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Abstract

Dynamic Recurrent Neural Networks for Stable Adaptive Control of
Wing Rock Motion

Steven B. L. Kooi. Ph.D.
Concordia University, 1999

Wing rock is a self-sustaining limit cycle oscillation (LCO) which occurs as the
result of nonlinear coupling between the dynamic response of the aircraft and the
unsteady aerodynamic forces. In this thesis, dynamic recurrent RBF (Radial Basis
Function) network control methodology is proposed to control the wing rock motion.
The concept based on the properties of the Presiach hysteresis model is used in the
design of dynamic neural networks. The structure and memory mechanism in the
Preisach model is analogous to the parallel connectivity and memory formation in the
RBF neural networks. The proposed dynamic recurrent neural network has a feature
for adding or pruning the neurons in the hidden layer according to the growth criteria
based on the properties of ensemble average memory formation of the Preisach model.
The recurrent feature of the RBF network deals with the dynamic nonlinearities and

endowed temporal memories of the hysteresis model.

The control of wing rock is a tracking problem, the trajectory starts from non-zero
initial conditions and it tends to zero as time goes to infinity. In the proposed neural
control structure, the recurrent dynamic RBF network performs identification process
in order to approximate the unknown non-linearities of the physical system based on
the input-output data obtained from the wing rock phenomenon. The design of the
RBF networks together with the network controllers are carried out in discrete time
domain. The recurrent RBF networks employ two separate adaptation schemes where

the RBF’s centre and width are adjusted by the Extended Kalman Filter in order to
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give a minimum networks size. while the outer networks layer weights are updated
using the algorithm derived from Lyapunov stability analysis for the stable closed loop
control. The issue of the robustness of the recurrent RBF networks is also addressed.
The effectiveness of the proposed dynamic recurrent neural control methodology is
demonstrated through simulations to suppress the wing rock motion in AFTI/F-16
testbed aircraft having the delta wing configuration. The potential implementation

as well as the practicality of the control methodology are also discussed.
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Chapter 1

Introduction

1.1 Wing Rock Phenomenon

Wing rock is a self-sustaining limit cycle oscillation (LCO) which occurs as the result
of nonlinear coupling between the dynamic response of the aircraft and the unsteady
aerodynamic forces. Many aircrafts having slender planform may experience self-
induced oscillatory rolling motion when operating at high angles of attack. This
oscillatory motion is commonly known as wing rock. The wing rock motion also arises

from nonlinear aerodynamic mechanisms which present at high angles of attack.

Wing rock can also be caused by inherent mechanical hysteresis in the aircraft
for example, in certain commercial aircraft the occurrence of wing rock is due to
backlash in power transmission system. The phenomenon of wing rock occurs only
under certain flight conditions e.g. altitude of 3000 ft and Mach number of 0.6 for
the aircraft under study. The precise knowledge and shape of the waveform of wing
rock is difficult to obtain from the aircraft. The limit cycle is characterized by low
amplitude in the range of 0.1 to 0.5 degree yaw oscillation and a period of 1.5 to 3.0
seconds. The study also shows that by reducing the magnitude of backlash in these

sources, the problem of wing rock or limit cycle oscillation was significantly reduced.



A wide range of studies has also been conducted by researchers on aircraft exhibit-
ing wing rock due to aerodynamic hysteresis, some of the aircrafts that have been
documented to experience wing rock include, for example, F-4 Phantom, F-18 Hornet,
F-14 Tomcat, F-16 Fighting Falcon, Gnat Trainer, Torando and A-4 Skyhawk. Owing
to the different types of aircraft and different sources of primary physical mechanism
responsible for the non-linearities, the scope and problem of wing rock are also not
very well understood. In general, it is believed that wing rock motion is triggered
by flow asymmetries, developed by negative roll damping and sustained by nonlinear
aerodynamic rcll damping. Wing rock motion may also be initiated either with a
sideslip or during a zero sideslip flight with flow asymmetries over the aircraft flying
at high angle of attack. For a study conducted on F-4 Phantom, it was observed that
when operated at high angle of attack the aircraft could undergo divergence behavior
in pitch and yaw known as * nose slice ”. Preceding the nose slice, the aircraft would
experience wing rock motion.

Wing rock in advanced aircraft can result from different sources. Figure 1.1 shows
the schematic of the subsonic flow field over the top of the delta wing. Ericsson [1]
describes three different fluid dynamic processes generating the wing rock namely
asymmetry of leading-edge vortices, asymmetry of forebody vortices and dynamic
stall.

At zero sideslip, the flow vortex pattern is essentially symmetric. However, under
rotating conditions an asymmetric pattern is established in which the leading edge
vortex appears to become more diffused and moves inwards whereas the trailing vortex
remains strong and locate near the outer portion of the wing. Thus the asymmetry
of the leading edge vortex shown in Figure 1.2 has the characteristic required for the
increase of rolling moment resulting in the generation of wing rock motion.

The slender delta wing is preceded by a slender forebody as is mostly the case,

the vortex asymmetry is generated by the forebody. The interaction of asymmetric



vortex with the downstream wing and or tail surfaces produces the wing rock. The
source of the wing rock is mainly due to the asvmmetry of forebody vortex (Figure
1.3).

Dynamic stall is a flow mechanism which causes wing rock of straight or moder-
ately swept wings. If the aircraft is perturbed when flying close to stall, the down
rolling wing will promote flow separation resulting in positive lift on one side and
negative lift on the other. This generates a rolling moment which drives the wing
rock motion.

Wing rock depends on the details of the configuration geometry of the aircraft.
To suppress the wing rock on all types of aircraft, the primary mechanism responsible
for the wing rock must be identified. Due to the complexity of flow fields for different
aircraft. the identification of the exact causes and the source of primary mechanism
could be difficult. To eliminate the aircraft configuration dependent effects, research

has been devoted to slender delta wing model.

1.2 Problem Definition

Owing to the highly nonlinear nature of the flight dynamics, the problem of the wing
rock is not very well understood. No satisfactory method has been developed to solve
the problem. In general, the source of wing rock in the aircraft could be caused by
aerodynamic conditions during flight or mechanical hysteresis due to backlash, cable
stretching, dry friction and hydraulic oil compressibility. Wing rock motion is not
acceptable from the operational and safety point of view. The problem is a concern
to a pilot because it may have an adverse effect on aircraft maneuverability during
landing approach or during a dogfight in a combat situation. The severity of wing

rock may degrade the performance of weapon aiming control and accuracy.

During the aerodynamic design stage of the aircraft, consideration can be taken
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to minimize the occurrence of the wing rock, such as the design with a slender body
and highly swept wings, use of the roll damper, forebody jet blowing etc. These
conventional control methods may not be effective to control wing rock occurring at
high angle of attack.

Advanced control method such as adaptive control and neural control have been
demonstrated to control the wing rock. The neural control method overcomes the
limitation of adaptive control in which the structure of the nonlinearity of the un-
known system does not have to be known as a * priori ?. However, the standard
neural control method uses fixed network architecture where huge number of neurons
are employed.

The objective of this thesis is to develop a dynamic recurrent RBF (Radial Basis
Function) control methodology for controlling the wing rock motion of aircraft having
delta wings configuration. The identification of the unknown nonlinear system gen-
erating the wing rock is modelled by dynamic recurrent RBF networks. By applying
the properties of the Preisach model, the concept of ensemble memory formation is
used as a criteria for training the RBF networks. Adaptive hybrid control is then

used to provide a closed loop control.

1.3 Review of Previous Research

The presence of wing rock motion or limit cycle oscillation (LCO) had been observed
in flight and sometimes it is difficult to distinguish whether the cause is due to lightly
damped Dutch Roll mode, aerodynamic hysteresis or mechanical hysteresis. The
evidence suggests that in wing rock motion wherein the amplitude and period of the
motion is solely the results of aerodynamic non-linearities [2]. This is in contrast
to the limit cycle oscillation responded from lightly damped Dutch Roll wherein the

amplitude is determined by initial conditions. Dutch Roll can be adequately described



by linear mathematical model. In the state transition matrix of the lateral directional
equation of motion. the Dutch Roll roots can be identified.

Liebst and Nolan [3] conducted a research to examine the limit cycle due to Dutch
Roll motion, they had concluded that Dutch Roll motion may consists of considerable
roll, yaw and sideslip at low angle of attack, however the motion can become pure
rolling motion as angle of attack is increased. The trigger parameters with the simple
procedures were developed to predict the onset of wing rock.

Ananthkkrishnan and Sudhakar [4] constructed a model that will reveal one mech-
anism for large amplitude wing rock as a result of lateral longitudinal coupling and
will also distinguish the Dutch Roll mode which is excited by the short period mode.

A nonlinear mathematical model of wing rock for slender delta wing has been
developed experimentally by Hsu and Lan [5] where the wing rock motion was studied
for one and three degree of freedom. The developed model has served as a benchmark
for studying the phenomena of wing rock motion and controller design. Theoretical
and experimental investigation of the wing rock for aircraft with slender delta wings
have also been reported in [6]-[11). Based on the delta wing model developed by
Hsu and Lan [5] many modified analytical wing rock models have been developed by
researchers to study the wing rock phenomenon.

In the paper given by Luo and Lan [12], theoretical analysis was conducted to
determine the optimal input for suppressing the wing rock. The optimal equation
was solved using the averaging technique of Beecham Tichener. In the control design,
it is assumed that the aerodynamics parameters are known “ a priori * which in
practice is not always valid.

Wong et al. [13] employ leading edge blowing to control the wing rock. The
method showed that for wing rock which is caused by the unsteadiness of the flow
over the wing, the symmetric blowing has a damping effect to stop the limit cycle.

To demonstrate experimentally the control method, a free to roll wind tunnel model



and a fast acting blowing control servo valves were developed. Control algorithm was
developed and implemented in digital controller.

Optimal feedback control of wing rock was proposed by Shue et al. [14]. In the
paper, a procedure is presented to optimize the state feedback control law. The closed
loop Lyapunov function is assumed to have the same matrix form of state variables
as the performance index. The optimal equation is derived using Hamilton Bellman
equation and the control method requires the full state feedback.

The study of limit cycle oscillation in the context of providing adaptive excitation
had been reported in the literature. In the study carried out in early sixties by
A.Gelb [13], the limit cycle oscillation was thoroughly examined and analyzed. The
limit cycle oscillation was used to provide sufficiency of excitation in the design of
adaptive controllers. Along the similar line, the papers written by Horowitz et al.
[16] and [17] detail the design of self oscillating adaptive system.

Adaptive control methods have been reported for backlash inverse control in the
unknown nonlinear system. Kokotovic and Tao [18]-[20] proposed adaptive control of
physical systems with backlash and hysteresis. In the control method, a mathematical
model of the backlash was developed and an adaptive inverse controller was designed
for unknown plant with backlash.

Control of the wing rock motion using adaptive feedback linearization was pro-
posed by Monahemi and Kristic [21]. An adaptive controller design based on the
backstepping method was developed to control wing rock of an aircraft having delta
wings configuration.

R.M. Roger [22] presented an algorithm for determining the optimal constant
coefficients that minimize the performance index for the control of nonlinear systems
and applied to the optimal control of wing rock.

In the paper by Araujo et al. [23], a variable structure, model reference adaptive

controller was proposed for controlling wing rock of a slender delta wing. Simula-



tion results show that the closed loop system is designed using bounds on uncertain
function, the roll angle tracks the given reference trajectory and wing rock motion is
suppressed.

In recent years, research has been reported of using neural networks for estimating
aerodynamic coefficients and controlling the nonlinear dynamics in flight [24]-[27].
S.N Singh et al. [28] proposes neural networks for controlling wing rock motion of
slender delta wings. In the paper. the wing rock model of roll dynamics based on
aerodynamic hysteresis given in Hsu and Lan [5] is used. Radial Basis Function
(RBF) neural networks are used in the design of an adaptive controller. The RBF
network uses 441 neurons in hidden layer in the design, and an oscillatory closed loop
response is observed during the learning phase of identifying nonlinear structure of the
model. The control design does not take into considerations the model uncertainty
and disturbances. In practice, the sources of wing rock in aircraft could be due to
aerodynamic hysteresis, mechanical hysteresis or Dutch Roll dynamics, and normally
the structure of nonlinearity is unknown. To employ the fixed structure of RBF to
approximate high order nonlinearity coupled with model uncertainty and disturbance,
the number of hidden units in RBF could be prohibitively large and computationally
intensive.

Joshi et al. [29] in the most recent paper proposes the use of a single neuron
controller to suppress the wing rock motion. The control method is based on a rule
based fuzzy logic and a single neuron controller to suppress wing rock in delta wings.
An experiment was carried out to demonstrate the effectiveness of the control method
using a wing tunnel on a 80° swept back wing. The proposed control method requires
a priori knowledge of a physical system to specify a rule based control input based
on past operating information as well as off-line training. A neural network is used
to tune the rule-based controller. The method is demonstrated only to suppress wing

rock in delta wings with some predetermined range of control inputs namely deflecting



aerodynamic control surfaces or different types of aerodynamic blowing mechanism

in wind- tunnel experiments

1.4 Motivation

The current adaptive nonlinear control method for suppressing the wing rock is based
on the assumption that the knowledge and structure of the nonlinearity in wing
rock is known as “a priori 7. Recently. neural networks have been proposed by
researchers to model the nonlinear function of the wing rock for controller design
purposes. However. the neural networks structure is fixed and the number of neurons
required is arbitrarily determined and often resulting in over selecting an enormously
large number of neurons than necessary. In this method the size of neurons is not
optimal, and is pre-selected based on some heuristics.

The motivation for proposing the dynamic recurrent neural networks is to over-
come the above limitations by minimizing the size of the neurons required in the
network design. The identification of the unknown nonlinear system is carried out by
dynamic recurrent RBF network. The interpretation of the properties of Preisach hys-
teresis model given in Mayergoyz [30] provides the criteria for neurons adding/pruning
strategy during the training of the networks. The designed networks have robustness
features by including a recurrent signal to take care of noise disturbances coming
from sensor reading, wind gust etc. occurring in aircraft. The control methodology

is carried out using adaptive hybrid control strategy.

1.5 Contributions of the thesis

The main contribution of this thesis is the design of an on-line, dynamic, self-adjusting,

RBF network control methodology that will allow the neuron to add/prune to an op-
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timum size during the identification of an unknown nonlinear physical system, while
simultaneously the identified model is used in the design of an adaptive control law
to suppress the wing rock. Prior research in the same application area uses RBF
networks with a fixed and predetermined-size for the design of controllers. The size
of networks is enormously large and computationally intensive. The specific contri-
butions of this thesis are as follows:

(1) The application of the Preisach model by interpreting its properties in the design
of dynamic recurrent RBF networks for modelling the uncertain nonlinear system
that generates the wing rock motion. The RBF networks obtained from this design
approach is minimal in their size.

(2) By interpreting the property of the Preisach model namely ensembles of the
cells participating in the information storage, the concept of computing the ensemble
average of the centres of the hidden units is introduced in training the networks. The
ensemble average concept would lead to a finer approximation of the networks.

(3) By interpreting the properties of the memory formation mechanism described in
the Preisach model, a criteria for adding/pruning of neurons during the training of the
networks is developed. Using the strategy developed, the networks become dynamic
in nature where the number of neurons will increase when the criteria is met and is
decreased when it becomes superfluous.

(4) The use of the recurrent signal in the RBF networks will provide the robustness
feature in dealing with the dynamic characteristics of a non-linear uncertain system
that generates the wing rock motion.

(5) The use of sampled data hybrid control strategy by sampling the system'’s in-
put and output allows the continuous time control of the system and discrete time
identification and training of the networks. The training of the networks involves the
adjustment of RBF’s centre and width by using the Extended Kalman Filter (EKF)

A A
during the process of approximations for the unknown f and ¢ functions. An in-
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. - 3 L d . . . . . A
put term is included in the EKF for estimation of the weights associated with the ¢

network.

1.6 Outline of the thesis

Chapter 2 provides the background material for the development of adaptive control
methodology for controlling wing rock. Wing rock model obtained from a slender
delta wing is used as a benchmark for the study. A review of the development of
wing rock model and the analysis of the physical significance of the nonlinear terms
are given. The rolling moment diagram is used to examine the hysteresis loop during
the wing rocking conditions. The chapter discusses the current adaptive control
methodology for controlling wing rock. A robustness feature of the adaptive control
method is considered by modifying the adaptive update law and the results are verified
by simulations.

Chapter 3 reviews different types of neural networks and provides the framework
for the development of a neural control methodology. In particular, a radial basis
function network is described which will be used in the neural control design. The

concepts of learning and memory storage are discussed.

In chapter 4, the overview of the Preisach hysteresis model is given. The concept of
hysteresis and the interpretation of the Preisach model are discussed. The similarity
between the Preisach model and the radial basis function are compared and discussed.
The interpretation and application of the Preisach hysteresis model as a radial basis
function networks are detailed. The plausible reasonings of using its properties and

memory formation mechanism in the design of radial basis function are given.

In chapter 5. the design architecture of the dynamic recurrent neural network
for modelling the wing rock phenomenon is given. The criteria based on properties

of the Preisach hysteresis model for the neuron growth are given. The training of
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the networks is carried out as resource allocation network in which the neurons are
allowed to grow to an optimal size. The design of the RBF networks together with
the network controller is carried out in discrete time domain. The proposed recurrent
RBF networks employ two separate adaptation schemes, where the RBF’s centre and

width are adjusted by the Extended Kalman Filter for the determination of an optimal

stability analysis for the closed loop control. Benchmarking of the proposed recurrent
RBF network was carried out to evaluate the various features included in the design

of the networks.

[n chapter 6, the concept of geometric nonlinear control theory is presented and
theory of feedback linearization is reviewed. The procedure for transforming a contin-
uous non-linear system to a sampled data system is given. The design of the recurrent
neural controller and the proof of the boundness of all the signals and stability of the
controller are given.

In chapter 7. the developed neural control methodology is applied in controlling
wing rock in delta wing. Using the wing rock model of a slender delta wing, the
performance comparison on dynamic neural networks and the networks using a fixed
structure is given. The wing rock in aircraft is examined using AFTI/F-16 testbed
aircraft having a delta wings configuration. The effectiveness of the proposed dynamic
recurrent RBF control methodology is demonstrated by simulations in the suppression
of the wing rock. The robustness analysis of for the proposed recurrent RBF networks
is also given and through simulations are also performed.

Finally in chapter 8. conclusions derived from this work are discussed and sugges-

tions for future research are outlined.
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Chapter 2

Adaptive Control Approach of
Wing Rock

In this chapter a concept of adaptive control methodology is reviewed. A wing rock
model obtained from a slender delta wing is used as a benchmark for illustrating
the adaptive control design approach. The wing rock model used in the simulation
study is discussed and the physical significance of the nonlinear damping terms are
explained with examples. Control of wing rock is considered as a tracking problem,
given a reference trajectory starting from non-zero initial conditions and it tends
to zero as time goes to infinity. In the design for the adaptive nonlinear control,

robustness feature in the presence of external disturbances is included

2.1 Review of Adaptive Control Methodology

A general notions of stability and preliminaries to be used later in this section are
summarized as below. They are essential to the understanding of the adaptive control

method used in the study of the thesis.
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2.1.1 Lyapunov Stability

Consider an adaptive system represented by the following nonlinear vector differential

equation of the form,

i=fz,t), fO,t)=0, Vt>t, (2.1)

where z(t,) = z, and f: R* — R™ is such that a solution z(¢t; 1,,t,) exists for
all t > t,. It implies that f(0.t) = 0 is an origin. an equilibrium state. The concept
of Lyapunov stability given by the following definitions and the theorems can be found

in [31] and [32].

Definition 1 The equilibrium state £ = 0 of equation (2.1) is said to be stable if
for every € > 0, and t, > 0, there exists a §(e, t,) > 0 such that ||z,|| < § implies

lz(t; zota)l] <€, ¥Vt 2>t, On the contrary if the system is not stable, it is said to

be unstable.

Stability means that the system trajectory can be kept arbitrary close to the origin
by starting sufficiently close to it. If the origin is stable, the state trajectory z(¢) will
remain in the ball of arbitrarily specified radius Bg, and r(R) can be found such that
starting the state from within the ball By at ¢t = ¢, will guarantee that the state
will remain within the ball. Conversely, the equilibrium is unstable if there exists at
least one ball By such that for » > 0 it is possible that for the system trajectory z(t)

starting within the ball eventually leaves the ball Bp

Definition 2 The equilibrium state r = 0 of equation (2.1) is said to be uniformly

stable if 6(e, t,) is independent of the initial time t,

Definition 3 The equilibrium state £ = 0 of equation (2.1) is said to be uniformly

asymptotically stable if it is uniformly stable and for some €; > 0 and every €3 > 0
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there exists T(e1€2) > 0 such that if [|z,]| < €, then ||z(t;zo,to)|| < e for all

t>t,+T.

Definition 4 The equilibrium state £ = 0 of the system given in equation (2.1)
is said to be exponentially stable if there exists constants k > 0 and r > 0 such
tllz(t; 2o, to)|| < kexp{—r(t — t,)} lizoll , ¥t > t., for all t, and in a certain neighbor-

hood of the origin.

Definition 5 If, in the ball Bg, the function V(z) is positive definite and has contin-
uous partial derivatives, and if its time derivative along any state trajectory of system
(2.1) is negative semi-definite, i.e. V (z) < 0 then V(z) is said to be a Lyapunov

function for the system (2.1).

Theorem 1 (Local Stability) If. in the ball Bg, there exists a scalar function V()

with continuous first partial derivatives such that

.V (z) is positive definite
.V (z) is negative semi-definite

then the equilibrium at the origin is stable.

Theorem 2 (Global Stability) If there exists a scalar function V of the state z,with

continuous first order derivatives such that

.V (z) is positive definite
.V (z) is negative definite
V(z) - > as ||z]| - >

then the equilibrium at the origin is globally asymptotically stable.
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2.1.2 Strictly Positive Real (SPR) Functions

A rational function H(s) is SPR if and only if the following conditions are satisfied. (
refer to Narendra [31]).

(i) H(s) is analytic in Re[s] >0

(ii) Re[H(jw)] >0 VYw € (—o0, x)

(iii) (a) lim,, 2_c w? Re[H (jw)] > 0 when n* = 1, and
H(jw)

Juw

> 0 where n* = —1

(b) lim|u|_.°°
where n° is the relative degree of H(s) and is defined as number of poles of H(s)

- the number of finite zeros of H(s).

2.1.3 Model Reference Adaptive Control

Generally, a model reference adaptive control system consists of a plant containing
unknown parameters, a reference model for specifying the desired output of the control
system, a feedback control law containing adjustable parameters and an adaptation
mechanism for updating the adjustable parameters. The general control scheme is
shown in Figure 2.1.

The simple example given below is served to illustrate the general concept of the
adaptive control methodology. The comprehensive treatment of the subject can be
found in [31].

Error Dynamics

Let the dynamic system or the plant to be controlled, be given by the following

function :

oy - e Zo(s)
K,W(s) = K, ) (2.2)

where K, is unknown nonzero constant with a known sign, and Z,(s), R,(s) are monic

Hurwitz polynomials of degree n — 1 and n respectively.
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Figure 2.1: Control Scheme of Model Reference Adaptive Control

Let the model reference be given as

Zn(s)

Kme(S) = Km-R,—n(S—)

(2.3)

where Zp,(s), Rm(s) are monic Hurwitz polynomials of degree n—1 and n respectively.
For the purpose of illustrating the adaptive control concept, the following simple
case is given.
(1) The transfer function of the plant is known except the high frequency gain K,.
(ii) Zp(s) = Zmm(s), Rp(s) = Rm(s), hence W(s) = Wp,(s)

Choose the following control input to the plant
u(t) = K(t)r(t) (2.4)

where K'(t) is an adjustable parameter and r(t) is a reference signal. The plant output
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yp(t) and model output. y,,(t) are given as.

p(t) = KW (s)u(t)
= K,W(s)K(t)r(t) (2.5)
Ym(t) = KW (s)r(t) (2.6)

Define the error between the plant and model outputs as e and the parameter error,

Y as given below.

e

e(t) = yp(t) — ym(t)
= KW(s)r(t)K () — KnW (s)r(t)
= WK - 22 2.7
p
= W(Rer()
A L. Km
wl) £ K0 - 22 (2.8)

Adaptive Law Derivation

The aim of the adaptive model reference control is to determine the bounded
control input u(t) so that all signals in the system remain bounded and the error sat-
isfies lim ;.o [|yp(t) — Ym(t)]] = 0. To derive the adaptive law, consider the following
lemma.

Lemma 1 [31]

Consider the following general dynamical system :

z(t) = Az(t)+bo” (t)w(t) (2.9)

y = hTz(t) (2.10)
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a(t) = ky(t) (2.11)

where (4, b) is stabilizable, (k7. A) is detectable and AT (s] — A)~'b £ H(s) is SPR
(strictly positive real)

Let ¢ : R™ — R™ be a vector of adjustable parameters, k£ be unknown with a
known sign, and w : R* — R™ be an input vector and z; : R — R, be time varying

measurable functions. If o is adjustable, then

6 (t) = —sgn(k) z(t) w(t) (2.12)

then the equilibrium state (z = 0,9 = 0) of system in equations (2.9), (2.10) and
(2.11) is uniformly stable at large.
Based on Lemma 1, the adaptive control law for the given system (2.1) can be

obtained as below. If

K (t) = —sgn(K,) e(t) r(t) (2.13)

e(t) and o(t) are bounded for t > ¢,, since r(t) is uniformly bounded € (¢) is bounded.
From the following Barbalat’s lemma, it follows that lim,_.« [|yp(t) — ym()]| = 0, so

that the plant output approaches the reference model output asymptotically.

Barbalat’s Lemma
t

If f(t) is a uniformly continuous function s.t. lim,_o [ f(7)dr exists and finite,
then lim, .. f(t) — 0.

Adaptive Control using Lyapunov Redesign

Let the plant and reference models be described by the following :

Yp = "apyp+Kpu(t) (2.14)

Ym = —AmYm + Kmr(t) (2.15)



Defining € = Yp — Um

Km
K,

= —(a, — am)e + r() K,(K(t) — =2) (2.16)

If K(t) is forced to converge to the constant value %ﬂ = K™, the error equation
P

becomes

e= —(a, — an)e + r(t)Kp(K(t) — K*) (2.17)

Letting ¢ = K (t) — K" and since K, is fixed. although K}, is unknown, it follows that
o=K (t).
The Lyapunov redesign approach implies finding the adaptive update law such

that the following Lyapunov function
Ve, ¢) = e + K,0° (2.18)
is decreasing along the trajectory of the error system
e= —(ap — am)e + r(t)Kpo (2.19)

where ¢ is the update law and assuming (a, — e¢m) > 0. For stability, the Lyapunov
function should be positive definite which implies the sign of K, should be known
and positive K, > 0 in equation (2.19). Taking the derivative of Lyapunov function
V (e, 0) along the trajectory of the error system in equation (2.19) the following is
obtained.

V (e,0) = =2(a, — am)e® + 2K,edr(t) + 2K,0 ¢ (2.20)

Choosing K=d¢= —er(t) gives V (e,¢) = —2(ap — am)e? < 0, implying e — 0 as
t — oo. Since V (e, @) is negative semidefinite, asymptotic stability of the origin in

the (e, @) space is not conclusive. The convergence of K(t) to K* depends on the
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persistent excitation of the reference signal r(t).

2.2 Wing Rock Model

Wing rock is a self-induced oscillatory rolling motion, a dynamic phenomena expe-
rienced by slender wing aircraft flying at high angle of attack. Wing rock motion is
attributed to nonlinear aerodynamic mechanism prevails at high angle of attack and
is characterized by a buildup of limit cycle oscillation. It has been reported that wing
rock exhibited by actual aircraft is chaotic in the amplitude of limit cycle.

There are several theoretical models proposed by researchers to describe the wing
rock motion. However, each model is verified for a particular configuration and none of
these models can be applied to predict the wing rocking for all different configurations.

Ross [9] carried out combined experimental and theoretical study of the non-
linear lateral oscillation experienced by slender wing H.P 115 research aircraft. A
three-degree-of-freedom lateral directional equations of motion with fourth order dif-
ferential equation in sideslip, 3 are obtained. The wing rock motion is analyzed using
the approximation method to obtain the solution. The study shows that wing rock
develops with the bank angle of about 30deg.

Schmidt [2] assumes aerodynamic hysteresis of the rolling moment with sideslip
in the development of a two-degree-of-freedom model including rolling and yawing
moments. It is concluded that the wing rock motion due to aerodynamic hysteresis
corresponding to a roll moment relay action is dependent upon the sign of the sideslip
angle.

An analysis of slender wing rock phenomenon caused by asymmetric leading edge
vortices was studied by by Ericsson [7]. A one-degree-of-freedom model for delta wing
with leading-edge sweep larger than 74 deg was developed to predict the wing rock

motion. The study concludes that the vortex breakdown has a damping effect on the
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roll oscillation and is not contributing to the wing rock. Wing rock will only occur for
a delta wings with more than 74 deg leading edge sweep for the asymmetric vortex
before it bursts as the angle of attack is increased.

Konstadinopoulos et al [11] carried out the experimental studies of the self -excited
motion of the flat delta wing about an axis parallel to the midspan chord. An unsteady
vortex-lattice method is used to provide the aerodynamic loads. The solution of the
equation of motion provides the wing rock motion and the Aowfield simultaneously.
For a small angle of attack, the wing rock does not develop. When the angle of attack
exceeds certain critical value, the asymmetric vortex becomes unstable. The studies
conclude that for a small disturbance, the limit cycle is stable, however, for a large
disturbance the motion does not achieve limit cycle. The studies and modelling of
wing rock using slender delta wings have been carried out using different approaches
such as experimentally, computationally and analytically. A through review of wing

rock in slender delta wing is given by Arena [33].

2.2.1 One-Degree-of-Freedom Model

Based on experimental data and rigid body equations, Hsu and Lan (5] and Hsu [34]
developed a one-degree-of-freedom model for wing rock in slender delta wing. The
following appropriate assumptions are made regarding the development of the model.
(1)The wind tunnel is constrained so that it can perform in a rolling motion. The
principal motion variable is Euler roll angle, ¢.

(2)The pitching and yawing effect are ignored.

(3)The flight path properties such as flight velocity, Mach number, altitude, Reymnolds
number, mass distribution are constants through the motion.

(4)The effect of gravitational force, elastic force, and propulsion force are excluded.
(5)The rigid aircraft with the observer is fixed at body axis system, the origin is the

centre of mass of the aircraft.
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(6) There is no roll divergence occurring in the motion
(7)Wind tunnel model is a free-to-roll delta wing with 80 deg sweep (Figure 2.2).

The equation governing the pure rolling motion is obtained from Newton’s second
law (35].
YL =I.o (2.21)

where I, is the rolling moments of inertia in body fixed X axis (Figure 2.3), ¢ is roll
angle acceleration. The rolling moment, L and the roll angle, ¢ can be expressed in

terms of an initial reference and small pertubations from the nominal values by the
following expressions
L=L,+AL (2.22)
o =0¢,+A7d (2.23)
where respectively L, and ¢, are initial references of rolling moment and roll angle,
AL and Ao are perturbed rolling moment and roll angle. Equation (2.21) then
reduces to the following

AL=1I.A¢ (2.24)

For ease of analysis the notation A is dropped with the notion that the variables
are understood to be perturbation variables. The rolling moment L is given by the

following equation.

L=Cft)qgSb (2.25)

Substituting equation (2.25) into equation (2.21) yields the following.
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Irr
qSb

() e =Ci(t) (2:26)

where [, is a moment of inertia about X axis, ¢ the dynamic pressure, S the reference
wing area, b the wing span, P = o, the roll angular acceleration, and C;(t) the
total aerodynamic roling moment coefficient. Equation (2.26) is interpreted as that
the inertial rolling moment is balanced by the time dependent aerodynamic rolling
moment. The aerodynamic rolling moment coefficient at steady state is expressed as

a function below, the detailed analysis are given in reference [34].

Ci(t) = Cilay, 3(t), P (t), 84(t)) (2.27)

where a, is a steady state angle of attack (AOA), P is a reduced rolling velocity with
respect to roll axis and 6, is aileron deflection.

C, (t) is expressed as component functions as below:

Ci(t) = Cro+ Ci3B+ Cipe P+ Cisa 64 (2.28)

where

Cipt = Cigo + Cips |8] + Cigp [Pl (2.29)

In equation (2.28). C), is a rolling moment coefficient at zero sideslip. Ci3 is dihedral
effect assuming negative (stable) and positive (unstable) values depending on con-
figurations, Cis4 is a aerodynamic roll derivative due to aileron deflection, Ciy, is a
roll damping coefficient at zero sideslip. Cpg, dimensionless variation of roll damping
derivative with sideslip. dC,/88. and Ciyp,, a dimensionless variation of roll damping
derivative with roll rate, 9Cp/0P.

Equation (2.28) describes the aerodynamic nonlinearities of the model. The ab-
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solute sign on 3 and P is important and they cause the values of Cj,, to be the same
if |8] or |p| have the same values at the corresponding instants in the limit cycle
oscillation. At fixed 3, C;(t) may have two values if the sign of p is different, and
for fixed p, C) (t) may have two values if the sign of 3 is different. Thus 3 and 7
dependent roll damping will produce hysteresis loop with respect to 3 and p.

Using the kinematic relationships below,
p= ¢ (2.30)

3 < osinag (2.31)

Substituting equations (2.28), (2.29) (2.30) and (2.31) into equation (2.26). the fol-

lowing wing rock model expressed in dimensionless derivatives is obtained

6= Lo +Lea 64 +5in a,Lgd + Loo & +sincy Lps |@| & +Lyp |¢\ 6 (2.32)

Dropping the dimensionless derivative due to aileron deflection Ls4 64 and including
the control input u, the following is the common model reported in most literature

and it will be used in this research.

é= L, +sin asLgd + Ly, d) +sinay Lpz || qb-i-LPP ‘qb. cp +a, u (2.33)

where ¢, = L,, cp =sinas Lg, c=~Ly, c3=sina Ly Ca = Ly, and
the parameters ¢; s are expressed in terms of dimensional derivatives L,, Lg, Ly,
Lpa, and Ly, defined as below.

L,=qSbCio/ I, s~2

Lg = qSbCis/ Iz, s™2
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Lpo = qSb>Cipo/(21::V), s~!

Lys = qSb?Cips(21:V), s7!

Lpp = qSb* Crpp/ (41:2V?)

Lss = qSbCisa/ oz, 573

where

I.. is moment of inertia about X axis, ¢ is a dynamic pressure, S is a wing
reference area, b is a wing span, u is a control input and g, is a estimate of the control
effectiveness relating to control input signal and angular acceleration.

X, Y, Z is a rectangular coordinates of body-fixed axis system as shown in Figure
2.3. The angle of attack (AOA) is defined as a = tan™' ¥ and the sideslip angle as
8 =sin~! & where u, v, w are the velocity components along X, Y, Z axes respectively
and V is a magnitude of forward flight velocity.

Letting ¢ =z, and cp = 1,, equation (2.33) can be written in state equations

as
Iy, = @
o = o= f(z) + aeu
where f(z) = c,+ 11 + c2Zy + c3|T1| T2 + cq|Taf T2 (2.34)
and ¢, = L,. ¢ =sinay Lg, ¢2 = Lpo, c3 =sina Lyg, ca =Ly

For the three-degree-of -freedom model. in addition to rolling moment coefficient,
more extra nonlinearity terms of side force and yawing moments coefficients are con-
sidered. These coefficients can be expressed as functional relationship similar to equa-
tion (2.27) with extra terms such as yaw rate and rudder deflection. The complete
derivation is given in [34]. In general, an aircraft in the air should be six-degree-of-
freedom motion and rolling may be the primary mode in the wing rock motion. In

most of the research reported, the researchers deal with the model in wind tunnel test
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stand for a single-degree-of-freedom rolling wmotion. The use of one-degree-of-freedom
model in this thesis work is served to illustrate a concept of the proposed control
methodology and the equations used were those necessary for achieving that goal.

Based on the formulation of the wing rock given equation (2.32), many modified
wing rock models have been proposed by other researchers. Nayfeh et al. [6] proposed
an analytical expression for the aerodynamic roll moment characteristic of wing rock.
The expression for dimensionless roll moment was assumed to be

Ci(t) = a0+ az 0 +a3]0| ¢ +ay I¢>| ) (2.35)

where coefficients a; s are obtained numerically from the least-squares fitting from roll
moments. In the model estimation process, the model developed by Hsu in equation
(2.32) is used to generate the test data for fitting the estimated moment given in
equation (2.35) to obtain the unknown coefficients a, s. The estimated model is then
compared with Hsu's model for convergence analysis. Nayfeh added a cubic term to
the roll moment expression to allow for roll divergence so that different equilibrium

states could be obtained. yielding

Ci=a10 + as ¢ +a3 0| ¢ +aq M ¢ +as¢’ (2.36)

Due to the cubic term, roll divergence could be obtained for certain initial conditions
outside the narrow band near limit cycle attractor. As shown in Figure 2.4 that
some initial conditions lead to a stable limit cycle, an equilibrium states, while other
initial conditions lead to roll divergence indicated in the boundary labeled A. It
was suggested by Nayfeh that if the non analytical term, a nonlinear damping term
used in Hsu and Lan’s formulation, |¢| ¢. be replaced by analytical term, #* éa
better agreement with experiments could be obtained. There are infinite possible

combinations of nonlinear terms in order to generate a limit cycle. However, to fully
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Figure 2.2: Free-to-Roll Rig (Wind Tunnel Experiment) [34]

understand the wing rock, the physical insights or mechanisms which are responsible
for these non-linearities such as vortical flow field characteristics, planform geometry,

slender forcebodies, leading edge extension etc. have to be identified.

2.2.2 Nonlinear Damping and Hysteresis Loop in Wing Rock

Analytical Model 1

For selecting the model to fit the estimated rolling moment, the following model

equation is assumed by Tan [37].
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Figure 2.3: Body System of axes [34]
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. . _ . 2
Clit) = @10+ a2 ¢ +a3|0| 0 +a,0° + a5 06 +ag ¢ +ard’ +

J .2 -3 n
agd® O+ agd @ +a10 P +Am@" + .. + CGman O (2.37)

where m = n(n+2)/n, m is the number of terms and n is the degree in the polynomial.

Tan had carried out the analytical fitting using the least square method for Hsu's
model {5] based on 80 degree delta wing and considering only the three terms in the
model. The estimated model is given as below.

o= —26.592 ¢ +0.739 ¢ —2.822 ¢ || (2.38)

In the model, ¢ is a linear damping term and |¢|  is a nonlinear damping term.
Using the initial conditions of ¢, = 0.1 rad and q’jo= 0.032 rad/ sec the roll angle
response is given in Figure 2.5 and the phase plane is given in Figure 2.6 which shows
that the limit cycle is stable. The change of the nonlinear term, o |¢| with roll angle
is given in Figure 2.7.

As wing rock is developed by negative roll damping and sustained by nonlinear
aerodynamic roll damping, Figures 2.6 and 2.7 will provide the information regarding
the sustaining mechanism of the oscillation. According to (37, comparing these two
figures it shows that for the small roll angle ¢, the linear negative damping ¢, is larger
than the nonlinear damping |@| ¢. as the result, the net damping is negative and the
roll amplitude grows. As the roll amplitude becomes larger, the nonlinear damping
is increased and the roll rate is decreased. When roll angle increases to certain value
(¢ ~ % 0.6 rad in Figure 2.6), the net damping changes from negative to positive,
and the restoring rolling moment then drives the roll angle back to the original point

¢ =0.
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Hysteresis Loop

In the wind tunnel experiment, the free-to-roll tests of the physical model allow
the measurement of roll angle. ¢ for estimating the angle of attack «, sideslip 3, roll
rate, ¢ and the total rolling moment coefficient, Ci(t) given in equation (2.26). The
plot of Cy(t) versus roll angle ¢ is a rolling moment histogram and it will provide a
lot of information during actual wing rock conditions.

Katz et [38] uses the rolling moment histogram to examine wing rock by observing
the hysteresis loops in the diagram. The rolling moment diagram hysteresis loop given
in Figure 2.8 shows that the undamped loop, corresponding to negative damping near
the level point of wing rock ( zero roll angle) is balanced by the two damped loops,
corresponding to positive damping at two ends of limit cycle. From the viewpoint of
energy exchange, the existence of hysteresis loops indicate there is a gain and loss of
energy during the limit cycle oscillation.

The energy integral for the rolling moment is given below [37].

W= qSb/2 ]{ C dé (2.39)

where It is the work done to the system, ¢ is a dynamic pressure, S is a wing reference
area, b is a wing span and § is a contour integral, C; is a rolling moment coefficient.
If vi/ > 0, the system is unstable, the direction of hysteresis is clockwise as shown in
the centre loop in Figure 2.8. At the other two outer loops, energy is dissipated, W
< 0, through positive net damping, the system is then stable and the direction of
hysteresis moves counterclockwise. The balance of the energy exchange sustains the
limit cycle oscillation

Figure 2.9 shows the rolling moment histogram of the model given in equation
(2.38), it is observed that the system has three hysteresis loops, the unstable loop in

the centre, and two outer stable loops. The net energy in the system is balanced and
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the limit cycle is stable.
Analytical Model 2

The second example is least square fitted analytical model consisting of six terms

given as below.

o = =—130.414¢ + 1.081 ¢ —111.553 ¢ |9| (2.40)

+43.3900° - 0711 9 6 - 0.248 0

The estimated model [37] is for first mode oscillation using the experimental free-to-
roll sting fuselage-vertical tail in the low speed wind tunnel of AIDC, Taiwan. The
test data are collected at : angle of attack o = 10° ~ 42°, sideslip 3 = 0, dynamic
pressure q¢ = 31.1 [b/ ft*.

The limit cycle oscillation is triggered by asymmetric vortex shedding from the
forebody. The roll angle response of the model given in equation (2.40) is shown in
Figure 2.10. The response is quite different from Figure 2.5 that the limit cycle builds
up rapidly to the full amplitude. Using the different initial conditions as reported in
[37] ¢, = —0.2 rad and 6, = 0.01 rad/sec, the phase plot shown in Figure 2.11 is
stable. The nonlinear damping diagram shown in Figure 2.12 is quite different from
Figure 2.7. The trajectory arrives at and leaves the critical point (roll angle ¢ = 0)
but never go through this point. The rolling moment diagram given in Figure 2.13
shows there is a clockwise stable loop balanced by two counterclockwise unstable
loops.

The analytical studies of wing rock concern only with modelling the non-linearities
in the rolling moment. The problem with this approach is that the model lacks
physical insights of the flow field characteristics which are responsible for these non-

linearities.
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These models also do not help in determining the fluid mechanism associated
with wing rock. A viewpoint held by the author. Edward Lan [39] who developed
the wing rock model states that “the continucus wing rock model given in equation
(2.32) involving non-analytical function is an efficient way to model the aerodynamics.
To develop wing rock, the rolling moment coefficient versus the roll angle curve must
show clockwise hysteresis. The mechanism is aerodynamic and not dynamic in nature.
Hysteresis is not regarded as discontinuous function or phenomena, it just indicates

being rate dependent”.

2.3 Adaptive Nonlinear Control of Wing Rock

Limit cycle oscillation in wing rock of slender delta wing is a non linear control
problem. There are number of methods available for the design of nonlinear controller
namely feedback linearization, adaptive control, sliding mode control, neural control
etc. The application of feedback linearization for controlling the nonlinear system are

numerous and some application examples can be found in [40}-[42].

The adaptive control methodology has been developed in earlier seventies, al-
though mostly to linear systems. There are two earlier papers published by L.D.
Landau et al. [43], and K. S. Narendra et al. [44] on adaptive control methods as
applied to aircraft. In these papers, the adaptive control method was used to adjust
the time-varying parameters of the aircraft flight controller. In most physical systems
there exist some nonlinearities, but with limitation, the adaptive control developed
for linear system can be applied for nonlinear systems. Adaptive inferential control

developed in [45] has been proposed to control a nonlinear chip refiner.

Based on the analysis given in [28] and [31] the adaptive control method will be
illustrated for controlling wing rock motion. Adaptive model reference control will

be used in the design of non linear control system. In applying the control method,
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the knowledge of the structure of the plant is assumed. The derivation of the control
law is based on the Lyapunov stability analysis. The robustness feature has been
included in the adaptive law by using the o modification [31] and {46].

From Hsu's model in equation (2.34) given as below

Ly = ¢
Iy = o= f(z)+a.u
where f(zr) = c,+c1I1 + Caza + c3|Ty| T2 + ¢4 |To| T2 (2.41)

where r; = ¢, roll angle and z» =g, roll rate. The following reference model is

selected as

Tm= AnzZm + Knr (2.42)

0 1
where A, = y Im = (zml,xmg)T, (>0, wp, >0 Ky =

-wi —2(wn

where k, < 0, T, Imo are state variables of reference model, ¢ is a damping
km
ratio and w, is a natural frequency. Define the error signal as

(er. &2) = [(z1 = Zm1). (22 — Tm2)]T (2.43)

which gives the error equation as

e= Am(T — Tm) + (£ —Amz) — K1 (2.44)
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. I Ia 0 -l
e= Ane+ - - r (2.46)
f(z) + au ~w21) = 20was Km

Choosing u equal to r, the error equation (2.46) can be expressed as

e= Ame + by, [d(z) + (ap — km)u] (2.47)

where

d(I) =Cp T+ (Cl +QJ:7:)1'1 + (Cf_) -+ 2<wn)I2 -+ C3 lel Iy + Cy Il.zl I (248)

and bm = 0. I]T, (@o — km) # 0 is unknown but its sign assumed known. Assume
the reference signal input, r is piecewise-continuous and bounded for all ¢ > 0. The

objective of adaptive control is to derive a control law such that lim (z —z,) =0

t—oc

and all the signals remain bounded. Let us define the following control law for u where
the parameters are to be estimated from the adaptive scheme:
u= —[Oo(t) + Gl(t)zl + Gg(t)l‘g + 03(t) |I1| I+ 04(t) '1:2' l‘g] (249)

Defining

6 = [901 911 92: 931 94]Ts (2'50)

Substituting equations (2.48), (2.49) into equation (2.47) and rearranging the terms,
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the following is obtained.

. Co ¢ + w?
= m brm(ao — km —— —0,} — =0
e Ane+bnla )({(ao ) }+ {(ao e 1}z
co + 2Cwn C3
—_— - 9+ {—————— — 03}
k) Ot Ty ~ el
FH{— — 0.} |72 22
T{(ao ~ 6} |za 22) (2.51)
Express equation (2.51) in compact form as below
e= Ame + (2o = km)bmo" g(2) (2.52)
where the parameter error vector is defined as
o = 6°-46
= [(0; - 60)1 (9: - gl)y """ (62 - 04)]T (253)
and 6s are known values given as follows :
07 = (a1 +wi)/(ac — km) (2.54)
9’3 = (C'l + 2(&.1,1)/(0-0 - km) (255)
9; = cf(ac—km), i=0,3,4 (2.56)
and the vector function g(z) is defined as
g(z) =1, 71, zo, |z1|Z2, |z2|22]" (2.57)
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In the parameter error vector ¢ = 8" — 6(t) where 6(t) are the adjustable gain

parameters of adaptive controller.

2.3.1 Stability Analysis

The Lypaunov’s approach of stability analysis for closed loop systems is used below.
For A,, in the reference model. given a positive definite matrix @, (Q > 0). there

exists a matrix P > 0 such that the following Lyapunov equation is satisfied :

AT PP A, =-Q (2.58)

The following Lyapunov function is selected

Vie,¢) = eT Pe + ¢'To|ao — kml (2.59)

Taking the derivative of V (e, ¢) along the trajectory of e given in equation (2.47)

vields
Vieg)=¢ Pe+eTPeé+|a,—knl(¢To+ 0T o) (2.60)

Vieo) = (ATel + (ao — km)bmo” g(z)Pe +

€T P(Ame + (a0 — km)bmdT9(z)) + 2|00 — km|0'T ¢ (2.61)

V (e,¢) = €T (PAn + AL P)e + 2T P(ao — km)bmd? g(z) + 2|0 — km| 6T ¢ (2.62)

The adaptive law is chosen from the above equation as

8= sgn (ap — km)['eT Pbng(z) (2.63)
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where I is a non-singular weighting matrix. [’ > 0. From equation (2.53). ¢ = — 6

and substituting equation (2.63) into (2.62) shows that

Vieod) = —eTQe+2eTPla, — km)bmadT g(z)
—QeTP(ao - km)bm(pTg(I)

Vieo) < 0 (2.64)

implying e(t) - 0 ast — Q.

2.3.2 Simulations

An application of the derived adaptive law to control the wing rock motion is illus-
trated. Based on the model developed by Hsu [5] and the aerodynamic parameters
reported in Lan [12] and [21] are used in equation (2.41) for the simulation.

Co =19

¢, = —26.66675 s>

¢y = 0.764855 s~2

c3 = =2.92173 rad s7!

cy = —2.5

To= 5 — 26.66675z, + 0.764855z, — 2.92173 |z,|z3 — 2.5 |Z2| Z2 + u

a, =1

Without adaptive control, using the model given in equation (2.33) and step input,
the wing rock in roll-angle and roll-rate responses are shown in Figs 2.14 and 2.15.
The phase plane is given in Figure 2.16 which shows that the limit cycle is stable.

For the simplicity purpose the reference trajectory is chosen as z,, = 0. Assuming
the parameters in the reference model be ¢ = 0.707 and w = 0.5, and the matrix Q in

Lypaunov equation be identity matrix I. solving the Lypaunov equation A, P + PA,,

49



the following is obtained

P p2 2Awnpr2 + wipn 1/(2w3) 2.298 2.0
P P22 0 (0.5 + p12)/2Cwn 0 3.536

Using the given parameters and known constants, the adaptive law in equation (2.63)
is derived as below.

8, = 2z, + 3.56z

g, = (2z) + 3.56z7)x,

92 = (2z, + 3.56z3)z2

03 = (2z) + 3.5622) 71| z2

8, = (2zy + 3.56z3) |z2| 2o
Figures 2.17 and 2.18 show that the limit cycle in the roll rate and roll angle is
suppressed while Figure 2.19 shows the convergence of roll angle to zero in the phase
portrait. The phenomenon of the intersection in the phase plot is because wing rock
is still developed from the initial conditions. In a fully developed wing rock, the phase
plane is a circle. The initial condition of roll angle and roll rate are (¢, = 0.25 rad ,
6, = 0.25 rad/ sec) and it takes ¢ = 30 secs to converge to zero. The gain parameters
8, 8, 03 and 6, of the adaptive controller converge to constant values as shown in
Figures 2.20, 2.21, 2.22 and 2.23.

In the above simulation the weighting matrix I is set to [’ = 5] where [ is identity

matrix. The deflection surface is assumed as the control device and the control input

u reflects an oscillatory action shown in Figure 2.24

2.4 Modified ¢ Adaptive Law

In modifying the adaptive law for robustness in the presence of external disturbances,

several schemes are available such dead zone, bounds on # and e; modification. In
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this section an adaptive control law will be modified by adding the term —of as
proposed in [31] & [46] to study the robust adaptive control in the presence of external
disturbances. A robust adaptive control system for nonlinear systems reported in {47]
will be applied to control the wing rock motion.

In order to improve and stabilize the system as well as to take care of the external
disturbance the following o modified adaptive law is proposed.

o= _le_ { sgn(as — kn)T YT Pbg(z) } — ot (2.65)

Let the Lyapunov function be chosen as follow

Ve, ¢) = eTPe+ a o' Tplas — k| (2.66)

where @ and ¢ are small positive constants given as 0 < @ < 1 and 0 < ¢ < 1. The
wing rock model with disturbance v and the corresponding error equation are given

below.

I = ¢
Zy = ¢=f(z)+au+v (2.67)
where f(z) is given by equation (2.41), and

e= Ame(ao — km)bmd' g(z) + v (2.68)

Taking the derivative of V (e, ¢) in equation (2.66) along the trajectories in equations

(2.65) and (2.68) yields

V (e,8) = ¥ Pe+eTPé +ala, — kn| (87 To + 67T 6) (2.69)

62



Vieo) = el (PAm + ALP)e+ 2T P(a — km)bmd” g(z)

+2eTPu +2a|a, — k| 0'T ¢ (2.70)

Substituting ¢ modified adaptive law, ¢ from equations (2.65) into equation (2.70)

the following is obtained.

Vied) = —eTQe+2e" Py (2.71)

—2a(a, — kn)logd" — 2a(a, — km)Tog?

Hence, V (e,¢) < 0 is outside the compact region of D = {(e,¢) le| < ki, [¢| < k2
} where k; > Oand k; > 0 are positive constants, « > 0, ¢ > 0 and (ao — km) > 0.
The tracking error £ — Z,, can be minimized by adjusting the parameters & and o,
the magnitude of ¢ will influence the magnitude of the error. The use of the term
—o# in the right hand side of equation (2.65) makes the adaptive system robust under

external disturbance.

2.4.1 Simulations

Using the modified adaptive law, the suppression of roll rate and roll angle in the wing
rock motion are shown in Figures 2.25 and 2.26. It was observed that the wing rock
is suppressed within 10 seconds. In the simulation example the values of « and o are
tuned to the values of 0.08 and 0.01 respectively. With ¢ modified law, the roll rate
given in Figure 2.25 shows a faster convergence to zero in 10 secs as compared to the
case given in Figure 2.17 where roll rate converges to zero in 30 secs. The phase plot
between roll angle and roll rate is shown in Figure 2.27. It is observed that during
the transient stage, the closed loop response given in Figure 2.28 indicates that for o

modified control, the control signal is less oscillatory as compared to Figure 2.24 for
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the case of control without ¢ modification.

2.5 Concluding Remarks

The adaptive control concept and notion of Lyapunov stability are reviewed. A model
reference adaptive control methodology was outlined and the application is shown to
suppress the wing rock based on delta wing model. The wing rock model used in the
simulation study is reviewed and the physical significance of the nonlinear terms are
discussed with examples. The adaptive control law is later modified to include the
robustness feature for external disturbance. Simulations were carried out to illustrate
the control methodology. The adaptive control method is based on the assumption
that the knowledge of the system is known as “ a priori ” with respect to structure

of nonlinearity present in the wing rock model.
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Chapter 3

Neural Networks Control

Methodology

In recent years neural networks have been used successfully for controlling nonlinear
systems. The research in this effort covers the control problems of regulation and
tracking control with applications including robotic control, chemical process, medical
and aerospace. The focus of the research in this thesis is the tracking control of wing
rock in the aircraft for a given desired trajectory starting from any nonzero initial
condition and it tends to zero as the time goes to infinity. The motivation of using a
neural networks in such application is that the nonlinearity and the dynamics of the

unknown system is poorly known and understood.

3.1 Neural Networks Structure

Neural networks are modelled by the process of associative memory which is capable
to retrieve an output when the networks is presented with input pairs. The basis
neural network architecture has the ability to perform function approximation by

carrying out nonlinear mapping between the input-output pairs. The approximated
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Figure 3.1: Multilayer Perceptron (MLP) with two hidden layers

function can be used for control purposes. In performing function approximation,
the process of adjusting the neural network parameters takes place at the same time.
This process is called learning in neural networks terminology. Learning process can
be performed off-line or on line with a parameter adaptation scheme, such as in non
linear process control. The neural network architectures employed for function ap-
proximation are normally feedforward networks and feedback propagation networks. '
Feedforward neural networks with feedback loop are considered in this research, and
the following two commonly employed feedforward networks will be discussed. A

good source of reference in neural networks can be found in Haykin [48].

3.1.1 Multilayer Perceptron

A Multilayer Perceptron (MLP) consists of an input layer, two hidden layers and an

output layer is shown in Figure 3.1.
In a typical MLP network, the number of input units K defines the dimensionality
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Output _ y

Figure 3.2: Adaptive Linear Combiner

of the input space denoted by x where x € R¥ and likewise the output units L
defines the dimensionality of the output space denoted by y where y € R%. The
multilayer preceptron maps the inputs to the output patterns as R : x — y or the
mapping of input space to output space by R : R — RL. In the networks the input
signal is propagated through the processing layers before output is computed. Each
processing layer consists of number of nodes (hidden units) and each node is composed
of adaptive linear combiner which simply forms a weighted sum of the inputs to give
an output. The transformation process in the input-output mapping depends on the
connections in the mapping and the activation function in the nodes or hidden units.
A typical adaptive linear combiner is shown in Figure 3.2.

Letting the n-dimensional input vector be denoted by x and the weight vector

denoted by w, the adaptive linear combiner’s output ¥ is given, with w, as a bias, as
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y= Zrlwi +w, =x'w+ w, (3.1)

=1
The above expression represents a hyperplane in the space of x and it has a form
of linear discriminant function such as that employed in the application of pattern
classification. There are different types of function can be used as activation function

of which the most common is the sigmoid function given as below.

fly) = ——— € (0,1) (3.2)

where

?;= xTw + w, (3.3)

The hidden unit with sigmoid activation function is also referred as sigmoidal unit.
The thresholding is a firing operation of the neurons when its input exceeds cer-
tain limit of threshold value. In the case of pattern classification, the thresholding
providing the discriminate function separates the x space in two regions. The sig-
moidal function, a soft threshold, is a monotonic function which maps the input range
(—00, +00) to an output range (0, 1). The output of the sigmoidal function in the hid-
den layer is constant along the (n—1) dimensional hyperplanes given by ¢ = xTw+w,
for some constant c. Sigmoidal function is termed ridge function because the output
is constant along the hyperplanes in their input space.

The basic structure of MLP is flexible and can be employed for different applica-
tions such as modelling and control. It has been reported in Hornik {49, Brown and
Harris [50] that any continuous nonlinear function can be approximated with three-
layer MLP with sufficient number of hidden units. The MLP network deals efficiently

with input data which are redundant, and the nonlinear functions which have local
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variations.

3.1.2 Radial Basis Function Networks

Radial Basis Function (RBF) neural network uses standard three layer network ar-
chitecture, namely input layer, hidden layer and the output layer where the output
nodes are simply adaptive linear combiners. The hidden layer nodes may have specific
structures. The typical RBF network architecture is shown in Figure 3.3.

The output of the general RBF network is represented by the following.

y=> wh(lx—pll), 1<i<n (3.4)

=1

where w; and p; are weight and centre of the i** hidden layer node and ||.|| is the
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standard Euclidean norm, a distance measure between vector of basis function centres
u; and x the input space. The univariate nonlinear functions ¢(.) used are generally
(i) quadratic ¢(r) = V/r% + ¢, (ii) thin plate splines ¢(r) = r?Inr and (iii) Gaussian
o(r) = exp(—%). For a given problem in this research, Gaussian Radial Basis Func-
tion will be used in the design of control system where the basis function is given as
Oi(z) =9 ("—?ﬁ"—') for it* hidden node, o; is the width of the Gaussian function. The
question of localization in the internal network representation is an important consid-
eration in the design of the network architecture. Gaussian RBF network with local
representation and Gaussian receptive fields are suitable for learning for nonlinear

evolving dynamical system such as flight dynamics.

3.1.3 Recurrent Neural Networks

A recurrent neural networks has at least one feedback loop [48] and the networks can
take many different forms and configurations. The common feature of the recurrent
network is its capability of capturing temporal behavior and provides multi-step ahead
predictions.

In general, recurrent neural networks can be classified according to the three
architectures [51], globally recurrent networks, locally recurrent networks and NARX
recurrent neural networks.

In globally recurrent networks shown in Figure 3.4, the feedback connections come
from the state vector of the hidden layer. Figure 3.5 shows the locally recurrent net-
work representations where each neuron has a delay feedback loop around itself. The
NARX recurrent networks [52] is shown in Figure 3.6 where output of the networks
is feedbacked to the networks through time delay unit and this architecture is an
popular research area. The networks can have a higher order of embedded memory
consisting of the tapped delayed values. In this research, the recurrent network used

is defined as feedback through single time delay unit with output memory of order
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Figure 3.4: Globally Recurrent Networks

one.

The RBF network is powerful in performing function approximation, however it
does not provide a way for determining the number of hidden units in the given
architecture to achieve the approximation for a given required accuracy. In most of
the control problem involving the use of the RBF networks, the fixed network design
is employed where the number of radial basis functions are predetermined and they
are placed on the regular grid. The research effort of this thesis is to propose a

methodology for designing self adjusting dynamic recurrent RBF networks to solve

the wing rock problem.
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Figure 3.6: NARX Recurrent Networks (Output memory of order one)
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3.2 Neural Control Methodology

Adaptive control methodology developed earlier is only applicable if the structure of
the nonlinearities responsible to produce wing rock is known as “ a priori ”. However,
in the aircraft the structure or the source of the wing rock is not known. To overcome
this problem, the RBF neural network is used for identifying the nonlinear dynamics
of the wing rock and the adaptive control methodology is employed to complete the
control system design.

Multi-layer neural networks have been used by many researchers for various ap-
plication such as the identification for the complex nonlinear process, pattern recog-
nition, function approximation and control application etc. Neural networks can be
combined with the conventional control methodology for controlling complex and
nonlinear process. Neural networks had been proposed as a replacement for adap-
tive control for regulating wood chip refiner [53|. More direct application of neural

networks to the flight control are reported in Steck et al. [54].

In the adaptive control scheme. the dynamic neural networks proposed will be
used to identify the unknown nonlinear plant. The dynamic data generated by the
aircraft model will be used in the network design and the learning process. Due to the
evolving dynamic nature of the system, neural networks with local representation such
as RBF will be used in the investigation. The overview of neural control methodology

will be outlined in this section.

3.2.1 Neural Control Law

Consider the system to be controlled is a continuous time single input-single output
aircraft dynamics with control input u : Rt — R, an output ¥ : R* — R and an
order n be represented by the following non linear affine system given by Hancock

[55]
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r = alz)+b(z)u (3.5)

y = h(z)

where r(t) : Rt — R™is a state vector, a(z) : R* — R™ and b(z) : R* — R" are state
dependent vector functions and h(z) : R® — R . a state dependent output function.
It is assumed that the nonlinearities of a(z), b(z) and h(z) are sufficiently smooth
functions of the states and their partial derivatives exist and continuous. The control
of wing rock is considered a trajectory tracking problem. The error e = y — yq is
defined as tracking error where yq is the desired function. The control objective is
that given a desired output in the reference model, the controller forces the tracking
error to converge to a neighborhood of zero. If the system given in equation (3.5) is
assumed to have a strong relative degree v, and output differentiation is terminated
after v < n steps then the system can be represented by the following input-output

dynamics.

yO = f(z) +g(z)u (3.6)

In this research, we consider a sampled data system and the controller is assumed
to be a discrete time regulator with state variables feedback implemented as RBF
neural networks. The output of the non-linear system is sampled at ¢t = kT,, k € Z*
with uniform sampling period 7y, > 0. It is assumed that in the sampling process
of continuous time system, an infinite number of bit is used and there is no finite
escapes and the general structure given in system (3.6) is preserved in the discrete

time system. The general control architecture is shown in Figure 3.7.

Consider the sampled data non linear single input-single output relative degree

one system be represented by the following in Chen [56].
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Figure 3.7: Dynamic Recurrent RBF Network Control Architecture

Yer1 = f(Yr, coos Ykmpt 1, Uk—1 +ooy Ukmrm) +

9(Yk, - Yk—pt1,Uk—1, -+, Ubk—m ) Uk (3-7)

The non linear plant can be written in discrete time as below

y(k +1) = f(2(k)) + g(2(k))u(k) (3.8)

The unknown nonlinear system to be modelled is represented by the following.

§ (k+1) =F (2(k), wy)+ § (2(k), wp)u(k) (3.9)

The following approximate feedback linearization control law is used in order to bring

the tracking error to zero.
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o) = = I B g) ) 3.10)
9 (3(k), w,)

where z(k) is the input state variable, w; and w, are linear parameters of output

layer of RBF networks and r(k) is the reference command, the desired output. The
A
estimates of f (z(k),wy) and 3 (z(k),wg) are constructed using a pair of RBF func-

tions.

F(a(k)wy) = folz(k Z w;,0p(z (3.11)

9 (2(k), wy) = golz ng‘ ol (3.12)

where Ky and K, are the number of neurons in hidden layers for each separate
BRF networks and Oy, (z(k)), ©,4,(z(k)) are Gaussian functions in respective networks
determined by the number of hidden neurons and neural parameters of centre and
width, and f,(z(k)) and g,(z(k)) are assumed known prior knowledge of the functions
f(z(k)) and g(z(k)) of the system. The neural parameters are updated by the Ex-
tended Kalman Filter. The task of neural control is to achieve stable output tracking
for the nonlinear aircraft system represented by equation (3.6) where the nonlineari-
ties of f(z) and g(z) are unknown. This implies that given the desired output yy the
tracking error y — yq is forced by the controller to converge to the neighborhood of

zero while keeping the signals in the closed loop system bounded.

3.3 Learning in Neural Networks

It is well known that neural networks has the unique learning capability when the
networks is presented with information of input-output pairs as in the case of approx-

imating the unknown functions. The learning process is of the static type mapping
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which involves the repeated presentation of input-output pairs of information until
the networks connected weights converge. The optimization procedure such as least
square error criterion is generally used in the learning algorithm. The most common
learning algorithm is the error back propagation developed for multilayer feedforward
networks in Rumelhart [57]. Other learning algorithm such as conjugate gradient
descent is also utilized for neural network learning.

In the context of controlling wing rock in flight, learning in neural networks is
required for the reason that the prior knowledge of the nonlinear wing rock structure
is unavailable and unknown. Learning can be viewed as a two-phase process namely
structure identification phase and parameter optimization phase. In this thesis we
consider the neural networks mainly of the type RBF. Learning algorithm for structure
identification is a non convex optimization problem whereby the data presented must
take into account the complexity of target mapping, representational ability of local
models and availability of data.

In most of the research of the RBF networks, a fixed number of radial basis func-
tions was assumed based on the prior knowledge. In some cases the width is assumed
constant as a thin plate function and the centres are optimized by clustering algo-
rithm such as self-organizing map and k-means clustering. In this research structure
identification determines the number of neurons in the hidden layer of RBF using
the neurons addition/pruning criteria based on the Preisach hysteresis model con-
cept. The whole scheme will be discussed in later chapter. Parameter optimization
phase is carried out in two steps, firstly the centers and widths are adjusted using
the Extended Kalman Filter for taking care of their nonlinear features. The linear
outer weights are normally adjusted by least means square method or recursive least
square. In this research the outer weights optimization is carried out by considering

the stability analysis of the system.
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3.4 Concluding Remarks

The review was carried out for the feedforward neural network structure namely mul-
tilayer perceptron and radial basis function related to the context in this research.
Various different types of recurrent neural networks were discussed. Based on the ra-
dial basis function network, neural control methodology was outlined and formulated.

The process of learning and adaptation in the proposed RBF networks are discussed.
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Chapter 4

Application of the Preisach Model

as a Neural Network

The concept and the properties of the Preisach hysteresis model are applied in the
design and training of RBF neural networks. The obtained network is used in identi-
fying the uncertain nonlinear system responsible for generating the wing rock. Based
on the identification of the unknown nonlinear system, control law is formulated for
controlling the of wing rock motion. The structure and memory mechanism in the
Preisach model has a direct analogy to parallel connectivity and memory formation in
the radial basis function network. Based on their similarities, the plausible reasonings
will be given in the application of the Preisach model for the design of the dynamic

recurrent RBF networks.

4.1 Overview of the Preisach Hysteresis Model

4.1.1 Hysteresis

Hysteresis means “ to lag behind ” defined as rate independent memory effect, a

phenomenon in which the output depends on the evolution history of inputs. Several
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physical phenomena exhibit hysteresis and they are found in chemistry. biology, fer-
romagnetism, ferroelectricity, superconductivity, porous media filter, granular motion
and mechanical system. There are numerous classical models describing hysteresis
using the concept of hysteresis operator such as Prandtl, Ishlinskii, Preisach and
Duhem [58].

The underlying idea of the Preisach model is illustrated by comparing the following
figures. Figure 4.1 shows the relay without delay (top graph), a monotonic function
which can be approximated by linear combination of a finite family of jump functions
as shown in the bottom half of the graph. The input function is represented by u
and the output function by w. Figure 4.2 shows the relay with delay (top graph) and
their linear combination of the finite family of delayed relays yields the hysteresis
loop shown in the bottom graph. The construction allows one to approximate a large
class of continuous hysteresis laws and yields an operator which acts in the space of
continuous time function.

In general, hysteresis can be classified as continuous hysteresis and discontinu-
ous hysteresis (catastrophic hysteresis). Example of continuous hysteresis are friction
controlled backlash also known as play and elasto-plasticity also known as stop. Dis-
continuous hysteresis deals with phase transition such as occurring in ferromagnetism

whereby the transitions is characterized by discontinuity.

4.1.2 Classical Preisach Hysteresis Model

The classical Preisach hysteresis model was studied extensively by Mayergoyz (30]

and is described as below.

$0) =T ut) = [ [ e8) dug ult) de a8 (4.1)

a2
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—Pu(t)

Figure 4.3: The Preisach Operator-representing input-output [30]

The model can be viewed as infinite set of simplest hysteresis operator Qaﬁ represented
by the notation f‘ defined in equation (4.1), each of these operators can be represented
by a rectangular loop of input u(t) and output f(t), and u(a, B) is the weight function
where a and [ represent up and down of the switching values of inputs where a > £.
The hysteresis operators can be interpreted as two-position relays with “up” and
“down” positions corresponding to i\/aﬂ u(t) = +1 and Qaﬂ u(t) = —1 respectively.
The output of the hysteresis operator assumes two values of +1 or -1 as shown in
Figure 4.3. Each of these operators has a local memory. In other words, the past

exerts its influence upon the future through instantaneous values of output.
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4.1.3 Geometric Interpretation of the Preisach Model

The Preisach operator is shown in Figure 4.3 and its geometric interpretation given in
[30] is shown in Figure 4.4. There is a one to one corresponding between the operator
'/;aﬂand the point (a, 3) of the half plane o > 8. Each point of the half plane @ > 8
can be identified with only one particular operator ’?’a;a whose up and down switching
values are respectively equal to a and 3 coordinates of the point. The operator '/;aﬁ
and the half plane a > 3 are then uniquely defined by the point (a, 3). The triangle
T defined by points 4, B and C as shown in Figure 4.4 is then subdivided into two
sets S*(t) consisting of points (e, 3) for which the operators %aa u(t) = 1 are in
the up position and S~(t) consisting the points (e, B) such that the corresponding
operators '1\!05 u(t) = —1 are in the down position. The function %aa u(t) is assumed
zero outside the triangular T .

It is shown that the interface line L(t) separating S*(t) and S~(t) is a staircase
line whose vertices has a and 3 coordinates coinciding with local maxima and minima
of input at previous instants of time. The final link of L(t) is at the line « = § and
moves when the input changes, and the link is a horizontal one and moves up when
input increases and it is a vertical and moves right to left when input decreases. Using
the geometric interpretation the model can be represented by the following equivalent

form.

i) = /]M) ) dadd - | /S ) dads (4.2)

From equation (4.2) the instantaneous value of output depends on the shape of the
interface L(t) which in turns is determined by the extremum value of input at previous

instants of time.
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Figure 4.4: Geometric interpretation of the Preisach operator

4.1.4 Continuity Properties of the Preisach Model

The interpretation of the Preisach model and its properties in memory formation are
used as criteria in the design of dynamic recurrent RBF. The objective of the RBF
networks is to approximate the unknown nonlinear function of the physical system
which generates the wing rock. The Preisach operator is purely phenomenological in
nature, the issue of the operator being a continuous or discontinuous function depends
on the underlying Preisach measure, the topic had been studied by many researchers
and is beyond the scope of the present thesis. Depending on the interpretation and the
particular application, the Presiach model can be considered an infinite summation of
the operators (cells) ’/)\'aﬁ (possibly discontinuous) to yield a continuous relationship.
The Preisach operator exhibits continuity properties in several function spaces, this
subject is thoroughly discussed in [58].

In the application where the Preisach is used directly to model piezoceramic ac-
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tuator or shape memory alloy actuation. the problem of the Preisach operator being
continuous or discontinuous becomes an important issue. The problem is resolved by
using the smoothed Preisach operator and generalized hysteresis operators derived

from the results obtained from Krasnoselskii and Pokrovskii [58].

4.2 Analogy of Preisach Hysteresis Model and RBF

Networks

The Preisach hysteresis model is represented by block diagram as shown in Figure
4.5. The model can be interpreted as a spectral decomposition of the complicated
hysteresis operator I' into a single hysteresis operator 72ﬁ . From the mathematical
point of view the Preisach model can be viewed as infinite summation of the hysteresis
operator 723.

Wing rock is the outcome of the hysteresis presents in the nonlinear aircraft sys-
tem. Hysteresis is difficult to model or identify. The Preisach model has been defined
without any reference to a particular physical origin of hysteresis. This shows the
phenomenological nature of the Preisach model and its mathematical generality. As
the result, researchers had interpreted its properties and applying in the control of
nonlinear system exhibiting hysteresis in various field of applications, the most recent
publications related to the use of the Preisach model are reported in {59], [60], (61],
(62]-64].

There is a striking similarly and parallel between the Preisach model and the RBF
neural networks as shown in Figures 4.5 and 4.6. The RBF network has extra features
in inter parallel connectivity at the input layer as compared to the Preisach model.
The following are the common features found in the hysteresis model and the RBF

networks.

(i) The hysteresis operator 726 referred as cell in the Preisach model is analogous to
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the Gaussian function. ©(z). the neuron in the hidden layer of the RBF networks.
(ii) The mechanism of memory formation in the Preisach model results from the
parallel connectivity of two position cells, 725- The switching values a and 3 in the
model play the same role as the centre ;2 and width o of the Gaussian function as they
are all affected by the input values to the function. The values p and o in the RBF
correspond to a and 3 in the Preisach model in the sense that both these values can
be adjusted. Gaussian function has a range between 0 and 1 whereas the Preisach
operator has a switching values between —1 and +1. There are studies reported in
[61] that the operator can be smoothed to a continuous function and the switching
values can be modified to vary from 0 to 1 as reported in [59].

(iii) The weight u(c, 3) of the model is analogous to the linear weights w(u, p) at the
output layer of the RBF networks. Determination of the weight (. 3) in the model is
corresponding to the supervised learning for the linear weights w(u, p) determination
in the RBF networks.

(iv) The function approximated by RBF is }'\ rer = .0 w(p,p) which is analogous

A
to the function output obtained from the Preisach model given by f_ .4 = D 'y:\,g

w(a. 3).

4.3 Application of the Preisach Model as Dynamic
Recurrent RBF

Based on the above described analogies and their similarities in connectivity pat-
tern, the RBF is an suitable network and excellent choice for such application of the
Preisach model. The types and sources of the hysteresis are not crucial to the per-
formance of the RBF networks employed in the approximation of the nonlinearities
regardless as the aerodynamic or mechanical nature in the generation of wing rock.

The encoding of knowledge source is realized by adaptive learning technique, namely
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supervised learning in the networks. In order to capture the physical insights of the
wing rock phenomena namely the noise disturbances generated from sensor readings,
wind gust etc., a recurrent feature is included in the RBF networks as shown in Figure
4.7. The unknown functions f(z(k)) and g(z(k)) are estimated by the two separate
recurrent RBF networks to give the approximated output of the unknown nonlinear
system as v (k+1) =? (z(k), wp)+ 5 (z(k)wg)u(k). The use of the recurrent feature
will account for the dynamic nature of the nonlinearity.

The RBF networks is dynamic in the sense that the size of the networks is opti-
mized constantly by adding or pruning the neurons based on the criteria of the growth
of neurons. The Preisach hysteresis model is associated with memory and has the
following properties.

(i) The mechanism of memory formation of the Preisach Model results from the
superposition of parallel connection of the position cells 725.

(ii) The information storage in the Preisach model is not localized in any partic-
ular cells as in the computer storage device, but some ensembles of all the cells 'y/;a
participate in storage of each bit of information. This feature is used in the criteria
for determining the addition/pruning of the neurons.

(iii) If some of the cells 723 are destroyed, the stored information still might be
preserved.

(iv) The Preisach model is bestowed with local memories. This means that if
given the output values, f(t,) at some instant ¢,, and the input values u(t) will at
all subsequent instants t > ¢, uniquely predetermine the value of output f(t) for all
t > t,. In order to capture this feature we have considered the feedback of the output
signal to give the recurrent RBF structure.

(v) The Preisach model has the wiping out property which states that subsequent
events may erase the information previously stored in the memory. The erase of

memory will occur if the new events have an impact characterized by larger input
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Figure 4.7: Recurrent RBF Model

extrema than previous one. If there is no impact on the input than the previous one,
the output of the hidden units remains insignificant and unchanged after a specified
consecutive observations. This property is used as a criterion for pruning the neurons
in the networks training phase.

The influence of the RBF networks parameters on the estimation of f(z(k)) and
g(z(k)) depends on factors such as network input and localization properties of the
RBF networks. In the case where the height and centre of the RBF networks are
kept constant, the greater the width the greater the space of the receptive field on the
function estimation. The RBF network has a temporal localization in the parameter
updating process. In the case of the design for the fixed size networks, on line learning
requires the placing of a huge number of RBF functions on the regular grid for better
approximation and very often the number of neurons increases with the increase of

the input dimension, a feature referred to as the curse of dimensionality.
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4.4 Concluding Remarks

The Preisach hysteresis model is introduced and its geometric interpretation and
properties are discussed. The similarity between the Preisach hysteresis model and
RBF networks as well as the reasonings of applying the Preisach model as RBF
networks are given. The properties of memory formation of the Preisach model and
the physical insights observed from wing rock phenomena are used in the design of

dynamic RBF neural networks.
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Chapter 5

Design of Dynamic Recurrent

Neural Networks

In this chapter the concepts and the properties of the Preisach model will be used
to design the dynamic RBF neural networks for controlling the wing rock motion.
The RBF neural networks have been used widely for function approximation and
applications such as pattern recognition, time series prediction by Poggio and Girosi
[65] and adaptive control by Sanner and Slotine [66].

The original use of the RBF networks for function approximation was proposed
by Powell [67]. The method is further refined by reducing the number of neurons
by Broomhead and Lowe [68]. The RBF networks being considered in this research
consist of input layer, hidden layer and one output layer. The RBF networks is
normally trained by hybrid learning rule namely unsupervised learning in the hidden
layer and supervised learning in the outer layer. The hidden layer could have a
fixed centre or the centers trained by self organized map or supervised learning. The
weights of linear outer layer are normally updated using delta learning rule. The issue
of designing an optimal networks and the learning algorithm of the RBF networks

have been studied by various researchers.
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In [69] Moody and Darken proposed a hybrid algorithm where the number of hid-
den units are fixed and the centres are trained by k mean clustering while supervised
learning using LMS (Least Mean Square) is employed for training the outer layer
weights. Using the RBF networks to approximate non-linear function had also been
studied by Chen et al. {70]-[72] where hybrid algorithm on learning is used for system
identification.

Platt [73| proposed on-line sequential algorithm for Resource Allocating Networks
(RAN) where hidden units are added based on the novelty of the new data and
the weights in outer layer are updated using LMS. Novelty refers to innovation in
adaptive filtering literatures and it is interpreted in this context that the input data
is far away from the centres and the error between the system and estimated output
is large. Kardirkamanathan et al. (74} and Kardirkamanathan [75] improved the
RAN method by using the Extended Kalman Filter instead of LMS in outer layer
network weights estimation. Their network is called RANEKF. Yingwei et al. [76]
and [77] proposed a minimal radial basis function neural networks (RBFNN) with
addition/pruning strategy to adjust neurons in the hidden layer and the Extended
Kalman Filter is used for updating networks free parameters.

Karayiannis et al. [78] proposed a growing radial basis function (GRBF) networks
in which the network grows by splitting one of the prototype at each growing cycle.
A prototype constitutes a representation of feature space defined as if the response
of RBF centered on these prototypes to the feature vectors from the same class are
as similar as possible. Hybrid learning scheme is proposed whereby unsupervised
learning algorithm is used for clustering. Learning vector quantization [48] employed
in the algorithm is based on the fact that the weight vector is moved away from the
input vector only when the current cluster of the winner in the competitive learning
is incorrect. In the case of supervised learning, the scheme based on the minimization

of class-conditional variance are used. The class-conditional variance measures the
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similarity of the response of each RBF to feature vectors from the same class.

Based on the research carried out in [79] and the extension of the studies carried
out by Platt [73], Yingwei [76]-[77] and Kardirkamanathan [74] and [75], the dynamic
recurrent RBF controller (DR-RBF) is proposed. The proposed networks employ
the ensemble average concept as the criteria in the network training and include
the recurrent feature. The recurrent RBF networks employ two separate parameter
adaptation schemes, the RBF parameters in centre and width are adjusted by the
Extended Kalman Filter while the networks linear output parameters are adjusted
based on the Lyapunov stability criteria. The adaptation of RBF parameters together
with neurons addition/pruning strategy determine the optimum size of the networks

while the outer layer adjusted weights are used in the control law computation

5.1 Sequential Neurons Growth

There are two separate RBF networks used in the design of DR-RBF. The response of
one unit in the hidden layer where O;(z), ©,(z) are p dimensional Gaussian function

vectors whose ith elements are given below

0y (=(k)) = exp(—%% lotk) = g, (][?) (5.1
O, (+(K)) = exp(— 5 [[6(K) = 11 (K) ) 52)

where u; and p, are p dimensional vectors representing centres of ith Gaussian
function and 0% , o2, are variances representing the spread or the width of the Gaussian
functions and ||.|| is a Euclidean norm. The input vector ¢(k) of the recurrent
networks is defined in terms of current input z(k), the state variable and previous

RBF networks prediction, 9 (k — 1) as below
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| z(k)
y(k-1)
The output layer of each pairs of the BRF networks is a linear combination of weighted

individual outputs from the networks given below.

Ky
f R wp) = fol2)+ D w8, (2(k) (5.4)
A L
9 (2(k), wg) = go(2)+ > w04, (2(k)) (5.5)

=1

and the networks output is

§(k+1) =F (2(k), wy)+ 9 (2(k), wp)u(k) (5.6)
where Ky and K are total number of hidden units in the respective RBF networks.
The mechanism of information storage in the Preisach model is not localized in any
particular cell, but some ensembles of the cells 725 participating in the storage of the
information. As a results, if some of the cells are destroyed, the stored information is
still present. The idea applies to the cell replenishment without affecting the currently
stored information. This concept is incorporated in the adjusting of the neurons in
hidden layers by adding or pruning the neurons according to the specified criteria.
The strategy is used to compute the distance between the input vector and all the
centre values in the hidden units to form an ensemble average of the centres.

The network starts with zero hidden units initialized as w, = y,, as input-output
observation data are received, the networks grow and information are stored in the
memory and some of the stored information will be used when a new neurons are
added. The decision to add a new neuron to the networks depends on the following

two criteria.
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(i)The first criterion is given as

o(k) = pyal| > en (5.7)
”(,b(k) - “ga“ > €n (5.8)

where €, is a threshold value to be selected appropriately, ¢(k) input vector and p far
Hge are ensemble values for the f and g networks respectively.

(ii)The second criterion is given as
er(k) =Y (k) = y(k) > emin (5.9)

where er(k) is the error between the network output @ (k) and the system output
y(k), emin is a threshold value to be selected.

The first criterion states that the input values must be far away from the ensemble
average of the centres or the distance between input and ensemble average must
exceeds certain threshold, ¢,. The second criterion states that the error er(k) between
the network output 3} (k) and the system output y(k) must be significant or the error
must exceeds the threshold value, en;,. If the two criteria are satisfied, a new neuron
is added to the networks. The value en, is chosen to represent the desired accuracy
of the networks approximated output and the choice of ey, will affect the size of the
networks.

The distance €, represents the scale of resolution in the input space that the
network is able to approximate at time instant £. Platt’s RAN begins the learning of
the networks by setting €, = €qax which is the largest scale of interest, typically for
the entire input space of nonzero probability density. The distance e, is let to shrink

exponentially until it reaches the lower limit . ey, according to the following

€n = max{ema.x o emin} (510)
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where 0 < v < 1 is a decay constant and n is the number of samples or obser-
vations.. At the beginning, the system performs a coarse approximation with large
width then refines the approximation with the smaller widths. The growth pattern
depends on vy which influences the growth of the networks, and the values en;, and
€min determine the final size of the networks.

The variables p1f, p,, are ensemble averages of the centres of the hidden units
based on the concept that all the neurons participate in the information storage.

Ensembles averages of the centres are defined as below

1

Hralk) = =D (0(K) = iy (.C) (5.11)
boalK) = = S (0(k) = 1y (,C,) (5.12)

where 4, (k,¢,) and p, (k,(,) are samples of respective centres, (; is the element of
the sample set. The assumption is made that if the stochastic process of u 7 (k,¢.)
and u, (k. () are ergodic, the ensemble averages are approximated by time averages.

If the conditions given in equations (5.7), (5.8) and (5.9) are met, new hidden
neurons are added in respective networks according to the following assignments and
their values are set to the stored information for which the two conditions has been

met.

wy (Kf+1) = er(k) (513)
we(Kg+1) = er(k) (5.14)
uy (K +1) = 6(k) (5.15)
b (Ky +1) = 6(k) (5.16)
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o (Kp+1) = wllo(k) = | (5.17)

o9 (Kg+1) = xl|o(k) - tgal| (5.18)

where we(Ky + 1) and w, (K, + 1) are the newly assigned outer layer weights of the
respective networks, p (K + 1) and pu, (K, + 1) are the newly assigned centres, Ky
and K| are the optimal number of neurons in the respective networks. The constant
is an overlap factor which determines the overlap of the responses of the hidden units
in the input space. Its selection depends on the networks size and desired accuracy
and as « increases. the responses of the unit overlap more and more. The variances,
or(Kp+ 1), og(A, + 1) are set equal to the widths corresponding to the distance

between the ensemble average of the centres in hidden units and the nth input vector.

5.1.1 Ensemble Learning

The networks RAN [73] and RBFNN [76] employ the nearest centre of the RBF’s
neurons to compute its distance between the input data and uses as one of the con-
ditions for adding the new hidden unit. The y,, is a nearest centre of a hidden unit
whose distance from the input data is the nearest among those of the all other hidden
units. The disadvantage of employing such a scheme is given as the following :

. All the weighting are placed on the single neuron of nearest centre, if there is an
error made on the computation, the result does not reflect the rest of non participating
neurons.

The property of the ensemble memory storage described in the Preisach model has
motivated the use of ensemble average of the distance to enhance the scheme of RAN
and RBFNN. The nearest distance is replaced by the ensemble average distance from
the input data to all the centres of the participating neurons. The effective ensemble
should consist of a set of centres ( data or networks) that are not only highly correct,

but ones that make their errors on the different parts of the input space as well (80].
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The concept of ensemble approach to neural networks learning and generalization is

the current research topic and the most recent reference can be found in [81]

5.2 Training of Recurrent RBF Networks

The performance of the RBF networks depend on the number of factors such as the
number of hidden units, shape and method of training. In control application, the
learning strategy for the RBF functions can be classified as below.

(i) Fixed centres placed in regular grid and the number of neurons are prede-
termined and the outer weights are updated by LMS (Least Mean Square) or RLS
(Recursive Least Square) algorithms. The learning is carried out in the supervised
manner based on the target, a set point. The number of neurons is normally deter-
mined based on the prior knowledge. In general, the larger the number of neurons
chosen the larger the span is over the input space.

(ii) Fixed number of neurons with centers adjusted by k& means clustering in un-
supervised learning scheme. The k£ means clustering algorithm provides a simple
mechanism for minimizing the sum of squared errors with k clusters, with each clus-

ter consisting of a set of N samples z,, 5, .....zn that are similar to each other.

5.2.1 Supervised Training of the RBF Networks

When the neurons growth criteria as described earlier are not met, the centres and
widths of the hidden neurons of the respective BBF networks are adjusted according to
the Extended Kalman Filter (EKF') algorithm as proposed in [74]. Extended Kalman
Filter is preferred for estimation of the nonlinear terms in the networks parameters
and the method had been employed by researchers Willaims [82], Elanayar [83] and
Behera [84]. The EKF estimates the hidden neuron parameters for each separate

pairs of the respective RBF networks. For the updating of RBF’s centers and width,
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the following modified updating law in the Extended Kalman Filter is proposed for

parameters =  , and ;.

mi) | _[mite-n ], et 519
=, (k) Sk=1) | | uk)er(k) |

er(k) =Y (k) — y(k) (5.20)

ka(k) = Plk— 1) a(k) (5.21)

R(k) + aT (k) P(k — 1) a(k)
P(k) = (I = ko(k)a" (k)] P(k — 1)+ Q,I (5.22)

where the parameter vectors of (k) and w,(k) are defined for f(z(k)) and g(z(k))

as below

wy(k) = [uf (1), 07(1), oo g (K), 04 (K )] (5.23)
wo(k) =[] (1), 04(1), ooy u] (Ky), 04(K,)] (5.24)

The vector a(k) = V= f(z(k)) is the gradient of the functions f(z(k)) and g(z(k))
with respect to the parameters vectors @, and @, evaluated at (k- 1) and @, (k —

1). Hence,

a(k) = Vo f(2(k)) = [as(k) , ag(k)] (5.25)

as(k) = [1.0n¢(k), .0k, ¢(k),

2w
Bnd(k) 2f1 (6(k) = )T, ...
2waf
3

pn (o(k) - #fK,)T]T (5.26)
Ky

ag(k) = [1,691¢(k),...6g,<9¢(k),
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o 2Wat
Oq16(K) 5= (0(k) = pg1) 7, .
gl
gwsﬂ\-y
2ok,

6y, 0(K) =22 (0(k) — por, )T (5.27)

TgKy
The adjustment of parameter vectors in terms of centres and widths of the RBF
functions are given in equation (5.19). The EKF algorithm obtains the posterior
estimates of = (k) and @,(k) from the prior estimates of w,(k — 1) and we(k — 1)
and their prior covariance estimate P(k — 1) where k,(k) is the Kalman gain vector,
er(k) is the error between the RBF networks and plant outputs, P(k) is a error
covariance matrix, [ is a identity matrix and R(k) is a variance of the measurement
noise. The parameter ), is a scalar determining the random walk in the direction of
gradient vector. The P(k) matrix is a N x N positive definite matrix as given below
where NV is the total number of parameters to be adjusted.
P(k) = Plk=1) 0 (5.28)
0 P,I
When new hidden unit is added the dimensionality of P(k) increases and new rows
and columns are initialized. P, is an estimate of the uncertainty in the initial values
assigned to the parameters which in this algorithm is also the variance of the input
and output of the networks. The dimension of the identity matrix [ is equal to the
number of new parameters introduced by adding a new hidden unit.
The updating of non linear parameters, the respective RBF’s widths g% and o?
as well as RBF’s centres u; and g, is carried out during the approximation of the
nonlinear function. The objective function is to minimize the error between neural

computed output and system output in order to yield the optimal networks size. The
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linear parameters are updated according to the following updating law.

9k + 1) = 0(k) — %e(k +1)J(k) (5.29)

where 0(k) is the linear parameter vector of the outer layer, n is the learning rate
chosen as “a priori "and the performance of the networks in terms of convergence
depends on its selection, e(k + 1) is the error between estimated plant output and

measured plant output. J(k) is Jacobian matrix of % and 53% and ry = 1+ J(k) J(k).

5.2.2 Pruning of Neurons

The criteria of pruning the superfluous hidden unit is based on the wiping out prop-
erty of the Preisach model which states that some subsequent events may erase the
information previously stored in the memory. This erasing of memory occurs if only
new input data makes a strong impact in terms of the significant increase of distance
from the RBF’s centre, characterized by larger input extremum than previous ones.
On the contrary if no impact was made on the input signal, the change in output of
the hidden unit remains insignificant. Unlike the dynamic networks method used in
Kadirkamanathan [74] whenever the neuron is added there is no scheme to remove
any redundant neuron, the dynamic recurrent network proposed in this research em-
ploys the similar strategy [76] for pruning the redundant neuron. The outputs of the

respective hidden neurons are given in the following equations (5.30) and (5.31).

O4(2(#) = expl—. [}906) = ) (530)
0,(=(k)) = exp(—éi—g l60k) — 1) (5.31)
184(2(k)) = O(z(k - 1)) <« (5.32)
185(=(k)) - Oy(z(k — 1)}l < & (5.33)
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where = is a threshold value. If the output of the ith hidden neuron between the kth
and (k—1)th instants given in equations (5.32) and (5.33) is less than a threshold value
for a consecutive observations M which represents the latest number of observations

for calculating the root mean square values of the approximated error defined as

n

Y (er(d))?

l=71—(A\[—1)

ms =\ o7 (5.34)

then the pruning of the ith hidden neurons begins and the dimensionality of P(k)
matrix in the EKF algorithm is then reduced. The threshold value ¢ is selected less
than e.ms to have a maximal consecutive observations

In practice, hysteresis encountered in wing rock motion is not absolutely static
in nature. The classical Preisach model does not account for dynamic properties
of hysteresis nonlinearities such as fast input variation and changes in aerodynamic
parameters under certain flight conditions. The hysteresis model predicts that the
stored information is slowly and gradually erased in the presence of perturbation in
terms of rapid input and output variations. To enhance the performance of the RBF
networks and to overcome the limitation of the static hysteresis model, a recurrent
feature is introduced in the networks to account for the temporal loss of information.
By introducing feedback of the output signal through a time delay, the recurrent
networks is given a memory and improve its performance by taking into consideration

of the dynamic characteristics of the hysteresis model.

5.3 Summary of Dynamic Recurrent Neural Net-
works

The dynamic recurrent RBF network is described mathematically as follows :
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. Initialize wo = Yo, €n = €max

. Compute the input vector ¢(k) in terms of current input z(k) and previous RBF
network prediction 9 (k—-1).

. Computer the distance between the input vector and the ensemble average of the
centres in the hidden units ||¢(k) — 1, || and ||@(k) — gyl

Verify if the following conditions are met :

\Y

llo(k) ~ psall
“Q(k) - /’Lga”
er(k) = § (k)= y(k) > emn

€n

\Y

€n

. Allocate new neuron according to equations (5.13)-(5.18).

If the conditions in equations (5.7), (5.8) and (5.9) are not met, the networks
parameters (centres and widths) are updated according to the Extended Kalman
Filter algorithm. The outer layer weights of the networks are updated by the stability

analysis for control law computation according to equation (5.29).

. If the impact of input has no significant effect on the output of the hidden neuron
as given by conditions in equations (5.32) and (5.33) for M consecutive observations,
the dimensionality of P(n) in equation (5.28) is reduced by one and pruning of the

hidden neurons begins.

5.4 Bench Marking of Dynamic Recurrent RBF
Networks

In this section the performance of the developed dynamic RBF networks will be

evaluated and comparison of the results will be made by carrying out simulations of
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the networks which includes various features considered on the networks design.

5.4.1 Simulation 1 - Platt’s RAN

The purpose of this simulation is to demonstrate the performance of the developed
dynamic RBF algorithm for function approximation and the results will be served for
comparisons when features are added in the design of the algorithm. The following
2 input 2 output periodic functions are selected to verify the performance of the

developed algorithm.

(k) = cos(0.2 * k) (5.35)
Ty(k) = sin(0.1*7xk) (5.36)
yi(k) = (3 =cos(z(k))+ 2 *sin(z,(k)))/5 (5.37)
ya(k) = (5 *sin(z(k)) + cos(za(k)))/6 (5.38)

For comparison purpose simulation is carried out based on the following criteria for

adding neuron in the hidden layer using the criteria given by Platt [73)].

l2(k) = pnell > €n

er(k) = U (k) - y(k) > emn

where ||z(k) — p,. || is a Euclidean distance between the input vector z(k) and the
centre of the hidden unit (u,,) whose distance from z(k) is the nearest among those

of the hidden units, €, and en;n are threshold values and er(k) is a error between the
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given function output. y(k) and neural computed output, 9 (k).

Figure 5.1 shows the inputs and outputs of the periodic functions. Constant
disturbance is included in the system and based on some initial simulation runs, the
parameters required in the simulation are chosen as below.

€max = 0.4, émin = 0.02, €, = 0.2, e.ms = 0.2, k = 0.85, R, = 1.0, @ = 0.002,
P,=1.0,

The algorithm employes the Extended Kalman Filter for adjusting the RBF net-
works parameters. When applying the given inputs to the dynamic RBF networks
the neural computed outputs are shown in Figure 5.2. The results indicate that for
output yy. error between the given system output and neural computed output is
less than the case of output yo. In this simulation 31 neurons in the hidden unit are
required to perform the function approximation for a given number of samples. The
evolution of the growth of RBF hidden unit (neurons) is shown in Figure 5.3 while

the distribution of centres and widths of the hidden units are shown in Figure 5.4.

5.4.2 Simulation 2 - Ensemble Average Learning

The goal of simulation 2 is to demonstrate the improvement of performance over sim-
ulation 1 by including the concept from the Preisach hysteresis model that ensembles
of the cells %aﬁ participate in the storage of information. In this simulation, instead
of using the distance between the nearest centre from the input vector, the distance
between the input vector and the ensemble average of the distance is computed. The

following criteria is employed for determining the addition of neurons during the

identification phase.

”l‘(k)—[!.a” > €y

er(k) = !/}(lc) —y(k) > €min
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Input-output pattern for MIMO case
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function output y1,y2 vs neural computed output 1 &2
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112



RBF centre and width
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pe = = (k) — uk.£)

where p, is the ensemble average of the distance between the input vector and the
centres, n is the total number of samples, u(k,&;) are samples of respective centres.
Constant disturbance is included in the system for comparison purpose and the pa-
rameters required in the simulation are chosen as below.

emin = 0.02, €, = 0.2, oy = 04, ey = 02, k = 0.85. R, = 1.0. Q@ = 0.002,
P,=10.

Figure 5.5 shows the results of the outputs from the given system and the neural
computed outputs based on the concept that the ensemble average of the distance
between the input vector and respective centres is used in the algorithm. The Ex-
tended Kalman Filter (EKF) is employed for adjusting the RBF parameters. The
results indicates an improvement over the previous of simulation shown in Figure 5.2
without using the concept of ensemble average of neurons participation. The number
of hidden units required has increased to 55 as shown in Figure 5.6 as compared to
31 in the previous simulation. The distribution of centres and widths are given in
Figure 5.7 and the ensemble average of the distance between input vector and the
centres of the neurons as well as RBF function outputs are shown in Figure 5.8

The algorithm is sensitive to the selection of proper parameters values, the thresh-
old values of €qax, €n, €min and €rms Wil influence the growth rate of neuron, the
number of final RBF units and the approximation error. The simulation for com-
paring RAN and ensemble average strategy are repeated with the following selected
parameters.

€max = 0.3, €min = 0.02, €, = 0.2, exmg = 0.2, &k = 0.85, R, = 1.0, Q = 0.002,
P,=10

The results given in Figure 5.9 for the case of ensemble average show an improve-

ment over the results given in Figure 5.5 and the algorithm selects 65 hidden units.
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For the case of RAN, the results given in Figure 5.10 show little improvement over the
previous simulation given in Figure 5.2 and 50 neurons are selected. The evolution
of neuron growth for RAN and ensemble average strategy is shown in Figure 5.11.
Figures 5.5 and 5.10 compare the performance of RAN and ensemble networks
for the same order of magnitude of neurons in the networks, around 50, the result in
Figure 5.5 shows that ensemble average has a better performance over RAN given in

Figure 5.10.

5.4.3 Simulation 3 - Recurrent Networks

In this simulation, the purpose is to verify the performance of the algorithm by
introducing the recurrent signal from the neural computed output and comparing the

performance over the two previous simulations.

z1(k) = cos(0.2 * k)

zo(k) = sin(0.1 * 7 * k)

r3(k) =¥ (k= 1) (5.39)

A
where ¥ (k — 1) is the feedback from neural computed output. The input vector is

defined as below

and the neuron adding criteria and ensemble average of the distance between the

input vector and the centres are given below.
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lla(k) — uall

n

ho= = 3 (0l) = u(k.E.)

The parameters used in the simulation are :

€max = 0.4, €min = 0.02, €, = 0.2, eyms = 0.2, k = 0.85, R, = 1.0, Q = 0.002,
P,=10

Figure 5.12 shows the results of the neural computed outputs versus given system
outputs. Comparing to the results in Figure 5.5 without the recurrent feature, the
improvement over y,, is more noticeable than y;. The number of hidden units require
is increased towards 70 as shown in Figures 5.13. Simulation is repeated with 250
sampling points, the results indicate the required number of neurons level off at 72

as shown in Figure 5.14.

5.4.4 Simulation 4 - Recurrent with Noise

The objective of this simulation is to demonstrate that the recurrent feature of the
RBF networks is capable of giving good performance in function approximation in
the presence of disturbance. The conditions of this simulation are the same as in
Simulation 3 with the exception that Gaussian white noise is included in the given
functions. Figure 5.15 shows the a satisfactory approximation results between the
outputs y; and y, versus the respective networks approximated outputs. However,
the number of neurons required increases threefold. The simulation results shows that
the recurrent feature as interpreted from the Preisach model is capable of handling
of the dynamic characteristics of the model. The concept of the ensemble average
used in computing the distance between the RBF centres and input vector will better

represent the information storage. Figure 5.16 shows the distribution of distances to
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Figure 5.5: Function and computed outputs based on ensemble average
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RBF centres tends to be clustered between the range of + 1 of minimum values. The

RBF’s widths distribution is shown in Figure 5.17.

5.5 Concluding Remarks

The application of the Preisach model as dynamic recurrent RBF networks was
demonstrated through simulations. The memory formation properties in the hys-
teresis model is employed for the design of the RBF networks. Supervised training of
the RBF's centres and widths are carried out using the Extended Kalman Filter while
outer linear weights are adjusted based on the Lyapunov stability analysis. Bench
marking of the developed networks were carried out for function approximation to
compare the performance of various features included in the networks design. Net-
works with ensemble average shows a better performance than the RAN networks.
With the presence of disturbance, the recurrent networks is capable of handling the

dynamic natures of the disturbances.
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Figure 5.15: Function Apprax. by Recurrent RBF with noise
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Chapter 6

Dynamic Neural Networks

Controller Design

In this chapter, the developed dynamic recurrent RBF networks will be demonstrated
for the adaptive control of wing rock motion. To derive the linearizing feedback
control. a sampled data system is considered in the design of the recurrent RBF
networks. It is assumed that the system is a minimum phase that is the zero dynamics
are asymptotically stable. The unknown nonlinear function of the physical system
which generates the wing rock is modelled by recurrent dynamic RBF networks based
on the concept of the Preisach hysteresis model. The resulting optimal RBF network is
obtained through supervised learning. The linearizing feedback control law is obtained
by using the model approximated by the RBF networks. The error between the
approximated plant output and the nonlinear uncertain system output is used in the
formulation of Lyapunov stability criteria to adjust the outer weights of the RBF

networks for control law computation.
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6.1 Feedback Linearization

In this section a general review of the concept of feedback linearization based on the
continuous system will be given. The definitions and the various notions of relative
degree, normal form and internal dynamics will be presented and these notions will
serve as the basis for the analysis of the controller design to be described in the
remaining chapters. The derivation of nonlinear control theory can be found in [32],
(85] and [86]. The main results are summarized in the following for the purpose of

this thesis.

Definition 6 Diffeomorphism :A vector field in R", a vector function f : R™ —
R"™ defined in region ) is called a diffeomorphism if it is smooth, and if its inverse
f~lexists and is smooth. A set M C R™is a smooth manifold of dimension k if it is
locally diffeomorphic to R*. If U and V are open subsets of R* and R™,respectively
with m > n, it is said T € U is a regular point of f, if the rank of the Jacobian of f
at z is equal to n.

A diffeomorphism is used to transform a nonlinear system into another nonlinear

system in terms of new set of states.

Definition 7 Lie Derivative: The Lie derivative of a smooth scalar function h(z) :
R™ — R with respect to a smooth vector field f(z) : R* — R" is denoted by Lyh(z) =
gf f(z).The Lie derivative L¢h is a directional derivative of h along the vector f.The
Lie bracket of two vector fields f an g denoted by [f, g] or adyg is a vector field defined
by [f,g9] = 2 f(z) - $9(2).

The Lie derivative and Lie bracket can be defined recursively

L%h = h

Lih(z) = LjL7'h) = —4—f(z)



adig = g
adfg = [f.adi'gl. k>0 (6.1)

6.1.1 Relative Degree

Consider a SISO nonlinear system represented by

where z € R" denotes the state vector, u € R™ is the input vector and the function
f(z) and g(z) are smooth vector fields and h(z) is a nonlinear function. Differentiate

the y with respect to time we obtain the following.

dh Ok
= 5-f(2) + 5g(z)u = Lyh(z) + Leh(z)u (6.3)

where Lh(z) : R* — R and Ljh(z) :— R™ — R are Lie derivatives of h(z) with
respect to fand g respectively. If Ljh(z) is non-singular for all z € R™, then the

following feedback law

_ 1
B Lyh(z)

u [—Lsh(z) + v] (6.4)

yields the output linear equation from » to y. Substitute u into equation (6.3) we

obtain

y =v (6.5)
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where ¢ becomes the input that is chosen to make the closed loop system linear in
input-output form.

If Lyh(z) = 0 for all z.we differentiate Yy to obtain the following

y= L:}h(x) + LgLih(z)u (6.6)

where L}h(a:) = Ly(Lsh(z)) and LyLrh(z) = Ly(Lsh)(z). If LyLsh(z) is nonzero for

all £ € R™. the input-output control law is given below.

1 2
and the input-output system becomes
y =v (6.8)

If L;Lyh(z) = 0 and the process is repeated the feedback control law becomnes

1 e

and the output equation becomes

y = (6.10)

The number v differentiation required for the input u to appear is called the relative

degree of the system. For the smallest integer v such that

LyLih(z) = 0i=0,...y -2

LgL}’lh(z) # 0 forallze R" (6.11)
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is called the relative degree of the nonlinear system. If such v exists, the nonlinear
system has a well defined relative degree. If z, is assumed an operating point, and
coefficient of u is nonzero at r, equation (6.11) implies that the system has a relative
degree v at the point z, Contrarily, if the coefficient LgL}'lh(m) is zero at z, and
nonzero at some point arbitrarily close to z,, the relative degree of the nonlinear

system is said to be undefined at r, [32].

6.1.2 Normal Form

Whenever the relative degree v < n is well defined the nonlinear system can be
transformed from the states equations involving z to a new states equations involving
the output y, its derivatives and n~+ additional equations [85]. To show the nonlinear

transformation exists, the following diffeomorphism exists ¢(z) where

[ P, (z) 11 y -
(vr-1)
sy = | T | (6.12)
m(z) m(z)
(@) | | (@)

where y*) denotes ith order of the derivatives of the system output y and n; denotes

n-v additional equations which render the coordinate transformation valid.

Lemma 8 [f the relative degree of the system « is well defined in Q C R™ the differen-

tials d®,(z),......dP_(z) are linearly independent in Q where @, (z) = h(z),.......... o, (z) =

L7~"h(z) [85]

Lemma 9 If the system has well defined relative degree v in Q and if v is less than

n, there ecists n — v functions n,,........ Na—y Such that the mapping has non singular
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Jacobian in Q.[85]

®(z) = | L] 'h(z) (6.13)

| Nnq(T)

Lemma 10 Define coordinates (€,n) where

& | e ]
[5 } _| & _|® = &(z) (6.14)
1 M m(z)
B M-y i L NMn—v i
where € = (Ef,vveennnn. £ andn= () e M) - In the new coordinates (£,n)

the nonlinear system (6.2) is represented as below

52=§3

€, = Lih(z)+LyL}  h(z)u
n = q(n)
y = & (6.15)
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The system obtained from the nonlinear transformation in equation (6.14) is called
local normal form of the system (6.2). If the relative degree v is well defined then the

system (6.2) can be transformed into the normal form of (6.15).

6.1.3 Internal Dynamics

The input-output linearization of the dynamics of a nonlinear system can be decom-
posed into external (input-output) part and the internal (unobservable ) part. The
external part consists of linear relation between y and v, the input can be designed
to have the desired output.

The input-output linearizing control of equation (6.9) in normal form of the system

(6.2) results in the following closed loop system

51 = §

§2 = &

£, = v

n = q(mn)

y = & (6~16)

The variables n are unobservable states and they do not appear in the output y.
The closed loop dynamics (6.16) can be separated into output dynamics involving
Elporeenneens €, and the internal dynamics involving £ and 7. The n= q(§,n) is called
internal dynamics because g dynamics are unobservable and internal to the closed
loop system. By definition the special form of internal dynamics, ¢(0,7) is called zero

dynamics. By setting the output and its higher derivatives to zero, and zero dynamics
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is obtained.

£ =0
n = q&n) (6.17)

For a linear system, the zeros of the original system is the same as the poles of the

zero dynamics.

6.2 Neural Networks Controller Design

Geometric nonlinear control theory has provided a tool for the design of nonlinear
feedback system. For nonlinear tracking control, feedback linearization and input-
output linearization technique had been used to solve nonlinear control problems and
flight control in [86]-{95]. In this section a single layer RBF networks will be used to
model the unknown physical system and to generate the feedback law. If the affine
nonlinear system of equation (6.2) has a relative degree v the output differentiation
is terminated after v < n steps, then the system can be represented by the following

input-output representation [55] and [96].

¢ = f(z) + g(z)u (6.18)

where control input u : R, — R, output, y : Ry — R, 7 is relative degree. The
following assumptions are made regarding the nonlinear system.

(1)The nonlinear system has a strong relative degree v.

(2)The system is assumed to be a minimum phase.

(3)The system is feedback linerizable and the zero dynamics are stable.

(4)The system is controllable and the state vector is available for measurement.
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6.2.1 Sampled Data Nonlinear System

The control scheme employed in this research is generally known as hybrid adaptive
control scheme. The hybrid control scheme uses the sampled continuous time system
output to discretely carry out the estimate of networks or systemn parameters and
redesign adaptive law for the continuous time feedback control of the system. The
issue of stability of the hybrid adaptive control is thoroughly discussed in the paper by
Zhang and Middleton [97]. The overall system stability can be established under the
conditions that the sampling period is chosen to be sufficiently small and the presence
of persistent excitation. In the recent paper by Fuchun Sun et al. [98] a neural network
based adaptive control for sampled data nonlinear system was developed and variable
structure control was considered.

In this research. sampled data system is considered in the design of recurrent
RBF networks and the controller. The objective and interest is to convert the system
given in equation (6.18) into a discrete time input-output representation needed for
the purpose of identification and control.

According to Narendra [99] that the given discrete time dynamical system can be

represented by the state equation.

2(k+1) = flo(k),u(k)] (6.19)

If the system (6.19) has relative degree d and well defined, it implies that the input at
instant k affects the output only d units of time later. Consequently it also represents
the delay of the system (6.19) from input u to output y. When the system has relative
degree d, it can be shown that the input-output representation of the system is given

by the following general form.
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y(k+d) =F [y(k). y(k = 1),y — n+ 1) u(k), u(k = 1), u(k—n+1)]  (6.20)

To overcome the computational complexity occurred in equation (6.20), Narendra

had proposed the following NARMA-L2 Model (Non-linear ARMA)

yk+d) = folyk),yk —n+1),u(k - 1), .u(k—n+1)] (6.21)

Goly(k). ..y(k = n+ 1), u(k = 1), .u(k — n + 1)]u(k)

The main feature of this model is that the control input u(k) at time k occurs linearly
in the equation relating the input and the output. In equation (6.21) f, and g, are
functions of [y(k),..y(k — n + 1).u(k — 1)...u(k — n + 1)]. This is the model that
is required for the purpose of identification and control and it will be used in the

controller design.

Following the same procedures given in Guillaume (100}, a sampled data system is
designed with digital control of non-linear continuous time system of equation (6.18)
implemented using sampling of output and zero order hold control action as shown
in Figure (6.1).

The output z(t) of the non-linear system and the control u(t) are supposed to be

sampled at the same rate, t = kT with uniform sampling period T, > 0.

te=kT,, ke Z* (6.22)

the sampled output at sampling instant is given by
a
z(k) = z(t = kT,) (6.23)
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Figure 6.1: Closed Loop Sampled Data System

The ZOH control action is given as

2

u(t) = u(kT,) 2 u(k), Vt: kT, <t< (k+ )T, (6.24)

It is assumed that in the sampling process of continuous time system a infinite number
of bit is used and there is no finite escapes and the general structure in system (6.18) is
preserved in the discrete time system. Monaco and Normand Cyrot {101] had shown

that the sampled data version of the following continuous time non linear system

= f(z,6) + G(z,9)u (6.25)

can be written as follow .

Dz(k) = E L,+Zu, LaJ (z(k)) (6.26)

141



where Dz (k) = L"*?—"(ﬂ 6 is unknown constant parameter vector, T is a sampling
period. u;(k) is control input and Ly is lie derivative along the vector field g. The lim-
itations of the above sampled data system occur in the transposition from continuous
time to discrete time case for example :

. The exact discrete model is valid only if the right hand side (RHS) of equation
(6.26) does converge. The concern is regarding the appearance of finite time escape
through the sampling process.

. The RHS of equation (6.26) is an infinite series with respect to sampling period
and the discrete model is not tractable for control design.

. There is no guarantee of state feedback linear stabilizability because the model
given in equation (6.26) is not linear in the control input.

The treatment of these issues is beyond the scope of the present thesis. The issues

and difficulties in the above limitations had been discussed and the solutions to get

around these problems had been proposed by Guillaume [100].

6.2.2 Dynamic Recurrent RBF Control Strategy

The concept of zero dynamics and minimum phase properties introduced earlier for
non linear continuous system were extended to discrete time case by Monaca and
Cyrot [102].

The sampled data nonlinear single input-single output relative degree one system

can be represented by the following [56].

y(k) = hlz(k)] (6.27)
It was shown that if certain conditions are satisfied, there exists a feedback control
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u=~v(z.r) (6.28)

By performing change of coordinates z = T'(z) the closed loop system is given as

below.

31(1\7+1) = .421(}1".)'*‘37'(;3)

4

U
)

(k+1) = F(z(k), 22(k), r(k))

3

y(k) = Czu(k) (6.29)

where (A, B,C) are controllable observable triple. If the system (6.27) starts at
21(0) =0, r = 0, then z; = 0, then the plant output stays at zero. The dynamics of

the system is determined by z,, the zero dynarmics which is defined by

2(k + 1) = F(0, z2(k), 0) (6.30)

and the system is a minimum phase if zero dynamics have a asymptotically stable
equilibrium at the origin

The overall dynamic recurrent RBF networks control strategy is shown in Figure
(6.2). Consider the sampled data nonlinear input-output relative degree one system
be represented by the following representation in Chen [56]. The same model had

been proposed by Narendra given in equation (6.21).

Ye+1 = f(yk, cees Yk—p+1,Uk—14 o4y U/c-m) +

9k, ... Yk—p+1,Uk~1,---: uk—m)uk (6-31)
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Choosing the following state variables as

(k) = Yr-ps1

om(k) = ug—y

The state space model can be obtained as

Zn(k'f'l) = Zlg(k‘)

zpk+1) = flz(k)} +g{z(k)}ulk)

zn(k+1) = za(k)
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Zam(k +1) = uy

y(k) = le(k)
The non linear plant can be written in discrete time as below
y(k + 1) = f(2(k)) + g(z(k))u(k) (6.33)
The plant is modelled by the RBF networks as below

A A A :
Y (k+1) =f (z(k), wr)+ 9 (2(k), wg)u(k) (6.34)
The estimated plant output is given as below where wy(k) and w,(k) are estimate of
wy and w, at time instant k.
A A
y'(k+1) =f (2(k), we(k))+ 9 (2(k), we (k))u(k) (6.35)

At each time step the following control action is chosen in order to bring the tracking

error to zero.

u(ky = =3 R0y (8) £ () 6.36)

where wy(k) and wy(k) are linear parameters of output layer of the RBF networks
and r(k) is the reference command, the desired output. The model output from the

RBF networks is given by.

A Ky
f(2(k),wp) = fol2)+ 3 g8 (2(k)) (6.37)

145



g (2(k). wg) = o)+ > 5,04, (2(k)) (6.38)

=1
where K. K, are the number of neurons in the hidden layer for each separate RBF
networks and Oy, (z(k)), Oy, (z(k)) are Gaussian functions in respective networks de-
termined by the number of hidden neurons and neural parameters of centre and width,
z(k) is the input state variable and f,(z) and g,(z) are prior knowledge of nonlin-
earities of the system. The neural parameters are updated by the Extended Kalman

Filter.

6.2.3 Neural Networks Control Law Derivation

Assumption 1 : The discrete time nonlinear plant is given as below

y(k +1) = f(2) + g(z)u(k) (6.39)
and the RBF networks model output is

A

Y (k1) =F (2(k), wp)+ 9 (2(k), w,)u(k) (6.40)

f(z) is unknown and assumed to be a smooth function and differentiable a sufficient
number of times and vanishes at the origin and g(z) is unknown and assumed smooth
and bounded away from zero over the compact set S

Assumption 2 : The system is minimum phase which implies the following zero

dynamics has an globally exponentially stable equilibrium at the origin.

zu(k+1) = za(k)
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T )
"Jn(]‘) g(:(k)) |~11=0 (641)

From the above assumption, the converse Lyapunov theorem [103] suggests that the

following Lyapunov function Va(z2(k)) exists such that

crin(k)i’ < Vi(za(k)) < cafza(k)]® (6.42)
Valzalk + 1)) = Va(za(k)) < —a|za(k))? (6.43)

toVs(z

l a-i) < Ll (6.44)

in some ball B,; C R™, where ¢, ¢2, @ and L are positive constants.

Proof : See Chen |56].

Assumption 3 : For a given positive constant € and a compact set S € R, there
exists a coefficient wy and w, such that } (z(k),wy) anda (z2(k),w,) approximate the

unknown nonlinear functions f(z(%)) and g(z(k)) in z domain.

| A
A = )f(z(m,wf)—f(z(k))’y (6.45)
IAg[ = i

9 (2(k), wy) - g(z(k))| S ¢ (6.46)

In the expressiongr (z(k).wf) = f(z(k),w}. Kf) anda (z(k),w,y) = g(z(k),w;, Ky),
where K; and K, are the optimal numbers of respective RBF units in functions
f(z) and g(z) obtained from the dynamic network design. The parameter vectors w}
and w; are optimal parameters obtained to ensure for the minimum error during the

estimation. The control under this scheme is given as below.

(6.47)




where r(k) is the command reference and the parameters. w;(k) and w,(k) are up-

dated at each time step.

6.2.4 Adaptation Law

The following parameter updating law is adopted from [36] by adding an extra term

n, the learning rate.

Ok + 1) = 8(k) — Le(k + 1)J(k)
Tk

(6.43)

where 6 is the linear parameters. e(k + 1) is the error between the estimated plant

output and the measured actual plant output as given as follow :

e(k+1) = y"(k+1) — y(k +1)

The Jacobian matrix of a%% and ai—i and ry are defined as follow :

oy k+1)]"
k) = [ 96 ]G(k)

A T
(af(z(k).wg))
aw,
— wy(k)

a9 (=(k),
(—-(%I_UL) lwg(k)) u(k)

9

re = 14+ J7(k)J (k)
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(6.50)

(6.51)

(6.52)



The parameter error is defined as below.
g (k) = 4(k) — 6" (6.53)

The linear parameter wy and w, are updated using Lyapunov stability analysis to

ensure closed loop system is stable.

6.2.5 Stability Analysis

Theorem 1 : If assumptions 1, 2 and 3 are satisfied and |r(k)| < p, ¥ £ > 0 and
’5 (k)‘ < 6 < §°, where p, § and 6 are positive constants, then

(1) Ig (k)’ will be monotonically nonincreasing and |8(k + 1) — §(k)| will converge
to zero.

(2) The tracking error between the plant output and the reference command will

converge to zero.
Proof : The stability analysis of the dynamic recurrent RBF controller are

established by following the steps outlined in Chen [104].

Step 1 : Plant Output Equation
From equations (6.33), (6.45) and (6.46) express the plant output as the following

y(k+1) =F {2(k), wy} — e + {9 (2(k), w,) — e}u(k)

A A

y(k+1) =f (2(k), wy)+ 9 (z(k), wg)u(k) + O(e) (6.54)

where O(e) = {—€ — € u(k)}
Step 2 : Error Equation
The error between the estimated plant output and measured plant output is ex-

pressed as below.
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e(k+1) = y'(h+1)—ylk+1) (6.55)
= f (k) wp(k)= f (2(k),wp) +

{9 (z(k), wy(k))= G (2(k), w, bu(k)

+0(¢)
A T
(3f(=(k).uq)>
~ aw,
= 6 (k)T wy (k)
69(: k),
("—afw)r‘"w : lwg(k)) u(k)
~ 2

Step 3: Parameters Updating Law

Rewrite e(k + 1) =6 (k)TJ(k) + 3(k) and for a bounded z(k),there exist ¢, and

¢y such that

|5wn<c45wﬁ-+qe (6.56)

and assume ¢ is small enough such that

1B(k) < M < d, (6.57)
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where d, is assumed a ball of radius at the origin, the following three cases aie ana-

lyzed.

~

(i) If the error e(k+1) > d, =0 (k) J(k) + B(k) > d, (6.58)
then 8 (k) J(k) > 0 since |B(k)| < do (6.59)

(if) If the error e(k +1) < —d, =8 (k) J(k) + 8(k) < -d,  (6.60)

then § (k)TJ(k) < 0O since |B(k)| < d (6.61)
(7i7) If the error e(k+1) < d, —4 (k)T J(k) + (k) < d, (6.62)
then 8 (k)TJ(k) > 0 since |B(k)| < dy (6.63)

In general e(k + 1) can be written by the following

elk +1) = a(k) 8 (k)TJ(k) (6.64)

where 0 < a(k) < 1. The parameter updating law (6.48) is written as

na(k)ﬁ (k)T J(K)|J (k)

Ok +1) =6(k) —n——7 J(k)TJ(k)

(6.65)

For the RBF function, the Jacobian matrix J(k) can be evaluated by taking partial

A
derivative of f (z(k),wy) in equation (6.37) with respect to w; and partial derivative
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of 3 (z(k). wy) in equation (6.38) with respect to wy, the following is obtained.

N[ erztk) 17
18 = g, i ) (659

Step 4 :Select the following nonnegative Lyapunov function

V(k) =8 (k)T 8 (k) (6.67)
Assume that the initial summed square parameter error V(0) is finite if AV(k) =
V (k) = V(k ~ 1) is non positive for all k. It concludes that nonpositive AV (k) — 0,
as k — oo which implies AV(k) <0, V(k) > 0 and V(0) < oc.

AV(R) = 8 (k+1)T8 (k+1)-8 (k)76 k)

o(K)[8 (W)TI(R)I()

= |90~ L+ J(K)TJ(k)

~

~ oy a(k)[8 (k)TJ(k)]J(k)
6 (k) =m L+ J(k)TJ(k)

[6 (k)T J (k)]
1+ J(k)TJ(k)

8 (k)T J(k)]2J (k)T J (k)

ol
) = TR IR)
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IA
|
™,

=3
2
z=

[0 (k)T J(k)]?

—[2na(k) = 2n°a’(k i

2na(k) = 2na’( )]1+JT(k)J(1c) (6.68)
2 o [8 (R)TJ(E)R

< —-na(k < i

< -t Tmrie S (6.69)
provided the second term in equation (6.68) given below is positive
2o (8 ()T I(R)]?

[2na(k) ~ 2n*a* (k)] [6 (k)" J(k)] >0 (6.70)

1+ J(k)TJ(k)
then the condition that 0 < n < ?‘L-) must be satisfied. Hence |8(k + 1) — 6(k)| or

AV (k) converges to zero as k — oc and it implies that u(k) is bounded.
Step 5 : Convergence Analysis

Since equation (6.69) is valid for all £ > 0 and the condition that g (k)TH(k) is

monotonically non-increasing which implies that

~

6 ())TJ(R)? 6 ()J(R) —0, as k—oo  (6.71)

T Imrm - Y e

a(k)8 (K)TJ(k) — 0, as k —» oo (6.72)
It follows from equation (6.64), the following is obtained.
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le(l+ 1) =y (k+1)—-ylk+1)=0 (6.73)

Recalling from equation (6.35) and substitute u(k) from equation (6.36) into (6.33)
hence, y*(k + 1) = r(k) and the tracking error [r(k) — y(k + 1)| = 0.0

6.3 Concluding Remarks

The concept of geometric nonlinear control theory was reviewed in this chapter. Var-
lous concepts such as relative degree, normal forms, internal dynamics and feedback
linearization are also reviewed, these notions will provide an understanding in the dis-
cussion of the remaining chapters. The concept of zero dynamics given in continuous
time is applied to the case of discrete time control. The control design is carried out
using the hybrid system whereby the digital control of nonlinear continuous system
is implemented by sampling the output signal and zero order hold control action.
Based on the sampled data model the adaptation law for neural networks controller

is derived and the proof of the stability of the closed loop system is given.
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Chapter 7

Application to Wing Rock Control

in Aircraft

Wing rock model in slender delta wing has been used as a benchmark by many
researchers to demonstrate the adaptive and neural control strategy to suppress the
wing rock motion. Various adaptive control methods have been successfully used
to control the wing rock motion as reported in [21], [23] and [28] and neural control
method in [28] and [29]. The limitation of various adaptive control methods employed
to control the wing rock is based on the assumption that the structure of the nonlinear
model in wing rock is known as “a priori .

In the neural control method reported, a radial basis function network or single
layer network was normally employed which requires a predetermined number of neu-
rons in the hidden layer [98], [104] and {105]. The network has a fixed architecture and
the number of neurons required are arbitrarily chosen. The centres of the Gaussian
function in RBF networks were uniformly placed on the regular grid and the widths
of the kernel units were set to one. In theory, as the number of neurons is increased
the larger the spread will be to cover the input space. The method often results in ex-

cessive redundant of neurons in the networks and computationally intensive. Not all
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the neurons introduced will contribute to the computation and the designed networks
is not optimum. Although the method used in [29] requires a single neuron com-
bined with fuzzy logic to suppress the wing rock, the method is based on the known
model of wing rock in slender delta wing and the rule based control constraints were
established through experience as “a priori”.

The idea of structural adaptation in the design of neural networks refers to the
on-line structure identification during the neural network design. The scheme is
provided to add or prune the neurons through a learning algorithm based on the
given problems on hand. Dynamic RBF networks had been reported in Yingwei {76]
and [77] for function approximation through the neuron addition and pruning scheme
for adjusting the number of neurons required in the networks. Sanner & Slotine
[106] proposes using structurally dynamic wavelet networks for the adaptive control
of uncertain robotic system. An algorithm has been developed which dynamically
varies the actual structure of the networks which is used for controlling the robotic
system. In the area of the RBF neural networks, the idea of incorporating the dynamic
neural network design in the sense of adding/pruning neurons and with the recurrent
feature has not been applied to the control problems. The use of the ensemble concept
to train the networks and applying to the control problem is new. In the paper given
by Fabri et al. {107] dynamic neural networks were applied to control problem. Radial
basis function is used in the networks, neurons are added to the networks according
to the growth criteria, however once the neuron is added there is no scheme to prune
the networks if the neuron does not contribute to the performance.

The developed dynamic RBF networks controller can be applied to control the
hysteresis phenomena experienced in general physical system and the wing rock in
particular. It was reported in P.Ge [59] that the hysteresis nonlinearities in piezoce-
ramic actuator had been modelled using the Preisach model and closed loop tracking

control had been implemented using PID feedback loop. It was also reported by
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Hayward [60] that the Preisach hysteresis model is interpreted in terms of phase
shift which leads to simple linear compensator design for control of the actuator with
non linear characteristics. The Preisach hysteresis model has also been applied in
modelling and control of magnetostrictive material and smart actuator. There are
numerous reports in this area, a good reference is given in Bank [64]. In chapter
5, simulation studies had demonstrated that the dynamic RBF networks based on
properties of the Preisach model is capable to approximate the general hysteresis like
cyclic function.

Recurrent neural networks had been used in recent years for the identification and
function approximation [108]-[113] and for adaptive control [114]-[117]. Most of the
works were based on the back-propagation networks and the feature of recurrent is
the feedback from the individual neuron output. In this thesis the recurrent signal is
taken from the networks output which represents the approximated nonlinear function
output. In the recurrent network the input vector is defined as current input z(k)
and the previous RBF network prediction A) (k—1) , such a scheme has been used by
Billing [113] for noise cancellation in signal processing application.

In this chapter, the dynamic recurrent RBF networks will be demonstrated to
control the wing rock in delta wing model and comparing the results obtained using
the fixed neural networks design. The developed dynamic recurrent RBF control
strategy was effectively demonstrated by suppressing the wing rock in AFTI/F-16
testbed aircraft having similar delta wings configuration. The robustness analysis and

the issues of performance and the practicality of potential application were addressed.

7.1 Control of Wing Rock in Slender Delta Wings

In this section the developed dynamic RBF networks will be demonstrated to control

the wing rock in slender delta wing and comparisons between the dynamic and fixed
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neural control will be given.

7.1.1 Control of Wing Rock using Dynamic RBF Networks

In the design of dynamic RBF networks, the memory formation properties of the
Preisach model is included by using the ensemble average of the cells participating in
the information storage. As the non-linear function in the wing rock in slender delta

b g

wing to be approximated is known as “a priori ”, no recurrent feature is included
in the design of the RBF networks. The idea is to illustrate the proposed control
strategy over the current neural control method. The wing rock model for slender

delta wing is given below [12].

o=L, +sin a;Lyo + Ly o +sinas Lys 19} é+Lppi(b‘ ¢> +a, u (7.1)

Let ¢ =z, and d) =z, the model can be written in state space equations as

below
T, = @
g, = ¢= flz)+au+v (7.2)
where f(z) = c,+ 1T + Cazy + c3|T1| T2 + ¢4 [T2| T2
and ¢, = L,, ¢y =sina;s Lg, C2=Lp, c3=sina Ly ca = Lpp, the ¢

s are expressed in terms of aerodynamic parameters
In the neural control method the nonlinear function f(z) is assumed unknown.
The term g, u is added to the original model where a, is the estimate of control

effectiveness relating to input signal, a, is generally unknown and estimate from prior
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knowledge, in this example a, is assumed known, a, = 1. The neural control method
approximates f(r) using radial basis function networks. Assuming the state r; and
the output z, . are measurable. Following the analysis of the sampled data system
outlined in section 6.2.1, the signal from the system is sampled using A/D converter.
The output of radial basis function } (x(k)) approximates the nonlinear function

f(z(k)) in discrete form such that

f(z(k)) =f (2(k)) + er(k) (7.3)

where er(k) is the error between the networks output and the nonlinear function
A

f (z(k)) which is given as below
A K!

f (x(k)) = folz(k)+ Y wilk)Os(z(k)) (7.4)

=1
w;(k) is the weight vector, K, is the optimal number of neurons and O;(z(k)) is a
Gaussian function given as below
1 2
Oi(z(k)) = exp(— 5 ll1 = 1a|l") (7.5)

where z, is the input, the state variable and g, is the ensembles average of centres

value in the hidden layer. By choosing the control law of the following form

u=——uw(k) O(z(k)) (7.6)

and the weight is updated using the following updating law

wik +1) = w(k) - rn—ke(k +1)J(k) (7.7)

where 1, = 1 + J(k)'J(k), and J(k) is given as below
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7.1.2 Simulation

The purpose of this simulation to demonstrate that using the developed dynamic RBF
control strategy the wing rock in slender delta wing can be suppressed without the
prior knowledge of the nonlinearity structure. In this simulation example constant
disturbance is included in the system and the following parameters are chosen.

emin = 0.02, €max = 0.4. €, = 0.2, s = 0.2, Kk = 0.85, F, = 1.0. Q, = 0.002,
f, = 0.5, the learning rate n = 0.85, T, the sampling period is set to 0.05 sec. The

following criteria are used for neurons addition

1z = pall > € (79)
er(k) =f (z(k)) — f(z(k)) (7.10)

The ensemble average p, is used in the calculation of the centre distance between the

input vector and the centres as given below.

o = = S (-k,) (7.11)

n

Figures 7.1 and 7.2 show the wing rock in roll angle and roll rate of slender delta
wings. Figure 7.3 shows the suppression of wing rock and only 32 neurons in the
RBF hidden layer are used as compared to 441 neurons needed using the fixed RBF
architecture [28]. The ensemble average plot shows the response stabilizes in a relative

short time. The roll angle and phase plot are shown in Figure 7.4.
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7.1.3 Control of Wing Rock using Fixed RBF Networks

Based on the same wing rock model in slender delta wing in the previous section,
suppression of wing rock is carried out using fixed number of neurons in the RBF
networks. The purpose is to compare the results of using fixed networks and dynamic

RBF networks based on the same control methodology.

7.1.4 Simulation

A RBF networks consists of 445 neurons in the hidden layer was used to control the
wing rock in slender delta wing. The centres of the Gaussian function is chosen to be

uniformly spaced according to the following choice.

u = jA (7.12)

where A = 0.009, and j € {-2,—1,......1,2}. The width of the Gaussian function is
chosen to be one. The simulation was carried out with the sampling period T, = 0.05.
The following function is to be approximated by the RBF networks and the control

law is chosen as before.

445

f@0) = folak)+ 3 wilk)®u(z(k)) (7.13)
1=1

where 9;(z(k)) is given below.

O.(a(k)) = exp(— llz1 = wl?) (7.14)

The control law is chosen as below

u = —Lu(k) O(z(k) (7.15)

Qo

The weight w(k) is updated according to the following adaptation law
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Figure 7.5: Closed loop response of wing rock (fixed RBF)

w(k +1) = w(k) — ;n;e(k +1)J(k) (7.16)

Figure 7.5 shows the suppression of wing rock in slender delta wing using the fixed
number of neurons. It is noted that the response is more oscillatory. The phase plot

shows that the roll rate converges to zero
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7.1.5 Comparison of Dynamic and Fixed RBF Networks Per-
formance

The simulations show that in the control design for dynamic RBF networks only the
nonlinear function f(z(k)) needs to be approximated by the RBF networks. The
feature that all the cells participate in the memory storage based on ensemble aver-
age of the centres is used as criterion for adding new neurons. For dynamic RBF.
32 neurons are required in the hidden layer as compared to the case of fixed RBF
networks where 445 neurons are needed. In the static design of the RBF networks
the centres are placed in the regular grids and often results in the huge number of
neurons required to cover the input space. Moreover, in the dynamic RBF design,
neurons are added as required and pruned if it becomes redundant. The mechanism
for adjusting the centres and widths are provided by using the Extended Kalman
Filter algorithm. The linear weights are separately estimated in both fixed and RBF
networks using Lyapunov stability criteria for ensuring closed loop stability. The
simulation results indicate that the wing rock was suppressed using both methods.
Wing rock is suppressed in lesser time by using dynamic RBF design as shown in
Figure 7.3 as compared to the case of fixed RBF design as shown in Figure 7.5 and

the response is more oscillatory.

7.2 Control of Wing Rock in AFTI/F-16 Aircraft

In this section the developed dynamic recurrent RBF networks control methodology
will be demonstrated to control the wing rock generated from AFTI/F-16 testbed
aircraft having the similar delta wings configuration. Wing rock model development,

design specification and simulation results will be discussed.
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7.2.1 Wing Rock Model for AFTI/F-16

The AFTI/F-16 is the modified F-16A testbed aircraft for Air Force Systems Com-
mand’s Advanced Fighter Technology Integration (AFTI) program. The testbed air-
craft has a slender delta wing configuration, and the wing rock in delta wing has been
tested by NASA Langley Research Centre [118] using the experimental wind tunnel
model. Based on the experimental data the mathematical model was developed by
Hsu & Lan [3]. Monahemi and Kristic [21] added additional factor characterizing the
actuator control surface dynamics to the wing rock model.

The physical scale model of 80 deg sweep delta wing was mounted on apparatus
that allows to rotate freely about the body fixed roll axis with no angular limitation.

For a one degree of freedom system, the following model is obtained for a = 30 deg.

Letting

o= p (7.17)
P=(qSb/I.:)[Cips(a) 3sina + Crpla. 8) (pb/ 2Vi)] (7.18)

where :
« : angle of attack, deg
¢ : roll angle in radian
p : roll rate in, rad/sec
q : dynamic pressure, b/ ft*
S : wing surface area, ft?
b : wing span, ft
I, : roll moment of inertia, slug — ft>
V. : free stream air speed, ft/ sec
Clps : roll damping derivative due to sideslip 3

Cipp : roll damping derivative due to roll rate p
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The following parameters are defined

8> = (gSb/ I,;) (sina) Cips (7.19)
63 = (gSb/ I:) (b/2Vi) Cips (7.20)
81 = (gSb/ Iz) (b/2Vic)(—3.82) (7.21)

where ¢ = 23. Monahemi and Krstic [21] added additional parameter 8¢ to account
for the influence of aerodynamic control surface namely the rolling moment derivative

because of the aileron coefficient Cis, as defined as below

86 = (qSb/ La) Cis(@,8) (7.22)

For a high performance vehicle the Cis4 must be large to accommodate large and
rapid movement. The higher the value of Cis, the better the suppression of wing
rock. The control surface angle §4 is included with aerodynamic coefficient. It is
assumed that by including the aerodynamic control surface the coupling with other
variables is not significant for the range the wing rock occurred. The aileron control

surface is modelled as first order actuator dynamics as below

§a= —(1/7)64 + (1/7)6acom (7.23)

where 7 is a time constant and éacoyas is a control input u, a command aileron
deflection in deg. With the added terms equation (7.18) is transformed into the

following equation.

P= 0, + 820 + O3p + 04 |0| p + 5 M ¢+956A (7.24)

Let ¢ = x4, ¢= Ts , 64 = z3 and S4coum = U, the dynamics governing the wing rock
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are given as below.

z = I

Ty = 01 +600zy + 03z + 04 |T1| T2 + 05 |T2| T2 + 6604 (7.25)
) 1 1

73 = —(Z)z3+(-)bacon

7.2.2 Dynamic Characteristics of Wing Rock

The aircraft under study is the Advanced Fighter Technology Integrated (AF TI) F-16
testbed aircraft. The aircraft has a slender delta wing that its wing rock dynamics
is described by equations (7.17), (7.23) and (7.24). The following aerodynamic para-
meters are given in [21].

Mach number :0.6

Flight altitude : 39,000/t

Dynamic Pressure (g) = 158.81, lb/ ft?

Wing reference area (S) = 300.0 ft?

Wing mean aerodynamic cord (¢) = 11.32ft

Wing span (b) = 30.0 ft

Trim velocity (V) = 569.91 ft/ sec

Weight (W) = 21,018.01b

Moment of Inertia (I,z) = 100033.4 slug/ ft?

Aileron deflection coefficient, Cis, = —0.003489 (1/ deg)

Time constant (1) = 0.0496 sec

The resulting parameters obtained by substituting the above aerodynamics con-
stants are f, = —32.748, 83 = 1.436, 0, = —5.481 with §; = 4, 5 = 0.1 and
fs = —0.49.

Using the above parameters the dynamic characteristics of wing rock in roll angle
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without control is shown in Figure 7.6 and the wing rock in roll rate is given in
Figure 7.7. The phase plot and nonlinear damping are shown in Figures 7.8 and 7.9
respectively. The shape of Figure 7.9 is different from Figure 2.7 that the two loops
are not symmetrical. At the small roll angle, ¢ the linear negative damping, @ is
still larger than nonlinear damping o |o| . however at positive roll angles the linear
negative damping values are much larger that nonlinear damping compared to the
case for the negative roll angles. As the roll amplitude becomes larger, the nonlinear
damping increases while the roll rate decreases. At ¢ =~ +0.8 rad and ¢ =~ —0.6
rad the net damping changes from negative to positive and restoring rolling moment
drives the roll angle to the zero point. Figure 7.10 shows the rolling moment diagram
indicating that there is a centre clockwise unstable hysteresis balanced by the two
counterclockwise unstable loops. The net result is that the exchange of energy is

balanced.

7.2.3 Controller Design Considerations

The dynamics of wing rock for AFTI/F-16 testbed aircraft from equation (7.25) can

be written as below

.’bl = I9

.’L"2 = f(Il‘Ig, I3) (726)
| 1

23 = ~(gome)™ * (G496

y = I

where
T)=¢, To=¢, T3 =04 and u=10dcon

f(z1, T2, 73) = 4 — 32.748z; + 1.436z5 — 5.481 |1,| T2 + 0.1 T3] T2 — 0.4923
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The system (7.26) can be written in compact form as below

= f(z,0) + g(z,0)u (7.27)
where :
z = [:1:1,1:2,1:3]T (7.28)
-12
f(z.8) = flzy, x40, 13) (7.29)
L ‘(mﬁﬁ)xs
- T
9(z,8) = |0 0 sims (7.30)
y = n (7.31)

Single input-single output system is considered and the transformation of the system
(7.27) into sampled data input-output representation is carried out. Following the
procedures as outlined in Section 6.2.1 in this thesis, with sampling rate of T; =
0.05sec and ZOH, the system {7.27) is transformed into a sampled data discrete time
domain. The original system given in equation (7.26) has a strong relative degree
v =3, hence, according to Narendra [99] the transformed discrete time system can

be represented by the following input-output form.

Yer1 = fol-) + 9ok (7.32)

where f,(.) and g,(.) are differentiable functions defined as

fo(.) = f(Yks oo Ykmntt, Uke—1; -y Uk—nt1) (7.33)
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Go(-) = g(Uky s Ykmnt1, Uk 1s oy Ukons1) (7.34)

In practice the non-linear functions f,(.) and go(.) of the system is completely un-
known and they are estimated by a pair of RBF networks based on the input-output
signals from the physical system. The physical system is modelled by RBF networks

given by.

Uk + 1) =f (k) wp)+ 9 ((k). wy)u(k) (7.35)

where the unknown nonlinear functions f,(.) and g,(.) are estimated by two separate

RBF networks ©,(z) and ©,(z) given by

A Kf

f (2(k),wp) = fol2)+ ) w0 (2(K)) (7.36)
i=1

A Kg

g (2(k), wy) = go(2)+ D _ w04, (2(K)) (7.37)

The input vector is defined as state variable, roll rate z(k) and the previous RBF
networks prediction of the system output, the roll angle Z/} (k — 1) as a recurrent
signal. The optimal size of the respective networks are namely K; and K, to be
determined by the neurons growth during the training phase. The RBF networks free
parameters i, i, and oy, o4 are adjusted by the Extended Kalman Filter according
to equations (5.19), (5.20), (5.21) and (5.22).

At each time step the following control action is chosen in order to bring the
tracking error to zero.

A
—f

(z(k), wy(k)) + (k)

(z(k). wy(K))

[

u(k) = (7.38)

Q>

The reference command r(k) starts from non zero initial condition and tends toward
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zero as t — oo and wy(k) and wy(k) are parameters of the recurrent networks used
to approximate the function f(z(k)) and g(z(k)) and are updated using Lyapunov
stability criteria for closed loop control according to equation (6.48).

The prior estimates of the functions are set at f, = 0.1 and g, = 0.2, the learning
rate of the two Gaussian networks during the training phase are chosen as 7, = 0.8 and
ng = 0.8. The threshold values employed are €qax = 0.4, emin = 0.012, erns = 0.012,
€, = 0.2. The various constants used in the Extended Kalman Filter are x = 0.85,

R. =10, Q; =0002, Q, =0.002, P; = 1.0, P, = 1.0

7.2.4 Simulation Results

Figure 7.11 shows the closed loop response of roll angle and roll rate based on the
dynamic RBF control methodology. The transients in both roll angle and roll rate
stabilizes in 2 sec to steady zero value. The phase diagram given in Figure 7.12 shows
the roll angle and roll rate converge to the neighborhood of zero and the control input
is given in Figure 7.13

Figure 7.14 shows the evolution of neurons growth in f and g nets. The f networks
selects 10 neurons while the g networks gives 32 neurons. Both f and g-networks
have a same input signals consist of roll rate and recurrent signal from the whole
RBF network output. Each separate networks are trained independently and their
growth rate are different as shown in Figures 7.14. The term u(k) is included for the
g-networks in the parameter updating equation (5.19). The neurons addition/pruning
strategy are governed by the criteria given in equations (5.7), (5.8), (5.9) as well as
(5.32), (5.33) and (5.34).

Figure 7.15 shows the error between the estimated output and the physical system
output converges to zero. Figures 7.16 shows the estimated RBF outputs for f-net
and g-net respectively. Figures 7.17 and 7.18 show the distribution of the distance

between input vector and the centres for f net and g net respectively. The distribution
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Figure 7.11: Closed loop control based on dynamic RBF control strategy

of RBF widths for f and g networks are shown in Figure 7.19.

7.3 Robustness Analysis

In this section the robustness analysis of the closed loop dynamic recurrent networks
will be given and guidelines regarding the potential application will be provided.
Figure 7.20 shows the structure of feedback control in the presence of unmodeled dy-
namics and disturbances. In general, system uncertainties may result from unmodeled

dynamics, nonlinearities, time variances and external disturbances or measurement
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Figure 7.20: Unmodeled Dynamics and Measurement Noise

noise. In the design of the dynamic recurrent RBF controller, the essential concept of
the Preisach model and physical insights of the wing rock generated from the aircraft
were incorporated. The analysis of the tolerance of the performance of the recurrent
dynamic RBF controller under different system perturbations will be given. Finally
the guidelines for design considerations to deal with the system uncertainties will be

outlined and issue of the potential practical application will be addressed.

7.3.1 Robustness to Disturbances

The disturbances under study are unmodeled excitations of the aircraft caused by
external disturbances such as wind gust or measurement noises of various sensors.
The effect of these disturbances are collected and represented at the system output
as shown in Figure 7.20. In the dynamic recurrent RBF controller, the introduction of
the recurrent feedback signal is mainly motivated by the concern of the incompleteness
of the knowledge of the system which generates the wing rock and to account the effect

of the dynamic characteristics of the disturbances.
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7.3.2 Simulation 1

In this simulation the study is carried out to examine the robustness of the recurrent
RBF controller in the presence of disturbances. Random disturbance is introduced
to the system and the conditions for various parameters used in the simulation are
as below.

€max = 0.4, emin = 0.012, ¢, = 0.2, e,ms = 0.012, x = 0.85. R, = 1.0, Q = 0.002,
P,=10. f,=0.1, g9, =02, T, = 0.05sec

The same aircraft model AFTI/F-16 employed in section 7.2.4 is used to generate
the wing rock. Figure 7.21 shows the response of the closed loop control of roll angle
in the presence of disturbance. The roll rate and control input are shown in Figure
7.22. The result indicates the controller is capable to suppress the wing rock and
shows robustness in the presence of disturbances. Figure 7.23 shows the evolution of
neurons growth in f and g nets, it was noted that the growth pattern of neurons in
g-net increases to 65 and then decreases to 37. Figure 7.24 shows the distribution of
the distance between the inputs and RBF centres and the distance stabilizes near the
minimum value of zero. The corresponding distribution of widths of the RBF units
is shown in Figure 7.25. The RBF parameters in respective f and g networks shown
in Figure 7.26 both stabilize towards minimum zero.

The growth pattern of f and g nets are influenced by the randomness of the
disturbance signal included in the system. The threshold values used in enis, € and
erms are in the same magnitude as the change of random signal. The final number
selected by the networks are considered sufficient to bring the suppression of the wing
rock to a satisfactory level as shown by the response in roll angle and roll rate. The

RBF centres and width are clustered towards minimum zero.
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7.3.3 Robustness to Unmodeled Dynamics

In the following simulations the robustness feature of the recurrent RBF controller will
be examined with respect to model uncertainties. Model uncertainties can be caused
by parametric uncertainties and structural uncertainties. The parametric uncertain-
ties relates to the deviations, nonlinearities and time variances of parameters while
structural uncertainties are due to imperfect structure of the model. The developed
recurrent RBF networks was based on properties of the Preisach model which deals
with the general hysteresis system exhibiting limit cycle phenomena. Through sim-
ulations, the developed recurrent RBF controller will be tested for robustness under
various aspects of model uncertainties. For simulating the structure uncertainties we
had introduced the dynamics of Coulomb friction, transport delay and second order

dynamics in the model.

7.3.4 Simulation 2

The generation of wing rock depends very much on factors such as angle of attack,
flight conditions, flight envelops, aerodynamic parameters, types and configurations
of the aircraft etc. The existence and generation of the wing rock is sensitive to the
variations of these parameters and depends very much on the prevalence of the right
conditions. In this study, simulation is carried out to examine the generation of wing
rock with respect to the variations of parameters used in AFTI/F-16 testbed aircraft

model. The following parameter is selected for the study.

8, = (3 Sb/ L) (sina) Cis (7.39)

By decreasing the angle of attack a from 30 deg in 8, to 8.7 which corresponds to
the change of 8, from 1.436 to 0.436, the wing rock motion disappears as shown in

Figure 7.27. When the angle of attack was increased from 30 deg upwards the wing
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Figure 7.27: Open loop response of wing rock model with change in 6,

rock motion prevails.

When the aerodynamic parameter 6, is increased from 4 to 40. without control the
wing rock motion has disappeared as shown in Figure 7.28. The simulation studies

conclude that the existence of wing rock is sensitive to the change and time variances

of the parameter.

7.3.5 Simulation 3

Structural uncertainties result from the imperfection of the model due to presence

of unmodeled dynamics. In this simulation, the same AFTI/F-16 model is used to
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verify the robustness feature of the recurrent RBF controller in the presence of both
low frequency unmodeled dynamics namely Coulomb friction and disturbances. The
conditions used in this study are :

€max = 0.4, emin = 0.012, ¢, = 0.2, e,ms = 0.2, kx = 0.85, R, = 1.0, @ = 0.002,
P, =10, f,=0.1, g, =02, T, = 0.05sec

The closed loop response is given in Figure 7.29, the roll angle is oscillating at
0.6 rad and the roll rate is varying at zero rad. The control input and the root mean
square error are given in Figure 7.30. The simulation concludes that in the presence
of Coulomb friction and the disturbance, the controller is not capable to stabilize the

wing rock motion.

7.3.6 Simulation 4

The simulation was carried out to include the transport delay in the absence of
disturbance to verify the performance of the recurrent RBF controller. The conditions
used in the simulation are the same as in Simulation 3.

Figure 7.31 shows that the wing rock in roll angle and roll rate were suppressed
after the first 40 sampling points. The evolution of neurons in f and g nets are shown
in Figure 7.32. Based on the above parameters the networks select 25 neurons in g
net and 2 neurons in the final evolution in f net. The number of selected neurons is
sufficient to suppress the wing rock as indicated by the results in Figure 7.31. The
simulation study concludes that the performance of recurrent RBF controller is robust

in the presence of low frequency unmodeled dynamics.

7.3.7 Simulation 5

The procedures given in [32] is followed to examine the robustness of the recurrent
RBF controller by including the following 2nd order unmodeled dynamics in the

system.
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7.4
s + 30s + 229 (7.40)

Simulation is carried out using the following conditions :

€max = 0.4, eqin = 0.012, ¢, = 0.2, e,ms = 0.012, kK = 0.85, R, = 1.0, Q = 0.002,
F,=10, f,=01,9,=02,n; =08, n, =0.8, T; = 0.05sec

The closed loop response of the simulation is given in Figure 7.33, it is noted that
wing rock in roll angle and roll rate are suppressed. The study concludes the controller
is capable of suppressing the wing rock in the presence of 2nd order unmodeled

dynamics.
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7.3.8 Guidelines for Design Considerations

The above simulation studies indicate that the recurrent RBF controller has robust-
ness feature and performance tolerances in the presence of disturbances or low fre-
quency unmodeled dynamics. The performance of the controller deteriorates in the
presence of both unmodeled dynamics and disturbances. In dealing with dynamic
and time varying nature of the parameters, the existence of the wing rock is sensitive
to the changes in parameters.

The robustness concerns with the performance of the closed loop system. There
are various methods available in the design of robust controller such as use of dead
zone. sensitivity method, sliding mode control. root locus and high stability margin
etc. Further references on robust control can be found in [119] where the whole issue
is devoted to the discussion on this subject.

The difficulties and guidelines in applying the developed recurrent RBF control
strategy in real aircraft will be discussed with respect to the following points.

(i)Modelling of Uncertain Control System

The dynamic recurrent RBF model was developed to represent the system dy-
namics responsible for generating the wing rock. In practice, the developed model
can be readily used to control the wing rock based on the information available in
the real aircraft. However, the main problem of using neural network in direct flight
control is the difficulty to obtain the certification from regulatory agency for safety
considerations. The concern is that there is no guarantee of what the output of the
networks will be and this could lead to unsafe conditions. Owing to the uncertain
perturbations exist in the aircraft, extensive verifications of the developed control
strategy has to be carried out using engineering full scale flight simulator. The pre-
cautionary safety measures should be considered in order to implement the control

strategy in the practical situation.
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(ii)Analysis of Uncertain Control System

The performance index of the controller has be to defined and the question of
robustness requirement has to be specified. Through simulation studies it is learned
that the performance of the developed control strategy depends on the variations of
the parameters. The relationship between the questions of sensitivity and robust-
ness has to be examined. In applying the robust control method for the particular
type of aircraft the questions of which parameters are uncertain and their ranges of
possible values have to be answered. The specification of the performance index and
robustness requirement will provide guidelines of the closed loop system performance
which lies in the acceptable range for all the possible parameter values. The method
of sensitivity can be employed to specify the bounds of the uncertainties. Defining
the uncertain system as G and some characteristic measure of the wing rock ¢(G) the
sensitivity function S given in equation 7.41 can be defined to indicate how strongly

& -

1 Toty - . ~o PR I agmde a e N r©
this cheracterictic depends o the paramcters o, in the aircraft systein responsible fu

=) vae

wing rock generation.

Q.

a9
dg 'e=a

S = (7.41)

S is a measure of sensitivity, if S = 0 the property ¢(G) is insensitive to a at a =a
where @ is a parameter values where there is no occurrence of wing rock.

(iii) Design of Robust Controller for Uncertain Nonlinear System

The developed control strategy, to a certain extend should take care of variations
in parameters of the uncertain system as well as unmodeled dynamics. In practice
the system uncertainties of the aircraft that generates the wing rock is not completely
unknown. Although the system or mechanism responsible for the generation of the
wing rock is unknown, the bounds of these uncertainties are known. For example the
bounds for parametric uncertainties are known, such as the range of angle of attack,

aerodynamic constants, flight conditions where wing rock is likely to occur. The
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bounds and conditions under which the closed loop system is stable can be specified
beforehand. The method of using element-by-element bounds of the uncertainties
can be employed in the design for robust controller for each different types of aircraft
under study. The detailed analysis and design of robust controller is beyond the scope

of the present thesis.

7.4 Concluding Remarks

In this chapter the effectiveness of the developed dynamic recurrent RBF control
methodology was demonstrated to suppress the wing rock of AFTI/F-16 testbed air-
craft having the delta wings configuration. The simulation results show that the
unknown nonlinear functions in the physical system responsible for wing rock genera-
tion were estimated by the two separate f and g networks. The optimal networks size
were determined by training based on memory properties of the Preisach model. The
results confirm that the developed control strategy provide a satisfactory control of
wing rock experienced in AFTI/F-16 aircraft. The robustness analysis is carried out
by examining the performance of the closed loop control in the presence of parametric
uncertainties as well as unmodeled dynamics. Finally the difficulties and guidelines

in applying the control strategy in real aircraft were given.
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Chapter 8

Conclusions

The aim of this study is to develop a dynamic recurrent RBF control methodology for
potential application in the suppression of wing rock in the aircraft having delta wing
configuration. This control strategy can be extended to control the wing rock in other
types and wing configurations of the aircraft. In developing the control methodology
the concept and properties of the Preisach hysteresis model is interpreted in design
of dynamic RBF networks. The developed RBF networks combined with Lyapunov
stability analysis allows the design of stable closed loop control for the suppression
of wing rock. The developed dynamic RBF control strategy had been benchmarked
to control the wing rock in slender delta wing. The effectiveness of the dynamic
recurrent RBF control methodology had been demonstrated to suppress the wing

rock of AFTI/F-16 testbed aircraft having the delta wings configuration.

8.1 Summary and Conclusions

The sources of wing rock in aircraft were identified as mechanical and aerodynamic
hysteresis and the review of different methods for the control of wing rock were given.

In the adaptive control method the limitation is that the structure of the nonlinear
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function in wing rock has to be known as “a priori *. Although the knowledge of the
nonlinear structure is not required in the neural control design, the issue of robust-
ness such as model uncertainty and unmodeled dynamics are normally addressed by
including the sliding mode control. In the adaptive control method the ¢ modified
adaptive law is appiied to handle uncertainty and disturbances. Simulation results
indicate there is an improvement in performance with the inclusion of ¢ modified

adaptive law in the controller design.

Application of the Preisach Model as a Neural Network

Preisach model had been studied extensively to model hysteresis of physical system
in the area of ferromagnetism [30] and other application areas. In most applications,
the Preisach model is used to model the hysteresis phenomena occurred at the source
of the physical system, the examples of using the Preisach model in piezocreamic can
be found in (58], {59] and [61]. The properties of phase shift in the Preisach model is
used in [60] to design the controiler for quenching the limit cycle of the actuator. I'he
application of the Preisach model as RBF uelworks is novel and is proposed the first
time for identifying the wing rock generated from the uncertain nonlinear system in

the aircraft.

Dynamic Networks

In using the RBF networks for either function approximation or controlling the
nonlinear system including wing rock motion, researchers [28], [32], [55], [65]-[72]
employ the strategy where the centres of the basis functions are placed in the regular
grid, for example a square mesh covering the region where the state is known as a
“ a priori ” and the number of basis functions used is predetermined based on prior
knowledge. The distance between the centres affect the number of basis function
required and the accuracy of the approximation. Owing to the basis functions having
localized receptive field, most of the functions outside this field are not used in function

approximation [66], [55]. Dynamic basis function where RBF networks is grown are

211



proposed for function approximation in [73]. [74]-[78] and dynamic basis function for
controlling nonlinear system was proposed in [107]. In [76] and (77} the dynamic basis
function has feature for neuron growth and pruning, however it is used in function
approximation. In [107] the dynamic RBF can only grow, however once the neuron is
added there is no provision to prune the redundant neurons. The dynamic recurrent
RBF controller described in this thesis is novel and it is the first time being proposed
to control the nonlinear uncertain system and the aircraft in particular responsible for

generating wing rock motion. The dynamic RBF controller has the following features.

Ensemble average

By incorporating the property of ensembles of the cells participating in information
storage. the idea of ensemble averages of the centres of basis functions is used as a
criteria for training the dynamic recurrent networks. The use of ensemble average

concept in training has resulted in better approximation as compared to the studies

in {70}, {77} where Lhe distance of the nearesy cenire of RBF units and input vector
ix viend Aag fvitaria Far braletes o
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Recurrent Networks

The novel feature of the proposed RBF network over the networks in [76] . [77] is
the introduction of recurrent signal to the input vector of the networks. The inclusion
of recurrent signal is motivated by the concern of incompleteness of the RBF model
in order to take care of dynamic characteristics of the uncertain system. Simulation
studied earlier concludes that recurrent feature renders robustness in closed loop
performance in the presence of disturbances. Using fixed RBF without the recurrent
feature in the function approximation, the approximation error will sometime give
rise to disturbance signal [55], [66] and may eventually leading to parametric drifts.

Another novel feature of the dynamic recurrent RBF network is that the recurrent
signal with memory order of one is taken from the combined networks output (f

and g nets) as compared to most of the reported literatures in [108], [110]-[117]
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where the recurrent signal is taken from individual neurons output. The activation
functions used in these studies are either sigmoid or tanh functions other than basis
functions. Recurrent RBF had been used in system identification for signal processing
application in [113], but it has never been used as dynamic recurrent RBF network

for control application as proposed in this thesis.

Hybrid Adaptive Control

The choice was made to employ the hybrid adaptive control which involves contin-
uous time control of the physical system and discrete time identification of the RBF
networks. In this thesis the sampled data system was employed where the continu-
ous signals of output of the system are sampled and zero order hold control action
is used. The choice of hybrid system is preferred for the reason that if the whole
control strategy is carried out in continuous time domain, the analog hardware will
become too complicated to carry out the computation. Similar study using sampled
data system had been reported in [98] where fixed RBF structure is used and sliding
mode control is employed to control nonlinear system as compared to the novelty of
the work carried out in this thesis. It is concluded that the proposed hybrid control
scheme is feasible for potential application giving the fact that aircraft dynamics is a

continuous system and the control strategy can be implemented by digital control.

Training of f and g Nets by the EKF

In the proposed recurrent RBF networks, training is carried out in two separate
adaptation schemes. The Extended Kalman Filter is used for training the networks
during the identification phase for determining the optimal networks size while outer
networks weights are updated by modified delta rule based on Lyapunov stability
analysis. The Extended Kalman Filter had been proposed for training the centres
and widths of the RBF units in function approximation [74]-[76] involving one RBF
networks. In this thesis the EKF [120] is used to separately train the centres and

widths of the RBF units for the respective f and g nets required for the estimation
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of two unknown nonlinear functions of f(z) and g(z). In updating the parameter in
the g- net. a term u(k) is proposed and included in equation (5.19) for the estimation

of weights associated to function g(z).

8.2 Future Work

The idea and control methodology presented in this thesis suggests the possibility
of potential application in real life situation. There are two main directions that
the future work can be carried out namely, additional research and analysis on the

developed methodology and experimentation / implementation.

8.2.1 Research and Analysis on the Control Methodology

(i) The delay of the estimated network output was introduced together with the input
vector to the RBF network. The networks becomes recurrent in nature in order to
better represent the properties of the Presiach model. Published literatures indicates
a lot of research have been carried out in this area of using recurrent neural networks
for control applications. Most of the studies are limited to multilayer back propagation
networks . In this research single layer radial basis function networks are used in the
design carried out in the discrete time domain. There is no published paper giving a
comprehensive analysis of stability and convergence in discrete time domain dealing
with the similar case in this research. Also further research effort should be directed
towards analysis of approximation capability of recurrent networks and improvement
by reducing the modelling error.

(ii) More research is required with respect to the refinement of approximation
carried out by recurrent RBF networks. The issue of optimality in the selection of
number of neurons and its impact influenced by the threshold parameters has to be

further investigated.
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(iii) The property of robustness is important in the design and performance of the
control system. To investigate further the issue of robustness, various methods such
as sensitivity analysis, sliding mode control and dead zone should be examined in the
control law design.

(iv) The design of the RBF networks and control algorithm formulation are carried
out in discrete time. In the sampling process of continuous time plant the assumption
was made that a very fast sampling rate is used and also the general structure of the
form in the system is preserved in the sampled data system. Stability analysis for the
hybrid adaptive control require a separate treatment and it would be a investigating

topics for future work.

(v) The dynamic recurrent RBF control methodology developed can be extended
to control of wing rock of aircraft having different configurations than delta wings
and having the source of wing rock originated from mechanical hysteresis such as,

backlash of the control valve, motor saturation etc.

8.2.2 Implementation

Further research is needed to study the practical aspects of the potential implemen-
tation of the developed control methodology in the aircraft. The control strategy
can be prototyped using the engineering flight simulator before implementing in the
aircraft. Investigation can be carried out through either using software or hardware
implementation. Chips for neural computation is available and the feasibility for

hardware implementation could be a viable option.
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