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ABSTRACT

Critical Speeds and Unbalance Response of Cantilever-Sleeve Rotors Using

Finite Elements with Efficient Higher Order Basis Functions

Jeyaruban Selliah Amirtharajah
Concordia University, 1999

Design of industrial rotor-bearing systems requires an understanding of their
dynamic behavior, which involves the determination of their critical speeds and
unbalance response. Dynamic behavior of simple rotor systems can be studied using
analytical techniques. However, for complex rotor systems it is necessary to use
approximate techniques. The finite element method is one such approximate technique
and has been in use as a computational method for solving these problems. In most cases
finite element method requires a fine discretization of the rotor model and this leads to
setting up and solving a large number of simultaneous and coupled linear differential
equations for the unknown displacements. With such large systems the calculation
becomes very time consuming, which may not be economically feasible. The prime
objective of the present investigation is to develop an efficient and economical technique
for the determination of the critical speeds and the unbalance response of complex rotor-
bearing systems such as cantilever-sleeve rotor. The technique is based on higher order
finite elements. By using this technique the size of system equations can be significantly
reduced without affecting the dynamic characteristics of the system. The technique also
incorporates all the natural and essential boundary conditions right in the basis functions
at element formulation. Thus, this element adequately represents all the physical
situations involved in any combination of displacement, rotation, bending moment and
shearing force boundary conditions. The dynamic behavior of a cantilever-sleeve rotor
with a disk at the end is studied using such higher order finite elements. More accurate
results are obtained using a coarse mesh that has increased number of degrees of

freedom. Further no errors are introduced during post processing for stresses, strains, etc.
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CHAPTER 1

INTRODUCTION, LITERATURE REVIEW, OBJECTIVE AND SCOPE

1.1 Introduction

Rotor Dynamics is the study of the dynamic behavior of the machines and
components resulting from excitations originating from its rotating parts, and has a very
important role to play throughout the modern industrial world. Rotating machinery is
used in many applications such as in turbo-machines, power stations, machine tools,
automobiles and aerospace applications. The interaction of these machines with their
surroundings is of great importance due to the fact that if these machines are not
operating at the correct speeds, vibration can occur and may ultimately cause failure of
the machines. Many investigations in linear rotor dynamics deal with the problems of
natural, unbalance and transient vibrations.

Simple rotor systems may be analyzed using exact analytical methods. However,
complex rotor systems normally used in industries are not amenable to exact analysis. It
is necessary to follow some approximate methods to study the dynamic behavior of
complex rotor systems.

Powerful approximation methods, such as the finite element method, are available
for analyzing complex structures. In most cases, a fine discretization of the rotor model
is necessary which leads to a large set of simultaneous and coupled linear differential

equations for the unknown displacements. With such large systems the calculation is



very time consuming, which may not be economically feasible. Therefore methods are
needed which would allow a reduction and possibly a de-coupling of the equations. One
of the classical techniques used for calculating the response of non-rotating elastic
systems with symmetric and proportional damping is known as modal analysis. The idea
is to reduce a system of simultaneous and coupled ordinary differential cquétions into a
set of independent ordinary differential equations. The successful application of the
method requires the solution of an eigenvalue problem associated with the given system.
In rotor dynamics, the governing equations are non-self-adjoint as a result of the
gyroscopic effects, and the classical modal analysis fails to uncouple them. The system
matrices, when constructed in stationary (inertial) coordinates, are characterized by the
presence of skew symmetric parts due to gyroscopic effects and internal damping, and
non-symmetric terms due to journal bearing properties; this leads to non-self-adjoint
eigenvalue problems. On the other hand, when the system matrices are formed in
rotating (body fixed) coordinates, skew symmetric parts are introduced due to Coriolis
terms and external damping as well as gyroscopic effects, and there are periodic
parameters due to bearing properties; this makes the modal analysis even more difficult.
Another difficulty in modal analysis arises from the fact that the elements of system
matrices generally depend on the rotational speed. Reduction methods such as Guyan
reduction and component mode synthesis can also be used to reduce the number of

equations or to reduce the coupling between equations.



1.2 Literature Review

1.2.1 The Dynamics of Rotor-Bearing Systems

Typical analysis of rotor-dynamic systems includes the determination of the free
vibration natural frequencies, modes of whirl and the stability characteristics of these
modes. The critical speeds of a rotor system are defined as rotating assembly spin
speeds, which provide excitations that coincide with one of the system’s natural
frequencies, thereby producing a resonant condition.

Earlier work on the prediction of critical speeds of rotors was introduced by
Jeffcott [1], where the rotor system was modeled as a single mass mounted on a shaft
supported on identical bearings and the equations of motion were solved by the direct
method. The model was improved by Green [2] by introducing the gyroscopic effects on
the critical speeds of simple rotor systems. There has been an impressive progress in the
study of rotor dynamics in the past years. Current state-of-the-art methods for calculating
the natural frequencies and critical speeds are based on either a Holzer-Myklestad-Prohl
shaft model or a finite element model, both of which may be applied to quite general
shaft-disk systems.

The use of finite elements for the simulation of rotor systems makes it possible to
formulate increasingly complex problems, and the recent advances in digital computers
make the numerical solutions of large-order problems feasible. Flexible rotor-bearing
systems have been analyzed by various mathematical methods. Ruhl’s [3] contribution to

utilize a finite element model to a turbo-rotor system to study stability and unbalance



response was the precursor to many studies using finite element approach on rotor
dynamics problems. His model includes only elastic bending energy and translational
kinetic energy. In these early investigations the effects of rotary inertia, gyroscopic
moments, shear deformations, axial load, and internal damping were neglected.
Thorkildsen [4] included rotary inertia and gyroscopic moment, for the first time.

Polk [5] used a Rayleigh beam finite element in his work. Thomas and Dokumaci
[6] analyzed pre-twisted blade vibration using simple finite elements. Krishna Murty [7]
analyzed the rotating structure elements using finite element technique. Chivens and
Nelson [8] carried out studies to determine the influence of disk flexibility on the
transverse bending natural frequencies and critical speeds of a rotating shaft-disk system.

The use of finite elements for analyzing rotor-bearing systems and the basic
concepts and development of the equation of motion for a rotating finite shaft element
were presented by Nelson and McVaugh [9]. It includes the effects of rotatory inertia,
gyroscopic moments, and axial load using consistent mass matrix approach. In addition,
the element and system equations are presented in both fixed and rotating reference
frames. Zorzi and Nelson [10] used finite element modeling of rotor-bearing system to
establish the Lagrangian equations of motion in a fixed frame.

One factor that might need to be considered in the design/development stages of a
rotor system is the effect of axial torque. Krisha Murty and Sridhara Murty [11]
presented the finite element method for the natural vibration analysis of rotors with taper
and pretwist. Zorzi and Nelson [12] investigated the effect of constant axial torque on the
dynamics of rotor-bearing systems using the finite element model. The inclusion of the

axial torque gave rise to an incremental torsional stiffness matrix. The model was used to



determine the static buckling torque and the critical speeds of a uniform shaft for short
and long bearing. This paper presented a finite element model, which included axial
torque and thereby allowed for a more reliable prediction of lateral shaft dynamics. A
finite rotating shaft element using Timoshenko beam theory, which was developed by
Nelson [13] was used to find out the critical speeds and the system’s natural frequencies.
Ozguven [14] generalized the combined effects of rotary inertia, gyroscopic moment,
axial load, shear deformations and internal hysteretic and viscous damping in the same
model. Ozguven [15] developed an approximate method to find out the critical speed of
the shaft-disk system from a single degree-of-freedom model.

Most analyses utilize linear equations of motion based on amplitude motions in
the neighborhood of an equilibrium configuration. In some cases, however, the strength
of the nonlineartites is so large that linearization does not provide sufficiently accurate
simulations. In these cases, the most common approach is to integrate the nonlinear
equations of motion numerically either directly in physical coordinates or in modal
coordinates. Nelson, Meacham et al [16] analyzed this kind of problem in terms of
modal coordinates associated with some form of component mode synthesis. When the
set of differential equations is nonlinear, analytical solutions are generally not possible.
Those special cases with known closed-form solutions are usually weakly nonlinear and
of a small order. For large-order nonlinear problems, such as multi-shaft flexible rotor
systems, only a few options are available to the analyst for obtaining solution. Exact
solutions are not possible, except in very special cases, and approximate solutions can
only be obtained numerically. There are several procedures, other than numerical

integration, that have been utilized for searching for the possible response of large order



systems, and these are also briefly discussed by Padovan and Adams [17]. Although
several authors using the finite element method over the last 25 years have investigated
the effects of various factors on the dynamics of rotor-bearing systems, there is no
published work that could incorporate all the boundary conditions.

The other common approach for analyzing the dynamics of rotor-bearing systems
is called the state vector transfer matrix method or simply the transfer matrix method.
This method is particularly well suited for “chainlike” structures such as large-order
multi-shaft rotor systems. The first use of this method is usually attributed to Holzer in
the area of torsional vibrations. Subsequent contributors to such formulation are
Myklestad, (18] and Prohl [19] who adapted the procedure to lateral vibrations of beams
and rotor systems. Prohl extended the direct method and presented the first calculation of
synchronous whirling of complex shafts consisting of variable shaft sections with
multiple disks. Prohl’s method is still considered as one of the best in the general class of
transfer matrix method and also one of the most practical and widely used solution
schemes for today’s complex rotor-bearing systems. Lund [20] has presented procedures
for the use of this method for almost all aspects of rotor dynamic analysis. Kikuchi [21]
solved a multi disk rotor system using the transfer matrix method. Most recently Rao
[22] analyzed the rotor systems using time marching transfer matrix technique. Other
refinements have made this a reliable and widely used analytical procedure for engine
manufacturers and rotor dynamics experts throughout the world. Murphy and Vance [23]
have shown that by rearranging the calculations performed in the transfer matrix method
that it is possible to calculate the coefficients of the characteristic polynomial directly.

Another most widely used method by several investigators to study the behavior



of rotor-bearing systems is the experimental modal analysis. In experimental modal
analysis the modal properties of the system such as mass, stiffness and damping are
determined experimentally, which are used to obtain the dynamic characteristics of the
rotor. Gunter, Choy and Allaire [24] used the planar modes of the rotor system without
the effects of disk gyroscopics, damping of rotor and cross-coupled bearing properties.
Berthier, Ferraris and Lalanne [25] have studied the behavior of rotor systems using finite
element model employing modes of the rotor at rest. Glasgow and Nelson [26] presented
the so-called modal component mode method in conjunction with complex model
analysis. Bhat [27] developed the complex modal analysis technique for simple rotor
systems supported on fluid film bearings with the absence of physical damping. All
modal reduction techniques reduce the size of system matrices. Round-off errors
associated with extensive system mass and stiffness matrix reductions are very high in

these operations.

1.2.2 Higher Derivatives as Nodal Degrees of Freedom

In 1744 Euler obtained a differential equation for the lateral vibration of bars and
determined the functions known now as normal functions and the equation we now call
the frequency equation for beams with free, clamped, or simply supported ends.

The first systematic treatise on vibration was written by Lord Rayleigh [28]. He
formalized the idea of normal functions, as introduced by Daniel Bernoulli and Clebsch,
and introduced the ideas of generalized forces and generalized coordinates. He further

introduced systematically the concepts of energy and approximate methods in vibration



analysis, without solving differential equations. Rayleigh improved the classical theory
by allowing for the effects of rotary inertia of the cross-sections of the beam.
Timoshenko [29] extended the theory to include the effects of shear deformation. The
resulting equations are known as the Timoshenko beam equations.

Prescott [30] and Volterra [31] suggested, by independent reasoning, various
Timoshenko-type beam models. Solutions of Timoshenko equations for a cantilever
beam of rectangular cross section have been given by Sutherland and Goodman [32] and
also by Huang [33]. Anderson [34] and Dolph [35] gave a general solution and complete
analysis of a simply supported uniform beam. Huang [33] gave frequency equations and
normal modes of vibration for various cases of a beam using homogeneous boundary
conditions. Ritz and Galerkin methods were used by Huang [36] to obtain frequencies of
simply supported beams. The finite difference method was used by Thomas [37] to
obtain frequencies of vibration of uniform, tapered and pretwisted Timoshenko beams
with fixed-free end conditions.

A number of finite element models have been presented for the analysis of Euler-
Bernoulli and Timoshenko beams by various investigators. Many of them experienced
difficulties in incorporating all the boundary conditions. Although some authors claimed
that their finite element model was designed to incorporate all the boundary conditions,
none of them so far have been able to apply them in practice. The various possible true
boundary conditions are as follows: (a) free end--zero bending moment and zero shear
force; (b) hinged end—zero total deflection and zero bending moment; (c) fixed end—
zero total deflection and zero bending slope. The conditions of deflection and slope are

caused by restraints or external forces applied and can be referred to as forced boundary



(or displacement or geometric) conditions while the others can be referred to as the
natural boundary (or force) conditions.

MeCalley [38] derived consistent mass and stiffness matrices by selecting total
deflection, w, and total slope dw/dx, as nodal co-ordinates. Archer [39] used these
matrices to obtain frequencies of a cantilevered Timoshenko beam, using the boundary
conditions at the fixed end to be w = dw/dx = 0. The condition dw/dx = O at this end is
not valid as only bending slope is zero and not that due to shear deflection. Boundary
conditions at the free end were not and could not be applied in this model.

Kapur [40] improved on this model by taking bending deflection, shear
deflection, bending slope and shear slope as the nodal co-ordinates, and derived the
stiffness and mass matrices. Frequency parameters also were obtained for cantilevered
and simply supported beams. The true boundary conditions were applied only at the
fixed end. At the free end the shear force is assumed to be zero but the condition of zero
bending moment could not be imposed. For the hinged end the bending deflection and
shear deflection were assumed zero but again the zero bending moment condition could
not be applied. Although it is an improvement over Archer’s [39] model it still lacked the
facility of applying the true boundary condition in all the cases.

Carnegie, Thomas and Dokumaci [41] presented an internal node element
considering the total deflection and bending slope as the co-ordinates at the two terminal
nodes and two internal nodes, thus giving eight degrees of freedom element. This,
however, lacked the facility to impose the natural boundary conditions at the free end.
Egle [42] presented an approximate Timoshenko beam theory designed to eliminate the

coupling between shear deformation and rotary inertia. He postulated a constraint,



consistent with Euler—Bernoulli theory, that the shear force be given by the first
derivative of bending moment. This constraint implies that this theory is valid only when
shear deformation is negligible in comparison to the bending deformation.

Nickel and Secor [43] derived stiffness and mass matrices for what they called
TIM7 element, using total deflection, total slope and bending slope as the nodal co-
ordinates and the bending slope at mid point, giving rise to matrices of order seven. The
boundary conditions used for a cantilever beam were the same as Kapur’s [40], and thus
again the zero bending moment condition at the free end was missing. Nickel and Secor
[43] further reduced the order of the matrix from seven to four by using the constraint
postulated by Egle [42]. This element was referred to as TIM 4. The natural boundary
conditions at the free end could not be applied to this element.

Davis, Henshell and Warburton [44] used an element model similar to TIM 4 with
the same approximation and constraint postulated by Egle [42]. The stiffness matrix was
obtained from the static equilibrium condition based on a cubic polynomial for total
deflection. This has the same limitations as TIM 4 model in that the natural boundary
conditions at the free end or hinged end could not be applied. Thomas and Abbas [45]
developed an element model with total deflection, slope, bending slope and the first
derivative of bending slope as nodal co-ordinates. This model is capable of incorporating
all the forced and natural boundary conditions associated with various end conditions.
Then again this model is proven for dynamic analysis of Timoshenko beam element only.

The development of higher order tapered beam element was carried out to study
the axial vibration of a bar by Yang and Sun [46], transverse impact problems by Sun and

Huang [47] and vibration analysis of uniform beams by Fried [48]. They all claim that
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improved accuracy can be obtained more efficiently with an increase in the number of
degrees of freedom in the element.

To [49] had developed expressions for mass and stiffness matrices of two higher
order tapered beam elements for vibration analysis. In his paper, the element properties
(namely, the mass and stiffness matrices) of a beam finite element are presented in which
a seventh degree polynomial displacement function is used. Representing four degrees of
freedom per node (the transverse displacement w, the slope w/x, the curvature Fw/d’,
and the gradient of curvature Fw/ax’) are derived and the explicit expressions for the
mass and stiffness matrices are given. These element properties are subsequently used
for the vibration analysis of mast antenna structures individually treated as a tapered
cantilever beam with a mass, incorporating rotary inertia, attached to its free end. Hou,
Tseng and Ling [50] developed a new finite element model of a Timoshenko beam to
analyze the free vibration of uniform beams. An important characteristic of the model is
that the natural boundary conditions are included in the element formulation. Houmat
{51] presented a 2-node Timoshenko beam finite element with variable degrees of
freedom. Comparisons are made with exact Timoshenko beam finite element solution.
Comparison shows that using one or two variable order Timoshenko beam element with a
few trigonometric terms yields better accuracy with fewer system degrees of freedom
than using many polynomials.

A number of Timoshenko beam finite elements in which only polynomial terms
are used to describe the element degree of freedom are available in the literature. Dawe
[52] presented a new Timoshenko beam finite element and reviewed the other existing

elements. Dawe [52] suggested that an increase in efficiency would result if finite
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element of order higher than those used in previous Timoshenko beam models were
utilized. Many authors have shown the desirability of using higher order finite element
for vibration problems. Quintic displacement function was first considered by Handa
[53]. Thomas and Dokumaci [54] have shown that the higher order finite element yield
improved results for the vibration of tapered beams. In their work two improved tapered
elements for vibration analysis were derived using quintic polynomial displacement
function. Results are compared with those given by the basic cubic polynomial
approximation and analytical solutions for various end conditions. Pestel [55] on the
other hand, studied the effect of imposing nodal continuity of successively higher
derivatives of deflection and noted that such family of elements can be formulated simply
by the use of Hermitian polynomials of orders higher than the fourth. The fourth order
Hermitian leads to the basic elements.

Cook, Malkus and Plesha [56] have mentioned that for achieving the minimally
acceptable degree of inter-element compatibility, it is necessary to define “essential”
degrees of freedom (d.o.f) as the particular nodal d.o.f. More details about essential
nodal d.o.f are discussed in chapter 3: for example, u; and v; for bars and plane elements,
w; and ; for beam elements. We define a “higher derivative” as one that is not needed to
define inter-element compatibility. Thus, in the axial deformation of a bar or in plane
stress, all derivatives of u and v would be considered “higher.” In bending of a beam or a
thin plate, higher derivatives are second and higher order derivatives of lateral
displacement, which are the force and moment. The author further says that those
elements with higher-derivative d.o.f. have certain advantages. They are based on fields

having many generalized coordinates, and hence they provide good accuracy in a coarse
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mesh. However, elements having higher-derivative d.o.f are sometimes awkward to use.
At an elastic-plastic boundary, or where there is an abrupt change in stiffness or material
properties, continuity of higher derivatives d.o.f. must not be enforced. For example, if
two beam elements of different stiffnesses are joined, they have the same moment but
different curvatures at the node they share. A maneuver appropriate to such a situation is
to release the curvature d.o.f in one of the elements before assembly. But by doing so,
we reduce the benefit of these d.o.f where it is most needed-near a high-stress gradient.

To seek for a more accurate solution Akin [57] and Reddy [58] have developed a
fifth order Hermite polynomial. The Hermite family includes members with additional
derivatives at the two ends. This has three variables per node: deflection, rotation and
moment. For a two node finite element, the equation of deflection, the shape function
(C?) and the element stiffness matrices are given. A comparison of result is presented.
Also the author had developed the Hermitian interpolation in unit coordinates for a 7-th
order polynomial (C%). In the work by Reddy [58] it is said that, if higher order (higher
than cubic) approximation of w is desired, one must identify additional dependent
(primary) unknowns at each of the two nodes. In addition to that we must note that the
cubic polynomial that interpolates w at four nodal points (two internal and two end
nodes) of the element in not admissible, although the continuity condition are met,
because the polynomial does not satisfy the second set of end conditions.

Shames and Dym [59] have gone one step further and given a common form to
develop C' or higher connectivity between elements for a one-dimensional element.
They suggest further that one may use the Hermite polynomial element, where w(x) as

well as derivatives dw/dx, dw/d’x,...d w/dx at the nodes can be considered as degrees of
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freedom, and not just the field variable as was the case of Lagrange interpolation
functions. First consider a linear element with ends 1 and 2 of length r. The field
variable w and its derivations up to (m-1) are to be degrees of freedom at the ends of the

element. Then

(L.1)

where the N’s are the Hermite polynomials. To construct the proper interpolation
function, they use a polynomial representation for each N; of order 2m-1 and having 2m

constants. That is, using normalized coordinates s =x/r, we have

N, =(C) +(C.)s+(C)s" + ot (Cp ) 5™ (12)

1.3 Objectives of the Thesis

The objectives of the present investigation is primarily to develop an efficient and
economical method to obtain the critical speeds and the unbalance response of a
cantilever-sleeve rotors using higher order finite elements. By using this technique the
size of the system equations of such complex rotor can be reduced without affecting the
dynamic characteristics of the system and allow the use of all the natural and essential
boundary conditions right in the basis functions at the time of element formulation.

This thesis presents a finite element model with nodal degrees of freedom that can
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incorporate the entire essential (such as deflection and slope) and natural (such as
moment and shear force) boundary conditions of a rotor shaft. The mass and stiffness
matrices of the element are derived from kinetic and strain energies by assigning
polynomial expressions for total deflection and bending slope. The superiority of this
element is illustrated by comparing the results with conventional finite element model.

The material properties, geometric properties and boundary conditions dictate the
behavior of a mechanical component or structure. For a given material and
configuration, the boundary conditions significantly influence the static as well as its
dynamic response. The displacement-based finite element method provides an adequate
representation of material and structural configuration. When complex aircraft structures
are analyzed using finite element method, any deviations from the actual conditions at the
boundaries will give erroneous results, particularly, at higher frequencies. Moreover, such
errors are maghnified in obtaining the stress values in the structure.

A beam of length L has two boundary conditions at each end. The state of every
section of a beam is completely specified if we specify position (w), slope (w/dx),
moment (EI Pw/ax*) and shear (EI & w/ax’). Two conditions relating the four are usually
known at every boundary section. In the displacement-based finite element method, it is
possible to represent only the geometrical boundary conditions such as displacements and
slopes at the element formulation level. The natural boundary conditions, which are the
moments and shear forces at the boundaries, should be represented through imposition of
boundary conditions after assembly. If the basic functions are derived considering all the
boundary conditions at the nodes, the resulting elements will lead to achieving more

accurate results even with a coarser mesh, which in tum will result in computational
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advantages.

The present study aims at developing finite elements, which would accept natural
boundary conditions such as moments and shear forces right in the element formulation.
Thus, this element adequately represents all the physical situations involved in any
combination of displacement, rotation, bending moment and shearing force. The explicit
element mass and stiffness matrices eliminate the loss of computer time and round-off
errors associated with extensive matrix operations, which are necessary in the numerical
evaluation of these expressions. Further, the deflection pattern within each element is
represented using an appropriate polynomial. This will be done in a way to increase the
accuracy of the result, particularly the stress values in the structure. The approach and
methodology are demonstrated through a one-dimensional problem, i.e., beam flexure
and a two-dimensional problem, i.e., rotor dynamics. Furthermore, in general the
eigenvalues obtained by employing the higher order elements converge more rapidly to
the exact solution than those obtained by using the lower order elements.

The development of this higher order beam-shaft element is motivated by two
main factors. First, the vibration analysis of uniforrn beams with improved accuracy can
be obtained more efficiently with an increase of the number of degrees of freedom in the
element rather than with an increase of the number of elements having fewer degrees of
freedom. Furthermore, in general, finite elements based on lower degree polynomial
displacement functions incorporate only crude curvature distributions and usually yield
discontinuous bending moments between elements. Moreover, the increased effort
devoted to the initial finite element formulation will yield higher benefits in the analysis

stage for complex systems such as a cantilever-sleeve rotor.
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14 Scope of the Present Investigation

Chapter | provided a brief introduction and then made a survey of the literature
where rotor dynamics studies were carried out using finite element methods. Further
some discussion on attempts to use higher order finite elements was given. Chapter 1
also provides the objectives of the thesis and the scope.

Chapter 2 develops basic finite element mathematical formulations including the
effects of rotatory inertia, gyroscopic moments, and axial load for a rotating shaft
element. The finite-element method consists in the determination of the equation of
motion and its solution. The equation of motion is a matrix equation. The formulation of
the matrices of the model from the element matrices is shown in this chapter. The
element equation of motion is presented in both fixed and rotating frames. The vibration
behavior of shafts with disk is dealt with in Chapter 2, using cantilever-sleeve rotor
system. The solution of the eigenvalue problem is reduced to a standard form, similar to
that corresponding to the non-gyroscopic system by a method developed by Meirovitch
[60].

Chapter 3 gives a basic and reasonably complete development of higher order
beam finite elements and interpolation functions and the application of the higher order
beam elements to the transverse vibration of simply supported beam structure. The
treatment of higher order finite elements was expanded to reflect the importance of rotor-
bearing system. The mathematical formulation of finite element solutions to free
vibrations and transient response is developed.

Chapter 4, which is devoted to applications of new higher order finite element,
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presents a finite element application to free vibration of an overhung sleeve rotor system.

The thesis ends with Chapter 5, which provides some of the conclusions and some

recommendations for future work.
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CHAPTER 2

DYNAMIC ANALYSIS OF ROTORS USING CONVENTIONAL FINITE

ELEMENTS

2.1 Conventional Finite Element Formulation

2.1.1 Introduction

A finite element analysis of a cantilever-sleeve rotor-bearing system is presented
in this chapter, taking into account the rotary inertia, gyroscopic moment and axial force.
The equation of motion for the finite-element model and its solution are obtained.
Initially the geometric configuration illustrated in figure 2.1 was modeled as a Bernoulli-
Euler beam carrying disks at discrete locations and discrete bearings. The special case of
a non-rotating shaft carrying a rotating disk at its tip is analyzed using both Rayleigh and
Dunkerley methods for a quick estimation of its critical speed. Finally the cantilever-

sleeve rotor is modeled and analyzed.

2.1.2 Gyroscopic Whirling of a Simple Rotor

In a Jeffcott rotor, the disk is assumed to be placed between the bearings at the

center of the shaft for simplicity. Since the slope is always zero at the disk location when

the rotor undergoes dynamic flexural displacements, the disk has no rotational motion
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about its diametral axes and hence only the translational motion of the disk is considered.
In general, however, the disks may not be mounted at the middle, and hence besides the
displacement of the disk, its rotation about diametral axes must also be considered. Asa
result its moment of inertia and gyroscopic effect are called into play.

This gyroscopic couple effect changes the bending moment equations across the
mass. If the disks are located at nodal points, their gyroscopic effects are predominant,
because there is a precession of the disk corresponding to the changes in slope, which is
maximum at this location. At anti-nodal points, there is a pure translation of the disk and
there is no gyroscopic effect, because of zero slope. Hence for overhung rotors, with disk
at the free end, the gyroscopic couple has considerable influence on their dynamic
behavior. The gyroscopic moment has the effect of making the natural frequencies
dependent on rotor rotational speed, while at the same time increasing their value. The
co-rotating (forward) modes tend to increase in frequency as the spin speed magnitude
increases due to a gyroscopic stiffening effect, while the counter-rotating (backward)
modes tend to decrease in frequency. The effect of gyroscopic couple on the bending
critical speeds of a cantilever-sleeve rotor supported on radially rigid bearings is
considered in this chapter. In this configuration the axial torque and shear deformation
are neglected. In addition, the element and system equations are presented in both fixed

and rotating reference frames.

2.1.3 System Configuration and Coordinates

The basic elements of a rotor are the disk, the shaft, the bearings and the seals. Kinetic
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energy expressions are necessary to characterize the disk, shaft and unbalances, if any.

Strain energy is necessary to characterize the shaft. The forces due to bearings or seals

are used to calculate their virtual work, and then corresponding forces acting on the shaft

are obtained. The general rotor equations are provided by means of the following:

e The kinetic energy T, the strain energy U and the virtual work 6W of external forces
for the elements of the system.

e Lagrange’s equations are applied in the following form:

d(aT]_aT+8U=F;

dr\ 34, | dq, g,
where i (1 to N) is the number of degrees of freedom, g; are generalized independent
coordinates, F; are generalized forces, and the over-dot denotes differentiation with
respect to time .

e Two reference frames are utilized to describe the system equations of (see figure 2.1).
The XYZ: 3 (xyz: R) triad is a fixed (rotating) reference with the X and x-axis being
co-linear and coincident with the undeformed rotor centerline. R is defined relative
to 3 by single rotation ax about X with @ denoting the whirl speed.

A typical cross section of the rotor in a deformed state is defined relative to the fixed
frame 3 by the translation V (s, 1) and W (s, 1) in the Y and Z directions, respectively. In
order to locate the elastic centerline further, the small angle rotations B (s, #) and I" (s, 1)
about Y and Z-axes, respectively, are used which to orient the plane of the cross-section.

The cross section also spins normal to its face relative to frame 3.
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Figure 2.1 Typical system configuration

Figure 2.2 Euler’s angles of rotation of the disk
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The abc: X triad is attached to the cross-section with the “a” axis normal to the cross-

section. X is defined by the three successive rotations. (figure 2.2)

1. I"about Z defines a” b” ¢
2. B about b” defines a’ b’ ¢/
3. ¢ about a’ defines abc,

and the angular rate of rotation relative to frame S is

w, -sinB 1 0 r
w, =|cosBsing 0 cosp ¢ 2.1)
w, cosBcos¢p 0 —sing||B

For small deformation the (B, I rotations are approximately co-linear with the (Y, Z)
axes, respectively. The spin angle ¢, for a constant speed system and negligible torsional
deformation, is £ where £ denotes the rotor spin speed.

At a given point the rotor has four degrees of freedom: two displacements v and
w, two slopes about the Y and Z-axes which are, respectively, B and ¥. The
displacements (v, w, B, 7,) relative to R of a typical cross section are transformed to

corresponding displacements (V, W, B, I) relative to 3 by the orthogonal transformation

{q} =IR] {p} (2.2)

with
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|4 v
W w
= . = 2.3a)
W=y =1 (
r 14
cosax —sinax 0 0
1 0 0
[ R] _ sinax cosax . (2.3b)
0 0 cosax —sinax
0 0 sinax cosax

and for later use the first two time derivatives of equation (2.2) are given below:

{c}} = wls{p}+ [Rl{b} (2.42)

{E} = [R{{B} -wl{p})+ 2w[S]{b} (2.4b)

where
[S] = (I/w) [dR/d] (2.4¢)
~sina@ —cosan 0 0
cosae —sinax 0 0
[s]= ) (2.4d)
0 0 —sinax —cosax
0 0 cosak —sinax
51% =Rl (2.4¢)
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2.1.4 Component Equations

Nelson and McVaugh [9] and Zorzi and Nelson [10] presented the basic concept
and development of the equations of motion for a rotating finite shaft element. In these
studies, a fixed frame (XYZ) triad, as shown in figure 2.1, was used to establish the
Lagrangian equations of motion. The typical rotor-bearing system is considered to
comprise a set of interconnecting components consisting of rigid disk, rotor segments
with distributed mass and elasticity, and linear bearings. For finite element analysis of
the rotor bearing system, the rotor shaft segments are often modeled by beam elements,
which include shaft rotation effects. Generally the axi-symmetric geometry of rotor
elements gives the same mass and stiffness matrices in both the X-Y and the X-Z planes.
The kinetic and potential energy expressions for an element are established. The finite
rotor element equation of motion is developed in an analogous manner by specifying
spatial shape functions and then treating the rotor element as an integration of an infinite

set of differential disks.
2.1.4.1 The Rigid Disk
The disk is assumed to be rigid and is then characterized solely by its kinetic energy. The

mass of the disk is my and its tensor of inertia, defined about its center O with xyz being

the principal directions of inertia, is denoted by [I]. Itis given by
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The kinetic energy of a typical rigid disk with mass center coincident with the elastic

rotor centerline is given by the expression

- T -
0 a
{:",} l:":),, ]{;%% otlo 1, o, .62)
Ma “w 0 0 [ ||lo

n
ol
L}

which can be simplified here since the disk is symmetric, the angles I" and B are small,
and the angular velocity is constant; that is, d¢/dr = £ The use of equation (2.6a), with

the retention of only second order terms, becomes

1 (B[, o](B) ..
[ e o

where the term % I .Qz, which is a constant, has no influence in the equations and
represents the energy of the disk rotating at £2, all the other displacments being zero. The

last term, represents the gyroscopic (Coriolis) effect.

The Lagrangian equation of motion of the rigid disk using equation (2.6b) and the

constant spin speed restriction, d@/dr=£2, is
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(br]+ [ D{J‘}—Q[G“J{ci‘}={Q"} @.72)

where

‘m, 0 0 0 00 0 O

mel=| @ ™ 0O 00 00 2.7b)
0 0 00 001 O
o 0 00O 00 0 I,
0 0 0 O

[G]_oo 0 o 279

““7lo 0 0 I, B
00 -1, O

Equation (2.7a) is the equation of motion of the rigid disk referred to frame 3 with the
forcing term including mass unbalance, interconnection forces, and other external effects

on the disk. For the disk mass center located at (1, &) relative to X, the unbalance force

in frame S is

n, - Cd
{Q" }= S cos S + (E sin§&
0 0 (2.8)
0 0

={o¢ Jcos x + {o! Ysinsx

By using equations (2.2), (2.3) and (2.4) and premultiplying by [R], equation (2.7a)

yields
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1+ bz )"} + oo} r:)- 2l Y5}

p . (2.9a)
—o([m]+ i)+ AB“]){p } = {P }
For the case of a thin disk (I, = 2/) equation (2.92) transforms to
CANTA PRRC CH R RE R
(2.9b)

- w* (M ]+ (- 24)Mm; D{pd}= {P}

Equation (2.9) is the equation of motion of a rigid disk referred to R with whirl ratio A=
QYw. The term -&° ([MRd]+[MTd] + A[Gd]){p"} contains the so-called Green’s [2]

gyroscopic stiffening effect.
2.1.4.2 Finite Shaft Element

A typical cross section of finite rotor element is illustrated in figure 2.3. The shaft is
modeled as a beam with a uniform circular cross-section. It should be noted here that the
time-dependent element cross-section displacements (V, W, B, D) are also functions of
position x along the axis of the element. The finite element used has two nodes, and
hence the matrices are of eighth order, including four displacements and four rotations.

The rotations (B, I are related to the translations (V, W) by the equations
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r = element length

Figure. 2.3  Typical finite rotor element and coordinates
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and the nodal displacement vector is

bit={ i)

1

(a)
(2.10)
(b)
vl
"2 .11
8, -11)
YZ

which includes the displacements {py} and {p:} cormresponding, respectively, to the

motions in the Y and Z direcitions: that is

pil=friv.r. ¥
{p:}={w.B.w..8.F

The coordinates (q/°, q2°, -..-.- ,

(2.12a)

(2.12b)

¢°) are the time-dependent end point displacements

(translations and rotations) of the finite element and are indicated in figure 2.3.

The translation of a typical point internal to the element is approximated by the

relation

{"( x’”}=ff’(x)]{q‘(r)}

W(x.t)
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where the spatial constraint matrix [¥ (x)] is given by

EP]=['I’1 O 0 w: 'If; O O WJ] (2.14)
0 v, -V, 0 0 v, VY, 0

and is a matrix of displacement functions. In this case the individual functions represent
the static displacement modes associated with a unit displacement of one of the end point

coordinates with all others being constrained to zero. These functions are

(2.15)

From the equations (2.10) and (2.13) the rotations of a typical cross section of the

element can be expressed in the form

{B}=[¢]{q‘} (2.16)
with

[¢]=[[¢”ﬂ 2.17a)
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or

[0 -w v 0 0 —y; v O 5
[‘p]'[w. 0 0w, w, 0 O WI] (2.170)

representing a matirx of rotation shape functions.

For a differential disk located at distance x, the elastic bending, axial deformation

and kinetic energy expressions are, respectively,

vo\'TEI o7(v”
= e .

w”| |0 EI|wW

. 1[v\'[p o]V’
wn =3t} [0 ot

T . \ 7 .
die =l{‘{} [# OHY}J.H—-I-J) o dx+—l—{?} [6" 0 ]{?}dx—cpl"Bopdx
2\w) |0 ujWw 2" 7 201l L0 o llr

(2.18)

Q)
wn
N | -

where u is the mass per unit length of shaft and o, and 0, are diametral and polar mass
moments of inertia per unit length of shaft. By using the equations (2.13) and (2.16),

equation (2.18) can be written in the matrix form as
l Y 4 r 4 e
dg; =§EI{9'}T” il 7
l ’ ’
d@, =~ Pl T T Yo i

ool e e 0 o

~b0,{d } o, Fie. i b

2.19)
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The energy of the complete element is obtained by integrating equations (2.19)

over the length of the element to obtain

o€

05+, +J° =%{q‘}’(["fs]‘[Kiw}%{&i}:(w;h [M;D{q } (2.20)

+> 10 +¢'>{¢}'}T[N']{£f}
where
;1= [ ke ks
;)= o o ok
[N‘]=£o.,br]’bg}tx 2.21)
;1= [ Ert T b Kis
[k:1= [ Pl T be

For the case of a uniform cross-section element under constant axial load P with the

identity o, = 20, = 2I, the elements of the matrices of equations (2.21) are obtained as
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156
0

0

22-r
54
0

K r
420

0

- 13-r

OOOOOOOOl

34

0 0 22r 54 0 0 -13-r]
156 -22-r O 0 54 13-r 0
22r 472 0 0 -13r -3 0
o 0 4 13r 0 0 -34
0 o0 13r 156 0 0 -22r
54 -13r 0 0 156 22r O
3r -3 0 0 22 41 O
0 0 -32-2r 0 0 47| @21
36 0 0 3r -3 0 0 3]
0 36 -3r 0 0 -36 -3r O
0 -3r4rr 0 0 3r -r© 0
3r 0 0 41 3r 0 0 -r
3 0 0 -3r 36 0 0 -3r
0 -3 3r 0 0 36 3r O
0 -3r - 0 0 3r 4r 0
37 0 0 - -3r 0 0 47| @2
36 3r 00 36 3r 0]
0 0 00 0 0 O
0 0 00 0 0 O
3 472 00 37 -r* 0
36 -3r 00 -36 -3 0
0 0 00 0 0 O
0 0 00 0 0 O
“3r -2 00 3r 417 0 2.21c)



(12 0 0 6+ -12 0 0 6r
0 12 -6-r 0O 0o -12 6 O
0 -6r4r* 0 0 6- 215 O
(b6 0 0 4-r> -6r 0 0 2
B 3|-12 0 0 -6r 12 0 0 -6r
0 -12 6r 0 O 12 6r O
0 6-r 22 0 0 6-r 42 0
6r 0 0 242 -6r 0 0 41
(36 0 0 3r -36 0 0 3]
0 36 -3r 0 O -36 -3r O
0 -3r4r2 0 O 3r -r- 0
. P |37 0 0 4r* 3r 0 0 -r
A"30r|-36 0 0 -3r 36 0 0 -3r
0 -36 3+ 0 0 36 3r O
0 -3r - 0 0 3r 4r 0
3 0 0 - -3r 0 0 4

(2.21d)

(2.21e)

The Lagrangian equations of motion for the finite rotor element using equation (2.20) and

the constant spin speed restriction, d@/dt = £, is

e

([M;]+[M;]){q

with

e l=(~v1-IvT)
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}—Q[G‘]{&'}+([K;]-[Kj]){qe}={Q'}

2.22)

(2.23a)



0 -36 3-r 0 0 36 3-r 0

3 0 0 3r -3 0 0 3r
3r 0 0 -4r*3r 0 0 P
G.p 1| 0 3T 4r* 0 0 3+ -r* O

15r| 0 3 -3r 0 0 -36 -3r O
36 0 0 -3r 36 0 0 -3r

-3-r O 0 r 3r O 0 —4~r2

0 -3 -r? 0 0 3r 41> O | (2.23b)

and is referred to fixed frame coordinates. All the matrices of equation (2.22) are
symmetric except the gyroscopic matrix {G] in equation (2.23), which is skew symmetric.
The force vector {Q} includes mass unbalance, interconnection forces, and other element
external effects. For the element with distributed mass center eccentricity (7(x), {(x)),
the equivalent unbalance force utilizing the consistent matrix approach introduced by

Archer [61] is given by

¢ (x ) n(x)
= {Q: }COS 2+ {Q: }sin o3

2.24)

for}=] pAQ’fI’]T({n(x)}cos.Qt+{—C(x)} sin.Qt)

By assuming a linear distribution of the mass center locations in the finite rotor segment,
the mass eccentricities in Y and Z directions measurred at ¢ = 0 for a differential disk
located at distance x, a linear mass unbalance distribution over the element can be

represented by the expressions,
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n(x)=m(l-§]+n,(§)

()=¢1-2]+¢( 2]

(2.25)

with (1, &) and (&, &) denoting the mass center eccentricity at x =0 (leftend) and x =

r (right end) in ¥ and Z directions, respectively. The equivalent unbalance force from

equation (2.24) is presented in equation (2.26) as

¢

{o: }= pa?|

.

Equation

20
7

20
1
20
1
X)—n,_r +

S+

20 N
3
20

L g.r+

30

1

30

g,r+

g,r+

nro

7
—n,r+

Cer—

3,
20 M

3
‘2—0'43"
1 \
0%
_l_n rl
30 ¢

7 e
20 M

7
ECRr
1 2

Col”

20

- —nkr“

L o }= pae

> (2.26)

(2.22) is transformed to whirl frame coordinates by using equations

(2.2), (2.3) and (2.4) extended to include eight coordinates (four coordinates in each

direction) at each end of the element.
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([M;]+[M;]{[Rl{{;}-wz{p}}ww[s]{;})—a[w{w[sl{l’}+[R]{;’}) 2.7

+(x:]- kY p} = )
After premultiplying by [R]” and rearranging, one gets

([M;]+[M;D{Z}+(2w[R]’[M;Is]+2w[R]'[M;ISI—Q[G]){b}
+([x:)- [k D0 (M:]+ M )-w@lRT [GIS]){p}={P‘}

(2.28)

In addition, since [R]” [R] = [1], we get
[R]" [Mx] [S] = YA[G"] (2-29)

Finally, for the case of a symmetric shaft (i.e op = 204 = 2I) the transformed equation

(2.28) becomes
([M;]+[M;J){}3‘}+w(2[f»‘4:]+ (1-/1)[Ge]){;‘}
(K- :D-or Ol a-20be ) o'} {7}
(2-30)

where w = A, and

[7; J= [RY [m: 5] @2.31)
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2.1.4.3 Bearings

The coupling between forces and displacements, and between slopes and bending
moments are neglected here. The equations are limited to those which obey the

governing equations of the form
ob b
[C”]{q }+[K”]{q }=b”} 2.32)

in fixed frame coordinates, where

el e o

]
b

and {Q” } is the bearing external force vector. Using equation (2.2) in equation (2.32) and

premultiplication by [R]” gives the transfromed form
[RT [c* IRl{p” } +[rRF [x* IR]{p"} ={p} (2.33)

in whirl frame coordinates. For orthotropic bearings k,; = k;y = 0. For isotropic bearings,

however, equation (2.33) reduces to an equation with constant coefficients,

i¥p’ }+ klifp’ }={P*} (2.34)
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where ¢ and k are the isotropic bearing damping and stiffness coefficients, respectively.
2.1.5 System Equations of Motion

The assembled undamped system equation of motion, consisting of component equations

of the form of equations (2.7), (2.22) and (2.23) is
[M’]{J‘}—Q[G’]{«i’}+[t<‘]{q‘ } -{o'} 2.35)

in fixed frame coordinates.

For computational purposes equation (2.35) can be written in a matrix form as [62]

[[0] -] ]] {;} +[[—M d [O]] {(}} -{{0}} 2.36)

] -<le’ {q} bl [x° {q}‘ o}

The matrices have band structure with an overlapping of the element matrices.
The mass matrix is symmetric as for non-rotating structures, and describes the translatory
and rotary inertial behavior of the rotor. However the gyroscopic matrix is skew-

symmetric. If we ignore the internal damping (oil film) the stiffness matirx is symmetric.



2.1.6 Solution of System Equations

For a specified set of shaft spin speeds, the system equations are generated. Whirl
speeds can be determined from the solution of the eigenvalue problem resulting from the

free vibration equation

[M’]{J’ } - .Q[G‘]{q" } + [K‘]{q‘} ~0 237

The boundary conditions are then imposed at the left and right boundary points of each
shaft. Typical boundary conditons at the ends for the xz plane are as follows:

fixed w=p=0

simply supported w=0
Analogous conditions exist for the xy plane. After the introduction of the appropriate
boundary conditions, the eigenvalue problem associated with equation (2.37) can be
reduced to a standard from, similar to that corresponding to the non-gyroscopic system,

by a method suggested by Meirovitch [60]. It is possible to rewrite equation (2.37) as

[MT {h} +[cl {h} =0 (2.38)

where

R G B <SS g
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are 2nx2n real non-sigular matrices, the first being symmetric and the second skew

symmetric. Moreover, [M] is positive definite. By introducing

(K1" = [G1"IM ™ (GT (2.39)

the eigenvalue problem can be reduced to one in terms to two real symmetric matrices,

similar in form to the standard form as
(K1 (u}=A[M] {u} (2.40)

where A= @’. Moreover, because [M]" and [K]" are positive definite all eigenvalues A,

are positive.
2.1.6.1 Whirl Speed Analysis

Consider the homogenoeous case of equation (2.35). For an assumed solution of the

form,
{gi} ={n}={h, e~ (2.41)

the associated eigenvalue problem is

[o] [7] 1
[_ kT elcT [G,]]{ho}= ;{ho} (2.42)



The eigenvalues of equation (2.42) appear as pure imaginary conjugate parts with
the magnitude equal to natural whirl speed. The superposition of a solution with its
conjugate represents an associated elliptical precession mode.

For whirl frame coordinates equation (2.35) transforms to the form
[ ]{p } + w(2[1|7l * ]—A[G‘]){I;‘ } + ([K’]—mz ([M’]+ AE?‘D){p‘} = {P} (2.43)

The natural circular whirl speeds and mode shapes can be obtained from the
homogeneous form of equation (2.43). For an undamped rotor with isotropic supports,
the orbits of the natural modes of whirl are circular relative to the fixed XYZ reference
frame. In a rotating xyz reference frame with a rotation rate equal to the whirl speed, the
whirl mode appears as a fixed curve in a plane through the x axis. Because of the axial
symmetry, the order of the system equations can be cut in half by taking this plane to be
one of the coordinate planes, say, the xz plane. In other words, it is possible to consider
one of the two planes of motion because the modes are constant relative to R and two
planes of motion are 90 degrees apart. If we assume a constant solution {p°} = {po} =

constant, the associated eigenvalue problem is

9y A,
[K1{p.} = @ (IM]1+ A [G]){po} (2.44)
The 2n eigenvalues are real and the positive values, @; with associated vectors {pp}’
representing natural circular whirl speeds and mode shapes relative to 9t at the specifed

whirl ratio A.
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2.1.6.2 Unbalance Response

In fixed frame coordinates, the unbalance force in equation (2.35) is of the form
fo'}={oJeos sz +{0; Jsin (2.45)

Thus a steady state solution of the same form

la}={q: Yeos 2 + {g: }sin s (2.46)
substituted in equation (2.35) yields

QMg Jeos 2 ~ 26" Kg: Jeos 2 + (& Ka: Jeos 2

2.47
ol i+ 2l g inx + [ Y b=l ) &Y

and identification of the terms in sin€2r and cos$2 in equations (2.47) and (2.45) gives the

equation

1 It 4 S

The solution of equation (2.48) and back substitution into equation (2.46) provides the

undamped system unbalance response for any value of €.
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For whirl frame coordinates with isotropic bearings, the unbalance response is
obtained from equation (2.43) with w = Q (i.e., A = 1). In this case the unbalance force
in equation (2.43) is a constant relative to R and hence, the unbalance response is also a
constant relative to 9. From either of the two planes of motion (2.43) the undamped

unbalance response is given by

ri=lk -2 ()<l I ) (2.49)
2.2  Application to Cantilever-Sleeve Rotor-Bearing System

The method of analysis developed above is applied to an industrial cantilever-
sleeve rotor in order to illustrate the concepts. The cantilever-sleeve rotor is shown in
figure 2.4 and we study its free vibration. The problem illustrated has unique
applications in the industry, for example, in cotton yarn winding, dental drill etc.

Three numerical examples selected from cantilever-sleeve rotor bearing system
are given to demonstrate the gyroscopic effects on critical speeds. The solution is
obtained for the following cases:

@) Natural frequency of a non-rotating uniform cantilever shaft with a non-

rotating disk at the end.

(ii) Whirl speeds of a non-rotating uniform cantilever shaft with a rotating

disk at the end.

(ili) Whirl speeds of a rotating uniform cantilever shaft with a rotating disk at

the end (overhung rotor).

(iv)  Whirl speeds and unbalance response of a non-uniform cantilever-sleeve
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rotor-bearing system with a non-rotating shaft, a rotating sleeve shaft and
a rotating disk.
For problems described in case (ii), (iii) and (iv), the rotor mass is mounted on the
shaft such that, at the location of the rotor, deflection of the shaft also tends to result in a
change in slope of the shaft. Typically this might be the case when the rotor is overhung.
When this is the case the deflected rotor forms a conical surface of revolution and
centrifugal forces will act on the rotor mass as shown in figure 2.5a. The effect of these
centrifugal forces is to straighten the shaft, constraining it to prevent any change of slope
at the rotor location. Because of this the deflection of the shaft will not be significant and
its stiffness will effectively increase; as a consequence there will be a corresponding
increase in the system natural frequency.
Using the same notations as in this chapter, we consider the spinning disk at the
end of the rotor, which is rotating at an angular velocity 2 and precessing about ¥ and Z
axes with amplitudes y and B, respectively, as shown in figure 2.5. Hence y and B

correspond to slopes of bending in the X-Y and X-Z planes, respectively. At the instant of
time shown, the rotor is also precessing with angular velocity B about a vertical axis OZ.
The precessional frequency will thus correspond to whirling frequency w rad/sec. If we
consider the OY axis, it can be seen that the change in angular momentum over the time
interval considered is 1,82y, and so the gyroscopic moment which must be applied to
produce this change, equal to the rate of change of angular momentum, is given by

1,9y . The gyroscopic couple applied to the rotor 7,2y , must act about the axis OY,

47



axis of rotation

direction of centrifugal forces
acting on rotor

Figure 2.5a  Overhung rotor mounted on a light flexible shaft

Figure 2.5b  General angular motion of a rotor

,Q - LQy (t=1+&)

Figure 2.5¢  Angular momentum vectors for the system shown in figure (2.5b)
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since this axis corresponds to the orientation of the vector /,02p in figure (2.5¢).

Moment My, which is applied to the rotor by the shaft can be written as

M, =1,p-1,2 (2.50)

A similar expression may also be developed describing rotor motion in the X7

plane as

M_=Lj+1,9P (2.51)
For free vibration we have
IV+1928=0
AN @.52)
1,B-1,2y=0

For an isotropic shaft, considering no motion along the X-axis, the mass center of the disk
has, in addition, deflections w (in ¥) and v (in Z). With the complex notation r = w+vi,

w=pB+7i, we have [62]

m,r+k, r+k, y=0
o v (2.53)
Ly —il Qy +k, r+k, yv=0

For r=re" the frequency equation is given for a rotor-bearing system as {62]
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ml o} —ml Qo? —(mk,, + 1k, 0 +k 1,90, + &k, -k, )=0 (2.54)

where k; , i, j = r, , are stiffness influence coefficients. Different cases are analyzed

below.
2.2.1 Approximate Solutions to Whirl Speeds

Case (i): Non-rotating uniform cantilever shaft with a non-rotating disk at the end

Rayleigh’s Method

The fundamental frequency of a cantilever beam with a concentrated mass (disk)

at the end can be calculated approximately using [63],

3EI
- 2.55
@ \[ (m, +0.23571M )’ 2.33)

where EI is the bending rigidity of the beam, M is the mass of the beam, L is the beam

length and my is the mass of the disk.

Dunkerley’s Method

The frequency equation for the beam uniformly loaded by itself is

3.515E1
w, = /—A_lE_ (2.56)
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For the concentrated mass by itself attached to a weightless cantilever beam, we have

W, = / 3E13 2.57)
m,L

By substituting into Dunkerley’s formula [63] rearranged in the following form, the

natural frequency of the system is determined as

0 = Pu®n (2.58)

2

W, +a,,

The results are tabulated in Table 2.1.

Case(ii) Whirl speeds of a non-rotating uniform cantilever shaft with a rotating

disk at the end (Rayleigh’s Method)

—r NI

ME I ma, Iy I,

Figure 2.6 Approximate model of an overhung rotor

XYZ is the inertial frame, the rotor axis is along the X-axis, and the speed of
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rotation 2 of the disk is constant (figure 2.6). For simplicity, only one degree of freedom
is used for the displacements in ¥ and the Z directions. The rotor is fixed at the left end
(cantilever beam) and the disk is situated at x.

The expressions for the displacements in the y and z directions are, respectively,

v(x.t)= f(x)g, ()= f(x)a, (2.59)
w(x,r)= f(x)g, ()= f(x)a (2.60)

where q; and ¢ are generalized independent coordinates. Then the angular

displacements will be

B= —ﬂx -4 (x) =—g(x)g, (2.61)

and
(2.62)

The second-order derivatives of v and w are necessary to express the strain energy; their

expressions are

dv _d*f(x) _

il | = h(x)q, (2.63)
diw _d'f(x) _,

== (x)a, (2.64)

Displacement function:

52



The displacement function is chosen as the exact static deflection shape of a beam with

constant cross-section subject to a tip load in bending; for one end fixed conditions; i.e.

flx)= Lg—% (2.65)
Then

g(x)= Lc-:‘z—' (2.66)

h(x)=L-x (2.67)
The disk

The kinetic energy Tp of the disk [64]

l 2 .2 .2 1 2 .2 -2 2 .
TD =;m4f-(Lqu. +q;)+77'ldg-(Lqu. +q2-)— IPQg-(Lh‘qz

) (2.68)
==(m, L)+ Lg* NG} +43)- 1,2 (L)ia
The shaft
The kinetic energy Ts of the non-rotating shaft is
2 a2y, PLE o 2, .2
T, = %—f £rehdg? + a3 )+ %—fg'(x)ix(qf +43) (2.79a)
1} (1}
and
1 ¢ f Sy L
7, = 3 oa] £ o] b + 42 @69
0 0
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Hence the kinetic energy of T of the disk-shaft assembly is
T=Tp+Ts (2.70)

that is,

T= %[md L)+ 1,83 L)+ pAf Fx)x+ plfgz(x)tr](éf +¢2)-el.g* @)

2.71)
Equation (2.71) can be written in a more compact form as
1 .2 .2 -
T =—m(g} +4})-Qaqq, @272)
The strain energy of the shaft Usis given by
EI¢,, 2, 2
U, == n*(x)axlg} +4) (2.73)
- o
Equation (2.73) can be written in a more compact form as
1 (2, >
U, =5ka} +43) 2.74)

The application of Lagrange’s equations, with the kinetic energy given by equation .72)

and the strain energy given by equation (2.74), gives the equations of motion as
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5 ALl STEk el
0 mjq, a 034, 0 kjq,

The solutions of equation (2.75) have to be sought in the form

qi= Q,' e" where i = 1,2 (2.76)

Substituting equation (2.76) in equation (2.75) gives two coupled homogeneous equations

in O, and Q5 and the characteristic equation will be

(k +mr*} +a’2*r* =0 (2.772)

which can be written as
m*r' +(2km +a* Q) +k* =0 (2.77b)

When the disk is at rest (£ =0) the angular frequencies are, (r=* i®)
Wy =Wy = 4[— (2.78)

Under rotating conditions (£2 #0) the corresponding angular frequencies of equation

(2.77) are w, and w;, where
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2 2 2.2
o = |oy+22 - 1437 % 2.79)
2m’ a“$§2°

w, = \/wfo + “;f: (1 +41 +4a—":;—(%‘2"—] (2.80)
The results are tabulated in Table 2.2.
2.2.2 Synchronous Whirl
Case (ili): Whirl speeds of a rotating uniform cantilever shaft with a rotating disk at

the end (overhung rotor)

The critical speeds can be computed by substituting the condition @ = Q2 = @y, in

equation (2.54), which yields the characteristic equation as [64]
ml 0} +(mk,, — Ik, Jo? =k k,, —k2)=0 (2.81)

where Ip = I, - 1.

The critical speeds are:

%
[- (mk,, — Ik, )+ [k, - 1.k, F +4mI, (& &, k2, )}”]
@, =5 ol ' 2.82)

A
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Two more critical speeds can be computed from the condition @ = £2 = -@y, which

yields

%
[(mkw ~ 1k, )t [omk,, — 1k, ] +4mL, (k k,, —k2, )}’4]

W, =1
3.4 2 mIA

(2.83)
where I3 = Ip +1;.
The four roots of the biquadratic equations (2.82) and (2.83) are the four critical

speeds.

For an overhang rotor the equations (2.82) and (2.83) become

o

o, ( 5 )[-(a,,—l)i[(a,,-nhw,,]”]

- - . > (2.84)
(e, -1 8, F])”

@ss _ ( B. ) : ! * (2.85)

a, a, 2

where

LY [L] [L)
k k k,
o, = D ﬁD;- a, = 3 B

D
3 12

kD = ’h’-_ k" = fl—“
m m

L 2
12

A
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The natural frequency is

.k, —k,)"
w, = .k —k2) =1/3Ef rad/s (2.86)
mk,, mL

12E1 4E] 6EI
i = — k = —_—, k — —_—_
L3 144 L v L.

where

(2.87)

Back substituting equation (2.87) in (2.81) the frequency equation for overhung rotor is

2 2 272
o o’ 1-513 m, L -1, _I2E 1‘ o 2.88)
mI,C| 3 m, 1L
Let
m, [
A=0, E[ frequency parameter (2.89)
and
I, .
o= - disk parameter (2.90)
m, [’
Then
4 12
A+ A —=—-12|-—=0 291
( : ) : @91)
and

) 2 2Y 12
: -S| fl6-=| +== 292

For real values of A, the positive sign is to be considered in the above equation
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and this root is plotted in figure 2.7.

For a lumped mass, & = 0 and the critical speed is given by

. _ 3EI

W, = (293
* m,C )
12 ' i
)—_—
L~ I
e 9 //
& /
= /
<
> 6 //
2
3 U/
T
2 L,
&= 31 L
0 -
0 1 2 3 4
Disk parameter
Figure 2.7 Effect of disk inertia on the critical speed of a simple overhung rotor

If § = oo, ie., [; = oo, which means that the disk mass is concentrated at a large

radius, and hence no finite fis possible and the critical speed becomes

»  12EI
@ =

294
" m,C 2.94)
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The effect of gyroscopic couple is to stiffen the rotor and to raise the critical
speed as shown in figure 2.7.

If we use frequency equation (2.54) instead and then plot the roots @, we observe
higher critical speeds. The intersection of @, = £2 with the curves @n; and w2 gives the
two critical speeds at which the whirl has the same direction (and angular velocity) with
the rotation of the shaft. We call this forward precession. Line @, = -£2 intersects the
two negative roots @2, and @, This indicates that critical speeds are possible with
whirling angular velocity in a direction opposite to that of the shaft's rotation. We call
this backward precession.

If at the speeds corresponding to the forward precession, we solve for the
vibration modes, we shall observe modes such as the fundamental mode and it is the most

dangerous one. The results for above calculations are tabulated in Table 2.3.

2.2.3 Finite Element Modeling

Case (iv) Whirl speeds and unbalace response of a non-uniform cantilever-sieeve
rotor-bearing system with a non-rotating shaft and a rotating sleeve shaft

and a rotating disk at the end

A general rotor dynamic system is composed of a large number of components,
which typically include rigid and flexible disks, bearings, dampers, seals, couplings, and
shaft segments. The finite element model can easily be utilized to model such rotor-

bearing system for the purpose of determining critical speeds and unbalance response.



The present problem investigates the effect of gyroscopic moments, axial load and the
rotary inertia on the dynamics of the system using finite element model. The cantilever-
sleeve rotor used here is shown in figure 2.4. The rotor uses 12 shaft elments. Area of
the 2-nd and 3-rd sections are same. The assembly procedure for shaft elements is
described next.

The procedures of assembly of the system equations are conceptually equivalent
for the fixed and rotating frames. In modeling the dynamic characteristics of a rotor
dynamic system, several steps are required in the development of the equations of
motion. The first step is to define one or more reference frames, which are useful for
observing the motion of the system. The second step is to divide the real system into
finite-degree-of-freedom model consisting of an interconnected set of discrete elements.
The cantilever-sleeve rotor-bearing system shown in figure 2.8a is used here in
presenting the various steps in developing a set of system equations of motion. One
possible discrete model of the illustrative system is also shown. It consists of two shafts,
one disk, two inter-shaft bearings (support structure), and twelve rotating shaft segments.

This discrete model includes twelve rotating assembly stations and six stationary
assembly stations, each with two translations and two rotations. Separate reference
systems can be used for each component; however, the common choice of the fixed XYZ
reference for each component greatly simplifies the assembly process.

The third step in the modeling process is to choose a set of system coordinates.
This is particularly simple if a common reference is used for all components and if this
reference is also used as the system or global reference. For this choice, the system

displacement vector consists of all the station displacements and is defined as
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GE. =la¥. - fa.¥ 0¥ ¥l (2.95)

shaft 1 shaft 2

Since shaft 2 is stationary and located inside shaft 1, we have given the same

nodal numbers for shaft 2 as in shaft 1.

la.}--4a L. = la 3l K (2.96)

The fourth step is to define the connectivity of the discrete elements with the
system displacement vector given in equation (2.96). The complete set of component
coordinates constitutes a dependent set of coordinates, and the connectivity statements
essentially represent geometric constraint relations between the component coordinates
and the system coordinates.

The connectivity statements for the shaft segment between stations 1 and 14, 2
and 15, 3 and 16, 4 and 17, 5 and 18, 6 and 19 and the inter-shaft bearing between
stations 7 and 20 will have the same nodal numbers as in shaftl.

The equation of motion for the e-th typical element of the system is

- fi}+ o Har}+ Lk }=1or} @297

The system of equations are formally assembled by utilizing the principle of
virtual displacements which states, “The work done by the external forces acting on the

system and the work done by the internal forces must vanish for any virtual
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Figure 2.8b  Cantilever-sleeve rotor bearing FEM model and schematic
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displacement” [Oden, 1967], i.e.,

SWwW=0 (2.98)

This yields the following set of system equations of motion:

v }elo a1+ Ik o} =o'} (2.99)

The system mass matrix [M] is symmetric and consists of contributions from the
disks, and flexible shaft elements. The system gyroscopic matrix [G] consists of
contributions from the same components and is skew symmetric and spin-speed-
dependent. The stiffness [K] consists of symmetric arrays from the undamped shaft
elements and contributions from the bearings and other components. The system applied
force vector {Q} includes rotating unbalance.

The forms of the system arrays of equation (2.99) are shown in figure 2.9 for the
dual-shaft support structure example of figure 2.8b.

The system stiffness and inertia arrays are of order 52 with 4 degrees of freedom
for each rotor station. The coordinate ordering in these system arrays is consistent with
the displacement vector defined in the previous chapter for rotating assemblies. The form

of the cosine and sine components of the system constant-speed unbalance force vector is

{o:}={0’ Jcos 2t +{Q: }sin s (2.100)
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The unbalance response with the unbalance given in the data was computed for
the speed of 15,000 rpm. The unbalance responses are plotted in figure 2.10 versus time.
Plot of deflection and slope for the XZ (w,p) plane is plotted in figure 2.11a and 2.11b.
The critical speeds of a cantilever-sleeve rotor system calculated and are tabulated in

Table 2.4.

2.2.4 Numerical Resuits

Shaft 2-Stationary
Diameter (d;) =0.04445m
Area =(nd’ )4 =1.552x 10° m2

Mass Moment of Inertia (I=r d* /64) = 1.916 x 107 m*

Length =0.762 m
Density (p) = 7800 kg/m’
Young’s modulus (E) =2x 10" N/m?

Shaft 1-Rotating

Inner diameter (d>) =0.04445 m
Outer diameter (d3) =0.0508 m
Area (A) = 1 (d%; - &52)/4 =4.75x 10* m®

Mass Moment of Inertia I = 72 (d*; — d*>)/64 =1.353 x 10" m*

Length =0.762 m
Density (p) = 7800 kg/m’
Young’s modulus (E) =2 x 10" N/m?



Tapered shaft

Inner diameter at the left (d.s) =0.0445 m
Inner diameter at right (dg:) =0.01905m
Outer diameter at left (dz;) =0.0508 m
Outer diameter at right (dg;) =0.0254 m
Area = (T Log)d =3484x 10* m®
Mass Moment of Inertia (/= nd’ avg/64) =5355x 10°m*
Length =0.508 m
Density (p) = 7800 kg/m’
Young’s module (E) =2x 10" N/m?

Data for the total shaft
Total shaft mass (M) = 13427 kg
Total shaft length (L) =127m

Basic data for the disk

Mass of the disk (my) =9.08 kg
Outer diameter (dp) =0.381 m
Thickness (h) =0.0254 m

Diametral Mass Moment of Inertia (/;)= 0.082 kg m?

Polar Mass Moment of Inertia (Ip) = 0.163 kg.m”
Mass unbalance (disk)

Mass unbalance center =(0.075.0.065) m
Mass eccentricities in Y and Z direction (constant cross section of the shaft)

Mass center eccentricity at x =0 = (0.022225, 0.0254) m
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Mass center eccentricity atx =r = (0.0254, 0.022225) m
For tapered cross section mass center eccentricity = (0.01905, 0.05875) m
Spin speed = 15000 rpm

The shaft whirl @ may occur in the same direction or the opposite direction as the
shaft spin . These possiblities are termed positive or negative whirl, respectively,
corresponding to positive or negative A.

A spin speed 2 is termed a critical speed when it equals a natural frequency with
respect to stationary axes. Hence critical speeds are represented by A= 1 where ® =
The case A = 0 represents zero spin, for which @; =@.

The study was conducted for a cantilever-sleeve rotor-bearing system using finite
elements in order to establish a reference set of results for a particular number of finite
elements used in the system model. It should be noted here that there is no closed form
solution for a problem of this kind, and one must rely on the existing finite element

method.

2.2.5 Comparison of Results and Discussion

The equations of motion for a uniform rotating shaft element have been
formulated using shape functions that were originally developed for Euler-Bernoulli
beam element. A finite element model including the effects of rotatory inertia,
gyroscopic moments, and axial load has been presented in this chapter. The equations of
motion of the elements are presented in both fixed and rotating frames of reference. The

rotating frame equation is used to calculate the critical speeds since the two planes of
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Undamped system unbalace response in fixed frame for the first 8 degrees of freedom
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Figure 2.10  Unbalance response of cantilever-sleeve rotor bearing system for node 1

and node 2 in both plane
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Figure 2.11b Steady state unbalance response in fixed frame coordinates.
Plot of slope ¥ and B along the shaft for all the nodes.
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Table 2.1

rotating disk at the end

Critical speeds of a non-rotating uniform cantilever shaft with a non-

Critical speeds (when £.=0) rad/s

) (117} W3 (7]
Solution obtained using Rayleigh’s 67.705 - - -
method, given by Eq. (2.55)
Finite element solution using two 66.109 543.638 1492.961 | 3307.748
elements
Finite element solution using six 66.106 540.199 1435.345 | 2615.229
elements
Table 2.2 Critical speeds of a stationary uniform cantilever shaft with a rotating disk

at the end

Critical speeds (when £2.=15000 rpm) rad/s

W ar (/)] Wy
Closed form solution, given by Eq. 66.161 - - -
(2.79 and 2.80)
Finite element solution using six 66.109 539981 1435.579 | 2615.207
elements
Finite element solutions using twelve 66.147 539.939 1434.075 | 2609.752

elements
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Table 2.3

at the end

Critical speeds of a rotating uniform cantilever shaft with a roraring disk

Critical speeds (when £2.=15000 rpm) rad/s

y w2 3 Wy
Closed form solution, given by Eq. 78.619 - - -
(2.86)
Finite element solution using six 78.431 708.596 1969.571 | 3520.459
elements
Finite element solution using twelve 78.432 708.466 1966.899 | 3510.578
elements
Table 2.4 Critical speeds of a cantilever-sleeve rotor bearing system

Critical speeds (when £2.=15000 rpm) rad/s

wy 2 @3 )y
Finite element solution using six 86.526 484711 1103.156 | 2545.319
elements when [G] =0
Finite element solution using twelve 86.524 484.672 1102.824 | 2538.670
elements when [G] =0
Finite element solutions using twelve 86.527 484.850 1103.370 | 2538.712

elements when [G] #0

72




Table 2.5 Comparison of critical speeds obtained using finite elements

Critical speeds obtained using a mesh of six

elements (when £ =15000 rpm) rad/s

] a; w3 y
Finite element solutions for case (i): 66.106 540.199 1435.345 | 2615.229
both shaft and disk szationary
Finite element solutions for case (ii): 66.109 539.981 1435.579 | 2615.207
disk rotating and shaft stationary
Finite element solutions for case (iii): 78.431 708.596 1969.571 | 3520.459

both shaft and disk rotating
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Table 2.6 Critical speeds of a stationary uniform cantilever shaft with a rotating disk
at the end
F = Forward precession critical speed,

B = Backward precession critical speed

Critical speeds (when £2.=15000 rpm) rad/s

W

w; (F)

w2 (B)

o (B)

Solution obtained using Rayleigh’s

method, given by Eq. (2.79 & 80)

66.161

53.083

85.41

Table 2.7

at the end

Critical speeds of a rotating uniform cantilever shaft with a rotating disk

Critical speeds (when £2.=15000 rpm) rad/s

Wn

w; (F)

w2 (B)

ar (B)

Closed form solution, given by Eq.

(2.58, 2.85 and 2.86)

78.619

66.788

68.055

771.841
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motion can be treated separately, while fixed frame equation are used to calculate the
critical speeds with the gyroscopic effect. The solution of eigenvalue problem is obtained
by the technique suggested by Meirovitch [60].

The finite rotor element was used to model a typical industrial cantilver-sleeve
rotor system to obtain the critical speeds and unbalance response. The numerical results
in this study includes the following four cases:

1) a non-rotating uniform cantilever shaft with a non-rotating disk at the end.

(i) a non-rotating uniform cantilever shaft with a rotating disk at the end.

(iii) a rotating uniform cantilever shaft with a rotating disk at the end

(overhung rotor).

(iv)  a non uniform cantilever-sleeve rotor bearing system with a non- rotating

shaft, a rotating sleeve shaft and a rotating disk at the end.

For the system of case (i), the critical speeds that were calculated using two
elements and a mesh of six elements are given in Table 2.1. In the same table, the first
critical speed that was calculated using the Rayleigh’s approximate method is also given.
As can be seen, the finite element solutions and the approximate solution are in very good
agreement.

For the system of case (ii), the critical speeds that were calculated using a mesh of
six elements and using a mesh of twelve elements are given in Table 2.2. In the same
table, the first critical speed that was calculated using the closed form solution is also
given.

For the system of case (iii), the critical speeds that were calculated using a mesh

of six elements and using a mesh of twelve elements are given in Table 2.3. In the same
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table, the first cirtical speed that was calculated using the closed form solution is also
given. As can be seen from these tables, the finite element solutions and the approximate
solution are in very good agreement.

The finite element solutions for the cantilever sleeve rotor system of case (iv), are
given in Table 2.4. The effects of gyroscopic moments are highlighed in this table. The
effect of gyroscopic moment on the critical speeds of the system does not seem to be
significant. Further the third natural frequency is close to the operating speed and hence
a more accurate analysis is needed to determine the natural frequencies.

Based on the results presented in the above, a comparison is now made in Table
2.5 so as to bring out the effects of rotation of the shaft and the disk. The four critical
speeds obtained using a mesh of six elements for each case are compared in Table 2.5.
The effect of the rotation of the disk on the first critical speed is not so significant when
compared with the effect of the rotation of the shaft on the first critical speed. The same
conclusion holds good for all the other three critical speeds. However, all the critical
speeds are significantly affected when both shaft and disk are rotating.

For the rotor-disk systems of case(ii) and case(iii), the first and second critical
speeds were determined using closed form solutions. The calculated values are listed in
Table 2.6 and Table 2.7. In case (ii) when both the rotor and disk are rotating, one
forward precession critical speed at 66.788 rad/s, and two backward precession critical
speeds at 68.055 rad/s and 771.841 rad/s were obtained.

Without the inclusion of gyroscopic moment, the critical speeds are comparable to
the natural frequencies of vibration of the shaft-disk system. It is well known that the

natural frequencies are significantly influenced by the boundary conditions of the system.
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In the conventional finite element formulation, the basis functions are derived so as to
include only the geometric ( or essential) boundary conditions of the finite elements. The
inclusion of boundary effects might yield a more preciese finite element solution, and it
can incorporate the free end conditions, which can not be satisfied by the conventional
fnite element method. If the basis functions are derived such that both the natural and
essential boundary conditions are included in the element formulation, a more accurate
result can be obtained using a coarser mesh. A coarser mesh saves the CPU time in the
solution process. Therefore, inclusion of all boundary conditions in the element

formulation will be advantageous. Such a formulation is developed in the next chapter.
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CHAPTER 3

EFFICIENT BASIS FUNCTIONS FOR FINITE ELEMENT DYNAMIC

ANALYSIS OF BEAMS
31 Bending of Beams
3.1.1 Euler-Bernoulli Beam Theory

The transverse deflection w of a beam is determined by solving the following

fourth order differential equation of equilibrium [59]

d’ [EI ——] p(x) 3.1

dx® dx®

where p(x) is the distributed transverse load per unit length. Since the equation is of

fourth order, the four constants of integration are determined by satisfying the four

boundary conditions at the ends of the beam, defining the deflection, w, slope 0= %v-

bending moment M = EI ‘flxw and the shear force F = EI %x— The sign convention

for the curvature is related to the orientation of the coordinate axes (figure 3.1). If x-
axis is positive to the right, upward deflection is positive (see Appendix I). An integral

formulation that is equivalent to the differential equation and natural boundary
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Figure 3.2 Discretization of the beam using Euler-Bemnoulli beam elements
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Figure 3.3 The generalized displacements and generalized forces are shown on a
typical element.
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conditions is needed in the finite element formulation.

3.1.2 Integral Formulation and Interpolation

Bending of beams leads to differential equation of fourth order. In the finite
element formulation, first a functional is developed that corresponds to the fourth-order
differential equation describing Euler-Bemnoulli bending of beams with appropriate
boundary conditions. The second derivative of transverse deflection is involved in the
functional. Second, the element interpolation functions are chosen so as to satisfy
conditions of compatibility and completeness. In this thesis new higher order
interpolation functions are selected for the one dimensioned problem under
consideration. Finally, the element coefficient matrices and load vector can be
obtained. In this case, the stiffness and mass matrices will be derived as the element

characteristic matrices.

3.2 Finite Element Model with Efficient Basis Functions

3.2.1 Governing Equation

The transverse deflection w of the beam is governed by the fourth-order

differential equation for0 <x <L,

d [b-d%]— p(x)=0 (3.2)
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where b = b(x) and p = p(x) are given functions of x and w is the dependent variable.
The sign convention used in the derivation of equation (3.1) is shown in figure
(3.1). The function b = EI is the product of the modulus of elasticity E and the moment
of inertia I of the beam. In addition to satisfying the differential equation (3.1), w must
also satisfy appropriate boundary conditions; since the equation is of fourth order, four
boundary conditions are needed to solve it. The weak formulation of the equation will
provide the form of these four boundary conditions. A step-by-step procedure for the

finite-element analysis of equation (3.1) is presented next.

3.2.2 Domain Discretization

The first task in a finite element solution consists of discretizing the continuum
by dividing it into a series of elements. Underlying the discretization process is the goal
of achieving a good representation of the physical problem under study. In the method
of finite elements we decompose the domain of the structure, in our case the length of
the beam, into elements of small but finite lengths (figure 3.2). We consider the ends
of the element as node points, each element having two end nodes as in figure (3.3).

Various quantities at the node have physical significance, as follows:

dw

— =0 =slo
I pe
EI % = M =bending moment (3.3)
2
—i EId ‘: =—dM = F =shear force
dx dx dx
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The primary and secondary unknown variables and their forms at each node are

dictated by the variational formulation of the differential equation, i.e., equation (3.1).

3.2.3 Derivation of Element Equations

We isolate a typical element A° = (x,, x..;) (see figure 3.3) and construct the
weak form of equation (3.1) over the element. The variational formulation provides the
primary and secondary variables of the problem. Then suitable approximations for the
primary variables are selected, interpolation functions are developed, and the element

equations are derived.

3.2.3.1 Weak Form

The weak form of problems in solid mechanics can be developed either from the
principle of virtual work (i.e., the principle of virtual displacements or virtual forces) or
from the governing differential equations. Here we start with a given differential
equation, using the three-step procedure [58] to obtain the weak form. Following the

three-step procedure we write

0= "u[d_z(b d 2"’) - p]dx (3.42)

0= |- d(pdw) i+ ufpd™ (3.4b)
dr dx|  dx x| dx
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dud2 d(. d&*w\ du, d*w]|
0= +lu—| b b 3.4¢c
e e - -

A

where u(x) is a weight function that is twice differentiable with respect to x. “Weak”
refers to the reduced (i.e., weakened) continuity of w, which is required to be twice-
differentiable in the weighted-integral form.

In the present case, the first term of the equation is integrated twice by parts in
order to trade two differentiations to the weight function u, with two derivatives of the
dependent variable w: i.e., the differentiation is distributed equally between the weight
function « and the dependent variable w. Because of the two integrations by parts, there
appear two boundary expressions, which are to be evaluated at the two boundary points
x =x4 and x = xp.

From the last line of the equation (3.4), it follows that the specification of w and
dw/dx constitutes the essential (geometric and static) boundary conditions, and

specification of

i—(bd—'l = F (shear force) (3.5a)
dx\  dx

and
b(‘:ixw) M (bending moment) (3.5b)

constitutes the natural (or force) boundary conditions at the end points of the element.

Thus, there are two essential boundary conditions and two natural boundary
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conditions; therefore, we must identify w and dw/dx as the primary variables at each
node (so that the essential boundary conditions are included in the interpolation). The
natural boundary conditions always remain in the weak form and end up on the right

hand side (i.c., the source vector) of the matrix equation. For the sake of mathematical

convenience, we introduce the following notation: 8 = dw/dx and

Q‘=[i( ax )] {dx( H (3.6)
oo o-|(+%]]

where Q°; and Q% denote the shear forces, and Q% and Q° denote the bending
moments. Since the quantities Q%> and Q% contain bending moments, which can also be
viewed as “bending forces,” the set { Q°;, Q% Q5 Q%} is often referred to as the

generalized forces. The corresponding displacements and rotations are called the

generalized displacements.

With the notation in equation (3.6), the weak form in equation (3.4), can be

expressed as
(. dud’w du du
0 3 b_——_ P e — : -_— € | — :
( —— up}lx u( x, JO: ( , )m Q: —u( x, )Q; ( [ ):;Q 3.7)

We can identify the bilinear and linear forms of the problem as



. dud’w
B(u,w)= J{b—.—dx

W de dx (3.8)
I(u) = [ updx —u( x, )0, —(%)., Q0 —u( x, )O; -(%)"Q:

Equation (3.8) is a statement of the principle of virtual displacements for the
Euler-Bernoulli beam theory. The quadratic functional, known as the total potential

energy of the beam element, is given by [58]

Note that the key step in the derivation of the functional L.(w) from the weak
form is the linearity and symmetry of the bilinear from B (u, w). The relation B (4, w) =
Y2 B (w, w) holds only if B (i, w) is bilinear and symmetric in « and w. Thus, whenever
B (u, w) is bilinear and symmetric, and L(w) is linear, the associated quadratic

functional is given by

IL(w)="2 B (w,w)-I(w) (3.10)

Other cases are discussed in the book by Reddy [65].

The first term in the square brackets represents the elastic strain energy due to

bending, while the second is the work done by the distributed load: the remaining terms
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account for the work done by the generalized forces QF in moving through the

generalized displacements of the element.

3.2.3.2 Mlustration Using a Beam Example

Consider the problem of finding the solution w to the differential equation of the

beam

b( )L }L\' p(x)=0 for O<x<L (3.11)

subject to the boundary conditions
w(0) = aw =0, b‘—i—w =M,, 4a bd_:'_ =0 (3.12)
dx =0 ‘1x x=L dx dx- x=L

The solution w is the dependent variable of the problem, and all other quantities
(L, b, p, My ) that are known in advance are the data of the problem. Integrating twice

the equation (3.11) after multiplying it with a weight function w(x), will give us
0= f (bd ud'w_ .o [z«%{bﬂ)—ﬂbﬂ (3.13)

The boundary condtion can be identified as in equation (3.13). In the present

case, the specified essential boundary conditions are (because of the clamped condition)
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Hence, the weight function u is required to satisfy the conditons

u(0)= (%) =0

x=0

The natural boundary conditions are

L 2 2
0=j(bd ud ‘,_"—up}lx-(ﬂ] M,
" ax dx ) _,

or
B(u,w) = (u)
where
L 2 2
B(u w) = Jl b ig-d—‘,fdx
- dx..

(3.14)

(3.15)

(3.16)

(3.17a)

(3.17b)

(3.18)

(3.19)



The quadratic form, commonly known as the total potential energy of the beam,

is obtained using (3.17b), (3.18) and (3.19)

(3.20)

As can be seen from the fourth order equation (3.20), the essential boundary
conditions involve not only the dependent variable but also its first derivative. At the
boundary point, only one of the two boundary conditions (essential or natural) can be
specified since one is dependent on another. For example, if the transverse deflection is
specified at a boundary point then one can not specify the shear force F at the same
point, and vice versa. Similar situation applies to the slope dw/dx and the bending
moment M. In the present case, w and dw/dx are the primary variables, and F and M are
the secondary variables.

As can be seen from the static case the natural boundary condition is satisfied by
including it in the weak form. In writing the final form of the variational or weak
statement, we assume that all boundary conditions at the element level are of the natural
type, so that they can be included in the variational statement. However in the dynamic
case of free vibration, natural boundary conditions vanish in the weak form. In order to
include the natural boundary conditions at the element level for a dynamic case of free

vibration, a new set of efficient basis functions is developed next.
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3.2.3.3 Interpolation Functions

To interpolate is to approximate the value of a function between known values
by operating on the known values with a formula different from the function itself. The
variational form in equation (3.7) requires that the interpolation functions of an element
be continuous with nonzero derivatives up to order two. The approximation of the
primary variables over a finite element should be such that it satisfies the interpolation
properties (i.e., that it satisfies the essential and natural boundary conditions of the

element:

wkxad=w; wg=w2 0(x)=6 0(xg) =6 (3.21a)

Fxo=F F@xgp=F M@x)=M; M) =M: (3.21b)

In satisfying the essential and natural boundary conditions (equation (3.21)), the
approximation automatically satisfies the continuity. Hence, we pay attention to the
satisfaction of equation (3.21), which forms the basis for the interpolation procedure.

Since there are a total of eight conditions in an element (four per node), a eight-

parameter polynomial is required to interpolate the end conditions. One must select w:

w(x)=c, +c,x+c,x* +c,x° +c,x* +¢,x° +¢cx° +o,x (3.22)

Note that the continuity conditions (i.e., the existence of nonzero second and

fourth derivatives of w in the element) are automatically met. The next step involves
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expressing c; in terms of the primary nodal variables (i.e., generalized displacements)
The boundary points x = x4, =0 and x = xg = r are expressed in terms of local

coordinates

O(x)= dwlx) =c, +2¢,x+3c,x* +4c,x* +5¢,x* +6¢c, +7c,x°
I 2
dZW(X) ~ 2 4
M(x)=b=—=—"= b(2c, +6c,x+12c,x* +20c,2° +30c,x* +42¢,x°) (3.23)

3
F(x)= —biiztw—gx—) =—b(6c, +24c,x +60c,x* +120c,x’ +210c, x* )

such that the conditions in equation (3.22) are satisfied:

w = w(0)=c,
6, =0(0)=c,
w, =w(r)=cy +er+c,r’ +o,r’ +c,rt +osr’ +cr® +c,r’

0, =0(r)=c, + 2c,r +3c;r* +4c,r’ +5c,r* +6¢r’ +7c,r°

F, = F(0)=—6bc; 3-24)
M, =M (0)=2bc,
F,=F(r)= —-b(6c3 +24c,r +60c,r® +120c,r” + 210(:.,r‘)
M,=M(r)= b(2r:2 +6¢,r +12¢,r* +20c,r* +30csr* + 42c.,r5)
or

w)] [to o o 0 0 0 0 e,

ol l[o1 0 o o 0 0 0o |l

w, 1 r r 3 s s 6 7! c,

] o, _|0 1 2r 37 4r 5rt 6r° 7r° j&| (3.25)
F[loo o -66 o0 0 0 o llef©
M| oo 2 0o 0 0 0 0o |le
F, 0 0 0 —6b —24br —60br* —120br -210br'||c,

M,] [0 0 25 6br 1268 206  306r* 4268 ||c,)




Inverting this matrix equation to express c; in terms of wy, 6}, wa, 6, Fi, M, F>

and M-, and substituting the result into equation (3.22), we obtain

w(x)=Nw, +N,0, +N,w, +N 0, + NNF,+ NM, + N.F, + NM, (3.26)

where (withxy =0, xg=7r)

. x* x’ x* X
N; (x)=l—35r—‘+84?-—70—r7+207

. 20x*  45x° 36x* 10X’
N, (x ) =X——m—t Tt
r r r r

. x4 xS xs x7
N (x)=35?—8475—+70r—6—20r—7

. x4 xS xé x7
N: (x)=_157+397_3475—+ lOT‘

x° x* X x° x’
Nex)=—242 2 X 0 X _
X =25 T 2 e

x* x! x’ xt  2x
Ne(e)=2 -5 X 410 15>+
6 (t) 2b brz brs 2br4 brs
x-l xs x6 x’
Nei(x)= - X 4 X __ X
)= 2 2 6or (G.27)
x4 xs x6 x7
Ne()=5-2——7X 4135 __2%X
(x)=55 =T s g =2

Note that interpolating w and its derivative at the nodes derives the 7-th order
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interpolation functions in equation (3.26). N;....Ng in (3.27) are called interpolation
functions.
The interpolation functions in equation (3.26) satisfy the following interpolation

properties (see figure. (3.4), (3.5), (3.6) and (3.7)).

Nllxxo—l' N"L=o=0 (i¢l)
3L=r =L NiL=r =O (i ¢3)
aN.| _, AN o (ix2) (3.282)
dx |, dx |
av| _ NN _o (iza)
dx |, dx |,
pA N -y b2 N 0 (ix6)
dx x=0 dx =0
aNy pENd —0 (iz8)
dx- x=r dx- x=r
e g (3.28b)
[_bdl‘s’s =1, [- L2 =0 (i%5)
dx* |_, de’ |
d°N. d’N, | )
[—b_cl-xT?_,.__,=l' [—b dx’ _,=r=0 (=7

where i = 1..8.
It should be noted that the order of the interpolation functions derived above is

the minimum required for the variational formulation (3.7).
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Figure 3.5
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First derivatives of interpolation functions Ny (N11) to Ng (N88).



0.04032, Lt '
n55(x) n66(x)
n77(x) n88(x)
~0.04032 - ¢ g5 ! ~0.710223, !
0 05 1 0 05 1
0, X.X L 0, X, X L

Figure 3.6 Second derivatives of interpolation functions Ns (n55), Ns (n66), N,

(n77), and Ng (n88).

0383, ! T

ns2(x)

n72(x)

1
20, X.X L

Figure 3.7 Thrid derivatives of interpolation function Ns (n52) and N7 (n72).

3.3 Formulation of the Eigenvalue Problem

3.3.1 Free Lateral Vibration of Beam

In practice it is found that when the lower natural frequencies of a machine

component in the form of a beam coincide with the speed of operation of machinery, the

component undergoes resonance. The bending oscillations of steel railway bridges and

the bending oscillations of aircraft wings are examples, which have caused considerable

concern in the past.
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Thin beams with simple end conditions:

The sign convention adopted for the present analysis is shown in figure (3.8)

y ax
«—>

[9F/0x]x
¢S
MOV M + [OM/ax]8x

Figure 3.8 Sign convention for the beam

Apply Newton’s law for the motion in the z direction of w:

-F+F +y—6x=pA5x§—-Tw
dx or (3.29)
OF _ 2w
ox ot

For rotational moment

-M+M +%M—5x+l"&x=0
* M (3.30)
F=-2=
ox
Substituting value (3.30) in (3.29)
2 2
IM  pa2¥ o 331)

ox?
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We know that,

M = EI %‘li (3.32)
Substituting (3.32) in equation (3.31) we will have
d*w '
EI +pA——=0 3.33
axz( ax ] o G-33)

This is the differential equation of motion of the beam with no external load.
We employ a separation of variables approach by expressing w as the product of

a function of x and a function of ¢, thus

w(x, 1) = W(x) T(t) = W(x) e (3.34)

where @ is the frequency of natural transverse motion and W (x) is the mode shape of

the transverse motion. Substituting equation (3.34) into equation (3.33) we get ordinary

differential equations as follows:

4 Er8W\_ paw'w |e= =0
| dxd (3.35)

or
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El ——— |- ApAW =0 3.36

where A = .

Equation (3.36) is an eigenvalue problem, which involves determining the

square of natural frequencies A and mode shapes W.

3.3.2 Finite Element Model

An examination of the eigenvalue equation derived in the previous section
shows that they are a special case of the equation for beam bending, as in equation

(3.1). Forexample consider

d’ d’*w
= | EI—— |- = .
dxz( I dxz) plx)=0 (3.37)

The eigenvalue equation associated with this is

2

d’ d’w
—| EI —ApAW =0 3.38
d.xz( dx ) P ( )

This equation holds for a non-uniform beam. But for a uniform beam, the
quantities p, A and EI are constants. Hence, the equation may be written in the

following form
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dW _o'pAy g (3.39)
' EI

It is important to note that the spatial derivative operators of the static (i.e., non-
time-dependent) and eigenvalue equations are the same. The difference between (3.36)
and (3.37) is that, in place of the source term p, we have APAW in the eigenvalue
equations. This difference is responsible for another coefficient matrix, in addition to
the coefficient matrix [K], in the eigenvalue problems. The derivation of the finite
element models of eigenvalue equations is presented next.

Over a typical element A%, we seek a finite element approximation of W in the

form

w =3 viN:(x) (3.40)

j=t

The weak form of (3.38) is

"'——-n’:‘

[ = pAuW}tr—u(x)Q du 0.- —u(x, )0, - "“ 0. G4y

where u(x) is the weight function, @, (n = 1...4) are usual secondary variables.
Substituting the finite element approximation into the weak form gives the finite

element model of the eigenvalue equation (3.38)
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0= ZJ’[ deN’dx ApANNdx]v ) (3.42a)

=l X5

or

K] (v} -A M) (v} = {Q°} (3.42b)

where {v’} and{Qf} are the columns of nodal generalized displacement and force

degrees of freedom of the Euler-Bernoulli beam element:

-

=

)

-

- (3.43)

{v' = {

g l-:’1 __g —"1 l-i° NE

,
~

where the subscripts 1 and 2 refer to element nodes 1 and 2 (at x = x4 and x = xg). The

{K°] and [M?], known as the stiffness and mass matrices, respectively, are defined by

) d*N, d°N, .7
K; f El — - —tdx, M; = | pAN N dx (3.44)

XA

where N°; and N¥; are the interpolation functions. The stiffness and mass matrices can

be evaluated numerically for element-wise-constant value of El, p and A and they are

presented in equations (3.45) and (3.46).
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A 6, 0;

Fz F3

Figure 3.9a Two-element model of a Cantilever beam in global coordinates

F' ! Element 1 F! 2 F7,; Element 2 I‘-eg

Figure 3.9b Assembly of two beam finite elements in local coordinates
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3.3.3 Assembly of Element Equations

To demonstrate the assembly procedure, we select a two-element model (see
figure. 3.9a). There are three global nodes and a total of twelve global degrees of
freedom.

In deriving the element equations, we isolated a typical element (the e-th) from
the mesh and formulated the variational problem (or weak form) and developed its
finite element model. To solve the total problem, we must put the elements back into
their original positions. In doing this before discretization, we impose the continuity of
the primary variables at the connecting nodes between elements. Continuity of the
primary variables refers here to single-valued nature of the solution. Thus, the
assembly of elements is carried out by imposing the following two conditions:

1. Continuity of primary variables(deflection and slope, force and moment
related derivatives at the corresponding point in the structure) at
connecting nodes:

Vv, = v, (3.47)

where

(3.48)

bl

X W=

i.e., the last nodal value of the elements A is the same as the first nodal

value of the adjacent element A°*'.

!\)

Balance of secondary variables(shear force and bending moment) at
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connecting nodes:

Q‘ +Q™ =0 The boundary conditions are homogeneous  (3.49)

In writing equation (3.47), it is assumed that elements are connected in a
sequence. The continuity of primary variables v, = v,°*! for a mesh of linear elements
is illustrated in figure (3.10).

The inter-element continuity of the primary variables is imposed by renaming
the two variables v, and v,**! at x = x5 as one and the same, namely the value of V at

the global node S:
Ve = v =V (3.50)
where § = [(n-1)e+1] is the global node number corresponding to node n of the element

A° and node 1 of the element A°*’. Similarly we can write for 6, F and M. For example,

for the mesh of E linear finite elements (n = 2), we have (see figure (3.10))

v =V, =V; (3.51)
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A4 V, V3
TS 1 T S; T Global coordinates
Vi t Vi 2
&Ti
vo! szz

4
1:1¢

Figure 3.10  The inter-element continuity of nodal degrees of freedom

To obtain such expressions, we must add the n-th equation of the element A to

the first equation of the element A*’; that is, we add

3 &y - ;=0

=t

and

> [k - an Jo J=0

F=

S Kzy: + kvt )-AMgy; +M5ve =0 (3.52)
j=t
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This process reduces the number of equations from 2E to E+l. The first
equation of the first element and the last equation of the last element will remain
unchanged, except for renaming of the primary variables. For a mesh of E linear
elements (n = 2), we have 12 assembled equations. They contain the sum of
coefficients and source terms at nodes common to two elements. Note that the
numbering of the global equations corresponds to the numbering of the global primary
degrees of freedom, V;. This correspondence carries the symmetry of element matrices
to the global matrix. In general, the assembled stiffness matrix for beam elements

connected in series has the following form:(equation. 3.53).
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(K, K
Kl

K
Kz

1
Ky

1
K

t 2 § 2
K33 +Kll K}-t +K12

Symm.

K, +K}

0

0 Klls les Kll7
0 K K K,
K Kis K Kn+Kig
K Kis K Kg+Kj
K;, 0 O K;;
K, 0 O K%
Ks Ks Ky
K  Kg
KL + K%
()
el
W,
02
W
) 9 L =0
F
M,
F:'.
M,
K
~M34

107

Ky
K
Ky + KL
K + K%
K
K
Ks
K
KL + K2
K + K&

Kas

-AlM]
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3.3.4 Imposition of Boundary Conditions

At this stage in the analysis, we must specify the particular boundary conditions,
i.e., geometric constrains and forces applied, of the problem to be analyzed. The type of
essential (also known as geometric) boundary conditions for a specific beam problem
depends on the nature of the geometric support. Table 3.1 contains a list of commonly
used geometric supports for beams. The natural (also called force) boundary conditions
involve the specification of generalized forces at the free end as well as the fixed ends.
Here we consider a cantilever beam with free end of length L with the free end (see figure
3.9a).

First we write the natural (also called force) boundary conditions in this problem,
at global node 3, corresponding to the free end, where the shear force and the bending

moment are Zero:

Z=M’= (3.54)

Next we identify and impose the specific generalized displacements. Since the

beam is clamped at global node 1, it follows that the deflection w and the slope dw/dx are
zero there, i.e.,

vii=w!;=0 vi=6'= (3.55)

Using equations (3.54) and (3.55) in (3.53), we obtain
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Table (3.1) Various Boundary Conditions of a Beam

Boundary condition

Boundary condition

Left, Right,
Various end cases x=0 x=L
Clamped w(0,£)=0 w(L,t)=0
(deflection, slope = 0) P 3—w(0,1) =0 3—:— (Lr)=0
x
Pinned w(0,£)=0 w(L,t)=0
2 2
(deflection, moment = 0) f %—K (0.t)=0 g—‘,v(L,t) =0
x” x*
Sliding d ow
%(o,:)_o a—x(L,t)=o
(slope, shear =0) ) 9
H ax‘:’ ©.7)=0 ax‘;’ (L.r)=0
Free I*w *w
?(0,,)=o P (L.r)=0
(moment. shear = 0) — d'w *w
2 =0 2 (L1)=0
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3.3.5 Natural Frequencies of Uniform Beams with Various End Conditions

Two structures, identical in all respects except for boundary constraints, will have
different natural modes and frequencies of vibration. As will be seen, there are cases in
which the frequencies are identical but, in such cases, the mode shapes differ.

In this section we will summarize the natural frequencies for simple, uniform
beams with various kinds of constraints at the ends. We shall be concerned with only the
“natural” boundary conditions in which constraint forces at the ends do no work. For
cases in which constraint forces do work on the beam, we must have information
concerning the force-deflection properties of the attached structure, which react on these
forces. This, in effect, requires that we extend the boundaries of our structure beyond
those of the simple beam itself.

Constraints, which do no work on an arbitrary displacement of the beam, must be

such that either the displacements at the constraints or the constraint forces are zero.
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Here we use the terms displacement, rotation, force and moment. In beams, work at

constraints might be computed from either or both of the products:

(Transverse Shear) x (Transverse Displacement)

(Bending Moment) x (Rotation)

For both products to be zero at the end of a beam, one term in each product must
vanish. Thus, the boundary conditions must occur in pairs at each end. The possible four
combinations are presented in Table (3.1).

Considering both ends, we have four boundary conditions, as we would expect to
have in a problem governed by a differential equation of fourth order. Since any pair of
conditions at one end may be combined with any one of the four pairs at the other end,
we have ten possible combinations or ten beam types where the beam is uniform. Each

one is typified by the unique eigenvalue and the natural frequencies can be expressed in

terms of eigenvalues BL according to equation (3.57)

EI
PAL’

w=(BLY (3.57)

3.3.5.1 Applications

Here we consider a couple of examples of eigenvalue problems to illustrate the
concepts described in the previous section using higher order finite elements. We

consider an example of free vibration of beams.
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Consider a uniform beam of rectangular cross-section, L, width B, and height H.
The beam is fixed at one end, say at x = 0, and free at the other, x = L. (figure3.1). We
wish to determine the first four natural frequencies associated with the transverse
deflection w. The finite element model of the beam theory is given (3.11). The number

of eigenvlaues we wish to determine dictates the minimum number of elements to be

used.

One-Element Model:

The beam is considered as one element with 2 nodes. Each node has 4 degrees of

freedom. L=r

Element 1

Figure (3.11) One-element model of a beam

r

=

)

¢ (3.58)

="
T
'.q '9 |.§

MRS

M,

P

Essential boundary conditions at the fixed end:

w(@)=0600)=00rw;=6,=0 3.59)
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Natural boundary conditions at the free end:

FUL)Y=0,M(L)=0orF;=M;=0

(3.60)

Because w; = 6; = 0, the first two columns and rows of stiffness and mass

matrices can be ignored, and further since it is a free end boundary at x = L, the last two

columns and rows can be ignored. For a mesh of one element, with the set of boundary

conditions at both ends, the condensed element equation becomes

where

\‘“I@
A

(33b)

where

and

-r
(22b)

-40

[K] {v}-A[M] {v}=0

w,
(7]
pr=1 2
F,
Ml
S0 L 3 -40 2 [ 72040 -4530  -S21 775
1 (22b)  (33b) 429 143 (5148b) (429b)
60, -5/ 181 3 -4530 100 5 -995
77 2626 (462b) i ar| 1B 13 (1566) (1716b)
sA 25 ad 7Y Tae|_osu 5 1 -1
4625 3465,2 99,2 (51485) (156b) (38616%) (19857
8 P s 775 -995 -1’ 43’
Gen’ Wy Big | @296) (17166) (1985%) (a290?) |
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B. | b (3.65)

where n = mode number. The solutions for equation (3.63) are given as

B, = 3.516, B = 22.035, B; = 61.768 and B = 136.281

Two-Element Model:

The beam is modeled using two elements of equal length r (L = 2r), whose

stiffness and mass matrices are given by equations (3.45) and (3.46). The nodal degrees

of freedom for the two elements are:

!. 4, ¢ ts

Element 1 Element 2

Figure 3.12 Two-element model of a beam

1
,
\
E
,

wl
6, 0,
w, w,

. 0, . 0,

ft= Pl f:}= F ( (3.66)

M, M,
F, F,
kle ~M3J

With the global coordinate coinciding with the beam axis, the system matrix is

obtained by superimposing the preceeding matrices for element one and two, into a 12X

114



12 column matrix. We thus have

(K] {v} -A [M] {v}=0 (3.67)
where

{}=fv, 6, w, 6, w, 6, F M, F, M, F, M.} (3.68)

After applying the boundary conditions at fixed and free ends the condensed equations
are

K] {v}-A[M] (V) =0 (3.69)
where

{vc}={wz 0, w, 6, FF M, F, Mz}r (3.70)

and the [K*] and [M‘] matrices are given is equation (3.71) and (3.72).
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r 1
5606 , -2805° 14067 1 b -40 b 0 80 b
1,6 i s 1,5 23 33 4 33 4
o 12005° -1405° 3805 -5 b 181 b -16 b o
77 4 1L 5 TT 4 4622 4623 1,2
-280 5° -140b° 2805 -1405° o L b -40 b
16 1,5 11,5 15 23 33 4
140> 3805° -1405° 6005> 0 -5 b 181 b
KaP | Il 5 7T 8 UL S5 7T 8 462 2 462 3
3
"I 1b -5bh o 0 2 -1 -1 -5
2.3 4622 3465 (99-r) 4620 (27721
-40 b 181 b o o -1 50 5 -1
33 4 4623 (99-r) (312)  (2772(rb)) (462.2)
o 66 156 -5b -l 5 4 0
2312 22,3 462,22 4620 (2772(rb)) 3465
80 b o <456 181b -5 -1 o 100
33 4 33 4 4623 (Q2172r) (4627 (231.7)
@71
145880 0 17150 - 1905 521 3 TI5 2 2740 2|
429 429 143 (5148-6) (429-b) (429-b)
200 > 1905 - 1865 2 5 r -995 3 -12r
0 = .r —r . —_ _——r —_— 0
13 143 429 156 b (1716:5) 143 b
17150 1905 72940 -4530 0 -521 TS 2
429 143 429 143 (5148-5) (429-b)
- 1905 -1865 2 -4530 100 » 5.7 -995 3
-r -r -r —_—r 0 —_— —_—r
143 429 143 13 156 b (1716b)
e T SR S P U W N
(5148b) 156 b 3861 52 198 52 30888 ;2 10296 2
2 953 0 0 °_lf. ﬁii 43 r_S 131 i
(429-b) (1716b) 198 52 429 52 10296 ;2 1716 42
o oA s osA o o Ff 8P 22
143 & (5148b) 156 b 30888 ;2 10296 ;2 3861 ;2
2740 - o s 2 %5 3 -4 7 1BLA 0 86
(429-b) (429-b) (1716-b) 10296 ;2 1716 ;2 429 2
3.72)
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The solution for equation (3.69) then becomes

The summary of the result is given in Table 3.2.

B = 3.516, B> = 22.034, B; = 61.697 and f; = 120.938.

Table 3.2 Natural frequencies of a cantilever beam using meshes of one and two
finite elements with efficient basis functions
No. of Degrees of
& Natural frequencies: @, = B. |5 rad/sec
\/ PA
elements freedom
B: B Bs Bs
L 4 3.516 22.035 61.768 136.281
2 8 3.516 22.034 61.697 120.938

In order to further illustrate the superiority of the present element, natural

frequencies of the same cantilever beam are calculated using meshes of conventional

cubic Hermitian finite elements. The results are presented in Table (3.3). Table (3.4)

summarizes the total number of degrees of freedom (extracted from Table 3.3) that are

needed to obtain the same accuracy in mesh of cubic Hermitian elements in the i-th

natural frequency obtained with the 2 element model given in Table (3.2).




Table 3.3 Cantilever beam of length of r with free end using conventional finite
elements
No. of Degrees of Natural frequencies: @, = -E;- \/Z
elements freedom rym
B B Bs Be
1 2 3.532 34.8069 - -
2 4 3.517 22.221 75.157 218.138
3 6 3.516 22.1069 62.466 140.671
4 8 3.516 22.060 62.175 122.658
5 10 3.516 22.045 61918 122.31
6 12 3.516 22.039 61.810 121.680
7 14 3.516 22.037 61.760 121.348
8 16 3.516 22.036 61.734 121.712
9 18 3.516 22.035 61.720 121.074
10 20 3.516 22.035 61.712 121.017
11 22 3.516 22.034 61.708 120.981
12 24 3.516 22.034 61.704 120.958
13 26 3.516 22.034 61.702 120.943
14 28 3.516 22.034 61.701 120.932
15 30 3.516 22.034 61.700 120.925
16 32 3.516 22.034 120.920

61.699
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Table 3.4 Comparison of the results using the present method, with those using

conventional finite elements.

Mode number 1 2 3 4
Degrees of freedom (present model) 8 8 8 8
Degrees of freedom (conventional FE) 6 28 32 28

34 Discussion of Results

As can be seen from Tables (3.2), (3.3) and (3.4), when 7-th order finite elements are
employed more accurate results are obtained with fewer elements. It is to be noted that
the result reported in Table (3.2) was obtained by employing 2 elements whereas the
conventional finite element results are based on a higher number of elements to achive
the same result. The mesh with the 7-th order finite elements provides solutions that are
closer to exact solutions; this is not the case when the mesh is made of conventional cubic
Hermitian elements for the same number of degrees of freedom. As we can see a better
correlation could be achievd by less number of elements with the present method. Table
(3.5) indicates a satisfactory convergence trend in the solution. Hence, as the mesh size
is reduced, that is as the number of elements is increased, we are ensured of monotonic
convergence of the solution when efficient basis functions are used. Examples of this
convergence are given in Tables (3.6) to (3.10). Convergence of a finite element solution
based on the efficient basis functions for a cantilever beam in shown Figure (3.10). The

results are presented upto 10 elements for the case of a cantilever beam.
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Figure 3.13 Convergence of a finite element solution based on the efficient basis

function for a cantilever beam

We may readily solve for free vibrations of beams under different end conditions.
For various end conditions the natural frequencies of the beam are calculated using the
higher order finite element. Finite element solutions are obtained employing one to ten
elements. The results are tabularized in Tables (3.5) to (3.11).

Chapter 4 discusses the use of the higher order finite elements using efficient
basis functions to determine the critical speeds of rotors in general and the cantilever-

sleeve rotor in perticular.
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Table 3.5 Natural frequencies of a cantilever beam using finite elements with
efficient basis functions
No- of Degroes of Natural frequencies: @, = . 2 J——IZ rad/sec
elements freedom rypd
B B Bs B
1 4 3.516 22.035 61.768 136.281
2 8 3.516 22.037 61.697 120.938
3 12 3.516 22.037 61.692 120.698
4 16 3516 22.037 61.696 120.884
5 20 3516 22.036 61.700 120.888
6 24 3.516 22.036 61.702 120901
7 28 3516 22.036 61.702 120.907
8 32 3516 22.035 61.701 120.909
10 40 3516 22.035 61.700 120.909
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Table 3.6 Natural frequencies of a simply-supported beam using finite elements with

efficient basis functions and conventional finite elements

r2

No. of Degrees of ‘
gree Natural frequencies: @, =—BL /7:;1_

elements freedom
B: B: Bs B«
1 4 9.853 39.741 89.471 176.284
2 8 9.869 39.414 88.829 158.970
3 12 9.870 39471 88.681 157.800
4 16 9.870 39.478 88.797 157.655
5 20 9.870 39.480 88.818 157.847
6 24 9.870 39.480 88.826 157.885
7 28 9.870 39.480 88.829 157.904
10 40 9.870 39.480 88.829 157.920

Natural frequencies obtained using conventional finite elements

10 20 9.870 39.482 88.874 158.175
15 30 9.870 39.480 88.836 157.697
20 40 9.870 39.477 88.829 157.931
25 50 9.870 39.478 88.829 157.921

30 60 9.870 39.478 98.827 157.920
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Table 3.7a  Natural frequencies of a beam with both ends free, using conventional
finite elements
No- of Degrees of Natural frequencies: @, = p = LA
elements freedom : Ve
Pi. and Bs Bs Bs

1 4 0 26.833 91.652
2 6 0 22.423 70.178 280.348
3 8 0 22.434 61.992 135.973
4 10 0 22.298 62.057 121.860
5 12 0 22.384 61.869 122.069
6 14 0 22.379 61.777 121.596
7 16 0 22.376 61.732 121.315
8 18 0 22.375 61.709 121.159
10 22 0 22.374 61.688 121.015
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Table 3.7b Natural frequencies of a beam with both ends free, using finite elements

with efficient basis functions

No. of Degrees of ) B. [b
Natural frequencies: @, =—_[—
elements freedom i pA
B, and B; Bs B« Bs

1 8 0 22215 63.177 120.964
2 12 0 22.373 61.456 120.582
3 16 0 22.378 61.660 120.867
4 20 0 22.377 61.677 120.867
5 24 0 22.376 61.682 120.893
6 28 0 22.375 61.682 120.893
7 32 0 22.375 61.680 120.916
8 36 0 22.375 61.679 120917
10 44 0 22374 61.678 120915
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Table 3.8 Natural frequencies of a beam with one end pinned and the other free,
using finite elements with efficient basis functions and conventional finite
elements

No. of Degrees of Natural frequencies: @, = i LA
elements freedom rypA
B B Bs Be

1 4 0 15364 50.674 108.142

2 8 0 15.419 49.852 104.224

3 12 0 15419 49955 104.049

4 16 0 15.419 49967 104.211

5 20 0 15419 49.970 104.240

6 24 0 15.419 49.970 104.250

7 28 0 15419 49.967 104.255

8 32 0 15419 49.967 104.256

10 40 0 15419 49.967 104.256

Natural frequencies obtained using conventional finite elements

5 10 0 15422 50.085 105.211

10 20 0 15418 49973 104.322

15 30 0 15418 49.967 104.263

20 40 0 49.965 104.253

15418
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Table 3.9 Natural frequencies of a beam with one end fixed and the other pinned,

using finite element with efficient basis functions

No. of Degrees of Natural frequencies: @, = E;— JI
elements freedom rypA
Br B: Bs B«

1 4 15.418 49.979 108.188 194.692
2 8 15.416 49916 104.340 178.941
3 12 15418 49.955 104.126 178.266
4 16 15.418 49.962 104.218 178.050
5 20 15418 49.966 104.233 178.208
6 24 15418 49.966 104.244 178.232
7 28 15418 49.966 104.249 178.253
8 32 15418 49.966 104.249 178.265
10 40 15418 49.966 104.252 178.275
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Table 3.10 Natural frequencies of a beam with one end fixed and the other pinned,

using conventional finite elements

No. of Degrees of Natural frequencies: @, = EZL J—_IZ
elements freedom rypA
B B Bs B«
5 10 15422 50.097 105.364 182.848
10 20 15418 49.973 104.324 178.645
15 30 15418 49.967 104.263 178.346
20 40 15418 49.965 104.253 178.294
25 50 15418 49.965 104.249 178.280
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Table 3.11 Natural frequencies of a beam with both ends fixed, using finite elements
with efficient basis functions and conventional finite elements
No. of Degrees of Natural frequencies: @, = b
elements freedom pa
B B Bs B«

1 4 22374 61.693 127.632 221.887
2 8 22.373 61.673 120.923 199.977
3 12 22.372 61.665 120.817 199.988
4 16 22.373 61.667 120.903 199.664
5 20 22.374 61.671 120.885 199.853
6 24 22.374 61.673 120.895 199.818
7 28 22.375 61.674 120.901 199.835
8 32 22.374 61.674 120.905 199.849
10 40 22374 61.674 120.907 199.862
Natural frequencies obtained using conventional finite elements

5 10 22.386 61.919 122.576 204.221
10 20 22.374 61.689 121.023 200.387
15 30 22.373 61.676 120.927 199.967
20 40 22.373 61.674 120911 199.894
25 50 22.373 61.673 120.907 199.874




CHAPTER 4

DYNAMIC ANALYSIS OF ROTOR-BEARING SYSTEMS USING FINITE

ELEMENTS WITH EFFICIENT HIGHER ORDER BASIS FUNCTIONS

4.1 Introduction

The finite element formulation with higher order polynomials as efficient basis
functions is presented for the dynamic behavior of rotor-bearing systems. The higher
order elements correctly account for all the boundary conditions at the free and fixed ends
of the shaft. The accuracy of this formulation is demonstrated by numerical examples for
the cases of a simply supported shaft with the disk at one third of the length and a

cantilever-sleeve rotor system.

4.2 System Configuration and Coordinates

Two reference frames that are utilized in Chapter 2 to describe the motion have

been used.

A typical cross section of the rotor in a deformed state is defined relative to the
fixed frame 3 by the translation V (s, ) and W (s, t) in the Y and Z directions,
respectively. In order to locate the elastic centerline further, the small angle rotations B
(s, 1) and I (s, r) about ¥ and Z-axes, respectively, are used, which aid to orient the plane

of the cross-section. Forces F (s, t) and G (s, ) are in the directions of ¥ and Z axes,
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respectively, and couples M (s, 1) and N (s, £) are about Y and Z-axes, respectively. The
cross section also spins normal to its face relative to 3. The abc: X triad is attached to the
cross-section with the “a” axis normal to the cross-section: X is defined by the three

successive rotations, as illustrated in figure (2.1) in chapter 2.

At a given node the rotor has eight degrees of freedom: two displacements v and
w; two slopes about the ¥ and Z-axes which are, respectively, B and 7, two forces fand g
and two moments about the Y and Z axes which are, respectively, m and n. The
displacements (V, W, B, I, F, G, M, N) of a typical cross-section relative to g are
transformed to corresponding displacements (v, w, B, ¥ f, g m. n) relative to the rotating

frame 9t by the orthogonal transformation given by

{q} =[R] {p} 4.1)
with
v "
w w
B B
=ik =l @.12
G g
M m
O W
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and for later use the first two time derivatives of equation (4.1) are

where

and

{a} = olskp}+ R}

fa}=te( (7} -0(p})+ 205z}

[dR/dt] = @ [S]

[*RId] = -o [R]
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[-sinw 1 -cosw 1 0 0 0o 0 0 o
cosw t sinw t 0 o 0 0 0 o
0 0 -sinw t -cos@ t o 0 0 0
0 0 cos@w t sin® t o 0 0 o
S 0 0 0 o -sinw t -cosw 1t 0 0
0 0 0 0 cosw t  sin@ t 0 o
0 0 0 0 0 0 -sinw t -cosw t
0 0 0 o 0 0 cosw 1 sin® I | (43c)

4.3 Component Equations

The typical rotor-bearing system has a set of interconnecting components
consisting of rigid disk, rotor segments with distributed mass and elasticity, and linear
bearings. For higher order finite element analysis of the rotor-bearing system, the rotor
shaft segments are modeled by finite shaft elements with efficient basis functions, which
include shaft rotation effects. Generally the axi-symmetric geometry of rotor elements
gives the same mass and stiffness matrices in both the X-Y and the X-Z planes. The
higher order finite rotor element equations of motion are developed in a manner
analogous to the formulation in Chapter 2 by specifying spatial shape functions and then

treating the rotor element as an integration of an infinite set of differential disks.

4.3.1 The Rigid Disk

The Lagrangian equation of motion of the rigid disk using equation (2.6b) and the

constant spin speed restriction, d¢/dt=£2, is
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©C O O C © O O ©
©C O O 0 o0 o o O
©C © O 0 O O O O

©C O O O O o0 o O
©C 0O O o0 O OoOCQ
© O © © O

©C O O 0 O o O O

Equation (4.4) is the equation of motion of the rigid disk referred to frame 8 with
the forcing term including mass unbalance, interconnection forces, and other external
effects on the disk. For the disk mass center located at (74 &) relative to N, the

unbalance force in frame 3 is
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"h ‘ (— CJ‘

S 1.

0 0

fo‘}= g +cos S + g b sin S @.6)

0 0

0 0

L 0 J L 0 J

={0* Ycos s + {0* }sin s

By using equations (4.1) and (4.2) and premultiplying by [R]", equation (4.4)
yields an equation that is similar in form to equation (2.9). However the order of entries

and the matrices are different.

4.3.2 Finite Shaft Element with Efficient Higher Order Basis Functions

A typical finite rotor element is illustrated in figure 4.1a. The shaft is modeled as
a beam with a constant circular cross-section. It should be noted here that the element
time-dependent cross section displacements (V, W, B, I, F, G, M and N) are also
functions of position, x, along the axis of the element. The finite element used has two
nodes, so the matrices are of sixteenth-order, including four displacements, four rotations,

four shear forces and four moments. The rotations, forces and moments (B, I, F, G, M

and N) are related to the displacements (V, W) by the equations
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_oV
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ax  ox

F=-b

G=b

2
szav

and the nodal displacement vectors are

{pr}=1

er {p

€))

®)

©)

D

(e)

®

S X ®E 8

I =
™~ ()

r
:
(2]

4.7)

(4.8)

which includes the displacements {p,} and {p.} corresponding, respectively, to

the motions in the Y and Z direcitions: that is

{P; }= {VI'YI'-fl'nl WVau¥an Jau }T

{P;}= {wl'ﬂl'gl’mI'WZ’BZ’gZ'mZ}T
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- £

Figure (4.1a) Typical finite rotor element with eight degrees of freedom

Figure (4.1b) Coordinates of a typical finite rotor element
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The coordinates (g%, g2°, ---... , q16°) are the time-dependent end point degrees of
freedom (translations, rotations, shear forces and moments) of the finite element and are

indicated in figure (4.1b).

The translation of a typical point internal to the element is chosen to obey the

relation

{""‘"’}=5r(x)1{qf(r>} @“.10)

W(x,t)

where the spatial constraint matrix is given by

- 0 0 0O N, N, 0 0 N,
O N -N, O 0O NN -N, 0 0 N, -N, 0 0O N, =N, 0

“4.11)

and is a matrix of displacement functions. In this case the individual functions represent
the static displacement modes associated with a unit displacement of one of the end point

coordinates with all others being constrained to zero displacement. These functions are
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4 .1 6 7
Ne(x)=1-355-+84% 70 +20%-
r r r r

rs S 6 7
N,‘(x)zx—zof +45f _36x +10:
- r r r r

4 5 6 7
Ni(x)=355 -84 +705 205
r r r r

3 s 6 7
Ni(x)=-155+395 34 105
r r r r

x x5 x’

x° x*
Ni(x)=—-—+2—-—5+2 -
6b 3br br* 3br* 6br'

x2 x* x° xt 22X
Ni(lx)=—-5 +10 -15 +
$(x) 26 br br’ 2b6r*  br
x* x° x° x’
N;x)= - + -
(x) 6br 2br* 2br* 6br' 4.12)

t-l xi 6 7

2 x x
Ne(x)=5—-7X +13-2_-2%
8 (x) 2br* br’ 2br' br

From the equations (4.7) and (4.10) the rotations can be expressed in the form

{ﬁ} =[olg} (4.13)
with

[¢]=[[¢"ﬂ (4.14a)

or
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4

O -N N, 0O 0 -N, NN, 0O 0 -N, NN, 0 0 -N, N, O
NN O O N, N O O N N, 0 O N, N, 0 0 N

(4.14b)

representing a matix of rotation shape functions.

The energy of the complete element is obtained by integrating equation 2.19)

over the length of the element to obtain

o, +9°, +J° =%{‘1‘}T([K§]"[K:D[ge}+%{; T([M;]+[M;D{&‘}

; @.15)
l o2 o | o€ o€
+510 +¢{q } [N']{q }

where
;)= [ ube TR Jis
)= [o. T Eoks
V)= Jo. o T, s @.16)
[K;]=£EIE1"]’EP%
[es)= [ Pl T s

For the case of a uniform cross-section element under constant axial laod P and
with the identity 0, = 204 = 2I, the elements of the matrices of equations sets are

obtained and given in equations set (4.17).
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The Lagrangian equation of motion for the finite rotor element using equation

(4.15) and the constant spin speed restriction, d¢vdt = £, is

(m; ]+ [M;]){2}'}—9[6']{&’}+([K;]—[K:]){q'}={Q'} @.18)
with

le:]=(v]-[nT) @.19)

and it is referred to the fixed frame coordinates.
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All the matrices of equation (4.18) are symmetric except the gyroscopic matrix
[G] of equation (4.20), which is skew symmetric. The force vector {Q} includes mass

unbalance, interconncection forces, and other element external effects. For the element
with distributed mass center eccentricity (n(x), {(x)), utilizing the consistent matrix

approach the equivalent unbalance force is

1= foa 1[I femane [ e 20

={o: Yeos 2 +{Q: }sin

By assuming a linear distribution of the mass center locations in the finite rotor
segment, the mass eccentricities in ¥ and Z directions measured at 1 = 0 for a differential
disk located at distance x, a linear mass unbalance distribution over the element, can be

represented by the expressions,

n(x)= m(“f‘)*"“(ﬂ (4.22)
(=g [1-2 )5 7]

with (1, &) and (1&g, {r) denoting the mass center eccentricity at x =0 (left end) and x =
r (right end) in Y and Z directions, respectively. The equivalent unbalance force from

equation (4.21) is presented as equation (4.23).
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313"’-(5-112 +13-0)

3%-r-(5-§2+ 13-§1)
-1
37
1
252
L g (4024 50)
5120 b

-1 .r4.(5'C1 ‘.'4'Q)
[5120 b

15 (5-2+T40)
TO08 b

1 _r;_(7-n1 +5-02)
TO0® b

-P(17-01 + 10-02)

A(17-71 + 10-92)

Qc =p .AQZ.

.313.-r-(13-n2+5-n1)

3%-1'-(5-{1 + 13-82)
1
piyl
-1
252

1 .r4-(5-n2 +4-1)
15120 b
1 .r4’(5'C2 +4-01)
13120 b
15 (72 54D
TO08 b

-F(17-02 + 10-41)

A10-n1 + 17-02)

| TOO8 ~ b ]

=p-A-Q°-

257
,5,,.-,2.( 17-¢1 + 10-¢2)
ISI-O .r ’ E
)

To08 b

257
’.752"2'( 17-02 + 10-¢1)
3o — b5
S

——_—

| To0% b ]

%%-r-(S-Q +13-¢0)
3%.#-(5‘112 +13-p1)
12 17-n1 + 10-n2)
-1

1 (50 +402)
-1 s (4m2+50)
-1 5 (7-nl+502)
-l 5582+ 7¢D)

T008 b

-1
55 T3¢+ 13-02)

3%""(13"121"5'711)
L 21091+ 1702)
1

L 4 (52+4L)
I 4 (5n2+4nl)

-1 5 (5nl+72)

-1 5 (T-02+5-4D)

4.23)

Equation (4.23) gives us the element components of the unbalance force vector, where 1

and 2 represents the left (L) and right (R) nodes of the mass center eccentricity.
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Equation (4.18) is transformed to whirl frame coordinates by using equations
(4.1), (4.2) and (4.3) extended to include eight coordiates (four coordiates in each

direction) at each end of the element and then premultiplying by (RY".

([M;1+[M;D{;‘}m(z[a;ha_;.)[ae]){;;}
+((k:]- [K;])—wz([M;]Jr(l-2AIM;])){p'} = {pt}

(4.24)
In addition, since 6p = 2 Oy,

[R]" (M7g] [S] = ¥4[G°] (4.25)
where /w = A, and

[#2: |= [RT [a: Is] (4.26)

44  Bearings

The coupling between forces and displacements, and between slopes and bending
moments are neglected here. The equations are limited to those which obey the

governing equation given as equation (2.32).

4.5  System Equations of Motion

For a specified set of shaft spin speeds the assembled undamped system equations
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of motion, consisting of component equations of the form of equations (4.4), (4.18) and

(2.32), are of the form
[M‘]{«;‘ } - Q[G‘]{q" } + [K’]{q‘} =o'} @.27)

for fixed frame coordinates. The boundary conditions are then imposed at the left and
right boundary points of each shaft. Boundary conditions for typical end conditions for
the XZ plane are given in Table 3.1. For an overhung rotor fixed at the left end, the end
conditions are as follows:

Left end (fixed) w = =0 (displacement and slope)

Right end (free) F = M =0 (force and moment)

The matrices have banded structure with an overlapping of the element matrices.

The mass matrix is symmetric as in the case of non-rotating structures, and
describes the translatory and rotary inertial behavior of the rotor. However the
gyroscopic matrix is skew-symmetric. The stiffness matirx is symmetric.  For
computational purpose equation (4.27) can be written as first order differential equations

in a matrix form as given in equation (2.36).

4.5.1 Whirl Speed Analysis

The free vibration solutions of equation (4.27) are of the form of equation (241)

and when substituted into the homogeneous form of equation (4.27), they provide the
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eigenvalue problem in the form of an equation that is similar in form to equation (2.42).

For whirl frame coordinates equation (4.27) transforms to the form

[M]{p } rolef:]- A.[G]){p}+ (x]-o(m:]+ AB’D){P'} = {P} (4.28)

Snxl

The natural circular whirl speeds and mode shapes can be obtained from the
homogeneous form of equation (4.28), if we assume a constant solution {p’} = {po} =

const. The associated eigenvalue problem is
[Kl{po} = & ([M]+ A [G]){po} (4.29)

where matirx {pg} is of 4n x 1. The 4n eigenvalues are real and the positive values, @;
with associated vectors {po}i represent natural circular whirl speeds and mode shapes

relative to R at the specifed whirl ratio A.
4.6  Industrial Applications
4.6.1 Simple Rotor Model
4.6.1.1 Determination of the Model

The frame 3 (XYZ) is the inertial frame, the rotor axis is along the X-axis, and the
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Figure 4.2.  Model of the rotor

. LR L/2 :

i >

W/4 | w72 wW/4!
Spin axis
) PR

Figure 4.3 Uniform beam represented as a three-stations lumped-mass model

Figure 4.4 Equal lumped mass model
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speed of rotation £2 is constant (Figure 4.2). In order to make hand calculations, only one
degree of freedom is used for the displacements in the ¥ and the Z directions. The rotor
is simply supported at both ends. It consists of

a symmetric shaft of length L;

a symmetric disk, situated at x = [; = L/3;

Numerical Data

Basic data for the disk
Innerradius R;=0.0lm
Outer radius R>=0.15m
Thickness h=0.03m
Density p = 7800 kg/m®

Length I, =L/3

Then M, I; and I, are obtained. These quantities are
My=nRZ-RHhp=164Tkg
I; = My/I12 3 R2-3R? + h?) =9.347 x 102 kg m®
I, = M2 (R +R:>) =0.1861 kg m”

Basic data for the shaft
Length L=04m
Cross-sectional radius R; =00l m

Density p = 7800 kg/m’
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Young’s modulus E=2x 10" N/m?

Operating speed Q = 15000 rpm

The cross-sectional area A and area moment of inertia / are obtained as
A=nR/=3142x 10 m’

[=nR/4=7854x 10" m*

4.6.1.2 Critical Speeds of a Uniform Shaft

Figure 4.2 represents a uniform beam of length L and cross-sectional radius R.
The lumped mass model of this rotor is illustrated in Figure 4.3. Let us introduce some
concepts of continuum to a lumped-mass stiffness rotor model.

The beam natural frequencies (considering ideal simply supported boundaries) are

given by

w, =(n7t)21/ 15113 rad/sec (4.30)

where @, = n-th natural frequency and M = total shaft mass. Corresponding to each
natural frequency (or eigenvalue) is a mode shape or eigenvector. The eigenvectors for a

uniform beam are given by

4’(x)=sinfLE 4.31)
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The displacement mode shape does not represent the actual shaft deflection but
represents a normalized shape that the shaft assumes at the corresponding frequency. If
the uniform shaft is rotated about its axis, then any residual unbalance or shaft bow will
cause the shaft to bow outward as the rotor speed approaches the shaft critical speed.

The actual whirl radius of the shaft will be dependent on the magnitude of
unbalance, the relationship of the rotor speed to the critical speed, and the amount of

damping present in the system.

Computation of the critical speeds of a uniform steel shaft:

Total shaft mass M=pAL=7800x3.142 x 10* x 0.4 =0.9803 kg

it -9
o =(1,t)e‘/2"1° x7.854x310 — 156L68
0.9803x0.4
11 -9
B 0.9803x0.4
— rad/sec
R 2 1 |
w, = () x10" x7 854x310  14055.08
0.9803x0.4
it -9
0.9803x0.4

Computation of the critical speed of a lumped mass shaft:

A proper lumped-mass model to represent the rotor for the first critical speed
requires three stations (see figure 4.3). Weights of W/4 at the ends of the rotor and W2 at
the center of the shaft (assuming the weight distribution of W/3 at each station leads to an
improper lumped-mass model). For the assumption of rigid bearings at the ends of the

shaft, we arrive at a Jeffcott rotor simulating a uniform shaft by placing half of the total
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shaft weight at the middle of the bearing span. Note, however, that this lumped-mass

model is valid only for motion through the rotor’s critical speeds in the fundamental

mode region.

Since the shaft stiffness of a uniform beam with simple supports at the center span

is given by

4.32)

11 -
K=48x2x10 x7.854%10 =11.8x10° kg/m

(0.4)
,11.8><10s
= [— = .59
, 0°980y 1551.59 rad/sec
2

Computation of the critical speed of a lumped mass shaft-disk system using Rayleigh’s

method:
Let us calculate the first approximation to the fundamental frequency of lateral
vibration for the system shown in figure (4.4). We see that the deflection of the beam at

any point x from the left end due to a single load W at a distance b from the right end is

w(x)=

Whx : 2 g2
6EIL(L x* —b?) (4.33)

Then the frequency equation is

W = ___%' (4.34)
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Due to 16.54-kg mass the deflection at the corresponding point is

L)) -mg%(p L _4L
) 6EIL (L 9 9
__8 mgl
481 EI

(4.35)

By substituting into equation (4.34) the first approximation to the fundamental frequency

o o [BLE
Vs mL d/s (4.36)
ra .

') 1 -
_ \/&- x10" x7.854x10” _ 00 14,
8x16.47 x0.4°

is

Critical speed calculation of rotating shaft-disk system using closed form solution:

For a rotor system with a disk at one third of its length, the natural frequency is given

from the equations (2.54) and (2.86)

= ,zﬁ E13 (4.37a)
4 m,L

Then the natural frequency will be 300.882 rad/s. From the equation (2.82) and

(2.83) one forward critical speed and two backward critical speeds of a rotor on rigid

bearings including gyroscopic effect will be 311.6 rad/s, 257.432 rad/s and 508.947 rad/s.
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where

_ 3EIL

Leg a3b3

3EIL

k
ab i

(@>-ab+5*) &, = = 3—,%@ -b) (3.37b)
a

where a = [/3 and b = 2L/3. Based on the results presented above, a comparison is now

made in Table 4.1.

Table 4.1 Critical speed of a simply supported, non-rotating uniform steel shaft-disk

system.
w, (rad/s)
critical speed of a uniform steel shaft using closed form solution 1561.68
critical speed of a lumped mass steel shaft 1551.59
critical speed of a steel shaft-disk system using Rayleigh’s method 299.331
critical speed of a steel shaft-disk system using closed form solution 300.882
Calculation of the static buckling load:
The critical buckling load for a shaft is given by
F, = z_Ei (4.38)
IE

Critical buckling load for a shaft given above will be
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P = n*x2x10" x7.854x107
i 0.4°

=96894.84 N

In the following examples, an axial force equal to 10 % of this buckling load is taken into

consideration.

4.6.2 Finite Element Model

4.6.2.1 Conventional Finite Element Model

In order to evaluate the accuracy of finite rotating shaft element with efficient
basis functions, as the first example, a simply supported rotor-disk system is considered,
using conventional finite elements. Critical speeds of the system were computed using
three and six finite elements (Figure 4.5). The results of various conditions are listed in
Tables 4.2 to 4.6. Computed first critical speeds were compared with well-established

closed form analyses, which are tabulated in Table 4.1.

4.6.2.2 Finite Element with Efficient higher Order Basis Functions

As the first example, the non-rotating simply supported rotor-disk system is

considered. Critical speeds of the system were computed using one, two and three finite

elements (Figure 4.6). The results of various conditions are listed in Tables 4.7 to 4.10.
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Figure 4.5 Six-element finite element model

Figure 4.6 Three-element finite element model

4  Shaft 2-Stationary 5 =
®

Clamped fix - Shaft-1
-
- > -

e 4
disk -

Figure 4.7 Cantilever-sleeve rotor-bearing system using finite element with efficient

basis functions
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As a second example, a cantilever-sleeve rotor system is considered. Figure 4.7

shows the finite element model of cantilever-sleeve rotor-bearing system used in Chapter

[\S]

. The shaft cross-sections are constant up to node 3 and then are tapered towards node

W

. No damping is included in this model. The finite element model includes 1 stationary
shaft element, 2 rotating shaft elements, a disk at node 3 and two rigid bearings at the
fixed end. Displacement of the rotating sleeve shaft and stationary cantilever shaft at
nodes 1 and 2 are the same. Assembly procedures are same as discussed in Chapters 2
and 3. The results obtained using finite elements with efficient basis functions are shown

in Tables 4.13 and 4.14.
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Table 4.2

Critical speeds of a simply supported rotor system with no disk, zero

compressive load or bearing pressure and zero bearing spring constant,

using conventional finite elements

Critical speeds (rad/sec)
(0] a 3 Wy
Finite element solution using three | 1560.97 6252.48 | 14214.17 | 27394.70
elements
Finite element solution using six | 1560.65 623295 | 14014.45 | 24976.92
elements
Table 4.3 Critical speeds of a simply supported rotor-disk system including the Mass

of the disk using conventional finite elements; M, = 16.47 kg

Critical speeds (rad/sec)
(0} 1) w3 Q)4
Finite element solution using six | 295.75 453220 | 14014.46 | 1972149

elements
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Table 4.4

Critical speeds of a simply supported rotor-disk system including the mass

moment of inertia of the disk using conventional finite elements; My =

16.47 kg, I; =9.427 x 107 kgm® and [, = 0.1861 kgm®

Critical speeds (rad/sec)
)y ar w3 (1))
Finite element solution using three | 283.05 781.72 5579.79 | 20659.19
elements
Finite element solution using six | 283.05 781.72 5532.23 17801.27
elements
Table 4.5 Critical speeds of a simply supported rotor-shaft system including the

mass moments of inertia of the disk using conventional finite elements; My

= 16.47 kg, I; = 0.09427 kgm?, [, = 0.1861 kgm’, k = 10’ N/m and P =

9689.48 N

Critical speeds (rad/sec)
w; arp 3 )y
Finite element solution using three | 281.68 781.20 5574.02 | 20652.93
elements
Finite element solution using six | 281.69 781.19 5526.56 | 17794.65
elements
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Table 4.6

Critical speeds of a simply supported rotor-shaft system including the

mass moments of inertia of the disk, bearing spring constant and

compressive load using conventional finite elements with gyroscopic

effect; M = 16.47 kg, I; = 0.09427 kgm? and I, = 0.1861 kgm?, k = 10’

N/m and P = 9689.48 N

Critical speeds (rad/sec)
ay (0] s Wy
Finite element solution using six | 302.116 | 1066.750 | 5528.117 | 17798.405
elements
Finite element solution using twelve | 301.392 1066.995 | 5524.849 | 17695.644
elements
Table 4.7 Critical speeds of a simply supported rotor system with no disk, zero

compressive load or bearing pressure and zero bearing spring constant,

using finite elements with efficient basis functions

Critical speeds (rad/sec)
)y (1)) w3 )y
Finite elements with efficient basis [ 1558.01 6269.02 | 14063.14 | 27510.75
functions using one element
Finite elements with efficient basis | 1560.57 5956.80 | 13959.73 | 24998.37
functions using two elements
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Table 4.8

Critical speeds of a simply supported rotor-disk system including the mass

of the disk using finite elements with efficient basis functions; M;=1647

kg

Critical speeds (rad/sec)
104 0] w3 Wy
Finite elements with efficient basis | 248.49 4274.34 13536.98 | 19381.06

functions using three elements

Table 4.9

Critical speeds of a simply supported rotor-disk system including the mass

moment of inertia of the disk using finite elements with efficient basis

functions; M, = 16.47 kg and I, = 0.09427 kgm®

Critical speeds (rad/sec)
()] ar 3 )y
Finite elements with efficient basis 236.92 894.52 5530.63 17735.92

functions using three elements
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Table 4.10

Critical speeds of a simply supported rotor-shaft system including the

mass moments of inertia of the disk using finite elements with efficient

basis functions; My = 16.47 kg, I = 0.09427 kgm?, I, = 0.1861 kgm’, k =

10’ N/m and P = 9689.48 N

Critical speeds (rad/sec)
@y - ap a3 ay
Finite elements with efficient basis 236.92 894.52 5530.63 17735.92

functions using three elements

Table 4.11  Critical speeds of a simply supported rotor system with no disk, zero
compressive load or bearing pressure and zero bearing spring constant,
using beam theory, conventional finite element method and finite element
with efficient basis functions, respectively

(both plane) Critical speeds (rad/sec)

; a» W3 )y

Beam theory (closed form solution), | 1561.68 6246.70 14055.08 | 24986.80

given by equation (4.30)

Solutions using six conventional | 1560.65 623295 | 1401446 | 24976.92

finite elements

Solutions using two finite elements | 1560.57 5956.80 | 13959.73 | 24998.37

with efficient basis functions
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Table 4.12

Critical speeds of a simply supported rotor-shaft system including the

mass moments of inertia of the disk using a mesh of six conventional

finite elements and a mesh of three finite elements with efficient basis

functions; M, = 16.47 kg, I; = 0.09427 kgm?, I, = 0.1861 kgm?, k = 10’

N/m and P = 9689.48 N

(both planes)

Critical speeds (rad/sec)

ay

@z

a3

Wy

Solutions using six conventional

finite elements

281.69

781.19

5526.56

17794.65

Solution using three finite elements

with efficient basis functions

241.19

838.98

4164.31

17487.81

Table (4.13) Critical speeds of a non-rotating cantilever-sleeve rotor-bearing system

using mesh of two elements using finite elements with efficient basis

functions

Critical speeds (rad/sec)
ay ap w3 Wy
Solution using two finite elements [ 86.525 491.377 1280.675 | 2713.964

with efficient basis functions
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Table (4.14) Critical speeds of a non-rotating cantilever-sieeve rotor-bearing system
using a mesh of twelve conventional finite elements and a mesh of two

finite elements with efficient basis functions

Critical speeds (rad/sec)

()] an ;3 )y

Solution using twelve conventional | 86.524 484.672 | 1102.825 | 2538.669

finite elements

Solution using two finite elements | 86.525 491.377 1280.675 | 2713.964

with efficient basis functions
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4.7. Numerical Results and Discussions

The equations of motion for a uniform rotating shaft element have been
formulated using efficient higher order basis functions that were developed in chapter 3.
The model includes the effects of rotational inertia, gyroscopic moments and axial load.
The equations of motion for the elements are presented in both fixed and rotating frames
of reference. The rotating frame equation is used to calculate the critical speeds since the
two planes of motion can be treated separately. However, the fixed frame equation is
used to calculate the influence of the gyroscopic effect on the critical speeds.

For the simply supported shaft, the critical speeds that were calculated using
meshes of three and six finite elements, respectively, are given in Table 4.2. For the
simply supported shaft with a disk at one third of its length, the critical speeds that were
calculated using a mesh of six finite elements are given in Table 4.3. For the same shaft-
disk system the critical speeds that were calculated after adding mass moment of inertia,
polar moment of inertia, spring constant and axial load and using meshes of three and six
finite elements, respectively, are given in Table 4.4 and Table 4.5. The effect of
gyroscopic moments is highlighted in Table 4.6.

For the simply supported shaft, the critical speeds that were calculated using
meshes of one and two finite elements with effective basis functions are given in Table
4.7. For the simply supported shaft with a disk at one third of its length, the critical
speeds that were calculated using a mesh of three finite elements with effective basis
functions are given in Table 4.8. For the same shaft-disk system the critical speeds that

were calculated after adding mass moment of inertia, polar moment of inertia, spring
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constant and axial load and using a mesh of three finite elements with efficient basis
functions are given in Table 4.9 and Table 4.10.

The natural frequencies of a uniform non-rotating simply supported beam
obtained using beam theory (closed form solution), conventional finite element method
and finite elements with efficient basis functions are compared in Table 4.11. Results by
all the three methods agree quite well.

The natural frequencies of a uniform rotating simply supported beam with the
disk at one third of its length, obtained using conventional finite element method and
finite elements with efficient basis functions are listed in Table 4.12. The results by
using the efficient higher order basis functions are superior.

It may be noted that a mesh of two or three finite elements with efficient basis
functions have been used in the above numericai study so that the total number of degrees
of freedom is the same in the meshes of conventional and the newly developed finite
elements. As can be seen, the boundary conditions significantly influence the dynamic
response of the system. The newly developed finite element model provides better
results using smaller number of elements compared to the case of conventional finite
element model.

For non-rotating cantilever-sleeve rotor-bearing system, the critical speeds that
were calculated using a mesh of two newly developed finite elements are given in Table
4.13.

A comparison of critical speeds of a non-rotating cantilever-sleeve rotor-bearing
system with the disk at the end using the newly developed finite elements is made with

those obtained for the case of conventional finite elements. The results of this
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comparison are listed in Table 4.14. The second natural frequency obtained using
efficient higher order basis functions is higher than that obtained by using conventional
finite elements. This may be due to the smaller number of elements (three) used in the
case of efficient higher order basis functions, which could not effectively represent the
second mode. Moreover, the third natural frequency is close to the operating speed and
needs more accurate determination.

The numerical results indicate that the new finite element with efficient higher
order basis functions developed in this thesis provides a more accurate representation of
the rotating shaft dynamics. The inclusion of the effect of both natural and essential
boundary conditions yields a more precise finite element model than the conventional
finite element model. Moreover, the new modeling can be programmed easily and also
the entire solution process requires less CPU time.

The next chapter-5 provides a summery and the conclusions drawn based on the

analysis and the results obtained in this thesis.

171



CHAPTER §

SUMMARY AND CONCLUSIONS

In this thesis a finite element simulation of a cantilever-sleeve rotor-bearing
system is presented using conventional finite elements and using newly developed finite
clements with efficient higher order basis functions. The effects of rotary inertia,
gyroscopic moment and axial force are included in the analysis. The critical speeds are
obtained for the following configurations:

(i) a non-rotating uniform cantilever shaft with a non-rotating disk at the end.

(ii) a non-rotating uniform cantilever shaft with a rotating disk at the end.

(iii) a rotating uniform cantilever shaft with a rotating disk at the end

(overhung rotor).

(iv)  a non uniform cantilever-sleeve rotor-bearing system with a non- rotating

shaft and a rotating sleeve shaft and a rotating disk.

The numerical examples that demonstrate the effect of gyroscopic moment on the
critical speeds are provided. The solution of eigenvalue problem is obtained by using the
first order of equations of motion as suggested by Meirovitch [60]. The comparisons
with the closed form solutions for the cases (i), (ii) and (iii) were made to illustrate the
accuracy of the modeling. Very close agreement was obtained in all the cases. The
unbalance response for the cantilever-sleeve rotor system is also obtained.

Several investigators have presented in the past various finite element models for

the vibration of Euler-Bernoulli beam-shaft structure. However a finite element model

172



that can include in the basis functions the effects of all the boundary conditions of the
beam, has not so far been developed. Such a finite element model has been developed in
this thesis and further its applications to beam vibrations and rotor dynamics have been
made.

In the finite element model, four degrees of freedom per node are considered so as
to satisfy all the boundary conditions. The four degrees of freedom at a node of the
element are the displacement, slope, bending moment and shear force. Thus, this element
can adequately represent all the physical situations involved in any combination of
boundary conditions. The superiority of this element is illustrated by comparing the
results of vibration analysis with that obtained using existing finite element modeling and
that obtained using closed form solutions. The mass and stiffness matrices of beam finite
element with efficient higher order basis functions for vibration analysis are developed.

The newly developed beam finite element is used to develop the finite shaft
element with efficient higher order basis functions for the dynamic analysis of rotor-
bearing systems.

The finite element model for the rotor-bearing system is developed including the
effects of rotary inertia, gyroscopic moments and axial load. The equations of motion are
presented in both fixed and rotating frames of reference. The dynamic behavior of a
simple rotor system and a cantilever-sleeve rotor-bearing system is studied using finite
elements with efficient higher order basis functions. Natural frequencies and whirl
speeds were calculated by using both the fixed and rotating frame formulations. A set of

comparisons was made with the results obtained using the conventional finite elements.
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5.1 The conclusions of the present investigation

Based on the analysis and the numerical results forecasted in this thesis, the

principal conclusions that be drawn are:

1)

3)

A finite element with efficient higher order basis functions can satisfy the
entire essential and natural boundary conditions of a beam and a rotor
shaft, right in the element formulation. Thus, this element adequately
represents all the physical situations involved in any combination of
displacement, rotation, bending moment and shearing force.

For complex rotor systems such as the cantilever-sleeve rotor systems
considered here, it is necessary to use better analysis methods in order to
calculate natural frequencies of the system. This will help to design and
operate the rotor system such that the operating speeds are away from any
natural frequencies. In the numerical example provided, the third natural
frequency needs to be analyzed more accurately since it is close to the
operating speed.

More accurate results are obtained using fewer numbers of elements that
have increased degrees of freedom and efficient higher order basis
functions rather than using larger number of elements that have fewer
degrees of freedom. Further, no errors are introduced during post

processing for stresses, strain, etc.

The larger the number of degrees of freedom involved in the model the greater are
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the advantages of the present approach. Thus present model requires smaller number of
elements to obtain the same results that would be obtained using larger number of
conventional finite elements. The eigenvalues obtained by using beam finite element

with efficient higher order basis functions converge more rapidly to the exact solution.

5.2 Recommendations for Future Work

Some suggestions for the possible future work are given below:

@) The finite element with efficient higher order basis functions obtained in
the present investigation can be applied to the stress analysis of tapered
beams and plates.

(i) Analysis of rotor-bearing system using finite non-rotating and rotating
shaft elements with efficient higher order basis functions based on

Timoshenko beam theory can be developed for thick beams and shafts.
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APPENDIX I

I.1 Deflection of beams-Sign Conventions:

w

Distributed load, p(x)

w = Deflection, 8 = Slope

F = Shear, M = Moment

Figure (I.1)  Deflection of beam-Sign conventions

In the figure, w = transverse deflection and

dw
— =0 =Slo
dx pc

2 an
dw .
EI ey = M = bending moment

We next consider the equilibrium of the moment of all the forces on the element shown in

Fig (1.2).
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Figure (1.2)

Moment at point 2 will give us

M+p¢ri‘;"--rdx—M—dM=o 1.2)

Ignoring the 2-nd term we would get

Fo_M __df 2V _ chearforce (1.3)
dc | de|  dx’
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L2 Deflection of rotor beams-Sign conventions:
XY-plane

y

T Distributed load, p(x)

A ——>
x
= T+v) +Y v = Deflection, y = Slope
T+I§ +N F = Shear, N = Moment

Figure (I.3) Deflection of rotor beam-Sign conventions

In the figure, v = transverse deflection and

Qv— =y = Slope
dx
d’v .
El F = N = bending moment
e

I4)

We next consider the equilibrium of the moment of all the forces on the element shown in

Fig (11.2)

Figure (1.4)
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Moment at point 2 will give us

N+pax37x—-Fdx-—N—-dN=O

Ignoring the 2-nd term we would get

~
I
|
|
il

oN d a*v
dJx dx

El ——) = shear force
ox’

XZ plane

Z

T Distributed load, p(x)

‘ T+w) +B w = Deflection, 8= Slope

s T.,,(D +M G = Shear, M = Moment

Figure (I.5) Deflection of rotor beam-Sign conventions

In the figure, w = transverse deflection and
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ow

—-5— = ﬁ = slope
3 an
EI 3 w = G = bending moment
<

We next consider the equilibrium of the moment of all the forces on the element shown in

Fig. (I1.4)
M
Figure (1.6)
Moment at point 2 will give us
ox
—M+p8x-7—de+M +dM =0 1.8)
Ignoring the 2-nd term we would get
oM 4 d*w
G = — = —| EI — | = shear force 9
ax ax( ox* ) a9

The displacement (v, w, B, 7) of a typical element

V=Ny, +N,y,+ Ny, + Ny,

.10
W =Nw, +N,B, + Nyw, + N B, @©10)

can be written in matrix form as
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k]
{2
4]
o

N> and Nj in XZ plane will take negative sign.

Similar concept has been adapted to the higher order polynomial for this structure.
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APPENDIX 11
Derivations involved in the formulation of finite element with efficient
higher order basis functions:
General Case: The element deflection is assumed in the form
w(x) =cl+clx+ f:2>x2 + (:3-.\:3 + c4-x4 + c_)'-xs + c‘6-x6 + c7-x7

The next step involves expressing c(i) in terms of the primary nodal variables (i. e
generalized displacements). Further, since we have then eight coefficients we must, if
we wish to be able to specify the state of the beam by means of values at the junctions
or nodes of the elements, have four conditions at each node.

8(x) = Z—w(.t) >l +2c2x+ 3'C3'.t2 + 4-c-l°.t3 + 5-c5-x4 + 6-c6-.t5 + 7-c7u\:6
£ 4

2
M(x) = b-i; w(x) > b-(Z-cZ +6¢c3x+ l2-c4-x2 + 20'L'5-x3 + 30-1:6-1'4 + 42-c7~x5)
dx+
d3 2 3 4
Ax) = -b-—-g w(x) > -b-(6-c3 +24-c4-x + 60-c5-x" + 120-c6-x + 210-c7-x )
dx

Where the function b = E I is the product of the modules of elasticity E and the
moment of inertia I of the beam.

Using the boundary conditions
wl = w(Q) = c0
61 = 8(0) > c!

w2 =w(r) >cO0+cl-r+ ¢:2-r2 + c3-r3 - c4-r4 + c'5’rs + c6-r6 + c7~r7

62 =8(r) > cl +2-:c2r+ 3cdr® - 4ct-r +5¢3rt + 66 + 7-c7-1
fl = (0) > -6-b-c3

ml = M(0) = 2-b-c2

2 .= fir) > -b-(6:¢3 + 24-c4r + 60-c5+F + 12067 + 210-c7-r)

m2 = M(r) = 5262 + 6c3r+ 1241 + 2057 + 306 + 42-¢7+°)
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or we can express the above in a matrix form as

ol ] 1o 0 o 0 (] 0 (] T.C 0]
o | 010 0 o0 0 0 0 Iy
w2 1 r r2 r3 r“ rs r6 r7 c2
62 01 2-r 3-r2 4-r3 S-r" 6-r5 7-r6 c3
Al loo o -66 0 0 0 0 |les
mi| 10026 0 0 0 0 0 cs
2! 100 0 -6b -24br -60-br> -120b-r -210-br* | | O
21 10 0 2b b 12672 0803 kst a2eS [P

Inverting this matrix equation to express "c(i)" in terms of w, ©, f and M we obtain,

I 0 0 O 0 0 0 0
0 0o O 0 0 0 0
o 0o o 0 L 0 o | .
) (2-b) wl
cl o 0 0 0 —— 0 0 0 01
c2 (6-6) w2
Gl wasas 2 s 1 s g
A AR A e b)) e 262,
sl 8 e a0y
6 R g (b-rz) (b-r3) [2- (b ~r2) ] (b-r3) 7
lc7| |-70 -36 70 -34 2 -15 1 I3 m2
S P28 9 [3'(b-r3) ] [2-(b-r4) ] [2-(b'r3) ] [2-(b—r4) ] o
000 -t 2 o1 2
] e S [6~(b-r4)] (b-rs) [6-(b'r4)] (b-rs)
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Substituting the above result in the equation for w(x), we obtain

w(x) = NI-wl + N2-0 + N3-w2 + N4-02 + N5-fI + N6-ml + N7f2 + N8-m2

where N1, N2..N8 are the shape functions or the interpolation functions and they can
be expressed in terms of the local coordinate x

g xs x6 t7
NI(x)=1-35— +84—-T70— +20—
3 S 6 7

r r r r

206 455 36x° 10X
+ - +

2x) = x —
N2(x) =x 3 4 s 6
F r r r
X el <2 x
N3(x) =35-— - 84-— + 70-— - 20—
4 5 6 7
r r r r
< x <8 x
Né(x) =-155-+395 —3a.Z + 10
3 4 5 6
r r F r
3 4 b 6 7
N5(x) := I ] R, S ud
65

361 b 3P 6br

t?' x4 xS x6 7
N6(x)=—-5 + 10 -15 +2
’ b-r* br 26 b-r
3 5 6 7
L P . S S
6br 2.2 2.6° 65+
< ° <5 x
N8(x)=5§ -7 +13 4-2 5
2-b-r b-r 2-b-r b-r
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The interpolation functions satisfy the following interpolation properties:

NI(O)=>1 N3(0)—>0 N5(0) >0 N7(0) >0
N2(0)—=>0 N4(0)—>0 N6(0) >0 N8(0)—>0
NI(n—>0 N3(n—>1 N5(r) >0 N7(r) >0
N2(r) >0 N4(r) >0 N6(r) >0 N8(r)—> 0

The first derivatives of N(i) with respect to x are

3 4 5 6
X X X

NI = L NI > - 1405 + 4205 - 4205 - 1405
dx 4 5 6 7
r r r r

d X3 t4 ‘5 IG
N22(x) = S-N2(x) = 1 - 80-= + 225-— - 216-— + T0-—
dx 3 2 i 6

r

3 4 5 6
X x X X

N33(x) = L N3(x) > 1405 - 4205 + 4202 - 1402
drx * 5 6 7

d x3 X4 ts x6
N44(x) = —N4(x) > -60-— + 195-— - 204-— + 70—
dx s A ] 6

-1 .tz 8 x3 x4 .ts 7 x

253 @& (b-rz) (b'r3) 6 (b-r")

N55(x) = f1—N5(.\:) ->
dx

4 5 6
x

<b,> R 9 Rl s R o)

N66(x) = —d—N6(t) —> —--20
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_d 2 X s < < 7 £
NI =N S 2 A o) 6 o)
N d_ng 0 2 35 2 3 3 14 2
88(x) = Z-N8(x) > 1 - " i
YT * (b'rz) (b-r3) <b"'4) (b"'s)

NII(0) >0 N55(0) > 0
NI =0 NS5(r) > 0
N22(0) > 1 N66(0) = 0
N22(r) > 0

N66(r) >0
N33(0) > 0
N33(r) > 0 N77¢0) = 0

N77(r) > 0
N44(0) > 0

N88(0) > 0
N44(r) > 1

N88(r) >0

The second derivatives of the interpolation functions:

42 2 3 & &

nl(x) = — NIl(x) > -420-—; + 1680-—s -2100— + 840-—7
dx r r S r
2 2 3 & S
n2(x) = —— N2(x) 2> -240--? + 900—; - 1080-— + 420-—
dx2 r r rs S
5 2 3 4 5
n3Cx) = -2 N3(x) > 4205 - 1680-55- +2100% - 840X
dx2 R r o r
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dz .\:2 x3 x4 xs
n4(x) = —— N4(x) = - 180-— + 780-— - 1020-— + 420-—
dx2 r r r /°
2 2 3 4 5
d -x X X x x
nS(x) = —— N5(x) > —+8 -20 + -7
dx2? b (b-r) (b-rl) (b-r3) (b-r")
2 2 3 4 5
n6(x) = -i— N6(x) = i - 60— * * o

Rl R R AR Rl ) R )

2 2 3 @ K
n7(x) = — N7(x) > 2- - 10— + 15— -7
dx2 (b-r) (b-rz) (b-rs) (b-r‘)
2 2 3 & 5
n8(x) = 94— N8(x) - 30 140-— % _ + 195 -84~

dx2 (br) (o) (br) (o)

ni(0) >0 n2(0) >0 n3(0) >0 n4(0) =0
nl(r) =0 n2(r) = 0 n3(r) >0 nd(r) >0
n5(0) >0 n6(0) > % n7(0) >0 n8(0) >0
n5(r) >0 n6(r) >0 n7(r) >0 n8(r) —>—;-

The third derivatives of the interpolation functions:

2 3 4
nll(x) = bni(x) > b-(-m-i +5040-% - 8400 + 4200-i)
dx s 5 6 7

r r r r

2 3 4
n22(x) = L bn2(x) > b-|-480-= + 2700 - 43202 + 21002
dx 3 3 5 )

2 3 4
n33(x) = L bn3(x) > b{840-% - 5040-Z - 8400-Z - 4200 =
dx A P S8 iy
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nd4(x) = d—b-n4(.t) -> b-(-3
dx

n55(x) = L bnsce) > 6L+ 16
dx b

n66(x) = 2-bn6(x) > b{- 120-
dx

n77(x) = d—-b-n?(x) 2> b4
dx

n88(x) = % b-n8(x) > b-
dx

nl{(0) >0

n22(0) >0

n33(0) >0

n44(0) >0

nll(r)=>0

n22(r)>0

n33(r) >0

nd44(r) >0

r

X

5

r

2

+ 80

4
60-= +2340-% - 4080 = + 2100-1)
3 4 S r6

-35

- 60 x
(br) (b»rz)

<iJ
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2 4
X X
X 600 - 900- +420 ]
6 (o) ) )
. X _ Xz . 60 p o _ 35 .f.‘ ]
NN Mo R e
p ¢ .tz X x‘
60— - 420 + 780 - 420-
(p-) (5-) ()
n55(0) = -1 nSS(r) > 0
n66(0) = 0 n66(r) = 0
n77(0) > 0 n?7(r) > -1
n88(0) > 0 n88(r) >0



Elements of stiffness matrix:

er
k33 = l
Jo
['r
k23 J
0
i
k13 =
0
r
k35 =J
0
rr
k43 =
0
[“r
k25 =J
0
°r
k15 :=
J0
er
k37 =
J0

280 b
b-nl(x)-nl(x)dx > ——
nl(x)-nl(x) THE

r

280 b
b-n3(x)-n3(x)dx > —1812—3

r

-140 &
b-n2(x)-n3(x)dx > ——
i 2

- b
b-nl(x)-n3(x)dx—> 29—

TR

b-n3(x)-n5(x)dx > ;1;

—

b-n4(x)-n3(x)dx > ﬁ?_i

TR

-8
b-n2(x)-n5(x)dx > —-r
n2(x)-n5(x) B

-1
b-nl(x)-nS(x)dx > 5

1
b-n3(x)-n7(x)dx > —
(x)-n7(x)dx >
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k24 -

"

kl4:

k42 :

"
(= B

b-n2(x)-n2(x)dx > 600 5
7 r

b-nl(x)-n2(x)dx—> 140 5

i 2

- b
b-n3(x)-n4(x)dx > —io-—

1 2

b-n2(x)-nd4(x)dx > 292
77 r

40 b
b-nl(x)-n4(x)dx > 140 5

TR

b
b-n4(x)-n2(x)dx > gq-—
7 r

(33-r)

b-n3(x)-n6(x)dx —~>

379
b-n2 -nb dx > —
n2(x)-n6(x)dx 262

b-nl(x)-n6(x)dx ~>

(33-r)



r
e - |
0

rr

k17 =

cr
k44

k46

1]
o -

cr

k48 =

rr

k55

k77 :

"
= ~

"
9
-

k66 :

k67 :

k78 :

-5
b'n.?(x) 'n7(x) dx > E-r

-1
b-nl(x)-n7(x)dx—> >

600 b
b-n#4(x) -né(x)dx > ———
7 r

181
b-n4(x)-n6(x)dx > v

9
b-n4(x)-n8(x)dx —> 4367

b-n5(x)-nS5(x)dx >

b-n7(x)-n7(x)dx >

b-n6(x)-n6(x)dx >

n6(x)-n7(x)d 72

b-n7(x)-n8(x)dx >

(996)

—_—r
(3465-b)

—F
(3465-b)

-r
(231-p)

" 40
= . . dx >
k38 J‘ b-n3(x)-n8(x) )

r -181
28 := b-n2 8(x)dx > ——
k28 J (x)-n8(x)dx v

,
-5
k45 = J bnd(x)nS(x)dx > =

r
-8
= 7(x)dx 2> —-
k47 Jk b-n4(x)-n7(x) I -r

r

k18:=J b-nl(x)-n8(x)dx >
0

(33-r)

l\l

r
k56 = J‘ b-n5(x)-n6(x)dx > —— (99 b)

k57 :

r
-1
Jq b'n5(x) 'n7(x)dx -> m’r

er
k68 :

b-n6(x)-n8(x)dx > @62 b)

rr

k58 : b-n5(x)-n8(x)dx >

_5
(2772°6)

°r

k88 :

b-n8(x)-n8(x)dx—>

-r
(231-b)
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Calculating the coefficients m(ij) of the mass matrix: note that the coefficients m(ij) =

m(ji).

er

mill = p-A- NI(x)-Nl(x)dx > 521

1287

-P-A-r

°r
151 2
2 =p-A- d . > .n-Ap”
mi2 =p-A N2(x)-NI(x)dx 5 _pAr

+0 =

r
245
mi3 = -A-r N3(x)-N1({x)dx > ——-p-A-
P (x)-N1(x) 257410 r

mld = p-A- N4(.r)-N1(x)dx—>'—l£-p~A-r2
Jo 4004
o .
-383 r
mlS =pA-|  NS(x)-NI(x)dx > ————-p-A-—
prae| NI 1081080 " 5
r 137 A
ml6 =p-A-[ N6(x)-NI(x)dx ~> p2A
o 18018 &
17 = p-A N N7(x)NI(x)dx > —2 A'4
m = -A. x)- X — e e ) e
p Jo ) 2162160 0 b
o 155 A
ml8 = p-A- N8(x)-NI(x)dx > S
o | NSNS S
o S
m22 = p-A-|  N2(x)-N2(x)dx > ——-p-A-r
Jo 273
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m23

m33

m35 .

N3(0)-N2(x)dx > —2L.0-A-r
X)-N2

-373 3
2 -N4 dx > ———-p-A-r
N2(x) (x) 36036 P

5
l .p.A-r_

x)-N2(x)dx >
N5(x)-N2(x)dx {0010 -

4
r

- .A-__
3432 7%

N6(x)-N2(x)dx >

S
F

1
7(x)-N2(x)dx > ——-p-A-—
N7(x)N2()dx = 515 P45

4
r

N8(x)-N2(x)dx >

144144 b

521
x)'N3(x)dx > ——-p-A-
N3(x) (x) " p-A-r

-151
N3(x)-N4(x)dx > m-p ‘A -rz

-2 A

N3(x)-N5(x)dx > —22_.p-
()N (D) dx = o0 ™4

155 A 3
.p._.r
36036 b

N3(x)-N6(x)dx >
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m37 = p-A-JA

r
m38 = p-A-J

r
md4 = p-A-J‘

er
m46

,
md7 = p-A-Jl

m48

m56 :

383 Rl

N3(x)-N7(x)dx > ———p-
N7 1081080p b

137 A 3
N3(x)-N8(x)dx » ——-p-—-
() N8 dx = oo P 5"

5 3
N4(x)-N4(x)dx > 2—73—10-,4 r

N4(x)-N5(x)dx > p-A—

13104 b

-199 r

N4(x)-N6(x)dx >
144144 b

-1 Ar
lOOlOp b

N4(x)-N7(x)dx —>

4

-7 r

N4(x)-N8(x)dx > ——-p-A-—
) 3432 P b

7
;
pA—

N5(x)-N5C)dx > — -
1621620 2

6

K
-O-A—
83160 2

N5(x)-N6(x)dx—=>

7
-l p.A-.r_

N5(x)-N7(x)dx 2> ————
(N7~ Tas3m0 P 2
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" -43 s
ms8 = p-A-|  N5(x)-N8(x)dx > ———-p-A-L
p L NS L™ Sma320 7 2

d 43 9
66 = p-A- N6(x)-N6(x)dx > -0-A—
m P J‘O (x)-N6(x) 180180p 2

o 43 S

m67 = p-A- N6(x)-N7(x)dx > ——————p-A—
Jo 4324320 2

[ 131 A

mo68 = p-A- N6(x)-N8(x)dx > 5 PA—
o 720720 2

77 Arr N7() N7y dx = —— A’7
m =pP-A Xx)- x)dx > ————p-A—
o 1621620 ° " 2

6
r

r
1

78 = -A-[ N7(x)-N8(x)dx > ——p-A—

m fol Jo (x) (x) 31 0 bz

" 43 rs
88 = p-A- N8(x)-N8(x)dx > -p-A—
m p Jl) (x)-N8(x)dx 180180p 2

For the case in which b ( = EI) is a constant over an element, the element characteristic
stiffness matrix {K] will be

(k1] k12 kI3 k14 kIS5 kI6 k17 ki8]
k12 k22 k23 k24 k25 k26 k27 k28
kI3 k23 k33 k34 k35 k36 k37 k38
kl4 k21 k34 k44 k45 k46 k47 k48
kIS k25 k35 k45 k55 kS6 kS7 k58
kl6 k26 k36 k46 k56 k66 k67 k68
kI7 k27 k37 k47 k57 k67 k77 k78
kI8 k28 k38 k48 kS8 k68 k78 k88 |
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For the case in which A = constant, The characteristic mass matrix of the element is
given by

‘mil ml2 mI3 ml4 mIS mi6 mi7 mi8 ]
ml2 m22 m23 m24 m25 m26 m27 m28
ml3 m23 m33 m34 m35 m36 m37 m38
ml4 m24 m34 md4 md5 m46 m47 m48
ml5 m25 m35 md45 mS5 m56 m57 mS8
mi6 nm26 m36 m$6 mS6 m66 m67 mé68
ml7 m27 m37 m47 mS57 m67 m77 m78
| mI8 m28 m38 m48 m58 m68 m78 m88 |
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