center line

4 out of 5 points more than 1 standard deviation from center line
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Results from Fuzzy Inference Engine

Mean:50.0000 Sigma:1.0000 Sample_Size:5

Alg_

SNo | Cause | OCL FR1 FR2 Run | Trend | Max | Sum | Cause Priority
ip

1 values | 0.04 0 0 1 0 C2*(Run), C3*,
C1 0.25 0251025 |4+
C2 0.25 0.35 0.25 0.38 0.38 | 0.53
C3 0.25 0.30 0.30 | 0.47
i'p

2 values | 0.96 0 0 1 1 C2*(Run), C3",
C1 0.46 046 | 046 | cq*
C2 0.46 0.35 0.25 0.38 0.38 { 0.66
C3 0.46 0.30 0.30 } 0.62
ilp

3 values | 1.3 1 0 1 1 C2*(FR1), C3*,
C1 0.54 054 1054 | cq*
Cc2 0.54 0.43 0.25 0.38 0.43 ] 0.74
C3 0.54 0.30 0.30 | 0.68
i’p

4 values | 0.31 1 0 2 1 C2*(Run), C3*
C1 0.25 0251025 |c1* ’ !
C2 0.25 0.43 0.25 0.48 0.48 { 0.61
C3 0.25 0.30 0.30 | 0.47
ilp

5 values 1.47 1 0 1 2 cz*(FR1) Cc3*
C1 0.59 059 | 059 | ¢4+ ’ '
C2 0.59 0.43 0.25 0.38 043 10.77
C3 0.59 0.41 0.41 1 0.76
ilp

6 values 2.07 2 1 2 3 CZ*(FRZ) C3*
Cc1 0.76 0.76 | 0.76 | cq* ’ ’
Cc2 0.60 0.56 0.60 0.48 0.60 | 0.84
C3 0.60 0.60 0.60 ] 0.84
ilp

7 values | 0.96 2 1 3 1 C2*(FR2), C3*
C1 0.46 046 |04 |gqv ’
C2 0.46 0.56 0.60 0.56 0.60 | 0.78
C3 0.46 0.30 0.30 | 0.62
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ilp
8 values | 0.28 2 1 4 2
C1 0.25 0.25 | 0.25 C2*(Run), C3*
C2 0.25 0.56 0.60 0.63 0.63 ]0.72 }c1*
C3 0.25 0.41 0.41 ] 0.56
ilp
9 values 0.31 2 0 1 3 c3*, C2*(FR1),
C1 0.25 0.25 1025 | c1*
C2 0.25 0.56 0.25 0.38 0.56 1 0.67
C3 0.25 0.60 0.60 | 0.70
ip
10 values | 1.06 1 0 2 4 C3*, C2*(Run),
C1 0.48 048 1048 | cq*
C2 0.48 0.43 0.25 0.48 0.48 { 0.73
C3 0.48 0.75 0.75 1 0.87
ilp
11 values | 1.70 2 0 3 5 C3*, C2*(FR1 &
C1 0.67 0.67 | 0.67 Run), C1*
Cc2 0.60 0.56 0.25 0.56 0.56 | 0.82
C3 0.60 0.83 0.83 ] 0.93
ilp
12 values | 2.13 3 1 4 6 C3*, C2*(FR1),
C1 0.77 0.77 10.77 | c1*
C2 0.60 0.75 0.60 0.63 0.75 1 0.90
C3 0.60 0.90 0.90 ] 0.96
ilp
13 values 3.02 4 2 5 7 c3*’ C2*(FR1 &
C1 1 1 1 FRZ), C1*
C2 0.60 1 1 0.74 1 1
C3 0.60 1 1 1
Process out of control:C1-1.0000
Process out of control:C2-1.0000
Process out of control:C3-1.0000

Table 5.16 Results from Fuzzy Inference Engine for Test Case 8

The results from the fuzzy inference engine are given in the Table 5.16 for this

case. Here all the patterns (OCL, FR1, FR2 and Trend) co-exist at sample 13 and thereby
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giving all three causes at maximum value. The causes are prioritized based on the
probability of characteristic patterns. Gradual causes (C3*), with the trend pattern having
highest probability of occurrence is the highest priority. C2* is prioritized next due to
patterns with next higher probability of occurrence (FR1) and finally the C1* with OCL

having lower probability of occurrence.

5.9 Test Case 9 (OCL with partial Run & partial FR1)

In this test case performance of the fuzzy inference engine is tested with an OCL
pattern preceded by a partial Run and partial FR1 pattern. The OCL point (sample 11) is
the sixth consecutive point falling on upper side of the center line, thus forming a partial
run, and the third out of five consecutive points, falling beyond the one sigma control
line, thus forming a partial FR1 pattern. The test data is given in the Table 5.17 and the

control chart is shown in the Figure 5.9.

Data: p=50,0=1.0,n=5

Sample X1 Xz X3 X4 Xs Mean
No

1. 50.2681 48.5294 49.0512 50.0176 50.7473 49.7227
51.1256 49.6924 50.4742 51.0484 49.0525 50.2786
50.2721 49.1841 49.7142 49.9592 49.4854 49.7230
48.7486 49.7143 48.8453 49.4014 48.8658 49.1151
49.2317 50.2178 47.8083 50.7124 48.4915 49.2923
51.4859 52.5719 50.4062 48.4897 50.1307 50.6169
50.5363 53.1283 49.5771 50.2932 50.0845 50.7239
50.1550 49.3009 514115 51.0635 50.2256 50.4313

ol ] IR ) ol Bl
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9. 52.8048 51.3215 51.7870 48.5275 49.3996 50.7681
10. | 50.7566 50.0173 49.2853 50.0981 50.6453 50.1605
11. |50.8166 51.8717 51.6397 53.4504 50.2349 51.6027
Table 5.17 Data for Test Case 9
Xbar Chartof C1, ..., C5
1
51.54 "
/f +3SL=51.342
@
gs05{ f /f/\/\\/ —— | +15L=50.447
§ 50.04 /.\ N )=(=50
il N/
49.5 - s \/‘/ E—— - | ~1SL=49.553
- B — -25L=49.106
-35L=48.658
48'5_ |M ,,Iv; I, . IM . '. . . |
1 2 4 6 8 9 10 11
Sample
Figure 5.9 X Chart for Test Case 9
MINITAB Result:

Test Results for Xbar Chart of C1, ..., C5

Test Results for Xbar Chart of C1, ..., C5

TEST 1. One point more than 3.00 standard deviations from center line.

Test Failed at points:

11
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Results from Fuzzy Inference Engine

Mean:50.0000 Sigma:1.0000 Sample_Size:5
Alg_

SNo | Cause | OCL | FR1 FR2 | Run | Trend | Max | Sum | Cause Priority
ilp

1 values (062 |0 0 1 0 C2*(Run), C3*
C1 0.33 0.33 1033 |cq* ’ ’
Cc2 0.33 (035|025 |0.38 0.38 ]0.58
C3 0.33 0.30 0.30 ] 0.53
ilp

2 values 1062 |0 0 1 1 C2*(Run), c3*,
C1 0.33 0.33 1033 lc1*
Cc2 0.33 (0351025 |0.38 0.38 ] 0.58
C3 0.33 0.30 0.30 ]0.53
ilp

3 values [061 [0 0 1 1 C2*(Run), C3*,
C1 0.33 0.33 ]0.33 |cq*
C2 033 |10.35 025 |0.38 0.38 ]0.58
C3 0.33 0.30 0.30 J0.53
ilp

4 values 1.97 1 0 2 2 CZ*(Run) c3*
C1 0.74 0.74 10.74 | c4* ’ '
Cc2 0.60 |0.43 |0.25 |0.48 0.48 }0.79
C3 0.60 0.41 0.41 ]10.76
ilp

5 values | 158 |2 0 3 1 C2*(FR1&Run)
C1 0.63 0.63 ] 0.63 c3*, C1* ’
Cc2 0.60 {0.56 [0.25 |0.56 0.56 ] 0.82
C3 0.60 0.30 0.30 {0.72
ilp

6 values | 1.37 |2 0 1 2 C2*(FR1) c3*
C1 0.56 0.56 | 0.56 |cq* ’ ’
C2 0.56 | 0.56 | 0.25 | 0.38 0.56 | 0.81
C3 0.56 0.41 0.41 ]10.74
ilp

7 values | 1.61 |2 0 2 3 c3* C2*(FR1)
C1 0.64 0.64 |0.64 C1*, !
C2 0.60 | 0.56 | 0.25 | 0.48 0.56 ] 0.82
C3 0.60 0.60 0.60 ] 0.84
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ilp
8 values [ 096 |2 0 3 1
C1 0.46 046 |0.46 | C2*(FR1&Run),
c2 046 | 056 |0.25 |0.56 0.56_|o.7e |C3"C1"
C3 0.46 0.30 0.30 10.62
ilp
9 values [1.71 |3 0 4 1
C2*(Run), C3*,
c1 0.67 067 067 | canrum
C2 0.60 |0. 0.25 ]0.63 0.75 10.90
C3 0.60 0.30 0.30 ]10.72
ilp
10 values | 035 |3 0 5 1 C2*(FR1), c3*,
c1 0.25 025 |0.25 | cq
C2 0.25 10751025 |0.74 0.75 ]0.81
C3 0.25 0.30 0.30 ] 047
i'p
11 values | 3.58 |3 1 6 1 c1*, C2*(Run),
c1 1 1 1 C3*
C2 060 [0.75 {060 |0.83 0.83 1093
C3 0.60 0.30 0.30 | 0.72
Process out of control:C1-1.0000

Table 5.18 Results from Fuzzy Inference Engine for Test Case 9

The results from the fuzzy inference engine are shown in the Table 5.18. In this
test case OCL is preceded by a partial Run pattern. The OCL pattern occurs at sample 11
along with FR1 and Run patterns lacking one point from their definition. Even though the
FR1 and Run patterns are not observed completely, the degree of presence is calculated
by the fuzzy inference engine and combined with OCL. Since OCL pattern is observed
clearly without any ambiguity, it is given the highest priority. In spite of the fact that the
FR1 and Run pattern are observed only partially, the very possibility of the presence of
shift causes are not overlooked and hence is given the second highest in the causal

priority order.
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5.10 Test Case 10 (OCL with partial Trend)

Similar to the previous test, the fuzzy inference engine is tested for an OCL
pattern preceded this time, by an incomplete trend pattern. The OCL point (sample 12) is
the sixth consecutive increasing point. As per MINITAB’s test rules (six point
continuously increasing), the trend pattern as well as OCL pattern is detected. However,
the trend pattern is defined as seven consecutive increasing or decreasing points for the
fuzzy inference engine. Hence it is a partial pattern and comparatively, OCL is clearly
identified and is given the higher value of 1.0. Nevertheless, the evidence from partial
presence of trend pattern is also aggregated with the OCL pattern and gradual cause
intensity is found to be second in order after OCL pattern’s characteristic cause. The test

data is given in Table 5.19 and control chart is shown in Figure 5.10.

Data: p=50,0=10,n=5

Sample | X; X3 X3 X4 X5 Mean

~ 1. 50.7387 49.5947 49.5849 49.2320 50.9549 50.0210
2. 49.3567 50.8175 49.3406 49.4535 48.8772 49.5691
3. 49.4348 51.1365 51.0497 50.0943 51.1910 50.5813
4. 49.1990 50.5684 49.3381 51.1209 50.4775 50.1408
5. 49.0848 49.3550 49.2542 49.2287 49.7714 49.3388
6. 49.0409 48.7372 48.8515 48.8099 49.9312 49.0741
7. 49.3567 50.8175 49.3406 49.4535 48.8772 49.5691
8. 50.4653 50.0439 49.3196 50.2429 49.2853 49.8714
9. 49.1990 50.5684 49.3381 51.1209 50.4775 50.1408
10. 50.6425 52.1969 50.0847 49.7479 49.7048 50.4754
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11, 52.5712 49.4842 51.0704 51.3932 49,2886 50.7615
12. 50.3587 514124 52.5780 51.2457 51.1676 51.3525
Table 5.19 Data for Test Case 10
Xbar Chartof C1, ..., C5
51.5_ A S A . RS “1
+35L=51.342
>1.01 | +251=50.894
g 5051 A | +15L=50.447
£ 50.0 X=50
2 50.01 =
E
R o] —— -15L=49.553
490 | -25L=49.106
-351.=48.658
12 4 6 7 9 11 12
Sample
Figure 5.10 X Chart for Test Case 10
MINITAB Resulit:

Test Results for Xbar Chart of C1, ..., C5

TEST 1. One point more than 3.00 standard deviations from center line.
Test Failed at points: 12

TEST 3. 6 points in a row all increasing or all decreasing.

Test Failed at points: 12
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Results from Fuzzy Inference Engine

Mean:50.0000 Sigma:1.0000 Sample_Size:5

Al
SNo | Cause | OCL | FR1 | FR2 Run | Trend [ Max Sugrﬁ_ Cause Priority
if
1 vaﬁues 004 |0 0 1 0 C2*(Run), C3*
C1 0.25 025 ]025 |cgq+ ’
Cc2 0.25 [0.35 |0.25 0.38 0.38 0.53
C3 0.25 0.30 0.30 0.47
ilp
2 values {096 |0 0 1 1 C2*(Run), C3*,
C1 046 |- 0.46 046 | ce*
C2 046 035 |0.25 0.38 0.38 0.66
C3 0.46 0.30 0.30 0.62
ilp
3 values | 1.3 1 0 1 1 C2*(FR1), C3",
C1 0.54 0.54 054 |cq*
C2 0.54 [043 |[0.25 0.38 0.43 0.74
C3 0.54 0.30 0.30 0.68
ilp
4 values | 0.31 |1 0 2 1 C2*Run), C3*,
C1 0.25 0.25 025 |cq*
C2 0.25 (043 |0.25 0.48 0.48 0.61
C3 0.25 0.30 0.30 0.47
ip
5 values | 147 |1 0 1 2 C2*(FR1), C3*,
C1 0.59 0.59 059 |1+
C2 0.59 1043 [0.25 0.38 0.43 0.77
C3 0.59 0.41 0.41 0.76
ilp
6 values [ 207 [2 1 2 3 C2*(FR2), C3%,
C1 0.76 0.76 076 | cq*
C2 0.60 [0.56 |0.60 0.48 0.60 0.84
C3 0.60 0.60 0.60 0.84
ilp
7 values {096 [2 1 3 1 C2*(FR2), C3*,
C1 0.46 0.46 046 |cq*
C2 046 1056 |0.60 0.56 0.60 0.78
C3 0.46 0.30 0.30 0.62

124




ilp

8 values | 0.28 |2 1 4 2 C2*(Run), C3*,
C1 0.25 0.25 0.25 | c4*
C2 0.25 {056 [0.60 0.63 0.63 0.72
C3 0.25 0.41 0.41 0.56
ilp

9 values | 0.31 2 0 1 3 C2*(FR1), C3*
C1 0.25 025 025 | ¢gq+ ’ '
C2 025 | 056 |0.25 0.38 0.56 0.67
C3 0.25 0.6 0.60 0.70
ilp

10 values [ 1.06 |1 0 2 4 C3*, C2*(FR2)
C1 0.48 0.48 0.48 C1*, '
C2 0.48 | 0.43 |0.25 0.48 0.48 0.73
C3 0.48 0.75 0.75 0.87
ip c3*

1 values | 1.70 |2 0 3 5 CZ*&FR1&Run)
C1 0.67 0.67 067 |cq '
C2 060 |0.56 |0.25 0.56 0.56 0.82
C3 0.60 0.83 0.83 0.93
i’p

12 values {302 |3 1 4 6 c1* c3*
C2 060 |0.75 | 0.60 0.63 0.75 0.90
C3 0.60 0.90 0.90 0.96

Process out of control:C1-1.0000

Table 5.20 Results from Fuzzy Inference Engine for Test Case 10

This test case considers another example of presence of OCL pattern preceded by
another incomplete pattern, Trend. The results from the fuzzy inference engine are given
in the Table 5.20. At sample 12, C1 takes the highest of the cause priority as OCL is
identified clearly without any ambiguity. This time the second highest priority in cause
order is given to gradual causes (C3) as it lacks just one point to form the pattern

completely. It has to be noted that FR2 pattern of shift cause also lacks one point to form
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the pattern completely. Even though, both patterns lack one point for its complete
definition at sample 12, the degree of influence of Trend pattern on gradual causes (0.90)

is relatively higher compared with FR1 pattern on shift causes (0.75).

S.11 Comparison of Results

The results from the fuzzy inference engine for various test cases are summarized

and compared with manual interpretation of control charts and MINITAB output in Table

5.21 in the aspects of pattern identification and cause indication.

v
Manual

418

Test Method Out of | Out of Pattern Cause
case control | control Identification Identification
sample | pattern
(In Order)

Manual #8 OCL 4 X
1

MINITAB #8 OCL J X

Fuzzy #8 OCL J/ Cl*, C2* C3*

Run X X ]
2
MINITAB #18 Run X X
Fuzzy #18 Run 4 C2*, C3*,Cl*
<
Manual #16 Trend X X
3
#15% Trend s %
MINITAB
#16 Trend V4 e
Fuzzy #16 Trend v C3*, C2* C1*
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Manual #8 OCL %

#7 FR2 X
MINITAB

#8 FR2, OCL X

#7 FR2 C2*, Cl1*, C3*
Fuzzy

#8 FR2, OCL Cl*, C2* C3*

Manual OCL
MINITAB #9 OCL, FR1, FR2 X
Fuzzy #9 OCL, FR1, FR2 C2*, Cl*, C3*

#11 FR2 X
OCL
Manual X
#12
Run X
#11 FR2 X
OCL X
MINITAB
#12
Run X
Fuzzy #11 FR2 C2*, Ci* C3*
#12 OCL, Run C2*, C1*, C3*

Manual #13 FR1, FR2, Trend X

#12* Trend X
MINITAB

#13 FR1, FR2, Trend Y
Fuzzy #13 FR1, FR2, Trend C3*, C2*,Cl*
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Manual

#13

OCL

Trend

X
8 FRI, FR2, Trend X
MINITAB #12r | Trend »
#13 | OCL, FRI, FR2 X

Fuzzy #13 | OCL, FRI, FR2, C3*, Ca%, CI*

1 0 Manual

9 Manual #11 OCL X
MINITAB #11 OCL X
Fuzzy #11 OCL Cl*, C2%,C3*

Table 5.21 Comparison of Results

#12 [ OCL X
MINITAB #12~ | OCL, Trend »
Fuzzy #12 | OCL ClI*, C3* C2*

Note: * In MINITAB, the rule for detecting Trend pattern is defined as six consecutive

points increasing or decreasing whereas in our fuzzy inference engine it is defined as

seven consecutive points increasing or decreasing.
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Chapter 6

Summary, Conclusions and Future Work

6.1 Summary and Conclusions

Control charts have been proven an excellent tool for process monitoring and
have been widely used in many industries. Even with sophisticated software, control
charts are used only to detect the presence of assignable causes. Once the presence of
assignable cause is found, considerable amount of time and energy is spent to identify the
assignable cause through brainstorming, root-cause analysis etc, involving many people
concerned with the process. Besides detecting the presence of assignable cause, control
charts also provide useful information in determining the type of assignable cause
through the patterns they exhibit. It requires lot of expertise to analyze these patterns

produced on the control chart and to determine the nature of assignable cause present.

Even with technical expertise and past experience, it sometimes becomes difficult
to achieve this due to the ambiguities in classifying patterns and mapping them to causes.
Examples of such ambiguities are, situations such as multiple patterns existing
simultaneously, inclusion of one pattern in another and same pattern indicating presence
of multiple causes at different degrees. Fuzzy logic very efficiently handles such

ambiguities by quantifying them mathematically. In this work the ambiguities in
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determining the assignable cause using control chart patterns is carried out with the help
of fuzzy logic. A fuzzy inference engine is developed based on a chart pattern — cause
relationship network, representing each link by a fuzzy inference system, with the
objective as to resolve the aforementioned ambiguities and diagnosing the assignable

cause(s) using chart patterns.

The chart-pattern relationship network is developed based on literature sources
on control chart patterns and root cause analysis [21], [22] and [23] to provide a frame
work for mapping the causes to chart patterns so that the ambiguities and vagueness in
using chart patterns for assignable cause diagnosis can be handled by fuzzy logic. Unique
network can also be developed for a specific process using past experience and inputs
from process experts for more accurate results. Based on the nature of shift each cause
can produce, the domain of possible causes is sub-categorized, so that effort spent in

searching for assignable cause is greatly reduced.

The fuzzy inference system prioritizes each category of causes based on the
degree of evidence imparted by its characteristic patterns. The value for each cause
category is calculated for every single point plotted on the control chart. Usually for a
control chart operating in phase 2, a single point falling outside three sigma control limit
is alone considered as an out of control signal. In this phase sensitizing rules could
increase the chart sensitivity, leading to increased false alarms and decreased average
run-length and is therefore not advisable. This however leads to prohibiting us from

obtaining useful hints for assignable cause diagnosis. But with this fuzzy inference
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system the intensity of the cause can be monitored directly, still keeping one point falling
outside three sigma control limit as an out of control signal, thereby avoiding the problem

of increased false alarms at the same time monitoring the chart patterns.

The developed fuzzy inference engine is then tested with different cases
containing various combinations of unnatural patterns in which situations of
aforementioned ambiguities may arise. The first three test cases considered are simple
test cases containing only one pattern (from one cause in each test), to gain a better
understanding of the performance of the fuzzy inference engine. In all of these test cases,
the fuzzy inference engine identified the pattern and prioritized the respective cause with

maximum value of 1.0.

In test case 1, OCL pattern is identified and C1* is prioritized with maximum
value 1.0. In test case 2, Run pattern is identified and C2* is prioritized with maximum
value 1.0 and in test case 3, Trend pattern is identified and C3* is prioritized with
maximum value of 1.0. The later test cases include combinations of various unnatural
patterns. In test case 4, both OCL and FR2 patterns are considered. Both the patterns are
identified by the fuzzy inference engine and since OCL is preceded by FR2, C2* (shift
causes) is prioritized over C1* (isolated causes). In test case 5 and 6, OCL is preceded
by two shift cause patterns (FR1 and FR2 in test case 5 and FR2 and Run in test case 6).
The fuzzy inference engine identified all three patterns (in each case) and C2* (shift
causes) is prioritized due to the presence of shift cause patterns along with OCL. In test

case 7, combination of two patterns from shift causes (FR1 and FR2) along with Trend
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pattern is considered. Here, since OCL pattern was not observed, actions to search for the
assignable cause will not be initiated for a process operating in phase 2. However, the
influence of presence of this combination of patterns on their respective causes was
studied. All three patterns were identified by the fuzzy inference engine and due to higher
probability of occurrence of Trend pattern C3* (gradual causes) is prioritized over C2*
(shift causes). Test case 8 considers the same combination of patterns as in test case 7,
but now with OCL as well. Here, actions for searching the assignable cause will be

initiated with C3* at highest priority.

Test cases 9 and 10 represent the out of control situations where an OCL pattern
is observed but other patterns underlie OCL without being defined completely. In test
case 9, a Run of 6 points (7 points on same side of centerline for complete definition of
Run) and 3 points in FR1 (4 out of S points beyond 1o for complete definition of FR1 )
are observed when a point falls beyond 3o control limit. In this case since the underlying
shift patterns (Run and FR1) were not completely defined, C1* is prioritized due to its
maximum value of 1.0 (from OCL) and shift causes (C2*) were assigned next priority
over gradual causes (C3*). In test case 10, OCL is preceded by an increasing trend of 6
points. The fuzzy inference engine prioritizes C1* on observing OCL and C3* was given
next higher priority, even though the pattern was not defined completely (as 7

consecutive increasing or decreasing points have to be observed to detect Trend pattern).

Thus the fuzzy inference engine keeps track of underlying patterns in addition to

completely defined patterns and prioritizes the causes accordingly even when the pattern
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is not defined completely. The degree of presence of each pattern is monitored for every
point plotted on the control chart and causes are prioritized accordingly. Once a point is
observed beyond the three sigma control limit, the search for the assignable cause can be
conducted beginning with the cause having highest priority thus ensuring that the search
is carried out in a properly guided manner, even in ambiguous situations. This facilitates

quicker identification of the exact cause.

6.2 Future Work

The fuzzy inference engine developed in this work analyzes the unnatural patterns
exhibited on a X chart. Generally X chart is used in conjunction with R chart to monitor
the process variation. It can therefore, be extended to monitor the R chart patterns also
simultaneously so that any correlation present between these charts can be identified and
be used in diagnosing the assignable cause. The chart pattern —cause relationship may
vary depending upon the process nature. Hence provisions for customizing the chart
pattern—cause network can be made so that user can define the network to be more
specific to the process, using his past experience. Also, with the extended process
knowledge and experience, the assignable cause domain can be classified more deeply to

specific causes, facilitating to reach the root cause directly.
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