Artificial life techniquesfor cryptology
Uddin, Mohammad Faisal

ProQuest Dissertations and Theses; 2007; ProQuest
pg. na

Artificial Life Techniques for Cryptology

Mohammad Faisal Uddin

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science
Concordia University

Montreal, Quebec, Canada

July 2006
©Mohammad Faisal Uddin, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliotheque et
Archives Canada

Library and
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-28930-3
Our file Notre référence
ISBN: 978-0-494-28930-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Artificial Life Techniques for Cryptology
Mohammad Faisal Uddin

In this thesis, we investigate the applications of two swarm-inspired artificial life
optimization techniques in cryptology. In particular, we investigate the use of both Ant
Colony Optimization (ACO) and Particle Swarm Optimization (PSO) for automated
cryptanalysis of simple classical substitution ciphers. We also use PSO to construct
Boolean functions with some desirable cryptographic properties.

Both ACO and PSO based attacks proved to be effective for the cryptanalysis of
simple substitution ciphers encoded with vaﬁous sets of encoding keys. Purely uni-gram
and bi-gram statistics are used for solving this problem.

Boolean functions are vital components of symmetric-key ciphers such as block
ciphers, stream ciphers and hash functions. When used in cipher systems, Boolean
functions should satisfy several cryptographic properties such as balance, high
nonlinearity, resiliency and high algebraic degree. Using PSO, with an unorthodox
approach of spectral inversion, we are able to construct Boolean functions that achieve
the maximum possible nonlinearity (Bent function) and several other important resilient
functions. In fact, we were able to construct, for the first time, a 9-variable Boolean
function with nonlinearity 240, algebraic degree 5, and resiliency degree 3. This
construction affirmatively answers the open problem about the existence of such

functions.

it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

First of all, I would like to express my earnest gratitude to my supervisor Dr. Amr
M. Youssef for his constant support, guidance and enduring patience.

I'd also like to express my appreciation to all the faculty and people at Concordia
University, especially those at Concordia Institute for Information Systems Engineering,
who contributed to my success one way or the other.

Special thanks goes to Mr. Ziad Saber, my research partner, whose help and
patience made my work a lot easier.

I would like to thank my parents for their unconditional love, trust and
encouragements. It would have been impossible for me to accomplish this endeavor
without their support.

Finally, thanks to my loving wife for her constant love and care.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

LIST OF FIGURES viii
LIST OF TABLES ix
LIST OF NOTATIONS X
1 INTRODUCTION 1
1.1 Cryptagraphy and Cryptanalysis..........ccouiieiieiiieriiier i ee e vrerae e renaeeeens 1
1.2 A Bref HIStOTY. . .ouitiii it et e e ettt e aen e 2
1.3 Cryptographic Goals.........iuiiiiniiiie it ee e e e e e e 4
1.3.1 Privacy or Confidentiality............cooviieiiiiiiiiiiii e rr e 4
IRCTIPAR D717 51 111572 oL 2R N 4
1.3.3 AuthentiCation.oiniit ittt e 4
1.3.4 NOD-repudiation. ..ottt et e e e et ere e 5
1.4 A Secure Communication SYSTEIM.vvuitinniiit it ieceeieaeeaeranreeanennenenans 5
1.4.1 Algorithm and Keys.......oorriiiiii i v ene e 6
1.5 Cryptographic Techniques.ocoiiiii i e e e 7
1.5.1 Symmetric-Key Algorithm...........coiiiiiiiii e e 8
1.5.2 Public-Key Algorithm........................ e e e 8
1.5.3 Stream CIPher. . ..o inie it et 9
1.5.4 Block CIphers.uiuiiiiiiein e et e e re e e v raeaa e 10
1.6 Outline of the ThesiS........oiviiiiiii e 11
2 BOOLEAN FUNCTIONS 12
2.1 Introduction.cvviivii i e r et e et 12
2.2 Algebraic Normal FOrm.ooiiiiiiiiii e 14
2.3 Walsh-Hadamard Transform (WHT). ..ot e 15
2.4 Cryptographic Criterions for Boolean Functions...............cocoiiiiiiiiiiiiiiiinieninnnn 15
2.4.1 Balanceaness.ooeininii e e e e 15
2.4.2 Nonlinearity (NL)cooviiiiriitiiiiier e ereare s e e e v e anannaneoreans 16
2.4.3 Correlation Immunity (CI).......c.ovririiiiii i eeeee e e e eneas 18
244 RESIHENCY. ..ot iii it s riereteesirernrreiues et e e rresse et s sressaenseesanesasenneseesreassesensemeesues 19
\%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Important Classes of Boolean Functions............ccocoviiiiiiiiiiiinicniniin

A B 5 1 (T V34 To 6oy ¢ - Rt
ARSIV (U131 0150 o8 R0V 4118 Lo o - SR

SWARM INSPIRED ARTIFICIAL LIFE TECHNIQUES

B T INtrOdUCHON. . ..o et e e e e

3.2 Ant Colony Optimization.oooviiiiiiiri it e e e er e
321 ACOAIZOMAML ..ot

3.3 Particle Swarm OptimiZation..........oociiiriieniriiiiarierrerieierenreerenrsinesncinne
3.3 1 PSO AIOTIIMN. . ..ovieeee et ee ettt a e

3.4 SearCh SPaCe. .. it e e e e nens

3.4.1 Vector Spaces and Permutation Spaces...........coovveviiiiniiniiiiiniineninienen,
3.4.2 Dealing with Permutation Spaces in Optimization Techniques........................

3.5 Optimization Heuristics for Cryptanalysis of Classical Ciphers....................ooooe

3.6 Evolutionary Search for Boolean Functions.............oooviiiiiiiiiiiiiii i

CRYPTANALYSIS OF SIMPLE SUBSTITUTION CIPHERS

4.1 ClassiCal CIPhers.ooviniiiii et e et it e ra e e e e e es
4.2 Simple Substitution Ciphers.iviii v e ae s
4.3 Attacks on Simple Substitution Ciphers...........ccovvviiiiiiiiiiiii e

4.3, 1 N-Gram S atiStI0S. .ot eitr ittt ittt e e e e e e irr e rneetneneannneens
T 0 e O 1T 11 o1 s T)« RO

4.4 Ant Colony Optimization (ACO) AtacK.......cccivriieiiiii e
4.4.1 ACO for Permutation SPace..........cvevivivniriiinieiiiirieeerinrrenseeanerneaeenen
4.4.2 AlgOorithim.......oviiiiiiin e Tt
4.4.3 Experimental Results.........coovuiiiiiiiiiiiiiiiiei i e cre e e e raanee

4.5 Particle Swarm Optimization (PSO) Attack..........coiiviiiiiiiiiirr e,

4.5.1 PSO for Permutation SPace.........coevrieurtierieintereiieeevaresenereeaennaeieeaeanrees
4.5.2 AlGOTItRINI. .. .o e ettt err e aene
4.5.3 Experimental Results.........cooiiiiiiiiiiiiiiiiiiii e et e e rreeeae e

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 SPECTRAL INVERSION CONSTRUCTION OF
BENT AND RESILIENT FUNCTIONS

I I 6114 ¢oe 13 1ot 4 To) 1 H PP
5.2 Spectral Inversion Technique for Boolean Functions..............ccvvviiiiiiviinininiiininn
5.3 Suitable Cost FUNCHON.ciiitii i it v e e eeee e e a e aeas
5.4 Reducing the Search SPace.......o.viriviiiierit ittt eieeee e e ee e
5.5 Reselient Function ConstrucCtion.o.oiviviii it it i iiirei i iree e cennenaeaesraeannes
5.5.1 Construction 0f (6,2,3,24).......ccuiviiiiiiecicicteee e eeeerene s svesrne st sseessssaeressserensssssnens
5.5.2 Construction 0f (6,3,2,16).....ccceiiecciccrirreiiniiieesree e seressreesaesess s ssessnssssesnsesssansnssees
5.5.3 Construction Of (7,2,4,56)......cccvvrmreeerrrreeeseeieesrsseressesresrissesssesrssssssrnssrssssessssensees
5.5.4 Construction 0f (7,3,3,48)....c..vriieirireerieterenreereriersersescsrnseereesessssevsessoressesssesnsssaens
5.5.5 Construction 0F (7,4,2,32)....cccoereerieerirnirrenernnreessireee s e ssssessesesessesassessessenanssesne
5.5.6 Construction Of (8,3,4,112)...ucciiiiriiicrieeee s cceeerre e e e sere s sn s e e senessessenseerssanenane
5.5.7 Construction 0f (8,4,3,96).....cccviiviirirrrireeeriesrereee s s ereiressne s e se s e ssssssaesnsessvessnnn sees
5.5.8 Construction 0f (9,3,5,240)....c..coiviviiirieiee et ettt ae s ann
5.5.9 ConStruction 0f (9,4,4,224)........ccevvcuieieiireeceeieeretvere et sresers st besre s e e ens
5.5.10 Construction of (10,4,5,480).......ccccirrreierenrerien e ereecrrsees e s seesreeess e aesasnnsnes

5.6 Bent Function ConsStruction.oviirt it et e es e e e e e e eaees

REFERENCES

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

55

55

56

58

58

60
60
61
61
62
62
62
63
64
64

65
65
66
66
68

68
69

70

List of Figures

Figure 1.1: A typical secure communications SyStem...........ocvvvviiieiieeininnen 6
Figure 1.2: General classification of encryption systems...........ccoveeveernvnennen. 8
Figure 1.3: An example for a 6-bit linear feedback shift register..................... 9
Figure 1.4: LFSR-based stream CIpher........c...ovoviieiiiiiiniiieeiiirieecenieenens 10
Figure 3.1: An example withreal ants.............c.coooiiiiiiiiiii i 28
Figure 4.1: Number of corrected key elements versus the

amount of known ciphertext (for ACO attack)...........ccoevviiiinninnen 47
Figure 4.2: Percentage of corrected characters versus the

amount of known ciphertext (for ACO Attack).............cooiviininnnn 48
Figure 4.3: Error distribution for bi-gram based system for ACO attack

(100 random keys and 900 known ciphertext characters)................ 48
Figure 4.4: Particle position ﬁpdate SHAtEZY. .ot 52
Figure 4.5: Number of corrected key elements versus the amount

of known ciphertext (for PSO attack)............ccoovvvviiiiiiiiniininnn. 53
Figure 4.6: Percentage of corrected characters versus the amount

of known ciphertext (for PSO Attack)............oeeeiiiiiiiiiiiinn, 54
Figure 4.7: Error distribution for bi-gram based system for PSO attack

(100 random keys and 900 known ciphertext characters)................. 54

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 2.1: Distance between fand all affine functions.....................ooeenent. 17

Table 2.2: Truth table for function f(x)=x @ x, @x;..coviiiiiiin 18

Table 2.3: Walsh Transform of £ccoooiiiiniiii 22

Table 2.4: The upper bound on nonlinearity given by theorem 1..................... 24

Table 4.1: Example of a Simple Substitution Cipher...........c.ccooeviiiiiinin 39

Table 4.2: Uni-gram (1-gram) Statistics of English Language........................ 41
X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wi(f)
d(f,8)

CcI

ANFD

NL

1,6y
Ppbest

Pgbest

List of Notations

The set of binary numbers

The set of binary »n tuples
XOR operation
A variablein Z7 or GF(2)
The Hamming weight of f
The Hamming distance between two Boolean function f'and g
Correlation immunity
Order of resiliency
Algebraic normal form degree
The nonlinearity of f

Walsh Hadamard Transform
Pheromone evaporation rate

Weighting factor on pheromone trail and a priori distribution of
choice for ant algorithm

Learning factors for PSO algorithm

Particle best position for PSO algorithm

Global best position for PSO algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Cryptography and Cryptanalysis

The prosperity of mankind owes a great deal to the skill of communications, and a
major aspect in this skill is the capability of communicating in writing. From the most
primitive days of writing, individuals felt the need to limit their information to a
restricted group of people. So the individuals developed ideas by means of which their
communications could be made unintelligible to those who had not been provided with
the special information needed to decode that message. The technique of hiding the
meaning of the message started a new area of study known>as cryptography. As people
learnt to hide messages, it didn’t take others a long time to realize the advantages to be
gained from intercepting that secret information, and that led to a continuous battle
between the code makers and code breakers. Cryptanalysis is the study of breaking the
coded message, and cryptology which was for a long time used as a synonym of
cryptography has recently been changed. In the last half century, the modern definition of
cryptology became widely adopted. This modern definition classifies cryptology as a
general term that encompasses cryptography and cryptanalysis as its main component
classes.

Traditionally, cryptography only deals with the encryption process of the original

messages, and cryptanalysis deals with the decryption of that encrypted messages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, both cryptography and cryptanalysis are totally related. The developments in
one field always reflect on the other field because when the methods of cryptography
improve, the need for better methods of cryptanalysis grows. Conversely, as cryptanalysts
become more skillful in breaking messages, cryptographers feel the need for better ways

to encipher them.

1.2 A Brief History

The word cryptography came from the Greek kryptds, ‘hidden’, and graphein
‘write’; it is the art and science of making communications unintelligible to all except the
intended recipient. Again, the word Cryptanalysis, from the Greek kryptds, ‘hidden’, and
analyein, ‘to loosen’, is the art and science of breaking the secrets hidden by
cryptography.

Cryptography is one of the oldest fields of technical study we can find records of.
The records go back at least 4,000 years [1]. Since writing was developed and examples
survive in stone inscriptions and papyruses showing that many ancient civilisations,
including the Egyptians, Hebrews and Assyrians, developed cryptographic systems.

The first recorded use of cryptography was done by the Spartans as early as 400
B.C. They employed a cipher device called a "scytale" to send secret communications
between military commanders. The scytale consisted of a tapered baton around which
was wrapped a piece of parchment inscribed with the message. Once unwrapped the
parchment appeared to contain an incomprehensible set of letters, however when

wrapped around another baton of identical size the original text appears [2].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Julius Caesar used a system of cryptography (the ‘Caesar Cipher’) which shifted
each letter 3 places further through the alphabet (e.g. CIPHER to FLSKHU). This
technique worked for quite long before people learned how to read it.

In 1379 Gabriel de Lavinde made cryptology a more formally understood science
when he published ‘Circa’, the first European manual on cryptology.

In the 1600’s Cardinal Richelieu created a card with holes in it and used it to write
a secret message on a paper through the holes. After finishing writing the secret messagé,
he used to remove the card and fill up the blanks of the paper by writing letter in a way
that the whole letter seems like a normal letter. So people who don’t have the card with
the holes can not read the secret message [3].

Early in the 15™ century, an Arabic author, Qalgashandi, wrote down a technique
for solving ciphers using the average frequency of each letter of the language [1] [4].

In 1948, Shannon published “A Communications Theory of Secrecy SYstems”
[5]. Shannon was one of the first modern cryptographers to attribute advanced
mathematical techniques to the science of ciphers. Shannon's analysis demonstrates
several important features of the statistical nature of language that makes the solution to
nearly all previous ciphers very straightforward. Perhaps the most important result of
Shannon's famous paper is the development of a measure of cryptographic strength called
the 'unicity distance'. The unicity distance is a number that indicates the amount of
ciphertext required in order to uniquely determine the plaintext of a message. It is a
function of the length of the key used to encipher the message and the statistical nature of

the plaintext language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For further information about the history of cryptology, the reader is referred to

[1].

1.3 Cryptographic Goals

Of all the information security objectives, the following four form a framework
upon which the others will be derived: (1) privacy or confidentiality, (2) data integrity,

(3) authentication and (4) non-repudiation [6].

1.3.1 Privacy or Confidentiality

The service used to keep the content of information from all but those authorized
to have it. Secrecy is a term synonymous with confidentiality and privacy. There are
numerous approaches to providing confidentiality, ranging from physical protection to

mathematical algorithms which render data unintelligible.

1.3.2 Data integrity

Data integrity addresses the unauthorized alteration of data. To assure data
integrity, one should have the ability to detect data manipulation by unauthorized parties.

Data manipulation includes insertion, deletion, and substitution.

1.3.3 Authentication

This service relates to identification. This function applies to both entities and
information itself. Two parties entering into communication should identify each other.
Information delivered over a channel should be authenticated as to origin, date of origin,
data content, time sent, etc. For these reasons this aspect of cryptography is usually

subdivided into two major classes: entity authentication and data origin authentication.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Data origin authentication implicitly provides data integrity (for if a message is modified,

the source has changed).

1.3.4 Non-repudiation

Tilis service prevents an entity from denying previous commitments or actions.
When disputes arise due to an entity denying that certain actions were taken, a means to
resolve the situation is necessary. For example, one entity may authorize the purchase of
property by another entity and later deny such authorization was granted. A procedure

involving a trusted third party is needed to resolve the dispute.

A fundamental goal of cryptography is to adequately address these four areas in

both theory and practice.

1.4 A Secure Communications System

In this section, we introduce some of the basic cryptographic terminologies. A
message is called plaintext. Encryption is the process of disguising a message in such a
way as to hide its substance. An encrypted message is called ciphertext; and the process
of turning ciphertext back into plaintext is called decryption. As shown in Figure 1.1,
plaintext is encrypted with the help of encryption algorithm by the sender and going to
the receiving end through an insecure channel and the receiver is turning back the
ciphertext back into the original plaintext by decrypting the ciphertext using decryption
algorithm. But while ciphertext is going through the insecure channel, cryptanalyst might
intercept the ciphertext and if the encryption algorithm is not that strong he might be able
to break the ciphertext and he can listen, insert, delete or modify the message. So a good

algorithm is necessary for a secure communications system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Enc(.)

Plaintext

Insecure channel

Dec(. >
. / “ Original
Ciphertext Plaintext
.
Cryptanalyst
1-listen 2-Insert
3-Delete 4-Modify

Figure 1.1: A typical secure communications system

1.4.1 Algorithm and Keys

A cryptographic algorithm is called a cipher, which is the mathematical function
used for encryption and decryption.

Sometimes the security of an algorithm is based on keeping the algorithm works a
secret. This type of algorithm is called restricted algorithm. But these types of algorithms
are inadequate by today’s standard because of the fact that if a user leaves the group of
users, other must switch to a new algorithm. These types of algorithms allow no quality
control or standardization. Every group of users must have their own unique algorithm.
They can not buy or use off-the-shelf hardware or software products because others can

buy the product and learn the algorithm. They need to write their own algorithms and

implementations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To overcome these problems modemn cryptography uses a key, denoted by X .
This key can be any one of a large number of values. The range of possible values of the
key is called the keyspace. Both encryption and decryption operation use this key.

The plaintext is denoted by M and ciphertext is denoted by C. The encryption

function dependent on the key K is E operates on M to produceC,1.e. E,(M)=C.

In the reverse process, the decryption function dependent on the same key K
is D, operates on C to produceM ,ie. D (C)=M .

Since the whole point of encrypting and decrypting a message is to recover the
original plaintext, the following identity must hold,
Dy (Ex(M))=M .

The best thing about these algorithms is that all of the security in these algorithms
is based on the keys; none is based on the details of the algorithm. So it doesn’t matter if
anybody knows the algorithm, as long the particular key used by the user is hidden the
message is safe.

As the keys play such an important role in cryptosystem, a necessary condition for an
encryption scheme is to secure the key. So, the keyspace must be large enough to
preclude exhaustive search. It should be noted here that securing key by increasing

keyspace is a necessary step but sometimes this is not enough.

1.5 Cryptographic Techniques

Cryptographic techniques are typically divided into two types: symmetric-key and

public-key (Figure 1.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.5.1 Symmetric-Key Algorithms

A cryptographic system is said to be a symmetric-key system when encryption
key can be calculated from decryption key and vice-versa. In most of the cases the
encryption key and the decryption key are the same [7]. The main drawback is that the

sender and the receiver should somehow exchange the key in a secure way.

Cryptographic
Techniques
Symmetric Public
Key Key
Stream Block
Cipher Cipher

Figure 1.2: General classification of encryption systems.

1.5.2 Public-Key Algorithms

A cryptographic system is said to be a public-key system if the key used for
encryption is different from the key used for decryption. Furthermore, the decryption key
can not be calculated from the encryption key [7]. A public key algorithm uses two keys:
a public key and a private key. The public key is known to everyone and the private or
secret key is known only to the recipient of the message. An important element to the

public key system is that the public and private keys are related in such a way that only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the public key can be used to encrypt messages and only the corresponding private key
can be used to decrypt them.
Both symmetric-key and public-key algorithms can be divided into two

categories: stream cipher and block cipher.

1.5.3 Stream Cipher

A stream cipher produces a pseudo-random sequence of bits which are exclusive-
OR’ed with the plaintext to produce the ciphertext. In stream cipher, plaintext digits are
encrypted one at a time. Many stream ciphers make use of the linear feedback shift

register (LFSR). Figure 1.3 illustrates a linear feedback shift register defined by the

primitive polynomiall+x’ + x° + x°.

M Me
\ L
A '
> ———» Output

Figure 1.3: An example for a 6-bit linear feedback shift register

A periodic LFSR is defined by a feedback polynomial of degree L, called the
length of the LFSR. When the feedback polynomial is primitive and of degree L, the
output sequence of a maximum length LFSR is periodic with period 2“-7 and is called an
m-sequence. One particular example of LFSR-based stream ciphers is the nonlinear

combiner (Figure 1.4) which combines the output of & LFSR’s using a nonlinear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X1
LFSR 1 P Plaintext
Z Stream
X2 > C Ciphertext
LFSR 2
d Non-
; Linear
, Combiner
E
] Xn d
LFSRn Zn
Pn Cn
@r1T—

Figure 1.4: LFSR-based stream cipher

Boolean function to obtain the keystream. Thus, the combiner requires a nonlinear
Boolean function of k& inputs. The keying material for this cipher is generally the initial
contents of the LFSR’s. In some cases the feedback polynomials are assumed to be public
knowledge, along with the combining function. A cryptographic weakness with some
LFSR-based stream ciphers is that the output sequence from the LFSR is correlated to the
output keystream sequence of the generator. Hence, the design of these non-linear
combining Boolean functions is of great importance in stream cipher in order to stand
against different cryptanalytic attacks. In other words, if the nonlinear combining

function is not properly designed, then an attacker may be able reconstruct the keystream

sequence.

1.5.4 Block Ciphers

A block cipher is an encryption scheme which breaks up the plaintext messages to

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be transmitted into strings called blocks of a fixed length L, then encrypts one block at a
time. When encrypting, a block cipher takes L-bit block of plaintext as input, and output
a corresponding L-bit block of ciphertext. The exact transformation is controlled by the
secret key. Decryption is similar; the decryption algorithm takes an L-bit block of
ciphertext together with the secret key, and yields the original L-bit block of plaintext.
Block ciphers can be contrasted with stream ciphers; a stream cipher operates on
individual digits one at a time. The distinction between the two types is not always clear-
cut; a block cipher, when used in certain modes of operation, acts effectively as a stream

cipher (for example, output feedback mode (OFB)).

1.6 Outline of the Thesis

Chapter two gives some of the mathematical background and the necessary
definitions required for the Boolean functions construction.

In chapter three, two swarm inspired optimization techniques, Ant Colony
Optimization (ACO) and Particle Swarm Optimization (PSO) are described in details.

In chapter four, we show how both PSO and ACO techniques are successfully
applied for the cryptanalysis of simple substitution ciphers.

In chapter five, we use spectral inversion technique with swarm inspired
optimizer PSO to construct several Boolean functions of different cryptographic
properties (bent and resilient functions).

Finally, in chapter six, a summary of the results and directions for future works

are given.
The results presented in chapter four appeared in [8][9]. A part of the results

presented in chapter five was published in [10][11].

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Boolean Functions

2.1 Introduction
A Boolean function is a {0,1}-valued function defined on the set Z , of all binary

words of a given length n. Boolean functions are used in several different types of
cryptographic applications, including the design of block ciphers, stream ciphers, and
hash function [6].

The most basic representation of a Boolean function is by its binary truth table.

The binary truth table of a Boolean function of n variables is denoted f(x) ,
where f(x)e {0,1} and x = {x,,x,,....,x,}, x; €{0,]}, i =1,....,n. The truth table contains
2" elements corresponding to all possible combinations of the » binary inputs.

Another representation of a Boolean function is over the set {1,-1}. The polarity
truth table of a Boolean function is denoted f’ (x) , where fix)e{0,1} and
f(x) = (-1’ =1-2f(x). It is also important to note that XOR over {0,1} is equivalent
to real multiplication over {1,~1} . Thus if, A(x) = f(x) ® g(x) then i;(x) = f (x).&(x).

Example: Let f(x,,x,)=1x, ® x,x,, then it can be represented by the binary truth

table as [f(0,0) f(1,0) f(0,1) f(1,1)]=[0 0 1 0] and by the polarity truth table as [1 1 -1 1].
Two fundamental properties of Boolean functions are Hamming weight and

Hamming distance.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hamming weight

The Hamming weight of a Boolean function is the number of ones in the binary truth
table or equivalently the number of -1 in the polarity truth table [12]. So the Hamming

weight of a Boolean function wt(f) is given by

wi(f)= "3 fx) = %(2" SNi)

xeZ; xeZy

Hamming distance
The Hamming distance between two Boolean functions d(f,g) is the number of

positions in which their truth tables differ. It can be calculated from either the binary truth

table or the polarity truth table as follows:

d(f,8)= S (f()Dg(x) = —;-(2" -3 F .2

xeZy xeZy

A linear function, L, (x), selected by w € Z] is defined as
L(x)=w-x=w,x, Quw,x,®...0,x,.
An affine function is one of the form:
A, xX)=0-xDc,
where ce Z,.

The Hamming distance to linear functions is an important cryptographic property.

Ciphers that employ nearly linear functions can be broken easily by a variety of methods

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

such as linear cryptanalysis [13]. Thus the minimum distance to the set of affine

functions is an important indicator of the cryptographic strength of Boolean functions.

2.2 Algebraic Normal Form

The Algebraic Normal Form (4ANF) describes a Boolean function in terms of an
XOR sum of logical AND products of sub-sets of input variables. Any Boolean function

f(x) of n variables admits a unique (ANF) and can be written as:

i=n
f(X)=a,P,_ ax C—Dls;';ean axx; ®..Da, xx,.x,.

The ANF can be derived from the binary truth table in a binary matrix
transformation, the Algebraic Normal Form Transformation (ANFT). The ANFT matrix is
its own inverse, so the binary truth table may also be obtained from the ANF using the
same ANFT operation. The most important cryptographic property related to the ANF is
the algebraic normal form degree of a Boolean function, which is equal to the number of
variables in the highest order product term with nonzero coefficient (ANFD). We refer to
functions of degree two as quadratic, and function of order three as cubic. Affine
functions are those Boolean functions of degree at most one.

Example: Let f(x)= [0101101010100110], then f{x) expressed in its algebraic
normal form is given by:

f(x)=x ®x, Dxx,x, Dx,
And its algebraic normal form degree is 3.
Example: Let f(x)= [0000111111110000], then f{x) expressed in its algebraic

normal form is given by:

JS(x)=x,Dx,

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

And its algebraic normal form degree is 1. Thus fis a linear function.

2.3 Walsh-Hadamard Transform (WHT)

The Walsh-Hadamard Transform expresses a Boolean function in terms of its
correlation with all linear functions. Several important cryptographic properties are
expressed directly in terms of Walsh transform values.

The WHT of a Boolean function is calculated from the polarity truth table as:

F(CO) _ Z(_l)f(x)G)w.x)

xeZ;

The Walsh transform is sometimes called the spectral distribution or the spectrum
of a Boolean function.

Example: Let f(x)=[01101001001011 0 1], then the spectrum of the

Boolean function f is given by

Fw)=[00004-44120000-44-44].

2.4 Cryptographic Criterions for Boolean Functions

2.4.1 Balancedness

For cryptographic Boolean functions, it is usually desired that there are equal
number of 0’s and 1’s in the binary truth table. When this is the case, the function is said
to be balanced.

Example: Let f(x)=[00011110]. Since the number of 0’s in f is equal to the

number of 1’s, then f(x)is said to be balanced.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The balancedness of Boolean function can be defined from Walsh transform of f'.
If F(0) =0 then the function is balanced.
Example: The Walsh transform of the function f(x)=[0110100100101101], is

F(w)=[00004-44120000-44 -4 4], and as F(0) =0 the function is balanced.

2.4.2 Nonlinearity (NL)

The nonlinearity (VL) of a Boolean function is defined as the minimum Hamming
distance between f and the set of affine functions [14]. Complementing a Boolean
function’s binary truth table does not change the nonlinearity, so the magnitude of the

correlation to all linear functions, of which there are 2", is to be considered. The
Hamming distance between a pair of functions can be determined by evaluating both

functions for all inputs and counting the disagreements. This process has complexity
0(2*"). 1t follows that determining the nonlinearity in this naive fashion will require
O(2*") function evaluations, which is infeasible even for small 7.

Example: Let n=2, f(x)=x, ®x, ®x,x, and a, € Z,.Then any affine function

can be expressed as

A4(x)=a,Pax Da,x,.

By taking all the combinations of g,'s , we can generate all the affine functions

for n =2 and they are represented in Table 2.1.

To find the nonlinearity of f we calculate the distance between f and all affine functions

that are presented in Table 2.1. The minimum Hamming distance is the NL of f'.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Affine functions
f AL 1A A3 A3 | As [Ag | A7 | Ag
0 010001 1 1 1
1 011 011 1 0|1 0
1 01011 1 1 11010
1 011 1701110011
d(f,Ai) | 3 |.1 1 1 1 31313

Table 2.1: Distance between fand all affine functions.
dmin=1 = NL=1.

The nonlinearity of f'can be obtained from the Walsh transform of f as follows:
NL = ! 2"
~ 5@ —max | F(@)).

Using the fast Walsh transform the complexity of calculating the nonlinearity is

reduced to O(n2"). Clearly in order to increase the nonlinearity, max__,, F(w) should be

decreased. Note that a function is uncorrelated with linear function

L,(x) when F(w)=0 . For cryptography, it would be desirable to find Boolean

functions which have all WHT values equal to zero, since such functions have no
correlation to any affine functions. However, it is known [15] that such functions do not
exist. A well known theorem, widely attributed to Parseval [16], states that the sum of the

squares of the WHT values is the same constant for every Boolean function,

Y Fw)=2".

weZy
Thus a tradeoff exists in minimizing affine correlation. When a function is altered
so that its correlation to some affine function is reduced, the correlation to some other

affine function is increased.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example: Let f(x)=[0111]. Then the spectrum of the Boolean function is given

by[-2222]. Thus max__, F(w)=2 and hence the NL is equal to 1.

Example: Let f=[1100]. Then the spectrum of the Boolean function is given by

[0 0 -4 0]. Thus max wezi F(w)|=4 and hence the NL is equal to 0.

2.4.3 Correlation Immunity (C/)

A Boolean function is said to be correlation immune of order m if the distribution
probability of its output is unaltered when any m of its input are fixed [17].

So the function f(x,,x,,.......x,) is degree m correlation immune if,
Pr(f(x)=1|x, =a;,,x, =a; oerrerrerern. X, =a;,)=Pr(f(x)=1)
where, i, € {1,2,...n} and j € {1,2,...m}

Example: Consider the linear function f(x)=x, @ x, @ x,

x| x, | x [
010 {10 10
0|0 1 1
0 |1 0 1
0 |1 1 0
1 10 10 1
1 10 1 0
1 1 0 10
1 1 1 1

Table 2.2: Truth table for function f(x)=x, ®x, Dx,

If we fix x; to 0, then we have:

Pr(Z =1| x, =O)=Pr(f(x)=1)=% .

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly if we fix x, to 1, then we have:

PH(Z =1|x, =1)=Pr(f(x)=1)=% .

Similarly, fixing x, and x; individually with 0 and 1 the distribution probability of the
output remains unaltered. Fixing x, x, , x, x; and x; x; with 0 and 1 also do not change
the distribution probability of the output. But if x, x, x;, all are fixed to 0 or 1 the

distribution probability of the output changes. So the function is a degree 2 correlation

immune function.

2.4.4 Resiliency

A Boolean function is said to be resilient of order m [16] if it is correlation

immune of order m and it isvalso balanced.

There are some other cryptographic criterions for Boolean functions, such as
Autocorrelation, completeness, output Bit Independence Criterion (BIC), Strict
Avalanche Criterion (SAC), higher Order SAC and Propagation Criterion (PC).

Discussions of these criterions are not relevant for the work reported in this thesis.

2.5 Important Classes of Boolean Functions

In this section we detail some properties of two important classes of cryptographic

functions: bent functions and resilient functions.

2.5.1 Bent Functions

Bent functions, is an important class of cryptographic Boolean functions. It was

defined and first analyzed by Rothaus [18] who showed that binary bent functions exist

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

only when the dimension n of the vector space Z; 1is even. Several properties of bent

functions were noted by Rothaus, including a characterization in terms of Hadamard
matrices. Two large classes of bent functions were also presented in his paper. Further
properties and constructions and equivalence bounds for bent functions can be found in

[19], [20], [21], [22]. Kumer, Scholtz and Welch [23] defined and studied bent functions

fromZ] to Z,. Bent functions have been the subject of great interest in several areas

including cryptography. In fact, the Canadian government block cipher standard (CAST

[24]) is designed using these functions.

Properties of Bent Functions

1. A Boolean function f is called bent if all the Walsh transform coefficients have

the same absolute value, i.e., | F (@) | is constant for all . By using Parseval’s theorem, f

z
2

is a bent function if and only if | F(@w)}=2% for all w and since | F(w)]| is an integer

then # should be even.

2. Bent functions achieve the maximum possible nonlinearity. The nonlinearity of

any bent function is given by
.
NL=(2""-22)
This means that the Hamming distance of f to every affine function is maximum and

equal to (2" + 271).

3. Bent functions are never balanced. However, for very large n, they become

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

statistically indistinguishable from balanced functions.

4, The order (algebraic degree) of bent functions is at least 2 and not more than% ,

i.e. 2< ANFD sg.

Bent functions of higher algebraic degree are preferred from cryptographic point of view

5. f is bent if all its derivatives
D f(x)=f(x)® f(x+5)

are balanced, where s is any non zero vector in Z; [18].

6. All the bent functions have zero autocorrelation for all non-zero s inZj , i.e.
7, (s)=0,

where, 7,(s)= Y. f(x) f(x D).

2.5.2 Resilient Functions

Another important class of Boolean functions for cryptography is that of resilient
functions. These functions play a central role in stream cipher design. In the standard
model of these ciphers the output of several independent Linear Feedback Register
(LFSR) sequences are combined using a nonlinear Boolean function to produce the
keystream. This keystream is bitwise XORed with the message bitstream to produce the
cipher. In 1984 Siegenthaler [17] pointed out that if the combining function is not chosen
properly, then the whole system is susceptible to a divide-and-conquer attack. He
introduced the concept of m-th order correlation immunity for combining functions as a

measure of their resistance against such correlation attacks. He also showed that for an n-

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variable function, of degree ANFD and order of correlation immunity m, the following

holds:

m+ ANFD < n
Further if the function is balanced then
m+ ANFD <n-1

Later on, Guo-Zehn and Massey [25] introduced an equivalent definition of
resilient functions using the Walsh transform of the Boolean function by the following

equation:
F(w)=0 0wi(w)<m

Example: Let f=1[01011010]

<
ok
N
W
S
9]
(=)}
~

)
[
[
[\
—
[\
o
W

a
wit(f)
F(w) |0]0]0]|0|0[8]0]0

Table 2.3: Walsh Transform of f

From Table 2.3, we can see that F(w) of Hamming weight 1 is zero and F(0) is also

zero, and then the function is resilient with resiliency degree 1.

Nonlinearity of Resilient Functions

The maximum possible nonlinearity of m-resilient Boolean functions was

discussed in many papers. It is well-known that the nonlinearity of a Boolean function

A A
doesn’t exceed 2" —22 [18]. Let NL(n) denote the maximum possible nonlinearity

of an n-variable function. Also denote the nonlinearity of an n-variable, m-resilient

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function by NL(n,m). Then for even n bent functions achieve the maximum nonlinearity

" . (-1
(2""' =22). Forodd n,and n <7, NL(n) = 2"" —2 2 . For some small values of m

and »n the exact values of maximal nonlinearity are known. For higher values of n, Sarkar
and Maitra [14] found a non trivial upper bound on the nonlinearity of resilient functions.

Their work is presented by the following theorem:

Lemma 1: If n23 and m<n-3 then the Walsh values of m-th order resilient function

on n variables satisfy [F(@)|=0mod 2™ [14].
Using lemma 1, it is possible to obtain an upper bound on the nonlinearity of an n-

variable, m-resilient function represented by the following theorem.

Theorem 1 [14].

1) Ifn is even and m +1 > g-—l , then NL(n,m) < 2" — 2™,

2) If n is even and m +1 512’-—1 ,then NL(m,m)<2"—22 —2m,
3)If nisodd and 2™ > 2" -~ NL(n), then NL(n,m)<2"" —2™.
4) If n is odd and2™" <2"" ~ NL(n), then NL(n,m) is the highest multiple of 2"

which is < NL(n).

’Before we proceed, we would like to introduce few notations for future
convenience. By an (n, m, ANFD, NL) function we mean an n-variable, m-resilient
Boolean function with algebraic normal form degree ANFD and nonlinearity NL. By [n,
m, ANFD, NL] we denote an unbalanced function with the same notation as above. Any

component is replaced by ‘-’ if we do not specify it, e.g., (n, m,-, NL) if we do not wish to

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specify the algebraic degree.

Table 2.4 represents the upper bound on NL(n,m) given by theorem 1.

m| 0 1 2 3 4 5 6 7 8
n

5 12 12 8 0

6 26 24 249 169 0
7 56 56 | 56791 489 32 0

8 |118¥ | 116" | 112 | 11299 96" 64 0

9 2449 2449 | 240 | 240® | 22490 [192 | 128 | 0

10 | 4947 | 492® | 488 | 480" | 480" | 448 | 384 | 256 | 0

Table 2.4: The upper bound on nonlinearity given by theorem 1.

MAn algorithm to construct (7, 2, 2, 56) and (10, 4, 5, 480) functions has been presented
in [26].

@ This function is not achieved yet: (8,0, 7, 118).

® Computer search has yielded to (8, 1, 6, 116) [17].

® Computer search has yielded to (8, 3, 4, 112), (9,4,4,224), (10,3,6,480) [14].

®) The existence of (9, 0, -, 244), (9, 0, -, 242), (9, 1, -, 244) functions were linked to
the question of whether nonlinearity of more than 240 for n =9 is exist or not [27]. Very
recently, unbalanced functions with nonlinearity 241 for » =9 are constructed [28].

© Computer search has yielded to [9, 3, 5, 240] [29].

™ An algorithm to construct (10, 0, -, 492) functions has been presented in [30].
(B)Computer search has yielded (10, 1, 8, 488) [31]. Using the weight divisibility results

of resilient function involving the algebraic degree, it can be shown that the functions

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(10, 1, -, 492), (10, 2, -, 488) if all exist are in the form of (10, 1, 8, 492), (10, 2, 7, 488)
[32], [33].

OMn our work we constructed several examples of (6,2,3,24), (6,3,2,16), (7,2,4,56),
(7,3,3,48) (7,4,2,32) , (8,3,4,112) , (8,4,3,96), (9,3,5,240), (9,4,4,224), (10,4,5,480). The
constructions with examples of these functions are described in chapter five. Note that the
existence of (9,3,5,240) was a open problem and we are the first to show some examples

for this function.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

Swarm Inspired Artificial Life
Techniques

3.1 Introduction

The human made system, that posses some essential properties of life or living
beings are called artificial life (ALife). Study of artificial life demonstrates how
biological trends can help out with computational problems. These techniques, inspired
from biological phenomenon are known as artificial life techniques. There are lots of
computational techniques inspired by biological systems. For example: artificial neural
network [34] and genetic algorithm [35]. The first one is a simplified model of human
brain and the second one is inspired by the human evolution. However, apart of these
biological systems, there are some other types of biological systems too. Swarm
intelligence is one of them. Swarm intelligence is more of a social system. More
specifically, the collective behaviors of simple individuals interacting with their
environment and each other.

There are two popular swarm inspired methods in computational intelligence
areas: Ant colony optimization (ACO) [36] and particle swarm optimization (PSO) [37]
[38].

While ACO is inspired by the behaviors of ants PSO is inspired by the social

behavior of bird flocking or fish schooling. Both techniques have successful application

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in discrete optimization problems.

3.2 Ant Colony Optimization

Ant Colony Optimization [36] is a heuristic optimization method for solving
different combinatorial optimization problems. It is a population based approach which
borrows ideas from biological ants. The social behaviors of ants have been much studied
by the scientists and from their behavior the computer scientists came up with the idea of
this optimization.

Experiments with real ants showed that ants go from the nest to the foed source
and backwards, then after a while, the ants prefer the shortest path from the nest to the
food source. Real ants are capable of finding the shortest path from their nest to a food
source without using visual cue [39]. Ants have a special way of communicating
information concerning food sources. While walking, ants secrete an aromatic essence on
the ground, called pheromone. The other ants will follow the path of greater pheromone
trail with higher probability and as they follow the path, they as well will secrete
pheromone there. So the pheromone of that path which greater number of ants are
following will increase and as the pheromone trail of that path increases more ants will
follow that path. Since ants passing through food source by shorter path will come back
to the nest sooner than ants passing through longer paths, the shorter path will have a
higher traffic density than that of the longer one. Thus a single ant will follow the shortest
path with higher probability [36].

For example an experimental setting is shown in Fig. 3.1. Consider a path along

which ants are walking from nest to food and vice versa (Fig.3.1.(a)). Suddenly an

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nest Food

o
o oM o
mm|muMMnm|WM|u#ﬁ#nn|mnwml|lmlu#u)m?#mmmmmmm
W e e T

(a)

Nest - o o 4o Food

“|I|l"l"'ml""ll"wﬁm’"l*" “llllﬁ# l"Illl"l#lIllmlllw"““““""l
ad o o

Obstacle

(b)

Food

o
Nest 5?# -

o o o
|Illl"Illllml llllll Ilw%llll#"l Illllllwl 1] 111 leullllllllllll!
T e % we

o
¥
¥

Obstacle

(c)

e Tl

L %,

Nest »* *, # %_’% o Food

LU Il"l”li# mﬂll UL "II"i* Ill|lllll§l#llllmll TIU T T
"'”2,,,,,, L *ﬂ“ s T

o

Obstacle

(d)

Figure 3.1: An example with real ants. (a) Ants follow a path between nest and food. (b)

An obstacle is placed on the path between nest to food. (c¢) Ants can choose to go around
the obstacle following one of the two paths with equal probability. (d) Ants are following

the shorter path as more pheromone is laid down on this

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

obstacle is placed on the path between nest to food (Fig.3.1.(b)). At position C (if going
from nest to food source) or position D (if returning from food source to nest) have to
dectde which path will it follow (upper path or downer path) (Fig.3.1.(c)).The choice is
influenced by the intensity of the pheromone trails left by preceding ants. Initially for the
first ant which reaches point C can choose either path CAD or CBD with equal
probability as there is no previous pheromone on any path. But as the path CAD is
smaller than path CBD an ant will take less time to get to the D point from B point by
path CAD than by path CBD. As a result number of ants following the path CAD will be
higher than that of path CBD per unit time. As more ants follow path CAD more
pheromone will be on that path and other ants will start following that path. So after some

times all ants will follow the path CAD (Fig.3.1.(d)) which is the shortest path.

3.2.1 ACO Algorithm

Ant colony optimization algorithm was first used to produce near-optimal
solutions to the traveling salesman problem (TSP) [36]. Given a collection of cities, TSP
can be stated as the problem of finding a minimum length closed tour that visits each
town once.

At first, all ants (m) are placed on the towns in a random fashion. An ant £ will
choose to go to the next town j from the current town i by the intensity of the
pheromone trails 7(i, j) left by preceding ants during previous iterations and also by the
a priori desirability of the choice7(7, j) . The choice of next node j from current node i

for an ant k& is given by probability p, (i = j)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0, if jalready visited
i =)= TG G,)Y
226 RY [nG, b))

k not visited

otherwise.

Here, the a priori desirability of the choice 7(i, j) is called visibility, and is given by

o]
n@,j)= d_(z_,_ﬁ

where, d(i, j) is the distance between the two cities.
a and f are two controlling parameters that controls the relative importance between
pheromone trail and visibility. On the first run (iteration) when there is no pheromone
trail on the edge of the towns (i, j)= 0; the probability of choosing next town totally
depends on visibility.

A tabu list is maintained to force ant to make legal tours. The tabu list disallows
the ant to visit the same town more than once before a tour is completed.

Once a tour is completed, every ant updates the pheromone 7(i, j) over the edge

@-) along its visited path as follows:

v,) =7(,)+ A0, j)

where,
At(Q, j) =) Av (i,))
k=1

and,

Qo . o

, =, if ant k uses the edge(i —>
ar,oy=11, ¥ geli =)
0, otherwise.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Here, O is a constant and L, is the tour length of & -th ant.

After each iteration, a portion of the pheromone of the edge is evaporated
according to a local updating rule,
(i, j) = px1(i, J)
where, p is the evaporation rate and the value of p is smaller than 1. It prevents the

unlimited accumulation of pheromone trail on the edges. It increases diversity of the

system.

3.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based, self-adaptive stochastic
optimization technique developed by Eberhart and Kennedy [37] [38] in 1995, inspired
by social behavior of bird flocking or fish schooling,

Like other population-based optimization methods such as genetic algorithm
(GA), the particle swarm algorithm is initialized with a population of random solutions in
the search space [40]. However, unlike GA, typical PSO has no evolution operators such
as crossover and mutation. The PSO algorithm works on the social behavior of particles
in the swarm. Therefore it searches for optimum solution by simply adjusting the
trajectory of each potential solution towards its own best location and towards the best
particle of the entire swarm over generations [38] [41] [42]. However recently
evolutionary PSO (EPSO) [43][44] -has also been proposed. The main advantage of PSO
over other population-based optimizer is that, it is very easy to implement and there are
very few parameters to adjust and it has also the ability to quickly converge to a

reasonably good solution.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.1 PSO Algorithm

PSO simulates the behaviors of bird flocking. If we consider a scenario that a
group of bird is searching for food in an area and there is only one piece of food available
in that area and the birds don’t know where the food is but they know how far the food is
in each iteration. So the best strategy to find the food is to follow the bird which is
nearest to the food.

PSO learned from the scenario and used it to solve the optimization problems. In
PSO, each single solution is a ‘bird’ in the search space and is called ‘particle’. Each
particle keeps track of its coordinates in the search space which are associated with the
best solution it has achieved so far. This value is called particle best or pbest. Another
value is the best value achieved so far by any particle in the population. This value is
called global best or gbest. After finding the two best values each particle updates its
velocity (v, ;) and position (F} ;) towards its pbest and gbest locations as follows:

Velocity update:

v j =v;; +eyr(Ppbest; ; — p; ;) +cyry (Pgbest,; ; "Pi,j)

Farticle position update :

Where, Ppbest, ; and Pgbest, ; are the particle best and global best position of the

particles respectively. r, , », are uniformly distributed random variables where,

1<n,n<0andc,, ¢, are learning factors. These learning factors made PSO an attractive
optimization technique. Varying these factors it is possible to use PSO in a wide variety

of applications.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Search Space

While solving a problem, the objective is to find a solution which will be the best
among others. The space of all feasible solutions (the set of solutions among which the
desired solution resides) is called search space. There are two types of search spaces for

optimization problem, vector spaces and permutation spaces.

3.4.1 Vector Spaces and Permutation Spaces

Unlike vector spaces where all the elements are independent from each other, in
permutation space the elements are totally dependent to each other as the order of the
elements which constitute the n-tupla of values is the fact which differentiates one
solution from another solution [45].

Suppose a three variable function, f(x,y,z), is being optimized in vector space
and x,y,z all takes values from 0 to 3. So, a combination of values of (x,y,z)=(3, 3, 3)
can be possible. But if x, y,z are assumed as positions of a vector then the optimization
problem changes into a permutation problem and in this case no two elements from

X, y,z can have the same position. In this case only followed 6 solutions are possible.

(x,5,2)=(1,2,3),(2,3,1),(1,3,2),(3,2,1),(2,1,3) and (3, 2, 1)

3.4.2 Dealing with Permutation Spaces in Optimization Techniques

Regardless of optimization technique, dealing with permutations is always bit
harder than dealing with vectors of parameters. There are few techniques that have been
applied to solve permutation problems:

1. Penalty function: In this technique if input sequence is not a legal permutation a

penalty factor is added to its cost function. As far the input sequence will be from

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a legal permutation the penalty factor will be larger. This is a very popular
technique used with genetic algorithm

2. Only legal input sequence generation: In this technique during the iterative
process only legal input sequence are generated. A tabu list can be maintained,
where all the illegal elements of a permutation will be saved and generation of
those elements will be prohibited through out the iteration. Another way is to use
swapping between the elements of a permutation. Simulated annealing and hill
climbing algorithms use this technique for permutation space.

3. Simple mapping from vector space to permutation space: Simple mapping
from vector search space to permutation space can be constructed by sorting the
elements of the position vector in an ascending or descending order to get an

ordered set and use the index of the position as legal sequence.

3.5 Optimization Heuristics for Cryptanalysis of Classical
Ciphers

The Arabs were among the first to make significant advances in cryptanalysis. As
discussed before Early in the 15" century, Qalqashandi, wrote down a technique for
solving ciphers using the average frequency of each letter of the language. But it is only
last twenty-five years; several optimization heuristics have shown promise for automated
cryptanalysis of different ciphers especially classical ciphers [46].

One of the early proposals was given by Peleg and Rosenfeld [47]. They modeld
the problem of breaking substitution ciphers as a probabilistic labeling problem. Every

coded alphabet was assigned probabilities of representing plaintext alphabets and they

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

updated the probabilities using the joint letters. Using this scheme in an iterative way
they were able to break the cipher.

Carrol and Martin [48] developed an expert system approach to solve simple
substitution ciphers using hand-coded heuristics.

Forsyth and Safavi-Naini [49] recast the problem as a combinatorial optimization
problem and presented an attack on simple substitution cipher using simulated annealing
algorithm.

Spillman ef. al [50] presented an attack on simple substitution cipher using
genetic algorithm. Clerk [46] re-implemented the genetic algorithm and simulated
annealing attack in order to compare them and also evaluate a third technique using tabu
search. He successfully deciphered both substitution and transposition ciphers.

Bahler and King [51] used trigram statistics and relaxation scheme to iterate
towards the most probable key as previously done by Peleg and Rosenfeld.

Lucks [52] used a word pattern dictionary and search over it with the constraint
that all ciphertext characters must decrypt to the same plaintext character.

Hart [53] improved upon this method by directing this combinatorial search
towards more frequent English words.

Jakobsen [54] introduced a fast algorithm for the cryptanalysis of simple
substitution ciphers based on a process where an initial key guess is refined through a
number of iterations. In each step the plaintext corresponding to the currént key was
evaluated and the result was used as a measure of how close we are in having discovered
the correct key.

Carroll and Robbins [55] presented an attack on polyalphabetic substitution cipher

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using relaxation algorithm. King [56] again used the same attacking technique on
polyalphabetic ciphers and obtained better results than them.

Matthews [57] utilized the genetic algorithm in cryptanalysis of the transposition
cipher.

Recently, Russell, Clark and Stepney [58] successfully used Ant Colony
Algorithm (ACO) in breaking transposition ciphers.

Optimization heuristics have also been used to cryptanalyze other modern ciphers.
For example, Hernandez et al [59][60][61] used genetic algorithm successfully to
cryptanalize TEA (Tiny Encryption Algorithm) and XTEA (Extended Tiny Encryption

Algorithm).

3.6 Evolutionary Search for Boolean functions

The design of Boolean functions and S-boxes with desirable cryptographic
properties such as high nonlinearity, high algebraic degree, and reasonable order of
correlation immunity are very important for cryptographic research. The application of
evolutionary techniques in this specific field of research started only in the last decade.
The first attempt at local search algorithm was made by Forre [62] in 1990. But the
results were poor and generated a little interest. Latter Millan, Clark and Dawson used the
different evolutionary techniques to successfully design many Boolean functions with
different properties. They used Hill Climbing algorithm to generate Boolean functions
with high nonlinearity [63] [64] [65]. They also used genetic algorithm for the same
purpose [66].

Dimovski and Gligoroski [12] also used both genetic algorithm and hill climbing

algorithm to generate highly nonlinear Boolean functions.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Clark and Jacob [67] introduced the use of simulated annealing algorithm in
Boolean function design. Clark, Jacob and Stepney designed S-boxes [68] and they also
found Boolean function with particular desirable cryptographic properties of a small
number of variables [69] using simulated annealing algorithm. Clark, Jacob, Maitra and
Stanica used spectral inversion technique with simulated annealing to solve some open

problem of Boolean function with specific properties [29].

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Cryptanalysis of Simple
Substitution Ciphers

4.1 Classical Ciphers

Classical ciphers [1] [4] are the earliest schemes of cryptography. These ciphers
were developed and used before the computer age, and are usually carried out by pen and
paper or by simple mechanical devices rather than by electronic media. Although, from
the security point of view, classical ciphers are no match to the recently developed
ciphers, they have not lost their importance because most of the commonly used modern
ciphers use classical ciphers as their building blocks. In fact, most complex algorithms
are formed by mixing substitution and transposition in a product cipher. Modern block
ciphers such as DES and AES iterate through several stages of substitution and
transposition. Given their simplicity, and the fact that they are used to construct other
ciphers, the classical ciphers are usually the first ones considered when researching new
attack techniques such as the ones discussed in this chapter.

There are usually two types of classical ciphers, namely transposition ciphers and
substitution ciphers. The substitution ciphers can yet be devided into to types, simple
substitution ciphers and polyalphabetic substitution ciphers.

In this literature we only concentrate on the cryptanalysis of simple substitution

ciphers.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Simple Substitution Ciphers

Simple substitution cipher is a well-known cryptosystem. It is also known as
mono-alphabetic substitution ciphers. It is the simplest form of substitution ciphers. Each
symbol in the plaintext maps to a different symbol in the ciphertext [46]. It is a one-to-
one substitution. The simple substitution cipher used in this work operates on the English
alphabet of 26 letters (“A-Z”). We assume that all the punctuations and structure
(sentences/paragraphs, space characters, and newline characters) are removed from the

plaintext in order to hide these obvious statistics from the ciphertext.

Key:
ABCDEFGHIJKLMNOPQRST UVWXYZ
XNYAHPOGZQWBT S FLRCVMUEK IJDI

Encryption:

Plaintext:
SWARMOPTIMIZATIONISAPOWERFULTOOL
Ciphertext:
VKXCTFLMZTZIXMZFSZVXLFKHCPUBMFFB

Table 4.1: Example of a Simple Substitution Cipher

Let x be an n-character alphabet {xy,x;x2x3,.....x.1}, and y is also an n-character
alphabet {K(xy), K(x;), K(x2), K(x3),...... , K(x,.1)}, where K:x— y is a one to one
mapping of every alphabet of x to the corresponding alphabets of y . Here 'K’ is the
cipher key function which can be looked at as a permutation of the 26 character. The

transmitter enciphers the plaintext into ciphertext with a predetermined key function (K)

and sends it to the receiver. The receiver deciphers the ciphertext to plaintext with the

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inverse key function (K).
An example for a simple substitution cipher key and encryption operation is

shown in Table 4.1.

4. 3 Attacks on Simple Substitution Ciphers

For an alphabet of 26 characters there exist (26! =~ 4.03291461 x 10 =~ 2%)
possible keys for a simple substitution cipher. This number is far too large to allow any
kind of exhaustive search attack - even on the fastest of today’s computers. However, one
special property of simple substitution cipher that makes it relatively easy to
cryptanalyze, is that the language statistics remain unchanged by the encryption process
and hence frequency analysis presents a basic tool for breaking classical ciphers. In
simple substitution ciphers the language statistics remain unchanged by the encryption
process but in encrypted message the language statistics is the permutation of the original
message language statistics. So the search for the corresponding language frequencies can
be found using swarm inspired artificial life algorithms (described in Chapter 3) to
decrypt the original message from the encrypted message.

The length of the intercepted ciphertext message which is being cryptanalyzed
plays a major role in the cryptanalysis process. As the length of intercepted ciphertext
increases the chance of recovering the original message (or entire key) also increases.
Study show [46] if intercepted ciphertext length is 1000 or more then it is possible to
decrypt almost hundred percent of the message correctly. Note that in practice it is
impossible to find a simple substitution cipher key which differs in exactly one place

from the correct key.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.1 N-Gram Statistics

In all languages, certain letters of the alphabet appear more frequently than others.
The n-gram statistics is the character frequency statistics. It indicates the frequency

distribution of all possible instances of ‘n’ adjacent characters.

English Percentage
Alphabet of
Frequency

8.13254

1.47264
2.79902
423232
12.6696
2.35908
1.76541
5.9186

7.11386
0.0820647

0.672795

3.96895
2.43187
7.0501
7.36819
1.89857
0.104446
5.61341
6.61197
9.62056
3.03097
0.920797
2.3532
0.188771
1.55222
0.0680481

N[X Sl < 8lwn| =IO~ | ol Z| || R <=|—|T| Q|1 m|o|a|wE| >

Table 4.2: Uni-gram (1-gram) Statistics of English Language

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example ‘E’ is the most common uni-gram (1-gram) in English language, and

3

one of the common bi-gram (2-gram) in English language is ‘TH’. These n-gram
statistics can be used to measure the fitness of a suggested decryption key. In Table 4.2
the uni-gram (1-gram) statistics of English language alphabets are given. This statistics
are calculated from an English book named “20,000 Leagues under the Sea” written by
famous science-fiction writer Jules Verne. In our cryptanalysis process we only consider
uni-gram and bi-gram statistics. The bi-gram (2-gram) statistics used for the cryptanalysis
process is also calculated from the same book.

It can be noted that to obtain a readable message it is not necessary to recover
each elements of the key. Experiments [46] have shown that the correctly determination
of the key element for the five most frequent alphabets of English language can recover

almost fifty percent of the message. And the eleven most infrequent characters account

for only ten percent of the message.

4.3.2 Cost Function

The general idea to compare candidate keys for simple substitution cipher is to
calculate the cost for certain candidate key by comparing the n-gram statistics of the
decrypted message using the candidate key with those of the reference language statistics
(discussed in 4.3.1). Using optimization techniques with this cost functions the objective
is to minimizing the cost function, that the decrypted message n-gram statistics can match
the reference language statistics as close as possible. The candidate key generating the
lowest cost for decrypted message is regarded as the solution of the cryptanalysis

problem.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following equation is used as the cost function equation for our cryptanalysis

problem:

Cost(K) = 4, ZIR —DK(|+2, Y|RE.

ce{A,B,.. ¢,c2€{4,B,...,2}

DK(B;I 2€2) (4 1)

Here. RV,R? and DK/,DK® be the reference language uni-gram and bi-gram
statistics and decrypted message uni-gram and bi-gram statistics (using a candidate key

K) respectively. The superscript U and B denote the uni-gram and bi-gram. The values 4,
and A, allow assigning of different weights to each of the two n-gram types. In this
literature we individually consider purely uni-gram (A, =1 and 4, =0) and purely bi-
gram (4, =0 and A, =1) statistics and compare the results.

Forsyth and Safavi-Naini, in their simulated annealing attack on the substitution
cipher [49] and Jakobsen in his attack [54] used a very similar cost function based on

purely bi-gram statistics.

Cost(K) = Z|R(c o~ DKC . (4.2)

¢,¢,€{4,B,...Z}
Spillman et al [50] used both uni-gram and bi-gram statistics for his genetic

algorithm attack on the simple substitution ciphers.

B
R(Cn €2)

Cost(K) = ZIR DKU)|+ >

ce{A,B,.. c.c€{4,8,..

-DK; | 4.3)

Andrew Clerk [46] also used uni-gram and bi-gram statistics for his attack on
simple substitution ciphers using optimization techniques like genetic algorithm,
simulated annealing and tabu search. He also used tri-gram statistics successfully for the

same.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R —DKE

(c) (c1.62)

Cost(K) =4, Z[R(C) ~ DK/

(c) ’1 Z

cef{d,B,..., ¢.cr6{A4,B,..

T T
R(Cl Cz :€3) DK(CI 1€2,€3)

+4, D

€,Cy,C3€{4,B,..

4.4)

Here, superscript T is used to denote tri-gram statistics.
The calculation of trigram statistics is usually an expensive task compare to the
accuracy gain can be achieved using tri-gram statistics. So we, like most of the other

researchers, omitted tri-gram statistics based calculation in our cryptanalysis problem.

4.4 Ant Colony Optimization (ACO) Attack

The use of Ant Colony optimization for cryptanalysis problem is rather straight

forward and modeled similarly to the TSP problem discussed in chapter three.

4.4.1 ACO for Permutation Space

As stated in chapter three ACO uses tabu list to overcome the permutation

problem. The typical ACO algorithm is designed to solve permutation problems.

4.4.2 Algorithm

For our cryptanalysis problem each complete path constructed by ants is a
permutation of the nodes (alphabetic characters) corresponding to a key. So in our
algorithm, we use the distance between the unigram frequency of the reference language
statistics and the target test key to represent the a priori desirability of choice of a

particular key element,

i.e. we set, d@i,j)= |R,U - DKf.jl “4.5)

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The system is initialized with a group of ants moving across a fully connected

bidirectional graph of 26 nodes (n,,n,,........ s My). A tabu list is maintained to prevent any

ant from visiting the same node twice. Every possible decryption key

K=k, kyy.... 2 Ky6) to a unique path along this graph

The algorithm proceeds by iterating through the following three basic steps:

1. Construct a solution for all ants: At each node, each ant has to make a
(statistical) decision regarding the next node to visit. At the first iteration, all the ants will
move randomly. However, on subsequent iterations, the ants’ choices will be influenced
by the intensity of the pheromone trails left by preceding ants during previous iterations.
A higher level of pheromone on a given path gives an ant a stronger stimulus and thus a
higher probability to follow this path. In particular, at nodei, the ant expand its tour to

node j with probability p that is given by:

0, node j alreadyvisited
. . a PO ﬂ
('__) ')= [T(lxl)] [77(1,1)] , h ise.
T S e e P LD

k not visited

Here, 7(i, j) is the pheromone trail and 7(i, j) is the a priori desirability of choice.

where, n@,j) = 4.7)

1
d(i,)
45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Setting a = 0 in equation 4.6, corresponds to the system that relies only on the uni-gram
statistics for the cryptanalysis. For the bi-gram based system, the optimum value of a and

[is found by a heuristic trial and error.

2. Do a global pheromone update: Once the tour is completed, every ant updates

the pheromone z(i, j) over the arc (i — j)along its visited path as follows:

7(i, j) =70, j)+Az(, j) (4.8)
h Az(i ')—————1—— 4.9
where, »J) = Cost(K) 4.9)

the equation for Cos?(K)is given in equation (4.1).

3. Evaporate pheromone: After each iteration, a portion of the pheromone of the

edge is evaporated according to a local updating rule,

76, j) = px 70,) p<I (4.10)

such that the probability of the selection of that edge by other ants decreases. This
prevents construction of similar paths by the set of ants and increases the diversity of the
system. The rate of evaporation provides a compromise between the rate of convergence
and reliability of convergence. Fast evaporation causes the search algorithm to be stuck at
local optima, while slow evaporation lowers the rate of convergence.

After enough iteration of the algorithm, the pheromone of the good edges which

are used in constructing of low-cost paths will increase and the pheromone of the other

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

edges will evaporate. Thus, in the higher iterations the probability of constructing low-

cost paths increases.

4.4.3 Experimental Results

Throughout all of our experiments, the number» of ants and number of passes
(iterations) were set to 1000 and 100 respectively. The rest of the parameters were varied
in an ad-hoc way to optimize the results. The results have been taken by using both
purely uni-gram and bi-gram statistics. Figure 4.1 shows how the average (over 100
randomly selected keys) number of corrected key elements varies with the amount of
known ciphertext. Usually in other cases we run our algorithm and take the best result but
here in this case, because of the random nature of the algorithm it is better to represent
the results by averaging the results of a large number of attacks. In this way we can get a

good idea on the ability of the algorithm.

5B 4

-~ bigram

01 — unigram .

151

10

Number of Corrected Key Elements (Max 26}

U 1 Il I 1 . 1 i 1 1
50100 200 300 400 500 600 700 800 900 1000
Amount of Known Ciphertext

Figure 4.1: Number of corrected key elements versus the

amount of known ciphertext

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 T T T T T T T T

90+ 4

—©~ bigram
—+ unigram

801

70| .
60 |- .
50 .

40 .

30 N

q .
20F -

Percentage of Corrected Characters

10F -

U 1 1 1 L] 1 i 1 1
50100 200 300 400 500 600 700 80O SO0 1000
Amount of Known Ciphertext

Figure 4.2: Percentage of corrected characters versus the
amount of known ciphertext

Number of Errors

Figure 4.3: Error distribution for bi-gram based system
(100 random keys and 900 known ciphertext characters)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly, Figure 4.2 shows the percentage of corrected characters versus the
amount of known ciphertext. Figure 4.3 shows the error distribution for 100 randomly
selected keys when the amount of known ciphertext is 900 characters.

For this case, the average and variance of the number of errors in the recovered

key characters are 1.72 and 2.9303 respectively.

4.5 Particle Swarm Optimization (PSO) Attack

For PSO dealing with permutation space is not as straight forward as in the case

of ACO.

4.5.1 PSO for Permutation Space

In traditional PSO, the particle is encoded as a string of positions, which represent
a multidimensional space. All the dimensions typically are independent of each other,
thus the updates of the velocity and the particle are performed independently in each
dimension. But for a problem which deals with permutation space and since the elements
are not independent to each other in this case; it is possible to get two or more positions
with same value after the update, which breaks the permutation rule. So the tradition
PSO can not be used to solve permutation problem. One idea is, as stated on chapter three
and suggested in [70] [71], simple mapping from search space to permutation space by
sorting the elements in the particle position vector to get an ordered set

(P,,P, P

imy 27 imy 2 7 im

......... , P,) where, (B, 2F, 2P, 2.....2F,) to get the permutation

(7,755 W3 peenns 7T,). But our experiments indicate that the non linearity inherent in the

sorting process limits the success of this approach when the size of the permutation grows

above 20 elements.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another strategy was proposed by Hu et al [72] to overcome the permutation
problem.

In typical PSO system, for updating the position of the particle the velocity is
added to the particle on each dimension. So, when the velocity is larger the particle may
explore distant areas. In the new updating method [72], it also does the same thing in a bit
different way. In this strategy when the velocity is larger, the particle is more likely to
change to a new permutation sequence rather than adding the velocity value to the
particle. If the velocity of a position in a particle is high the probability of a swap taking
place in that position increases. Each position randomly determines if there is a swap
with a probability determined by the velocity corresponding to this position. If a swap is

required, the position is set to the value of same position in gbest by swapping a pair of

values in the particle. But this type of modification in the particle position has a problem.

Since the particle tries to follow the gbest, it would stay in its current position forever
when it was identical to gbest . So a mutation factor is added. The particle will randomly

swap one pair of positions in the permutation if the permutation is identical to gbesr .

4.5.2 Algorithm

In our cryptanalysis problem each solution in the parameter space represented by
each particle is a permutation of the alphabetic characters corresponding to a key. At first
we initialize a set of particles with.random permutation sequence for the alphabetic
characters.

Each particle keeps track the best solution it has achieved so far (pbest) and the

best value achieved so far by any particle in the population (gbest) is also calculated. We

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also keep track of the positions responsible for pbest and gbest , which is denoted as
Ppbest and Pgbest respectively.
After finding the particle positions for two best values, each particle updates its

velocity (v; ;) and position (F, ;) towards its pbest and gbest locations.

Velocity update:
This velocity update is done individually for each position of a particle by the

following equation:

v;,; = Vi tan(Ppbest; ;- p; ;)+cn(Pgbest; ;—F, ;) 4.11)

here, r,, r, are random numbers vary from 0 to 1, and¢,, ¢, are learning factors. Suitable
values forc, and c, is found by a heuristic trial and error.

Particle position update:
For updating particle positions we slightly modified the permutation strategy
suggested by Hu et al [72] and used that strategy for the particle updating in our problem.

We can describe the updating process by the following steps:

Step 1. The velocity is limited to an absolute value and normalized to the range of O to 1

by dividing all the velocities by the maximum velocity.

Step 2: For each position we determine if there is a swap with a probability determined

by the velocity corresponding to this position.

Step 3: If a swap is required, the position is set to the value of same position in gbest by

swapping value.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V ames 25 50 5 15 40 sens

'V' | 05/1.0(0.1({03 (0.8} ...

W | 2 1612612 9 | ...

P l..l 11926 5] 16] we

Pl ol1l16|26] 5] 9]..

Figure 4.4: Particle position update strategy [72]

Step 4: This step is identical to step 3 except that the update is done with respect to the

position in pbest .

Figure 4.4 shows the velocity update strategy proposed by Hu et al [72]. It should
be noted that Step 4 above is not described by them. However, our experiments show that
instead of their mutation proposal, using this extra step helps in reducing the number of

iterations required before a good solution is found.

4.5.3 Experimental Results

Throughout all of our experiments, the number of particles and number of passes
(iterations) were set to 500 and 200 respectively. The rest of the parameters were varied

in an ad-hoc way to optimize the results.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25¢

—— Bigram
—&~ Unigram

20+t

10

Number of Corrected Key Elements (Max 26)

g

U 1 i 1] I Il 1 | 1
50100 200 300 400 500 600 700 800 900 1000
Amount of Known Ciphertext

Figure 4.5: Number of corrected key elements versus the
amount of known ciphertext

Figure 4.5 shows how the average number of corrected key elements varies with
the amount of known ciphertext by using both purely uni-gram and purely bi-gram
statistics. The average has taken over 100 randomly selected keys like we have done for
the ACO attack. Similarly, Figure 4.6 shows the percentage of corrected characters
versus the amount of known ciphertext. In Figure 4.7 the error distribution for 100
randomly selected keys are shown when the amount of known ciphertext is 900. The

average and variance of the error distribution is 0.04 and 0.0792 respectively.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 T T } t

90

—+— Bigram
~—&— Unigram

80

Percentage of Corrected Characters

0 1 1 1 1 1 1 1] 1
50100 200 300 400 500 600 700 600 800 1000
Amount of Known Ciphertext

Figure 4.6: Percentage of corrected characters versus the
amount of known ciphertext

U —

90 .

70 4

50 &

40 .

20 .

10 .

0 1 !
0 1 2 3 4 5 6 7

Number of Errors

Figure 4.7: Error distribution for bi-gram based system
(100 random keys and 900 known ciphertext characters)

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Spectral Inversion Construction of
Bent and Resilient Functions

5.1 Introduction

There are lots of techniques to construct different classes of Boolean functions.
Many people have suggested many techniques to construct bent and resilience functions.
Evolutionary techniques are one of the recently proposed construction techniques for
generating this type of functions. In our work, we used swarm inspired artificial life
technique to generate bent and resilient functions with different properties. In our study
we used spectral inversion techniqué to find legitimate Boolean functions. We also used
concatenation of two (sometimes four) Boolean functions with non-intersecting Walsh
spectrum to construct a Boolean function of higher inputs. This concatenation technique

proved to be very effective for construction of Boolean functions of inputn > 7.

5.2 Spectral Inversion Technique for Boolean Functions

Various important cryptographic criteria such as balancedness, nonlinearity,
correlation immunity, and resiliency are defined in terms of the Walsh Hadamard values .
of that function. From a given spectrum of Walsh-Hadamard values it is possible to
identify whether the function met those properties. Clark et al [29] introduced the idea of
Boolean functions construction by spectral inversion and applied it for the construction of

several cryptographic functions of interest. The basic idea is to start with a set of Walsh

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coefficients {W(0) ,W(1) ,........ W(2" 1) } that satisfy the required constraints

(nonlinearity, resiliency, etc). However, since it is not guaranteed that such a spectrum#,
will be the Walsh spectrum for some Boolean function, our problem is reduced to finding
a permutation Il ={4,,4,,......... ,4,.} such that when is IT applied to the set ¥ the
resulting function obtained by applying the Inverse Walsh Transform to the permuted
spectrum is Boolean.

While using both ACO and PSO for the cryptanalysis of simple substitution
ciphers, we observed that PSO shows a better performance over ACO for solving
optimization problems with a large permutation space. So, for the Boolean functions

construction, we decided to focus only on using PSO.

5.3 Suitable Cost Function

While a few permutations, after Inverse Walsh Transform, will correspond to
Boolean functions, most will not. Note that many permuted spectra may collapse to the
same desired function. With each permutationIT, we can associate a cost that indicates

how far TI(W) is from the spectrum of a valid Boolean function.

For our work, we tried a couple of cost function suggested in [29].
As only a few parameters after inverse Walsh Transform of IT(W), will

correspond to Boolean functions, the inverse value of most of the permutations will not

actually be +1 or -1. Let us consider the inverse Walsh Transform of those functions

as f ={f(0) , f(A) ,........, f(2" =1) }. The association f with a Boolean function b, by

choosing,

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by =+1if f(i)>0
b()=-1if f(i)<0
b(i) = +1 or -1 (randomly chosen) if f(i)=0

The following equation may used as the cost function.

2"-1

Cost = 3 [/ () -~ b()Y

By this equation, each function f generated using optimization technique can be

associated a cost that indicates how far is f from a legitimate Boolean function. This
cost represents how far the Walsh spectrum IT(W) is from a legitimate spectrum of a

Boolean function. However, the problem of this cost function is that it does not directly
represent the distance of the spectrum from a legitimate spectrum of a Boolean function
and thus does not work properly for most of the cases when the number of inputs of
Boolean functions grows more than 6. So, we changed our cost function to a more
efficient one and use it throughout our experiment.

This cost function was developed using Titsworth’s theorem [73]. This State that,

F(w)is a Walsh spectrum of a binary Boolean function if and only if;,

D F(0)F (s ® w) =2 5(s)

where, s e Z} and &(s) =1 if s=0and &(s) =0 otherwise. Clark et al in [29] suggested a

cost function that punishes a deviation from the previous equation.

Cost = (| Y F(@)F(0®s) "

If F(w) is the Walsh transform of a Boolean function f then when s=0 the inner

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

summation should be non-zero (and is constant for all permutations of the spectrum

F(@)). For s # 0the inner term should be zero. The value of R is determined by trail and

error method. However, for most of our constructions of Boolean functions we

usedR=1.

5.4 Reducing the Search Space

For a Boolean function with # input variables, the number of positions in the
permutation space is 2"! . For input n>8 the permutation search space increases
to 2% 1=256! and more. For any optimization technique, this permutation space is a huge
one to handle. To reduce this huge permutation space and generate Boolean functions of
inputn > 8 , we have used a technique of concatenating two or four functions to get the
desired function.

For example, it is possible to construct an (n, m, n-m-1, 2“']-2mﬂ) function where
m> [—;— - 2] from the concatenation of two (n-1, m, n-m-2, 2™%-2™") or four (n-2, m, n-

m-3, 23-2™1 functions with non overlapping Walsh coefficients, if such two or four
functions exist.
Any two functions f and g are said to have non overlapping Walsh transform

coefficients if G(w) # 0= F(w)=0and F(w) # 0= G(w)=0.

5.5 Resilient Functions Construction

_2m+l

The spectrum of any (n, m, -, 2~) function is necessarily three valued

function (0, + 1) where, A =2""? noting that m > [—g - 2] [14]. In our work we consider

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all functions with resiliency degree m >[—’;——2]. These functions with three valued

spectrum are known as plateaued functions [74].

The algebraic degree of the function (n, m, -, 2™'-2™") is always maximum and
equal to n-m-1 [32][33].

We have two types of positions corresponding to zero Walsh coefficients: the
fixed position zeros and the non fixed position zeros. We also have numbers of positive
and negative A . The fixed position zeros are placed in the position in the starting
spectrum corresponding to 0 < w < m (these element remain fixed throughout the search).

These zeros are for the resiliency. Thus the number of fixed zeros is given by

Nfixed 0’ :zm:[:,)

i=0
Then we put the non-fixed position zeros and the positive and negative A in arbitrary

positions in our search space.

From Parseval’s inequality, we have

22"

N, +N_; =(/12):22n—2m~4

By noting that ZF(W) =2""*(N,; - N_;)=%2" then we get

N,;, -N_, =+2""m"2
The numbers of positive and negative coefficients are interchangeable. The
number of non fixed position zeroes is given by
Nnon-fixed 0 = 2" Nfixea 0> + Ny +N_;) .
After putting all the values of the Walsh coefficients in the search space of

particle swarm optimizer (PSO), we use the previously described cost function in PSO to

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

permute the coefficients in such a way that the Inverse Walsh Transform of that spectrum
corresponds to a Boolean function, and that Boolean function will be our desired Boolean
function (n, m, n-m-1, 2'-2™"). Note that in all these cases, we used modified PSO

algorithm as described in chapter 4.

5.5.1 Construction of (6,2,3,24)

For inputn =6, when resiliency m =2, the desired resilient function will be
(6,2,3,24). The initial spectrum will contain 6 ‘16, 10 °-16” and 48 ‘0’s. For retaining the
resiliency degree m =2 of the function, zeros in the positions corresponding to 0 <@ <2
are made fixed throughout the search and the remaining Walsh values (i.e. 6 ‘16°, 10 ‘-
16’ and 26 ‘0’s) are arbitrarily allocated to the remaining positions. Then PSO is used to
permute the above spectrum such the resulting spectrum corresponds to a Boolean
function.

Example:

1110001110001001010010010111100100100110110101010111110000101010

5.5.2 Construction of (6,3,2,16)

For input n =6, when resiliency m =2, the desired resilient function will be
(6,3,2,16). The initial spectrum will contain 1 ‘32°, 3 ¢-32” and 60 ‘0’s. For retaining the
resiliency degreem =3 of the function, zeros in the positions corresponding to 0 < w <3
are made fixed throughout the search. So the number of fixed zeros in this case is 42.
The remaining Walsh values (i.e. 1 ‘327, 3 *-32” and 18 ‘0’s) are arbitrarily allocated to
the remaining positions. PSO is then used to permute the spectrum in such a way that the

resulting spectrum corresponds to a Boolean function.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example:

1001011010010110011010011001011001101001011010010110100110010110

5.5.3 | Construction of (7,2,4,56)

The resilient function of input n =7 and resiliency degree m =2 is (7,2,4,56).
This function can be constructed by concatenating two non overlapping (6,2,3,24). First,

we use PSO to obtain a (6,2,3,24) function f; as described before. To construct the
second (6,2,3,24) function f, which doesn’t overlap f, we need to increase the number
of fixed zeros by fixing zeros in the initial position of F,, where F, has non- zero values
(i.e. F(w)#0= F,(w)=0.). The remaining Walsh values (i.e. 6 ‘16’, 10 ‘-16’ and 10 ‘0’s)
are arbitrarily allocated to the remaining positions and use PSO to construct the non

overlapping resilient function f,. The concatenation of f, and f, generates a (7,2,4,56)
function. Since it is not guaranteed that every f, may have a non overlapping f,, if the
search for f, failed after a pre-specified number of iterations, we have to start all again
by generating a new f, function.

Example:

1110001110001001010010010111100100100110110101010111110000101010
1001011001001011111001000011100110100101011110000001101111000110

5.5.4 Construction of (7,3,3,48)

Using PSO with the initial spectrum that contains 10 ‘32, 6 “-32°, 64 fixed ‘0’s
and 48 non-fixed ‘0’s, we were able to construct a (7,3,3,48) function. We were also able

to obtain (7,3,3,48) function by concatenating two (6,3,2,16) functions.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example:

1001001101000111111010001001011001101001111010000001110100110110
0110110010111000000101111001011001101001000101111110001011001001

5.5.5 Construction of (7,4,2,32)

For (7,4,2,32) the initial spectrum consists with 1 ‘64°, 3 *-64’, 99 fixed ‘0’s and
25 non-fixed ‘0’s. Using PSO for permuting 1 ‘64°, 3 ‘-64’and 25 non-fixed ‘0’s we can
directly construct a (7,4,2,32) function.
Example:

1100001100111100001111001100001101101001100101101001011001101001
1001011001101001011010011001011000111100110000111100001100111100

5.5.6 Construction of (8,3,4,112)

Two non overlapping (7,3,3,48) functions were constructed to construct a
(8,3,4,112) function. For first (7,3,3,48) function the number of fixed ‘0’s were 64 and
for the second function the number of fixed ‘0’s increases to 80. And the number of ‘32’
and ‘-32° were 10 and 6 respectively all trough the construction.

Example:
1001001101000111111010001001011001101001111010000001110100110110
0110110010111000000101111001011001101001000101111110001011001001

1000111001110001011101001000101100111001110001100110100110010110
1001001101101100110000110011110011010100001010110010111011010001

5.5.7 Construction of (8,4,3,96)

The construction of (8,4,3,96) functions was done directly using the PSO. In this
case, the initial spectrum consists with 6 ‘64°, 10 ‘-64’, 163 fixed ‘0’s and 77 non-fixed

‘0’s.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Other constructions were achieved by concatenating two (7,4,2,32) functions.

Example:
1001011010010110010110101010010110100101010110100110100101101001
0110100101101001101001010101101001011010101001011001011010010110

1001101001010110011001011010100101100101101010011001101001010110
1001010110100110011010100101100101101010010110011001010110100110

5.5.8 Construction of (9,3,5,240)

The construction of (9,3,5,240) function is done by concatenating four non-
overlapping (7,3,3,48) functions. The construction procedure is summarized as follows:
1) Use PSO to obtain a (7, 3, 3, 48) function, f;. The initial spectrum should contain 10
‘4+32°, 6 -32° and 112 ‘0’s. Zeros are placed in the position in the starting spectrum
corresponding to 0 < w < 3. These element remain fixed throughout the search) and
the remaining Walsh values (i.e. 10 ‘“+32, 6 ‘-32’ and 48 ‘0’s) are arbitrarily allocated
to the remaining positions.

2) To construct f; use the conditions in step 1 but with 32 nonfixed‘0’s with the extra
condition that F(w)=#0= F,(w)=0.

3) To construct f3 use the conditions in step 2 but with 16 non-fixed ‘0’s and the extra
two conditions that F(w)# 0= F;(w)=0,and F,(@)# 0= F(w)=0

4) To construct f; use the conditions in step 3 but with all ‘0’s fixed, in this case there
are no non-fixed zeros and extra three conditions that
Fi(@)#0= F,(@) =0, Fy(0) #0 = F,()=0, and F;(w)#0= Fy(w)=0.

Since it is not guaranteed that for every (7, 3, 3, 48) we can find another three
functions satisfying the above constraints, if the search failed after a predetermined

number of steps, then go to step 1 and begin with another (7, 3, 3, 48) function.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example:

1010100110011001010101100101101001101001011001011001011010100110
0110010110010110101001100110100101011010011010101001100110010101
1100001101101001100101100110100110010110100101101001011000111100
0011110011000011011010010011110000111100011010011100001111000011
1000010101111010110110100010010100111011110001000101100010100111
1110011000011001000100111110110001100100100110111010110101010010
1111000000100111000111011100101000001111110110001110001000110101
1000101101011100011001101011000101110100101000111001100101001110

5.5.9 Construction of (9,4,4,224)

The construction steps for (9,4,4,224) follows the same way of (9,3,5,240). In this
case, the function is constructed using four non-overlapping (7,4,2,32) functions.

Example:

1100001100111100001111001100001101101001100101101001011001101001
1001011001101001011010011001011000111100110000111100001100111100
1001011001101001011001101001100110011001011001100110100110010110
1001011001101001100110010110011001100110100110010110100110010110
1001011010010110010110101010010110100101010110100110100101101001
0110100101101001101001010101101001011010101001011001011010010110
1001101001010110011001011010100101100101101010011001101001010110
1001010110100110011010100101100101101010010110011001010110100110

5.5.10 Construction of (10,4,5,480)

Similarly, (10,4,5,480) function is constructed using four non-overlapping
(8.,4,3,96) functions.
Example:

1100001100111100001111001100001101101001100101101001011001101001
1001011001101001011010011001011000111100110000111100001100111100
1001011001101001011001101001100110011001011001100110100110010110
1001011001101001100110010110011001100110100110010110100110010110
1001011010010110010110101010010110100101010110100110100101101001
0110100101101001101001010101101001011010101001011001011010010110
1001101001010110011001011010100101100101101010011001101001010110
1001010110100110011010100101100101101010010110011001010110100110

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1001100001010111010110111010100010101101011000100110000101101101
1011011010000110010001101011010100010101110110101110101000011001
0110011110101000101001000101011101010010100111011001111010010010
0100100101111001101110010100101011101010001001010001010111100110
1001001111001001011011000011011001101100001101101001001111001001
0110110000110110100100111100100110010011110010010110110000110110
0001111011100001101101000100101111100001000111100100101110110100
1110000100011110010010111011010000011110111000011011010001001011

5.6 Bent Fuhction Construction

The spectrum of a bent function is always a two valued (+ 4) function. Where,

A=2? . For bent functions, the Number of +4 (N,,) and —4 (N_,) follows the

following equations:
n-1 =
N,, =2""-22

]v_,1 — 2n __(271—1 _25—1)

where, n is number of variables or input for the bent function. The numbers of positive

and negative coefficients are interchangeable.

5.6.1 Construction of 6-variable Bent Function

For 6-varible bent function, the initial spectrum contains 36 ‘8’s and 28 ‘-8’s.
Using PSO, we permute this spectrum with respect to the cost function described before
to construct bent function of 6-variables.

Example:

0011010111110110100010111000010011100111011100011111001101010110

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.2 Construction of 8-variable Bent Function

For n 28, it is hard to construct bent functions directly. So, to make the job
easier, we concatenate two non overlapping functions with 7-variables. Both of these
functions should be three valued plateaued function [74] with spectrum values (0, * 16).
For making the construction easier (by making the search space smaller) we start by
constructing (7,2,4,56) function as described before. Note that for bent functions there are
no resiliency constrains. As the resilient function (7,2,4,56) is a plateaued function and
easy to construct we start with this function. Then for the second function we construct a
(7,0,-,56) function . In the initial spectrum of (7,0,-,56) function we fixed the zeros in the
non-zero positions of the previous spectrum but make the fixed zero position of the
previous function spectrum non-fixed in the current spectrum as we do not need the
resiliency constréin for this function. For both the cases the numbers of +16 and -16 were
same, 28 and 36 respectively. Using PSO, we were able to find this type of functions and
concatenating these two functions we got 8-variable bent function.

Example:
1101111111111101010011110000010000000001101110100000011100101010
1000100010111000001100000011001100001010001110100001100000011011

1110001110001001010010010111100100100110110101010111110000101010
1001011001001011111001000011100110100101011110000001101111000110

5.6.3 Construction of 10-variable Bent Function

The construction of 10-variable Bent function starts with (7,3,3,48) functions.
Using four non overlapping (7,3,3,48) functions, we constructed two non overlapping
(8,3,4,112) functions. Then make the fixed zeros position for the resiliency degree 3 non-

fixed, we construct a (8,0,-,112) using two non overlapping (7,0,-,48). Note that this two

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(7,0,-,48) can not overlap the four (7,3,3,48) functions. Thus, these three functions of 8-
variables do not overlap each other. Then we directly construct a (8,0,-,112) function
which does not overlap any of the three previously constructed 8- variable functions. By
concatenating the two (8,3,4,112) and two (8,0,-,112) functions which do not overlap
each other, we constructed a 10-variable bent function. For the 7-variable functions the
initial spectrum contains 10 ‘32’ and 6 ¢-32’. For 8-variable functions the initial spectrum
contains 28 ‘32’ and 36 “-32’. In this case also starting with a resilient function for bent
function construction is not needed. We use resilient functions to make the search space
smaller and also these resilient functions are plateaued functions which are needed for
this type of constructions.

Example:

1010100110011001010101100101101001101001011001011001011010100110
0110010110010110101001100110100101011010011010101001100110010101
1100011000111001101001100101100100110110110010011001010101101010
1101000100101110000110111110010000101110110100011101100000100111
1100001101111000001111000010110101001011101001011110000101011010
1001011010000111100101101101001001111000001111000010110111000011
1100011100110010001010011101110010011000011011010111011010000011
0011100011001101110101100010001101100111100100101000100101111100
1010101011111111000010100000101000000000010101010101111101011111
1010000011110101111100001111000010101111000001011111111100000000
1010101010101010000100010001000100100010111011100011001100000000
1110111000100010110011001111111101100110011001101110111011101110
1100110011000000111100111100001111111100111100001111111111001111
1100110011000000111100111100001111111100111100001111111111001111
0010010100110001001001010011000111101100010111011110110001011101
111001011010101F111001011010101111100000000010111110000000001011

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, both ACO and PSO were used for automated cryptanalysis of
classical simple substitution ciphers. Based on our experimental results, both PSO and
ACO-based attacks proved to be very effective on various sets of encoding keys.

Previously, PSO was mostly used to solve vector space problems or permutation
problem with small search space. In this thesis, we used a modified version of PSO for
solving optimization problems in a large permutation space.

Our modified PSO optimization was used construct Boolean functions of
cryptographic interest such as bent functions and resilient functions. While previous
works have shown how such heuristic search could equal the best achievements of all
theoretical constructions for eight or fewer inputs, mixing these techniques with some
algebraic ideas, as we have done in this thesis, helps in extending the successful range of
these search techniques.

Using these techniquqs, we affirmatively answered the open problem of the
existence of the resilient function (9,3,5,240) by constructing several examples of this

function.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Future Work

One main disadvantage of heuristic optimization techniques (including ACO and
PSO) is its large sensitivity to parameter variations (e.g. 0, a, f for ACO and ¢,,c, for

PSO). Although fine tuning of these parameters can be done by trial and error, it will be
interesting to find analytical formula for the optimal (regions) of these parameters. Very
recently, an adaptive version of PSO is proposed which is parameter free. The use of this
type of optimization technique can add a more reliability flavor to these search technique
and is worth more investigation.

In our cryptanalysis problem, we only considered pure uni-gram and bi-gram
statistics. It is interesting to try tri-gram statistics in the evaluation function. One may
also try to use a cost function that is based on a weighted combination of the different n-
gram statistics. Finding the optimum weight is a challenging optimization problem given
the fact that there are several other parameters (related to the optimization algorithm
itself) that also need to be tuned.

It is also interesting to extend the application of these optimization techniques to
other cryptographic problems such as the cryptanalysis of some of the newly proposed
block or stream ciphers.

Solving other open problems related to cryptographic Boolean functions (e.g. the

construction of (10,2,-,488)) is a natural extension for the work presented in this thesis.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] D. Kahn, “The Codebreakers: The Story of Secret Writing,” New York: Macmillan,
1967.

[2] http://www.ridex.co.uk/cryptology

[3] http://www.resonancepub.com/homecrypto.htm

[4] Toraham A. “Al-Kindi: The origins of cryptology: The Arab Contributions,”
Cryptologia, vol.16(2), pp. 97-126, 1992.

[5] C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell Systems Technical
Journal, vol.28, pp. 656-715, 1949.

[6] A. Menezes, P. Oorschot, S. Vanstone, “Handbook of Applied Cryptography,” Boca
Raton, FL : CRC Press, 1996.

[7] Bruce Schneier, “dpplied Cryptography 2™ Edition,” John Wiley & Sons, 1996.

[8] Mohammad Faisal Uddin and Amr M. Youssef, “An Artificial Life Technique for
Cryptanalysis of Simple Substitution Ciphers,” Proc. of IEEE Canadian Conference on
- Electrical and Computer Engineering (CCECE 2006), Ottawa, May 2006.

[9] Mohammad Faisal Uddin and Amr M. Youssef, “Cryptanalysis of Simple Substitution
Ciphers Using Particle Swarm Optimization,” Proc. of the Congress on Evolutionary
Computation (CEC '06), pp.2692-2695, July 2006.

[10] Ziad Saber, Mohammad Faisal Uddin and Amr M. Youssef, “On The Existence of
(9,3,5,240) Resilient Functions,” IEEE Transactions on Information Theory, vol. 52(5),
pp- 2269-2270, May, 2006.

[11] Ziad Saber, Mohammad Faisal Uddin and Amr M. Youssef, “On Some Resilient
Functions Constructions using PSO-based Spectral Inversion,” Proc. of the 2006 IEEE
on Swarm Intelligence Symposium, May 2006.

[12] A. Dimovski, D. Gligoroski . “Generating Highly Nonlinear Boolean Functions
Using a Genetic Algorithm,” 6th International Conference on Telecommunications in

Modern Satellite, Cable and Broadcasting Service (TELSIKS 2003), vol. 2, pp.604 — 607,
2003.

[13] M. Matsui, ‘“Linear Cryptanalysis Method for DES Cipher,” Advances in
Cryptology: Proc. of EUROCRYPT ’93, Berlin, pp. 386397, Springer-Verlag, 1994.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[14] P. Sarkar and S. Maitra, “Nonlinearity Bounds and Constructions of Resilient
Boolean Functions,” Proc. of Cypto 2000, pp. 516-533, LNCS 1880, Speinger-Verlag,
2000.

[15] W. Meier and O. Staffelbach, “Nonlinearity Criteria for Cryptographic Functions,”
In Advances in Cryptology: Proc. of EUROCRYPTt *89, LNCS, vol. 434, pp. 549-562.
Springer-Verlag, 1990.

[16] F. J. MacWilliams and N. J. A. Sloane, “The Theory of Error Correcting Codes,”
North-Holland Publishing Company, Amsterdam, 1978.

[17] T. Siegenthaler, “Corrolation Immunity of Nonlinear Combining Functions for
Cryptographic Applications,” 1IEEE Transactions on Information Theory, vol. IT-30,
pp.776-780, oct. 1984.

[18]0. S . Rothaus, “On Bent Functions,” J. Combinatorial theory, vol. 20(A), pp. 300-
305, 1976.

[19] C. Adams and S. Tavares, “Generating and Counting Binary Bent Sequences,”
IEEE Transactions on Information Theory, vol. 36(5) pp.1170-1173, September, 1990.

[20] J. D. Olsen, R. A. Scholtz, and L. R. Welch, “Bent-Function Sequences,” IEEE
Transactions on Information Theory, vol. IT-28(6), 1982 .

[21] R. Yarlagadda and J.E. Hershey, “Analysis and Synthesis of Bent Sequences,”
Computers and Digital Techniques, IEE Proceedings E, vol. 136(2) , pp. 112 — 123,
March 1989.

[22] C. Carlet, “4 Construction of Bent Functions,” Finite Fields and Applications,
London Mathmatical Society ,Lecture Series 233,Cambridge University Press, pp. 47-58,
1996.

[23] P. V. Kumar, R. A. Scholtz and L. R. Welch, “Generalized Bent Functions and
Their Properties,” J. Combinatorial Theory A 40, pp. 90-107, 1985.

[24] C. Adams, “Constructing Symmetric Ciphers Using the CAST Design Procedure,”
Designs, Codes and Cryptography, vol. 12(3), pp. 283-316, November 1997.

[25] X.Zhen, J.Massey, “A Spectral Characterization of Corrolation-Immune Combining
Functions,” IEEE Transactions on Information Theory, vol. 34(3), May 1988.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[26] E. Pasalic, T. Johansson, S. Maitra, and P. Sarkar, “New Constructions of Resilient
and Correlation-Immune Boolean Functions achieving Upper Bounds on Nonlinearity,”
WCC2001 International Workshop on Coding and Cryptography, Electronic Notes in
Discrete Mathematics, vol. 6, Elsevier Science, 2001.

[27] E. Pasalic, S. Maitra, “Construction of Nonlinear Resilient Boolean Functions Using
"Small" Affine Functions,” IEEE Transactions on Information Theory, vol. 50(9),
September 2004.

[28] Selcuk Kavut, Subhamoy Maitra and Melek D. Yucel, “There exist Boolean

n-1
functions on n (odd) variables having nonlinearity> 2" =2 % if and only if n > 7,7
Cryptography ePrint Archive Report, http://eprint.iacr.org/2006/181.pdf

[29] J.A. Clark, J.L. Jacob, S. Maitra, P. Stanica. “Almost Boolean Functions: The Design
of Boolean Functions by Spectral Inversion,” The Congress on Evolutionary
Computation (CEC '03), vol. 3, pp. 2173 - 2180, 2003.

[30] S. Maitra, P. Sarkar, “Construction of Nonlieanear Boolean Functions with
Important Cryptographic Properties,” Advances in Cryptology-EUROCRYPT
2000(Lecture Notes in Computer Science), vol. 2551 in Lecture Notes in Computer
Science). Berlin, Germany, vol.1807, pp. 491-512, Springer Verlag, 2000.

[31] S. Maitra, and E. Pasalic, "Further Construction of Resilient Boolean Fnction with
Very High Nonlinearity,” IEEE Transactions on Information Theory, vol.48, pp. 1825-
1834, July 2002.

[32] P. Sarkar, “Spectral Domain of Correlation-Immune and Resilient Boolean
Functions ,” Cryptography ePrint Archive Report, 2000/49, http://eprint.iacr.org./

[33] C.Carlet, “On the Coset of Weight Divisibility and Nonlinearity of Resilient and
Correlation Immune Functions,” In Advances in Cryptography CRYPTO 1991, pp. 86-
100, Springer Verlag, 1992.

[34] L. Aleksander, and H.Morton, “Adn introduction to neural computing”, Chapman and
Hall (1990) .

[35] David E.Goldberg “Genetic Algorithms in Search Optimization & Machine
Learning” Addison-Wesley Publishing Company, INC. 1989

[36] M. Dorigo, V. Maniezzo, and A. Colomi, “The Ant System: Optimization by a
Colony of Cooperating Agents,” IEEE Transactions on Systems, Man, and Cybemetics.
B, vol.26, no.2, pp. 29-41, 1996.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[37] R. C.Eberhart and J. A Kennedy “New Optimizer using Particle Swarm Theory,”
Proc. of the Sixth Intenational Symposium on Micromachine and Human Science,
Nagoya. Japan. pp. 39-43. 1995.

[38] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. of IEEE Int.
Conf. Neural Networks, 1995, pp. 1942-1948.

[39] R. Beckers, J.L. Deneubourg and S. Goss, “Trails and U-turns in the Selection of the
Shortest Path by the Ant Lasius Niger,” Journal of Theoretical Biology, vol.159, pp.397—
415, 1992.

[40] D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine
Learning,” Reading, MA: Addison-Wesley, 1989

[41] M. Clerc, “The swarm and the queen: Toward a deterministic and adaptive particle
swarm optimization,” Proc. of The Congress on Evolutionary Computation (CEC '99),
vol. 3, 1999, p. 1957.

[42] M. Clerc and JKennedy, “The particle swarm—Explosion, stability, and
convergence in a multi-dimensional complex space,” Proc. of The Congress on
Evolutionary Computation (CEC’ 02), vol. 6, pp. 58-73, Feb. 2002.

[43] Vladimiro Miranda and Nuno Fonseca, “EPSO-Evolutionary Particle Swarm
Optimization, a new algorithm with applications in power systems,” on Proc. of IEEE
T&D Asia-Pacific, vol. 2, pp.745-750,2002.

[44] Vladimiro Miranda and Nuno Fonseca, “EPSO-Best of Two Worlds Meta-Heuristic
applied to power system problems,” The Congress on Evolutionary Computation (CEC
'02), Vol. 2, pp.1080- 1085 ,2002.

[45] Silvio Turrini, “Optimization in Permutation Spaces,” Western Research Laboratory,
Research Report 96/1, November 1996

[46] Andrew Clerk, “Optimisation Heuristics for Cryptology,” PhD thesis, Queensland
University of Technology, 1998.

[47] S. Peleg and A. Rosenfeld, “Breaking substitution ciphers using a relaxation
algorithm,” Communications of the ACM, vol. 22(11), pp.598-605, 1979.

[48] J. Carrol and S. Martin, “The automated cryptanalysis of substitution ciphers,”
Cryptologia, vol.10(4), pp.193-209, 1986.

[49] W. S. Forsyth and R. Safavi-Naini, “Automated cryptanalysis of substitution
ciphers,” Cryptologia, vol.17(4), pp.407-418, 1993.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[50] R. Spillman, M. Janssen, B. Nelson and M. Kepner, “Use of a genetic algorithm in
the cryptanalysis of simple substitution ciphers,” Cryptologia, vol.17(1), pp.31-44, 1993.

[51] D. Bahler and J. King, “An implementation of probabilistic relaxation in the
cryptanalysis of simple substitution systems,” Cryptologia, vol.16(3), pp.219-225, 1992.

[52] M. Lucks, “A constraint satisfaction algorithm for the automated decryption of
simple substitution Ciphers,” In Proceedings of CRYPTO’88, pp. 132-144, 1988.

[53] G. W. Hart, “To decode short cryptograms,” Communications of the ACM,
vol.37(9), pp.102-108, 1994.

[54] Thomas Jakobsen, “A fast method for cryptanalysis of substitution ciphers,”
Cryptologia, pp. 265-274, July 1995.

[55] John M. Carroll and Lynda Robbins. The automated cryptanalysis of polyalphabetic
ciphers,” Cryptologia, 11(3):193-205, July 1987.

[56] John C. King, “An algorithm for the complete automated cryptanalysis of periodic
polyalphabetic substitution ciphers,” Cryptologia, 18(4):332-355, October 1994,

[57] Robert A. J. Matthews, “The use of genetic algorithms in cryptanalysis,”
Cryptologia, 17(2):187-201, April 1993.

[58] M.D. Russell, J.A. Clark, and S. Stepney, “Making the most of two heuristics:
breaking transposition ciphers with ants,” The Congress on Evolutionary Computation
(CEC'03), Vol. 4, pp.2653- 2658, 2003.

[59] J.C. Hernandez, P. Isasi, A. Ribagorda. “Easing collision finding in cryptographic
primitives with genetic algorithms,” The Congress on Evolutionary Computation (CEC
'02), Vol. 1, pp. 535 - 539, 2002.

[60] J.C. Hemandez, P. Isasi .“Finding efficient distinguishers for cryptographic
mappings, with an application to the block cipher TEA,” The Congress on Evolutionary
Computation (CEC '03), Vol. 3, pp.2189 — 2193, 2003.

[61] J.C. Hernandez, P. Isasi . “New results on the genetic cryptanalysis of TEA and
reduced-round versions of XTEA,” The Congress on Evolutionary Computation (CEC
'04), Vol. 2, pp. 2124 - 2129, 2004.

[62] R. Forre, “Methods and Instruments for Designing S-boxes,” Journal of Cryptology,
2(3):115-130, 1990.

[63] W. Millan. A. Clark and E. Dawson. “Smart Hill Climhing Finds Better Boolean
Functions,” Workshop on Selected Areas in Cryptography 1997 (SAC’97), Workshop
Record, pp 50-63, 1997.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[64] W. Millan, A. Clark and E. Dawson, “Heuristic Design of Cryptographically Strong
Balanced Boolean Functions,” Advances in Cryptology, Proceedings of
EUROCRYPT'98, LNCS vol 1403, page 489, Springer-Verlag.

[65] W. Millan and A. Clark and E. Dawson, “Boolean Function Design Using Hill
Climbing Methods,” 4th Australasian Conference on Information Security and Privacy,
ACISP'99, LNCS vol 1587, page 1, Springer-Verlag.

[66] W. Millan, A. Clark and E. Dawson, “dn effective genetic algorithm for finding
highly nonlinear Boolean functions,” First International Conference on Information and
Communications Security, ICICS'97, LNCS vol 1334, pagel49, Springer-Verlag.

[67] J.A. Clark and J.L. Jacob, “Two-Stage Optimisation in the Design of Boolean
Functions,” Proc. of ACISP 2000, LNCS vol 1841, pages 242-254, Springer-Verlag.
2000.

[68] J.A. Clark, J.L. Jacob and S. Stepney, “The Design of S-Boxes by Simulated
Annealing,” The Congress on Evolutionary Computation (CEC '04), Vol. 2, pp. 1533 -
1537, 2004.

[69] J.A. Clark, J.L. Jacob and S. Stepney. “Searching for cost functions,” The Congress
on Evolutionary Computation (CEC '04), Vol. 2, pp. 1517 - 1524, 2004.

[70] W. Pang, K.Wang, C. Zhou, L. Dong, M. Liu, H. Zhang, and J. Wang, “Modified
particle swarm optimization based on space transformation for solving traveling
salesman problem,” Proc. of 2004 International Conference on Machine Learning and
Cybernetics, 2004. vol. 4, 26-29, pp.2342 — 2346, 2004.

[71] L. Cagnina, S. Esquivel, S, and R. Gallard, “Particle swarm optimization for
sequencing problems: a case study,” Congress onEvolutionary Computation, CEC2004.
vol 1, pp. 536 — 541, 2004.

[72] Xiaohui Hu, R.C. Eberhart, and Yuhui Shi, “Swarm intelligence for permutation
optimization: a case study of n-queens problem,” Proc. of the 2003 IEEE on Swarm

Intelligence Symposium, pp.243-246, 2003.

[73] C. Ding , G. Xiao and W. Shan. “The Stability Theory of Stream Ciphers,” Number
561 in Lecture Notes in Computer Science. Springer-Verlag. 1991.

[74] Xian-Mo Zhang and Yuliang Zheng, “Plateaued functions,” Proc. of International
Conference on Information and Communications Security, ICICS'99, Sydney, November
1999, LNCS 1726, Springer - Verlag, pp. 284-300, 1999.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

