IN SILICO DETECTION AND PREDICTION OF
GLYCOSYLATION SITES IN THE EPIDERMAL
GROWTH FACTOR-LIKE PROTEINS USING
FEED-FORWARD NEURAL NETWORKS

ALIREZA DARISSI SHANEH

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 2006
(© ALIREZA DARISSI SHANEH, 2006



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-20774-1
Our file  Notre référence
ISBN: 978-0-494-20774-1
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



Abstract

In silico Detection and Prediction of Glycosylation Sites in the
Epidermal Growth Factor-Like Proteins using Feed-Forward Neural
Networks

Alireza Darissi Shaneh

Biological databases are sparse, huge and redundant. Therefore, knowledge inference
from those databases needs a consistent approach. Widely accepted as a most com-
plex process of protein modification, glycosylation has been the main focus in this
study. In this process a simple chain of carbohydrates attaches to a target protein
at a specific amino acid, so-called glycosylation site. Epidermal Growth Factor-Like
(EGFL) repeats have been the target proteins of this study because of having a par-
ticular glycosylation process. Moreover, they may associate with many type of cancer
as wel las other diseases. The objective of this study was to detect and predict the
number of glycosylation sites in EGFL protein sequences using feed-forward neural
networks. Bayesian automated regularization was exploited to prune the unnecessary
weights and biases of the feed-forward neural network. The result of applying eight
learning algorithms showed that One Step Secant (OSS) learning algorithm is more
reliable than the others in terms of the accuracy and performance as measured in this
study. The Bayesian regularized neural network outperformed OSS method accord-
ing to the employed assessment measures. Compared to the existing neural detectors,
Bayesian automated learning could improve the consistency of the model by 39.48%.
The concept of Reduction Factor was also introduced to determine the efficiency of
Bayesian automated learning quantitatively.Glycobiologists can use and validate such
connectionist models to choose and study on the selected EGF-like proteins which

are associated with cell malignancy.
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Dedication

Now, for there is an infinity of possible universes among God’s ideas,
and only one of them can exist, there must be a sufficient reason for God’s
choice, which determines him to the one rather than to the other. This
reason can be found only in harmony, or the degrees of perfection which
these worlds contain, since each possible world has the right to claim exis-
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it is the means for obtaining as much perfection as possible.

— Baron Gottfried Wilhelm von Leibniz (1646-1716)
La Monadologie, theses 53-56 & 58
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Chapter 1

Introduction

The remarkable advances in multidisciplinary areas of the science are logical conse-
quences of an organized cooperation among the scientists working in different branches.
Bioinformatics is the result of such cooperation between biologists and computer sci-
entists. As a fast growing field, bioinformatics has been revolutionized by significant
progress in database technology. Biological datasets are stored in databases for fur-
ther manipulation and annotation. Widely accepted as one the most vital molecules
in the nature, proteins participate in many critical biological pathways in mammalian
species. Consequently, biologists utilize those databases to store protein data. Nev-
ertheless, protein datasets are huge and sparse in terms of their structural variation
and functionality [78]. In addition, such varieties in function and shape produce an
intrinsically redundant database. As a result, inferring desired and specific knowl-
edge from protein datasets is a challenging process. PROSITE [66], UniProt [4, 8]
and SWISS-PROT [19] are examples of protein sequence databases with their own
format and annotation styles.

PTMs are the necessary chemical modifications applied on proteins to regulate
their functions [63]. About 325 PTMs have been discovered [42, 68, 35]. One of the

most common modifications is glycosylation in which a simple chain of saccharides



attaches to a specific amino acid of the target protein [113]. The attached amino acid,
glycosylation site, is specific and sometimes unique in proteins. Moreover, the complex
of carbohydrate-protein, glycoprotein, is responsible for many important biological
interactions inside and outside of the cell [21].

The distribution of glycosylation sites along the sequence of a glycoprotein is an
interesting subject for biochemists [113, 116, 1, 77, 47], since aberration in the number
or order of glycosylation sites causes irreversible and serious diseases such as brain or
lung cancer [77, 33, 54, 55, 31, 32, 46]. Therefore, studying protein glycosylation with
respect to the distribution of the number of glycosylation sites provides biologists
with the information necessary for selecting particular proteins for their research.

Incorporated with large datasets, soft computing techniques are powerful tools to
infer the necessary knowledge out of those data. They find a solution or set of solu-
tions in a non-linear search space; in fact, soft computing methods optimize a search
space by intelligently limiting it around extreme solution or solutions. Among the
various kinds of computational intelligence methods, neural networks are shown to
quickly adapt with large sets of data whose non-linear functionalities are under study
in conjunction with some certain selected features [123, 74]. Hence, It is possible
to employ a class of neural networks, so called feed-forward networks or multilayer
perceptron, to mine the required glycosylation sites information in a particular sub-
family of a protein. While extracting that information, it is important to choose the
characteristics special to the protein which is under study.

FEpidermal Growth Factor-Like superfamily (EGFLs or EGF-like) [23, 3] belongs
to growth factor proteins. EGF-like proteins have a distinct glycosylation process [59,
118, 79] which makes them good candidates for this study, showing in Section 1.2. The
abnormal process of glycosylation in EGFLs leads to unexpected results in cell growth

as well as serious diseases such as Congenital Disorders of Glycosylation (CDGs) and



cancer [124, 40, 98, 37, 112, 33, 7, 107]. EGFLs are well-annotated, and biochemists
have determined different types of glycosylation in those proteins [127, 41]. Con-
sequently, EGFLs provide a reasonably valid information for a feed-forward neural
network as prior knowledge.

The non-linear mapping of the distribution of the number of glycosylation sites in
EGFLs can be inferred by a feed-forward neural network which, in turn, can detect
and predict the glycosylation sites, the subject building the foundation of this thesis.

Figure 1 shows the organization of the thesis. First, the mechanism of glycosyla-
tion as well as a review on Epidermal Growth Factor-like proteins will be presented.
After that, the application of computational intelligence methods in the field of pro-
tein glycosylation will be discussed. Feed-forward neural networks is the topic covered
in the third section. The final section of Chapter 1 explains the criteria of choosing
this project. The nature, compilation, and encoding of the EGFLs data will be pre-
sented in Chapter 2. Statistical Learning Theory elucidates ab initio laws governing
machine learning methods including neural networks. Extensively used in many sci-
entific applications, feed-forward networks are the subject emphasized in Chapter 2
according to the statistical learning theory. In phase I of this study, eight learn-
ing algorithms were applied and used to choose the most reliable algorithm to train
the underlying network. Bayesian regularization is a consistent technique which has
effectively reduced the size of the neural network to improve the generalization of
the detection and prediction [111]. In phase II, Bayesian learning was compared to
the chosen algorithm in phase I. The workflows of those phases are introduced in
Chapter 2. Subsequently, the last chapter discusses the results obtained from both
phases. Moreover, this chapter reviews the assessment measures utilized. The results

of Bayesian neural network were also compared to the existing systems of detection



and prediction of glycosylation sites in protein sequences, which is covered by Chap-
ter 3. In conclusion, the lessons learned during this project as well as the possible

future works will be outlined in Chapter 4.
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. Materials Results .
Introduction Conclusion
And and
Methods Discussion
R R ] e
. The Lessons
The Biology of s ecgfa;:::\tion | _Irr:‘t;og:sc::ti || Learned from
Glycosylation P The Project
The Biology of Feed-Forward
The Epidermal Networks: B A:nsessme"t |_| Future Works
Growth Factor- Mathematically easures
Like Proteins Revisited
The Application The Learning Discussion
of Approaches
Soft Computing Applied to the
Methods in Subject
Protein
Glycosylation
Bayesian
Feed-Forward Learning:
Neural Networks Induction
and Inference
]
P The Neural
Objaenc";lve Network
Motivation Architecture



1.1 The Biology of Protein Glycosylation

Having been synthesized and translocated, proteins usually need to undergo struc-
tural modifications to achieve their full functionality. These processes are called post
translational modifications (PTMs) cite [63]. Biologists have detected over one hun-
dred of such modifications [5]. Among those structural changes, glycosylation is the
most diverse and common one by which all membrane proteins and most of secretory
ones are modified [{81]. In the process of glycosylation, a chain of saccharides attaches
to a specific amino acid of the target protein. The attachment site is called glycosy-
lation site. The product of glycosylation process is a complex of saccharides-protein
so-called glycoprotein. Depending on the type of the process, glycosylation site varies
from one type to another, and glycobiologists have discovered 13 different monosac-
charides along with 8 amino acids, which make participate in 41 carbohydrate-peptide
linkage [113]; however, in this thesis Asparagine (Asn or N), Serine (Ser or §) and
Threonine (Thr or T) have been emphasized because they are the most common
glycosylation sites observed in proteins [5]. The diversity in glycosylation sites leads
to the polymorphism of glycoproteins, referred to as site heterogeneity. Site hetero-
geneity yields various forms of a glycoprotein, glycoforms, which may have different
biological properties [81, 113]. Glycosylation process occurs in two major subcellular
compartments: Endoplasmic Reticulum (ER) and Golgi apparatus. In ER, the simple
sugars are added to the protein. Subsequently, the folded glycoprotein is transported
to Golgi apparatus to obtain more chains of carbohydrates, and some of already in-
corporated saccharides are removed in Golgi apparatus. The matured glycoprotein
is then translocated to other organelles to do its functions. Alternatively, it may be
sent out of the cell to perform particular tasks, a phenomenon called secretion.

In terms of biochemical characteristics, the chain of saccharides, which are usu-

ally referred to as glycans, are responsible for controlling solubility, electrical charge,



mass, size and viscosity of a glycoprotein [81]. Glycans regulate biological function of
a glycoprotein such as intracellular traffic, localization, activity and cell-cell interac-
tion [81, 113]. Furthermore, It has been shown that glycosylation has a remarkable
effect on reproducing hormones [122].

The major identified types of glycosylation are N-linked glycosylation, O-linked
glycosylation, glypiation and GPI anchoring, and C-linked mannosylation and P-
glycosylation [113]. The first two types, N- and O-linked glycosylation, form the

structure of the subjects discussed in this study.

1.1.1 N-Linked Glycosylation

N-linked glycosylation ( Figure 2 ) is a prominent and stable mechanism in which
the amide side of Asparagine (—N H;) of the target polypeptide attaches to the chain
of polysaccharides or glycans. This process is necessary for a proper protein folding.
Site-specific and enzyme-directed, N-linked glycosylation is a co-translational process,
and it occurs in endoplasmic reticulum while translating m-RNA to the protein [61,
1, 125, 77]. Almost all membrane proteins in eukaryotes and archaea undergo this
process. In prokaryotes, N-linked glycosylation rarely happens; however, there are
few cases reported [118].

Glycosylation process heavily depends on the structure of the underlying glycans.
The glycan is a 14-carbohydrate precursor consisting of 3 Glucose, 9 Mannose and
2 N-Acetylglucosamine (GIcNAc). In the first step, the glycan appends to a carrier
molecule called dolichol through a complicated enzymatic reactions. In this step, the
attachment is subject to Mannose and GlcNAc monosaccharides. In the second step,
the complex of glycan-dolichol now translocated into the lumen of ER using the en-
zyme flippase. Catalyzed by an enzyme, oligosaccharyl transferase, the glycosylation

goes further with addition of more Mannoses and finally Glucose inside the ER. The



final step is to release dolichol from the glycan and attach it to the amide aide of
Asparagine in the target protein.

Afterward, the produced glycoprotein ( Figure 3(a) ), is forwarded to Golgi appa-
ratus. In that compartment, the glycoprotein goes through the trimming and adding
process. Some Mannoses added to the glycoprotein in the ER are removed. Con-
sequently, the removal of simple carbohydrates in Golgi apparatus results in a core
N-glycan, which may be elongated by adding other types of sugars. Figure 3(b) shows
N-glycan core structure. The structure consists of 3 Mannoses and 2 GlcNAc. There
is a strong evidence that the participating Asparagine in the process of N-linked gly-
cosylation should match with the consensus pattern Asn — X — Ser|Thr where X is
any amino acid but Proline [87]. This consensus sequence is literally known as N-
linked sequon. There are two types of N-linked glycans: High Mannose and complex

polysaccharides.

KEY:

@ = glucose
‘ = manngse

m = M-acetylglucosamine

JERLUMEN

growing
polypeptide chain

oligoseccharide

) i protein transferase
lipid=linked

oligoseccharide

Figure 2: N-linked glycosylation Mechanism [31]
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'] Mannoss

Glucose

(a) N-linked glycoprotein

N:N'"-Diacetylchitobiose cofe

(b) N-glycan core structure

Figure 3: Hallmarks of N-linked glycosylation

High Mannose glycans have simply two GlcNAc as well as large numbers of Man-
nose in their structure. Those glycans are accessible by Golgi apparatus for Mannose
trimming purposes. On the other hand, complex type glycans contains more than
two basic GlcNAc molecules; furthermore, they may have diverse saccharides in their
structure. Similar to High Mannose ones, complex polysaccharides are also accessible
to Golgi apparatus for further trimming [113].

N-linked glycosylation plays an important role in the stability and proper folding

of a protein [125]; nevertheless, it is not the only important modification. In the next

8



section, another necessary type of glycosylation will be reviewed.

1.1.2 O-Linked Glycosylation

O-linked glycosylation is another conserved and well-studied process [116]. In contrast
to N-linked glycosylation which is a co-translational process, this modification is a
real post-translational procedure. O-glycosylation leads to a fully folded glycoprotein
maintaining the stability and structure of the produced glycoprotein. In this way, O-
linked glycosylation provides the glycoprotein with resistance to an unusual situation
such as heat-shock by the proper conforming of the secondary, tertiary and quaternary
structures of that protein. Moreover, this mechanism allows the protein to avoid from
aggregation, a phenomenon in which, because of misfolding, the protein deposits in the
cell. A study shows that O-linked glycosylation, in contrast to N-linked glycosylation,
modulates enzymatic activity [10]. In addition, it has been demonstrated that O-
glycosylation regulates critical glycoprotein hormones {116].

Undergoing the process of O-linked modification, the target protein attaches to
the hydroxyl group (—OH) of Serine or Threonine amino acids in Golgi complex.
There is no clear sequon identified for O-glycosylation, and each protein should be
studied individually regarding to O-linked glycosylation sites [116]. Notably, this type
of glycosylation is well-conserved in EGF-like proteins , which will be discussed in
the next section.

The known types of O-linked glycosylation are mucin-type, O-fucose, O-glucose,
O-GlcNAc, and O-arabinose glycosylation. Mucin-type glycosylation (Figure 4) is
the attachment of GalNAc monosaccharide to Serine or Threonine amino acids of a
protein. This type is the most common one observed in membrane and secretory
proteins of mammals [58]. O-fucose, which has been reported in EGF-like proteins, is

the attachment of a glycan to Serine or Threonine of EGF-like domain through fucose,



a simple monosaccharide [57]. O-glucose is a similar type of attachment, but the core
molecule attaching to EGF-like domain is glucose. Recognized as a critical type of
O-glycosylation, O-GIcNAc is the attachment of GlcNAc to Serine or Threonine of
a protein. Most of the nuclear and cytoplasmic proteins are subject to that type of
O-linked glycosylation [116]. In addition, it is revealed that O-GlcNAc affects the
presence of phosphorylation, another PTM in which the phosphate radicals attach to
a specific amino acid of the target protein. Whenever O-GIlcNAc is available, there is

no phosphorylation and wvice versa [120]. O-arabinose only happens in plants.

OH O%I NHAc
e %
e l

HO« )i 02

ACHN

CHy (H)
mucin-type O-linked glycan %Q\';N‘E-

oligomers +—

gecretad membrane bound

Figure 4: Mucin-type O-linked glycosylation [58]

There are 8 core structures discovered for mucin-type O-glycosylation although it is
not proved whether the number of core structures is fixed or not [116].

Aberration in O-linked glycosylation cause severe diseases such as carbohydrate
deficiencies and cancer. For example, MUC EGFL oncoproteins potentially partic-

ipate in breast cancer [100]. Furthermore, O-glycosylation plays a major role in
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neuronal adhesion in brain, so the anomaly in glycosylation sites or glycan structures

leads to irreversible brain damages [31, 32].

1.2 The Biology of Epidermal Growth Factor-Like
Proteins (EGFLs)

Epidermal Growth Factors-Like repeats ( Figure 5 ) are 30 to 40 amino acids domain
containing of six conserved Cysteines amino acids. Cysteines make a three covalently
attached sulfur-to-sulfur bond, known as disulfide bridges ( Figure 5(b) ), which are
necessary for the proper conformation of EGF-like proteins [71]. Conserved Cysteines
in EGF-like peptide are typically named as C) to Cs; therefore, the disulfide bridges
cross-link Cy — C3, Cy — Cy and Cs — G, structurally making three loops in EGF-like
domains. EGFLs are essential for cell growth, proliferation, cancer formation and
wound healing [3, 2]. Moreover, they interact with special membrane-bound proteins
called receptors [127].

Figure 5(a) shows various kinds of EGF-like domains. About 10 subfamilies form
EGF-like superfamily. Evolutionary speaking, EGF-like proteins are divided into
human EGFLs, hEGF, and complement Clr-like or ¢cEGF proteins. Clr-like EGF
proteins exist in virus POX glycoproteins [124].

EGF-like proteins increase the affinity between receptors (dimerization) and makes
the receptors to release Tyrosine; consequently, Tyrosine signaling initiates the process
of proliferation in the cell. Genetic aberration of EGFL signaling causes critical dis-
eases such as carcinomas. The wrong signals may also up- or down-regulate the
growth factors, which in turn participate in tumor formation [60].

EGFLs are membrane proteins, and they are naturally glycosylated. The glycosy-

lation of EGF-like proteins is carried out in the luminal side of the rough endoplasmic
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reticulum (RER) membrane. It has been studied that the glycosylation process in
EGFLs alters in various cancers such as lung, brain and melanoma. Moreover, it
has been suggested that the alteration of glycosylation sites in the sequences of the
proteins of cell membrane responsible for intercellular

‘REGF only protetns i 1 " ) . CEGF only proteins
SRR

APA

RO G % | e

hEGF/CEGF proteins

| ifactor VKX

(oo oy |
oF

piok

o inteeaved

other EGFs .
Iamini

OO |
(] %me}‘u »

integrin i chain

(a) Major motifs of EGFLs [124]

e 2 0=0 :!'*2 030
z & z

:_o_(z),_ g TR S z'-.(')*gw Pt Qe Q=T

k | | ¥ disuitce

owO\ /z-x

cysteine

ZX

(b) Disulfide bonds in EGFLs (c) EGFL Secondary Structure (gi|16975128)

Figure 5: Hallmarks of Epidermal Growth Factor-Like (EGFL) repeats
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interaction, such as Notch and Delta,may cause abnormality in cell fate decision |60,
7, 107).

Glycosylation in EGF-like proteins is different from that of other subfamilies. In
contrast to mucin-type O-linked glycosylation which has no well-defined consensus
pattern, EGF-like domains have two O-glycan conserved sequons. Having recently
been discovered, the following sequons are the known putative consensus patterns for

EGF-like proteins O-glycosylation:

Cysy — X4—5 — (Ser|Thr) — Cyss O-fucose
Cys; — Xy19 — Ser — X — Pro — Cyss O-glucose

where Cys; to Cysg are conserved Cysteine amino acids in EGFLs and X is any
amino acid [79, 57]. X,_5 refers to a chain of 4- or 5-residue of any arbitrary amino
acid and so does X;_5 to 1- or 2-residue one . Dissimilar to N-linked glycosylation,
Proline (Pro) also contribute to the consensus pattern of O-glucose. Considering
the necessary consensus patterns, it is possible to detect and predict the N- and O-
linked glycosylation in these proteins when appropriate non-deterministic models are
applied to this subject. Improper conformation of EGF-like repeats is one of the main
reason behind prostate cancer in men. Furthermore, glycosylation sites of EGF-like
domains heavily altered in other carcinomas such as liver, bladder, renal, colon and
gastric cancer [98]. Embodying the obvious flag for tumor growth, EGF-like repeats
have been found to be essential for the formation, expansion and fate of brain tumors
[54, 55].

EGF-like domains and their glycosylation process have broadly been studied in
biomedical laboratories, as reviewed on the latest breakthroughs in the previously

discussed sections [116]. Quantitative analysis of glycoproteins have recently been
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noticed as an effective tool in studying the concepts and principles of protein glycsoy-
lations [109]. Machine learning tools encompass the context of glycosylation as well,
and there are several applications developed or being developed to help biologists to

better understand that complicated context.

1.3 The Application of Soft Computing Methods
in Protein Glycosylation

Broadly utilized as effective means to solve many biological problems, soft comput-
ing techniques or computational intelligence methods can unravel the highly complex
mechanism of post-translational modification whose non-linear nature limit them to
be solved analytically [68]. The soft computing approaches used in optimization
problem can be divided into computational, statistical and metaheuristic frameworks.
Computational methods optimize the learning algorithm by predicting the future
state of a solution based on the past evaluation of data in both supervised and un-
supervised ways. Artificial neural networks are obvious examples of such schemes.
Statistical learning theory emphasizes the statistical methods used for automated
learning; for example, kernel-based methods such as support vector machines find
an optimal separating hyperplane by mapping data to a higher dimensional search
space [117]. Metaheuristic algorithms are usually used to find a best solution through
other combinatorial optimizers; in fact, metaheuristic approaches suggest a framework
for other heuristic frameworks. Fuzzy systems and genetic algorithms are examples
of metaheuristic methods [126, 44].

The application background of computational intelligence methods in the context

of protein glycosylation can be divided into three main research areas:

Glycan Structure Analysis and Prediction. Providing tools for predicting and
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analysis of different types of carbohydrate chains attaching to a target protein.

Glycan and Glycoprotein Knowledgebase and Ontology. Modeling a compre-
hensive ontology for describing of the biological properties of complex carbohy-

drates

Glycosylation Sites Detection and Prediction. Detecting and predicting the dis-

tribution of the number of glycosylation sites in biologically interested proteins

1.3.1 Glycan Structure Analysis and Prediction

Glycans have various structures, and this variety leads to different forms of glyco-
proteins. To recognize the pattern of those structure, biologists benefit from the
structural databases available to deposit glycan structures [27]. For example, Gly-
coSuiteDB [26] is the database containing reported glycan structures. This data-
base is updated from time-to-time to make sure of encompassing all available glycan
structures. Moreover, there are useful tools developed by GlycoSuiteDB curators to
manipulated the stored glycan structures.

CAZy (Carbohydrate Active enZYmes) [28] is a data bank of structurally related
carbohydrate of enzymes. The conformational information of each carbohydrate-
active site has been curated and annotated in this database.

Glycosciences.de [82] is a comprehensive and well-integrated collection of suites
as well as databases necessary to explore in glycan structures. Developed by Ger-
man Cancer Research Center at Heidelberg, Germany, Glycosciences.de has several
relational databases including CSS (Carbohydrate Structure Suite) [83], which au-
tomatically mine the 3D structure of polysaccharides through Protein Data Bank
(PDB) [62], and GlyProt [20] which accepts the fundamental parameters for geomet-

rical position of glycosylations sites (torsion angle, anomeric data, etc.) and returns
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the in-silico built glycoprotein. This integrated database contains 3920 N- and O-
linked glycan structures.

One major challenge for glycan structures is to have a unified standard to ex-
change and share glycan structures files. Cooper et al [25] have reviewed the data

standardization for GlycoSuiteDB.
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1.3.2 Knowledge Representation and Ontology for Glycans

and Glycoproteins

Glycosylation is a complex enzymatic process; therefore, biologists need an ontology
tool to facilitate access, share and represent the proper description of carbohydrates
annotation. Besides, it is necessary to develop an ontology as large as possible to
retrieve the different data from the Web. GlycOViz [106] is an ontology browser as
an integrated environment to edit and build ontologies for glycans and glycoproteins.
GlycO (Glycomics Ontology) [106] is domain ontology with over 770 classes and is
used to classify the web services describing the characteristics of glycans. Figure 7
shows snapshots of each ontology tool.

Since some of web contents are redundant, the conflict problem may happen to
the knowledge representing of ontology at semantic level. The conflict occurs when
there is different interpretation of problem dorhain, thereby leading to inconsistency
in the extracted data. Arpinar et al have reviewed conflict data in ontology and have

proposed a rule-based approach to overcome conflicts [6].
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1.3.3 Glycosylation Sites Detection and Prediction

Blom et al [18] have well reviewed the topic of glycosylation sites detection and
prediction from amino acid sequences. The major detection and prediction resources

have been shown in Table 1.

Table 1: Existing Glycosylation Site Predictors

Predictor Description Reference(s)
NetOGlyc | Predicts mucin-type O-glycosylation in mammals [102]
NetNGlyc | Predicts N-glycosylation in human proteins [70]
YinOYang | Predicts O-GlcNAc O-glycosylation eukaryotes [50]
Big-II Predict GPI-anchor in a protein [114, 34]
DictyOGlyc | Predicts O-GlcNAc O-glycosylation in Dic- [51]
tyostelium discoideum proteins

NetNGlyc [102] is a web-based predictor for N-linked glycosylation sites using
neural networks. Although the system reported 86% of glycosylated sites of O-
GlycBase [48], the authors have not explained the learning method and the type
of the neural network they have used. One site for mucin-type O-linked glycosyla-
tion is NetOGlyc [70], which could correctly identify 76% of O-linked glycosylation
sites. The system uses two-layer network with error backpropagation learning algo-
rithm. YinOYang [50] is a detector of yin-yang sites, the amino acids which can be
attached through either phosphorylation or O-GIlcNAc glycosylation using neural net-
work. The server also uses NetPhos [17] server to detect the possible phosphorylation
sites if those sites are also O-linked glycosylated. Big-II [114, 34] predicts glycosylphos-

phatidylinisotol (GPI) anchored glycosylation sites. Using a jury of neural network
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with backpropagation algorithm for each network, Gupta et al have developed Dic-
tyOGlyc [51] to predict O-GlcNAc O-linked glycosylation sites in D. discoideum,
which is an appropriate model paradigm for glycobiologists.

Other approaches such as mathematical modeling as well as statistical analysis of

glycosylation sites have also been employed [75, 115, 5, 101, 94, 22].

1.4 Feed Forward Neural Networks

Artificial neural network (ANN) is a mathematical model of biological neurons of
the human brain. An ANN simulates the characteristics of its biological counterpart
for correlating or associating meaningful concepts. For example, it may correspond
negative and positive numbers to black and white colors respectively (pattern classifi-
cation). On the other hand, an ANN can keep track of a certain pattern in a protein
sequence by memorizing the previously introduced examples (pattern association).
Furthermore, they process the information coming as a vector or batch of input and
produce a vector or batch of output which is an estimation of the target value(s).
Neural networks consist of interconnected units, known as neurons or nodes. Each
connection between two neurons is tagged by a number called weight. One can bio-
logically interpret the weight between two neurons as helping to trigger a neuron to
response or fire an output. The neurons and the connections among them forms the
network’s architecture. If all neurons of a network are connected to each other, the
network is called an ergodic or fully connected network otherwise a semi-connected
one. The algorithm being capable of adjusting the weights to minimize the differ-
ence between the target and observed values (error) is called learning or training
algorithm [36, 15, 30].

The structure of a biological neuron provides a general model of an artificial

neuron. A biological neuron (Figure 8) includes dendrites, cell body or soma, and
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azon. Soma is a hard body comprising the nucleus and other nuclear materials.
Around soma, there are short exténsions known as dendrites. Dendrites connect a
neuron to another one. The interconnection area is called synapse. Axon is the longer
extension ending from one side to soma and from other side to terminal branches.
Terminal branches are micro-sensors, the cell body sends the electrochemical pulse

generated by an external stimulator to the terminal branches through an axon [38].

INFUT from other hewons OUTPUT to other newons

sends signal down the axton

Terminal branches
Cell body

Dendrites

Figure 8: Biological neuron

A McCulloch-Pitts neuron [91] is an artificial model of biological neuron which
is simply a linear function summing up the multiplication of all inputs by their cor-
responding weights ( Figure 9(a) ). After that, an activation or transfer function
receives the summation and evaluates whether it is larger than a specific threshold
value or not. If the summation is larger than threshold, it returns either the value
of summation or any other pre-defined output; otherwise, it returns zero. Depending

on the form and nature of target values, artificial neurons usually incorporate logistic
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functions:

flz) = TI% ,0>0 Sigmoid function (1)
g(z) = —1—;6—_ ,a>0 Tangent sigmoid function (2)
e ar

The transfer function should be continuous and differentiable and logistic functions
satisfy in those conditions. The artificial neuron is the building block of the feed-

forward neural network.

Hidden
Inputs Weights Bias Transfer Output
i b function Input
1 O\ Output
gy//
(a) Artificial Neuron {b) A multi-layer feed-forward network

Figure 9: Multi-layer perceptron and the structure of its neuron

Minsky and Papert have shown that the feed-forward networks with only input
and output layer, so-called perceptrons, are incapable of solving a class of problems
known as linear separable ones [92]. For example, a single-layer network cannot
solve an XOR problem because XOR problem is not linearly separable. As shown in
Figure 9(b), a feed-forward neural network may have a layer consisting of artificial
neurons between input and output layer, so called a hidden layer. The neurons of
the hidden layer are sometimes called hidden units. It has been demonstrated that
a multi-layer neural network with an arbitrary number of hidden units can estimate

any non-linear approximation [65, 64].
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In the process of training, the weights of the network are adjusted so that they
produce a vector of output having the minimum difference with target values. The
most popular learning algorithm for feed-forward weight training is called error back-
propagation algorithm [105, 119]. In standard backpropagation, the network first
computes the weight updates for neurons at the output layer, and then the error
between the output and that target value is propagated backward to the hidden and

input layer [13].

1.5 Objective and Motivation

There are considerable studies on the mechanism of post-translational modifications,
especially protein glycosylation. Glycoproteins are important by-product of PTMs.
Accordingly, glycosylation is a research topic of interest.

Buskas et al have counted some of the recent advances of glycoprotein engineering
and its application in drug discovery process [21]. The available applications to pre-
dict glycosylation sites run an artificial neural network over the amino acid sequences
to obtain biologically meaningful response. Those techniques use standard backprop-
agation or jury of networks and consider various families of proteins. However, few
studies have reported on the distribution of glycosylation sites in a specific superfam-
ily {22, 69]. An examination of the previous literature encouraged for an extension
of the topic to one specific protein family. Epidermal Growth Factor-like protein se-
quences were the case of this study. As reviewed, EGF-like peptides have a particular
glycosylation process, and they contain distinct sequons for O-linked glycosylation.
Furthermore, their O-fucose and O-glucose patterns have been well studied [57]. Asa
result, EGF-like domains are suitable candidates for evaluation of their glycosylation
sites pattern. While most of the predictor servers for glycosylation sites utilize stan-

dard backpropagation with their neural networks, this study examines other learning

24



paradigms and also introduces Bayesian learning to glycosylation sites detection and
prediction problems.

The purpose of this research was to determine the non-linear correlation between
EGF-like domain sequences and the distribution of glycosylation sites using feed-
forward neural networks. The study emphasized different learning technique fitting
best to the protein datasets. In addition, it investigates the dependency between the
prior knowledge and prediction based on Bayesian inference.

The results of this study may help glycobiologists to classify and choose the EGF-
like protein sequences of interest. They may also suggest further research into the
importance of in silico detection and prediction of glycosylation sites within the

procedures of glycoprotein engineering and drug discovery.
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Chapter 2

Materials and Methods

This chapter describes the procedural steps applied in this study and the materials
employed at each step. The nature and compilation of the data will be illustrated
in the first section. Following that section, the learning algorithms applied to the
subject will be explained. Finally, the concerned Bayesian framework set up for this

study will be demonstrated.

2.1 Data Specification

The EGF-like protein sequences were collected from PROSITE [66], UniProt [4, §],
SWISS-PROT [19], InterPro [95], Mouse Tumor Biology Database (MTBD) [96] and
a lung cancer database [99]. The EGF-like oncoproteins, the proteins potentially
associated with malignancy and glycosylated in the form of O-fucose and O-glucose,
were also gathered [56, 57|, vide Appendices E and F. The sequences with ‘Potentially’
and ‘by Similarity’ annotation tags were also included to enrich the datasets. Those
sequences indicate the putative glycosylation sites in EGF-like domains. Pfam [39]
is a repository containing related families of gathered proteins into clans. Pfam was

run through the EGF-like protein sequences to find the most similar sequences. To
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avoid redundancy in the the final dataset as well as keep the dataset unbiased, the
sequences with more than 80% of similarity were ignored. Concluded from the series
of experiments between 1971-75, Giinter Blobel postulated that secretory proteins
have intrinsic short peptides recognizable by cell membranes in the mechanism of
secretion (signal hypothesis). Consequently, the glycosylated proteins need to have
those peptides, so-called signal peptides, to pass through the secretory pathway [16,
39]. Biologically speaking, the EGF-like sequences are membrane proteins, thereby
containing signal peptides. Accordingly, the EGF-like sequences without reported
signal peptide were also removed from the dataset.

To study the eventual effects of prior knowledge on model response, the protein
sequences were partitioned in various lengths or window frames. Window frame was
a single window centered on the glycosylation site. Table 2 introduces the window
frames of this study. Xgiycosite TEPresents the glycosylation site. X is any arbitrary
amino acid. The multipliers (2, 5, 7, 9 and 14) indicate the number of amino acid
around the glycosylation site. To avoid over- or under-feeding of the network, the
window frames in this study were restricted to be 5-, 11-, 15-, 19- and 29-residue

frames.

Table 2: Window Frame Specification

Window Frame Sequence Pattern
5 2(X) — Xaiycosite — 2(X)
11 5(X) — Xaiyeosite — 5(X)
15 7(X) = Xatycosite — 7(X)
19 9(X) — Xouyeosite — 9(X)
29 14(X) — Xgiyeosite — 14(X)

The target set was {1|0}" where n denotes the number of underlying window
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frames, 1 if the central amino acid in the window frame is glycosylated and 0 if it is
not. The intended target set was taken as 0.9 and 0.1 for detected glycosylated and
non-glycosylated sites respectively. Using sigmoid functions as a transfer function
with binary target values, the learning algorithm of the feed-forward network forces
the weights and biases of the network to grow quickly, a phenomenon known as shifting
effect. The pre-determined values for the target set prevents such phenomenon by
restricting the output of the model within an appropriately small range. Table 3
shows the datasets after preprocessing. The total number of the data originally used
was 8037 window frames, out of which 7157 were used for training and the remaining

880 window frames for testing the neural network model.

Table 3: Datasets Specification

Dataset | No. of Protein Sequences | No. of Win- | Target Value
dow Frames
A 3400 3700 0.9
3045 0.1
B 412 412 0.1
C 880 880 0.90.1

The data were divided into the following datasets:

e Dataset A. This set consisted of EGFL proteins used for training the feed-
forward neural network. At least one and at most three window frames were
selected from each sequence. There was no preference in terms of the number
of window frames required to be selected from each sequence. The window
frames were arbitrarily taken from the middle region of each sequence. This set
consisted of 3700 window frames containing glycosylation site and 3045 window

frames not containing glycosylation sites (Appendix B).

28



¢ Dataset B. This set covered the EGFL sequences glycosylated but not shown
to be associated with cell malignancy in order to avoid the knowledge coming
from abnormal glycosylation sites. One window frame which did not contain gly-
cosylation site was arbitrarily selected from the middle region of each sequence
and included with the training set. The number of window frames selected for
this set was 412. Similar to Dataset A, there was no preference in choosing of

a specific window frame from a sequence (Appendix C).

e Dataset C. This set was part of the full data. Once the network trained
with Datasets A and B, this set was introduced to the model to determine the
performance of the network (Appendix D). The 880 window frames of this set

were partitioned into the following subsets:

— The first 220 window frames contained glycosylation site
— The next 220 window frames had no glycosylation site

— The third subset covered 220 window frames, which also contained glyco-

sylation sites

— The last subset included noises. The first 175 window frames were taken
from non-EGFL sequences having glycosylation sites, and the last 45 win-

dow frames were any arbitrary window frame from any arbitrary sequence.

Orthogonal scheme [80] was used to encode the dataset before feeding to the
neural network. In this scheme, each amino acid is represented with binary ’1’ while
others remain '0’. Although this scheme produces sparse input units, it prevents the
network to learn a false correlation between amino acids [104]. Figure 10 represents

the concept of orthogonal encoding.
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A=(1,000,00000000000000000000)
B=(0,1,0000,00000,0000000000000)
€=(0,0,1,0,0000000,00,000000,000,0,0)

Figure 10: Orthogonal Encoding

The input to the neural network was the concatenation of the orthogonal encoding for
¢ amino acids in the window frame. Consequently, the input sequence to the network
consisted of a 20¢-dimensional vector with a sparse binary string of Os and 1s where
¢ is the length of the window frame.

According to orthogonal encoding scheme and the introduced topology for the

feed-forward neural network, the number of parameters for the network was computed:

I'=h(200+2)+1 (3)

where I is the total number of weights and biases, £ is the length of the window frame
and h is the number of the hidden units.

The 10-fold cross validation was the chosen approach to improve the generalization
of the model. In each fold, from the total number of the window frames in Datasets
A and B, 10% were selected as test set and 90% as training set. The 10% of each of
Datasets A and B were picked up sequentially. Consequently, there were 715 window
frames in the test set, which 370 window frames contained glycosylation site (Dataset
A), 305 window frames did not contain glycosylation site (Dataset A), and 40 window
frames were taken from Dataset B. After that, the window frames in the test set
were uniformly distributed. The first 92 window frames containing glycosylation sites
(Dataset A), the second 76 window frames not containing glycosylation sites (Dataset
A) and the third 10 window frames taken from Dataset B formed the first partition

of the test set. The second and third partitions were also formed the same way as
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explained. The last partition consisted of 94 window frames having glycosylation
sites, 77 window frames not containing glycosylation sites and 10 window frames

taken from Dataset B. The choice of such partitioning was arbitrary.

2.2 Feed-Forward Networks: Mathematically Re-
visited

The intention of this section is to formulate feed-forward neural networks as well as

the learning rule governing it.

2.2.1 An Overview

Let £ be the number of labeled observations, and (X;,y;) where X; € R™ is the vector
of labeled data in which ¢ = 1,...,¢. This vector is called training set. y; € {—1,1}

is the set of target values, or target set, which classifies the problem or phenomenon.

Definition 2.2.1. Let P(X,y) is a distribution with abstract parameters 6 from which

training set is generated. fo: X; — y; is called a hypothesis over the training set.

Definition 2.2.2. Let H = {f(X;,0),0} be a hypothesis space for training data. ©

is the set of parameters of the distribution function.

Definition 2.2.3. If 36* € © such that:
V8 €O |f(X:,0) — F(X )] < @)

then f(X;,0%) is called a trained machine over the hypothesis space H. 6* is the set

of final trained parameters using in prediction of unseen data.
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Definition 2.2.4. A trained machine has an expected test error such as R(0), where

R(6) = E|IY; — f(X:,0)]| (5)

Definition 2.2.5. The mean error rate of a trained machine output, training error,

such as Remp(0) is the emperical error of the trained machine and is defined as:

£
Ranp(6) = 3 3 [¥ = £, 0) )

Remp(0) approaches to Equiation 5. There is an upper bound for Remp(6) so that it
theoretically equals to R(6). According to Vapnik-Chervonenkis (VC) theorem [117],
there is an upper bound with certain probability for the expected test error. Glivenko-
Cantelli theorem [43] implies the error of a model running infinitely approaches to a
probability distribution; as a result, it is simply the estimation of the error distrib-
ution with computed parameters. For more details on function superimposition and

learning, see [73] and [29].

2.2.2 The Complexity of the Feed-forward Neural Network

Karpinski and MacIntyre [72] have shown that VC dimension for a single-output
feed-forward network has an upper bound with an order of magnitude O(H2W?),
where H is the number of hidden neurons and W is the number of parameters of the
network. The hidden-network selected in this study was a single-layer network, so
W ~ O(NH). Consequently, the upper bound had an order of magnitude O(N2H*)

as the complexity value. According to Equation (3), the complexity of the neural
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network depended on the length of the protein sequences (£). It was the major reason
to restrict the length of the sequences to a maximum pre-determined value. The

detailed discussion on feed-forward complexity can be found in {11, 74, 121, 84].

2.3 The Learning Approaches Applied

Figure 11 illustrates the workflow taken for this study. Data normalization was a step
in which encoding and scaling of the dataset took place. To improve the generalization
of the network, early stopping and regularization were used. According to early
stopping, the dataset was divided into three subsets of training, validation or test, and
verification. Subsequently, in each training step, or epoch, the network was trained
with training set and validated with test set. Verfication sets were used to determine
the performance of the network after generalization process. Regularization will be
discussed in Section 2.4.

Table 4 shows the learning algorithms incorporated with the feed-forward net-
~work. In addition to using early stopping and regularization terms, the values for
the intrinsic parameters of the algorithm, hyperparameters, were chosen in such
a way to prevent the overfitting phenomenon during the training. For example,
the values of backtracking minimization parameters for [BPROP-OSS] were set to
a = 0.001, 8 = 0.1 and v = 0.1. The threshold goal, a criterion for ending the
training epochs, varied between 102 and 1075,

When the most consistent algorithm was found for the data, it was used against
Bayesian automated learning for comparison between two model paradigms. Appen-
dix A shows the results of training as well as the model response for each algorithm.

The interpretation of the results will be discussed in Chapter 3.
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Table 4: The learning algorithms applied in this study

Automated Regularization

Label Learning Algorithm Reference(s)
[BPROP-GD] Backpropagation Gradient Descent [105]
[BPROP-GD-M]| | Backpropagation Gradient Descent 136, 15]

with Momentum
[BPROP-GD-AL| | Backpropagation Gradient Descent [36, 15]
with Adaptive Learning rate
[BPROP-GD-X] | Backpropagation Gradient Descent [36, 15]
with Adaptive Learning rate and
Momentum
[BPROP-RPROP] | Resilient Backpropagation [103]
[BPROP-CGF| | Conjugate Gradient Descent with [108]
Fletcher-Reeves Updates
[BPROP-SCG] | Scaled Conjugate Gradient Descent (93]
Backpropagation
[BPROP-OSS] | One Step Secant Backpropagation [12]
[BPROP-BRNN] | Backpropagation with Bayesian (86, 85]

2.4 Bayesian Learning: Induction and Inference

There are usually three steps in an inductive learning:

e Observing a phenomenon

e Making a model from observation

o Predict outcomes based on the learned model

Therefore, machine learning automates the process of learning, and the theory of
learning establishes a solid formalization on top of that automated process. Hence,
defining a learning machine from the scratch is a useful approach to implement a

practical tool for induction. Bayesian inference is a consistent method which can be
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applied to extract the required knowledge using a systematic induction approach. A
neural network can be traditionally trained by either steepest descent algorithms or
other optimizers such as conjugate gradients [53]. It is more accurate if the structural
parameters of a network are also taken into account while computing training errors
to penalize large weights, a mechanism called regularization [24]. This can be done

by incorporating a regularization term to Equation (6):

1 = (n+d)H
Remp(8) = 5 > s = F(X0, O + A > w) (7)
£ j=1

where the second term on the right shows the sum of squared weights (SSW) of a
neural network. n-+d is the sum of all the weights including biases. A is reqularization
coefficient and should be set up such a way that the total performance of network
increases. SSW is the regularization term to penalize the large values of the weights in
the network. One approach is to use a simple Genetic Algorithm (sGA) to determine
the regularization coefficient [90]. One benefit of this method is to find the local
optima of the ratio simultaneously. On the other hand, this method is too slow to fit
into implementation, and as more data arrive, it is computationally complex.

Another approach is to set up neural network as a probabilistic model. The
non-linear inner-product space of a neural network’s parameters is assumed to be
related to a probability distribution function with unknown variances, and the goal
is to estimate the parameters of the network based on that function [86, 85]. Since
these models adjust a network without the need of additional test set, they are able
to automatically optimize the regularization ratio; consequently, they provide an
automated regularization to a neural network.

Let both terms in Equation (7) receive different coefficients repreéenting the im-

portance of each term. Equation (7) can be re-written as follows:
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1 i=1 (n+d)H
Rerp(6) = BEp + aBr = B4 ) [y~ f(X:, O + o) Y ) (8)
¢ Jj=1

According to Bayes’ theorem, general knowledge of every model can be formulated
as probability distribution (density). In terms of neural networks, posterior probability
of weights given a model, D, is integrated out using prior distribution of weights as
well as measuring noise process model on target set or likelihood function given certain
set of weights. To make sure posterior distribution remains a probability function,

those measurements are normalized by distribution of model itself.

POW)P(W)

P(W|D) =

The goal is to find best weights, W*, that maximize posterior probability. To
find a practical algorithm which could calculate Equation (9), prior, likelihood and

posterior probabilities were computed individually.

2.4.1 The Prior Probability

Let the network choose a zero-mean standard Gaussian distribution, N(0,0?), where
1

a?’

o? =

P(Wla) = [ P(wile) (10)

il
)
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Choosing the variance such as mentioned simplied the calculation of the network
and prevented the algorithm to be more complex. The prior distribution becomes
as follows, where W, E, and Zw(«) are the number of weights, weight decay and
normalization factor respectively. In case of standard normal distribution, which is

used in this study, the SSW is called weight decay.

2.4.2 The Likelihood Estimation

From the same method to obtain the prior, it is possible to calculate the likelihood
function. The likelihood expresses how data energy is likely to decay through the
learning process. Hence, the following approach was used to reach at the model
likelihood. If data, D, consist of training-target set pairs (X, t;), for 1 <i < N, the

likelihood will be such as following:

N
POW) = [Ptz W,8) (11)

Zo(f) = (

where M(z;), Zp(8) and Ep are model output given inputs x;, normalization factor

and model ouput error respectively.
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2.4.3 The Posterior Probability

The posterior distribution was simply calculated from Equations (9), (10) and (11):

P(W|D,a,B) = o) (;’ 5 e~ (BEp+abw) (12)
1
75 ) = 2 2o (B)P (D)

Maximizing the posterior probability is easier by minimizing the total error of the
network according to Equation (12). The reason of why the regularization term is

sometimes called weight decay is obvious from the above mentioned equation.

2.4.4 Updating Hyperparameters of the Network

It has been shown that the priors are reliable for every re-parameterization when

they are proportional reciprocally to the parameters per se [86]. It means to choose
1 1

Pla) = 5 and P(8) = 5 By plugging these values in (9) and then expanding a

Taylor-approximation of (12), one can get the following inference:

InP(a, 61D) o< InP(Dla, 5) + InPla, §) = ~aByy ~ BB ~ 3 n|H|

2
—lna—Inpg (13)

+V—V-lna+—12\—flnﬁ— %’-ln(%)

H=-VVInP(W|D) (14)

where the starred parameters referred to optimized values of energies obtained from
the last procedure. P(, ) is the non-informative prior to minimize the emperical
risk. Equation (14) is Hessian of (7) at optimized weights W* [15].

The goal was to find the optimum energy parameters done by calculating the

partial derivatives of Equation (13) with respect to o and 8 and set the result to
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zero. Therefore, the optimum values for the parameters were found:

of = y
2Ey,
. N-=v
p= 2E},
Y= N — 2a:ld t""(H*)—l (15)

N, H*7! and 7 are the number of parameters, inverse of the Hessian matrix and the
remaining parameters after training the network respectively. Having obtained the
updated parameters of energy function, one can simply implement an iterative algo-
rithm embedded with any learning technique. Figures 12 and 13 shows the flowchart

of Bayesian automated inference and the methodology utilized in this study.

a«0
B1
W: Nguyen-
Widrow
Method

— E,.E, < Training Algorithm

R, ()= PE, + ok,

[ y=N- Zatr(H‘)"

L

P
TN

~<Z__ Convergence >
\\ //

-

/’/Ganerallzed“ ™

\__ BPROP -

Figure 12: A Bayesian framework for pruning a feed-forward neural network
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2.5 The Neural Network Architecture

The nerual network had a single hidden layer to reduce the complexity of the search
space. For model selection, different hidden units between 1 to 10 was examined
along with the implementation of the network. The sigmoid function was the choice

of the activation function. The learning algorithm exploited with Bayesian learning

was Levenberg-Marquardt [52].

The programming environment was MATLAB ® 7.2 [88]. Table 5 shows the

necessary codes implemented to provide an integrated environment for developing

the entire project.

Table 5: The MATLAB and C++4 Programs used for This study

Code Name Description
segencoder Encode the input sequences of proteins using or-
thogonal encoding
kfoldcv General purpose K-fold Cross Validation for eval-
uation of Backpropagation Neural Networks with
any learning algorithm
CVencoder Encode the input sequences of proteins using or-
thogonal encoding
f Sigmoid transfer function for backpropagation
network
window_frame Reduce the size of window frame to the desired
length
assess Assessment measures calculation routine
display_discussion | A utility to nicely present the results
ASSESS Modified C++ class version of ’assess’
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The regularizaton ratio (RR) was set to 0.5 to make balance between regular-
ization and mean square error (MSE) terms. The Nguyen-Widrow adaptive weight
initialization [97] was the approach for initializing the network parameters.

For each window frame and learning algorithm, one Pentium 4 (3.99GHz) with
1GB of RAM computer was exploited as psuedo-parallelization of the project. The
total training time was 9.0 hours/CPU. The average run-time for each window frame
using Bayesian framework was 30 minutes on a Dual Processor Pentium 4 (3.00-
2.99GHz) with 1GB of RAM. Finally, the results of training [BPROP-BRNN] were
compared to [BPROP-OSS]. One reason was shown that the most consistent result
among the applied learning algorithms in this study for EGF-like protein data be-
longed to [BPROP-OSS] [110]. The more detail will be explained in Chapter 3.
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Chapter 3

Results and Discussion

3.1 Introducing the Results

The model response was superimposed on the test set distribution graph (Figure 14).
The horizontal axis shows the distribution of the test set consisting of 880 sequences.
The vertical axis represents the model response which was between 0.1 and 0.9. The
first and third sets were those window frames which are EGFL and glycosylated.
The second set was the window frames of non-glycosylated EGFLs. Finally, the
last set consisted of glycosylated non-EGFL as well as arbitrary sequences or noises
(Figure 14).

In the first phase of the study, the model response was found for the feed-forward
network trained with different learning algorithms. The findings have been illustrated
through Figures 27 to 56 in Appendix A. For each response, the corresponding
training chart has also been shown. In the training chart, the z-axis indicates for the
number of training iterations (epochs). y-axis is either mean squared errors (MSE) or
log-MSE. The MSEs were all calculated after 10-fold cross validation to generalize the
related feed-forward network. Blue, red and black colors specify training response,

test response and the goal index respectively. Table 10 defines the nomenclature used
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to label the graph designations as well as the parameters of the networks. In phase
II, Figures 15 to 24 present the model response for [BPROP-BRNN] and [BPROP-
0OSS], which was more consistent than others in terms of response. The respec-
tive training charts for each type of neural network has also been demonstrated. In
[BPROP-BRNN] training chart, SSE stands for the Sum of Sqaured errors. Sum of
squared weights or weight decay is the term of regularization to penalize the network
for large values of weights. The effective number of network parameters after training
() has also been show in the training chart.

Bayesian learning prunes the unnecessary parameters of a neural network. In
other words, the parameters with large variances with respect to others are set aside,
so it was not needed to apply cross validation. Consequently, the training charts for

[BPROP-BRNN] conatin only sum of squared errors.
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Figure 15: (a) [BPROP-BRNN], WF=5, HU=5 (b) Model Response
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Figure 16: (a) BPROP-BRNN] , WF=11, HU=5 (b) Model Response
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Figure 17: (a) [BPROP-BRNN] , WF=15, HU=5 (b) Model Response
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Figure 18: (a) [BPROP-BRNN] , WF=19, HU=5 (b) Model Response
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Figure 19: (a) [BPROP-BRNN] , WF=29, HU=5 (b) Model Response
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MSE is 2.20895e-006 (6= 1e-007)
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Figure 20: (a) [BPROP-0SS] , WF=5, HU=5 (b) Model Response
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Figure 21: (a) [BPROP-0SS] , WF=11, HU=5 (b) Model Response
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Figure 22: (a) [BPROP-0SS] , WF=15, HU=5 (b) Model Response
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3.2 Assessment Measures

For the purpose of discussion, two types of assessment measures were selected:
e Accuracy measures: To evaluate the accuracy of the model response

e Consistency measures: To measure the reliability of the network

3.2.1 Accuracy Measures

one way to investigate the stability of the network is to measure the performance
of the model using binary comparison [9]. In this study, M and M represented the
glycosylated and not-glycosylated sites reported by the model respectively. D and
D were also assumed to be the similar sites, but observed in the real dataset. The

values of Figure 25 display:

True Positive Hits (TP). The number of times the amino acid glycosylated, and

the network could detect them correctly.

True Negative Hits (TIN). The number of times the amino acid not glycosylated,

but the network had reported them as glycosylated.

False Positive Hits (FP). The frequency of amino acids glycosylated according to
the model while they did not.

False Negative Hits (FN). The frequency of amino acids glycosylated, but the

model detected them as non-glycosylated.

Figure 25 also shows the specificity and sensitivity, two major paramters to measure
the accuracy of the network. Sensitivity is the probability of properly reported the
true positive hits. Specificity is a criterion representing to what extent the detection

of true positive hits is correct.
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Figure 25: Dichotomy between glycosylated and non-glycosylated sites

The percentile of those assessment parameters were taken into account.

3.2.2 Consistency Measure

Similar to Pearson correlation, Matthews Corelation Coefficient (MCC) (89, 9] is a
modified standard correlation used in the context of bioinformatics. The value of
the correlation is always between -1 and 1. The zero value for MCC indicates a
complete random estimation. On the other hand, the extreme value 1 of -1 for MCC
represents complete correlation or uncorrelation respectively. MCC is calculated from

the following Equation:

MCC — TP x TN — FP x FN 16)
V(TP +FN)(TP + FP)(TN + FP)(TN + FN)

MCC € [-1,1]

MCC is the measure of dichotomy features problems. If the feature selection
process requires more than two features, other performance meaures may take place.
MCC was found to be an appropriate for this study because the nature of the subject
was to differentiate between glycosylated and non-glycosylated sites. For example,

Ry, is a generalized version of MCC and can be used for multi-features problems [45].

o8



3.3 Discussion

This research has attempted to assess two field studies. The first field was the bioinfor-
matics significance of the study in which the performance and accuracy of the model
response was of interest. The main goal was to achieve to a feed-forward neural
network producing statistically significant outputs. In addition, the topology of the
neural network was important as a second field study, since a consistent framework
could generally improve the output of the feed forward networks.

In the first section, the bioinformatics significance of this study will be discussed,
and the related tables be introduced. In the next section, the concept and analysis of
Reduction Factor (p) as an index of the feed-forward network will be introduced and

discussed.

3.3.1 Bioinformatics Interpretations

The first part of the study was considered with 29-residue sequences and a single-
layer feed-forward network with 10 hidden units. It was originally assumed that giving
a pre-determined complexity to the network helps to obtain consistent results along
with a fast training. However, the results of HU 10 10, a network with two layers with
10 hidden units for each did not confirm that assumption ( (b) subfigures of Figures 29
to 56). The figures suggest that a single-layer neural networks is enough for study
the large datasets of EGF-like protein sequences. Compared to other algorithms,
standard backpropagation was less consistent. Even adding another extra hidden
layer to give a complexity to the network could not help to improve the response.
Other classes of standard backpropagation such as [BPROP-GD-X] and [BPROP-
GD-M] showed the similar results. Nevertheless, provided by an adaptive learning
term, the results for [BPROP-GD-X] could be better that those of other standard

backpropagation algorithms, as displayed in Figures 32 to 34.
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Table 6 summarizes the performance and accuracy meaurements for the learning
algorithms applied in this study. While [BPROP-GD)] reported positive hits more
than others, BPROP-OSS] could detect glycosylation sites more consistent by 89.97%
of specificity. [BPROP-OSS] has the minimum average error for detecting positive
glycosylation sites among other algorithms. Moreover, it had the minimum sensitivity.

On the other hand, [BPROP-GD] has the maximum average error.

Table 6: The Standard Measures for the Learning Algorithms (HU=10)

Algorithm MSE | Reg. MSE | SPEC% | SENS% | MCC
[BPROP-GD] 0.0673 0.0446 64.11 55.77 0.340
[BPROP-GD-M] 0.0554 0.0578 65.33 55.63 0.336
[BPROP-GD-AL] | 0.0161 0.0214 77.03 55.35 0.327
[BPROP-GD-AL-M] | 0.0156 0.0163 77.63 53.14 0.251
[BPROP-RPROP] | 0.0569 0.0368 63.61 57.52 0.235
[BPROP-CGF] 0.0117 0.0310 76.33 53.53 0.266
[BPROP-SCG] 0.0124 0.0264 77.37 52.88 0.256
[BPROP-OSS] 0.0103 0.0193 89.97 52.77 0.425

The results suggest that standard backpropagation cannot map the correlation
between the distribution of glycosylation sites and the EGF-like protein sequences
dataset. Such results differ from those of Gupta and Brunak [49] for general proteins
in which their systems have identified the glycosylated and non-glycosylated sites by
97%.

Regularization was applied to the model in this study to take the effect of large
weights into account. The manual regularization coefficient was set to either 0.5 or 0.3
depending the analysis. Nonetheless, the the manual regularization could not improve
the detection or prediction of glycosylation sites. Compared to general algorithms,
the average error of manual regularization with ratios of 0.5 and 0.3 was higher than
* that of regularized algorithms by 0.9387%.

The highest specificity for [BPROP-OSS] compared to other methods emphasized
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its usage for the next phase of the study, as a model comparison paradigm against
Bayesian learning. On the other hand, [BPROP-RPROP]| had the most sensitivity,
but least specificity. Moreover, the minimum MCC value was also found for [BPROP-
RPROP].

When accompanied with two-layer neural networks, Quasi-Newton family of learn-
ing algorithms appeared to be more consistent that others in terms of accuracy meau-
rement. One example was [BPROP-SCG] (Figures 46 to 49). The nature of their
line-search routine may lead to such results [14].

In the second phase, the [BPROP-BRNN] was compared with [BPROP-OSS] to
determine the efficiency of Bayesian learning in pruning the redundant parameters
of the feed-forward network. Table 7 shows the standard measurements for both

[BPROP-BRNN] and [BPROP-0SS].

Table 7: Standard measurement for [BPROP-BRNN] and [BPROP-0SS]

Window Frame | Assess | BRNN | OSS
SPEC% | 66.37 | 38.91
5-residue SENS% | 69.22 | 51.00

MCC 0.674 | 0.111
SPEC% | 70.99 |47.11
11-residue SENS% | 68.17 | 54.83

MCC 0.790 | 0.165
SPEC% | 66.25 | 43.29
15-residue SENS% | 75.23 | 55.17

MCC 0.715 | 0.153
SPEC% | 75.16 | 57.15
19-residue SENS% | 70.19 | 60.90

MCC 0.821 | 0.341
SPEC% 77.00 | 50.11
29-residue SENS% | 76.19 | 49.35
MCC 0.851 | 0.313

The measures were evaluated for HU=1 to Hu=>5 and for different window frames. In
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this phase, the effect of window frame as a representative of prior knowledge and the
number of hidden units as a criterion for model complexity was the main purpose of
study.

The maximum specificity was obtained for [BPROP-BRNN] and [BPROP-OSS]
along with 29- and 19-residue window frames respectively. On the other hand, 15-
and 5-residue frames correspondingly associated with [BPROP-BRNN] and [BPROP-
0SS} showed the least specificity. It is possible to consider a lengthy frame along with
Bayesian learning as well as quasi-Newton methods. However, resulting in the least
specificity, the 15-residue frame could not show any evidence for stability. [BPROP-
BRNN] and [BPROP-0OSS] could also detect the most positive hits when they were
fed with 29- and 19-residue sequences respectively. Performance measure (MCC)
was maximum in 29-residue window frames in [BPROP-BRNN]. For [BPROP-0SS]
the similar result happened for 19-residue frames. In both networks the minimum
MCC belonged to 5-residue window frames. The results also showed a 62.22% in the
maximum MCC using automated regularization, which is a significant improvement
for the feed-forward network. It was anticipated that the Bayesian learning might
lead to a stronger generalization than that of quasi-Newton approach.

The results strongly suggest to use the window frames with not less than 5 amino
acids around the glycosylation sites. The performance of the networks provided with

enough knowledge increased according to Table 7.

3.3.2 Machine Learning Interpretations

Bayesian automated regularization was a technique used to investigate whether the
gernalization of the model would be improved. Hence, quantifying the assessment of

Bayesian learning was possible by introducing a simple, yet effective parameter.
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Introducing the Neural Networks Reduction Factor

Reduction Factor (p) is the measure which calculates how much the size of the network
has been reduced:

oo (17)
where I'y is the total number of network weights, and g is the remaining parameters
of the network after pruning process. The Reduction Factor was applied to the
Bayesian framework of this study. According to the findings in Table 8, after applying
the Bayesian approach, the average size of the network was reduced by 47.62%. It
was revealed that the 15-residue window frame behaves chaotically. As indicated in
Table 8, the 15-residue frame obtained the maximum reduction with one hidden units;
on the other hand, the network parameters minimally reduced with the same window
frame and using a single-layer network with 3 hidden units. Thus, the result implies
that the 14 amino acids around glycosylation sites do not offer significant information.
This finding is in substantial agreement with that of Section 3.3.1 regarding to 15-
residue window frame.

Figure 26(a) shows the overall reduction of the network after applying Bayesian
framework. Each cluster represents the group of window frames from left to right.
The order is from 5- to 29-residue frame. One major point is the transient step in
the Table 8. The Reduction Factor for the networks with one and two hidden always
was maximum for 15-residue window frame. Instead, for the networks with 3, 4 and
5 hidden units, there was more clear pattern. For example, there was more reduction
for 5- and 29-residue frames in the single-layer networks with 4 and 5 hidden units.

Figure 26(b) displays the average reduction over the studied window frames. The

minimum and maximum reduction belonged to 5- and 29-residue frames respectively.
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Table 8: [BPROP-BRNN] Reduction Size Analysis

0% = PLP_E x 100%

HU | T'r YE
T
WF
1 106 | 66.95 36.84
2 212 | 100.98 52.37
5 3 318 | 156.97 50.64
4 424 | 156.97 62.98
5 530 | 156.97 70.38
1 232 | 166.22 28.55
2 464 | 342.25 26.24
11 3 696 | 542.51 22.05
4 928 | 763.64 17.71
5 | 1160 | 811.00 30.09
1 316 | 22.93 92.74
2 632 | 209.61 66.83
15 3 948 | 794.15 16.23
4 11264 | 826.00 34.65
5 | 1580 | 826.00 47.72
1 400 | 258.99 35.25
2 800 | 665.79 16.78
19 3 {1200 | 836.00 30.33
4 11600 | 835.97 47.75
5 | 2000 | 836.00 58.20
1 610 | 442.93 27.39
2 | 1220 | 804.19 34.09
29 3 | 1830 | 846.99 53.72
4 | 2440 | 847.00 65.29
5 | 3050 | 847.00 72.23
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3.4 The Comparison with Existing Systems

The performance of Bayesian regularization neural network was compared to that of
the exsiting systems, NetNGlyc and NetOGlyc.

The test set were given to Bayesian regulariation neural network, NetNGlyc and
NetOglyc. The reports of the existing systems and Bayesian network were utilized
to calculate the number of true and false postives as well as true and false negatives,

and then evaluated in terms of the assessment measures of this study.

Table 9: The responses of the Bayesian neural network and the existing systems

System SPEC% | SENS% | MCC

NetNGlyc-NetOGlyc (Average) 37.10 49.70 | 0.538

Bayesian Regularization Neural Network 81.11 85.05 0.889

Table 9 represents the model responses for both the Bayesian neural network of this
study and the existing systems. For the context of this study, Bayesian regularization
neural network could improve the detection and prediction of glycosylation sites by
54.25%. Moreover, the accuracy of the response in The Bayesian model was higher
by 41.56%. Bayesian neural network was more consistent than the average response

of the existing models by 39.48%.
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Chapter 4

Conclusion

There are noteworthy points learned through carrying out this study. In the first
section, those points will be briefly reviewed. Finally, the possible future works and

suggestions will be discussed.

v4.1 The Lessons Learned from the Project

Artificial neural networks have been used to find a non-linear mapping between the
intrinsic characterstics and sequences of protein(s) during the post-translational mod-
ifications (PTMs). As the most common and complex modification, protein glycosy-
lation was focused in this study. Among the growth factors superfamily, Epidermal
Growth Factor-like (EGFL) repeats were the protein studied in this research. The
accurate detection and prediction of the glycosylation sites in EGF-like oncoproteins
was the ultimate goal of this study.

One class of neural networks, feed-forward networks or multi-layer perceptrons,
were employed to succeed the goal. As reviewed in Chapter 1, most of the existing
techniques use standard backpropagation as the learning paradigm with feed-forward

network. It was learned that the standard backpropagation was not sufficient for
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concerned perception of non-linear functionality in EGFLs. Furthermore, it was an-
ticipated that the topology of the feed-forward network may influence the process of
knowledge extraction from the EGF-like sequences. As a result, Bayesian framework
was established to investigate that hypothesis. Exploited as a quantitative approach,
the concept of Reduction Factor was introduced to support the investigation.

The results of Bayesian regularization neural network was compared to the average
results of the existing systems. For EGFL proteins, the Bayesian network was more
consistent by 39.48%. In addition, the specificity and sensitivity of Bayesian neural
network was higher by 54.25% and 41.56% respectively.

In the first phase of the study, different learning algorithms were used along with
the feed-forward network. [BPROP-OSS]|, a quasi-Newton learning algorithm, was
found to be more consistent than others in terms of accuracy and reliability. In the
second phase, the Bayesian automated learning was utilized. The network was ini-
tially implemented by the maximizing the posterior probabilities. After that, the net-
work parameters were pruned such that the less important weights and biases were ne-
glected. Bayesian learning outperformed the quasi-Newton algorithm in terms of both
accuracy and consistency over the networks parameters as well as model response.
The neural network with both Bayesian and quasi-Newton learning approaches was
employed to detect the glycosylation sites of the epidermal growth factor-like re-
peat proteins. The true positive hits were much higher in the network trained with
Bayesian learning. This would suggest applying this framework for knowledge infer-
ence from large proteomic data. In fact, with enough prior information, it is possible

to estimate the model parameters even with large number of protein sequences.
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4.2 Future Works

Evolutionary-related EGFL sequences may affect the accuracy of the model due to
an unavoidable similarity among those sequences. Removing the sequences with the
same origin from the dataset introduces less prior knowledge to the model whereas
keeping them may influence the model response. Therefore, the trade-off between
keeping and removing evolutionary-related EGFL sequences is a challenging issue for
further studies.

Bayesian learning is expensive and computationally complex. Using other encod-
ing schemes such as adaptive encoding [67] may suggest a solution to overcome that
disadvantage of [BPROP-BRNN]. It appears that the lengthy sequences of EGF-like
domains lead to a more consistent Bayesian framework. Thus, it is suggested that the
correlation between various lengths longer than 14 residues and the model response
be studied and evaluated.

The network parameters as well as the parameters indirectly affecting the networks
may play a role in extracting knowledge from such studied models. For example, the
number of folds in the process of cross validation and the nature of transfer functions
are two of those criteria. It has been demonstrated that the application of Radial
Basis Functions to single-layer networks can direct to improve the convergence of the
network [76).

It is proposed that the approach outlined in this study be replicated in or extended
to other specific superfamilies of proteins to find a standard reference for such studies.

Finally, it is recommended that the results of such in silico analysis be validated

by biologists to advance the reliability of such connectionist models.
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Appendix A

The Responses of Learning

Algorithms of This Study

The results for comparing various learning algorithms with feed-forward neural net-
work have been shown in Figures 27 to 56. [BPROP-OSS| was more consistent than
others in terms of stability and performance [110]. Table 10 lists the designations of

graph and algorithms.

Table 10: The Nomenclature Used for Learning Algorithms

Symbol Description
HU or HL | Number of hidden units in a layer
LR; The initial value for learning rate
LR Learning rate
RR Regularization ratio
HLnm Two-layer neural network with n and m hidden
units for each layer
MC Momentum constant
MSE Mean Squared Error
thresh or goal | The error tolerance
Performance | The greatest real number less than goal
WF Window frame
ouT Model response distribution
OBS Real test set distribution
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Figure 27: (a) [BPROP-GD] WF=29, HU=15 (b) Model Response
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Figure 30: (a) [BPROP-GD] WF=29,HU=10 10,RR=0.5 (b) Model Response
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Figure 31: (a) [BPROP-GD-X] WF=29, HU=15 (b) Model Response

91



MSEREG@10th fold=0.00508707 (Thrashi=0.001)
T

2
19 LIS NN NN A I RN A SN NN N R R BN N SRR SR R

T T T T T T T T

Training-Blue GoaHBlack TestRed
5

J. 1 1 1 i 1 | 1 1 1 It i L 1 I 1 i1 1 L 1 1 J. 1 L
0 10 20 30 40 £ 60 70 B0 90 100 110 120 130 140 150 160 70 180 190 200 210 220 230 240 250 260 270 260 290 300
300 Epoche

(a)

BPROP (Regularized Gradient D t-Adaptive Leaming with Momenturn)(HL=15; LR Initial=0.03; mc=0.7)

0B}

06

04

03

02

0t} bl A‘AT"""YLVJVTL& bl

) ! I 1 i
00 300 400 500 600
Data Distribution

(b)
Figure 32: (a) [BPROP-GD-X] WF=29,HU=15,RR=0.9 (b) Model Response
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MSEREG@10th-fold=0.00092366 (Thresh=1e-008)
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MSE@10th fold=6.01472e-008 (Thresh=1e-008)
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MSEREG@10th fold=0.00142106 (Thresh=1:008)
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MSEREG@10th fold=0.000746321 (Thresh=1e-005)
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MSE®@1 0th fold=1.48131-006 (Thresh=1¢-006)
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Figure 52: (a) [BPROP-CGF] WF=29,HU=10 10 (b) Model Response
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MSEREG@10th fold=0.001 10825 (Thresh=0.0001)
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" MSE@1 0th fold=9.66563e-008 {Thresh=1e-00
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" MSEREG@10th fold=0:000789728. (Thresh=18:006)
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One Step Secant BackPropagation (Backtracking Minimization; «=0.,001; p=0.1; v=0.1)(HL=10 10)
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Appendix B

Dataset A

No. | Accession | No. | Accession | No. | Accession | No. | Accession
1 QIR158 34 Q923W9 67 Q923W9 100 Q9HCU4
2 075078 35 P70505 68 P70505 101 Q9ROMO
3 Q9R1V4 36 Q77780 69 Q77780 102 QIQYP2
4 QIPSZ3 37 Q60411 70 Q60411 103 QINYQ7
5 043184 38 Q99965 71 Q99965 104 Q91ZI0
6 Q61824 39 Q28478 72 Q28478 105 088278
7 Q13444 40 Q60718 73 Q60718 106 Q9I8Q3
8 088839 41 Q28660 74 Q28660 107 Q9GZR3
9 QIQY V0 42 Q63202 75 Q63202 108 P97766

10 Q9Y3Q7 43 P78325 76 P78325 109 Q86T13
11 Q95194 44 Q05910 77 Q05910 110 Q8VCP9
12 QIR 157 45 Q13443 78 Q13443 111 P78357
13 PITTT6 46 Q61072 79 Q61072 112 054991
14 Q9HO013 47 Q60813 80 Q60813 113 P97846
15 035674 48 Q8R534 81 Q8R534 114 Q9UHC6
16 043506 49 P25371 82 P25371 115 | QICPWO
17 QIUKJ8 50 P31696 83 P31696 116 Q5RD64
18 Q9JI76 51 Q90404 84 Q90404 117 Q9BZ76
19 QIPOK1 52 000468 85 000468 118 Q9CO0AQ
20 QIR1VE 53 P25304 86 P25304 119 Q99P47
21 042596 54 Q01594 87 Q01594 120 P13671
22 075077 55 Q41233 88 Q41233 121 P61134
23 QIR1VT 56 P31756 89 P31756 122 P61135
24 Q9R160 57 P31757 90 P31757 123 Q811M5
25 QI9R159 58 Q6UW56 91 Q6UW56 124 P10643
26 QIUKQ2 59 Q6PGDO 92 Q6PGDO 125 QITUQ3
27 QIXSL6 60 P41990 93 P41990 126 Q5RADO
28 Q9JLNG6 61 P15514 94 P15514 127 P07357
29 QIUKF5 62 P31955 95 P31955 128 Q8K182
30 Q9UKF2 63 P24338 96 P24338 129 P98136
31 Q8TC27 64 014525 97 014525 130 P07358
32 Q8K410 65 Q61137 98 Q61137 131 Q8BH35
33 QIBZ11 66 075882 99 075882 132 Q90X85
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No. | Accession | No. | Accession | No. | Accession | No. | Accession
133 | Q9PVW7T | 183 Q61483 233 P00743 283 P98133
134 P98137 184 P97677 234 P25155 284 P35555
135 P55314 185 QINYJ7 235 P00742 285 Q61554
136 | Q3MHN2 | 186 088516 236 088947 286 Q9TV36
137 P79755 187 088671 237 019045 287 P35556
138 P48770 188 QINR61 238 Q63207 288 Q61555
139 P02748 189 Q9JI71 239 Q4QXT9 289 Q75N90
140 P06683 190 Q6DI48 240 P98140 290 P10079
141 P06682 191 057409 241 Q04962 291 P15216
142 P48747 192 Q9IATS6 242 P00748 292 P49013
143 Q62930 193 Q8UWJ4 243 097507 293 Q25464
144 P49747 194 P10041 244 P22457 294 Q14393
145 QIR0GE 195 043854 245 P08709 295 Q61592
146 P35444 196 035474 246 P70375 296 Q63772
147 QINQT9 197 QIUHF1 247 Q2F9P4 297 Q76CAl
148 Q8R555 198 QIQXT5 248 Q2F9P2 298 P13508
149 P10040 199 Q6AZ60 249 P98139 299 P25291
150 Q5EA46 200 Q99944 250 Q8K3U6 300 P55259
151 Q96HD1 201 Q6GUQ1 251 P00741 301 Q9D733
152 QI1XD7 202 Q6MG84 252 P19540 302 P19218
153 Q4VTF2 203 Q6UY11 253 Q804X6 303 Q8V307
154 P82279 204 QS8K1E3 254 Q6SA95 304 Q776B5
155 Q8VHS2 205 P00533 255 P00740 305 P08072
156 Q51J48 206 QIBEAO 256 P16294 306 Q6RZT5
157 Q80YAS 207 Q95ND4 257 QI5ND7 307 P08441
158 Q8CG14 208 P01133 258 P16293 308 057166
159 Q8CFGS8 209 P01132 259 QIVWT1 309 P20494
160 P81282 210 Q00968 260 QINYQ8 310 Q86607
161 Q90953 211 P07522 261 088277 311 Q9JFH4
162 P13611 212 P15217 262 Q14517 312 P01136
163 Q28858 213 Q99372 263 P33450 313 P33804
164 Q62059 214 | Q9HBWY9 | 264 042182 314 P42287
165 Q9ERB4 215 Q923X1 265 077469 315 Q5E9Z2
166 014594 216 QIESC1 266 Q8MJJ9 316 Q14520
167 P55066 217 Q14246 267 Q73775 317 Q8K0D2
168 Q51541 218 Q61549 268 P23142 318 Q6L711
169 P55067 219 Q9UHX3 269 Q08879 319 Q09118
170 Q9DF69 220 QIBY15 270 P98095 320 Q99075
171 095196 221 Q865SQ3 271 P37889 321 Q06186
172 Q71M36 222 QI91ZE5 272 Q12805 322 Q01580
173 QIERQ6 223 Q5EGT1 273 | Q7YQDT7 323 Q06175
174 Q20911 224 | Q6UWSS 274 Q8BPB5 324 Q6QNF4
175 Q9TU53 225 Q924X1 275 035568 325 Q04756
176 060494 226 Q15303 276 055058 326 QIR098
177 Q9JLB4 227 Q61527 277 095967 327 Q96QV1
178 070244 228 Q62956 278 | Q9WVI9 328 Q7TNI16
179 Q09165 229 014944 279 Q5EAG62 329 Q96RW7
180 P80370 230 Q61521 280 Q9UBX5 330 Q5E985
181 Q09163 231 P83370 281 | Q9WVH9 | 331 Q12794
182 000548 232 P81428 282 | QOWVHS | 332 Q91ZJ9
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No. | Accession | No. | Accession | No. | Accession | No. | Accession
333 | Q6RHW4 | 383 P17801 433 Q924T4 483 P16109
334 Q76HN1 384 P45442 434 P79948 484 Q01102
335 Q12891 385 P25391 435 P14585 485 P98106
336 035632 386 P19137 436 Q03345 486 P98109
337 Q972Q3 387 P24043 437 QINZR2 487 P48740
338 Q8SQG7 388 Q60675 438 Q9J118 488 P98064
339 043820 389 Q16787 439 P98157 489 000187
340 Q8VEI3 390 Q61789 440 Q07954 490 | QI91WPO
341 | Q6RHW2 | 391 Q16363 441 P98164 491 Q9JJS8
342 | Q5REQIL 392 P97927 442 P98158 492 P05099
343 Q76HM9 393 015230 443 075096 493 P21941
344 P12606 394 Q61001 444 Q8VI156 494 P51942
345 P12607 395 Q00174 445 | Q9QYP1 495 000339
346 P53712 396 Q01635 446 075197 496 008746
347 P07228 397 P11046 447 Q91VNO 497 042401
348 P53713 398 P07942 448 075581 498 015232
349 P05556 399 Q27262 449 088572 499 035701
350 P09055 400 P02469 450 Q98931 500 095460
351 QIGLPO 401 P55268 451 Q14114 501 089029
352 Q5RCA9 | 402 Q61292 452 Q924X6 502 075095
353 P49134 403 P15800 453 Q04833 503 Q80V70
354 P32592 404 Q13751 454 Q14766 504 088281
355 P05107 405 Q61087 455 Q8CG19 505 Q7ZT™MO0
356 P11835 406 Q01636 456 P22064 506 P60882
357 P53714 407 Q25092 457 Q8CG18 507 | Q9QYPO
358 P05106 408 P15215 458 Q00918 508 Q9H1U4
359 054890 409 P11047 459 Q28019 509 Q8BH27
360 P16144 410 P02468 460 Q14767 510 Q16819
361 Q64632 411 Q8HZI9 461 008999 511 P28825
362 P18084 412 Q13753 462 035806 512 Q64230
363 070309 413 Q61092 463 QINS15 513 Q16820
364 Q07441 414 QIY6NG 464 Q61810 514 Q61847
365 Q8SQB8 415 QIR0B6 465 Q8K4G1 515 P28826
366 P18563 416 Q18823 466 P98131 516 Q95114
367 P18564 417 Q21313 467 P14151 517 Q08431
368 Q9Z0T9 418 Q99087 468 Q95198 518 P21956
369 P26010 419 Q99088 469 P18337 519 P79385
370 P26011 420 P01131 470 Q95237 520 P70490
371 P26012 421 P35950 471 Q28768 521 Q13201
372 P26013 422 P01130 472 Q95235 522 P19598
373 Q27591 423 P35951 473 P30836 523 P04934
374 P11584 424 Q28832 474 P98107 524 P13819
375 Q90Y57 425 P20063 475 P33730 525 P04932
376 Q90Y54 426 P35952 476 QI5LG1 526 P08569
377 P78504 427 Q26422 477 P16581 527 P50495
378 | QIQXX0 | 428 P28175 478 Q00690 528 P04933
379 Q63722 429 Q8JHF2 479 P98110 529 P34576
380 Q9Y219 430 012971 480 P27113 530 Q9H3R2
381 QIQYES5 | 431 Q8NES3 481 P98105 531 P19467
382 P97607 432 009010 482 P42201 532 P97881
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No. | Accession | No. | Accession | No. | Accession | No. | Accession
533 Q8BJ48 583 Q01705 633 P14650 683 | QI9YHB3
534 Q21180 584 Q07008 634 P98160 684 Q9R1U9
535 Q21178 585 Q04721 635 Q05793 685 P79949
536 Q21179 586 035516 636 P13608 686 P18168
537 Q21181 587 | Q9QW30 | 637 Q28343 687 075093
538 Q22396 588 QoUM47 | 638 P07898 688 Q80TR4
539 Q22398 589 Q61982 639 P16112 689 088279
540 Q7ZOM7 590 Q9R172 640 Q61282 690 094813
541 Q93542 591 Q99466 641 Q28062 691 Q9R1B9
542 Q20459 592 P31695 642 | Q96GWT | 692 0750945
543 Q22710 593 P07207 643 Q61361 693 | QIWVB4
544 017264 594 P21783 644 P55068 694 088280
545 P98061 595 Q05199 645 P23219 695 P24014
546 Q20958 596 Q02297 646 P22437 696 Q15491
547 QIN2V2 597 P43322 647 097554 697 Q98930
548 Q7JLI1 598 093383 648 Q63921 698 Q92673
549 016977 599 014511 649 P05979 699 088307
550 P55114 600 P56974 650 062698 700 Q95209
551 Q21059 601 035569 651 P70682 701 Q07929
552 P98060 602 P56975 652 P27607 702 P98068
553 Q61EX6 603 035181 653 019183 703 Q01083
554 Q18206 604 | QSWWG1 | 654 P35354 704 Q96GP6
555 Q93243 605 | QOWTX4 | 655 Q05769 705 P59222
556 Q20942 606 Q28146 656 062725 706 Q14162
557 Q20176 607 | Q9DDDO | 657 002768 707 P98167
558 Q92832 608 QIULB1 658 P35355 708 Q2PC93
559 Q62919 609 Q9CS84 659 P79208 709 Q8CG65
560 Q99435 610 Q63372 660 P00745 710 Q700K0
561 Q61220 611 QIP2S2 661 Q28278 711 QINY15
562 Q62918 612 Q63374 662 P04070 712 Q8R4Y4
563 Q90827 613 Q9Y4C0 663 P33587 713 | Q8WWQS8
564 Q90922 614 Q07310 664 QIGLP2 714 Q8R4U0
565 095631 615 Q94887 665 Q28661 715 | Q8CFM6
566 009118 616 Q9Y212 666 P31394 716 QIV5NS
567 Q90923 617 Q8R4GO 667 P07224 717 Q26627
568 000634 618 | Q96CW9 | 668 P07225 718 P13385
569 Q9R1A3 619 Q8R4F1 669 Q28520 719 P51865
570 Q9HB63 620 Q04620 670 Q08761 720 P51864
571 Q9JI33 621 P13829 671 P98118 721 075443
572 Q5RB&9 622 P13401 672 P53813 722 QIUIKS
573 Q24567 623 P19455 673 P00744 723 | QIQYM9
574 Q24568 624 Q05439 674 P22891 724 P10039
575 P14543 625 Q27874 675 | QICQW3 | 725 P24821
576 P10493 626 P14222 676 093574 726 Q80YX1
577 P08460 627 P10820 677 P78509 727 Q29116
578 Q14112 628 P35763 678 Q60841 728 Q9UQP3
579 088322 629 Q8HYB7 | 679 P58751 729 Q80Z71
580 P46530 630 P07202 680 012972 730 Q00546
581 P46531 631 P35419 681 Q9Y644 731 Q92752
582 Q01705 632 P09933 682 009009 732 Q8BYI9
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No. | Accession | No. | Accession | No. | Accession | No. | Accession
733 Q05546 783 Q9Z17T2 833 (Q6IN38 883 Q8NT780
734 P22105 784 P49744 834 QIWGEEF8 884 Q2FA44
735 P01135 785 Q06441 835 044443 885 | Q8NHD4
736 P55244 786 Q76DT2 836 Q19981 886 Q5XG84
737 P48030 787 P58911 837 P41950 887 QS8IXD0
738 Q06922 788 Q06561 838 P98163 888 Q1HK36
739 P98138 789 P34710 839 P34554 889 Q5GFL6
740 P01134 790 Q05589 840 Q5URI16 890 | Q5TEWG
741 P98135 791 P15120 841 QTT6Y?2 891 Q70UZ8
742 Q06805 792 P00749 842 Q9Y493 892 Q4V305
743 P35590 793 P06869 843 088799 893 | Q5RGR9
744 Q06806 794 P16227 844 28983 894 Q6UY05
745 Q06807 795 P04185 845 P57999 895 Q71564
746 073791 796 P29598 846 Q2U180 896 Q71865
747 Q02763 797 Q5DIDO 847 Q4ICJ6 897 Q8IYR6
748 Q02858 798 Q5DID3 848 Q6C5U0 898 | Q5VYQ7
749 P25723 799 P48733 849 Q2UP95 899 | Q5VYQ4
750 057460 800 Q86273 850 Q756R4 900 Q71561
751 QIDERT | 801 P07911 851 Q5KEN3 | 901 Q6NSYS8
752 043897 802 Q91X17 852 Q6FKYO | 902 Q55QD3
753 Q62381 803 Q5R5C1 853 Q2UPN5 903 Q71563
754 Q8JI28 804 P27590 854 | Q5B3W3 | 904 Q71569
755 QIY6L7 805 P98119 855 Q5B5P0 905 Q71862
756 | QIWVM6 | 806 P15638 856 Q55NL5 906 Q5STT74
757 057382 807 P98121 857 QINYT77 907 Q71567
758 | Q9HCN3 | 808 075445 858 Q59HDT 908 Q5VU27
759 QIESN3 809 Q2QI47 859 Q9P273 909 Q5VYET
760 Q28198 810 Q8K3K1 860 Q59HFT7 910 QHSW66
761 P00750 811 Q9J524 861 Q86YSY 911 Q5VUP1
762 P11214 812 | Q6EMK4 | 862 | Q5VVG4 | 912 Q3MI86
763 P19637 813 QICZT5 863 Q5T669 913 Q71566
764 P06579 814 Q6DF55 864 Q5RGS1 914 Qb5TI48
765 Q5WTP8 | 815 Q94918 865 Q59FL3 915 QIGZZ2
766 P07204 816 P98165 866 Q4UJ74 916 Q71568
767 P15306 817 P98155 867 Q5T1H1 917 | Q5VYH3
768 Q71007 818 P98156 868 | Q5RGU6 | 918 Q5T8VE
769 Q28178 819 P35953 869 Q59H36 919 [ Q5VWI17
770 P07996 820 P98166 870 Q59GI8 920 | Q5VYQ6
771 P35441 821 P93026 871 075441 921 Q13086
772 P35448 822 P93484 872 Q69YJ3 922 Q5TT47
773 Q95116 823 022925 873 Q6ZS56 923 Q5T7C8
774 P35440 824 080977 874 Q75QY0 924 | Q5VUM2
775 P35442 825 Q56ZQ3 875 QIH557 925 Q5TI49
776 Q03350 826 064758 876 QIULU2 926 -Q33FU9
777 | Q8JHW2 | 827 | QOFYHY 877 Qb5SZI8 927 (Q5SR68
778 QIL8PT 828 Q8LTE3 878 Q5ICN7T 928 095938
779 P49746 829 QIW6F9 | 879 Q16519 929 Q5TI50
780 Q05895 830 [ Q9W3W5 | 880 Q6P192 930 | Q5VTDO
781 Q8JGWO0 | 831 Q9Y5W5 | 881 Q5SZ17 931 Q5SXM3
782 P35443 832 | QIWUAL | 882 Q96FY1 932 Q53XQ0
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No. | Accession | No. | Accession | No. | Accession | No. | Accession
933 Q5T7C7 983 Q5HIP5 1033 | Q6MZK8 | 1083 Q6PJT2
934 Q537217 984 | QBHYMS | 1034 Q6LI9N4 1084 Q76E14
935 095965 985 Q5JVF1 1035 Q9I6M80 1085 Q7LC53
936 Q5T938 986 Q5T2Y7 | 1036 Q5JTP4 1086 Q772387
937 Q96IB3 987 Q5T3T9 1037 Q4LE67 1087 Q96K389
938 Q6PJAS 988 Q5WIF7 | 1038 | QI96MS7 1088 | QINPO1
939 Q9BS56 989 Q5W9G8 | 1039 Q53R09 1089 | Q9UKW9
940 | Q8WTRS | 990 Q5Y190 1040 | Q5CZB3 | 1090 Q9P2P4
941 Q7Z7K9 991 Q6P2G0 1041 | QONSDO | 1091 Q6VU69
942 Q5TI44 992 Q6P3V5H 1042 | Q2MIN2 | 1092 | Q8NAL2
943 QIBTLY 993 Q86TI6 1043 014637 1093 | Q8TEP7
944 Q55710 994 Q8N8N5 1044 | Q8N3TS8 1094 | Q6ZYK7Y
945 | Q8WUMS6 | 995 Q9UN94 1045 Q59GF2 1095 Q6PJT5
946 Q5TI43 996 Q67839 1046 Q59G97 1096 Q96SQ3
947 Q55W65 997 Q9UN95 1047 | Q53TP7 1097 | QS5EBL7
948 | Q8WWY1 | 998 Q8NBV0O | 1048 Q53TA7 1098 | QINTF1
949 | Q5VWIS 999 Q9UKZ4 | 1049 | Q53RD9 1099 | QI9NQI5
950 Q9UJ43 1000 Q8IZZ5 1050 [ Q4ACS5 1100 Q2I7G5
951 Q5SPL1 1001 Q8N1E9 1051 Q2NL36 1101 Q6UXI9
952 Q8TBU7 | 1002 Q5TI75 1052 Q53H93 1102 { Q6NVV9
953 QINY09 1003 Q5IEC1 1053 [ Q4WOV0 | 1103 | Q5VZK1
954 QISW67 1004 Q59FG2 1054 Q5JRP1 1104 Q53HU9
955 Q5VUPO | 1005 | Q59EGO 1055 000508 1105 | Q4VB91
956 Q5VTE4 | 1006 | Q4KMR2 | 1056 Q96MJ5 1106 | QOUKM?2
957 Q5VY43 | 1007 [ QI9NPRO | 1057 Q86YZ7 1107 | Q59FG9Y
958 Q5TI45 1008 Q6ICVH 1058 | Q8TAS6 1108 | Q9H7MA4
959 Q5SR69 1009 | Q96AA0 | 1059 Q6ZSN4 1109 | Q86TV4
960 043686 1010 | QOH3Q7 | 1060 | Q6QBS1 1110 | Q6VU68
961 Q5VVE63 1011 Q9H481 1061 | Q6NULg9 | 1111 Q53F54
962 Q8IX30 1012 | Q5TCP6 | 1062 Q96J32 1112 | Q2VPA1l
963 Q5TI46 1013 | Q9NY75 1063 Q472G02 1113 | Q6PK61
964 Q8NFT8 | 1014 Q5JP23 1064 Q5SSX3 1114 Q5RI52
965 Q969Y6 1015 Q4LE33 1065 Q53573 1115 Q59H46
966 Q5VZK2 | 1016 | QINT67 1066 | QONY76 1116 Q5D094
967 Q5T3T8 1017 | Q6ULR8 | 1067 Q8IV28 1117 | Q59HB9
968 Q5R336 1018 | Q59HG2 | 1068 | Q86UCO | 1118 | QBHIEXS
969 Q5JYJ8 1019 Q99533 1069 014549 1119 | Q53RA0
970 | Q8NAN7 | 1020 Q8IV34 1070 075440 1120 | Q53QMS8
971 (Q8N124 1021 | Q86SWO | 1071 095898 1121 Q4VB90
972 QTZ7L6 1022 Q7Z3V1 1072 Q53SD8 1122 Q6P9E3
973 | Q8WWZ8 | 1023 [ Q9NZL7 1073 Q54A24 1123 Q5IEC3
974 Q541U7 1024 Q9H195 1074 Q59F71 1124 | Q9UKKS5
975 Q6IMN1 1025 | Q68DES 1075 Q5IECE 1125 | Q9UKMS3
976 Q52LZ6 1026 Q5PY49 1076 Q5JRPO 1126 QSIUIO
977 Q72359 1027 Q59EE6 1077 | Q5JVES 1127 Q6N062
978 Q5U643 1028 | Q9H3D5 | 1078 | Q5KTZ5 | 1128 Q695G9
979 060283 1029 | Q96KG6 | 1079 Q5STJI3 1129 Q50026
980 Q53QT2 1030 Q9P0Z7 1080 | Q5SVAl 1130 | Q8WUQ9
981 Q53RR6 1031 | Q86WJO | 1081 Q659B4 1131 Q4U3El
982 Q53SG1 1032 | Q6ZTM2 | 1082 Q6PIA2 1132 | Q9NPK9
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No. | Accession | No. | Accession | No. | Accession | No. | Accession
1133 | Q8WYH1 | 1183 QS8IUI 1233 | Q4VB88 | 1283 | Q8WWT9
1134 Q8IXB38 1184 | QS8TDF8 | 1234 | Q4ZFV5 | 1284 Q5IECS
1135 Q6UXJ1 1185 Q59HT72 1235 Q53FR6 1285 Q5FBE1
1136 | Q5TEL3 | 1186 | Q59FQ1 1236 Q53X47 1286 075079
1137 | Q5BKT8 | 1187 | QB/3TCO | 1237 | Q5T3U0 | 1287 | QIUKMI
1138 Q59E99 1188 [ Q8TDCY9 | 1238 | QBT7TT8 | 1288 | QI6NT6
1139 | Q9UHI2 1189 014651 1239 | Q5TCU2 | 1289 | Q9UDV4
1140 | QT7Z5C1 1190 | Q8TF19 1240 Q6IAL4 1290 Q6ZP86
1141 Q47G84 1191 | Q8N2D6 | 1241 | Q6ZMN9 | 1291 | Q6UWBO
1142 | Q96JW2 | 1192 095127 1242 | Q7RTW4 | 1292 Q8N610
1143 Q8IV29 1193 | Q8N9GO | 1243 | Q7Z3G3 1293 | Q5XG79
1144 Q86UZ9 1194 Q86XN2 1244 Q8IZA9 1294 Q5VTG9
1145 | Q53FK6 | 1195 | Q6UXH9 | 1245 | Q8N2S1 1295 | Q5T3U1
1146 | Q53GP0 | 1196 | Q5SSY7 1246 | QSNBT9 | 1296 QBIEC2
1147 Q53576 1197 [ Q8NHD5 | 1247 | Q8NHD3 | 1297 Q5CZI2
1148 | Q53SK7 1198 Q566Q1 1248 | Q8TB42 | 1298 Q58A83
1149 Q59F90 1199 | Q8NAU9 | 1249 | QONY67 | 1299 | Q53TQ5
1150 | Q5H8W3 | 1200 | Q9H4D8 | 1250 | QOUES7 | 1300 | Q9UDM2
1151 Q5JVF5 1201 Q8ND91 1251 QIUFK6 1301 Q86TP7
1152 [ QbBJVF6 1202 | Q5HS8X1 1252 | Q6VU67 | 1302 | Q6QBS2
1153 Q5T7S3 1203 Q8IVTO 1253 Q99740 1303 Q6IQ50
1154 Q68D96 1204 Q75N8&9 1254 Q6LIN5 1304 Q5TI73
1155 | Q6LBN5 | 1205 | Q6ZWJ7 {1255 | Q6AZ94 1305 | Q5STGS
1156 Q6R267 1206 Q6P3V1 1256 Q5TI74 1306 Q5JVE7
1157 | Q7TRTW3 | 1207 | Q8TEK2 | 1257 | Q5TBB9 | 1307 Q59H37
1158 | Q8N2G3 | 1208 | Q53SG3 1258 | Q5HYM1 | 1308 | Q53TBS
1159 | Q8NHD2 | 1209 | Q4VX26 | 1259 | Q53TLO 1309 | Q63HQ2
1160 | Q8TDWT | 1210 QT5N88 1260 Q53SF3 1310 | Q96DN2
1161 | Q8WU63 | 1211 | Q96KG7 | 1261 Q53R88 1311 | Q6ZWIL
1162 | Q8WUL3 | 1212 | Q8WYK1 | 1262 | Q45KX0 | 1312 075413
1163 QINQ36 1213 Q8IY13 1263 QIUN93 1313 QIUKD4
1164 Q9UHS51 1214 Q2VYF6 1264 Q7RTVS 1314 QI6PQ8
1165 QIULI3 1215 | Q9HI1R1 1265 | Q5TTT7 | 1315 Q6LEYM
1166 Q8N369 1216 Q8N7Y0 1266 Q59EDS 1316 Q5TI72
1167 ;| Q8IUVS 1217 | Q8NBS4 | 1267 | Q8NC23 | 1317 ] Q5T5Y9
1168 | QS8IUE3 1218 | QOUF98 | 1268 | Q9Y3V7 | 1318 | Q9UMJI6
1169 | Q86WX2 | 1219 [ QS6YZS8 1269 | Q6FH69 | 1319 Q5IEC4
1170 Q5JP22 1220 Q86V58 1270 Q8IXK1 1320 Q5D044
1171 | Q6ZUL9 | 1221 Q7Z5C0 1271 QS5IECT 1321 Q53574
1172 Q96JUT 1222 Q6VO0I7 1272 Q5IECH 1322 | Q53RG4
1173 | Q8WY28 | 1223 [ Q6ULR6 | 1273 Q503B0 1323 | Q5/3HTY
1174 | Q8TERO | 1224 | Q5U4N9 | 1274 | Q3HY29 | 1324 017494
1175 | Q59EB6 | 1225 Q5JPI4 1275 | QBVVF5 | 1325 Q81499
1176 Q53HS5 1226 Q2VP98 1276 Q8IUXS 1326 Q22W7TT
1177 Q4LDES 1227 QEWX98 1277 Q38N197 1327 Q8IQHO0
1178 Q59EV4 1228 QbH9ESE 1278 Q3KP23 1328 Q7PT06
1179 Q6T256 1229 Q4ACS6 1279 QI96TF5 1329 Q5TQF9
1180 | Q4W5HL1 | 1230 Q14487 1280 | Q9H3Q6 | 1330 Q247E2
1181 075412 1231 Q336F5 1281 Q8IWY4 1331 Q86ALY
1182 | QSIYTO | 1232 | Q3HY28 | 1282 | Q6FH22 | 1332 ] Q22WG6
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No. | Accession | No. | Accession | No. | Accession | No. | Accession
1333 QB86AZ3 1383 Q25979 1433 | Q5CCS9 1483 | Q6LBTO
1334 Q23117 1384 Q25980 1434 Q5CS87 1484 Q6T3J7
1335 Q26194 1385 Q25981 1435 | QS5EKX6 | 1485 | Q6W3C6
1336 | Q9TVY6 | 1386 Q25984 1436 | QSEKXT7 | 1486 Q6X0I2
1337 Q61UE4 1387 Q26043 1437 | QBEKX8 | 1487 Q70HE9
1338 Q249Q6 1388 Q26184 1438 | QBEKX9 | 1488 Q70HF0
1339 Q247C3 1389 Q26661 1439 | QSEKYO0 | 1489 Q70HF2
1340 Q237H2 1390 Q2VF47 1440 | QB5EKY1 | 1490 Q70HF3
1341 QIUSDO 1391 | Q3MLL6 | 1441 | Q5EKY2 | 1491 Q70HF5
1342 | Q7QCP4 | 1392 | Q45HKI1 1442 | QS5EKY3 | 1492 Q70HF6
1343 | QB86KU4 1393 | Q4ABFO | 1443 | QS5EKY4 | 1493 Q70HF7
1344 Q5TX06 1394 | Q4QQB7 | 1444 | QBEKYS5 | 1494 Q70HF8
1345 Q25976 1395 | Q4X6G1 1445 | Q5EKY6 | 1495 | QT70HGO
1346 | Q7RAT4 | 1396 Q50ZK2 1446 | QBEKY9 | 1496 | Q70HG4
1347 | Q8TIWO | 1397 Qb6R22 1447 | Q5EKZ0 1497 Q75K29
1348 Q247E3 1398 QB6R24 1448 | Q5EKZ1 1498 Q75585
1349 Q22JN8 1399 QB6R25 1449 | QBEKZ2 1499 Q764K8
1350 Q22HI5 1400 QBH6R28 1450 | QBEKZ6 1500 Q764L3
1351 QIVU94 1401 Q56R31 1451 Q5ELO01 1501 Q7KJP3
1352 Q86ALS 1402 Q56R32 1452 Q5EL04 1502 | QT7PFQ7
1353 001768 1403 Q56R33 1453 Q5EL09 1503 | QTPM69
1354 018366 1404 Q56R36 1454 Q5ELI11 1504 [ Q7PMS82
1355 043995 1405 Q56R37 1455 Q5ER69 1505 | Q7PME7
1356 043996 1406 Q56R39 1456 Q5ERST 1506 | Q7PMF9
1357 043997 1407 | QS5BPAS 1457 Q5ERS88 1507 Q7PRJ2
1358 046131 1408 | Q5HBPA9 1458 Q5ER93 1508 | Q7PSM9
1359 061307 1409 | Q5BPBI1 1459 | Q5K5W5 | 1509 | Q7PSQ4
1360 062055 1410 | Q5BPB3 | 1460 | Q5K5W6 | 1510 Q7PT75
1361 076727 1411 Q5BPB5 | 1461 | Q5K5W8 | 1511 Q7Q1L7
1362 096444 1412 | Q5BPB7 1462 | Q5K5X0 1512 Q7Q1L9
1363 P91363 1413 | Q5BPC1 1463 | Q5HK5HX1 1513 | Q7Q1M9
1364 Q03999 1414 | Q5BPCSH 1464 | Q5MQG65 | 1514 | QTQIN2
1365 Q04901 1415 | Q5BPC6 1465 | Q5TNY8 | 1515 Q7Q319
1366 Q20979 1416 | Q5GBPC7 | 1466 | Q5TQ47 1516 Q7Q440
1367 Q24551 1417 | Q5BPC9 | 1467 | Q5TV39 1517 QTQ737
1368 Q25058 1418 | Q5BPD3 | 1468 | Q5WNKS5 | 1518 Q7QIQ6
1369 Q25059 1419 | Q5BPD4 | 1469 | Q5XKU6 | 1519 | Q7QKS54
1370 Q25243 1420 | Q5BPD7 | 1470 | Q5XKU7 | 1520 | Q7QQP4
1371 Q25678 1421 | Q5BPD9 | 1471 Q60VN3 1521 Q7QT99
1372 Q25722 1422 | Q5BPE0 | 1472 Q60VT7 1522 | Q7QUF9
1373 Q25723 1423 | Q5BPE2 1473 Q60VX0 1523 Q7R5J3
1374 Q25724 1424 | Q5BPE4 1474 Q60728 1524 Q7YY60
1375 Q25726 1425 | Q5HBPE5S 1475 Q612V7 1525 Q868H5
1376 Q25727 1426 | Q5BPE6 1476 Q613J2 1526 Q868H7
1377 Q25922 1427 | Q5BPES 1477 Q615A3 1527 Q868T6
1378 Q25924 1428 Q5CCJI7 1478 | Q61KA6 1528 Q868T7
1379 Q25966 1429 Q5CCS2 1479 Q61T62 1529 Q868T8
1380 Q25968 1430 Q5CCS3 1480 Q629H6 1530 Q868U1
1381 Q25974 1431 Q5CCS6 1481 Q69GU3 1531 Q868U2
1382 Q25978 1432 Q5CCS7 1482 | Q69HN1 1532 Q869J5
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No. | Accession | No. | Accession | No. | Accession | No. | Accession
1533 Q86952 1583 | Q9NCM9 | 1633 Q4D629 1683 Q5ELO0
1534 Q86FL1 1584 | Q9NCNO | 1634 [ Q4R1B4 1684 Q5EL02
1535 Q86JH4 1585 | QINCN2 | 1635 Q4X2L0 1685 Q5ELO3
1536 | Q86RD2 | 1586 [ QINEG1 | 1636 | Q52VK2 | 1686 Q5ELO0S
1537 Q8I0US 1587 | QINFS9 1637 | Q52VK3 | 1687 Q5EL06
1538 QB8I1KS8 1588 | QINGD4 | 1638 Q56R21 1688 Q5ELO07
1539 Q8I1IK9 1589 | QINGDS8 | 1639 Q56R23 1689 Q5ELO8
1540 Q8I1L1 1590 | Q9TX98 1640 Q56R26 1690 Q5EL10
1541 Q8I1L3 1591 | QI9TYE3 | 1641 Q56R27 1691 Q5EL12
1542 QS8I1LS 1592 | Q9TYET7 | 1642 Q56R29 1692 Q5EL13
1543 Q8I1L9 1593 | Q9TZT5 | 1643 Q56R30 1693 Q5EL14
1544 QS8I1IMO 1594 Q9UAI8 1644 Q56R34 1694 Q5ER64
1545 Q8I1M2 1595 | QOUBS7 | 1645 Q56R35 1695 Q5ERT74
1546 Q8I1M3 1596 | Q9VNUG6 | 1646 QB56R38 1696 Q5ERT7
1547 Q8I1M4 1597 | QIOVXMO | 1647 Q56RA0 1697 | QB5ERT78
1548 Q8IIM5 1598 | QOWOAOD | 1648 Q59E20 1698 Q5ERS81
1549 Q8I1M6 1599 | Q9YOV1 1649 | Q5BPBO | 1699 Q5ERS82
1550 [ Q8MQO8 | 1600 061230 1650 | Q5BPB2 | 1700 | QS5ERS5
1551 | Q8MQJ4 | 1601 061677 1651 | Q5BPB4 | 1701 Q5ERS89
1552 | Q8MV49 | 1602 Po1774 1652 | Q5BPB6 | 1702 | Q5ER92
1553 | Q8MV51 | 1603 P92163 1653 | Q5BPB8 | 1703 Q516P2
1554 | Q8MV54 | 1604 Q02569 1654 | Q5BPB9 [ 1704 | Q5K5W2
1555 | Q8MYT75 | 1605 Q19882 1655 | Q5BPCO | 1705 | Q5K5W3
1556 | Q8MY76 | 1606 Q20997 1656 | Q5SBPC2 | 1706 | Q5K5W4
1557 | Q8MY78 | 1607 Q21980 1657 | Q5BPC3 | 1707 | Q5K5W7T
1558 | Q8TH5W3 | 1608 Q24550 1658 | Q5HBPC4 | 1708 | Q5K5W9
1559 | Q8T5W5 | 1609 Q25717 1659 | Q5BPC8 | 1709 | Q5K5X2
1560 | Q8T5W7 | 1610 Q25718 1660 .| Q5BPDO | 1710 | Q5XKUS8
1561 Q8T5X0 1611 Q25719 1661 | Q5BPD1 | 1711 [ Q5XKV0
1562 | Q8THX1 1612 Q25720 1662 | Q5BPD2 | 1712 | Q5XKV1
1563 | Q8T5X2 1613 Q25721 1663 | Q5BPD5 | 1713 | Q60QH2
1564 | Q8T5X3 1614 Q25725 1664 | Q5BPD6 | 1714 | Q60RKS
1565 | Q8T5Y8 1615 Q25728 1665 | Q5BPD8 | 1715 | Q60YXO
1566 Q93519 1616 Q25923 1666 | Q5BPE1 1716 Q614N6
1567 Q95PB8 1617 Q25967 1667 | Q5SBPE3 | 1717 | Q61MD6
1568 | Q962W9 | 1618 Q25969 1668 | Q5BPE7 | 1718 Q61PF0
1569 Q963T3 1619 Q25970 1669 | Q5CCJ6 1719 Q615B6
1570 Q964F7 1620 Q25971 1670 | Q5CCS4 1720 Q61T55
1571 Q964N2 1621 Q25972 1671 Q5CCS5 1721 Q623Z8
1572 Q968Y6 1622 Q25973 1672 | Q5CCS8 1722 Q659T9
1573 | Q9IBMGS | 1623 Q25975 1673 Q5CJ96 1723 Q66NE3
1574 | Q9GP66 1624 Q25977 1674 | Q5CXK1 | 1724 | Q66NE4
1575 | Q9GSF3 1625 Q25982 1675 | QBEKY7 | 1725 Q66PY4
1576 QIN432 1626 Q25983 1676 | QS5EKY8 | 1726 Q66504
1577 | QONC90 | 1627 Q26183 1677 | QBEKZ3 | 1727 | Q68QF3
1578 [ QINCM1 | 1628 | Q2MOH4 | 1678 | QSEKZ4 | 1728 | Q69GT9
1579 | QINCM2 | 1629 | Q3C2A0 1679 | QBEKZ5 | 1729 | Q69GU1
1580 [ QONCM3 | 1630 | Q3YJT7 | 1680 | QBEKZ7 | 1730 | Q69GU2
1581 | QINCM4 | 1631 Q45U80 1681 | QBEKZ8 | 1731 | Q69GU4
1582 | QINCM7 | 1632 | Q4ABET | 1682 | QSEKZ9 | 1732 Q6SPF9
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No. | Accession | No. | Accession | No. | Accession | No. | Accession
1733 Q6Y1L9 1783 QB8IIL5 1833 | QI9TYG2 | 1883 Q54FR2
1734 Q70HF1 1784 Q8I1L6 1834 | QOTZT4 | 1884 | Q54EK3
1735 Q70HF4 1785 QS8I1LY 1835 | Q9UOE2 1885 | Q4H3A4
1736 Q70HF9 1786 Q8IIM1 1836 Q9oU483 1886 | Q6AWMG6
1737 | Q70HG1 1787 Q8IIM7 1837 Q9UAI6 1887 | QB/4ZK3
1738 | Q7OHG2 | 1788 (Q8I476 1838 Q9UAI7 1888 Q8T5Z1
1739 | Q7OHG3 | 1789 Q8ISC6 1839 | Q9UB9S 1889 QI9BIC5
1740 Q764L1 1790 | Q8MN62 | 1840 [ QIVYN8 | 1890 | QT7QHA41
1741 Q764L2 1791 | Q8MQNS5 | 1841 Q20204 1891 Q55FRO
1742 | Q76NT1 1792 | Q8MVS50 | 1842 | QS5ERTS 1892 Q964D1
1743 | Q7KJP4 | 1793 | Q8MV52 | 1843 Q5I6P1 1893 | QSMVW7
1744 | Q7KJP6 1794 | Q8MV53 | 1844 | Q5XKU9 | 1894 Q18424
1745 | QTKPY6 | 1795 | Q8MVI9 | 1845 | Q5XKV2 | 1895 Q50T88
1746 | Q7PM73 | 1796 | Q8MXN9 | 1846 | Q6VPM9 | 1896 Q4Q827
1747 | Q7PPCO | 1797 | Q8MY74 | 1847 | Q7JWC5 | 1897 Q8T5Z3
1748 | Q7PQ15 1798 | Q8SWYO0 | 1848 Q771J0 1898 Q960RS8
1749 | Q7QOM5 | 1799 Q8T2F8 1849 | Q86PQS8 1899 | Q75WG2
1750 | Q7QIM6 | 1800 | Q8T4N9 1850 Q81058 1900 Q628R4
1751 | QTQIN3 1801 Q8T5UT 1851 Q81091 1901 | Q61WGS8
1752 | Q7QIN4 | 1802 | Q8T5W4 | 1852 Q8I0G9 1902 Q54R92
1753 | QT7Q3K5 | 1803 | Q8T5W6 | 1853 QS8IOK3 1903 Q519X6
1754 | QTQ6R6 | 1804 | Q8THWSR | 1854 Q8IOM9 1904 Q49BF8
1755 | Q7TQGY2 | 1805 | Q8TH5W9 | 1855 Q8I0P3 1905 | Q2WBY3
1756 | Q7QJQ6 | 1806 | Q8T5X4 1856 Q8I10S8 1906 | Q9W4Y3
1757 | Q7QK12 | 1807 | Q8T5Y6 1857 Q8I10U0 1907 | Q8T6VO
1758 Q7QL19 1808 | Q8T5Y7 | 1858 | Q8MLX3 | 1908 Q61PE4
1759 | Q7QR15 | 1809 | Q8T5HY9 1859 | Q8MM25 | 1909 Q96758
1760 | Q7QWD9 | 1810 Q95SP5 1860 (Q8STI3 1910 | Q7QAH1
1761 | Q7QYWS5 | 1811 Q964F5 1861 Q8SYF5 1911 | Q75WG1
1762 Q7R369 1812 Q964F6 1862 Q93473 1912 | Q61GM7
1763 | QTYWS57 | 1813 Q964F8 1863 Q95NL3 1913 Q54N64
1764 Q7Z1J1 1814 Q964N3 1864 | Q9TVGSR | 1914 Q869L5
1765 (Q868H4 1815 QIN657 1865 | Q9VPJO 1915 Q247C4
1766 QB868H6 1816 | QINCMO | 1866 | Q9W1X5 | 1916 | QSMVJT7
1767 Q868T4 1817 | QONCMb5 | 1867 | QO9XXU1 | 1917 Q772103
1768 Q868T5 1818 | QINCM6 | 1868 Q54P15 1918 Q611Z5
1769 Q868T9 1819 | QINCMS8 | 1869 Q54J39 1919 | Q61GP9
1770 Q868U0 1820 | QINCN1 | 1870 Q55F41 1920 Q248Q8
1771 Q868U3 1821 | QI9NCN3 | 1871 | Q7RGX0 | 1921 Q55EH0
1772 Q869J7 1822 | QINGD3 | 1872 Q86RLS 1922 Q55C92
1773 QB86AJ6 1823 | QINGD5 | 1873 | QOVLT6 1923 Q55FQ6
1774 Q86HL2 1824 | QINGD6 | 1874 | Q9BMBO | 1924 Q54DI1
1775 Q86K16 1825 | Q9NGD7 | 1875 | QT7QTO01 1925 | Q8T3A7
1776 Q86L32 1826 | QINGD9 | 1876 | Q60XCO 1926 | QT7PXF5
1777 Q8I1K5 1827 | Q9NHX1 | 1877 | Q5HTQG1 | 1927 Q86L17
1778 Q8I1K6 1828 | Q9TX99 1878 QIBIAC 1928 | Q7QYW9
1779 Q8I1K7 1829 | Q9TYE4 | 1879 | Q7QB67 | 1929 | Q50PDS8
1780 QS8I1L0 1830 | Q9TYE5 | 1880 Q7Q434 1930 Q49BF9
1781 Q8I1L2 1831 | Q9TYE6 | 1881 Q556L9 1931 Q9VB20
1782 Q8I1L4 1832 | QITYG1 | 1882 Q54V92 1932 | Q54URS
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No. | Accession | No. | Accession | No. | Accession | No. | Accession
1933 Q54ID8 1983 | Q8WPG7 | 2033 | Q8T0OD8 | 2083 Q22LF8
1934 Q553F8 1984 | Q75WGO | 2034 096659 2084 | Q8MY80
1935 Q547J9 1985 Q54FJ6 2035 | Q55EA3 2085 Q22LF1
1936 | Q54GRS 1986 Q55A33 2036 Q553C4 2086 Q61X43
1937 | Q6NP06 1987 | Q60UG3 | 2037 Q54ZK0 2087 | QTQES5
1938 | Q75UQ6 | 1988 Q55G63 2038 Q54LT9 2088 | Q8MSR5
1939 Q7R630 1989 | QB55AP8 | 2039 Q54L67 2089 | Q61QY1
1940 Q558U5 1990 | Q60QD4 | 2040 | Q54GR7 | 2090 | Q9GPMSR
1941 Q54093 1991 Q6BG85 | 2041 Q54BI9 2091 | Q54QK9
1942 Q54U77 1992 Q55A34 2042 Q517Y7 2092 Q86KZ0
1943 | Q50W94 1993 Q54VZ0 2043 | Q54VT3 | 2093 | Q86KD9
1944 Q54P41 1994 Q55E84 2044 P91904 2094 | Q7QSEO
1945 Q54H59 1995 | QH4QKS8 | 2045 | Q8MPN3 [ 2095 [ Q7QYYS8
1946 | Qb54VTO 1996 | Q5TVP3 | 2046 QING6J6 2096 Q4YJ87
1947 Q517D9 1997 Q8IK13 2047 | Q9GPNO | 2097 | Q9TYU4
1948 Q868U4 1998 | Q8T3A6 | 2048 | QI9N6R5 | 2098 Q9Y151
1949 | Q7PPU8S | 1999 Q8T5Z2 2049 Q551V5H 2099 QS8I7TT3
1950 Q559R8 2000 | Q9BPS2 | 2050 | Q54GX9 | 2100 | Qb54KC4
1951 | Q4W4TO0 | 2001 Q7R4H1 2051 Q5K6R7 | 2101 | Q6AWJS
1952 Q550E1 2002 Q59JG2 2052 | Q54W81 | 2102 | Q7Q5D1
1953 Q556M2 | 2003 QB55E77 2053 Q54V7Z1 2103 | Q9WOA1L
1954 | Q9VJU9 | 2004 Q354LE5 2054 | QTR5/E3 2104 Q76P25
1955 QIVQI2 2005 | QH4GMS8 | 2055 Q8IRVT 2105 Q54BJ0
1956 | Q9XWD6 | 2006 | Q54DY4 | 2056 Q86JHO 2106 | Q8T3A0
1957 | Q8STGO | 2007 | Q86KFO | 2057 | Q7QJR9 [ 2107 | Q9GYK2
1958 [ Q9GRG4 | 2008 Q86AS3 2058 | Q55AW5 | 2108 Q54VZ2
1959 061126 2009 Q869K4 2059 | Q8WRF4 | 2109 | Q9U1T9
1960 QINL29 2010 | Q55CD0 | 2060 | QT7PRP5 | 2110 | Q86GF3
1961 | Q54GV4 | 2011 Q75JS9 2061 Q60Y28 2111 { QB5K6R6
1962 Q8T5Z0 2012 Q54184 2062 | Q54HK3 | 2112 | QOXXZ7
1963 | Q5TQ36 | 2013 018375 2063 Q23JG5 2113 Q23JG3
1964 | Q6NN26 | 2014 | Q9GPM9 | 2064 Q7PR44 2114 | QINAS7
1965 | Q5MAQS | 2015 | Q7QFS2 | 2065 [ Q60WL4 | 2115 | QOUITS
1966 Qb4Z87 2016 | Q86KY7 | 2066 | Q54VY9 | 2116 Q5BI30
1967 Q54XI0 2017 Q54N02 2067 | Qb4M46 | 2117 QBIP58
1968 | Q50WTS | 2018 Q75JA5 2068 | QB86GF4 2118 | Q61CAS8
1969 | QINFW6 | 2019 | Q54VD9 | 2069 Q22LF6 2119 Q61FT2
1970 Q6LF51 2020 Q54RJ9 2070 Q8IRVS 2120 Q55BS2
1971 QB5EKO0 | 2021 Q54QL1 2071 Q54VZ3 2121 Q7PN80
1972 | Q8MVW6 | 2022 Q8T314 2072 | Q54VV3 | 2122 044247
1973 QINL27 2023 | Q86KY8 | 2073 | Q61WT5 | 2123 Q22LF2
1974 | Q7QZU9 | 2024 | Q76NTH | 2074 | Q54QV6 | 2124 | Q22BY2
1975 Q54N14 2025 Q55FB4 2075 Q23VZ7 2125 | Q9W4Y4
1976 | QB4GB7 | 2026 | QBSEN6 | 2076 | Q23BC4 | 2126 Q969A0
1977 | QT7QEZ5 | 2027 | QB5AW6 | 2077 Q26051 2127 Q7PSL4
1978 | Q5TUYT? | 2028 | QB54KNO | 2078 | Q69GTS8 | 2128 Q55A32
1979 { Q5TUY6 | 2029 QINL28 2079 Q55FP4 2129 Q55012
1980 | Q55GF6 | 2030 Q54160 2080 018482 2130 | Q9XTS9
1981 Q54TX0 | 2031 Q86IA2 2081 Q23409 2131 Q54U17
1982 Q54C09 2032 Q23G21 2082 Q23PA1l 2132 Q60XP5
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2133 Q54HZ6 2183 | Q5C2K6 | 2233 Q22423 2283 | Q8WTPO
2134 Q54K30 2184 Q5C1F4 2234 Q60T93 2284 | Q95YGO
2135 Q54ZQ4 | 2185 | Q5BDH33 | 2235 017829 2285 Q93791
2136 QH54N7 2186 Q5C0L6 2236 | Q4YRN8 | 2286 | Q9VBNI1
2137 P91808 2187 | Q5BXKS8 | 2237 | QTQWR4 | 2287 Q93563
2138 | Q9UAGO | 2188 Q95P95 2238 Q54L84 2288 | QIXYXO0
2139 Q550G2 2189 Q27422 2239 Q8IGRY 2289 045000
2140 Q22795 2190 076952 2240 | Q7YXD2 | 2290 | Q6NPT1
2141 Q551T2 2191 Q867Q2 2241 | Q7YU36 | 2201 Q610T0
2142 | Q86GF2 | 2192 045614 2242 Q62702 2292 Q5I5Q9
2143 | QlZXF4 | 2193 Q8IFX2 2243 | Q5W4Z0 | 2293 Q61SX3
2144 | Q54W82 | 2194 Q86PP8 2244 | Q5TWTO | 2294 QT764L0
2145 | Q55GF5 | 2195 Q967F4 2245 | Q4ABES | 2295 045602
2146 Q54VS9 2196 | QI9GSA3 | 2246 | Q2TCKS8 | 2296 | QOGNU3
2147 | Q23HW1 | 2197 001335 2247 | Q2TCK5 | 2297 | Q7YU01
2148 Q23RP1 2198 | Q9VCAT | 2248 | Q9XWC4 | 2298 Q86KT70
2149 076809 2199 P90974 2249 | Q61YC5 | 2299 P90891
2150 Q8IRV9 2200 | QO95RUO | 2250 | Q9U4E4 | 2300 Q54JT2
2151 Q75K09 2201 Q95RQ1 2251 Q7PS28 2301 Q50JF9
2152 Q558U0 2202 | Q9VVI6 | 2252 Q60SY5 2302 | Q4ABE9
2153 Q54M48 | 2203 Q764K9 2253 | Q7JNV6 | 2303 Q17537
2154 | Q54GB8 | 2204 Q61GZ2 2254 | QTKQX6 | 2304 Q23587
2155 Q86IL0 2205 | Q9VJT5 | 2255 | Q9NGV2 | 2305 Q68K 25
2156 QINL26 2206 Q622G6 2256 Q8IP51 2306 Q7QS95
2157 | Q54M43 2207 | QTPV65 | 2257 Q86G85 2307 Qb4IA3
2158 | Q9U3U7 | 2208 Q869J8 2258 Q816X6 2308 Q61JN3
2159 Q75584 2209 Q86SD6 2259 Q21281 2309 | Q5WN34
2160 | Q95YK2 | 2210 045201 2260 Q55FZ0 2310 Q9V383
2161 Q23YX9 | 2211 | Q61KX2 | 2261 | QT7PPF9 | 2311 Q19267
2162 Q7QZ44 2212 { Q61GU4 | 2262 | QI1HAYT | 2312 Q23995
2163 | QTQEZ2 | 2213 Q964N4 2263 | Q9V6QO0 | 2313 | Q9XZC9
2164 Q22TL6 2214 QbB0T79 2264 | QIGU69 | 2314 | QINGV4
2165 Q961N3 2215 Q19350 2265 Q7Q0Z8 2315 Q21850
2166 097189 2216 | QT5WVS8 | 2266 | Q8MVPO | 2316 | Q7QUV9
2167 (QBI3A6 2217 | Q8WPNO | 2267 | Q7JIJNVT7 | 2317 Q20043
2168 | QTKWST | 2218 | Q9VQ47 | 2268 | Q8MVKS6 | 2318 Q400NO0
2169 | QINEF9 | 2219 | Q9W332 | 2269 | Q8WS87 | 2319 Q2Y144
2170 Q55CJ5 2220 Q20852 2270 | QTQ3P0 | 2320 | Q61XY3
2171 Q86JH3 2221 Q95Y10 2271 | QTQGV0 | 2321 Q96218
2172 | Q55AW2 | 2222 | QTQYS1 | 2272 Q22675 2322 Q45VP9
2173 Q869J6 2223 | QTQCT2 | 2273 Q21015 2323 | Q9VBNO
2174 | Q7YSRS5 | 2224 { QTQRO1 | 2274 Q21849 2324 | Q7YWF4
2175 Q19482 2225 Q62312 2275 Q61P38 2325 | Q5BWN95
2176 044327 2226 016265 2276 Q61A32 2326 Q8IQ18
2177 Q19319 2227 | Q5CGS1 | 2277 | QVYTZ6 | 2327 Q09538
2178 | QITVQ2 | 2228 Q18291 2278 QbIX63 2328 Q18761
2179 Q5C3E4 2229 | Q3KN41 | 2279 | Q7VKU08 | 2329 | Q95RA3
2180 | Q5DAMS6 | 2230 | Q2TCK7 | 2280 | Q5DWF3 | 2330 016004
2181 Q53C7GT | 2231 QIW343 | 2281 Q54YP0 | 2331 Q9U2D5
2182 QHC5F4 2232 Q19617 2282 | Q4H3Q7 | 2332 | Q7QYHS8
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2333 | Q7PQGY9 | 2383 | Q54PD6 | 2433 | Q9VMb55H | 2483 | Q8MJIN7T
2334 Q614U4 2384 Q95V09 2434 061240 2484 | Q9TUN7
2335 | Q60M20 | 2385 Q86P79 2435 | Q61DQ8 | 2485 Q863C4
2336 | Q60WS2 | 2386 | QTQKT7 | 2436 | QH4QE0 | 2486 Q61T40
2337 001552 2387 Q86L15 2437 Q22574 2487 Q28219
2338 QTPH68 | 2388 | QB86AQ9 | 2438 | Q2TCK6 | 2488 077718
2339 Q61X71 2389 Q62279 2439 Q86B77 2489 | Q8MJN2
2340 | Q60UH7 | 2390 Q616A5 2440 | Q8T4N8 | 2490 | Q8MJIN9
2341 Q22913 2391 | Q4H3Q6 | 2441 QI9BIM7 | 2491 097702
2342 Q17657 2392 | QTQERS8 | 2442 | Q9VCZ9 | 2492 Q5VI4l
2343 Q60TAT | 2393 Q8SZX4 2443 QIVS89 2493 Q6ECI6
2344 Q61T33 2394 Q8T9S1 2444 | Q8WTJ9 | 2494 | QI9TUNS3
2345 Q61EJ2 2395 Q7QIN4 2445 P91526 2495 | Q8MJN1
2346 | Q61AY4 | 2396 | Q7QEK9 | 2446 | Q7PFH4 | 2496 | Q6H8Q4
2347 | QIXUF9 | 2397 | Q69GUO0 | 2447 | Q61UE2 | 2497 Q59158
2348 | Q9VXL1 | 2398 | Q60UGO | 2448 044565 2498 Q4R4F4
2349 Q81497 2399 Q20971 2449 | QTR4V2 | 2499 Q28218
2350 | QTQEFT7 | 2400 | Q2XWP5 | 2450 | Q7PV66 | 2500 Q29094
2351 Q623K4 2401 | Q5TQLO | 2451 Q7PS35 2501 Q59157
2352 Q9VZ44 2402 Q9BLJ1 2452 | . QB8I498 2502 | Q8MJNS .
2353 Q8T4P0 | 2403 Q23410 2453 | QO9GPA5 | 2503 | Q8MJNS5
2354 | QBIQG6 2404 Q7Z1P7 2454 | QTPTGY9 | 2504 | QI9GK49
2355 | Q9VBN2 | 2405 | QVK6V2 | 2455 Q61H26 2505 Q6PT99
2356 | Q8MP02 | 2406 Q61JH1 2456 | Q86KE8 | 2506 | Q5NKTH
2357 | Q9GZ15 2407 Q5CJ94 2457 Q3V64l 2507 Q28290
2358 Q21884 2408 | Q2WBY6 | 2458 | Q6QJC4 | 2508 | Q5RDLY
2359 QIV4J6 2409 QIVZ96 2459 Q26423 2509 018958
2360 Q25253 2410 | Q60UE2 | 2460 | Q8MQF7 | 2510 019061
2361 Q20219 2411 Q61818 2461 Q71A42 2511 077505
2362 Q60F'X5 2412 Q4DUT3 2462 Q4AW2V7 2512 P79199
2363 Q5TP37 [ 2413 Q2LYI6 2463 | Q8MPO01 | 2513 Q07112
2364 Qb550A1 2414 Q6NP66 2464 | Q7YY59 | 2514 Q28485
2365 | Q8MY77 | 2415 Q9Bl1J2 2465 Q7QJI41 2515 Q28659
2366 QL7377 2416 | QINHE9 | 2466 | Q7PSV8 | 2516 Q28867
2367 Q967H9 2417 Q23046 2467 Q6YID6 2517 Q307K2
2368 Q95Q39 2418 | Q9UBY94 | 2468 | Q5CJGO | 2518 Q307K3
2369 | Q7PSY6 | 2419 Q21756 2469 Q52V41 2519 Q307K6
2370 | Q7QPM3 | 2420 QoVsJT 2470 Q61K85 2520 | Q30DU2
2371 Q628R5 2421 Q61PE7 2471 Q628B7 2521 Q3KS04
2372 Q60PS2 2422 | Q5TUO0L 2472 | Q6IWG1 | 2522 | Q4KTX1
2373 | Q4H2P2 2423 | Q5TTZ3 | 2473 | Q8MJIN6 | 2523 | Q4R6R6
2374 Q9BI0S 2424 Q3L453 2474 QI5N85 2524 Q4R728
2375 | Q4W2V6 | 2425 Q86FJ9 2475 | Q9TUNS | 2525 QbBISN4
2376 Q8MRJ7 2426 QITXAO 2476 Q8MJIN4 2526 Q5NVF0
2377 Q19853 2427 Q958N5 2477 | QBR8W2 | 2527 Qb5R3Z7
2378 Q17494 2428 Q20535 2478 | Q6UTY0 | 2528 | QB5R9X4
2379 Q24132 2429 | QTKUY7? | 2479 | Q5MAR3 | 2529 [ Q5RDBO
2380 Q9VTI4 2430 Q61K66 2480 QbISL2 2530 Q5RDI5
2381 Q7R2Y9 | 2431 | Q60JW4 [ 2481 Q9TU04 | 2531 Q6S4M1
2382 044191 2432 QG60IF3 2482 | Q8MJN3 | 2532 | Q6S4M2
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2533 | Q6Y8C5 | 2583 | Q2THU6 | 2633 | QO5ND6 | 2683 | Q93W14
2534 Q866H0 2584 Q5RDI1 2634 | Q5R6R1 2684 | Q93W13
2535 | Q8MJKO | 2585 | Q9GMD9 | 2635 Q5R6S9 2685 Q53J34
2536 | Q8SQBY | 2586 | Q5RTK9 | 2636 Q43366 2686 Q94FI0
2537 Q95JH1 2587 |  Q2TA09 2637 004927 2687 Q94F12
2538 018977 2588 Q2Q420 2638 Q6ZK10 2688 Q94FI9
2539 019056 2589 | Q4R3X4 | 2639 | QTMITS | 2689 Q94FJ5
2540 019060 2590 | QTM304 2640 [ Q7VO0AH9 | 2690 Q94FK1
2541 077501 2591 Q5J3Q6 2641 Q76BK3 | 2691 Q94FK5
2542 or7779 2592 QIN154 2642 Q93738 2692 Q94FK6
2543 Q28484 2503 | QBRA99 | 2643 | QOMYL9 | 2693 Q94FH3
2544 Q28629 2594 Q864U4 2644 | Q9SVXT7 | 2694 Q94FG8
2545 Q28982 2595 Q28657 2645 | Q9SYV1 | 2695 Q94FH5
2546 Q307E7 2596 | Q9GM41l | 2646 | Q6NKR6 | 2696 Q94FJ7
2547 Q307K4 2597 | Q9BG62 | 2647 Q942G1 2697 QI4FI5
2548 Q307K5 2598 | Q8HZR1 | 2648 Q942G4 2698 | Q94FKS8
2549 | Q3MHK6 | 2599 Q95LG3 2649 Q94FJ1 2699 Q94FJ8
2550 | Q3YAN4 | 2600 Q4G408 2650 QO4LI5 2700 Q94FI17
2551 | Q52MQ6 | 2601 | Q3SWWS8 | 2651 Q9YOF7 | 2701 Q94FH6
2552 Q5E9P5 2602 | QIGLFO | 2652 | Q94FK2 2702 | Q94FG9
2553 Q5IS86 2603 Q5ISR9 2653 Q94FK3 2703 Q94FJ3
2554 | QB5RINI1 2604 Q2Q422 2664 | Q9YOF6 | 2704 Q94FHO0
2555 | QBRBP1 | 2605 | QOMZF7 | 2655 QI4FI8 2705 | Q94FK7
2556 | QBRCT76 | 2606 Q8HZ48 2656 | QI9YOFS8 2706 Q94FH1
2557 | Q9GL46 2607 Q38J75 2657 Q154J9 2707 QY4FJ4
2558 QIN120 2608 Q28483 2658 Q1SX16 2708 Q94FH2
2559 Q29097 2609 Q28482 2659 | QI1SAAO0 | 2709 Q94FT1
2560 | Q8MJ16 | 2610 Q2Q426 2660 | QI1SXF6 | 2710 | Q94FH4
2561 Q2Q425 2611 Q2Q421 2661 | QISOW6 | 2711 | Q2PEVS
2562 | Q4R8Q9 | 2612 | Q9BDH4 | 2662 Q1SR23 2712 Q94F13
2563 | Q2T9U6 | 2613 | QSEHTI 2663 QI1SF50 2713 Q94FJ2
2564 | Q2PPL3 | 2614 | Q9BDH3 | 2664 Q1SF52 2714 Q94FH9
2565 Q867A1 2615 | QO6EOK3 | 2665 Q1S7H1 2715 Q94FL4
2566 Q307GT 2616 | Q9BG80 | 2666 Q18720 2716 Q94FJ9
2567 Q2VvJ42 2617 046652 2667 | Q1T6P5 2717 Q94FI4
2568 Q2Q419 2618 | Q95LG2 2668 | Q6PLPT | 2718 QHFKO
2569 Q2KIT5 2619 | Q3MHW2 | 2669 Q1SF48 2719 Q94FK4
2570 Q2Q424 2620 QIN028 2670 Q1SF47 2720 | Q94FHS8
2571 QLlHK35 | 2621 QB866A8 2671 | Q2QMT75 | 2721 Q94FH7
2572 | Q6TGK9 | 2622 Q5ISM4 2672 Q2R229 2722 Q94FK9
2573 | Q2TBR4 | 2623 | Q8SPR3 | 2673 | Q2QMT2 | 2723 QUFL2
2574 Q867A2 2624 Q6Q144 2674 Q53J44 2724 Q94FL1
2575 | Q8MKBI1 | 2625 Q5R8J0 2675 | Q6AVG4 | 2725 Q94FLO
2576 QITVB3 2626 Q6XL67 2676 QIFEQS 2726 Q94FL3
2577 | Q2PFZ7 | 2627 Q95LNO 2677 | QOFX14 | 2727 | Q2EING6
2578 | QBRC26 | 2628 | Q8SPQ9 | 2678 Q67ZD0 | 2728 | Q2XAPS8
2579 Q85Q23 2629 | Q4F9K9 | 2679 | Q3E6U8 | 2729 Q21197
2580 046370 2630 | Q3TOK7 | 2680 | Q93W1l1 | 2730 | Q36UM3
2581 Q28476 2631 | QS8HZRO | 2681 | Q93VX0 | 2731 | QIQW15
2582 019057 2632 | Q75PQ9 | 2682 | Q93W15 | 2732 | QIQW16
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2733 | Q8VHL6 | 2783 Q8R508 2833 Q70UZ7 2883 Q3UZ32
2734 Q3TA36 2784 Q99PJ3 2834 | Q8BGP3 | 2884 Q4FJT2
2735 | Q3TSW6 | 2785 | QIQW24 | 2835 { Q9CYAOQ | 2885 | Q6LCD7
2736 | Q3UGR3 | 2786 | Q9WV36 | 2836 | Q8JZM4 | 2886 Q810X1
2737 | Q3UH52 | 2787 | Q3TQ06 | 2837 | Q3VOH1 2887 | Q8BRP7
2738 | Q3UV83 | 2788 | Q8JZMS | 2838 Q543K3 2888 | Q8CG43
2739 | Q4VAA3 | 2789 | Q99NDO | 2839 | Q52KG2 | 2889 Q8VI5H4
2740 | Q52NV1 2790 | Q8CGAT | 2840 Q543T1 2890 Q920Y4
2741 Q52NV2 | 2791 Q3UTJ7 | 2841 | Q8CBF7 | 2891 QIEST7
2742 | QS5EBA7 | 2792 | Q3UQ22 | 2842 | Q3TYU1 | 2892 | Q9ESA9
2743 Q5I0H1 2793 Q57074 2843 | Q3TKX9 | 2893 Q9JMO06
2744 Q68FGY9 2794 Q8VIBT 2844 Q91V90 2894 Q810X2
2745 Q69ZY7 | 2795 | Q4KLKS | 2845 Q545E4 2895 | Q6IMHS
2746 Q6LD95 2796 P97556 2846 Q54218 2896 | Q6DR99
2747 Q71SA3 2797 Q99K58 2847 | Q8C8N3 | 2897 | Q8RI1US8
2748 Q810X0 2798 Q92479 2848 | Q9DBU9 | 2898 P70570
2749 | Q8BXYS5 | 2799 Q66PY1 2849 Q8BGI2 2899 | QIQWQ1
2750 Q8C8E4 2800 | Q3V5L4 2850 Q91Vs8s 2900 Q8CIL6
2751 | Q8CGL6 | 2801 | Q8K3U5 | 2851 | Q8CGB2 | 2901 | Q8BMA43
2752 | Q8R2H2 | 2802 Q62561 2852 | Q8R3D3 | 2902 Q80T91
2753 | Q91WZ4 | 2803 | Q8BX76 | 2853 | Q3U6N3 | 2903 | Q6IMH7
2754 Q92478 2804 Q3V364 2854 Q925U3 2904 Q68EF1
2755 | QICVK2 | 2805 | Q3KR76 | 2855 | QBFW64 | 2905 Q4G029
2756 | Q9D4E9 | 2806 Q68FEQ 2856 Q8VIK5 2906 | Q3TLU3
2757 | Q9DAU5 | 2807 | Q8BMI5 | 2857 | Q3U3Vi 2907 | QOESA3
2758 | Q9QXG1 | 2808 Q543J8 2858 Q542C2 2908 Q8C67Z2
2759 | Q9R1K1 | 2809 | Q543W3 | 2859 | Q3UIW7 | 2909 Q2PZL6
2760 Q97135 2810 | Q5NBWS8 | 2860 | Q3TR66 | 2910 | Q3UMSS
2761 035947 2811 | Q3TTEC | 2861 Q6DIB5 2911 Q6NV58
2762 054796 2812 P97806 2862 Q6PET0 2912 | Q8CFA3
2763 | Q3TRGO | 2813 | Q6PDN4 | 2863 Q5SVT2 2913 | Q80WX4
2764 | Q3UDX3 | 2814 | Q3TBR2 | 2864 (Q5SSN6 2914 Q6IR12
2765 | Q3UMN9. | 2815 035370 2865 Q5SVT0 2915 | Q3UU65
2766 | Q3UQ49 | 2816 Q9Z0L5 2866 P70534 2916 | Q3ULYO
2767 | Q3UQR6 | 2817 | Q5SSV4 2867 Q8KO061 2917 Q3UEI7
2768 | Q3UVX6 | 2818 Q3U697 2868 | Q80VN5 | 2918 | Q3U8SR7Y
2769 | Q3UYG5 | 2819 Q55556 2869 Q9JJZ5 2919 | Q3U3Y2
2770 | Q3V1D4 | 2820 Q3U1J7 2870 | Q3UPV5 | 2920 | Q3TTE2
2771 Q4L136 2821 | Q5NBW7 | 2871 Q3U5F6 2021 035727
2772 Q5F226 2822 Q54513 2872 | Q6VOK7 | 2922 | Q80XH2
2773 | Q5Y4N7 | 2823 | Q8K2B8 | 2873 | Q3TDU5 | 2923 Q3V029
2774 Q60815 2824 | Q6PFVT | 2874 Q7M763 2924 | Q3UG15
2775 Q63661 2825 | Q32MF1 | 2875 Q811Q3 2025 | Q8CJAO
2776 Q6DRI8 2826 Q6PAP2 2876 Q8OWT7 2926 QIWTST
2777 | QG6LBNO | 2827 | Q7TQFO0 | 2877 008743 2927 Q99L.24
2778 | QTMOA9 | 2828 | Q3UHH3 | 2878 009182 2028 | QIEQC6
2779 Q810Y3 2829 Q6PTU0 | 2879 070474 2929 | Q5BKS84
2780 | Q8BUTS | 2830 Q6PIPY 2880 Q336F6 2930 | Q3TD57
2781 | Q8BYG9 | 2831 Q8K002 2881 Q3U2F0 2931 Q60472
2782 Q8C3Z5 2832 Q3U5J2 2882 | Q3UGZ9 | 2932 | Q66HK9
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2933 Q6P550 2983 | Q3UYW9 | 3033 Q8C088 3083 | Q3TYB4
2934 | Q3TVR4 | 2984 Q3V1J8 3034 | Q8BKJ4 | 3084 Q3TZE2
2935 | Q8BPMS8 | 2985 Q68EF9 3035 | Q8BNH3 | 3085 | Q3UHBO
2936 Q811K6 2986 | QVOHXO 3036 QBSRA2 | 3086 | Q3UHK6
2937 | QTTQGT | 2987 Q80UF6 3037 | Q5DU39 | 3087 Q3V1S6
2938 | QTTMT3 | 2988 Q80V56 3038 Q52198 3088 (Q543X8
2939 Q923T5 2989 | Q8BPP6 | 3039 | Q3TWKS8 | 3089 Q5ND28
2940 Q571H4 2990 | Q8BVU1 | 3040 Q6PCS0 3090 | Q5ZQUO
2941 Q571B5 2991 Q8C4U8 3041 (Q69ZY6 3091 Q7TSGY
2942 Q505C9 2992 | Q8CDVS5 | 3042 Q60816 3092 Q80YC5
2943 Q61964 2993 Q8CG21 3043 Q3U5T0 | 3093 Q80YS4
2944 | Q8CCT8 | 2994 Q8RAT6 3044 | Q5PQQS8 | 3094 Q80YXO0
2945 Q80Y08 2995 Q91YY0 | 3045 Q99K64 3095 Q8CI1RS
2946 | Q9QYV1 | 2996 Q99L19 3046 Q8CIQ4 | 3096 Q8K271
2947 Q9JJS0 2997 QIESAT | 3047 Q8BX64 3097 Q8VH41
2948 | Q8CGQ1 | 2998 Q9JJS1 3048 Q810H2 3098 | Q9QYZ1
2049 | Q8BTUO | 2999 Q7TSB4 3049 Q66HK3 | 3099 Q8K0J4
2950 | Q8BMO6 | 3000 Q3TV46 3050 Q5M879 3100 QB8CAS82
2951 Q8R5GH | 3001 QI9ROC7 | 3051 Q9Z0Y6 3101 Q8BU25
2952 Q8CJGT | 3002 Q6PT79 3052 Q63404 3102 | Q3TIW5
2953 Q3U428 3003 | Q58GH6 | 3053 Q8C9J2 3103 Q52KG8
2954 Q352716 3004 | Q3URY7 | 3054 | Q80YQ1 3104 Q99KR2
2955 Q9JIM4 3005 | QIWTS4 | 3055 Q80Y26 3105 Q3UE21
2956 | Q6DFX1 | 3006 Q91ZJ1 3056 Q6A051 3106 Q3U492
2957 | Q8ROYO | 3007 008745 3057 | Q68HV2 | 3107 | Q8VDVO
2958 | QI9RI1KO | 3008 | Q8BKS4 | 3058 Q5Y4N8 | 3108 | Q8BKK7
2959 Q91ZD3 3009 Q3U515 3059 | Q5DTTS5 | 3109 Q61965
2960 | Q8CJG6 | 3010 | Q3UIW3 | 3060 Q57119 3110 Q60784
2961 Q8C269 3011 Q3TNZ8 | 3061 Q3UV74 | 3111 | Q8CDV3
2962 | Q80UMS5 | 3012 | Q3TDD1 | 3062 | Q3UMRS6 | 3112 Q8R226
2963 Q7TQ52 | 3013 [ Q3MID1 3063 | Q3UGU1 | 3113 | Q9CUT3
2964 | Q6KAT1 | 3014 | Q3TCH1 | 3064 | Q3UG7?3 | 3114 Q8C6L2
2965 Q9D4F0 3015 Q2V(Ce4 3065 Q3TST72 3115 | Q6KDN2
2966 Q52R82 3016 Q80VP6 3066 Q32NZ3 3116 { Q5SRA4
2967 Q4FJS7 3017 008744 3067 | Q2VWQ2 | 3117 Q3UI29
2968 | Q3UHL7 | 3018 QI1IXL5 3068 | Q9WTS5 | 3118 | Q3TDUS
2969 Q30273 3019 | Q8BVP9 | 3069 Q6ZQ25 3119 Q6NZLS8
2970 Q3TQ80 | 3020 QIESB1 3070 | Q4VBE4 | 3120 | Q8OWW?7
2971 Q3TC49 3021 | Q91WHY9 | 3071 | Q8VHL7 | 3121 | Q9DAWS
2972 Q5U215 3022 | QS5EBXS | 3072 088424 3122 | QTTMV2
2973 Q60410 3023 Q571K3 3073 QIR1K2 | 3123 Q8BLZ2
2974 Q642D0 3024 | Q3UZP8 | 3074 | Q6PERO | 3124 009020
2975 Q642C9 3025 Q3UZ23 3075 | QBSNUO | 3125 | Q9CRX6
2976 Q5X124 3026 Q80VA2 3076 Q5D070 3126 Q8CHFO0
2077 Q501P1 3027 Q9JLC1 3077 | Q3UWJ3 | 3127 Q8C435
2978 | Q3TQE9 | 3028 | Q99MNT | 3078 | Q64FW1 | 3128 Q60789
2079 | Q3TTP6 . | 3029 035452 3079 Q8KO0OP5 3129 QIESA2
2980 | Q3TZC6 | 3030 | Q8R5GO | 3080 070534 3130 Q5SSN5
2981 Q3UES1 3031 Q8C8K0O | 3081 088460 3131 088459
2982 | Q3UNGO | 3032 Q8C4T5 3082 | Q3TW70 | 3132 Q571J3
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No. | Accession | No. | Accession | No. | Accession | No. | Accession
3133 | QB2KQ5 | 3183 Q80V54 3233 Q63762 3283 Q68YS7
3134 | Q3VOY9 | 3184 | Q80VQT | 3234 | QI9ESA5 | 3284 Q5YF64
3135 | Q3UTN9 | 3185 Q8CE01 3235 | Q8C9U1 3285 | Q4KSDI
3136 | Q3UH67 | 3186 | Q9ESAlL 3236 | Q6ZQA1 | 3286 Q9JF32
3137 | Q3TWM3 | 3187 | QY9ESA8 | 3237 | Q8R4V5 | 3287 Q91T36
3138 | Q3TVN5 | 3188 | Q9QXA3 | 3238 | Q5DTLS | 3288 | Q9DHU?Y
3139 Q8R465 3189 035883 3239 Q4VAI3 3280 | Q5DLWO
3140 Q8VD97 3190 QIWU10 3240 | Q3UWD7 | 3290 Q8B4N0
3141 Q8K428 3191 Q8VDO7 | 3241 | Q3TPNO | 3291 Q71G60
3142 Q8CI01 3192 | Q9CXD8 | 3242 Q3TL35 3292 Q7T427
3143 | Q99KT4 | 3193 088840 3243 | Q3TNWI1 | 3293 Q49PZ3
3144 | Q8BR22 | 3194 | Q9WUH9 | 3244 Q62779 3204 Q5IY12
3145 Q4G063 3195 | Q8BZG2 | 3245 P97883 3295 Q3I7V8
3146 Q561K2 3196 | Q8BNE9 | 3246 | Q9WUHS8 | 3296 Q8V573
3147 088458 3197 | Q8VCS4 | 3247 Q8K326 3297 Q2VJ96
3148 Q9JJS9 3198 Q6P6TS8 3248 | Q6GTJ9 | 3298 041506
3149 Q8CIP1 3199 | Q7TQB4 | 3249 Q69ZB1 3299 | Q6QVZ0
3150 | Q8CGQ2 | 3200 Q569V0 3250 Q3UI55 3300 P87605
3151 QI9ESA6 | 3201 | Q3UVN4 | 3251 | Q3TGL4 | 3301 | Q7TDW3
3152 Q76LU2 3202 | Q3TDB9 | 3252 Q336F3 3302 | Q8QN40
3153 Q6IRL1 3203 Q925V4 3253 | Q3TD9% | 3303 | Q8JRQ1
3154 | Q3UHN1 | 3204 Q8C536 3254 | Q8VHF4 | 3304 | Q7TDWA4
3155 [ Q3UFB4 | 3205 | Q9ESBO [ 3255 | Q8KOH9 [ 3305 041504
3156 | QTM762 | 3206 | QS8VCTO | 3256 Q922H0 3306 Q9Q9F3
3157 | Q7TQ50 | 3207 Q91ZX7 3257 Q8R542 3307 Q5RJO05
3158 Q544J9 3208 Q63124 3258 Q62287 3308 | QB5RGG6
3159 | Q6PCM6 | 3209 | Q8BMSO | 3259 | Q8BMD9 | 3309 | Q4SWHS5
3160 | Q3UQK2 | 3210 Q70E20 3260 | QTTNI15 | 3310 | Q4RTS1
3161 P70628 3211 | Q6TYY9 | 3261 Q6ZQ56 3311 Q804X5
3162 | QICWCS8 [ 3212 { QBWOHS | 3262 | Q6NZM2 | 3312 | Q5SPD2
3163 Q8BSJO 3213 | QBMTW9 | 3263 Q68FY8 3313 Q5RIPS8
3164 | QTTQ51 | 3214 Q3U454 3264 Q58A84 3314 Q5RIT0
3165 | Q5RKMS8 [ 3215 | Q3TRS0 | 3265 Q543Q2 3315 Q5RI68
3166 | Q3URX7 | 3216 Q61204 3266 Q3USI2 3316 | Q5RGHS
3167 | Q3UA33 | 3217 Q811T0 3267 Q3US54 3317 | Q4RUN9
3168 Q3TS86 3218 | Q8K2B7 | 3268 Q3US45 3318 | QTZYZ9
3169 { Q3TDF9 | 3219 { Q3UWDO | 3269 | Q3UND5 | 3319 | Q6DF97
3170 | Q3T9K7 | 3220 { Q3VOB1 3270 | Q3UEV6 | 3320 Q5RI93
3171 Q6P9K9 | 3221 Q61291 3271 Q6PFE7 | 3321 Q4SUAO0
3172 | Q6AYF4 | 3222 | QIWTS6 | 3272 | Q8BJB5 | 3322 | Q4SNNT7
3173 Q70465 3223 | Q80XT9 | 3273 | Q3TWH6 | 3323 | Q4SNM9
3174 | Q3TDN7 | 3224 Q9R1J9 3274 Q8R417 3324 | Q4SHY2
3175 Q3TP84 | 3225 Q810R6 3275 | QOVGR4 | 3325 Q4RJ05
3176 Q3TR40 3226 QSSRA3 3276 Q7TGRO 3326 | Q3MKM9
3177 Q3U8S9 3227 | QH69WS5 | 3277 | Q70GU8 | 3327 | Q9PUU4
3178 Q497H5 3228 | Q3UEY9 | 3278 | QT77PC4 | 3328 Q804X1
3179 | Q52NV3 | 3229 | Q3U7G2 | 3279 | Q91MZO | 3329 Q7T011
3180 | Q6KAQ6 | 3230 | Q3UIR3 | 3280 | Q8QUT7 | 3330 | QbBSPB5
3181 | Q6MGR89 | 3231 | Q8COMO | 3281 Q77GE7 | 3331 Q4SHLS8
3182 | QTTQO6 | 3232 1 Q9QVT6 | 3282 Q6VZ62 3332 Q2UZ96
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No. | Accession

3333 | Q5RGN7

3334 | QBAYTO

3335 Q804X2

3336 | Q804WS8

3337 Q45977

3338 | Q6PCHS

3339 | Q6GP06

3340 | Q6IRRS8

3341 Q45B52

3342 Q07012

3343 |  Q804X7

3344 Q804X0

3345 | Q4SUA1l

3346 042347

3347 042507

3348 P87363

3349 | Q2vVU96

3350 | Q32NR2

3351 Q3Y654

3352 | QA4RIB5

3353 | Q4R1B6

3354 | Q4RBWS

3355 | Q4RCI7

3356 | Q4RDX0

3357 | Q4RFP1

3358 | Q4RG82

3359 | Q4RJE7

3360 | Q4RLTS

3361 | Q4RMCI

3362 | Q4RN50

3363 | Q4RPY1

3364 | Q4RQ03

3365 | Q4RQ4
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Appendix C

Dataset B

No. | Accession | No. | Accession | No. | Accession | No. | Accession
1 Q4T8F6 33 QI9DDR6 65 Q4RU98 97 Q4T0K3
2 Q4T8K3 34 Q9DEDO 66 Q4RUP1 98 Q4T3H9
3 Q47T8L6 35 Q9DERS 67 Q4RUS3 99 Q4T3Y2
4 Q4TBF7 36 QIPS95 68 Q452G3 100 | Q4T4W9
5 Q4TFA3 37 Q9PUCT 69 Q45250 101 Q4T5A4
6 Q4THWE 38 QIWTR3 70 Q4583C4 102 Q4T5X5
7 Q4TI?5 39 QIWTR4 71 Q45409 103 Q4T712
8 Q4T1J4 40 057659 72 Q45488 104 Q4T8G9
9 Q4U0S1 41 P79708 73 Q4S5N7 105 Q4T963

10 Q502D2 42 Q30A07 74 Q4S5N8 106 Q4T9U6
11 Q52KT2 43 Q32N65 75 Q4S6A5 107 | Q4TCQ5
12 Q5F3N3 44 Q352J2 76 Q4S9N6 108 { Q4TGQ1
13 QSHFVX1 45 Q4RATT 77 Q4SB67 109 | Q4THKA4
14 Q5U4U1 46 Q4RES58 78 Q4SDH3 110 Q5NJJ5
15 Q5XLPT7 47 Q4REA6 79 Q4SF34 111 QBNJJ6
16 Q6DHG1 48 Q4RG72 80 Q4SFH7 112 Q5NJK1
17 Q6DJD9 49 Q4RG83 81 Q4SFI1 113 Q5PPZ2
18 Q6GN32 50 Q4RIP1 82 Q4SHT1 114 Q5U4N0O
19 Q6IR63 a1 Q4RJT4 83 Q4SHCO 115 | Q5XHGR
20 Q6J1M9 52 Q4RLS7 84 Q4SHU3 116 Q64EU6
21 Q6PSS9 53 Q4RQ52 85 Q4S1J4 117 Q6AX28
22 Q6PYX2 54 Q4RQ68 86 Q4SKS4 118 Q6B4U6
23 Q7T3U2 55 Q4RQ96 87 Q4SL08 119 | Q6DCQ6
24 Q7ZX63 56 Q4RSI5 88 Q4SNM5 120 Q6QHT7
25 Q7ZXT0 57 Q4RTT71 89 Q4SPK6 121 Q6R8J2
26 Q7ZZT0 58 Q4RT87 90 Q4SRY6 122 Q6T683
27 Q804J3 59 Q4RU98 91 Q4STQO 123 | Q6W4W6
28 Q8AXKG 60 Q4RUP1 92 Q4SU37 124 Q7LZ69
29 Q8QGGY 61 Q4RUS3 93 Q4SVG4 125 Q7T026
30 QI0WZ3 62 Q452G3 94 Q4SW11 126 Q7T2X3
31 Q91008 63 Q45280 95 Q4SXB6 127 Q7ZXL5
32 QI9DDRS5 64 Q4S3C4 96 Q4SZV7 128 QS8AVH7

135



No. | Accession | No. | Accession | No. | Accession | No. | Accession
129 Q8AYFO 179 Q4TGF7 229 Q4T7A2 279 | Q6NWK9
130 Q8AYF1 180 Q457X0 230 Q325K9 280 Q58L93
131 Q8JHD5 181 Q20794 231 Q4RX37 281 Q4SVF9
132 Q90819 182 Q4TC33 232 Q5M9B3 282 Q45473
133 [ Q90OWM2 | 183 Q2PP38 233 | Q4RWE3 | 283 Q90YA5
134 QI90WZ2 184 013128 234 Q4S8A4 284 Q6QNF?2
135 Q90743 185 Q4SCB6 235 Q45987 285 | Q6GNA2
136 Q92070 186 Q5RIPG 236 Q4TB23 286 Q5FV82
137 QI98THG 187 Q4TC32 237 Q800Y7 287 Q4SET9
138 Q98THS 188 Q4RLR5 238 Q4RSS0 288 (Q800E4
139 | Q9DDRA4 189 Q4T2F9 239 057339 289 Q8JHV6
140 Q9I9K4 190 | Q4RQW2 | 240 Q4S2B5 290 Q6DUJ6
141 Q9PUCS 191 Q2PP40 241 Q45226 291 Q502R1
142 Q9YHFO0 192 Q4T7A1 242 Q4S84V0 292 | Q4TGHT
143 QILXE4 193 Q4SXH1 243 Q7SYT5 293 | Q4SRM9
144 QILVQO 194 Q4S5A3 244 Q4SZB3 294 | Q4SMT5
145 Q2PP37 195 Q4SCLO 245 Q482X7 295 Q452C4
146 Q2PP39 196 Q45163 246 013149 296 Q4RZK1
147 Q9PU49 197 | Q4RAY3 247 QIWT737 297 | Q4RQW3
148 Q6KDZ1 198 057658 248 042372 298 Q4RQ69
149 Q4TI74 199 | Q4RKPO | 249 Q2PPJ1 299 | Q4RMTY
150 Q4RJU5 200 Q2TJF5 250 Q90285 300 Q8UVF1
151 Q4VATS8 201 Q4S5B2 251 Q8JHC9 301 Q4TB33
152 Q4TC24 202 Q4STE9 252 Q5TZI0 302 057587
153 Q645M5 203 Q5RFU8 253 Q8JHA43 303 Q92098
154 | Q5RHM2 | 204 Q325K8 254 Q91590 304 Q7T3H4
155 Q4RX38 205 | Q2VWH3 | 255 Q501R2 305 Q8AWSY
156 Q4SF52 206 Q4RB71 256 | Q5BKN3 306 Q6PFT3
157 Q4T686 207 Q4RJ20 257 Q3YAAl 307 Q6IT10
158 Q4SQF4 208 Q5G872 258 Q6IQWT7 308 Q5NJJ2
159 [ Q2QIW5 | 209 Q4TBF2 259 Q7T024 309 Q4T5N1
160 012973 210 Q4RC34 260 Q90Y55 310 Q4SUA3
161 Q45G86 211 Q5NIWO 261 042595 311 Q4RND7
162 Q4RXPO 212 Q505M8 262 Q8JHVS 312 Q45367
163 Q4RSD5 213 Q4T313 263 Q4RVG6E 313 Q90994
164 Q4RB72 214 Q3LTM5 264 Q4RNL1 314 Q6R8J3
165 Q5SNS5 215 Q4SUV4 265 Q4RG69 315 Q90YD2
166 Q2vU93 216 Q4RJ14 266 | Q4RHV2 | 316 Q8UVF2
167 Q4SRX0 217 Q4SEY9 267 Q4SEH2 317 | QB68EWS5
168 | Q4RWT1 | 218 Q7ZTI2 268 Q4SK30 318 Q5NJL4
169 Q4RKT8 219 Q5XHI6 269 Q4T3T2 319 Q503B9
170 Q4TARO 220 Q90ZN3 270 Q75ZI2 320 Q4SHY3
171 QIPTB2 221 Q4SQC4 271 Q4RVC8 321 Q4RW31
172 Q4S6G8 222 QB0LG7 272 Q4RFZ0 322 042373
173 Q2vVU%4 223 Q4S6A6 273 Q8AXPO 323 | QIDEQO
174 Q4RF33 224 Q4RU04 274 Q6NS01 324 042374
175 Q4SEE4 225 | Q9W7C5 | 275 Q4S3T6 325 Q8JHDO
176 Q5ZJRO 226 Q59166 276 Q90995 326 Q8AW45
177 Q6P9I9 227 042140 277 012960 327 Q6PAEOD
178 Q58EP9 228 Q4TF05 278 Q6R8J4 328 Q45486
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No. | Accession | No. | Accession
329 Q4RND7 379 Q5NJKO
330 Q45367 380 Q4RTYS
331 Q90994 381 Q45H72
332 Q6R8J3 382 Q4RW33
333 Q90YD2 383 Q7T3B6
334 Q8UVF2 384 Q5RI06
335 Q68EWS 385 Q5NJJ3
336 Q5NJL4 386 Q58L.92
337 Q503B9 387 Q4T6G4
338 Q4SHY3 388 Q4SWI4
339 Q4RW31 389 Q4SHN1
340 042373 390 Q45369
341 QIDEQO 391 Q9TA01
342 042374 392 Q4T2F3
343 Q8JHDO 393 Q6NUU4
344 Q8AW45 394 Q5NJJ4
345 Q6PAEQ 395 Q5BLE3
346 Q45486 396 Q4SUA2
347 Q66IL7 397 Q8AXBT7
348 Q58L96 398 Q6NYT79
349 Q90Y56 399 Q7ZYV5
350 Q8JHV7 400 P79787
351 Q6DET79 401 Q6IT09
352 Q4RSS2 402 Q5NJJO
353 Q45290 403 Q4SMT3
354 Q45B49 404 (Q4S0R8
355 | Q8UWGY | 405 QT75ZI3
356 Q45028 406 Q5RH37
357 Q4T3P3 407 QI0W12
358 Q4T8V0 408 QIPW89
359 Q4TC37 409 Q804R1
360 Q58L95 410 Q5XH36
361 Q7ZTG7 411 Q6NTV5
362 Q4RJIJM2 412 Q4F879
363 QIW6VE

364 Q8UVQ3

365 Q90824

366 Q90XG2

367 Q91925

368 Q6DIG3

369 Q5M980

370 Q4RXE9

371 Q4RE15

372 057484

373 Q90656

374 Q8AYS9

375 Q7ZXT4

376 Q7ZVP3

377 Q7SXF6

378 Q5ZKF9
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Appendix D

Dataset C

No. Accession No. Accession No. Accession No. | Accession
1 OMIM:104640 | 33 | OMIM:600275 | 65 | OMIM:603745 | 97 Q4RTI5
2 OMIM:109770 ; 34 | OMIM:600276 | 66 | OMIM:603818 | 98 Q4RTI6
3 OMIM:118450 | 35 | OMIM:600310 | 67 | OMIM:603897 | 99 Q4RZ32
4 OMIM:118850 | 36 | OMIM:600345 | 68 | OMIM:604110 | 100 Q4RZ38
) OMIM:121050 | 37 | OMIM:600441 | 69 | OMIM:604210 | 101 Q4S0D5
6 OMIM:125310 | 38 | OMIM:600493 | 70 | OMIM:604234 | 102 Q4S1V38
7 OMIM:126150 | 39 | OMIM:600514 | 71 | OMIM:604264 | 103 Q4S2L6
8 OMIM:131210 | 40 | OMIM:600521 | 72 [ OMIM:604265 | 104 Q48758
9 OMIM:134797 | 41 | OMIM:600565 | 73 | OMIM:604266 | 105 Q485940
10 |{ OMIM:135821 | 42 | OMIM:600566 | 74 | OMIM:604267 | 106 Q459W4
11 | OMIM:142445 | 43 | OMIM:600567 | 75 | OMIM:604268 | 107 Q4SA7T3
12 | OMIM:152780 | 44 | OMIM:600582 | 76 | OMIM:604269 | 108 Q4S8C13
13 | OMIM:152790 | 45 | OMIM:600826 | 77 | OMIM:604270 | 109 Q4SCB7
14 | OMIM:154700 | 46 | OMIM:601456 | 78 | OMIM:604308 | 110 Q4SEBO
15 | OMIM:158371 | 47 | OMIM:601533 | 79 | OMIM:604580 | 111 Q4SFW8
16 | OMIM:172870 | 48 | OMIM:601920 | 80 | OMIM:604609 | 112 Q4SGX5
17 | OMIM:176290 | 49 | OMIM:602061 | 81 | OMIM:604633 | 113 Q48187
18 | OMIM:182212 | 50 | OMIM:602281 | 82 | OMIM:604710 | 114 Q451J3
19 | OMIM:187395 | 51 | OMIM:602319 | 83 | OMIM:605007 | 115 Q4SJING

20 | OMIM:187500 | 52 | OMIM:602320 | 84 | OMIM:605008 | 116 Q4SK80
21 | OMIM:188040 | 53 | OMIM:602570 | 85 | OMIM:605009 | 117 Q4SM61
22 | OMIM:188062 | 54 | OMIM:602713 | 86 | OMIM:605102 | 118 Q4SN22
23 | OMIM:190198 | 55 | OMIM:603130 | 87 | OMIM:605185 | 119 Q4SP98
24 | OMIM:227600 | 56 | OMIM:603421 | 88 | OMIM:605194 | 120 Q48Q68
25 | OMIM:300239 | 57 | OMIM:603639 | 89 | OMIM:605227 | 121 Q4SQAS5
26 | OMIM:306900 | 58 | OMIM:603742 | 90 | OMIM:605441 | 122 Q4SRW7
27 | OMIM:605533 | 59 | OMIM:606276 [ 91 | OMIM:607491 | 123 Q4STC1
28 | OMIM:605734 | 60 | OMIM:606582 | 92 | OMIM:607661 | 124 Q4SXD4
29 | OMIM:606018 | 61 | OMIM:607114 | 93 | OMIM:607873 | 125 Q4SZZ8
30 | OMIM:606100 | 62 | OMIM:607170 | 94 | OMIM:608529 | 126 Q4T2D2
31 | OMIM:606101 | 63 | OMIM:607171 [ 95 Q4RQ03 127 Q4T2J4
32 | OMIM:606217 | 64 | OMIM:607299 | 96 Q4RQT4 128 Q4T392

138



No. | Accession | No. | Accession | No. | Accession | No. | Accession
129 Q4T3X9 179 | Q8AXKT | 229 | IPR004457 | 279 | IPR000446
130 Q4T4X0 180 | Q8AXMS6 | 230 | IPR004470 | 280 | IPR000447
131 Q4T785 181 Q4RSA9 231 | IPR005018 | 281 | IPR000463
132 Q5NJJ1 182 Q4RXZ7 232 | IPR005468 | 282 | IPR000469
133 Q5FW21 183 Q4SNE6 233 | IPR005469 | 283 | IPR000472
134 Q4RGL7 184 Q4T3Z6 234 | IPR006210 | 284 | IPR000476
135 Q804W9 185 Q56VR3 235 | IPR006586 | 285 | IPR000479
136 073920 186 Q58L94 236 | IPR006952 | 286 | IPR000491
137 Q5FVY5 187 | QTZWL5 | 237 | IPRO07943 | 287 | IPR000523
138 Q4T6A4 188 Q6PT7I9 238 | IPR0O08131 | 288 | IPR000532
139 Q4SKD1 189 Qb5ZJH4 239 | IPR009030 | 289 | IPR000539
140 | Q4SDW5 | 190 P79941 240 | IPR0O11170 | 290 | IPR000562
141 Q4RSL6 191 073809 241 | TPR0O11359 | 291 | IPR000571
142 Q3YAAQ 192 Q766V2 242 | IPR012152 | 292 | IPR0O00586
143 Q6P1V9 193 Q4RQ9%4 243 | TPR013050 | 293 | IPR0O00638
144 Q90XG4 194 Q27912 244 | TPR013309 | 294 | IPR0O00647
145 Q58EG1 195 Q4FAI8 245 | TPRO07951 | 295 | IPR000654
146 Q5M7J5 196 Q91902 246 | IPR000021 | 296 | IPR000655
147 | Q6RUW2 | 197 Q92071 247 | IPR000053 | 297 | TPR0O00686
148 Q6PAG2 198 093575 248 | IPR0O00057 | 298 | IPR000694
149 Q7SZG1 199 QI0YK1 249 | IPR000062 | 299 | IPR0O00712
150 | Q69GM1 200 Q75Y86 250 | TPR000072 | 300 | IPR0O0O0716
151 Q5RI69 201 Q6PPB4 251 | TPR0O00098 | 301 | IPR0O00753
152 Q5M8Y0 202 Q4SHC2 252 | IPR000104 | 302 | IPR000762
153 Q504H3 203 Q4SFQO 253 | IPR000136 | 303 | IPR000770
154 Q4RUO01 204 Q45162 254 | IPR000147 | 304 | IPR000773
155 Q4RP66 205 | IPR000020 | 255 | IPR000148 | 305 | IPR000779
156 Q4RLD6 206 | IPR0O00083 | 256 | IPR000151 | 306 | IPRO00782
157 Q8JFZ4 207 | IPR0O00421 | 257 | IPR0O00174 | 307 | IPR0O00820
158 Q4SP38 208 | IPR0O00742 | 258 | IPR000182 | 308 | IPR0O00827
159 Q4RSM9 | 209 | IPR0O00800 | 259 | IPR0O00186 | 309 { IPRO00S37
160 Q5TZKS 210 | IPR001881 | 260 | IPR0O00187 | 310 | IPRO0O0859
161 Q4KMI9 211 | IPR002049 | 261 | IPR000190 | 311 | IPR0OCOS67
162 QG68EY0 212 | IPR0O06209 | 262 | IPR000197 | 312 | IPRO0O0870
163 Q4T6Q3 213 | IPR007803 | 263 | IPR000222 | 313 | IPR000883
164 Q4RV65 214 | IPR010901 | 264 | IPR000226 | 314 | IPR000890
165 Q4RJ58 215 | IPR011203 | 265 | IPR000242 | 315 | IPRO00898
166 Q4RQT0 216 | IPR013032 | 266 | IPR000248 | 316 | IPR000907
167 Q6P4X1 217 | TPR0O13091 | 267 | IPR000249 | 317 | IPR000910
168 Q5RG03 218 | IPRO13111 | 268 | IPR000269 | 318 | IPR000932
169 Q503G2 219 | TPR000033 | 269 | TPR000301 | 319 | IPR000962
170 Q4RVDO 220 | IPR0O00152 | 270 | IPR0O00313 | 320 | IPR0O00975
171 Q4RHF2 221 | IPR000494 | 271 | TPR000327 | 321 | IPR000976
172 Q4T0S1 222 | IPR001336 | 272 | IPR000331 | 322 | IPR000987
173 Q9DFE9 223 | IPR001438 | 273 | IPR000367 | 323 | IPR001019
174 Q7ZXI12 224 | IPRO01666 | 274 | IPR000374 | 324 | IPR001023
175 Q68EK6 225 | TPR001740 | 275 | TPR0O00381 | 325 | IPR0O01089
176 Q4VBJO 226 | IPR002007 | 276 | IPR000387 | 326 | IPR001090
177 Q8JH44 227 | IPR002172 | 277 | TPR000403 | 327 | IPR001106
178 Q504J5 228 | IPR002610 | 278 | IPR000405 | 328 | IPR013548
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No. | Accession | No. | Accession | No. | Accession | No. | Accession
329 | IPR000493 | 379 | IPR001245 | 428 | IPR002022 | 478 | IPR002112
330 | IPR000523 | 380 | IPR001246 | 429 | IPR002059 | 479 | IPR002121
331 | IPR000532 | 381 | IPR001251 | 430 | IPR002072 | 480 | IPR002153
332 | IPR000539 | 382 | IPR001308 | 431 | IPR002074 | 481 | IPR002154
333 | IPR000562 | 383 | IPR0O01318 | 432 | IPR002083 | 482 | IPR002160
334 | IPR000571 | 384 | IPR001321 | 433 | IPR002087 | 483 | IPR002161
335 | IPR000586 | 385 | IPR001323 | 434 | IPR002100 | 484 | IPR002183
336 | IPR000638 | 386 | IPR0O01337 | 435 | IPR002101 | 485 | IPR002188
337 | IPR000647 | 387 | IPR001343 | 436' | IPR002112 | 486 | IPR002209
338 | IPR000654 | 388 | IPR001355 | 437 | IPR002121 | 487 | IPR002212
339 | IPR000655 | 389 | IPR001368 | 438 | IPR002153 | 488 | IPR002259
340 | IPR000686 | 390 | IPR001377 | 439 | IPR002154 | 489 | IPR002277
341 | IPR000694 | 391 | IPR0O01400 | 440 | IPR002160 | 490 | IPR002285
342 | IPR000712 | 392 | IPR001402 | 441 | IPRO02161 | 491 | IPR002348
343 | IPR0O00716 | 393 | IPR001408 | 442 | IPR002183 | 492 | IPR002353
344 | IPR000753 | 394 | IPR001422 | 443 | IPR002188 | 493 | IPR002354
345 | IPR000762 | 395 | IPR001426 | 444 | IPR002209 | 494 | IPR002393
346 | IPR0O00770 | 396 | IPR001476 | 445 | IPR002212 | 495 | IPR002400
347 | IPRO00773 | 397 | IPR001477 | 446 | IPR002259 | 496 | IPR002405
348 | IPR0O00779 | 398 | IPR0O01506 | 447 | IPR002277 | 497 | IPR002418
349 | IPR000782 | 399 | IPR001512 | 448 | IPR002285 | 498 | IPR002423
350 | TPR000820 | 400 | IPR001545 | 449 | TPR002348 | 499 | IPR002446
351 | IPR000827 | 401 | IPR001555 [ 450 | IPR002353 | 500 | IPR002473
352 | TPR0O00837 | 402 { IPR001606 | 451 | IPR002354 | 501 | IPR002475
353 | IPR0O0O0859 | 403 | IPR001627 | 452 | IPR002393 | 502 | IPR002491
354 | IPR000867 | 404 | IPR001632 | 453 | IPR001824 | 503 | IPR002554
355 | IPR000870 | 405 | IPR001672 | 454 | IPR001839 | 504 | IPR002557
356 | IPR000883 | 406 | IPR001678 | 455 | IPR001844 | 505 | IPR0O02587
357 | IPRO00890 | 407 [ IPR001690 | 456 { IPR001846 | 506 | IPR002633
358 | TPRO00898 | 408 | IPR001770 | 457 | IPR001852 | 507 | IPR002634
359 | IPR000907 | 409 | TPR0O01806 | 458 | IPR001856 | 508 | IPR002643
360 | IPR000910 | 410 | IPRO01811 | 459 | IPR001858 | 509 | IPR002644
361 | TIPR000932 | 411 | TPR001824 | 460 | IPR001877 | 510 | IPR002649
362 | IPR000962 | 412 | IPR001824 | 461 | IPR001885 | 511 | IPR002661
363 | IPR000975 | 413 | IPR001839 | 462 | IPR001893 | 512 | IPR002666
364 | TPR000976 | 414 | IPR001844 | 463 | IPR001904 | 513 | IPR002714
365 | IPR000987 | 415 | IPR001846 | 464 | IPR001929 | 514 | IPR002770
366 | IPR001019 | 416 | IPR0O01852 | 465 | IPR001932 | 515 | IPR002836
367 | IPR001023 | 417 | IPR001856 | 466 | IPR001955 | 516 | IPR002856
368 | IPR001089 | 418 | IPR001858 | 467 | IPR001983 | 517 | IPR002869
369 | IPR001090 | 419 | IPR001877 | 468 | IPR002003 | 518 | IPRO02880
370 | IPR001106 | 420 | IPR001885 | 469 | IPR002011 { 519 | IPR002963
371 | IPRO01111 | 421 | IPR001893 | 470 | IPR002022 | 520 | IPR002975
372 | IPR0O01116 | 422 | IPR0O01904 | 471 | TPR002059 | 521 | IPR002976
373 | IPR001132 | 423 | IPR001929 [ 472 | IPR002072 | 522 | IPR003012
374 | IPR001181 | 424 | TPR001932 | 473 | IPR002074 | 523 | IPR003014
375 | IPR001184 | 425 | IPR001955 | 474 | IPR002083 | 524 | IPR003064
376 | IPR001192 | 426 | IPR001983 | 475 | IPR002087 | 525 | IPR003085
377 | IPR001214 | 427 | IPR002003 | 476 | IPR002100 | 526 | IPR003087
378 | IPR001217 | 428 | IPR002011 | 477 | IPR002101 | 527 | IPR003093
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No. | Accession | No. | Accession | No. | Accession
528 | IPR003103 | 578 | IPR003623 | 628 | IPR003763
529 | IPR003108 | 579 | IPR003629 | 629 | IPR003813
530 | IPR003127 | 580 | IPR003630 | 630 | IPR003829
531 | IPR003193 | 581 | IPR003653 | 631 | IPR003881
532 | IPR003206 | 582 | IPR003654 | 632 | IPR003905
533 | IPR003207 | 583 | IPR003659 | 633 | IPR003906
534 | IPR003208 | 584 | IPR003670 | 634 | IPR003907
535 | IPR003234 | 585 | IPR003718 | 635 | IPR003908
536 | IPR003235 | 586 | IPR003763 | 636 | IPR003911
537 | IPR003284 | 587 | IPR003813 | 637 | IPR003914
538 | IPR003288 | 588 | IPR003829 | 638 | IPR003932
539 | IPR003293 | 589 | IPR003881 | 639 | IPR003933
540 { IPR003294 | 590 | IPR003905 | 640 | IPR003934
541 | IPR003295 | 591 | IPR003906 | 641 | IPR003936
542 | IPR003296 | 592 | IPR003907 | 642 | IPR003939
543 | IPR003297 | 593 | IPR003908 | 643 | IPR003940
544 | TPR003302 | 594 | IPR003911 | 644 | IPR003941
545 { TPR003311 | 595 | IPR003914 | 645 | IPR003942
546 | IPR003327 | 596 | IPR003932 | 646 | IPR003952
547 | IPR003368 | 597 | IPR003933 | 647 | IPR003953
548 | IPR003392 | 598 | IPR003934 | 648 | IPR003966
549 | TPR003398 | 599 | IPR003936 | 649 | IPR003985
550 | IPR003438 | 600 | IPR003939 | 650 | IPR004000
551 | IPR003454 | 601 | IPR003940 | 651 | IPR004001
552 | IPR003460 | 602 | IPR003941 | 652 [ IPR004045
553 | IPR003463 | 603 | IPR003942 | 653 | IPR004046
554 | IPR003477 | 604 | IPR003952 | 654 | IPR004061
555 | IPR003502 | 605 | IPR003953 | 655 | IPR004062
556 | IPR003503 | 606 | IPR003966 | 656 | IPR004063
557 | IPR003504 | 607 | IPR003985 | 657 | IPR004064
558 | IPR003505 | 608 | IPR004000 | 658 | IPR004065
559 [ IPR003527 | 609 | IPR004001 | 659 | IPR004066
560 | IPR003528 | 610 | IPR004045 | 660 | IPRO08996
561 | IPR003529 | 611 | IPR004046
562 | IPR003530 | 612 | IPR004061
563 | IPR003531 | 613 | IPR004062
564 | IPR003532 | 614 | IPR004063
565 | IPR003538 | 615 | IPR004064
566 | IPR003542 | 616 | IPR004065
567 | IPR003555 | 617 | IPR004066
568 | IPR003560 | 618 | IPR004074
569 [ IPR003570 | 619 | IPR004076
570 | IPR003573 | 620 | IPR004077
571 | IPR0O03574 | 621 | IPR003629
572 | IPR003577 | 622 | IPR003630
573 | IPR003595 | 623 | IPR003653
574 | IPR003598 | 624 | IPR003654
575 | IPR003608 | 625 | IPR003659
576 | IPR003619 | 626 | IPR003670
577 | IPR003620 | 627 | TPR003718
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No. | Accession | No. Accession No. | Accession | No. | Accession
1 IPR000042 51 IPR012213 101 P30443 151 P30443
2 IPR000082 52 IPR012214 102 P16209 152 P16209
3 IPR0O00155 53 IPR012858 103 P16211 153 P16211
4 IPR000246 54 IPR013969 104 P30515 154 P30515
5 IPR000526 55 | NY-REN-27 (MTDB) | 105 P30376 155 P30376
6 IPR000621 56 PDOC00284 106 P01892 156 P01892
7 IPR000715 57 PDOC00204 107 P16210 157 P16210
8 IPR000905 58 PDOC00210 108 P30377 158 P30377
9 IPR001038 59 IPR006844 109 P04439 159 P04439
10 IPR001329 60 IPR007235 110 P13748 160 P13748
11 IPR001439 61 IPRO07267 111 P30378 161 P30378
12 IPR001503 62 IPR007676 112 P13749 162 P13749
13 IPR0O01675 63 IPRO07754 113 P13746 163 P13746
14 IPR001968 64 IPR007906 114 P30447 164 P30447
15 IPR002122 65 IPR008083 115 P05534 165 P05534
16 IPR002202 66 IPR008363 116 P18462 166 P18462
17 IPR002213 67 IPR008364 117 P30450 167 P30450
18 IPR002249 68 IPR008368 118 P30512 168 P30512
19 IPR002280 69 IPR008369 119 P16188 169 P16188

20 IPR002443 70 IPR0O08370 120 P16189 170 P16189
21 IPR002444 71 IPR008371 121 P10314 171 P10314
22 IPR002445 72 IPR008372 122 P16190 172 P16190
23 IPR002640 73 IPR0O08647 123 P30453 173 P30453
24 IPR002659 74 IPRO08710 124 P30455 174 P30455
25 IPR002685 75 IPR008814 125 P30456 175 P30456
26 IPR002968 76 IPR0O08820 126 P30457
27 IPR003038 77 IPR008821 127 P01891
28 IPR003342 78 IPR008853 128 P10316
29 IPR003378 79 IPR009138 129 P30459
30 IPR003406 80 IPRO09151 130 Q09160
31 IPR003407 81 IPR009168 131 P30379
32 IPR003492 82 IPR009294 132 P13750
33 IPR003674 83 IPR009448 133 P30516
34 TPR003919 84 IPR009684 134 P30380
35 IPR003961 85 IPR010555 135 P13751
36 IPR003962 36 IPR010580 136 P30381
37 IPR004139 87 IPR011143 137 P30382
38 IPR004276 88 IPR012163 138 P01889
39 IPR004816 89 IPR012209 139 P30460
40 IPR004856 90 IPR012210 140 P30461
41 IPR005013 91 IPR012211 141 P30462
42 IPR005421 92 IPR012212 142 P30464
43 IPR005422 93 PDOC00559 143 P30466
44 IPR005423 94 PDOC00281 144 P03989
45 IPR005429 95 PDOC00623 145 P30685
46 IPR0O05817 96 PDOC00234 146 P18463
47 IPR005951 97 PDOC00280 147 Q95365
48 IPR006603 98 PDOC00209 148 P30475
49 IPR006706 99 PDOC00248 149 Q04826
50 IPR0O06813 | 100 P30375 150 P30375
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No. | Accession | No. | Accession
1 P39940 43 X54942
2 P40559 44 L31801
3 P50077 45 U04953
4 P39524
5 P48510
6 Q12518
7 Q05785
8 P38111
9 P32486
10 Q12446
11 P40477
12 P39105
13 Q08108
14 P46957
15 P53064
16 Q04183
17 P38334
18 Q03780
19 Q05518

20 P38809
21 P40497
22 P47068
23 P40361
24 P53947
25 P49686
26 P25040
27 P53309
28 P38856
29 X55362
30 M61832
31 D13639
32 T51288
33 T'70920
34 102020
35 R61502
36 H73758
37 H17434
38 M69199
39 H55916
40 749199
41 T57468
42 R23889
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Appendix E

O-Glucose Dataset

Table 11: EGF-Like Repeats with Known O-glucose Modifications [56]

No. (Onco)Peptide Accession ID | Glycosylation Site
1 Hu Factor IX P00740 99
2 Hu Factor VII P08709 112
3 Mouse Notchl-EGFL2 Q01705 65
4 | Mouse Notch1 EGFL4 | Q01705 146
5 | Mouse Notchl-EGFL10 Q01705 378
6 | Mouse Notchl-EGFL14 Q01705 534
7 | Mouse Notchl-EGFL16 Q01705 609
8 | Mouse Notchl-EGFL17 Q01705 647
9 | Mouse Notchl-EGFL19 Q01705 722
10 | Mouse Notch1-EGFL20 Q01705 759
11 | Mouse Notchl-EGFL21 Q01705 797
12 | Mouse Notchl-EGFL25 Q01705 951
13 | Mouse Notchl-EGFL27 Q01705 1027
15 | Mouse Notchl-EGFL28 Q01705 1065
16 | Mouse Notchl-EGFL33 Q01705 1273
17 | Mouse Notchl-EGFL36 Q01705 1394
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Appendix F

O-Fucose Dataset

Table 12: EGF-Like Repeats with Known O-fucose Modifications [56]

No. (Onco)Peptide Accession ID | Glycosylation Site
1 Hu Factor IX P00740 107
2 Hu Factor VII P08709 120
3 Hu Factor XII P00748 109
4 Hu uPA P00749 38
5 Hu tPA P00750 96
6 Hu Cripto P13385 88
7 Mouse Notchl-EGFL2 Q01705 73
8 Mouse Notchl-EGFL3 Q01705 56
9 Mouse Notchl-EGFL5 Q01705 194
10 | Mouse Notchl-EGFL12 Q01705 466
11 | Mouse Notchl-EGFL20 Q01705 767
12 | Mouse Notchl-EGFL21 Q01705 805
13 | Mouse Notch1-EGFL23 Q01705 883
14 | Mouse Notch1-EGFL24 Q01705 921
15 | Mouse Notchl-EGFL26 Q01705 997
16 | Mouse Notchl-EGFL27 Q01705 1035
17 | Mouse Notchl-EGFL35 Q01705 1362
18 | Mouse Notchl-EGFL36 Q01705 1402
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