OntoKBEval:

A Support Tool for OWL Ontology Evaluation

Qing Lu

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

September 2006

© Qing Lu, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-20778-9
Our file Notre référence
ISBN: 978-0-494-20778-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

OntoKBEval: A Support Tool for OWL Ontology Evaluation

Qing Lu

The Support Tool for OWL Ontology Evaluation (OntoKBEval) has been developed to
apply Description Logics reasoning to ontology evaluation by deriving information from
knowledge bases. The principal objective is to evaluate ontologies and to present results

using a user-friendly visualized interface to users.

OntoKBEval offers hierarchical diagrams describing the structure of OWL-DL
ontologies divided into the description logics view of TBoxes and ABoxes. Furthermore,
corresponding detailed information is offered for these structures to guide further
evaluation directions. The three main methods for ontology evaluation are: (i) quick-view
ontology evaluation (providing a keyword search for named concepts) (i1) general
ontology evaluation (performing a more comprehensive TBox- and ABox-based
evaluation) (iii) multi-file ontology evaluation (facilitating multiple OWL ontology
evaluation by offering basic TBox and ABox information). The implementation relies on

the OWL-DL reasoner RacerPro to support reasoning functionalities.

1ii

Acknowledgements

I would like to express my deepest appreciation to my supervisor, Dr. Volker Haarslev
for all his guidance, support and encouragement. All the great help leads me to meet the

challenge throughout my research work.

I would like to give great thank to Dr. Christopher J. O. Baker for all his advice and help

in my thesis work.

My special thanks go to my parents, all my colleagues and all my friends for all their

kindly support, encouragement and understanding. And thanks to Concordia Community

for offering a great environment for my study and research.

iv

Table of Contents

List of Figures..... . reeesaeessssssneeaneee tesserssseesssssanssnssantssnssanesnsesnrsate RO ¥ 11
List of Tablesouuueeeeenevruercruvnennne reesssssssresenessastsrtsatsssebessbtesbRssRtaR Rt bt s bt Raebaas Rs R ROeRes ix
1. Introduction............. ceersenessnessresnenane seesssresbessntsssrtssatsanssratebressassatsbtabRsbesrbTeRterbasbaeras 1
1.1 Description 10gicS. ... evvvenircnrisnssenssesaesensenane .1
0 O B 1 7 > OO OOV PTUP SRR 2

L2 ABOX reiiriii it e e e e e e 4

1.2 OREOLOZY .evereivrenrniseisinsensseeseissessissnnseisnissassanssesssessssssssssssasssessassasssassassesssssnsssassessessnrassassanssas 5
1.3 Web Ontology Language (OWL) terrsssnsssesensenrosrsresnrssnases . - vere 0
1.3.1 Concept axioms i OWLoociiiiiiiiii et ee s 6

1.3.2 Role axioms I OWL ..ottt st et ete e e 7

1.3.3 Individual axioms i OWLoccoiiiiiiiiii e s s 7

1.4 Ontology evaluation methodology and motivation .8
1.4.1 Survey of ontology evaluation methodologyc..cccrvirerini i 8

1.4.2 Motivation Of OUT WOTK ...c..ocveiiieiriiiceciene ettt s e seae 10

1.5 Thesis OrganizZation.....c.civieeiicriiiciiissisesissssisssisssssssisssssssssssassssssssssssssssssansssnssasssssssarsssesanss 12

2. Reasoner tools........ veressnssene seressenesrassnesranssnseans reresseesrnsssesssnaressessnnsnnsnas S versseneane 13
2.1 RACEIPTO.ccicueiirrierirrirnissnressnnssnnssnessesssnssanssnsssssssnesssnssaessonns 13
2.2 RacerPorter. .- crrresessessassanesnessnesanee 15

3. Requirements and SCENArioeoesvernee. sesssreesserssnnsssssasesensaresansone cerorenenee 16
4. Other work on ontology evaluation SUPPOTL........eeerceeerevrsrnensnnssesssssssnsansssnesnes R 20
4.1 ODEval..... 20
4.2 ONLOMANAZET «oevirirrrrssrsesrisessssrisssssessssissacsssssssssssessnsssssssnssssassssssssassassssssassssessasssnes w22
4.3 CleanONTOcoeivmerrerimneecniscsaeseessesensressae 24
4.3.1 OntoClean MethOdOIOZYocveviviiiriieiini et e e et 25

4.3.2 CleanONTO MethodOlOgYccuvvvvriririreriiiirini sttt e e 26

4.3.3 Comparison of OntoClean and CleanONTOcccccoiniiininiiciinireseese e 30

4.4 CORE...........31
4.5 Ontology evaluation methodology for ontology evolution rssresssesinesrsesasnnssnnsnns 33

5. OntoKBEval (A Support Tool for OWL Ontology evaluation cereesasennnsanes 36
5.1 Design ideas 36
5.2 System architecture.............. . w37
5.3 System overview eesssrserssatessisatssaTetisstIs bt esRtserttaRtsRbEsRE s RE IRt sabe SRR eRT S E s ReS 38
5.4 System MAIN WINAOW wccivveiinniiiiisininisinniininiiineinisiesisesisisisistssissssseisssmessess 38
5.5 ASSUMPLIONS cevvrreeerereisseecsreessaersaossnssrsssanrsnssssaessnssaressons teressnesssesssesnesses 40
5.6 Quick-view ontology evaluation... . . 41

5.7 General ontology eValuAtionuiceiiineinrininnieninsiinioeiieomeinissseemssimsesisosossenns 43

5.7.3 TBOX @VAIUATION.coiiiiiiieiiciriie et et st et s bbbt 44
5.7.1.1 Concept Xmas-tree fIGUFEc.cccoeceiiiicriiiiiiiniiiiei ittt ane s 46
5.7.1.2 Concept COOFAINALE fIGUFE...........couvvivueir it vttt et e an e 49
5.7.1.3 The total number Of CONCEPLSccccvviiviiiiiiiiiicctii s 51
5.7.1.4 The nUMDeEr Of IEVESc.cccooviiiiiiiciiniieirc bttt 51
3.7.1.5 The average number of CONCEPIS AL [EVEIS.......c.c..cccccrivcrieciiiirenieec e 51
5.7.1.6 The average number of parents for each CORCEPLc.coccreoiinccriirieneneireneccaeneins 52
5.7.1.7 The average number of parents for each concept at each levelcccc.ovivvvcnirne. 52
5.7.1.8 Concept user-defined eVAlUGLION............c..ccovvviiiiviiceiii et 52
3.7.1.9 Concept 1evel detailsccovvviecirivnisriine ettt sttt 55
5.7.1.10 Concept equivalent user-defined evaluationc..ccccoccoeviivecnainneninennicins 55
5.7.1.11 ROIe XMAS-TFEE JIGUIEoovvvvreeerveiereeeeeesstes st st sre et e e ranie st et annen bbb 56
5.7.1.12 Role cOOPAINate fIGUFe.c.ccoiivimmereeirireisniensors s ee st en e e 57
5.7.1.13 Role user-defined eValUQLion............ccocvveeiiiivinicrcciininisii st st ane s 57
5.7.1.14 Role 1evel detailscccociuvvirimiriciriinisesiesrisse st b e sseaae s rebaseare e ste bt nnesrens 58
5.7.1.15 Role transitive user-defined evalUQtion............c..cccocvccvcciiriniviiinsonienieseni e aeseneie e 58
5.7.1.16 Role symmetric user-defined evalualionccccoveivecinininiiiiniencineseinen s 58
5.7.1.17 Role inverse user-defined evaluationcocceviceecciniiiiiiiiininnni e 58
5.7.1.18 Role equivalent user-defined evalUuationcocoovccveiniirincoirccinecsinesieneansesennes 59

5.7.2 ABOX @VAIUALION ..c.ovviiiiriiirc ettt e s 59
5.7.2.1 Individual Xmas-tree figure based On CONCEPL ASSETTIONSc.....ovvcvrveiniiisinesiriciininnciennens 61
5.7.2.2 Individual coordinate figure based 0n cONCEPt ASSEFHIONSoccccvvcrivicrirereireeiniareenenenes 62
5.7.2.3 Individual user-defined evaluation based on concept assertionsc.cc.occvencoenricnne. 62
5.7.2.4 Individual level details based on cONCEPt ASSErLIONSocweuriviirecencirinieisrecarenenennsereenss 63
5.7.2.5 Individual graph based 01 tUPIESc...cocovecniaiiiiinincc e e 63
5.7.2.6 Individual graph based on combined role assertions...........cccocricoeiioiirnniiiniiecnnnnenns 65
5.7.2.7 Individual cluster graph based on combined role asSertions................c.ccconveirvvoncineecnccs 66
5.7.2.8 Role graph based on iNAIVIQUAISccooveioveiirivinirenicaniene ettt 71
5.7.2.9 Individual Xmas-tree figure based On ASSEFHIONSccccccoemiirecimecinrecoimineeisinninenens 71
5.7.2.10 Tuple detail Fetrieval..........ccccovcviviiniriinsiiiriiis et vesre sttt siea 72
5.7.2.11 Combined role assertions retrievalccccvovcnivonicciimniiniiineiscne e 73

5.8 Multi-file ontology evaluation............... .- 74

6. System testing cvesserenes vearennenne reerrarssnnnens verssareane S ST ceeesseesressansassesenns .77
6.1 Ontology selection .- vreseseessaresnesasnserressateressttsertesRtts e b teRae b e R e R aasR AT rE 77
6.2 TeStiNG TESULLS cecnviirerieirinnrisseessrisssnssnssnsssenssanssnnssnsssnssnessasessnsssassssessanssass 77
6.2.1 TBOX cucviuierit ittt ettt ettt et et bR e h et R bbbt 77

6.2.2 ABOX.. oottt e b e e e R e R bRt e r et 80

6.3 DiSCUSSION «.cevrerineirerrerisrenseirressenssesnereessisnnesaessessersasssessesssssessasssossassasssssssssnssrorsssassnssassassassen 83
6.4 Summary . .84

7. Conclusion and future Work...........ceeeeversevennes tesseessensanssassseerassnnsnnee 90
7.1 Conclusion " 9
7.2 FULUFE WOTK cocuvivuieiinecninsnrninessnnnsnissessenissrisssesssssssnsssssssssssssssessnsssssssassnsssnsnsions 91

8. Referenceseeeevceiiseeccrissnenns vereseseresssrrnssaneissaeesnnisreassasene seessereanes S eeee 92
Appendix.....ouseisverennn eeseessnnenessesnans resrsesesssanenne retrerssentiissnanrsassntrrsessntaesrersesnstatssnnatas .97
Al Racer file.....ccverniisensenserssnsinnns tsereserssaassnsesasenssesisessanssassraessanns 97
A2, Related Racer COMMANGS.....coveeruerernsseenssnnssesssressesssessnsssasessessansesesssessnnsssnsssessassssssessaness 98

vi

List of Figures

Figure 1-1 Architecture of a knowledge representation system based on Description Logics2

Figure 1-2 ‘Family’ TBoX hierarchiesccccoieeeeiiriiiceee e s 3
Figure 1-3 ‘Family’ ABoxX hierarchycccoviiiinmiin e 4
Figure 3-1 Concepts related with ‘@nzyme’cccoocemririennineeienienenre e 17
Figure 3-2 Individual relationships based on ABOXESoeeevveveeniieiieienceeriie e 19
Figure 4-1 Potential problems that might appear in taxonomies.ceceervrccevneecenrerecnenne 21
Figure 4-2 A schematic diagram of the OntoManager...........cccecevrrreariineecrcineneneeennnenne 24
Figure 4-3 (a) unclean ontology (b) cleaned taxonomy by OntoClean..........cccccvveveevrcnnnnnn. 26
Figure 4-4 Resulting Tree-0 in CleanONTO.......ccoceiirirniininreeiieiece s 28
Figure 4-5 Example steps to recover CONSIStENt tTEEcccovevvervinvirerinineee e 29
Figure 4-6 Cleaned ontology as produced by CleanONTOcccooeiviiinnniinnciinncnen. 29
Figure 4-7 GUI of CleanONTOcocoviiiririeeceiceeireeeeee ettt s 30
Figure 4-8 CORE architecture...........cccoovieoiiieniiiciieereceeceee e 31
Figure 4-9 GUI O COREooiiiiereec ettt s s sae e 32
Figure 4-10 Logic archifeCtUIEcocoviiiiiecn ettt s 35
Figure 5-1 System archit€Cturecccorivevieinierieninereree e e s 38
Figure 5-2 OntoKBEval main Windowcccooiciiiiiiiiincceccrennen e 39
Figure 5-3 Ontology file loading WindowWccceervrierniiecnince e 40
Figure 5-4 Concept parent-children relationship.........ocoeoeoerieiieccciiniicicrc e 41
Figure 5-5 Quick-view—main WindOWcc.occeviriiiinniinini e 42
Figure 5-6 Quick-view—Iist all CONCEPtsccoceeiimiiiiiiec e 43
Figure 5-7 General—resuits of the first step (mainly about TBoOX)ccooccvveeerirveccninrnenen. 44
Figure 5-8 General—concept Xmas-tre€ fIgUreoccoveviiiririiecenneeeeecsce s 46
Figure 5-9 General—concept coordinate figure.......ccoceveviveeicninieoneneneene e 50
Figure 5-10 General—average number of parents in each level........oceoiiccnenccenencnnne 52
Figure 5-11 General—concept user-defined evaluationcccceeeneiiivineiniccceiinne, 53
Figure 5-12 General—cxamples of (a) compound search results and (b) the sub-hierarchy 54
Figure 5-13 General—concept level details.........ccoveererieiecrinceeieceeeeese e 55
Figure 5-14 General-—concept equivalent user-defined evaluation........c...c.cooeeenivvicncecnnns 56
Figure 5-15 General-—role Xmas-tree fIgUrecccooveveniinicnineiceeieieccececcn s 56
Figure 5-16 General—role coordinate figurec.cooveverniiiiinceiececccees e 57
Figure 5-17 General—role inverse user-defined evaluationccoceveeeecriinnnnnnnnnne, 59
Figure 5-18 General—individual Xmas-tree figureccooveveeeniiininennnccecie e 61
Figure 5-19 General—individual coordinate figure..........ccceecveeivrrecirirveeee v 62
Figure 5-20 General—representation of numbers around tuple circlesc.coecvrierinennnee 63
Figure 5-21 General-—individual graph based on tuples.........ccooeveciniiinncincciie 64
Figure 5-22 General—individual graph based on combined role assertionsc.ccccoeee.... 65
Figure 5-23 General—cluster graph set frame...........cccovvvcvervniereriieene e 68
Figure 5-24 General—individual cluster graph...........ccovvvivivierienieerereeec e 69
Figure 5-25 General—individual cluster graph (ratio=90%)ccccoeceriiiiinnenceecrcncnes 70
Figure 5-26 General—role graph based on individualsccoocoiniiineveieceee 71
Figure 5-27 General—individual Xmas-tree figure based on assertionsccccoocvveuennn. 72
Figure 5-28 General—tuple detail retrievalc.coovieiiiniiiecencniee e 73
Figure 5-29 General—combined role assertion retrievalccoccoevvenenicinnicccnincnn 74

vii

Figure 5-30 Multi-file—1eSultsccccoeiiiiinii e 76

Figure 6-1 Xmas-tree figures (a) ‘galen’ (b) “Umis-27ccooevieeneneneniinnciiiicecnnns 78
Figure 6-2 Logarithmic scale coordinate figure of ‘umls-2"c.ccoveveninvcniiciiin, 79
Figure 6-3 The individual graph based on tuples of “Wine’.........cccoovvririciriiciniciieeen g1
Figure 6-4 The individual graph based on combined role assertions of ‘wine’ 82
Figure A-1 Racer file format of ‘family’ ontology.......cccovvrvveceniriicececee e, 98

viil

List of Tables

Table 1-1 An overview of approaches to ontology evaluation............cccoceevvorenincrenennn. 10
Table 4-1 Means of problem detection in RDF(S), DAMLAOIL, and OWLc..c.c..... 22
Table 4-2 Paths for concepts found in WordNet.......ccoooeeivirrececicnincceee e, 27
Table 4-3 Main difference between OntoClean and CleanONTOcooevevnecneninnrinnnnn. 30
Table 5-1 General—coordinate figure—scale Selectionc.ccccvevervricnen e 50
Table 6-1 Typical ontology files for system testing......cocvverererriirenieriicciee e 77
Table 6-2 Main TBOX TESULLScocvvviirrreriereiesc s reris e et st besecn e e sneenee e ones 78
Table 6-3 The number of individuals.........cccoociriiirnin e 80
Table 6-4 Main features of ODEval, OntoManager, OntoClean, CleanONTO, CORE, the
methodology for ontology evolution and OntoKBEvalc..occvviriinniiiiniicens 89

ix

1. Introduction

In this chapter we introduce background knowledge related to our research work. It

includes the topics description logics, ontologies, OWL, and our motivation to build

OntoKBEval.

1.1 Description logics

The main research purpose in knowledge representation is to provide theories and
systems for expressing structured knowledge and for accessing and reasoning with it in a
principled way. Description logics (DLs) are considered the most important knowledge
representation formalism unifying and giving a logical basis to the well-known traditions
of Frame-based systems, Semantic Networks and KL-ONE-like languages, Object-

Oriented representations, Semantic data models, and Type systems [10].

A DL knowledge base consists of two components: TBox and ABox. Figure 1-1
describes the architecture of a knowledge representation system based on Description

Logics.

In order to describe DL more clearly, we use a simple ontology ‘family’. It is in a format

of a Racer file whose details are listed in Appendix Al.

17 TBox ™.

Description '
.Language /-

-
7
I

|

3

| Reasoning |

s ABox 1

KB

Application
Programs

Rules

Figure 1-1 Architecture of a knowledge representation system based on Description Logics

copied from [30]

1.1.1 TBox
A TBox (Terminology Box) consists of a set of concept axioms, where a concept denotes

a set of individuals, roles, which denote binary relationships between individuals [30].

In a TBox, the concept definition of a new concept is in terms of other defined concepts,
for example, woman =person /female. In particular, the classification of concepts
enables one to place a new concept in a proper place in a taxonomic concept hierarchy.
Concepts axioms help describe the classification. In general, TBox axioms have the
following form: C € D (RE §) or C =D (R=S), where C, D are concepts and R, § are

roles. The former represents the subsumption relationship between C and D (or R and S);

the latter is the relationship of equivalence. In this case, we can have hierarchies for

concepts and roles, which provide the basic structures of the TBox. Figurel-2 shows the

hierarchies of the small ‘family’ ontology.

{(*TOP" TOP)
[HUMAN) (MALE) [FEMALE)
(PERSDN]
(PARENT) [MAN] (WOMAN)
/\
(FATHER]) (MOTHER) [FATF@}RDTHEH] (MOTHER) [SISTER)
(GRANDMOTHER]) [UNCLE) (GRANDMOTHER) [AUNT)

(a) Concept hierarchy

(INY HAS-DESCENDANT) (INV HAS-SIBLING) (INV HAS-GENDER) HAS-DESCENDANT HAS-SIBLING HAS-GENDER

(INV HAS-CHILD) (INVHASSISTER) (NV HAS-BROTHER) HAS-CHILD HAS-BROTHER HASSISTER
(b) Role hierarchy

Figure 1-2 ‘Family’ TBox hierarchies

For small ontologies, the hierarchies similar to those in Figure 1-2 are readable and
comprehensible. However, as we have ontologies with hundreds or thousands of
concepts/roles in TBoxes, this kind of diagrams cannot easily help and might become

unreadable. We will describe one possible solution in this thesis.

1.1.2 ABox
An ABox (Assertion Box) contains assertions about named individuals in terms of

concepts and roles [30].

It contains two main assertional axiom types: (1) concept assertions for individuals, a:C,
where a is an individual and C is a concept; (2) role assertions for individual pairs,
(a,b):R, where a and b are individuals and R is a role. In this case, we need to consider
the individuals w. 1. t. concept and role assertions. For example, in the ‘family’ ontology,
we have five individuals: Alice, Betty, Charles, Doris, and Eve. We can characterize the
individual ‘Berty’ as an instance used in two ways: (1) as a mother Betty: Mother; (2) and
as Doris mother (Betty, Doris): has-child. Figure 1-3 describes the ABox hierarchy of

‘family’ ontology based on role assertions.

ALICE
HAS_CHIE/D,/ N&S_CHILD
~ ~.
BETTY —jx5 SigrinGg CHARLES
N
HAS_CHILD \HAS_CHILD
e .
e AN
DORIS~as SieTeRr EYE

Figure 1-3 ‘Family’ ABox hierarchy

Other ways of ABox presentation are discussed in Chapter 3.

1.2 Ontology

The term ontology originates from philosophy and is about the subject of existence. In
our context, ontologies are explicit formal specifications of the terms in a domain and
relations among them [16]. They are used to share a common understanding of the
information structure among people or software agents and enable reuse of domain
knowledge. In recent years, work on ontologies has migrated from Artificial Intelligence

to other kinds of domains in research or industries.

Ontologies contain a formal explicit description to define a knowledge base consisting of
concepts (or classes) in a domain, roles (or properties, or slots) between instances of
concepts, restrictions (or facets) on roles and together with a set of individuals (or
instances) to define a knowledge base. Concepts are the focus for most ontologies and
roles describe properties of concepts and individuals. Ontologies can help to share
semantic understanding of information, make assumptions explicit, separate domain
knowledge form the operational knowledge [1], clarify the term definitions, help

reasoning knowledge on indicated rules, etc.

In order to support ontology building, various ontology languages have been developed:
Resource Description Format (RDF) [25], RDF schema (RDFS) [8], and DAML+OIL
[40], to the most recent popular Web Ontology Language (OWL) [43]. In our research,

we solely focus on OWL ontologies.

1.3 Web Ontology Language (OWL)

In late 1990s, work on ontologies has become a research area targeting the Web. After
the release of OWL (Ontology Web Language) as a semantic web standard, it has been
considered a useful standard ‘for formally specifying knowledge in the web and recently
renewed the focus on ontologies’ [3]. OWL facilitates a greater capability of machine
interpretation of Web contents than XML, RDF, and RDF Schema (RDF-S) by providing
additional vocabulary along with a formal semantics [33]. OWL has three sublanguages:

OWL Lite, OWL DL, and OWL Full.

In order to make our work better understandable, we will describe the axioms about

concepts, roles and individuals supported by OWL.

1.3.1 Concept axioms in OWL

Concept axioms are used to define concepts. We can use ow!:Class with a concept
identifier, ex. <owl:Class rdf:ID="Human"/>. However, this is only a simple declaration
and does not give much information about the concept. Hence, concept axioms should

contain additional components to state their characteristics.

Together with concept declarations, OWL contains three helpful language constructs to

form concept axioms: rdfs.subClassOf (to state that a concept is described as a subset of
another concept), owl:equivalentClass (to state that a concept is an equivalent of another
concept), owl: disjointWith (to state that a concept has no common members with another

concept).

1.3.2 Role axioms in OWL
A role axiom defines characteristics of a role, for example, <owl:ObjectProperty
rdf:ID="hasParent"/>. Four kinds of constructs for role axioms are supported in OWL as
follows:
e RDF Schema constructs: rdfs:subPropertyOf, rdfs:domain and rdfs:range
¢ relations to other properties: owl:equivalentProperty and owl:inverseOf
o global cardinality constraints: owl: Functional Property and
owl:InverseFunctionalProperty
o logical property characteristics: owl.SymmetricProperty and
owl. TransitiveProperty
These constructs allow one to define roles in more detail (for example, has _pet is an

inverse role of is_pet of).

1.3.3 Individual axioms in OWL
Two types of individual axioms are discussed here.

¢ Individual axioms about concept membership and role values

For example, | < Mother rdf:ID="Alice”>
<has_child rdf resource="# Betty ">

< /Mother>

The first line indicates that ‘Alice’ is an instance of concept ‘ Mother’ and the
second line says ‘Alice” has a role assertion (Alice, Betty):has_child.

e Individual axioms about identity

Forexample: | <Mother rdf-ID="Alice">
<owl.differentFrom rdf:resource="#Betty"/>

</Mother>

It indicates that ‘Alice’ and ‘Betty’ are two different individuals.

1.4 Ontology evaluation methodology and motivation

1.4.1 Survey of ontology evaluation methodology

Many ontologies seem to support a variety of Semantic Web services. We face ontologies
in all kinds of domains on the web, such as gene, bioinformatics, plant, languages, etc.
Ontologies on the Web range from large taxonomies categorizing Web sites (such as on
Yahoo!) to categorizations of products for sale and their features (such as on

Amazon.com) [31].

Even for one subject in a certain domain such as bioinformatics, the Gene ontology [39],
and so on, we can find quite a few ontologies, which contain from tens of concepts to
millions of concepts and potential users have to evaluate and select ontologies that best
match their current interests. Knowledge engineers are regularly searching for ontologies
in the web in order to incorporate such ontologies into their systems and choose the
ontologies by relying on their experience and intuition [22]. We have an idea that good

ontologies are the ones that serve their purpose [7].

Further, the creation of ontologies depends on their designers’ understanding and view of
the information in a certain domain. Potential users of ontologies need to assess the

quality and possible benefits of available ontologies. Thus, ontology evaluation becomes

an important issue.

Until now, various approaches for ontology evaluation have been considered depending
on the specific kind of ontologies and purposes. Broadly speaking, most evaluation
approaches fall into the following categories [5]:
¢ those based on comparing an ontology to a “golden standard” (which may itself
be an ontology; e.g. [28]);
¢ those based on using an ontology in an application and evaluating the results (e.g.
[35D);
e those involving comparisons with a source of data (e.g., a collection of
documents) about the domain to be covered by the ontology (e.g. [7]);
e those where evaluation is done by humans who try to assess how well an ontology

meets a set of predefined criteria, standards, requirements, etc. (e.g. [26]).

In addition, ontology evaluation approaches can be grouped based on the level of

evaluation [5]:

e lexical, vocabulary, or data layer—to focus on concepts, roles, and individuals in

an ontology

e hierarchy or taxonomy—to build b a ‘is-a’ relationship between concepts

e other semantic relations—to contain other relationships other than ‘is-a’

relationship

e context or application level-—some definitions in an ontology related with other

ontologies
e syntactic level—to match the syntactic requirements of the building language

e structure, architecture, design—to meet particular design requirements.

Table 1-1 gives a summary of the approaches mentioned above.

Approach to evaluation

Level Golden Application- | Data- Assessment
standard based driven by humans

Lexical, X X X X
vocabulary,
concept, data
Hierarchy, X X X X
taxonomy
Other semantic X X X X
relations
Context, application X X
Syntactic x* X
Structure, X

architecture, design

Table 1-1 An overview of approaches to ontology evaluation
“Golden standard” in the sense of comparing the syntax in the ontology definition with the syntax

specification of the formal language in which the ontology is written (e.g. RDF, OWL, etc.). [5]

1.4.2 Motivation of our work
As we mentioned in the previous section, with the emergence of more and more

ontologies, users have to select those, which can meet their needs. This leads to the idea

of ontology evaluation. Furthermore, as many ontology evaluation methods are proposed,
it is necessary and important to have tools available to use these methods in order to
facilitate evaluation. These reasons encouraged us to look for better methodologies and

tools for ontology evaluation.

Currently, there are a number of ontology evaluation methods emerging. Some methods
of evaluation are intended for the ontology pre-modeling stage to test for inconsistencies.
Some are concerned with checking for consistency and logical errors. The others are

helpful for the evaluation of ontologies after their release.

We note that the term ontology refers to a DL KB, i.e., a set of ABox and/or TBox
axioms expressing knowledge regarding a domain of interest and the terms ontology and
DL KB will be used interchangeably [13]. Furthermore, the term ontology is commonly
used to refer to a structure capturing knowledge about a certain area via providing
relevant concepts and relations between them [6]. Thus, in our ontology evaluation we
focus on TBoxes and ABoxes, which are the components of Description Logics
knowledge bases. For the TBoxes, we consider hierarchies of concepts and roles; for the

ABoxes, we group the individuals by concept assertions and by role assertions.

In our research, we try to evaluate ontologies in both qualitative and quantitative ways
with the help of DL technology. For TBoxes and ABoxes, the distributions of their
elements are represented in structured hierarchical figures. In this case, we focus on the

structure while ignoring detailed concept, role and individual names. We also provide

corresponding functions to browse detailed information on TBoxes and ABoxes, so, users
can decide where to focus their further evaluations. The OntoKBEval system provides a

graphical interface to help users evaluate their ontologies.

In this thesis, we address our methods and the ontology evaluation tool by using the

OWL reasoner RacerPro version 1.9,

1.5 Thesis organization

In this thesis, we try to cover all the related methodologies, and the implementation of
our ontology evaluation solution. In Chapter 2 the reasoner RacerPro is described as well
as RacerPorter. In Chapter 3 we give potential users’ requirements for ontology
evaluation. In Chapter 4 we introduce some recent ontology evaluation support works
about ontology evaluation. In Chapter 5 our OntoKBEval system is described in detail
including its design, functions, interfaces, etc. In Chapter 6 results testing the
OntoKBEval system are analyzed. Chapter 7 includes our conclusion and future work.
The appendix provides a Racer file and the Racer commands used to implement the

system.

2. Reasoner tools

This chapter describes the necessary tools to help with our OntoKBEval design,

implementation, and testing.

2.1 RacerPro

RacerPro (Renamed ABox and Concept Expression Reasoner Professional) is one of the
fastest OWL DL reasoners. As the name suggests, the origins of RacerPro are within the
area of description logics [36]. It can be used as a reasoning engine for ontology editors

such as Protégé [32].

RacerPro offers reasoning services for multiple TBoxes and ABoxes encoded as OWL
DL knowledge bases [18] and supports the specification of general terminological
axioms. A TBox may contain general concept inclusions (GCls) to present the
subsumption relationship between two concepts. RacerPro can also deal with multiple

definitions or even cyclic definitions of concepts.

RacerPro implements the HTTP-based quasi-standard DIG for interconnecting DL
systems with interfaces and applications using an XML-based protocol [4]. Most of the
functions specified in the earlier Knowledge Representation System Specification

(KRSS) can be used with RacerPro.

Given a TBox, various kinds of queries can be answered. Based on the logical semantics
of the representation language, different kinds of queries are defined as inference

problems. We list only the most important ones for TBox as follows:

13

o Concept consistency, for example, if brother=personfemale, an inconsistency
exists

o Concept subsumption, e.g., a mother is always a parent

e All inconsistent concept names mentioned in a TBox

o Get the parents and children of a concept, e.g., a person is a parent of a man and a
man 1s a child of person

o Get the parents and children of a role, e.g., has-sibling is a parent of has-brother

and has-brother is a child of has-sibling

If an ABox is given, the following types of queries are possible:

¢ Check the consistency of an ABox, for example, the knowledge specified for the
individual Befty is consistent with the concept mother as in Betty:mother

e Instance testing to make sure if an individual is an instance of a certain concept

e Instance retrieval to find all individuals proven to be the instance of a certain
concept

e Retrieval of individuals that satisfy certain conditions

o Computation of the direct types of an individual, for example mother is the most
specific concept of which Betty is an instance

e Computation of the fillers of a role with reference to an individual. After
computing these fillers, the function ‘all-role-assertions’ returns also the implicit
role fillers

e Check if certain concrete domain constraints are entailed by an ABox and a TBox

14

RacerPro provides another semantically well-defined query language (nRQL [19], new
Racer Query Language), which also supports negation as failure, numeric constraints
w.r.t. attribute values of different individuals, substring properties between string

attributes, etc [36].

As to the special OWL features such as annotation and datatype properties, special OWL
querying facilities have been incorporated into nRQL. The query language OWL-QL [4]
is the W3C recommendation for querying OWL documents. nRQL has been used as a

basic engine for implementing a very large subset of the OWL-QL query language [36].

We use many Racer commands in our ontology evaluation tool and the details of each

command are shown in Appendix A2.

2.2 RacerPorter

RacerPorter is the native, graphical user interface for RacerPro [34]. RacerPorter uses the
TCP/IP network interface to connect to RacerPro servers and helps to load ontologies,
view TBoxes and ABoxes, switch among taxonomies, and send queries or commands to

RacerPro to get reasoning results. It facilitates RacerPro users to operate on ontology files.

During the process of implementing our ontology evaluation tool, we compared results

from RacerPorter with our results to make sure our results are correct.

3. Requirements and scenario

In this chapter, we analyze users’ requirements about OWL ontology evaluation and in

which way they can be implemented.

e Why to use a reasoner?

As ontologies can provide lots of information, more and more researchers and engineers
use ontologies for searching related information in their interest domains. However, only
few of these people have background knowledge about the OWL language and it is hard
to get useful data directly from reading OWL code. So a reasoner should be used to help
humans better understand OWL ontologies. For the OWL DL reasoner RacerPro, it is
convenient to use by sending meaningful commands, for example, ‘all-roles’ to get all the

roles in an ontology. Furthermore, it can load a large ontology relatively fast.

e How to know domains that ontologies belong to?

When ontology users get an ontology, first, it is important to know which domain this
ontology is in. An efficient way is to look through all concepts, which are fundamental
components of an ontology. For example, an ontology contains many concepts about

‘gene’, ‘DNA’, ‘cell’, ‘enzyme’ etc. Then this ontology is very likely about biology.

e How to know if ontologies contain information related with a certain subject?

For example, users’ most interest subject is ‘enzyme’. After users select an ontology

about biology, they may get a lot of results about ‘enzyme’. Users can browse all the

16

related concepts with the ‘enzyme’ concept with parent-children relationships. Figure 3-1

is an example (ontology: ‘FungalOntology.owl’ [37]).

Protein

A 4
Enzyme

\

Oxidoreductases | | Transferases | | Hydrolases | | Lyases | | Isomerases Ligases

Figure 3-1 Concepts related with ‘enzyme’

e Why do we need ontology structures to help in ontology evaluation work?

Usually users get detailed information about ontologies indicated by concepts, roles, and

individuals. However, ontologies are built with descriptions of relationships among these
elements. So their structures are also very important parts, which cannot be ignored when

we evaluate ontologies.

» TBox structures
Hierarchies of TBoxes (concepts and roles) are based on the ‘is-a’ relationship. As
shown in Figure 3-1, we get related concepts of ‘enzyme’. This is only a small part of

the whole hierarchy.

From ontology hierarchies, which provide overviews of ontology structures, users
know how big ontologies are and how concepts and roles are distributed. Every OWL

ontology has a ‘fop’ at the first level and a ‘botfom’ at the last level. For example, the

more direct children of ‘fop’ exist, the less subsumption relationships are found
among concepts besides those with the ‘top’ concept, in which case, users may find
less information about indicated concepts. So among ontologies with similar numbers
of concepts, it is more likely to obtain more knowledge from the ontology having the
least number of concepts as direct children of ‘fop’. This also gives hints for ontology
creators to avoid defining most concepts as direct children of ‘fop’. It also helps

further ontology optimization.

» ABox structures
For ABoxes, it is not sufficient to only describe concept assertions and role assertions
in words. For example, consider the following two role assertions taken from the
‘FungalOntology’:
(Rhizopus_stolonifer, Pectinase):Has_been_reported to_have _enzyme
(Alternaria_citri,Pectinase):Has been_reported to_have_enzyme
These two assertions both contain the individual ‘Pectinase’, so the individuals
‘Rhizopus_stolonifer’ and ‘Alternaria_citri’ have certain relationships because they
are both related with ‘Pectinase’. As this kind of relationship is very common in
ABoxes, users always want to know how many individuals have this kind of
relationship in ontologies and how the relationship is built. If the individuals met
users’ interests have more related individuals, the more knowledge users may get

from this ABox. So it is also important to have an overview structures for ABoxes.

18

Therefore ABox structures should not only describe how big ABoxes are, but how
individuals are related with others as well. Compared with TBox hierarchies, ABox
structures are much more difficult to present. Relationships are based on different
conditions. Some are deduced from concepts assertions, some from role assertions,
and others from both concept assertions and role assertions. Figure 3-2 (a) shows the
individual relationships based on concept assertions and Figure 3-2 (b) illustrates the

individual relationship based on role assertions.

Is_being_usedl in _.---¥ (Wine‘_making)

P |
1
1
1
1

o
e,
=
=
=5
o
2]
o
[
1
]
]
]
]
]
1
]
i
1
]
1
]
[
1
A
A
1\
[A
1 \
1 \
1
I
!
[
L

* (Trichoderma viride)

(b) Individual relationship based on role assertions

Figure 3-2 Individual relationships based on ABoxes

4. Other work on ontology evaluation support

In this chapter, we describe related work and tools in the domain of ontology evaluation.
These tools or methodologies focus on different facets of ontologies. We compare them

with OntoKBEwval in Section 6.4.

4.1 ODEval

ODEval [9] is a tool to evaluate concept taxonomies of RDF(S), DAML+OIL, and OWL
from a knowledge representation point of view. It is a complement for ontology parsers

and ontology platforms.

ODEval can automatically detect possible problems in ontology concept taxonomies
(inconsistency: circularity issues and partition errors; redundancy grammatical problems).
This tool is used when the development of ontologies has finished. Figure 4-1 presents

possible problems that can exist when taxonomic knowledge is modeled.

As work on ontologies migrates from academic institutions into commercial
environments, ontologies have to conform to stronger requirements (correctness,
consistency, completeness, conciseness, etc.). For this reason, ontology tools (like
ODEval) are needed to prevent possible anomalies in ontologies, both in the research area

and in the industrial area, in order to provide reliable ontology-based systems [23].

20

/
Circularity Issue

 Commeon classes in disjoint decoropositions and partitions
R / Common instances in disjoint decorpositions and partitions
Inconsistency < Parditlun Frrors

External classes in exhawstive decompositions and partitions

Extornal instances i exhowstive decompaositiors and partitions

\Senmntic Errors

Inconplete Concept Classiffcadon

Digjoint knowlodge omissim

Incompleteness]
Exhaustive knowledge omission

Pariition Frrors {

G atical , Redundancies of subclass of relations
| Redundancies of msvance of relations

Rodundancy))
* l Tdentical formal definition of some classes

Identical formal definivdon of some instances

Figure 4-1 Potential problems that might appear in taxonomies

copied from [14]

ODEval uses a set of algorithms based on graph theory [15]. An ontology concept
taxonomy is considered as a directed graph G (V, 4), where V' is a set of vertex and 4 is a
set of directed arcs. For each language and each type of problem, the elements in the sets
V and A are different. Table 4-1 shows potential problems in RDF(S), DAML+OIL, and

OWL.
ODEval is used to detect possible anomalies from a knowledge representation point of

view. Hence, this tool helps ontology developers in designing ontologies and helps

ontology engineers to reuse ontologies.

21

RDF(S) DAML+OIL OWL
Circularity | Looking for cycles in | Looking for cycles Looking for cycles in
problems the graph G (V, A) (Mixed cycles and the graph G (V, 4)
Equivalence cycles) in
the graph G (V, A)
Partition No existence (because | Disjoint groups: an Detecting errors in
eITors no definition allowed | error occursina disjoint groups: an
of disjoint or disjoint decomposition | error occurs in a
exhaustive knowledge | or a partition, formed | disjoint decomposition
with any of the by the classes or a partition, formed
primitives of the {class_P1,class_P:,..., | by the classes
language) class_Pn}, if there are | {class P, class_P,...,
common elements in class_Pn}, if there are
two or more branches | common elements in
of the partition two or more branches
Exhaustive groups: if | of the partition
an element is only
reachable from the
base class (or its
equivalents) and it is
not reachable from the
classes of the
decomposition, then an
error occurs
Redundancy | For each class class A in V and each arc ri in 4 whose origin is class_A,
problems taking ri out of 4 and check if this change affects the set of elements

reachable from the class_A. If no change, this means at least one of the i
is dispensable. In this way, at least one problem can be found

Table 4-1 Means of problem detection in RDF(S), DAML+OIL, and OWL

4.2 OntoManager

OntoManager [21] helps determine the truthfulness of an ontology with respect to its

problem domain [23].

In an ontology-based information portal, ontologies often support semantic annotation

and conceptual navigation. However, for each business environment, changes should be

22

applied to the ontology to better meet users’ needs. If the underlying ontology is not up-
to-date or the annotation of knowledge resources is inconsistent, redundant or
incomplete, then the reliability, accuracy and effectiveness of the system decrease
significantly [27]. In order to avoid these problems, ontology-based applications have to
be supported by a mechanism for discovering these changes, analyzing and resolving

them in a consistent way [41].

To achieve these goals, OntoManager is designed to detect and resolve mismatches in a
consistent and verifiable manner. The state-of-the-art is evaluated in ontology
management tools and the best-in-class techniques and methods are selected. In order to
facilitate the management of ontologies, a workbench is proposed to integrate these tools
and enable interoperability between them (as Figure 4-2). This tool is used to evaluate

ontologies after their release.

In this way, OntoManager can find the “weak places” in the ontology according to users’
requirements, and try to modify it. It relies on the analysis of usage data by tracking
users’ interactions with the application in a log file and it is possible to collect useful
information that can be used to assess users’ main interests. However, it has the usage
limitation for evaluating ontologies in general as it is best applied in domains where it
occurs in ontology-based application. Therefore, OntoManager might be used as an

additional ontology analysis in help with an ontology evaluation.

23

Onrolo LA (7] mology,

~n

[COMPARE ONTOLOGIES |

v

| DETECT MISMATCHES |

v

[CLASSIFY TYPES OF MISMATCHES |

v

r SELECT APPROPRIATE RESOLUTION TOOLS OR TECHNIQUES |

v

CONVERT SOURCE ONTOLOGIES TO TOOL-NATIVE REPRESENTATIONS

Prowégé-compatible | OKBC | PowerLoom | ODE-compatible | DAML-OIL | ER-
v v v v v
I(Anchor PROMPTI Chimaera | OntoMorph ODEMerge OntoView ConceanoIJ
I INTEGRATE QUTPUTS AND PRESENT TO USER FOR REVIEW J
| MERGE ONTOLOGIES | [ALIGN ONTOLOGIES |

Figure 4-2 A schematic diagram of the OntoManager

copied from [21]

4.3 CleanONTO

For the Semantic Web, having consistent ontologies are very important. The system of
CleanONTO [38] describes concepts with definitions, which are paths from the concept
to the root of the ontology. In the current study, these definitions have been extracted
from WordNet 2.1 [29, 11] rather than a domain specific corpus. To explain the system
more clearly, we first describe the OntoClean [17] methodology and the different

implementations available to evaluate taxonomic relationships in ontologies.

24

4.3.1 OntoClean Methodology
The OntoClean approach focuses on the concepts and roles (properties) involved in
taxonomic relationships. It is an ‘IS-4’ relation, for example if P and Q are unary

predicate symbols, and / is an interpretation function, then P IS-4 Q iff I (P) S 1(Q).

As part of the methodology, a set of meta-properties are introduced drawn from
philosophy—unity, identity, essence and dependence, to characterize relevant aspects of
the intended interpretation of the roles, concepts, and relations that make up ontologies.
Moreover, these meta-properties dictate several constraints on the ontology taxonony
structure, used to evaluate ontologies.

e Unity: to recognize all the parts forming an instance and to determine the intended
meaning of properties in ontologies. +U—carry unity; -U—carry no unity; ~U—
carry anti-unity;

o Identity: based on intuition abound how users interact with individual entities and
distinguish an individual from others in a certain concept by analyzing essential
characteristic properties. +I—carry an identity criterion; -I—do not carry; +O—
supply ‘own’ but not inherited from subsuming properties.

e Essence: the properties with the rigid definition in order to let the individual
remain the same when displaying different properties at different times. +R—
rigid property; -R—non-rigid property; ~R—anti-rigid property

e Dependence: involving every instance dependent on a concept

25

Figure 4-3 (a) and (b) display the ‘unclean ontology’ and ‘cleaned taxonomy’ by

OntoClean respectively as follows.

Entity iy DR
P . Entity+t
e T~ R
. - N ~— ‘
Location Am"“mﬁft matier A o~ Group Location Amount of matter L
T Red Agent <0 +Q~T.D-R Agenl Group
i i T /" A e | N [‘-L\:"'D" R ~OnLDR
: : i i T . i ~
Physical object | Living bemg / N , o Plvsical objeet / ~
P s ya \Greup of people s)vOﬂf-D-r /Living being\ | l .
/ ~ y 7 / S Food ;woUDR o agent
/ Jr\ ¥ o/ / \V4 -LO-U-D-R / FEED-R
. .
L N F il vt Red Social entity
Fruit Food / \;/ / Social entity Fruit HEDR J*l,LD*R‘) Group of
\ A ma ’ 5 Bl A S Ant sanle
R 7/ An‘lf\ndl Legalugent GUDR 3"3‘;3]& _T%L(il)%ﬂ)
N\ \/ AN \ / 7 FYTRTR
Vv /(_ P _> ‘<,.a> '\ \.. \ ’;’
Apple / \ U N N Apple)
P P / }{, //’ \ hN N O UDR / Lepidoptesan
LN/ \Vertebrate ™\ Orgamization Geographical | JUDR areite Coutry
) \, A N , . [P v 0 L=DHR
] e . AN \\ Region | / Lo, TR D
LTV Cuerpillar : Y HUDR Cﬂ‘f{%“? N N\, Orgmization
. U appie stierfly D ' “OHDHR,
Country Red apple Butterfly Person Red apple Butterfly Person
LORD-R SHGDR AO-BDR

Figure 4-3 (a) unclean ontology (b) cleaned taxonomy by OntoClean

copied from [38]

However, different people may describe the same concept with different sets of meta-
properties. In this case, it secems that the meta-properties schema is not a good utility for

domain experts and engineers.

4.3.2 CleanONTO Methodology
The approach has mainly three distinct phases as follows.
e Acquire descriptions for each concept
Each of the concepts in the “‘unclean’ ontology is looked up in the online version

of WordNet [42] by an investigator reporting each of the paths.

26

Concepts Paths
Entity entity
Amount of matter matter — entity
Food food — solid — matter — entity
Fruit fruit — reproductive_structure — plant_organ — plant_part —
natural_object — physical_object — entity
Apple apple — edible_fruit — fruit — reproductive_structure —

plant_organ — plant_part — natural_object — physical_object — entity

Physical object

physical_object — entity

Living being

living_being — physical_object — entity

Animal animal — organism — living_being — physical object — entity
Person person — organlsin — living_being — physical object — entity
Agent agent — representative — negoctator — communicator — person —

living_being — physical_object — entity

Group

group — abstraction — abstract_eutity — entiry

Organization

organization — social_group — group — abstraction — abstract_entity — entity

Table 4-2 Paths for concepts found in WordNet

copied from [38]

e Break inappropriate links

In this system, the parent-child relationship is defined as: 4 concept B subsumes a

concept 4, iff the whole path of B is found in the path of 4, where concept 4 is

called the child, and B is called the parent [38].

When links break, the circumstances occur as Figure 4-2 (e) and (f) above. There

are some kinds of ‘circles’ in the taxonomy, which means a parent can be

inherited by a child and child can be inherited by a parent at the same time. In the

CleanONTO system, when the path of a parent is not in the path of child, the link

is inconsistent. These inconsistent ‘subtrees’ will be removed from the ontology

by the algorithm set in CleanONTO and the basic ontology (Tree-0) forms as

Figure 4-4 (the original unclean ontology is shown in Figure 4-3 (a)).

27

Figure 4-4 Resulting Tree-0 in CleanONTO

copied from [38]

Create a consistent tree
After removal all inconsistent ‘subtrees’, the next step is to try to place these

temporarily removed inconsistent elements back to Tree-0 in a consistent way.

For each ready-to-add concept, it may have several direct parents according to
Table 4-2. It is added to the Tree-0 as the child of the ‘least-root’ parent. For
example, we try to place the ‘subtree’ of the concept ‘entity’ back to Tree-0. In
Tree-0 in Figure 4-4 we already have ‘entity 2group’. 1) the concept ‘person’ has
the path of ‘person Dorganism 2living being Aphysical object Dentity’ (in
Table 4-2); only the ‘entity’ is included in the Tree-0; so we add ‘person’ as the
direct child to ‘entity’ shown in Figure 4-5 (1); ii) add ‘organization’, with a path
of ‘organization Dsocial_group Dgroup Dabstraction >abstract entity Dentity’
(in Table 4-2), in this case, it has two parents—‘group’ and ‘entity’, because
‘group’ is the child of ‘entity’, we add ‘organization’ as the direct child of

‘group’ shown in Figure 4-5 (2); i11) add ‘/iving being’ with the path of ‘/iving

28

being Pphysical object Pentity’, its parent— " entity’ appears after the step ii), but
the ‘person’ includes the its path as well, which means ‘person’ is a child of

‘living being’, so the Tree will be arranged as Figure 4-5 (3).

- entity entity
entity
\ person | group living being l group
person group
\ 4 A
organization person organization
(1) add ‘person’ (2) add ‘organization’ (3) add ‘living being’

Figure 4-5 Example steps to recover consistent tree

For the above example, the taxonomy tree is recovered and arranged and it is

illustrated as a cleaned ontology in Figure 4-6. The GUI is shown in Figure 4-7.

Entity

Location AmountofMater Physical Object Red Agent Group

| | N\ |
Courtry Food Frut LivingBeing Crganization

Apple Anmal Person

— T

Caterpiller Butterfly Vertebrate

Figure 4-6 Cleaned ontology as produced by CleanONTO

copied from {38§]

29

i Ehea 3 B3

keier CpRieat s
R ~ T

¥ ol
Y g

&

wopi i

A

."“ﬁ
ki G Y

A

CeLe i
"
et e bbb
w A

b et

Figure 4-7 GUI of CleanONTO

copied from [38]

4.3.3 Comparison of OntoClean and CleanONTO

Although OntoClean and CleanONTO provide methodologies to change an inconsistent

ontology into a consistent one, they are different in some ways. Compared with

OntoClean, CleanONTO is likely easier to use for ontology engineers with a GUI to

create a consistent taxonomy. Table 4-3 describes other distinctions between these two

methodologies.

OntoClean

CleanONTO

Based on meta-properties;

Sometimes add a new concept to the
taxonomy to show the different levels.

The concepts in the taxonomy not in
WordNet are not in the revised tree.

Table 4-3 Main difference between OntoClean and CleanONTO

30

4.4 CORE

CORE (a tool for Collaborative Ontology Reuse and Evaluation) provides automatic
similarity measures for comparing a certain problem or Golden Standard to a set of
available ontologies, retrieving not only those most similar to the domain described by
the Golden Standard, but the ones rated best by prior ontology users, according to
selected criteria [12]. The tool retrieves a ranked list of ontologies for each criterion,

using rank fusion techniques [2]. The architecture is shown in Figure 4-8. Figure 4-9

shows the GUI of CORE.
T o
G e
NUNE— o a—-—-
Frotaem Evalugtcn Usaer
dRETrpan crtena evisualinng

- " ¢ - Colinboratise -
Fatan Oniolay % | Evabistion [=
Evaluator v -
e } e . Koduie | a——
Iuaturle e =]
: Cnnalogy] Firgd
régogilory e i
i rArisg

F*v‘fb %“ a

R

Lf-:m__,.__ Combined

Evaluatarn avalsation
rasnkirgs anking

Froinm
Wanagsr

tital terms

Worher Evaiuslion
Bered Ranking
Ergire Cambiatog
T GUADEN STANBDARD SYETEM COLEABDRATIVE
[FEFINTION HECOMMERNDATIC EVALUATION
PHASE PHASE PHASE

WordNel S3marc repostory

Figure 4-8 CORE architecture

copied from [12]

31

i L ;cns!w

et

i e

¥ Tamannera: crfenon

Wordiiet synscts of plzze s pasen (1)

i e o I

Catologius suelusdion | edkdings

i Caem

EABORATIE EFALIATION

Srshen quxwmws!n fisen:

B T .

T prts red

-
[corveatness

5.8
: {0 bmuby et
; b et

2 . {

5T

W 5 pasts ww s

 Rasdabiity

¥ Tanpite

WL Y eyl

‘ Ty {'.:«umkv,: AT z [

g | PY S R
S S KRE
B (B getl]
Gl At gty Cad

| Pty
Lt o formaliy

o Tepe ol o)

[T

Figure 4-9 GUI of CORE

copied from [12]

Three different modules are distinguished as follows:

¢ Golden standard definition phase: it allows users to expand root terms and some

of the relations.

e System recommendation phase: it allows users to select a set of ontology

evaluation techniques used by the system to recover the ontologies closest to the

given Golden Standard.

e Collaborative evaluation phase: it re-ranks the list of recovered ontologies by

considering feedback and users’ evaluation.

32

CORE considers two lexical and taxonomic content ontology evaluation levels, for each
several measures have been developed and tested.

e Lexical evaluation: compared the lexicon entries or words of the Golden Standard
and a certain ontology are compared, the similarity between the two ontologies is
described. A new lexical evaluation measure is based on [28].

e The taxonomic evaluation: it assesses the degree of overlapping between the
hierarchical structure of the ontology, defined by the ‘IS-4’ relation and the
Golden Standard structure, defined by the derivations of terms to complete the

domain representation.

4.5 Ontology evaluation methodology for ontology evolution

This methodology considers the core questions as follows: how to define what a good
ontology for a particular context is, and how to perform ontology evolution to actually
obtain better ontologies in an automated manner. A central role in this approach is played
by the ontology evaluation function, which guides the discovery of changes that lead to

an improved ontology [20].

Two important forms of context: the usage-context and the domain context are selected,
which are relevant in many ontology-based applications. Furthermore, the method
provides the flexibility to essentially define arbitrary ontology evaluation functions [20]
for a variety of contexts and is open to embed new methods for change discovery leading

to improved ontologies.

33

The ontology evaluation is a basis to define what a good ontology is. It takes evaluation
considerations into account ‘during’ and ‘before’ evolution. It fulfills two conditions: 1)
to be able to tell which is ‘better’ for two given ontologies; ii) to offer a way to come up

with sensible ontology change operations in order to evolve the ontology automatically.

In this case, first of all, it lays the foundations to capture an ontology together with its
context, where it uses a formal ontology model based on OWL [24]; second, it formalizes
how to capture the contextual information; third, it formalizes the notion of an ontology
evaluation function; fourth, it presents the discover-change problem for ontology

evolution according to the optimization of the ontology evaluation function.

Figure 4-10 illustrates the logic architecture of the methodology. The key advantage is

that users are allowed to define for themselves what a ‘good’ ontology is and provide

support for making ‘better’ ontologies automatically.

34

Ontology Changes

P papiares seinbirousik S

G S
e T

Knowledge
Portal

Ontologies

Context

Evaluation
and
Evolution

| Domain-driven |

Usage-driven
Evaluation

Evaluation

Figure 4-10 Logic architecture

copied from {20]

35

5. OntoKBEval (A Support Tool for OWL Ontology evaluation)

This chapter focuses on the OntoKBEval system design and implementation details. We

describe our design ideas, the system architecture, and the main methods and functions.

5.1 Design ideas

As mentioned in Chapter 1, one can get thousands of ontologies through the Internet; for
example, one can find hundreds of ontologies about bio-informatics, which may have
large TBoxes or ABoxes with hundreds of thousands of elements. Users should have an
idea of finding the ‘best’ one to meet their need from their point of view. Ontology
evaluation can provide possible solution. We use RacerPro to translate OWL ontologies

into TBox and ABox information.

We present the evaluation results in the following three ways:

e Overview diagram: instead of showing all details in a hierarchical structure, we
consider the overview structure. We think it is a better way to present structures
for large ontologies by a Christmas tree, coordinate and clustered circle figures.
For example, if one wants to have the hierarchy of the concepts in traditional
ways, a standard diagram of a structured concept-tree could be generated. This
may make sense when the ontology does not have a large number of concepts.
However, to imagine, when there are thousands of concepts, the tree figure will be
very complex and hard to understand, and the graph layout could be difficult.
Thus, we decided to only count the number of concepts at each level and

represent them with a line whose length is proportional to the number of concepts

36

and to the scale of the ‘longest’ line. So users can easily get an overall impression
of the concepts’ distribution.

o Details browser: besides an overview structure, it is also important to give
detailed information about the DL KB, for example, listing all the concept names
in the ontology, furthermore, users can search for all concept names containing
certain keywords.

o Statistics: we compute the number of classified elements in a TBox or an ABox to
have a first general impression of the ontology. For example, we provide the total
number of concepts, individuals, and roles in an ontology in order to give users an
idea about how big the ontology is; the number of levels for the concept hierarchy
shows the depth of the concept tree. We use possible classification solutions to
present concepts, roles, and individuals and their interrelationships in certain

efficient ways.

5.2 System architecture
The OntoKBEval tool consists of two main components:
e Reasoner
= RacerPro 1.9 (access by using JRacer)
o User interface

= Users choose ontology files and send queries to RacerPro

37

Initialize

“’;; — ™ OntoKBEval Query R Load
N P » RacerPro Ontology
; Present
AN results JRacer Results
User

Figure 5-1 System architecture

5.3 System overview

The OntoKBEval system helps users to determine whether a loaded ontology is the right
one to meet their needs. In most circumstances, concept names are of primary interest to
users. Users want to know if the ontology file contains certain concepts they are

interested in.

For these purposes, we offer to evaluate ontology files mainly in three ways: quick-view
ontology evaluation, general ontology evaluation, and multi-file ontology evaluation. We
describe them in later sections respectively. We use the ontology file ‘people-pets.owl’ as
an example in the following. We implemented our tool in Java and express ontology

information using Racer commands.

5.4 System main window

The main window of our tool is shown in Figure 5-2. After loading an ontology file, users
can choose one of the three options mentioned above. We consider the first step of a
general evaluation the most important one, which mainly presents basic TBox

information to give users a first impression about the ontology; so the first results of the

38

general ontology evaluation are shown in the main window, such as the number of

concepts, the number of levels of the concept hierarchy, and so on.

£ OntoKBEval:A Support Tool for OWL Ontology Evaluation

Please enter the file name: l

- e : -
If you only want a quick view,.. | Start quick view | Or yOu Can... | Start general evaluation i

The current ontology file: [|

concorts Saon | nividcls [Searen_| s [Seaen

[Concept user-defined evaluation | v | Indiviciual user-defined evaluation | v | [Role user-defined evaluation ||

Levels I:I fAve concept.level ‘ ind VS Concept and Role
Ave, parent :I Ave. parent-level [M"E.’{ﬂi; ,,,,,,, J

You can load a folder in... [| Choose path...

il Display resuit H ' Start to load all awi files in the folder i

Figure 5-2 OntoKBEval main window

In order to start any kind of evaluation, it is required for users to first choose and load an

ontology file. The choose-file page is shown in Figure 5-3.

After clicking ‘Open’, we finish the ontology file selection; but the ontology file will not
be immediately loaded using RacerPro. The loading action can only be triggered by
starting any kind of evaluation. The separation between the ‘choose-file’ and ‘load-file’

functions can help avoid loading a ‘wrong’ ontology file by mistake.

39

~ BEEEE

Look In: {d Examples

(7 wine-food [people-petsowt |
[y beckham.inconsistent.ow! [) pizza.owl

™Y camera.owl [tambis-full.ovel

[famiby.racer

D galen.owl

[y yame.racer
[Mini-bio-3-05-25.0wt

File Hame: people-pets owil]

Files of Type: inu Files v

1 T
;. Open “ Cancel |

Figure 5-3 Ontology file loading window

5.5 Assumptions

Before we start to explain the functions, we mention some assumptions that we may

apply when dealing with query results from RacerPro.

Concept parent-children relationships: let us consider the conditions as shown in
Figure 5-4(a), (b), (¢), (d). In the case of (d), for example, concepts, ‘CI’ and ‘C2’
are in the 1% level, ‘C3’ is in the 2™ level, and ‘C4’ is in the 3™ level, though ‘C#’
is a direct child of ‘C2’. As to the conditions of (¢) and (f), we do not have to
consider them because in the case of (¢), we get CI1 *C2, CI 2C3, and C2 (3,
and integrate them into C1 >C2 C3 as the relationship in case (a); in the case of
(f), we get C1 2C2, C2-C3, and C3 2CI, then we can conclude C/, C2, and C3
are equivalent and RacerPro would have discovered this already. We assume this

kind of error does not exist in our hierarchy.

40

Figure 5-4 Concept parent-children relationship

e To save the computation time in the ‘general ontology evaluation’ part, we only
compute the concept part in advance; for roles, individuals and assertions, we
only compute them on demand.

e We assume that every ontology file has both a TBox and an ABox.

e The concept, individual, and role names are case sensitive.

e When the tool is started, the RacerPro should be started as well.

5.6 Quick-view ontology evaluation

This option is motivated by the idea of being able to look through ontologies faster. It
gives users a quick overview about the use of concept names in ontology files and tries to
find a ‘qualified’ ontology file. Usually, concept names reflect to which domain and
branch of the domain the ontology belongs to. Users can search concepts by entering
keywords. This function does not show concept hierarchies and can operate much faster
especially for large ontologies. Users can search ontology files one by one very quickly

until they find a desired ontology.

41

If there are matching concepts, they will be shown in a list-box. In this case, the user can
look through the results to see if they meet the requirements for our tasks. If the ontology
file is appropriate, users can choose to do the general ontology evaluation for retrieving
more detailed information. For example, if ‘cat’ was entered as a search phrase, we get
the results as shown in Figure 5-5. The number of results is shown next to the bottom-left
corner of the list-box on the left. The results include all concept names, with the keyword

‘cat’.

£ Quick view—‘penple—petsowl

cat
cat_fiker

S —

| | lcat_owner
Please enter the keywort: i S<keyword § MO
rm—————— publication

i :
jcat !
i

Search&Display>> |

_ Show all concepts>> |

<<return “E Get 4 results

Figure 5-5 Quick-view—main window

To facilitate the search operations, users can list all concept names in the list-box by
clicking ‘show all concepts’ button, in which way users can directly browse the list and
find all concepts in alphabetic order (shown in Figure 5-6). For small ontologies with a

few hundreds of concepts, this is a quick way to get an overview; however, for larger

42

ontologies, we suggest to use keyword search to find related concepts. Users can only
choose one of the concept names as keyword, which will be copied automatically in the

keyword text field by clicking on the ‘keyword’ button.

£ Quick view--people-pets.owl s g ; -IDLE(_]

adutt [l
animal

_ f T lanimal _lover
Please enter the keyword: | s<keyword | hicycle
hone
cat ! ‘brain
hroadsheet
bus
bus_comparny
bus_driver
car
i~ Show all conceptss>] cab
cat_liker
F«qum.,-] Get 58 results |cat_owner

1 Search&Display>> i

Figure 5-6 Quick-view—Ilist all concepts

5.7 General ontology evaluation

This part is the most vital part in our ontology evaluation system. It provides the whole

‘description’ of indicated ontologies. Both the TBox and ABox are considered.

Usually in the first step, we evaluate the TBox and then process the ABox, including
concept and role assertions. For the TBox, we provide mainly the number of concepts and
roles, and hierarchical diagrams For the ABox, we classify assertions as tuples and
clusters according to relationships between related elements. The clusters are presented

by circles. In both parts, browse operations can be used to retrieve more detailed

43

information about concepts, roles, individuals, and assertions. The results of a general

evaluation are shown in Figure 5-7.

% _OntoKBEval:A Support Tool for DWL Ontology Evaluation .

OntoKBEval:A Support Tool for OWL Ontology Evaluation

r
Please enter the file name: lE:lExamples\psople-pets.owl J |___ Choosefile, K
If you only want 3 quick view... f Start quick view oF You cati.., { Start general evaluatios ! ‘
The current ontology file: L people-pets.owl I

Concepts 61 t '“gea;gﬁ“‘] Indhviduals| 21 1 arch] Roles 24 1Searc“h‘1

I
|
!
i

" R S " i .
ﬁCunceMuser-" i l !V§ lIndividuat user-defined n]Vj iRote user-defined evaluation 17

[
Levels lIl fve concept-level 6.778 i Ind VS Concept and Role J
Rve. parent 1.689 Ave. parent-level

You can load a folder in... | o 1| choose path..

Display resuit i Start to load all owl files in the foldler

Figure 5-7 General—results of the first step (mainly about TBox)

5.7.1 TBox evaluation

In this section, we present the functions about concept and role evaluation. Concepts are

fundamental parts, which describe individuals with common characteristics. Roles define

relationships among individuals.

We describe relationships between two concepts as follows:

¢ The parent-child relationship: when one concept is subsumed by another one.

44

o The ancestor-descendant relationship: when one concept is subsumed directly or
indirectly by another one.

o Concept ‘fop’ is the ancestor of all other concepts; it only has children and
descendants but no parents.

e Concept ‘bottom’ is the descendant of all other concepts; it only has parents and

ancestors but no children.

In our system, we count the number of levels from the ‘zop’, which is at level ‘0’; the
children of ‘top’ are in the 1% level, and so on; until the concept is ‘bottom’, which is in

the last level of the hierarchical structure.

Roles are used to create connections between individuals, the instances of concepts. A

role may be transitive, symmetric, or have inverse, or equivalent roles.

Roles are also organized in a hierarchical structure similar to that of concepts. A role can
inherit from other roles and can be inherited by other roles. However, unlike in a concept
hierarchy, the role hierarchy does not have the ‘fop’ and ‘bottom’ elements as in a
concept hierarchy. The roles, which do not have any parent, are in the 1 level; the roles,

which do not have any child, are in the last level.

Except for the overview evaluation, we also provide functions to provide a more detailed

exploration of TBox information. We offer the overall figures for the results from the

detailed search. With the integration of overall and detailed information, users can have

45

an idea not only about what the TBox looks like, but what are components of this

structure.

5.7.1.1 Concept Xmas-tree figure

Figure 5-8 displays the concept hierarchy of ‘people-pets.ow!’. For each level, we mark
the number of concepts at that level. Users can get an idea about the concepts distribution
in the whole hierarchy of the ontology. We know that in the ‘0’ level, we only have ‘fop’;

in the 8" level, we only have ‘bottom’.

% Tree Figure--concept--people-pets.owl

e {12

(142

(22}

(8)

— i)

— 1)

— 1y

Figure 5-8 General—concept Xmas-tree figure

In contrast to other ontology browsers, we do not provide detailed information in this

figure, for example, the concept names at each level and their parents. However, we can

46

check the concept names using the function ‘concept level details’. We discuss it in

Section 5.7.1.9.

To create the Xmas-tree figure, we use the following algorithm:

1) We retrieve parents and children of each concept in an ontology using the Racer
commands ‘(concept-parents concept term)’ and ‘(concept-children concept term)’
respectively.

i1) We mark each concept in the format of a level-mark string (parent name,
current_concept, have_children_or_not, level no), where if a ‘current _concept’ has
children, we note ‘have_children or_not’ as ‘#’, otherwise ‘0’

e For ‘top’, its level-mark string is (0, top, # 0), where the 1% ‘0’ means ‘top’ has

no parents and the 2™ ‘0’ indicates that the level number of ‘7op’ is ‘0’

o For ‘bottom’, its level-mark string is (# bottom, 0,0), where ‘#’ means ‘bottom’
always has parents; the 1% ‘0’ means ‘bottom’ has no children and the 2™ ‘0’ is

Just a temporary note and the level number of ‘bottom’ will be computed after

all level numbers of concepts are settled.

e For concepts other than ‘fop’ and ‘bottom’:

» If the parent of a concept is ‘fop’ and its only child is ‘bottom’, its level-
mark string is (fop, current concept, bottom, 1), which means this concept is
at the 1% level.

> If the parent of a concept is ‘fop’ and it has one or more children other than
‘bottom’, its level-mark string is (top, current concept, # 1), which means

this concept is at the 1 level;

47

ii1)

vi)

» If the parents of a concept do not include ‘zop’ and its only child is ‘bottom’,
for each of these parents, its level-mark strings are (parent name,
current_concept, bottom, 0), where ‘0’ is just a temporary marker and the
level number will be computed in the next step.

» If the parents of a concept do not include ‘top’ and it has one or more
children other than ‘bottom’, for each of these parents, its level-mark strings
are (parent_name, current_concept, # 0), where ‘0’ is just a temporary
marker and the level number will be computed in the next step

To compute the level number for each concept. As we have marked all the
children concepts of ‘fop’, we mark the level numbers of the children of these
concepts on the 1% level, and the children of concepts on the 2" Jevel, and so on,
until all the concepts other than ‘botfom’ are marked.

To arrange level numbers for concepts other than ‘fop’, ‘botfom’ and the children
of ‘top’. Because case (d) in Figure 5-4 may occur, for each concept, which has
more than one parent, we arrange the level number of each concept as the
maximum value among its level-mark strings.

To mark the level number of ‘botfom’. The level number of ‘bottom’ is marked as
(the maximum level number of other marked concepts+1).

To count the number of concepts on each level and draw the Xmas-tree figure.

This kind of presentation method may encounter problems when the ontology has too

many levels or the number of concepts at a certain level is much larger than that at the

others. For example,

48

i) If there are 100 levels, the lines will be very dense and may be overlapped. The
diagram will display a solid black hierarchy drawing and does not properly show
how the concepts are distributed.

ii) If we have five levels and the numbers of concepts at each level from ‘top’ to
‘bottom’ are respectively 1, 1000, 6, 5, 1, we draw the longest line to present the
level with 1000 concepts; but compared to 1000, the lines for 1, 5, 6 are almost
identical.

iii) If the cases of 1 and ii occur at the same time, the presentation will become even

WOrSse.

To improve the quality of presentation in such cases, we introduce another diagram—the

coordinate figure discussed in the next section.

5.7.1.2 Concept coordinate figure

Another hierarchical diagram is the coordinate figure shown in Figure 5-9. The idea

comes from mathematical method about diagrams of functions.

This figure is different from that of the Xmas-tree figure in the x-y coordinates; it has the
scales for x- (consider the maximum number of concepts among the levels) and y- (the
number of levels) coordinates. After testing with more than 30 ontologies with sizes from
several KB to several MB, we decided to mark the coordinates (both x and y) using the

following parameters:

49

Domain (x or y) Scale starts from 1 and marks every interval
[1,20] 1
[21, 70] 5
[71, 150] 10
[151, 350] 20
[351, 700] 50
[700, 999] 100
>=1000 Computing log(X) or log.«(Y) and using the results to
mark the scales in a of the linear domain

Table 5-1 General—coordinate figure—scale selection

Coordinate Figure--concept--people-pets.owl L IR [<

Numbet of concepts

22 '
20 / {
\

) Level

Figure 5-9 General—concept coordinate figure

As shown in Table 5-1, if either x or y is less than 1000, we take different scales to set

marks in the coordinate axes in order to present results in proper scales. If either x or y is

50

greater than or equal to 1000, we use the logarithmic value of x or y in order to reduce the

distortion resulting from having too many concepts at a certain level.

5.7.1.3 The total number of concepts

Concepts

The number of concepts is computed as one of the statistics values to measure how big

the TBox is. The example ontology is relatively small with 61 concepts. We send the

Racer command to get all concepts and arrange the results to count the number of

concepts.

5.7.1.4 The number of levels

Levels

This value is often used together with the concept hierarchy. It presents the depth of the

hierarchy. It is computed after the hierarchy has been received from RacerPro.

5.7.1.5 The average number of concepts at levels

Ave concept-level

6.778

The average number of concepts in each level presents the average concept distribution

among levels.

51

5.7.1.6 The average number of parents for each concept

Pve, parent 1.689

The parent-child relationship is important in the hierarchy. The number of parents for a

concept indicates how many parents a child inherits from.

5.7.1.7 The average number of parents for each concept at each level

This function is like the one described in the last section but indicates of how many
parents a concept inherits on average at certain levels. It indicates the trends of the weight
of the concept hierarchy. Figure 5-10 displays the average parent number of concepts at

each level.

£ pve parent-level-—-people-pets.o

0.0
1.0
1.0
1.29
15
1.6
2.0
33.0
1.0

Figure 5-10 General—average number of parents in each level

5.7.1.8 Concept user-defined evaluation

Figure 5-11 shows the main window for a user-defined concept evaluation. All the
concepts and the number of concepts are listed in the left ‘all-concept’ list-box on the

bottom of the frame.

52

To add a keyword in the ‘search-condition’ list-box, users can directly enter a keyword in
the text-field and click the ‘add’ button to put it in the ‘search-condition’ list-box. To
facilitate users’ operations, users can easily add a keyword in the ‘search-condition’ list-

box by selecting a concept and clicking the button above the ‘all-concept’ list-box.

£ User defined frame--Concept--people-pets.owl

anial e Please input hew searching condition:

<<Add

| >»Delete
string match 1:
: | |
;. =rgearch1 | larirnal
string match 2:
A e . . \
. »esearch2 | and \v; i i
-
adult 2 Level01:animal 1| xstart and resuit
fanignal - ., - Level 04:animal_{over ‘ N S
;animal_lover —
bicycle
|
lbone
ibrain
broadsheet
ibus P
]

%hus_cumpany i
|bus_driver P
1‘:” - Get 2 results Return
P I SR ST

Concept: 61

Figure 5-11 General—concept user-defined evaluation

For the search function, we provide simple and compound methods. The combo-box
contains ‘and’, ‘or’, ‘not’ options. 1) Assume a user only enters a keyword in the ‘string
match I’ text-field. For example, we entered ‘animal’ as shown in Figure 5-11; we click
the ‘start and result’ button; then we get two results in the ‘result’ list-box: ‘animal’ (in
the 1* level) and ‘animal_lover (in 4t level). ii) Assume a user only enters a keyword in

the ‘string match 2’ text-field. In this case, only the ‘not’ option can be used while the

53

‘and’ and ‘or’ options do not work. For example, we enter ‘animal’ and choose ‘not’;
then we get all concepts except ‘animal’ and ‘animal-lover’. If the option is ‘and’ or ‘or’,
the result is the same as using only ‘string match 1’; iii) Assume a user enters keywords
both in ‘string match I’ and ‘string match 2° with one of the ‘and’, ‘or’, ‘not’ options
selected, which starts a compound search. This compound search helps meet multi-

purpose keyword searches.

After getting search results, users can create a Xmas-tree figure for all the results in order
to see their selected distribution, which might be more efficient if we have many results.
For example, if we specify the following condition: one keyword ‘a’ (in ‘string match 1),
the search option of ‘not’, and the other keyword ‘ain’ (in ‘string match 2’); then we get

the results and the sub-hierarchy figure as shown in Figure 5-12 (a) and (b).

£ [ree Figure--sub-hierarchy--people-pets.owl

Level 01.2

Level 01:animal -
Level 01:.company
Level 01:plant
Level (2:bus_company
Level 02:haulage_company
Level 02van £
Lewel 02vvegetarian
Lewvel 04:animal_lover
Level 04:man
Level 04:woman
Level 05:van_driver .

w ——— Level 0611

| BPCTRCN W o T et Res ik T S

Level 04:3

Lavel 02:4

i

Level 051

Figure 5-12 General—examples of (a) compound search results and (b) the sub-hierarchy

54

5.7.1.9 Concept level details

This function is a complement for the Xmas-tree and coordinate figures. We list all the
concept names from the selected level. Figure 5-13 displays the concepts from the 2"

level as an example.

2 Concept level details--people-pets.owl

I

The number of levels is 9 bicycle
bus

bus_company
car

cat

oy

duck

elderly

giraffe

[grass
haulage_company
lorry

magazine ,
Get 22 results newspaper o Return |

=l

| Display resur>>

Figure 5-13 General-—concept level details

5.7.1.10 Concept equivalent user-defined evaluation

Concepts can have synonyms, in which case these concepts are called equivalent. Users

can check if there are equivalent concepts for a selected one, as shown in Figure 5-14.

55

ARl

£ User defined frame--Concept equivalent--peaple-petsiowl "

Concept equivalent

‘adutt Mo results found!

animal
animal_lover
bicycle
bone i i : . .
brain l Results...,
broadsheet T
hus
bus_compary
bus_driver
car

cat -

L

Concept : 61 Get no results

Figure 5-14 General-—concept equivalent user-defined evaluation

5.7.1.11 Role Xmas-tree figure

This evaluation method is similar as that of the concept Xmas-tree figure. Figure 5-15

displays the role ‘people-pets.ow!’ in Xmas-tree figure. It only has two levels, which is

not a deep hierarchy.

4 Tewe e rolee-peagle qudaomd P i il 2

pal-Ik

Figure 5-15 General—role Xmas-tree figure

56

5.7.1.12 Role coordinate figure

This function is similar to the concept coordinate figure. Figure 5-16 shows the role

coordinate figure accordingly.

Similar to a detailed concept evaluation, we also provide a detailed evaluation for roles.

Coardinate Figure-—vole--people-pets.owl

Nurriber of rules
20 .
s N
:
18 \\
15
14

2 h

12 \

i N

10 N
™

Figure 5-16 General—role coordinate figure

5.7.1.13 Role user-defined evaluation

The main functions are similar to those used for concepts. Users can search for roles,
which satisfy the indicated conditions and can have the Xmas-tree figures for the results.

The GUI is also the same as the one for concepts.

57

5.7.1.14 Role level details

This function offers details of roles at each level. Compared to concepts, we count the

level number from ‘1°. Users can also get the number of levels in a role hierarchy.

5.7.1.15 Role transitive user-defined evaluation

Roles may be transitive. We compute all transitive roles automatically. If no transitive
role exists, a message-box will pop up as a reminder. The GUI is similar to that for

equivalent concepts.

5.7.1.16 Role symmetric user-defined evaluation

Roles may be symmetric. We compute all symmetric roles automatically. If no symmetric
role exists, a message-box will pop up as a reminder. The GUI is similar to that of

equivalent concepts.

5.7.1.17 Role inverse user-defined evaluation

Roles may have inverse roles. When users click on one of the roles in the ‘all-role’ list-
box, its inverse role will be displayed on the right automatically if it exists. For example,
as shown in Figure 5-17, the role ‘eaten-by’ has the inverse role ‘ear’. Other functions in
this evaluation are similar to that of the concept user-defined evaluation, such as the

simple and compound search, the Xmas-tree figure for all the results, etc.

58

£ User defined frame--Role inverse--people-pets.owl i i i e <)

Please input new searching condition:

e
eaten_ky S i

<<hdd i |

| »=Delete \‘
string match 1:
| >>search1 | ieaten_by

string match 2:

==gearch 2

Inverse roles
drives eats ILevel 01:eaten_by
eaten_ky i
Bats | !
has_child I

has_father |
has_mother b
has_parent
has_part
has_pet
is_pet_of | .
likes [| ! Return |

S . SO e L. . . ; (B

i

<<startand resutt

>>grapgh

Get 1 resuits

Raole inverse: 25

Figure 5-17 General—role inverse user-defined evaluation

5.7.1.18 Role equivalent user-defined evaluation

Roles may have equivalent roles. This function is similar to the concept equivalent user-

defined evaluation. The GUI is similar to that for equivalent concepts.

5.7.2 ABox evaluation
In this section, the functions for individuals, concept assertions, and role assertions are

described. The relationship among concepts, roles, and individuals are also presented.

We describe evaluation facilities about relationships between concepts and individuals

caused by concept assertions.

59

We provide individual evaluations based on both concept and role assertions. To explain
this more clearly, we introduce the notion of ‘tuple’ and ‘cluster’. Individuals are
classified in ‘tuples’ according to their concept assertions, which indicate all the instances
of one ‘class’. For the role assertions, we combine the original role assertions retrieved
from RacerPro; for example, if /1, 12, I3 are individuals, which have the role assertions
11212, 12 213; then we combine them into [/ =212 2I3. In this section, we use combined
role assertions instead of original role assertions. Even if all assertions from RacerPro are
already combined, we may find that several role assertions refer to the same individual;
in this case, we allow users to define a similarity degree in order to further combine
certain role assertions. We integrate concept assertions and combined role assertions to
provide a better ABox evaluation. In the ontology of ‘people-pets.owl’, we have the

combined role assertions as follows:

MinnieMTom Walt M»Louie Walt M»Dewey
Walt MHuey Fred —M—»T ibbs Joe MFZ’C]O
Rex is_pet_of » Mick read »Dairy _mirror
Ree P eI 0125 aBC

We will discuss them in more detail in later sections of this Chapter.

60

5.7.2.1 Individual Xmas-tree figure based on concept assertions

We provide the Xmas-tree figure for individuals based on the concept assertions. Every
individual has a corresponding concept while not all individuals are necessarily part of
role assertions. All individuals are instances of the concept ‘fop’, so ‘top’ has the most
number of individuals among all the concepts, which means that in the Xmas-tree figure,
the first line is the longest ones. Every individual that belongs to a concept also belongs
to the parents of that concept. So the concept-assertion-based individual Xmas-tree is the
tree with the widest top and a small bottom. Figure 5-18 illustrates the individual

hierarchy.

Tree Figure--individual--people-pets.owl A LA YI' i e ,;JQJ}J

()

(21)

{103

(2}

— {1

(o)

Figure 5-18 General—individual Xmas-tree figure

61

5.7.2.2 Individual coordinate figure based on concept assertions

The individual coordinate figure is similar to those for concepts and roles.

& Coordinate Figure—individual--people-pets.owl

Number of individuals

20

i

=10

Figure 5-19 General—individual coordinate figure

5.7.2.3 Individual user-defined evaluation based on concept assertions

The main functions are similar to those defined for concepts and roles. Users can search

for particular individuals. A search includes a single or compound condition and its

results can be represented with Xmas-tree figures. The GUI is the same as that for

concepts. The difference from the GUI for the concepts is that a certain individual name

can appear many times belonging to several levels while a concept can only belong to

one level. For example, if we look for the individuals containing ‘Minnie’, we get the

following result:

Level 00:Minnie
Level 01:Minnie
Level 02:Minnie
Level 03:Minnie
Level D4:Minnie
Level D5:Minnie

62

5.7.2.4 Individual level details based on concept assertions

This function offers details of individuals at each level. We count the level number from
‘0, which is the level where we can get the individuals of ‘zop’. The GUI is similar to the

GUI for concepts.

5.7.2.5 Individual graph based on tuples

We group all individuals belonging to a concept in one tuple. An example is shown in
Figure 5-20. We define the elements in this kind of graph as follows:

o The circles stand for tuples of individuals, which have the same size no matter how
many individuals are in a tuple. These circles are distributed evenly from the center
of the frame.

e All the individuals in one circle are the instances of a certain concept.

e The numbers around circles have different meanings.

¥ Serial number to mark the number of tuples

Total number of individuals in the tuple

—
\‘ The number of pairs of individuals in the same

group has relationships according to the role

Figure 5-20 General—representation of numbers around tuple circles

o Relationships between individuals belonging to different circles will be represented
by drawing lines between circles, and the number of pairs will be marked on the

line if the relationships exist.

63

Figure 5-21 illustrates the tuple graph of ‘people-pets.owl’. The individuals are classified

into 34 tuples and no relationships exist between the tuples.

£ Tuple Figure--people-pets.owl

Figure 5-21 General—individual graph based on tuples

64

5.7.2.6 Individual graph based on combined role assertions

We know that possibly not all the individuals occur in role assertions (or combined role

assertions). These individuals not included in any role assertion are grouped separately.

We use circles to represent these classified groups as well. The size of each circle is
proportional to the number of individuals it includes. That is to say, the group with the
largest number of individuals has the largest circle. We draw the circles from the center
of the frame in a descending order. This means the groups with the largest number of

individuals are drawn from the center. Figure 5-22 shows an example.

& Tuple Figure--Ind role-ass--people-pets.owl

Figure 5-22 General—individual graph based on combined role assertions

65

Among these groups, relationships may exist as they may include & share certain
individuals. In this case, we mainly focus on how individuals are distributed and ignore
the relationship between two groups. The ‘cluster’ shows these relationships in more

detail in the next section.

5.7.2.7 Individual cluster graph based on combined role assertions

To measure the degree of similarity between two combined role assertions, we introduce
the notion of cluster ratio, which is a value from 1% to 99%, entered by users. Its default

value is set to be 50%.

Cluster ratio EU_:J %,

For example, if we consider two combined role assertions: A: a2b=>c—>d and B:
a=2b e, the same individuals are ‘@’ and ‘b’, the ratio for A is ratio_ A= the number of
same individuals / the number of individuals = 2/4=50%; the ratio for B is
ratio B=2/3=67%
e when ratio=50%, ratio A>=ratio and ratio B>=ratio, we cluster the two
combined role assertions into one cluster with a, b, ¢, d, e
e when ratio=90%, ratio_A<ratio and ratio B<ratio, we do not cluster the two
assertions
e when ratio=60%, ratio_A<ratio and ratio B>ratio, we do not cluster the two

assertions either.

66

We only combine two combined role assertions in a cluster if their ratios are both more

than or equal to the given cluster ratio.

We use ratio=50% as an example to describe the whole process.

Given a cluster ratio=50%, for ‘Rex>Mick2?Dairy Mirror’ and
‘Rex ?Mick 2>Q123 ABC’, their ratios are both 2/3=67%>50%, so we cluster
these two into one cluster with four elements: ‘Rex’, ‘Mick’, ‘Dairy Mirror’, and
‘P123 ABC’; As to ‘Walt2Louie’, ‘Walt 2Dewey’ and ‘Walt?Huey’, for any
two of them we can get the ratio of 1/2=50%, so we cluster the three into one
cluster containing four elements ‘Walt’, ‘Louie’, ‘Dewey’, and ‘Huey’; for the
other combined role assertions, they have no common elements, so we do not
cluster them.

The ‘cluster graph set frame’ is shown in Figure 5-23. Users should choose one in
the ‘search domain’ to show certain clusters. Furthermore, users have two
optional selections: 1) draw relationship lines (if any two clusters share certain
individuals, then a line is drawn) ii) draw clusters with 1 member (these clusters
are less interesting for users, because they only have concept assertions); by
default, the number of clusters with 1 member will be computed and the result is
printed as a string in the lower-left corer of the graph. This option works only

when one chooses to draw all clusters.

67

Total 3 kind(s) of clusters:

Search domain:
i Allclusters

& Cluster graph set frame--people-pets.owl

emher(s}--s

——]
2 memberis)--3
4 member(s)--2

i1 Single cluster with [_________ | members

{7 Clusters from with |

) Ciusters with

to |] members

{ please seperate with* "}

[] draw clusters with 1 member

Display cluster graph

Cancel

Figure 5-23 General—cluster graph set frame

e Display graph

& Tuple Figure--ind-cluster--people-pets.awk

The number of ciuster with 1 membaer i 8

I 25! 2. Tuple figure--ind-cluster--people-pets.owk

(a) all clusters without and with clusters with 1 member

68

AR *JJ
[=A

28

(c) clusters from with 2 to 4 members

i Tuple: Figure- - Cluster 65~ people-pers ol e Gz R SR

el G261

(d) clusters with certain numbers of members (2, 3 ,4—2 and 4 exist but 3 not)

Figure 5-24 General—individual cluster graph

69

In the case of ratio=50%, there are no relationships among clusters. When we change the
cluster ratio to 90%, we get clusters with relationship lines (the number in the middle of

the line marks the number of same elements) as illustrated in Figure 5-25.

£ Tuple Figure—-role-cluster--people-pets.owl =100
ON O
({//"_‘ \\“\.}) e m_“\\\ //"‘“\\\
: \ (2
S
\\x_k__,/ / 3 //l \‘;ﬂ{__._/

— \\\ A / TN
© /1 O
- e ﬂ\\\ / .

/ N/ ”
T /J/ T
\ ! / - N
2 J (N
AN /> \’\ - - ('// 4
S ”\::_ . P /1/ DN
/ N
—_ / Y TN
O (7 O
N~
()
\\ H/'

Figure 5-25 General—individual cluster graph (ratio=90%)

70

5.7.2.8 Role graph based on individuals

This function is used for roles. It gives the number of individual pairs used by roles in

role assertions (Figure 5-26).

2 Tuple Figure--role ind-hased—-peple-pets.ouil Fi : X’; =00 _)s]

The number of roles na related to ind is 20

Figure 5-26 General—role graph based on individuals

5.7.2.9 Individual Xmas-tree figure based on assertions

First of all, we will detect if there exist any cycles in our combined role assertions. A
cycle exists if an individual can reach itself through a certain number of role assertions. If

no such individual is found, no cycle exists then.

71

If there exist cycles in role assertions, for example: a6 2¢c and c¢-a, we do not
combine them as a b 2¢ 2a, because if in this way, the role assertion combination will

be very complex. By now we do not have a good solution to deal with this case.

The individuals having only concept assertions are at the first level. In the combined role
assertions, the left-most individuals appear at the first level, then the individuals directly
on their right on the second level and so on, until all the individuals are marked. The

Xmas-tree figure obtained is shown in Figure 5-27.

& Tree Figure--ind-ass-based--people-pets.owl

(13}

(2)

Figure 5-27 General—individual Xmas-tree figure based on assertions

5.7.2.10 Tuple detail retrieval

This function provides detailed information about each tuple. One can get all the

individuals in selected tuples, and for each individual we can get the role assertions to

72

which they are related to them. For example in Figure 5-28, we searched the ‘fop’ tuple

and got 21 individuals; for the individual ‘Fido’, we get one role assertion (Joe, Fido):

has_pet. The result is displayed as ‘Joe [has pet]’. As for the individual ‘Fred’, the

result will be presented as ‘/has_pet] Tibbs’, due to its role assertion (Fred, Tibbs):

has_pet.

Total 1tuples Get 21 tuple results

top , e Daily_Mifror
Dieswesy

Tuple searche>

=

FHossie
Fiutty
Fred
Huey
Tuple Graph Joe
Ine concept-ass v ;KW‘"
© Louie
Mick
Minmie
Q123_ARC

Get 1 role result(s)

Jge[nas;;gh .

Figure 5-28 General—tuple detail retrieval

5.7.2.11 Combined role assertions retrieval

Before the combined role assertion retrieval starts, the system searches them

automatically checks to find out if cycles exist. If any exists, it indicates in a combo-box

is displayed, which lists all the cyclic assertions; otherwise, it indicates no cycles exist.

As shown in Figure 5-29, we can get all the combined role assertions related to the

selected individual.

73

Get 2 setis) of tesulls

No cyche in role assertions -1 start... -
Wik g Rex

Minwie ;' s _pet_of} |
Q123_RABC ? >Hlick -
Rex 1 Sparchy> &' [u'eads-:} ' L
Thetz [1. ot Daﬁy__MMrur

The_Guardian _2 ~-vend... Lo
The_Sun - ; :
The_Times }) z Start.- é
Tibhs - - Rex L
. hd cHspetofy T

Figure 5-29 General-—combined role assertion retrieval

5.8 Multi-file ontology evaluation

Sometimes users have numerous ontologies at hand and they have no idea which ones are
interesting. For each of the ontologies, users would have to load a single ontology and
evaluate it, and so on. However, this task is time-consuming and users have to take notes

about the results.

To facilitate this search, we introduce a multi-file ontology evaluation function. One can
collect all ontologies in one folder and load these ontologies one after one automatically.
This function gives users an overview of these ontologies, in which case the results
contain the total number of concepts, individuals, and roles, the number of levels, the
average number of concepts at levels, the average number of parents for each concepts,
and the concept Xmas-tree figure. If users are interested in certain ontologies, they can

perform general ontology evaluation for further information.

74

The results can be displayed in the user interface and written into a ‘.doc’ file which is

created or overwritten in a selected folder.

£ Display result

umis-1.owl il
the number of concepts:297
ithe number of individuals:206
the number of roles:241

the number of levels:7 ==
the average concept number of each level:42.714
the average parent number:1.689

(104}

{60)

{121)

-{4)
(1)
EERXAKERXRRERE XA E kR X
hike?7.owl
the number of concepts:122
the number of individuals:32]
ithe number of toles:44

(a) Results shown in the user interface

75

E§ result.doc - Microsoft Word

Edit.View “Jnsert - Fgrmat .Jools Table indow Help AdobePDF Acrobat Comments

P2

.tk 15 100% - @ LliRead E | Courier New

jarls-1. 0wl

the number of concepts:287

the number of individuals:206

the number of roles:241

the number of levels:?

the average concept number of each level:42.714
- the average parent number:l.689

. -{1)

- (60)

(104)

-1}

- FEERKAKERRFREIRRERSRERARTR

bike?7.owl
the number of concepts:122
the nuwber of individuals:32
the nuwber of roles:44
the number of levels:é
the average concept nurber of each level:20.667
the average parent nuwber:1.347
-{1)

137)

(121)

(25)
. —(2)
[_ -

EERKEEREXR TR EFXRENRRNRERHFAF

bikeé.owl

(58)

- the
the
the
the

number
nurber
nurher
nurjper

of concepts:1z22
of individuals:32
of roles:44

of levels:6

- the average concept nurber of each level:20,667
- the average parent number:1.347
=-(1)

(37)

- (25)
. --(2)
=(1)

~ FEKRRFEFFRRARRRAREEFFRAEAR

(58)

Page:l Sec 1 11 At 1" it Colt HECTTRE EXT

Englishis (D

(b) Results shown in a ‘.doc’ file

Figure 5-30 Multi-file—results

76

6. System testing
In this chapter, we report on the evaluation results using several ontologies with sizes
from 40KB to about 8MB. These results are analyzed and discussed.

6.1 Ontology selection

For system testing, we used about 60 ontology files from several KB to about 8 MB, with

large TBoxes and/or ABoxes. We list some typical ontology files in Table 6-1.

. ABox
Ontology Name Size TBox Concept assertions Role assertions

people-pets.owl 39.4KB Yes Yes Yes
wine.owl 78.7KB Yes Yes Yes
bike7.owl 164KB Yes Yes No
umis-1.owl 220KB Yes Yes No
galen.owl 2.31MB Yes No No
umls-2.owl 7.47TMB Yes No No

Table 6-1 Typical ontology files for system testing

6.2 Testing results

We implemented our tool in Java with NetBeans 4.1. JRacer acts as the bridge to deal
with the communication between Java and RacerPro. In the system testing process, we
compare our results with those from RacerPorter using Racer commands in order to

confirm correctness of the results.

6.2.1 TBox
All the ontology files used have a TBox, which includes concepts and roles. We can
retrieve all the information from the detailed evaluation part. Table 6-2 illustrates the

most important results for TBoxes.

77

people-pets wine bike7 umls-1 galen umls-2
Number of | ¢, 208 122 297 2795 9477
concepts
Number of
concept 9 10 6 7 17 10
levels
Average
number of 6.778 20.2 20.667 42.714 161.824 947.9
concepts
Average
number of 1.689 1.614 1.347 1.689 1.441 1.156
parents
Number of 24 27 43 240 422 9550
roles
Number of) 2 2 4 10 5
role levels

Table 6-2 Main TBox results

From the results, one can see that having more concepts does not mean having a deeper
concept hierarchy. Although the number of concepts in ‘galen’ is less than those of
‘ulms-2’, and it has a deeper hierarchy with a maple-leave like distribution, while the
hierarchy of ‘ulms-2" looks like a sword, where 7740 concepts out of 9477 are in the 1%
level and much less concepts in other levels. Figure 6-1 illustrates the Xmas-tree figures.

A1) ()

—{

02y (7740)

—
J——ch} — {455)

(83)

(1051)
132)

(3727

1138}
(434)

(4703 L(38)

(319)

(3103 Ne1G)

{271)

(8)
(252)

(55)

(2)
—(8)

() (1)

Figure 6-1 Xmas-tree figures (a) ‘galen’ (b) ‘umls-2°

78

We mentioned in the previous chapter that if the number of concepts or the number of
levels exceeds 1000, we adjust the coordinate scale to be logarithmic in order to reduce
the untrue representation due to the big difference between the longest and the shortest
lines. As shown in Figure 6-1 (b), the 1% level of ‘ulms-2’ has 7740 concepts; so the
coordinate figure changes to a non-linear one, in which the y-coordinate scales are

marked as 10, 100, 1000 and 7740 (the total number of concepts in this level) is shown in

Figure 6-2.
Murnber of concepts
Tra0 4
| Y
1000 \ L
N T A\
Y\ “-\
\l
140 \\
AN
\\\
AN
10 \
\\‘
S
y Level
I 1 2 3 4 5 B 7 8 g 10

Figure 6-2 Logarithmic scale coordinate figure of ‘umis-2’

With all these testing ontologies, Xmas-tree and coordinate tree figures work very well.

However, if we get thousands of levels, the Xmas-tree might become a totally ‘black’

79

filled figure and cannot reflect the true situation of each level. However, the coordinate-
tree figure may partly solve this problem with a logarithmic scale. It works better to deal

with huge ontologies with thousands of levels.

6.2.2 ABox
people-pets wine bike7 umls-1 galen umls-2
Number of 21 208 32 206 0 9339
individuals

Table 6-3 The number of individuals

For the ABox, we only consider the results of ‘people-pets’ and ‘wine’ here.

For the detailed evaluation, we always get our expected results. However, for the ABox

graphs we get some unexpected results in some circumstances.

e The individual graph based on tuples: that of ‘wine’ is unreadable when ontologies
have more than 120 tuples as illustrated in Figure 6-3 (167 tuples), compared with
‘people-pets’ with 34 tuples. By now, we dé not have better solutions to solve this
problem. In the ‘wine’ case, an alternative way is to refer to the detailed tuple
evaluation part for the number of tuples, individuals in each tuple, and role assertions

related to these individuals.

80

& Tuple Figure--wine.owl

=100

Figure 6-3 The individual graph based on tuples of ‘wine’

The individual graph based on combined role assertions: users may encounter
problems when there are too many circles. Figure 6-4 is this kind of graph of ‘wine’.
We get many more circles with 2 members, which causes the circles size with 2
members to be smaller than that with 1 member. If even more circles exist, the graph
will be more complicated and less informative like ‘the individual graph based on
tuples’. However, this is a specific case for ‘individual cluster graph based on
combined role assertions’ with a cluster ratio of 100%. We can use the ‘individual
graph based on combined role assertions’ function to separate the whole graph into

parts in order to zoom in parts of the whole graph. It can partly solve this problem.

81

% Tuple Figure--Ind role-ass-wine.owl

Figure 6-4 The individual graph based on combined role assertions of ‘wine’

Individual cluster graph based on combined role assertions: This function partly
solves the problem of the individual graph based on combined role assertions with a
large number of circles by choosing to view parts of the circles with certain members.
For these testing ontologies, this function can give us a good evaluation view of these
ontologies. However, even if we only view clusters with a certain number of
members, lots of relationship lines drawn can make the cluster graph unreadable, and
more, the similar situation will occur as that of ‘the individual graph based on
combined role assertions’, if there are hundreds of clusters.

Role graph based on individuals: This function may encounter the same problems as

that for the ‘individual graph based on combined role assertions’. If we have a large

82

number of role assertions with hundreds of different roles, the graph may become too
complex to read.

e Individual Xmas-tree figure based on assertions: this function presents structures
similar to that of concept hierarchies. In our testing process, the number of levels is
not deep; the ‘wine’ only has 4 levels. When hundreds of levels are found, the
problems of possible untruth presentations may occur as in the case of Xmas-tree

figures.

6.3 Discussion

Ontologies are different: some ontologies have big TBoxes but small ABoxes such as
‘galen’ and "umlis-2’; some have weak TBoxes but strong ABoxes like ‘people-pets’ and
‘wine’. The more data we get from ontologies, the more complex the figures and the less
readable they become. Small TBoxes and ABoxes can be dealt with much easier. The
large parts can be properly separated into several related parts. However, after analyzing
the testing results, we find that the main problems occur when we create large data
overview presentations. How to separate large one to relative smaller parts and how small

for one part are difficult to decide due to various properties of ontologies.

Another problem caused by large ontologies is the speed of the hierarchy computation.

For example, the ‘umlis-2’ is a large ontology. RacerPro can process it in 15-20 seconds
(as to ‘galen’, about 6-7 seconds), however, the computation of the concept hierarchy is
time-consuming. The main problem is to assign the level number for each concept as in

the case presented in Figure 5-4 (d). We have to search each concept to check if this case

83

exists. As ‘umls-2" with 9477 concepts, we have 9476 checks to perform. In this case,
users have to wait for several minutes to get the final results. We will try to develop
better solutions to increase the performance of the computation process in our future

work.

6.4 Summary

Through Chapter 4, we described other ontology evaluation support methodologies and
tools for ontology evaluation. Different approaches take different methods to implement
the evaluation for different stages of ontologies such as pre-modeling, modeling, and
after-release. Modeling and after-release stages are more considered. For the modeling
stage, evaluation work focuses on taxonomy problem checks and modifications. As a lot
ontology models support multiple inheritance, inconsistencies may exist (for example,
those described in Section 4.1), which cause a major problem for ontologies being used.
For the after-released consistent ontologies on the web, we suppose no inconsistency
exists and what we need to do is to find out how elements form structures and are
classified by similar éharacteristics. Some of them provide the presentation of elements

or hierarchies to help understand ontology structure and contents.

Although many methodologies were proposed, the ontology tools are very limited to
facilitate evaluation especially the evaluation for every facet of ontologies. We find that
most of these works only consider TBox evaluation. However, ABox is also a very
important part of an ontology. Few of recent ontology evaluation support methodologies

or tools cover ABox evaluation. For our OntoKBEval tool, besides TBox evaluation

84

support, it provides illustrations for parts of ABox element relationships description. This

can be a possible solution to improve ABox evaluation methods.

We implemented the OntoKBEval system with the help of DL technology using an OWL
DL reasoner to access ontology retrievals. To the best of our knowledge, no other

ontology evaluation support method or tool currently uses an OWL DL reasoner for the

evaluation process.

Table 6-4 illustrates main features and difference of ODEval, OntoManager, OntoClean,

CleanONTO, CORE, the methodology for ontology evolution and OntoKBEval.

85

98

(senunuos $-9 9[qe)

"S3130[03U0
TMO pue
“TIO+TNVA

(9)4ad |

ajeneAd
ued yorgm
‘suniopjerd
K3oj0ju0

pue s1asied
K3oro1uo 01
juswejdwos y

,:o_an_..omom.
[BIURY)

suonouny M3IA Jo jutod |

UoHeNeAd soyorewistwt | uoneyuasaidar |
$o1307] A3ojojuo Juo sdigsuorefas JAJOS2I pue a3poymouy
uondinsag oy} Surop JUQ)SISUOD € 0} JIWOUOXE] | 19919p 0} 19PIO e uIoy
Jo dpoy oy Aq UOTIN[OAS | UONEN[BAd pUe | 31 dBuBLIR pUR Jo Aoenbape | ur sa130[0ju0 JO SOIIOUOXe]}
qim sa13ojojuo A3oroyuo | osnar A3ojojuo | AJojojuo ue ur | [eII30[OIUO JY} | UONBPI[BA pUR 1daouoo
TAO 21en[eAd oy opm3 0} JAT}RIOQR[[0O | AOUQ)SISUOOUT | JUILPI[BA 0] | UOIIBDIJLIOA I0J ajenjeA?
01 [001 ¥ | ABojopoowt 10J [00} Y | 3}09Y0 01 [00) Y | ASo[opoyowr Y youdsgjIom y 0} [00) ¥
D | EERDOuO. FAIAO

,,.,._wv MMQEO 1

@00

103eUE[0JUQ

L8

A3o[ojuo
ojenfeAd

0} posn

9q ued YoIrgMm
‘A3orojuo

ue JO 2IMonns
JIIOuOXE} oY)
uo SHurensuod

BLIOJLID [BI12A3S 218101
UoneN[BAd sonzadoxd
o} 20I0JUD -BJOW 3SIY
diaq yorgm UOLIID OB -A3oj0300
uoneneAd ‘sardojojuo | I10J S9I30]0IUO ue dn oyew i m L
Zuismoiq paaoidur JO 1S1] payjuel 1By} SUONB[dX E:« e
UOI)eULIOJUT 0} Surpe9] B 9AOLIQI pue ‘sasse[d %wo_cuoﬂoﬁ
parrelap (1t KI2A0281p 0} sonbruysa) ‘sonjrodoxd i
218npo ogueyd 10J uoisny ayj jo sardo[ojuo
pue ojdm Spoyjow Mou Suer uisp) uoneiardiomur | Jo juswoFeue
Aq payjissepd | pequud o3 uado papuul 33 Jo o} 21e31]198]
M SOXOV | SI pue S)XdIU0D So130[0JUO0 | 9013 JUL)SISUOD | $30adse JuBAS[AL 0} 19pIo Ul
pue ,wop10q, Jo Kyorrea 1710 B ULIOJ | OZLISOBIBYD 0] | WIOY) UdIMIDq
0} . doz, | ® 10J suonouny 0} pIepue)s o1 98ueire (111 | pasn are yorgm | Ajjiqeradorajut
woij pondwod uoneNeAd uap[on syur| ‘douapuadap o1qeud
soxod L, A3o1ojuo Suuedwos oreudorddeur pue 20UISSd pue s[00}
Jo sermonys | Arenigie auyap Aq saInseaw yeaxq (11 ‘Knuapt juatdoroadp | Arooy ydeis
[edryoIeIaly Arenuasss Krrequais ydoouoo yoes ‘Ayrun pawreu K3oojuo o paseq
[[e12A0 03 AN[IqIXa[) onewojne | 10y suondrosap | sanradord-eiow Sumnsixo suyjose
orensnypl (1| oy opiaoxd o, opiaoixd o], annboe (1| Jojos & Sursn) ojerdojur o, | Jo j0s e 3uisny
, Ebﬁnvmcic I00N]0AD 10} e OHZQ@_.W 20 _ = R S

. ASojopouse Iy

88

(senunuoo -9 9[qe)

p1oddns
uoneneAd
SOX SOA ON ON ON SOX ON xogvVv
y1oddns
UONBN[BAY
SOA SOA SO SOX SOX SOA SOA %Eo:on‘au..‘ ,
yoddns
SO SO X SOK SOX SOX SOX SOX
uonn[oad ystuyy ystuij ysIuiy
K3o101u0 210J9q sa13o[ojuo sa13o[ojuo odesn ur sa13ojojuo
aseo[oI 1aYye 10 uump osed[or 1ye uoyMm usaym | IO 9SeoJaI YR uaym
SRENEIE)
€ 14 AJisse[o
-21 0} SIsA[eue
sonsye)s op
pUuE S20UIISJAI
Se uoljeuwLIoyul E :
: : _ paAjos
pa[Ieiep sjuowatmbal sworqoxd |- sxiopqosd
Pm saxogy Joeqpedy siasn /spoou | [eonewiweld | Ewwﬁ‘ -
pue soxog L, pue pIepueis slosn-pus | Aouepunpdy |
Jo sarmonis uap[on) pauydp diysuonefar | oy Surpredar ‘| (s10119 ,
[eoIyoIRIALY X100 | yim Jurreduwod oIouoXe} | JuiAjipout pue uonned
[fe1oa0 Surpfing | Ienonted e 10§ Aq sa13orojuo | ASojojuo ue o | -7, Yim $3[01 | ‘AZ0[0juo oy} ul pue sonssI
£q sa13ojoyuo | AJojojuo poo3 Joisy| Koua)sisuooul pue sjdoouod sooeyd yeom, A11e[noIId)
JJenjeAd 0J, B 918310 O], JuerejoS ol | oy AJipowr 0, djen[ead o], oy} pulj 0 | Aoujsisuoouy
40D | OINOu ofeuENOO | [PAFAO |

| Ao

[BAF OO pue uonnjoAs A3ofojuo 103 ASofopoyiewt a4 “TIQD ‘OLNOUESD ‘Ues[HOUQ ‘1oSeueA0INQ TeAT (O JO S2INJes] Urejy $-9 9[qe L

SOX oN SOx S9X ON ON ON| . InD
UONEINISSEP-01
$9X oN ON ON ON ON ON| Sjuoun[g
K1onsodai FR
TMO 9321014 L
oy} w0} TMO 1MO | A3ojojuo jo adAL
sa13o[ojuo TIO+TAVA | TIO+TAVA | o
TMO MO0 jopse v v (9)dad (S)dad Ly
- dAduRI
SOA ON ON ON ON ON ON | [rejopjuswmoly
50X oN oN ON ON ON ON| sBsyels
suuopeld L e
K3ojojuo s1oddns
pue s1asied Surifostoy.
(A3o10poyiour) (A3ojoporiow) K3o101U0 7
6’ 101108y - -- - -- -- 0} uIpI000Y
| uonpnjoad doy | G U , 1 Lo
T 0D | OINOUEd) | wed[)ojuQ | JISBUBONQ

£3ojopoyPIN

7. Conclusion and future work

In this chapter, we give a summary about our work on the OntoKBEval system. We also

propose possible future work in this area.

7.1 Conclusion

We introduced the OntoKBEval system to implement OWL ontology evaluation with the
help of Description Logics for getting information from knowledge bases. It can guide

ontology reuse, modification or even possible further evolution after ontology release.

The tool provides the visualized figures for members of TBoxes and ABoxes, which give
qualitative and quantitative data to evaluate the structures of ontologies. Users are guided
to know how the elements distribute in the hierarchies. Ontologies are determined as

good or bad ones from a user’s point of view.

Within the process of evaluation, detailed information is necessary and important. It
provides users with information to decide whether to continue the evaluation in certain
parts of knowledge bases. The overall and detailed information integrates together to

form a better evaluation solution.

To better use our tool, users should have a basic knowledge about ontologies. The tool

can be applied as a complement to perform users’ tasks related to ontologies.

90

7.2 Future work

By testing our tool, we propose mainly three possible ways to improve or further develop

our work in the ontology evaluation area.

Although we can load large ontologies up to about ten MB, using larger ontologies is still
limited. The algorithms for computing the hierarchical structures should be optimized to

save processing time.

In our research, we only consider after-release ontologies. Actually, in the lifetime of
ontologies, they come through mainly three stages: pre-modeling (main problem
encountered—conflict), modeling (possible problems of inconsistency and logical errors),
and after-release stage. To extend the evaluation functions, functions for these stages can
be added. In this case, the evaluation tool can be integrated with ontology editors, where

the evaluation process could be synchronized with ontology building.

The GUI can be improved to facilitate users’ operations and navigate evaluation
directions to achieve users’ goals more efficiently. We could also extend the application
to a web-based application, which can more easily implement ontology reusage and share
the results of evaluation results among users. It is to say that one user can use the other
users’ results and feedbacks as guidance for ontology usage or further evaluation if the
system can find the same or similar results, in which case users do not have to do the

extra time-consuming re-evaluation work.

91

8. References

[1] A Microbial Ontology,

http://bioinfo.unice. fr/ontologies/Introduction_to_ontologies.html

[2] Aslam, Javed A., Montague, Mark. Models for metasearch. 24™ Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2001). New Orleans, Louisiana, 2001, pp. 276-284.

[3] Baker, Christopher J.O., Warren, Robert H., Haarslev, Volker, Butler, Greg. Status

Quo of Ontologies in the Public Domain (Submitted)

[4] Bechhofer, Sean, Crowther, Peter, and Méller, Ralf. The description logic interface.

In D. Calvanese, G. De Giacomo, and E. Franconi, editors, International Workshop
on Description Logics, pages 196-203, September 2003.

[5] Brank, Janez, Grobelnik, Marko, Mladeni¢, Dunja. A4 survey of ontology evaluation

techniques, In: SIKDD 2005 at multiconference IS 2005, 17 Oct 2005, Ljubljana,

Slovenia.

[6] Brank, Janez, Grobelnik, Marko, Mladenié, Dunja. D1.6.1 Ontology evaluation,

www.sekt-project.org/rd/deliverables/wp01/, 2005

[7] Brewser, Christopher, Alan, Harith, Dasmahapatra, Srinandan, Wilks, Yorick. Data

driven ontology evaluation, 2004. In Proceedings of International Conference on

Language Resources and Evaluation, Lisbon, Portugal.

[8] Brickley D. and Guha R.V. RDF vocabulary description language 1.0: RDF Schema,
http://www.w3.org/tr/2002/wd-rdf-schema-20020430/, 2002

[9] Corcho, Oscar, Gémez-Pérez, Asuncion, Gonzalez-Cabero, Rafael and Suarez-

Figueroa, M. Carmen. ODEval: a tool for evaluating RDF(S), DAML+OIL, and OWL

92

concept taxonomies, IFIP WG12.6 -- First IFIP Conference on Artificial Intelligence
Applications and Innovations (AIAI2004). Toulouse, France. August 2004.
[10] Description logics, http://dl.kr.org/

[11] Fellbaum, Christiane. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[12] Fernandez, Miriam, Cantador, Ivan, Castells, Pablo. CORE: A Tool for

Collaborative Ontology Reuse and Evaluation. 4™ International EON Workshop,

2006.

[13] Flouris, Giorgos, Plexousakis, Dimitris. Handling Ontology Change: Survey and

Proposal for a Future Research Direction. Technical Report 362, ICS-FORTH,

Heraklion, Crete, Greece, September 2005

[14] Gomez-Pérez, Asuncion. Evaluating ontologies: Cases of Study. IEEE Intelligent

Systems and their Applications. Special Issue on Verification and Validation of
ontologies. March 2001, Vol 16, N° 3. Pag. 391 — 409.

[15] Goodaire, Edgar, Parmenter, Michael. Discrete Mathematics with Graph Theory. Ed.

Prentice Hall. 1998.

[16] Gruber, Thomas R. 4 translation approach to portable ontologies. Knowledge

Acquisition, 5(2):199-220, 1993.

[17] Guarino, Nicola and Welty, Christopher A. An Overview of OntoClean. In S. Staab

and R. Studer, editors, Handbook on Ontologies in Inf. Sys., pages 151--172.

Springer, 2004

[18] Haarslev, Volker, Mbller, Ralf, RACER System Description. Proceedings of

International Joint Conference on Automated Reasoning, IJICAR'2001, R. Goré, A.

93

Leitsch, T. Nipkow (Eds.), June 18-23, 2001, Siena, Italy, Springer-Verlag, Berlin,pp.
701-705.

[19] Haarslev Volker, Moller Ralf, Van Der Stracten R., and Wessel M. Extended query

facilities for Racer and an application to software-engineering problems. In
Proceedings of the International Workshop on Description Logics (DL-2004),
Whistler, BC, Canada, June 2004

[20] Haase, Peter and Sure, York. D3.1.2 Incremental Ontology Evolution-Evaluation.

www.aifb.uni-karlsruhe.de/WBS/pha/publications/, Nov. 2, 2005

[21] Hameed, Adil, Sleeman, Derek, Preece, Alun. OntoManager: A Workbench

environment to facilitate Ontology Management and Interoperability. Proceedings of
the EON-2002, Workshop on Evaluation of Ontology-based Tools at the 13th
International Conference on Knowledge Engineering and Knowledge Management
(EKAW-2002), pages 74-78, September 30-October 4, 2002, Sigiienza, Spain.

[22] Hartmann, Jens, Spyns, Peter, Giboin, Alain, Maynard, Diana, Cuel, Roberta,

Suarez-Figueroa, Mari Carmen, Sure, York. DI.2.3 Methods for ontology

evaluation, www .starlab.vub.ac.be/research/projects/knowledgeweb/, 2004

[23] Hartmann, Jens, Spyns, Peter, Giboin, Alain, Maynard, Diana, Cuel, Roberta,

Suéarez-Figueroa, Mari Carmen, Sure, York. D1.2.3 Methods for ontology evaluation,
www.starlab.vub.ac.be/research/projects/knowledgeweb/, 2005

[24] Horrocks, Ian, Patel-Schneider, Peter F., and Harmelen, Frank van. From SHIQ and

RDF to OWL: the making of a web ontology language. J. Web Sem., 1(1):7-26, 2003.

[25] Lassila O. and Swick R.R. Resource description framework (RDF) model and syntax

specification. recommendation, W3C, February 1999

94

[26] Lozano-Tello, Adolfo, Gomez-Pérez, Asuncién. Ontometric: A method to choose the

appropriate ontology. J. Datab. Mgmt., 15(2):1-18 (2004).

[27] Maedche, Alexander, Motik, Boris, Stojanovic, Ljiljana, Studer, Rudi, Volz,

Raphael. Ontologies for Enterprise Knowledge Management, IEEE Intelligent

System, pp. 26-34, March/April 2003.

[28] Maedche, Alexander, Staab, Steffen, Measuring similarity between ontologies. In

Proceedings of the European Conference on Knowledge Engineering and Knowledge
Management (EKAW), pp. 251--263. Springer Verlag, 2002.

[29] Miller, George A. Nouns in wordnet: a lexical inheritance system. International

Journal of Lexicography, 3(4):245-264, 1990.

[30] Nardi, Daniele, Baader, Franz, Calvanese, Diego and Patel-Schneider, Peter. The

Description Logic Handbook: Theory, Implementation, and Applications, Cambridge

University Press, 2003,

[31] Noy, Natalya Fridman and McGuinness, Deborah L. A Guide to Creating Your First

Ontology, http://protege.stanford.edu/publications/ontology development/

ontology101-noy-mcguinness.html

[32] Noy N. F., Sintek M., Decker S., Crubezy M., Fergerson R. W., and Musen M. A.

Creating semantic web contents with Protege-2000. IEEE Intelligent Systems,
16(2):60-71, 2001

[33] OWL Web Ontology Language Overview. http://www.w3.org/TR/owl-features/,

Feb.10, 2004

[34] Porter, the native, graphical user interface for RacerPro, http://www .racer-systems.c

om/products/porter.phtml

95

[35] Porzel, Robert, Malaka, Rainer. 4 task-based approach for ontology evaluation.
ECAI 2004 Workshop Ont. Learning and Population.
[36] RacerPro user’s guide Dec. 2005. http://www.racer-systems.com

[37] Shaban-Nejad A., Baker C. J. O., Butler G., Haarslev V. The FungalWeb Ontology:

Semantic Web Application for Fungal Genomic. 1st Canadian Semantic Web Interest
Group Meeting (SWIG’04) , Montreal, Quebec, Canada (2004).

[38] Sleeman, Derek and Reul, Quentin. CleanONTO: Evaluating Taxonomic

Relationships in Ontologies. 4th International EON Workshop, Edinburgh
International Conference Center, Edinburgh, United Kingdom, May 22nd, 2006

[39] Smith, Barry, Williams, Jennifer and Schulze-Kremer, Steffen. The Ontology of the

Gene Ontology. AMIA Symposium 2003,
[40] The DARPA Agent Markup Language Homepage http://www.daml.org/

[41] Witten, Jan, Frank, Eibe. Data Mining. Practical Machine Learning Tools and

Techniques with Java Implementations, Morgan Kaufmann, 1999.
[42] WordNet, http://wordnet.princeton.edu/

[43] W3C, http://www.w3.org/TR/owl-ref/

96

Appendix

Al Racer file

A Racer file is a Racer-based ontology-description using nRQL from the ABox query

language perspective. Figure A-1 illustrates the ‘family.racer’ file.

(in-knowledge-base family smith-family)

(signature :atomic-concepts (human person female male woman man
parent mother father
grandmother aunt uncle
sister brother)

:roles ((has-descendant :transitive t)
(has-child :parent has-descendant)
has-sibling
(has-sister :parent has-sibling)
(has-brother :parent has-sibling)
(has-gender :feature t))

sindividuals (alice betty charles doris eve))

(implies *top* (all has-child person))
(implies (some has-child *top*) parent)

(implies (some has-sibling *top*) (or sister brother))
(implies *top* (all has-sibling (or sister brother)))
(implies *top* (all has-sister (some has-gender female)))
(implies *top* (all has-brother (some has-gender male)))

(implies person (and human (some has-gender (or female male))))
(disjoint female male)

(implies woman (and person (some has-gender femaie)))

(implies man (and person (some has-gender male)))

(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent})
(equivalent father (and man parent))

(equivalent grandmother
(and mother
{some has-child
(some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))

(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))

(instance alice mother)

(related alice betty has-child)
(related alice charles has-child)

97

(instance betty mother)

(related betty doris has-child)

(related betty eve has-child)

(instance charles brother)

(related charles betty has-sibling)
(instance charles (at-most 1 has-sibling})
(related doris eve has-sister)

(related eve doris has-sister)

#|

(concept-subsumes? brother uncle)
(concept-ancestors mother)
(concept-descendants man)
(all-transitive-roles)
(individual-instance? doris woman)
(individual-types eve)

(individual-fillers alice has-descendant)
(individual-direct-types eve)

(concept-instances sister)

[#

Figure A-1 Racer file format of ‘family’ ontology

A2. Related Racer commands

We only list Racer commands used to implement the OntoKBEval:

o (all-atomic-concepts): to get all the concepts in the current TBox
o (all-individuals): to get all the individuals in the current ABox

e (all-role-assertions): to get all assertions in the current TBox

e (all-roles):to get all roles in the current TBox

o (classify-tbox): to classify the whole TBox

98

(concept-children concept_term): to get the direct subsumees of the indicated
concept in the TBox

(concept-equivalent? concept terml, concept term?2): to check if the two indicated
concepts are equivalent in the TBox

(concept-instances concept_term): to get individuals, which are the instances of the
indicated concept

(concept-parents concept term): to get the direct subsumers of the indicated concept
in the TBox

(owl-read-file path_of ontology file): to load an ontology file by RacerPro
(realize-abox): to check the consistency of ABox to prepare assertion computations
(related-individuals role_term): to get role assertions related to the indicated role
(role-children role_term): to get the direct subsumees of the indicated role in the
TBox

(role-equivalent? subsuming role term, subsumed _role_term): to check if the two
indicated roles are equivalent in the TBox

(role-inverse role_term): to get the inverse of the indicated role

(role-parents role_ferm): to get the direct subsumers of the indicated role in the
TBox

(symmetric? role_term): to check if the indicated role is symmetric in the TBox

(transitive? role term): to check if the indicated role is a transitive role in the Tbox

99

