Decentralized supervisory control of reactive discrete-event systems
Du, Liang

ProQuest Dissertations and Theses; 2007; ProQuest

pg. na

Decentralized Supervisory Control of Reactive
Discrete-Event Systems

Liang Du

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

October 2006

© Liang Du, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliotheque et
Archives Canada

Library and
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-28912-9
Our file Notre référence
ISBN: 978-0-494-28912-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Decentralized Supervisory Control of Reactive Discrete-Event Systems

Liang Du

In this thesis we propose to apply Ramadge-Wonham supervisory control theory to Reactive
Discrete-Event Systems (RDES). A reactive system continually interacts with its environment
at the speed dictated by the latter. We will first present our decentralized RDES architecture,
which is based on Input/Output (I/O) automata model. After introducing safety and progress,
we define the corresponding centralized and decentralized supervisory control problems con-
cerning both safety and progress. We explain through examples why the existing results in
supervisory control theory cannot be directly applied. Substitute sufficient and necessary con-
ditions for the existence of decentralized solutions are given. In the special case where only
safety is considered, we also study centralized and decentralized supervisory control prob-
lems, and present more straightforward sufficient and necessary conditions for the existence
of their solutions. An example is presented to illustrate how decentralized RDES are modeled,
how decentralized components co-operate with each other, and how the revised decentralized

supervisory control theory can be applied to the study of RDES.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

Thanks are due first to my supervisors, Dr. Peyman Gohari and Dr. S. Laurie Ricker. Thanks
so much for giving me this opporunity to doing research and for everything they have done
for me during the past two years. I must say this thesis cannot be done without the motivation
and benefit from their insight, guidance and financial support. Furthermore, I really appreciate
their kind counsel on how to work with others, how to write an academic article, and how to
pursue a successful career.

My special thanks should give to all my friends in Montreal. Thanks for Yue Yang for
his generous help to get me through my first month abroad, and more important, for our great
friendship. My dear friend, Wangnan Niu, I will miss you so much in future.

Most important things always come at last. I cannot find a word in any English or Chi-
nese dictionary which can express my love to my dear parents and my beloved Jie. You give

me love, hope, and motivity. I will use every minute in my life to love you.

LIANG DU

Montreal, Canada

October, 2006

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

LISTOFFIGURES e s e
LISTOFTABLES e e e

1 Introduction

1.1 Reactive Discrete-Event Systems
1.2 Ramadge-Wonham Supervisory Controlof DES
1.3 Motivation e
14 RelatedWork
1.5 Organizationofthe Thesis

2 Preliminaries

2.1 FormalLanguages,
22 AutomataTheory
2.3 Supervisory Control of DES
2.4 Decentralized Supervisory Controlof DES
241 Background o oo oL,
242 AnObserver Automaton
243 A Monitoring Automatono
25 VOAutomata e e
251 Overview e e e
252 InternalConnection.
253 SynchronousProduct 0 o oL
26 Conclusion e e

3 Decentralized RDES: System Model and Specification

3.1 Introduction i e e e e e e e e e e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
13
17
17
20
22
23
23
25
27
30

31

3.2 Decentralized RDES Architecture
33 SafetyandProgress o o o o
34 ProblemDefinition e
35 Conclusion e e e

Decentralized Supervisory Control of RDES

41 Introduction
4.2 R-W Supervisory Control Theory Revisited
4.3 Substitute Conditions L e
4.4 Substitute Conditions for Safety
45 Conclusion e

Example: Pump System

5.1 SystemDescription o e
52 Analysis
5.2.1 A Service SpecificationE 0.

5.2.2 Decentralized Supervisors that ImplementE
5.3 Pump System: Revisited,

54 Conclusion e e e e e e

Conclusion and Future work

6.1 General Conclusion i i i e e e e e
6.2 Future Work e e e
Bibliography

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42
42
43
46
50
54

56
56
64
64
65
67
73

75
75
76

78

1.1

2.1
22
2.3

24
2.5
2.6

3.1
3.2

33

4.1

4.2

43
44
45
4.6

5.1

LIST OF FIGURES

RDES in daily life: the digitalwatch.

Architecture of centralized supervisory control.
Architecture of decentralized supervisorycontrol.
The observer automata of a DES: (a) the plant G; (b) Obs|(G); (c) Obsy(G)
(adopted from [1]).
The monitoring automata for G, Obs;(G) and Obs,(G) in Figure 2.3..
I/O automaton: anexplicit view.,

Composition of compatible I/O automata.

Decentralized RDES architecture.
Interpretation of progress, where car denotes the operation of catenation of
SITINES. o o v v v v e e e e e e e e e e e

Kj and K; satisfy safety but KN Ky doesnot.

E is not controllable with respect to P.,(L(G)), but a centralized solution to
Problem 3.4.1 under full observation exists. Controllable events are graphi-
cally represented by ticks on their transition arrows.
E is not observable with respect to P.x(L(G)) and P, ,, but a centralized solu-
tion to Problem 3.4.1 under partial observationexists.
Example 4.1 revisited to illustrate Proposition4.3.1.
Example 4.2 revisited to illustrate Proposition4.3.2.
Example 4.3: components, the plant, and the external plant behavior.

Example 4.3: the service specification and the decentralized solution.

Pump system: the system architecture.

vil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

23

40

47

48

52
5.3
5.4
5.5

5.6

5.7
5.8

59

Pump system: pipe 1. e
Pumpsystem: pipe2.
Pump system: thepump. o oo

Pump system: the entire plant behavior. Illegal events are shown by dashed

Pump system: the service specification.
Pump system: E' = sup@ (PN (E)NL(G)). . . o v oo
Pump system: the plant under the supervision of §,,. Events that are illegal

but uncontrollable to S, (i.e., should be disabled by §,;1) are shown by dashed

Pump system: the plant under the supervision of Sp;1. Events that are illegal

but uncontrollable to §p;; (i.e., should be disabled by §,,) are shown by dashed

5.10 Observer and monitoring automata for a selected part of the plant.

5.11 Incorporating communicationintoRDES.

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

3.1 Kjpsatisfiesprogress e
32 Kosatisfles progress o oo e e e
33 KjNK;doesnotsatisfyprogress

1x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Reactive Discrete-Event Systems

Nuclear power plants, telecommunication networks, automobiles and e-commerce applica-
tions share a common characteristic: each functions in a mode of continuous interaction
with an unpredictable environment. Such systems are called reactive, which continuously
receive inputs from and react to their environments (by possibly sending outputs) at speeds
determined by the latter. In fact, most embedded systems, many real-time systems, and most
object-oriented software systems fall into the category of reactive systems.

In contrast with transformational systems that receive inputs, generate results and then
terminate, reactive systems typically maintain in continuous interaction with their environ-
ment, and this process of interaction is usually non-terminating. If such a system terminates
automatically, this is usually caused by an internal error. To summarize, a reactive system
should have two key properties: (1) it interacts with the environment at the speed decided by
the latter; (2) this interacting process terminates only if it is told to or an error occurs.

This thesis is concerned with event-driven reactive systems which can be modeled as

Discrete-Event Systems (DES), which we will call Reactive Discrete-Event Systems (RDES).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Many e-commerce systems, such as on-line auctioning systems [2], are examples of RDES.
An on-line auctioning system provides a distributed structure for consumers to meet one an-
other, negotiate prices and trade goods. The electronic auction takes place according to the
consumers’ inputs, and consumers can react to this system as long as they want unless some
failure happens such as the server going down.

Moreover, there are numerous other applications of RDES in our daily life, including
consumer electronics (such as digital watches, digital cameras, and mp3 players), household
appliances (such as microwave ovens and washing machines), and personal telecommunica-
tion systems (such as modems, mobile phones, and answering machines). Figure 1.1 shows

the model of a digital watch [3].

ypdats

ARz On
Chive On

PM

modo

Figure 1.1: RDES in daily life: the digital watch.

The watch is off before the user turns it on. When it is on, the watch stays in the
“working” state unless the user resets it, adjusts it, turns it off or some failure happens such as
the battery is flat. In other words, the interaction follows a pace dictated by the user. Therefore,

the digital watch is an example of a simple RDES.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Ramadge-Wonham Supervisory Control of DES

A Discrete-Event System is an event-driven dynamic system that typically possesses a discrete
(in time domain) state space and a state-transition structure. Many physical systems fall into
the category of DES, such as traffic systems, database management systems, many computer
programs, telecommunication systems and industrial manufacturing systems [4].

This thesis proposes to apply the Ramadge-Wonham supervisory control theory to RDES.
In the Ramadge-Wonham framework, a DES is modeled as the generator of a formal language
and can be thought of as the set of trajectories (or the behavior) of a plant. A string is a
sequence of events executable by the plant, and therefore it represents a run of the plant. To
tune the system behavior, the whole alphabet is partitioned into the set of controllable and
uncontrollable events. A supervisor is an external agent in charge of controlling the plant. It
observes a sequence of events generated by the plant, and it can restrict its possible extensions
by disabling a subset of controllable events. Thus, the behavior of the supervised plant either
equals or is a restriction (or a sublanguage) of the specification of the desired behavior.

Since RDES involves interactions with the environment, it is no longer suitable to model
RDES by standard automata. We will make several minor changes to the Input/Output (I/0)
automata introduced by Lynch and Tuttle [5] to model decentralized RDES. With the alpha-
bet partitioned into input events (inputs), output events (outputs) and internal events, an 1/O
automaton receives inputs and generates outputs and internal events autonomously and instan-

taneously.

1.3 Motivation

The development of formal methods that guarantee the correctness and validity of reactive
systems is a fundamental objective of current strategies for the study of these systems. There

is a significant distinction between formal methods that “check” system properties and those

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

methods that are based on control theory. Techniques based on checking such as static model-
checking and theorem proving confirm that the model of the system satisfies certain funda-
mental safety and liveness properties and, if necessary, diagnoses any errors.

Formal methods based on control theory (such as supervisory control theory) do not
check that the system is correct, but rather, prohibit certain behaviors that lie outside a pre-
defined set of acceptable behavior. In the control theoretic framework, a key stage is the
synthesis of the controllers. The operation of the resulting controllers guarantees that when the
system operates in tandem with the controllers, the system will not perform any unacceptable
behavior. Furthermore, such controllers must be sufficiently restrictive to guarantee certain
properties and must be sufficiently permissive so as not to reduce the behavior of the system
unnecessarily.

For RDES, we are interested in satisfying service specifications of RDES using super-
visory control. Unlike specifications in supervisory control framework which are defined on
the whole alphabet, service specifications are defined only on the external alphabet (namely
the union of inputs and outputs). Generally speaking, a controlled plant is said to implement a
service specification if certain properties called safety and progress hold.

Safety of reactive systems is of paramount importance in system design, since any vi-
olation of safety guidelines could result in loss of life or excessive economic damage. For
instance, the consequence of a system error in an aircraft automatic pilot system or in a nu-
clear power plant controller could be disastrous. Informally, a safety specification stipulates
that “bad things never happen” and must hold in every state of the system.

Furthermore, progress requires that the controlled system should not block the occur-
rence of an external event whenever it is allowed in the specification. For instance, if the spec-
ification requires sending a certain output in response to some input, but in some sequences
leading from the input to the output an internal event is disabled by the controller, then the

progress condition is violated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Given an RDES and a service specification, it is interesting to know under what con-
ditions a supervisor will implement the service specification. Since the plant behavior of
RDES and the service specification are defined on different alphabets, some of existing results
in supervisory control framework cannot be directly applied to RDES. For instance, we will
show through examples that, unfortunately, the controllability condition in supervisory control
framework is generally no longer necessary for the existence of such a supervisor under full
observation, and the controllability and observability conditions are generally no longer nec-
essary for the existence of such a supervisor under partial observation. These problems arise
because the resulting control strategy does not take into account any information about the
architecture of RDES that requires control, such as the role of internal events which are erased
in the service specification. Therefore, we will investigate how they should be modified.

An essential feature of reactive systems is that they are usually distributed [6]. Most
reactive systems contain distributed simultaneous components and modules that interact with
one another through message passing of some sort. Thus decentralized RDES control prob-
lems arise naturally.

To summarize, the following challenges exist for the control-based analysis of RDES.

¢ Finding a compact but meaningful mathematical framework to model how distributed

RDES co-operate with each other.

¢ Ensuring that the formal framework can specify decentralized architectures and synthe-

size the necessary controllers.

e Checking whether existing supervisory control theory can be directly applied to RDES.
If not, import necessary modifications and extend the existing work into the formal

framework of decentralized RDES.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Related Work

Reactive systems have been of interest to computer scientists for many years. The pioneer of
verification of reactive systems is Pnueli, who started his work on reactive systems in 1985.
Harel and Pnueli [7] singled out reactive systems as being a special problem for their impor-
tance. They compared reactive systems with transformational systems, and used the State-
Chart method to describe their behavior.

In 1989, Lynch and Tuttle [5] used I/O automata to model DES. In this work, an I/O
automaton is defined as a tool for modeling concurrent and distributed DES of the sorts arising
in computer science. We will make some minor but necessary modifications to make it an
appropriate framework for decentralized control of RDES.

Over the past 15 years, many languages and techniques have been used to specify pro-
grams and verify reactive systems in the computer science literature. These languages and
techniques can be also used to simulate RDES. Typical approaches include graphical lan-
guages based on automata (such as SyncCharts [8] and Argos [9]), data-flow based languages
(such as Signal [10] and Lustre [10]), and imperative languages (such as Esterel [11]).

Although so many languages and techniques are designated to simulate reactive systems,
formal methods of reactive system based on supervisory control theory were not considered
until recently. Jéron et al. [12] introduced supervisory control into RDES framework. They
follow Lynch and Tuttle in using I/O automata for RDES and study the problem of controlling
an implementation of reactive systems in order to make it conform with a given specification.
The proposed solution is to control the implementation by means of an automatically com-
puted supervisor, where ensuring a conformance relation between the implementation and its
formal specification constitutes the control objective. The supervisors are seen as a “patch”
that automatically fixes errors, which otherwise should have been discovered by testing and

fixed by hand.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Other work that also proposes an input/output interpretation of supervisory control of
DES includes the work of Balemi [13]. Compared with [12], which can be interpreted as the
centralized supervisory control problem of RDES with zero tolerance (i.e., the controlled plant
behavior equals the specification), Balemi’s work presents the centralized supervisory control
problem of RDES with tolerance (i.e., the controlled plant behavior is a subset of the specifi-
cation). In other words, the supervisor synthesis problem with local specifications defined by
Balemi requires finding a supervisor which is nonblocking and complete, and the projection
of the closed-loop system behavior is nonempty and is a subset of the given local specification
(which is defined only on a subset of the entire alphabet). Necessary and sufficient conditions
for the existence of a solution are given.

Both [12] and [13] are concerned only with the centralized supervisory control prob-
lem. In contrast, we study the decentralized supervisory control problem of RDES with zero
tolerance, and give corresponding necessary and sufficient conditions for the existence of a
solution in [14].

The supervisory control problem of RDES is different from the standard supervisory
control problem because the plant behavior and the service specification are defined on dif-
ferent alphabets. Several researchers have considered supervisory control problem of DES
where the alphabet is partitioned into several subsets, for example, in the protocol conver-
sion problem, i.e., the problem of reliable transmission of data over unreliable communication
channels. The protocol conversion problem was first treated by Inan in the supervisory con-
trol framework as an important application example in [15], and the theoretical foundation on
which this application is based was given in [16]. However, the work only addresses the safety
constraint of the protocol conversion problem which requires that the projected language of
the supervised system should equal the given specification language. The additional progress
constraint, which requires that the supervised system never blocks an external event that is

not blocked by the specification itself, was also considered as part of the protocol conversion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem in the work of Calvert and Lam [17] and redefined in-depth by Kumar, Nelvagal and
Marcus in [18].

1.5 Organization of the Thesis

The rest of this thesis is organized as follows: In Chapter 2 we study the mathematical prelim-
inaries, including the syntax and semantics of automata theory, DES and supervisory control.
We will also introduce modified I/O automata framework. In Chapter 3, we present the de-
centralized RDES architecture and introduce safety, progress and service specifications. In
Chapter 4, we will define the corresponding supervisory control problems in two cases: when
both safety and progress are considered, and when only safety is considered. Sufficient and
necessary conditions for the existence of their solutions will be given. In the latter case where
only safety is considered, the conditions are easily verifiable on the transition structure of the
system. An example will be studied in Chapter 5 to illustrate how we model decentralized
RDES, how decentralized components co-operate with each other, and how revised supervi-
sory control theory and decentralized supervisory control theory can be applied. Chapter 6

summarizes this thesis and discusses future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Preliminaries

In this chapter we proceed as follows. Section 2.1 provides a brief introduction to some basic
concepts from formal languages. Section 2.2 reviews some standard concepts from automata
theory. The fundamental elements of centralized and decentralized supervisory control theory
are reviewed in Section 2.3 and Section 2.4, respectively. After presenting the Input/Output

automata framework in Section 2.5, we summarize this chapter in Section 2.6.

2.1 Formal Languages

Let X be a finite set of distinct symbols, which will be referred to as an alphaber from now on.
The set of all finite symbol strings, of the form 610, ... 6, where k > 1 is arbitrary and 0; € Z,
is denoted by . Let € ¢ Z denote the empty string (a sequence with no symbols), we have
the set of all possible sequences X* = {€} UZ*, where an element of T* is a string over the
alphabet .

Two strings can be joined with the operation of catenation, where cat : £* x £* — X* is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

defined according to
cat(g,s) = cat(s,€)=s, s€ET¥
cat(s,t) = st, s,teX’.

Any string in £* can be generated by concatenating event symbols from X.

The length of a string s € Z* is denoted by |s| and defined according to

le] = 0

Is|] = k, if s=010,...0,€Z".

t], s,t € Z*.

We can apply this operator to cat as follows: |cat(s,t)| = |s| +
Let A be an arbitrary set and let X = Pwr(A) be the set of all subsets of A (the power set
of A). A language over A is any subset of X*, i.e., an element of the power set Pwr(Z*); thus
the definition includes both the empty language 0 (the language with no strings), and X* itself.
For s,t € £*, ¢t is called a prefix of s and denoted by ¢ < s if s = tu for some u € Z*.
Let L C X* be an arbitrary language over X. Then the prefix closure L of L is the language

consisting all prefixes of strings in L:
L:={teX*t<s forsome s€L}.

Notethat LCLC X*. L=0if L =0, and € € L if L # 0. For a string s € Z* we will denote its
set of prefixes by s instead of {_s]T A language L is closed if L = L. In this thesis, we assume

that all languages are closed.

2.2 Automata Theory

An automaton is a mathematical model which is capable of representing a regular language.

Formally, an automaton A over the alphabet X is a 4-tuple

A=(0Q,%,6,90),

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where Q is the nonempty set of states, T is the alphabet of events, 6 : Q x £ — Q is the (partial)
state transition function, and qq € Q is the initial state.

Let ¢,4' € 0,0 € X; then 6(q,0) = ¢’ means that there is a state transition labeled
by event ¢ from state g to state g¢’. We extend the domain of § from events to strings with

5: 0 x X* — Q and define 5 recursively as follows. Letg € Q,0 € X and s € Z*, then
1. 8(g.6) =g
2. 6(g,0)=6(q,0);
3. 8(q,50) = 6((6(q,5)),0).

In the rest of this thesis, we omit the " and write § in place of 5.

Given an automaton G, the language L C ¥* recognized by G is
L:={s € ¥*|6(qo,s) € Q}.

G is called a recognizer for L.

A state g € Q is reachable if g = 8(qo,s) for some s € £*; and an automaton G is
reachable if q is reachable for all g € Q.

Let L) € X} and L, C 5 be two languages, where, in general, 1 NZ; # 0. Let Z =

21 UZ,. Define a mapping
P T - Zie{l,2}
according to
o, ifoelk;
£, ifogZ;

P(so) = P(s)P(o),seX*,0eX

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The map F; is called the natural projection (or canonical projection) of Z* onto . The action
of P; on a string s is to remove all occurrences of ¢ in s where o ¢ X;. Note that the natural
projection can be extended to the power set of Z* in the usual way.

Let the inverse image function of P; be defined by
P71 Pwr(Z)) — Pwr(Z),i € {1,2},
where for K C X7,

PY(K) = {s € Z*|P(s) € K}.

i

For L; C X7 and L, C %3, the synchronous product L{||Ly C Z* of L; and L, is defined

according to
Li||Ly =P (L) NPT (Ly).

Thus, s € Ly ||L; if and only if Py(s) € Ly and P,(s) € L,. If G| = (01,Z1,61,q10) and G, =
(Q2,Z2,02,920) are recognizers for Ly and Ly, respectively, then the synchronous product

G1||G of Gy and G is the automaton defined as

G1||G2 == (Q1 X 02,£1UX,, 8,(q10,920)),

where for (q1,q2) € Q1 X @, and 6 € Z; Uy,

[(51(01,0),82(a2,0)),

if 81(q1,0) is defined A & (g2, 0) is defined;

(61(q1,0),42),
8((91,92),0) = { if 61(q1,0) isdefined A o € %5 ;
(q1,62(q2,0)),

ifo &€Z; A 0x(q2,0) is defined;

undefined, otherwise
\

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The language L;||L, recognized by the synchronous product G||G; of G| and G, can
be viewed as generated cooperatively by agreeing to synchronize on those events which are
defined in both G} and G;.

The automaton G || G satisfies the following equation:

L(G1]|G2) = L(G1)|IL(G2).

2.3 Supervisory Control of DES

This thesis is built on the supervisory control framework for discrete-event systems devel-
oped by Ramadge and Wonham [19, 20], and decentralized supervisory control presented by
Cieslak et. al. [21] and Rudie and Wonham [22]. A supervisory control approach requires
the design of a supervisor (or at least two supervisors in the decentralized case) to oversee the
system and issue control commands to keep the behavior of the controlled system within some
a priori determined subset of desirable behavior. Such a supervisor, based on its observations
of the plant behavior, either enables or disables controllable events to prevent the system from
performing illegal moves.

In this section we review the basics of the Ramadge-Wonham supervisory control frame-
work (where the overall plant is controlled by one supervisor) and the decentralized super-
visory control theory (where at least two supervisors are synthesized to achieve an overall
control objective). In the centralized problem, it may be the case that not all events can be
seen, i.e., the supervisor has only a partial view of the plant behavior. In the decentralized
case, the overall supervisory task is divided into two or more subtasks and each supervisor,
likewise, has only a partial view of the plant behavior. Each subtask is solved using the results
of centralized supervisory control under partial observation.

In the supervisory control framework, the discrete-event system requiring control, i.e.,

the plant in traditional control terminology, is the generator of a formal language, and we

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model it by an automaton which is denoted by G. By designing a supervisor (a controller
which monitors the plant and issues control commands), it is desired to keep the plant behav-
ior within a pre-defined region. In other words, the language recognized by the supervised
generator is contained in a specification language. The control task is considered fully accom-
plished if such a supervisor (or supervisors) can be found.

The one-plant-one-supervisor centralized architecture is shown in Figure 2.1(a), while
Figure 2.1(b) shows the case when the controller supervises a composite plant, consisting of

several parallel components whose alphabets are disjoint.

observation —————— conirol
. —_———— . omponent
Supervisor Component Supervisor P
I D m— - n

] control 7 observation

Y

control | observation)
. control observation .

. .
. .

\ \

Plant fiomponent ’
i

(a) (b)

Figure 2.1: Architecture of centralized supervisory control.

Furthermore, an automaton G is characterized by a subset of Z* called the closed behav-

ior of G, written as L(G), and defined as

L(G) := {s € Z"(8(qo0,5) € Q}-

The closed behavior of an automaton can be interpreted as the set of all possible sequences of
state transitions.

To impose supervision on the plant, we partition the alphabet of event labels £ =X UZ,,

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

into two sets called the controllable and uncontrollable event sets, respectively. Controllable
events can be disabled by the supervisor, if necessary, while uncontrollable events are consid-
ered to be permanently enabled.

A language K C X* is controllable with respect to G (controllable, for short, where G is

understood) if and only if
K%, NL(G) CK.

In other words, K is invariant under the occurrence of uncontrollable events in L(G). K can be
viewed as a specification of some legal behavior. Controllability requires that if s is legal, o is
uncontrollable, and 5o is physically possible, then so must be legal as well. That is, all events
triggering state transitions that exit from the specification language K to the plant language
L(G) must be controllable.

To understand the way in which a control policy can be defined, a particular subset
of events that should be enabled (others should be disabled) can be selected by specifying a
subset of controllable events. It is convenient to adjoin with the set of enabled controllable
events all the uncontrollable events, as they are always enabled. Each such subset of events is

called a control pattern, and the set I" of all control patterns is defined as follows.
F={yCZ|y 22y}

Given a plant G, a supervisory control for G is any map V : L(G) — I'. The pair (G,V)
will be written as V /G, to suggest “G under the supervision of V”. The closed behavior of

V /G is defined to be the language L(V/G) C L(G) defined as follows.
1. e € L(V/G);
2. s€eL(V/G)No eV(s)Aso € L(G) = so € L(V/G);
3. No other strings belong to L(V /G).

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let S be any DES modeled by an automaton. Then § is said to implement V if
L(S||G) :=L(S)NL(G) =L(V/G)

S is a supervisor for G if L(S) is controllable with respect to G.
To summarize, a supervisor is an agent that observes sequences of events generated by
G and makes decisions to either enable or disable any of the controllable events at any point
throughout the evolution of G. By performing such a manipulation on controllable events, the
supervisor ensures that only the subset of L(G)NL(S) is permitted to be generated as required.
The controllability condition is necessary and sufficient for the existence of a supervisor

under full observation as shown in the following theorem.

Theorem 2.3.1 [19] Given a plant G, K C L(G) and K # 0, there exists a supervisory control

V for G such that L(V /G) = K if and only if K is controllable with respect to G.

So far, we have assumed that a supervisor can observe and record all events generated
by the plant. In real applications, a more realistic problem of supervisory control is that a
supervisor .S may have only a partial observation of the system’s behavior, i.e., only a subset
of event labels generated by the plant can actually be observed by the supervisor.

Consequently, Z can be partitioned into X, of observable and Z,, of unobservable events.
Note that S can potentially disable controllable events that are not observable. That is, the
subset %, need not in general have any particular relation to the subset of controllable events
Z.. In this thesis, we assume that each event is either controllable or observable, or both.

We associate with X, a natural projection F, : £* — X7 defined in Section 2.1, which can
be interpreted as a supervisor’s view of the plant behavior. Thus, the effect of P, on a string
s is to erase from s those events that are not observable. For K C L(G), P,(K) denotes the
language {P,(s)|s € K}. Let S be a supervisor that implements a supervisory control V. § is

said to be feasible if
Vs,s' € ¥, Py(s) = Po(s') = V(s) = V().

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A language K C Z* is observable [23] with respect to (G, F,) (observable for short when

G and P, are understood) if for all 5,5’ € *, and 0 € X, Po(s) = P,(s’) implies that
sc €KAs' e KAs'o € L(G)=s'oc €K.

In other words, observability requires that if two strings look identical (i.e., have the same
projection) to a supervisor, then a control action which applies to one must be applied to the
other as well. By contrast, if K is not observable, then an event (observable or not) may lead
to different outcomes with respect to membership in K for look-alike strings; for example, if
P,(s)o = P,(s")0, it could be the case that ¢ is disabled after s while enabled after s/, and thus
takes the system outside of K.

The observability condition and the controllability condition are necessary and sufficient

for the existence of a supervisor under partial observation as shown in the following result.

Theorem 2.3.2 [23] Given aplant G, K C L(G) and K # O, there exists a feasible supervisory

control V for G such that L(V /G) = K if and only if
1. K is controllable with respect to G, and

2. K is observable with respect to (G, F,).

2.4 Decentralized Supervisory Control of DES

2.4.1 Background

RDES, include embedded systems and real-time systems, which are typically concurrent and
distributed; therefore, control of RDES can naturally be formulated as a decentralized control
problem. In this section we review the decentralized approach to the synthesis of supervisors

for DES. In some cases, we may have a single plant that requires multiple supervisors. In other

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cases, we need to find a set of local supervisors, each one designed to monitor and control a
plant component. For example, in distributed systems, the plant components are geograph-
ically widely separated and a centralized supervisor satisfying the global control objectives
may not be designed. In general, the overall supervisory task is divided into two or more
subtasks, each accomplished by a local supervisor. The resulting local supervisors run con-
currently to implement a given global specification, and we refer to the resultant supervisors

as decentralized supervisors. The architecture is sketched below.

~, {enable, disable} - o e :
Supervisor 1 > ————— Supervisor 2
Plant
Po(to) |« | Pylto)
tc - {enable, disable}

Figure 2.2: Architecture of decentralized supervisory control.

A local supervisor processes only a projection of the behavior of the DES to be con-
trolled. Given an index set I = {1,2,...n}, the corresponding subsets of events that local su-
pervisor i can observe is denoted by X; C X (not necessarily disjoint), where i € I and | J; Z; = Z.

Assume that the overall legal specification on the behavior of G is expressed by the language
E=(\P'Eiex
i

where i € I and E; € X7. In other words, global legal behavior can be reduced to the simulta-
neous satisfaction of local legal specifications expressible as sublanguages Z}.

Let 2, = U;er Zic and Z, = {J;c Zio. Given a supervisor S; controlling only events in
2, ¢ while observing only events in X, ,, S; is called a local supervisor and its global extension
5~',- denotes the supervisor which takes the same control action as S; on Z; ;, enables all events
in £—Z; ., makes the same transitions as §; on X, , and stays in the same state for events in

Z - Zi,O'

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Two decentralized control problems, where local supervisors are sought to satisfy global
specifications, called GP (Global Problem) and GPZT (Global Problem with Zero Tolerance),
are described by Rudie and Wonham in [22], in which a global specification is to be satisfied
by a set of local supervisors. For simplicity, we present the decentralized problem with two

supervisors.

Problem 2.4.1 (Global Problem [22]) Given a plant G over an alphabet %, a legal language
E C L(G), a minimally adequate language A C E, and sets 2| ¢,23 X1 0, 22,0 C X, construct

local supervisors S| and Sy such that S = S’] A §2 is a proper supervisor for G and such that
ACL(S1AS/G) CE.

Here, for i =1,2, supervisor S; can observe only events in Z; , and can control only events in
2, and §, is the global extension of S;.
The solution to this general case can be derived from the solution to a more restricted

case formulated as follows.

Problem 2.4.2 (Global Problem with Zero Tolerance [22]) Given a plant G over an alphabet
2, alanguage E C L(G) and E # 0, and sets 2| ¢, X ¢ X1 0, 22,0 C X, construct local supervi-

sors S| and S; such that § = 5‘,1 A .572 is a proper supervisor for G and such that
L(S1AS/G) =E.

Here again, for i =1,2, supervisor S; can observe only events in X; , and can control only events
in %;, and §, is the global extension of S;.

It can be seen that the GPZT is a special case of the GP. The GPZT fits into the GP if
we let the endpoints of the range of behavior in GP be equal, i.e., A=E.

The key to solving both the GP and GPZT is a property called co-observability [22].

A language K C Z* is co-observable with respect to (L(G), P 5, Z1,¢c,P2,0,22,c) if Vs € K and

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vo € X.:
56 ¢ KAso € L(G) = (3i€ {1,2}) P'[Po(s)]6NK =0 A 6 € X,

In other words, co-observability states that if an event generated by the plant leads the system
to illegal behavior, then at least one of the two supervisors must know without ambiguity when
it must disable this event. On the other hand, if the event does not lead the sequence generated
so far into illegal behavior, then neither of the supervisors should disable it.

Controllability and co-observability properties are necessary and sufficient conditions

for the existence of a solution to the GPZT, as indicated by the following result.

Theorem 2.4.1 [22] There exist supervisors Sy and S, for G that solve the GPZT problem if

and only if
1. K is controllable with respect to G, and

2. K is co-observable with respect to (L(G),P1,0,Z1 ¢, P20, 22,c)-

2.4.2 An Observer Automaton

In decentralized supervisory control problem, a local supervisor has only a partial observation
of the plant behavior. Since such a local supervisor cannot observe the occurrence of every
event, it may be unaware of the exact state the plant is in. For example, suppose that the plant
is currently in state ¢, and 8(g,0) = 4. If the local supervisor cannot observe o, then the
supervisor will not know whether the plant is in state g or ¢’. In other words, the supervisor’s
view of the current state of the plant is {g,q'}.

We use the observer automaton to capture the view of the plant by supervisor i. Given an
automaton G = (Q,X, 8, qo), the observer automaton corresponding to supervisor S; is defined

to be 0bsi(G) = (Qi,Z,6:,9i0), where Q; C Pwr(Q), 6;: Qi x Z — Qi, gi0 = {4]6(q0,5) =

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c
03]

a c by by
{14} {24}
a <
{0,2,3}

(a) (b) (c)

Figure 2.3: The observer automata of a DES: (a) the plant G; (b) Obs|(G); (c) Obs(G)
(adopted from [1]).

g,s € (E—Zip)*}. If 0 € Z;p, then 6i(4,0) ={qlg € QNg' €GN 6(d,0u) =gAhue (Z-
zi’o)*}.
Figure 2.3(a) shows a plant G, with £; = X, , = {a1,¢} and X, = X, , = {b3,c}. The

observer automata for each supervisor are shown in Figure 2.3(b) and (c).

Take supervisor 1 for example. Since it cannot see b;, it does not know whether the
plant is in state O or state 2; therefore, the initial state of its observer automaton is {0,2}. Once
ay occurs, supervisor 1 does not know whether the state transition is from state 0 to state 1
or from state 2 to state 4; therefore, the event a; leads the observer automaton to take a state
transition from {0,2} to {1,4}. Similarly, when c occurs, supervisor 1 does not know whether
the state transition is from state 4 to state O or from state 1 to state 3. Furthermore, it cannot
observe b», i.c., it does not know whether b, has happened and took the plant from state O to

state 2. Thus, the event ¢ leads supervisor 1’s observer automaton to take a state transition

from {1,4} to {0,2,3}.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.3 A Monitoring Automaton

A monitoring automaton [1] combines the evolution of the plant with a set of observer au-
tomata such that it tracks the current state of the plant as well as the current state of each
observer. Formally, a monitoring automaton is defined as: A = (Q4,Z, 5A,q‘(‘}), where Q4 C
Q x Q1 x @, with Q denotes the current state of the plant and Q; (Q;) denotes the current
state of observer 1 (2). The initial state is cfg =(90,91,0,92,0)- Forg € Q,q1 € Q1,92 € 02, the

transition function 6 is defined as:

(8(4),91,92), if 0 €Z1,0,0¢2Z20
(6(q),61(q1),92), if 0 € X1,,0 &35
6'(0,(@q19) = (8(a)a1,8:(a2), IO ¢ T10,0€ Doy
(6(q),61(91),82(q2)), if O €Z1p,0 € Ty

\ undefined, if 5(¢) undefined.

As an example, the monitoring automaton for G, Obs|(G) and Obs;(G) in Figure 2.3

are shown in Figure 2.4.

We start from the initial state. The initial state qf)‘ is (0,{0,2},{0,1}) in this example. We
interpret this to mean that initially the plant is in state O, but observer 1 is not sure whether
it is in state O or state 2 and observer 2 is not sure whether it is in state O or state 1. When
ay occurs, the plant goes to state 1 and the observer automaton Obs; (G) goes to {1,4}. Since
a) & Xy o, Obs,(G) stays in {0,1}.

For the purpose of this thesis, we will consider the observers to be our decentralized

supervisors.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2,{0.2},{2.4) 1,(1,4),{0,1}
a

L{24)

a)

|————| 3,{0,2,3},{3}

by

2,{0.2,3},{24

Figure 2.4: The monitoring automata for G, Obs|(G) and Obs;(G) in Figure 2.3.

2.5 1/0 Automata

In this section we will provide the formal definition of I/O automaton, and describe how I/O
automata can be composed, which will necessitate a special means of ensuring the automata

are properly connected.

2.5.1 Overview

Generally speaking, instead of simply computing some functions of their inputs and then halt-
ing, RDES continuously receive inputs from and interact with an unpredictable environment.
Therefore, following [12], in this thesis we use Input/Output (1/0) automata [5] to model
RDES. Interactions between RDES and the environment are modeled by input events (inputs)
and output events (outputs), and the internal behavior of RDES is modeled by internal events.
An RDES generates outputs and internal events autonomously and instantaneously, but only
transmits outputs instantaneously to its environment and other I/O automata. In contrast, the

inputs for an RDES are generated by its environment and other I/O automata and transmitted

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

instantaneously to the RDES.

Furthermore, it is important to clarify the distinction between actions whose perfor-
mance is under the control of the system and actions whose performance is controlled by
the environment. That is, an I/O automaton can only establish restrictions on its own perfor-
mance, namely output actions or internal actions, but it is unable to block the performance of
the environment, namely its input actions.

For decentralized RDES, each system component, as well as each local supervisor, is
modeled by an I/O automaton. Since a set of I/O automata can be composed to yield another
I/O automaton, we can compose all system components to get the complete system behavior.

We define an I/O automaton as follows.
Definition 2.5.1 An I/O automaton A is a quadruple (Q4, 4, 84, g4) where

Q4 is the set of states,

IA is the alphabet of events, which is partitioned into Z’?‘, Z’{‘ and Z‘;‘ of inputs, outputs and

internal events, respectively,

§4: QA x3A = QA is the (partial) state transition function, and

- q{)‘ € QA is the initial state.

The primary difference between I/O automata and an automata defined in Section 2.2
is the partition of its alphabet. As Figure 2.5 shows, inputs and outputs model the interaction
between the system and its environment. The set of external events is defined as X, = 1 U X9,
namely the union of inputs and outputs, and the set of locally-controlled events is defined as

Zioc © ZyUZy, which is a subset of the union of outputs and internal events.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. @ output
Environment

Figure 2.5: I/O automaton: an explicit view.

As defined in [5], one of the fundamental characteristics of an I/O automaton is based
on who determines when the action is performed. An I/O automaton can only establish re-
strictions on when it will perform an output or an internal event, but it is unable to block
the occurrence of an input event. These characteristics can be interpreted in the Ramadge-
Wonham supervisory control framework as follows: inputs cannot be disabled, i.e., inputs are
uncontrollable.

Aside from the uncontrollability of inputs, another fundamental assumption about an
I/0 automaton is that the performance of an action is controlled by at most one system com-
ponent [5], namely, each event is controllable by at most one supervisor.

Finally, the difference between outputs and internal events is that outputs are sent to
the environment by the plant, i.e., outputs are observable by the environment, while internal

events are not.

2.5.2 Internal Connection

We can construct an I/O automaton modeling a complex system by composing a set of I/O

automata modeling simpler system components. In particular, we impose certain restrictions

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on the composition of I/O automata. Since internal events of an I/O automaton A are intended
to be unobservable by another I/O automaton B, we can only allow A composed to B when
the internal events of A are disjoint from the internal events of B. Otherwise, an internal
event of A may trigger an unwanted state transition of B. Furthermore, in keeping with our
philosophy that each event is controllable by at most one supervisor, we cannot allow A and
B to be composed unless the outputs of A and B form disjoint sets, or else an output might
be controlled by both the supervisor for A and the supervisor for B. Formally, we define this

special category of composition of /O automata as follows.

Definition 2.5.2 A pair of I/O automata A' = (Q1,21,61,q(1))andA2 = (Q2,22,52,q%) are

compatible [5] if
(1) ZNx? =0 and
(2) Nzt =0

In other words, a pair of /O automata are compatible if both their output event sets
and their internal event sets are disjoint. From this point on, we focus on the composition
of two compatible I/O automata only. Note that this result can be extended to any countable
collection of 1/O automata when they are pairwise compatible.

For a pair of I/O automata A! = (Q!, 2!, 8! ,q(l)) and A? = (Q%,%2, 62,q8), the essence of
their composition is straightforward: when composing two compatible I/O automata, an output
m of one I/O automaton may be identified with the input 7, of the other. For all m & 2!1, if
there exists m € Z%, we call the pair (m, my) an internal connection from A! to A2, denoted
by m2. Similarly, we can also define the internal connection mp; in the opposite direction.
When the direction of the internal connection is unknown or unimportant, it is denoted simply
by n with no subscript. Existence of internal connections provides channels for RDES to
synchronize activities and co-operate together. We denote the set of all internal connections

by T.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Suppose we have an internal connection 2. We consider it to be an internal commu-
nication channel where A! is the sender and A? is the receiver. Then the sets of connection

outputs and connection inputs are defined as
Y= {0 €T UZ?| 3oy € 2 UEE, (01,00) € Y}

and

Y» = {0, € 2LUT}301 € 3} US, (01,07) € T}

2.5.3 Synchronous Product

Since the internal connections do not play a role in the interaction between the system and its
environment, they are naturally defined to be internal events after composition.

The general principle of composing two compatible I/O automata is that internal events
of the components remain internal events of the composition, input events remain input events,
and output events remain output events. Internal connections become internal events of the
composition and they should be removed from the set of inputs and the set of outputs of the
composition.

The formal definition of synchronous product of two compatible /O automata is given

as follows.

Definition 2.5.3 The synchronous product (or composition) A' ||A? of two compatible I/O au-
tomata A' = (Q! ,E% UZ!I Uz}, él, q(l)) and A® = (Q?, Z% UZ,2 UZ%, 82, q(z)) is an I/O automaton

(Q,Z,UX\UXy, 8,q0), where
- Ty =2luzi-T,
- =xluz-T,

- I =ZjUuziuT,

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 0=0'x0%
-Vg=(¢",¢*) € Qand 6 € X:

[(6'(¢",0),6%a%,),

ifo:=(0o1,0:) €Y A 8(q',01) and §*(4?,) are defined,
(8'(¢', o), 8%(¢%, 01)),

ifo:=(0,0) €Y A 8(q',09) and 6*(¢*, &) are defined,
(8'(4',0),8%(¢% 0)),
8((4",4%),0)=1 if6'(q",0) is defined A 5*(g%,0) is defined A 6 €E—T;
(84", 0),4%),

ifo €X—-Y A8l (q',0) is defined A o ¢ X2,
(q',8%(¢% o)),

feEZ-Y Ao ¢! A 6%(¢% 0)is defined,

\ undefined, otherwise
- 90 = (40:95)

Next we present an example to illustrate how to compose compatible I/O automata.

Example 2.1: Synchronous product of compatible I/O automata

Let = = {c1,d1}, 28 = {ar, b0}, 2} = {er, fi}, 8 = {b1, B}, Z8 = {cs, 0}, and 2B =
{7, 01}. The pair (c1,c7) forms an internal connection c4 g from A to B. Furthermore, the pair
(b1, b7) forms an internal connection bg 4 from B to A.

As we can see, all internal connections are defined to be internal, so they are removed
from the set of inputs and the set of outputs and added to the set of internal events. Therefore,

the alphabets after composition are o = {a7, 00 }, Z1 = {B1,d\} and Z; = {ca B, bB A, €1, 1. V1, O1}.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a Ci o e ——— ﬁv
—_— c e
by ﬁ Q‘I_’ d (04 { KI) b
- - —_— —————
o

Figure 2.6: Composition of compatible I/O automata.

To summarize, we list several main differences between our model and the standard I/O

automata framework introduced in [5]:

- In [5], the set of locally-controlled events, or simply local events, is defined as Z;,, =
Yy U Xy, ie., all local outputs and internal events are assumed to be controllable, while
we define X, C XU X, which indicates that some of the outputs and internal events

may be uncontrollable.

- In [5], an I/O automaton A is defined with an equivalence relation part(A) partitioning
the set of local events into at most a countable number of equivalent classes, while
we dropped this element because part(A) is used in [5] only in the definition of fair

computation, which is not our concern.

- In [5], for every state g and every input o, there always exists a state ¢’ € Q such that
q = 6(q,0), while we define the state transition function § to be a partial function,

namely there exists a state ¢’ € Q such that ¢’ = 6(g, o) only if ¢ is defined at g.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- In [5], when composing two I/O automata A and B, if an input m; of A is identified with
an output m of B, they simply remove this input 7, from the set of inputs after composi-
tion with no other actions, i.e., ZH12 = 2AuzA, T8 = pauzp SAIE =z A — 25,
In contrast, we define this identification to be an internal connection and treat all internal

connections as internal events after composition, as described in Definition 2.5.3.

2.6 Conclusion

In this chapter, we first provided a brief introduction of some basic concepts from formal
languages, automata theory, and supervisory control theory. The fundamental elements of
centralized and decentralized supervisory control theory such, as sufficient and necessary con-
ditions for the existence of solutions to those problems, were also reviewed. After formally
defining I/O automata, we explained how I/O automata can model control of RDES after mak-
ing a few minor modifications to the original model. We defined what internal connections are
and showed how internal connections work by an example. Finally, we explained the general

principle of composing compatible I/O automata and presented a formal definition.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Decentralized RDES: System Model and

Specification

In this chapter we proceed as follows. Section 3.1 provides a brief overview of this chapter.
In Section 3.2, we present our decentralized RDES architecture. Safety, progress and service
specifications are introduced in Section 3.3. We then define the corresponding supervisory

control problem in Section 3.4. Section 3.5 summarizes this chapter.

3.1 Introduction

For RDES, we consider a special category of specifications which are partial specifications,
i.e., they are defined on a subset of the entire alphabet consisting only of external events. In
this chapter, we use the supervisory control approach introduced by Ramadge and Wonham
[19], [24] to ensure that the service specification of decentralized RDES is met. Recall that
the supervisory control approach requires the design of a supervisor to oversee the system
and issue control commands to keep the behavior of the controlled system within a required
region. Such a supervisor enables or disables events to prevent the system from performing

illegal moves.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Given a plant G and its corresponding supervisor S, the closed-loop system, denoted
by S/G, implements a service specification E if certain properties, called safety and progress,
hold.

Safety property requires that “bad things never happen” in any state of the system.
Safety of reactive systems is of paramount importance in system design, since any violation
of safety guidelines could result in loss of life or excessive economic damage. For instance,
an ineffective control in an on-line banking system or an unsupervised on-line financial trans-
action could result in the loss of large sums of money.

Progress requires that the occurrence of an external event should not be blocked as long
as it is allowed by the specification. For instance, if the specification requires sending a certain
output in response to some input, but in some sequences leading from the input to the output
an internal event is disabled by the controller, then the progress property is violated.

Given a plant G, we impose the following assumptions on the service specification E
throughout this thesis:

A.l : E constrains only inputs and outputs (i.e., external events).

A.2: E constrains only actions G can physically perform.

3.2 Decentralized RDES Architecture

When composing decentralized RDES, each system component is modeled by an I/O automa-
ton. Without loss of generality, we assume that the plant G consists only of two components
Gy and Gy; it is not difficult to extend the results to any finite number of components.

We partition the input set Zi:, of G; (i = 1,2) into three disjoint alphabets:

- Zf:, 1> events that can only be connected to outputs from the environment (thus unobserv-

able to the other component),

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Zf:, .,» events that can only be connected to outputs of the other component (thus unob-

servable to the environment), and

- %% -, events that can be connected and thus are observable to both the environment and

the other component.

Similarly, the output set Z! can be partitioned into | e % _, and Z{ ., representing out-
puts that can be connected (and are thus observable) to the environment, the other component,
and both the environment and the other component, respectively.

In accordance with many practical situations, we assume that Zf:,’o =0, i.e., each input is
exclusively used to either connect a component to its environment or to the other component
but not both. Similarly, we assume in this chapter that Zf,o = 0. The decentralized RDES

system architecture is shown in Figure 3.2.

L ENVIRONMENT J
Z,IYI 2'2,1
I g
G internal connections G2
xl I
observes controls observes controls

(s T

Figure 3.1: Decentralized RDES architecture.

Since each decentralized supervisor can completely observe its local alphabet, the con-

trollable and observable event sets of G, Gy, and G are X! C ! UZ} and 2! = 2! U F?

3
!,4—}

T CuUIfand 22 =32Uz! |, % =Xl UZZ and 3, = I} UXZ, respectively.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furthermore, since the pair (G1,G;) is compatible, no event is controllable by both
components, i.e., Z! N X2 = 0. Thus, checking co-observability can be reduced to multiple

checks of observability [25].

3.3 Safety and Progress

In this thesis we are interested in solving a slightly different supervisory control problem com-
pared with the standard problems in R-W supervisory control theory, where the objective is
to obtain a supervisor so that the closed-loop system implements a given service specification
defined on the subset of external events. Therefore, in what follows, we will formally define
what we mean by safety, progress, and implementation of a service specification.

Let P, : Z* — X be a natural projection, which can be interpreted as the environment’s

view of the plant’s behavior. We define service specification and safety as follows.

Definition 3.3.1 Given a plant G with its generated language L(G), a language E C X},

defined on the external alphabet, is called a service specification if E C P (L(G)).

Service specifications play an important role in communication systems; see for instance
in [26] and [27]. For example, in the protocol verification problem, the desired functionality

are specific to some external behavior.

Definition 3.3.2 Given a language K C L, K satisfies safety with respect to a service specifi-

cation E C Py (L) if Px(K) = E.

In other words, safety captures the notion that nothing illegal should happen, i.e., the
event sequences generated by the system should correspond to those allowed by E.

Progress captures the notion that the supervised system should not block the occurrence
of an external event whenever it is allowed by the specification E. The following definition of

progress appears in [18]:

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 3.3.3 [18] Given K C L, K is said to satisfy progress with respect to a service

specification E C Py (L) if
Vs €K,0 € Zex, Pox(s)0 € E = Ju € (X—Z)*,su0c € K. (3.1)

Equation 3.1 states that if there is a sequence s and an external event ¢ such that P, (s)0o is in
the service specification E, there must also be (at least one) internal path u that connects s to
c.

For our purpose, this definition is not good enough because the plant behavior and the
service specification are defined to be subsets of X* and XZ7,, respectively, and it is difficult to
check the existence of a string in (£ — Z,x)*. Therefore, we define progress as follows, where

the focus is on straightforward checking of the existence of strings in Z*.

Definition 3.3.4 Given a language K C L, K satisfies progress with respect to a service spec-

ification E C Py (L) if
Vs € K,t EE Pex(s) <t = Fu € X" suc KAPu(su)=t. (3.2)

Equation 3.2 interprets the requirement from a different point of view. In this case, if there is a
sequence s € K whose projection P.,(s) is a prefix of a string ¢ of E, then it should be possible
to extend s by another sequence u such that their catenation equals ¢ under the projection, i.e.,
Py (su) =1t.

Assuming that safety is guaranteed, i.e., P.x(K) = E, progress can be stated by the com-

mutative diagram of Figure 3.2.

The diagram shows that for every s € K, if there exists r € E such that P, (s) <t (i.e.,
t = cat(Pex(s),t') for some ¢’ € Z},), then it should be possible to concatenate s with some

u € Z* such that P.(cat(s,u)) = t. In other words, concatenation and P,, commute:

P.x(cat(s,u)) = cat(Pex(s),t)

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E cat - E
Pex Pex
cat
K -7 7=~ ST tad K
L ¢, N
s F = su

Figure 3.2: Interpretation of progress, where cat denotes the operation of catenation of strings.

The following proposition shows that Definitions 6 and 7 are logically equivalent.

Proposition 3.3.1 Given a language K C L, K satisfies Equation 3.1 if and only if it satisfies

Equation 3.2.

Proof: (if) Suppose K C L(G) satisfies Equation 3.2, then
Vs € K,0 € Zoy, Pox(s)0 € E

= 5 € K, Pox(5)0 € E,Pex(s) < Pox(s)0

= Ju € X*,su € K\ Pox(su) = Pox(s)o (by Equation 3.2)

= su € KAPy(u)=o0

= Jup,uy € (T —Zex)* s.t. u=u 0wy

= sujouy €K

= su;0 € K (since K is prefix-closed)

= K satisfies Equation 3.1

(only if) Suppose K C L(G) satisfies Equation 3.1, then
Vs € K,t € E,Pux(s) <t

= v=0102...0, €I}, s.t. Px(s)v=1¢

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= s € K,01 € Zey, Pex(s)0) €E

= Ju; € (Z—Zex)*,su101 €K

= su10) € K,03 € Xy, Pox(su101)02 €EE

= Jup € (Z—Ze)*,su101u202 €K

= ...

= SUIOy...Up_10y_1 € K, 0y € Zy, Pox(sU10y .. .Up_10,—1)0n €EE

= Ju, € (L —Zex)*,5U10] ... Uy_1Cp—1Un0p €K

= Ju=u|0}...Up_10n_1UnOp € X*, s.t. su € KA P,y (su) =t.

= K satisfies Equation 3.2 [

To summarize, safety requires that each generated sequence of a language K should
correspond to a prefix of the specification E, i.e., no illegal sequences should occur in K. Since
E is a partial specification, there may exist more than one sequence of X that corresponds to
the same prefix of E. Progress requires that if an external event is possible after such a prefix
of E, then it should also “eventually” be possible in all corresponding sequences of K, i.e.,
after the occurrence of zero or more internal events following each corresponding trace of K
(which is, in fact, another interpretation of progress).

Remark: Note that safety only guarantees that such an external event is eventually
possible following at least one of the corresponding traces of K.

A supervised system is said to implement a service specification if safety and progress

hold. We formally define this statement in the next definition.

Definition 3.3.5 Given a language K C L and a service specification E C Px(L), K is said to

implement E if K satisfies both safety and progress with respect to E, that is:
- Px(K)=E, and

- Vs €K, t €EE,Poy(s) <t = 3u€Z su€KAPey(su)=t.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furthermore, given a language K, we claim that the set of its sublanguages that satisfy

both safety and progress is closed under arbitrary union.

Lemma 3.3.1 Given a language K C L and a service specification E C Py (L), let ¥ =
{K|K C L(G) and K implements E}, then ¥ is an upper semi-lattice (with respect to set

union).

Proof: Given an arbitrary index set / such that K; € # fori € [, let K :={J;¢; K.

(D). Pex(K) = Pex(Uic1 Ki) = Uit Pex(Ki) = Uit E = E

= K satisfies safety.

(2). Let s € K and ¢ € E such that P, (s) <.

=3djel,s€k;

= Ju € X*,su € K; A Px(su) =t (since K satisfies progress)

= Ju € T*,su € KA\ Py(su) =t (since K; C K)

= K satisfies progress.

From (1) and (2) we can see that K := |J;; K; implements E if every Kj,i € I, does, i.e.,
K € &. As we will see in the following counterexample, neither safety nor progress is closed
under intersection. Therefore .# is an upper semi-lattice and its supremal element exists in .

Example 3.1: Safety and progress are not closed under intersection.
Given Kj, K> and E as below, we can see that P, (Kj) = Px(K)) = E, i.e., both K| and K
satisfy safety. However, K; NK; = m and P,(K| NK;) #E, i.e., K} N K; does not satisfy
safety.
Tables 3.1 and 3.2 show that both K| and K satisfy progress, but Table 3.3 shows that
K; N K; does not. 0O
We summarize an existing result that will be important as we explore the role of con-

trollability and observability properties in RDES.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.1: K| satisfies progress

s€EK, t€E Ju su su € Ky? Pex(su) =1?
£ o oy o Yes Yes
€ an o oM oyory Yes Yes
oy onn oI ooy Yes Yes
oo % 1 oworn Yes Yes

Table 3.2: K; satisfies progress

s€EK, t€eE Ju su su e Kp? Poy(su) =17
£ o o o Yes Yes
£ oun ol oamy Yes Yes
o) oy TN armyn Yes Yes
oy o " amy Yes Yes

Table 3.3: K; N K, does not satisfy progress

SEKINK; t€E Pu(s)<t? 3u su su€ KiNK,y? Pey(su) =1?

o oY Yes No - — —

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

K, K KNk, E

o (07] o (04]
o7 Ty 1
g "

Figure 3.3: Kj and K satisfy safety but K| N K, does not.

Lemma 3.3.2 [18] Given a language L and a service specification E C P (L), let & =
{K|K C L, K is controllable and observable, and K implements E}, then . is an upper semi-

lattice (with respect to set union).

In other words, we can find a supremal controllable sublanguage of L(G) which imple-
ments the specification E (with full observation), or a supremal controllable and observable
sublanguage of L(G) which implements the specification £ (under partial observation). This
result will be important in the next section when we discuss sufficient and necessary conditions

for the existence of a solution to the supervisory control problem for decentralized RDES.

3.4 Problem Definition

As noted earlier, in this thesis we are interested in solving a slightly different supervisory
control problem from the standard supervisory control problems in the Ramadge-Wonham
framework. The key difference here is that the control task is to design a supervisor so that
the controlled plant implements a given service specification that is defined only on a subset

of external events.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formally, the decentralized supervisory control problem for RDES that we want to ad-
dress is defined as follows. To simplify the problem, we restrict our analysis to a decentralized

plant consisting of only two components.

Problem 3.4.1 Given the plant G composed of G| and G, the service specification E, and the
sets of observable and controllable events of G| and G, as Z(l,, Zg, 23, Z% C %, respectively,
construct local supervisors S| and §3 such that S = §1 A §2 is a supervisor for G and S/G

implements E.

We call such an § a solution to the decentralized supervisory control problem for RDES.
Next we will present sufficient and necessary conditions for the existence of a solution to

Problem 3.4.1.

3.5 Conclusion

In this chapter, we first presented our decentralized RDES model. We then studied safety,
progress and service specifications in the decentralized RDES framework. In general, a ser-
vice specification is a partial specification (i.e., defined only on the subset of the external
events) where safety and progress hold. At last, we defined the corresponding decentralized

supervisory control problem.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Decentralized Supervisory Control of

RDES

In this chapter we proceed as follows. Section 4.1 provides a brief overview of this chapter.
Section 4.2 shows by examples that Ramadge-Wonham supervisory control theory cannot be
directly applied to the problem of controlling RDES, and substitute sufficient and necessary
conditions for the existence of a solution to this control problem are discussed in Section 4.3.
In some research domains, only safety is of concern; we will define the corresponding de-
centralized supervisory control problem, and present easier-to-check sufficient and necessary

conditions for the existence of its solution in Section 4.4. Section 4.5 summarizes this chapter.

4.1 Introduction

Decentralized supervisory control of DES in the Ramadge-Wonham framework has been well-
studied in [22] and [21]. Unfortunately, these results cannot be directly applied to RDES.
Some of the system properties that arise from partitioning events into inputs, outputs and
internal events does not satisfy the standard conditions for decentralized control. Therefore,

we present appropriate extensions in this chapter.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 R-W Supervisory Control Theory Revisited

Generally speaking, since L(G) and E are defined over different alphabets, the standard def-
initions of controllability and observability in the Ramadge-Wonham framework (where the
plant and the specification are usually defined over the same alphabet) need minor adjustments
before they can be applied to our framework.

From the external behavior’s point of view, the plant acts as a black box, with only in-
puts and outputs concerned. Under the standard definitions, controllability and observability
of the specification provide sufficient (but no longer necessary) conditions for the existence of
a solution to the supervisory control problem (under full or partial observation), as suggested

by the following examples.

Example 4.1: Controllability of E with respect to P..(L(G)) is not necessary for the exis-
tence of a solution under full observation.
In this example we assume that the plant consists of a single component, and the super-

visor has full observation of the plant events.

As Figure 4.1 shows, let Z = {o, 7,71, B2} and X, = {au, 7,11}, E is not controllable
with respect to P.x(L(G)) since oy € E and ou 3y € P.x(L(G)) — E, i.e., it is possible to exit the
specification at oy € E through a feasible but uncontrollable transition labeled with 5.

However, a supervisor that disables both 7; implements the specification. As we can
see in Figure 4.1, disabling both m; prevents 7 and 7 from happening. The only possible
nonempty string then is oy, which coincides with E. Furthermore, it is not difficult to check
that the closed-loop language {€, o} also satisfies progress with respect to E. O

Next we show that the standard definition of observability does not provide a necessary

condition for the existence of a supervisor under partial observation for RDES.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(04

Figure 4.1: E is not controllable with respect to P.x(L(G)), but a centralized solution to Prob-
lem 3.4.1 under full observation exists. Controllable events are graphically represented by

ticks on their transition arrows.

Example 4.2: Controllability of E with respect to P.,(L(G)) and observability of £ with
respect to P.,(L(G)) and P,y , is not necessary for the existence of a solution under partial

observation.

In this example we assume that the supervisor has only a partial observation of the plant
behavior, namely, it can observe events in X,. As Figure 4.2 shows, let Z, = X, = {¢,b;} and
Zuo = Zyc = {m}.

Note that E is not observable with respect to L(G) and P.x o, Where Py, : X% — (Z,N
Y.x)* is a natural projection. We can see that Py 5(€) = Pexo(a2), €cy € E, ar € E, arcy €

P.x(L(G)), but ascy ¢ E. This is a violation of observability.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ar C

G
by
4
P(G) E
a o a !

o

Figure 4.2: E is not observable with respect to P.x(L(G)) and P,y ,, but a centralized solution

to Problem 3.4.1 under partial observation exists.

However, a supervisor § under partial observation implements the service specification
E by disabling the event ¢y after observing by, or disabling the event by at all times. (]

To understand why the controllability and observability of E with respect to Pey(L(G))
is not necessary for the existence of a supervisor for an RDES, we first investigate the problem
with Example 4.1. The problem there is that an uncontrollable exit (87) from E to P.x(L(G))
could be prevented by disabling a leading controllable internal event (7). However, since the
service specification E is defined on external behavior only, all internal events are removed by
the projection P, and their role in making E controllable is not considered.

We can see that a similar difficulty occurs in Example 4.2, where the supervisor § under
partial observation has to make the control decision correctly. From the external behavior’s
point of view, § cannot distinguish a7 from € (since a- is unobservable). Since the control

action is to disable ¢ after a; and enable ¢, after €, S cannot accomplish this control task

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

without ambiguity. However, if we go back to the complete plant behavior, i.e., both external
and internal behavior, the occurrence of internal event by can help S to tell apart a» from €

since P,(asby) = by and P,(€) = € and there is no ambiguity any more.

4.3 Substitute Conditions

We can conclude from the above discussion that controllability and observability in the Ramadge-
Wonham framework are no longer necessary for the existence of a supervisor in RDES because
the role of internal events is ignored. We turn our attention to “recovering” legal internal be-
havior possible in L(G). That is to say, we extend E from a language restricting external
behavior to one restricting the entire plant behavior to get a new specification E’ which is a
controllable subset of P;!(E) N L(G), namely K € €(P;!(E) N L(G)) where ¥ (K) denotes
the set of controllable sublanguages of K.

First we present a sufficient and necessary condition for the existence of a supervisor

under full observation.

Proposition 4.3.1 Given a plant G, a service specification E C X},, there exists a supervisor

S for G such that S/G implements E if and only if there exists K € €(P..' (E) N L(G)) such

that K implements E.

Proof: (if) Suppose there exists K such that K € €(P,.'(E)NL(G)) and K implements
E, i.e., K is controllable and K implements E, then it follows from Theorem 2.3.1 that there
exists a supervisory control S such that L(S/G) = K. Therefore S/G implements E.

(only if) Suppose there exists a supervisor § for G such that S/G implements E. S is a
supervisor for G implies that L(S/G) is controllable. Since L(S/G) C L(G) and P, (L(S/G)) =
E, it follows that L(S/G) € €(P,;'(E) NL(G)). Thus there exists K = L(S/G) such that
K € €(P;'(E)NL(G)) and K implements E. [|

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As an example, we already showed in Example 4.1 that the supervisory control problem
under full observation has a solution. By Proposition 4.3.1 there should exist K € €(P;1(E)N
L(G)) which implements E. In fact, as shown in Figure 4.3, we can see that € (P,,! (E) NL(G))
has two elements K; and K3, out of which only K, implements E since K; fails to satisfy

progress, and therefore it can be the language of the supervised system in the example.

E

o

Figure 4.3: Example 4.1 revisited to illustrate Proposition 4.3.1.

Furthermore, the following result states a necessary and sufficient condition for the ex-

istence of a supervisor under partial observation.

Proposition 4.3.2 Given a plant G, a service specification E C X} , there exists a feasible
supervisor S for G such that S/G implements E if and only if there exists K € € (PZHE)N

L(G)) such that K implements E and K is observable with respect to (G, P,).

The proof here directly follows from Theorem 2.3.2 and is analogous to the proof of

Proposition 4.3.1.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For instance, we already showed in Example 4.2 that the supervisory control prob-
lem under partial observation has a solution. By Proposition 4.3.1 there should exist K €
€ (P;(E)NL(G)) that implements E and is observable. In fact, we can see that there exist

two such languages as shown in Figure 4.4.

K K

ar C1

Figure 4.4: Example 4.2 revisited to illustrate Proposition 4.3.2.

We can see that both K and K; are controllable with respect to L(G) and both of them
implement E. For K|, the control action is to enable ¢, after € and to disable ¢ after a-b;.
Since P,(€) # P,(asby), the supervisory can perform its control task without ambiguity and
therefore K) is observable with respect to (G,P,). Similarly, we can verify that K> is also
observable with respect to (G, F,).

Remark: As the above example illustrates, since the specification does not impose
any restriction on the internal events other than the progress condition, there may be several
K € €(P;'(E)NL(G)) that are observable and implement E. Any such K can be selected in
designing a supervisory control.

These results immediately lead to the following theorem.

Theorem 4.3.1 The decentralized supervisory control problem of RDES has a solution if and
only if there exists K € €(P,;' (E) N L(G)) such that K implements E and K is co-observable

with respect 10 (G, P 0, Z1 ¢, P20, 22)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The proof of Theorem 4.3.1 follows directly from Proposition 4.3.1, Proposition 4.3.2
and Theorem 2.3.2.

Example 4.3: An example to illustrate Theorem 4.3.1.

G Gy

"

Figure 4.5: Example 4.3: components, the plant, and the external plant behavior.

E sup % (P (E)NL(G)) $2 S|
J '
O
Oh (0] (9]
Y /4

Figure 4.6: Example 4.3: the service specification and the decentralized solution.

As Figure 4.5 shows, in this example we have two components G| and G, with Z; , =
{00, m}, Z1c={y} and Z, , = X = {P1}. The entire plant behavior and its external view

are shown in Figure 4.5.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The service specification E is shown in Figure 4.6. In this example, note that if supervi-
sor S; takes no control action and supervisor S disables By at all times, then L(S) A S3/G) will
be equal to sup%(P;;! (E) NL(G)) in Figure 4.6. Since P,,(sup? (P! (E)NL(G))) = E and
no violation of progress exists, the above S; A Sy /G implements E and is, therefore, a solution.

By Theorem 4.3.1, there should exist K € € (P! (E)NL(G)) such that K implements E
and K is co-observable with respect to (G, Py ,Z| ¢, Pr.0,%2,c)- In fact, K = sup (P, (E)N
L(G)) (as shown in Figure 4.6) implements E and is co-observable with respect to (G, P o,
216, P20, 22,). Since supervisor S; takes no control action and supervisor S, disables f at all
times, either supervisor can make the correct control decision unambiguously.

On the other hand, there exists K = sup%'(P,;! (E) NL(G)) € €(P;' (E)NL(G)) such
that K implements E and K is co-observable with respect to (G, Pj o, Z1 ¢, P2,0,22,¢). By The-
orem 4.3.1 there should exist local supervisors S| and S such that L(S; A S2/G) implements
E and S| A S»/G is co-observable with respect to (G, Py 4,21 ¢, P2 0,22,). The required S; and
S, are shown in Figure 4.6. (|

Remark: When a service specification E cannot be implemented by decentralized con-
trollers, it may be of interest in some cases to find its sublanguages and superlanguages that
can be implemented. As shown in [28], unfortunately, neither the supremal sublanguage nor

the infimal superlanguage, which can be implemented, exists in general.

4.4 Substitute Conditions for Safety

In some research domains, only safety is considered, see for example [12] and [13]. Therefore,
it is of interest to study the case with safety alone, and investigate whether the necessary and
sufficient conditions for the existence of decentralized supervisors implementing a service

specification can be simplified. Formally, we have the following definition.

Definition 4.4.1 Given a language K C L(G) and a service specification E C Pox(L(G)), K is

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

said to conform to E if K satisfies safety with respect to E, i.e., Px(L(S/G)) =E.

Then the decentralized supervisory control problem for RDES concerning only safety is

defined as follows.

Problem 4.4.1 Given the plant G composed of G| and G, the service specification E, and
the sets of observable and controllable events of Gy and G as X1, Z1 ¢, 22,00 220 & Z,
respectively, construct local supervisors S1 and Sy such that S = 51 A .572 is a supervisor for G

and /G conforms to E.

We want to find the necessary and sufficient conditions for the existence of a solution
to this problem. But first, we must address several technical difficulties. We modify the
definitions of controllability, observability and co-observability as follows. Given a plant G,

its generated language L(G) and a service specification E C P,y (L(G)),
Definition 4.4.2 E is P, -controllable with respect to G if
E = P, (sup?(P; (E)NL(G))).

E is P, -controllable with respect to G if the supremal controllable sublanguage of P! (E) N
L(G) exists and its projection is equal to E under FP,,. P,,-controllability differs from standard
controllability as any illegal exits from the specification can be disabled either directly or

via one of the controllable internal events that lead to this exit. For convenience, we denote

E':=sup¥ (P (E)NL(G)).
Definition 4.4.3 E is P,;-observable with respect to (G, Py, Zex) if

(Vs,s' €E',6 € Zexc)Po(s) = Po(s') =

so €E'NsS' €E'Ns'o € L(G) = s'a € E.

When we say that E is P,-observable with respect to (G, P, Zex), this can be interpreted as

sup% (P! (E)NL(G)) is observable with respect to (G, P,,).

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 4.4.4 E is P.,-co-observable with respect to (G, Py ,, ng,c’ P, ng’c ifVseE' o€

z'ex,c = Zl

'ex,C

2
U z“e)c,c

so € E' Aso € L(G) =

(3i € {1,2})P ! Pio(s)]oNE' =0AG € T, .

Similar to P,,-observability, E being P.,-co-observable can be interpreted as sup%'(P,; ' (E) N
L(G)) being co-observable.

We can see that in Example 4.1, E is P.-controllable with respect to G, and that in
Example 4.2, E is P,x-observable with respect to (G, Py, Zex ¢).

Since Zé N Zf = 0, we can conclude from [25] that checking P,,-co-observability can be
reduced to multiple checks of P, -observability , i.e., E is P,-co-observable with respect to

G,Pio,ZL. ., P 5,22) if and only if E is P.y-observable with respect to (G, P, ,, Z.) and
’ ex,c s ex,c y ’

ex,c
E is P.y-observable with respect to (G, P2 o, sz,c)'
First we show that P,,-controllability is necessary and sufficient for the existence of a

supervisor under full observation such that the supervised plant conforms to the given service

specification.

Proposition 4.4.1 Given a plant G and a service specification E, there exists a supervisor S

for G such that S/G conforms to E if and only if E is P,x-controllable with respect to G.

Proof: (only if) Suppose a supervisor § exists such that §/G conforms to E. Let V be
the supervisory control map induced by S. We have
s€L(S/G)NO € Zye Nso € L(G)
=s€L(V/G)No €V(s)Aso € L(G)
= 50 € L(V/G) (by definition of L(V /G))
=50 € L(S/G)

= L(S/G) is controllable with respect to G.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furthermore
Pux(L(S/G)) =E

= L(S/G) C P '(E)

= L(S/G) C P;'(E)NL(G)

= L(S/G) € €(P;' (E)NL(G))

= L(S/G) C sup¥(P;' (E)NL(G))

= E = Px(L(S/G)) C Pex(sup € (P (E)NL(G)))

Next we show E 2 P, (sup%'(P;; (E) NL(G))). We have:
sup® (P! (E)NL(G)) C F'(E)

= Pex(sup%'(P;; (E)NL(G))) C Fex(P' (E)) = E.

Together we get E = Pox(sup % (P;' (E) NL(G)).

(if) Suppose we have E = P.,(sup€ (P! (E) N L(G))). We define V (s) according to

4

Zue

if s € L(G) — sup € (P (E)NL(G))
V(s)=1{ Z,U{o €Zso €sup?F(P;! (E)NL(G))
Vs ¢ L(G)}

if s € supF (P (E)NL(G))

We show that L(V/G) = sup€(P;'(E) N L(G)). First note that by definition & €
L(V/G) and € € sup%(P;'(E) NL(G)). Assume inductively that s € L(V/G) = s € sup¥
(PzY(E)NL(G))). Let so € L(V/G), ie., s € L(V/G), 0 € V(s), and 50 € L(G) by def-
inition of L(V/G). If 6 € Z,. then so € sup% (P! (E) NL(G))Z,c NL(G), which implies
50 € sup€ (P! (E) N L(G)); whereas if ¢ € X, then so € supZ(P; (E)NL(G))) by the
definition of V. Therefore L(V/G) C sup%(P,;.'(E)NL(G)).

Conversely, as € € L(V/G) and € € sup%(P,;! (E) NL(G)), assume inductively that
sesup€ (P! (E)NL(G)) = s € L(V/G). Let so € supF(P;;' (E)NL(G))). If & € I, then

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56 € L(V/G)X,. NL(G), which implies so € L(V/G) by controllability; whereas if o € Z,
i.e., 0 €V(s), then so € L(V/G) by definition of L(V /G). Therefore sup€ (P! (E)NL(G)) C
L(V/G).
We conclude that Pox(L(S/G)) = Pex(L(V /G)) = Pox(sup€(P;;} (E)NL(G))) = E.
]
The following result states a necessary and sufficient condition for the existence of a

solution to Problem 4.4.1 under the condition of partial observation.

Proposition 4.4.2 Given a plant G, a service specification E C X}, there exists a feasible

supervisor S for G such that S/ G conforms to E iff
1. E is P.x-controllable w.r.t G, and

2. E is Pox-observable w.rt (G,Py,Zex ().

The proof of Proposition 4.4.2 follows directly from Proposition 4.4.1 and Theorem 2.3.2.

These results immediately lead to the following theorem.
Theorem 4.4.1 Problem 4.4.1 has a solution if and only if
1. E is P,.-controllable w.r.t G, and

2. E is Ps-observable w.r.t (G, Py o, Z},x, ¢) and E is Pox-observable with respect to (G, Ps 4, ng,c).

The proof of Theorem 4.4.1 follows directly from Proposition 4.4.1 and Theorem 2.4.1.

4.5 Conclusion

When introducing a service specification into the decentralized RDES framework, several
technical difficulties arise. In this chapter, we first showed by examples that the standard

conditions for controllability and co-observability are no longer necessary for the existence of

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decentralized supervisors to implement a given service specification, and proposed alternative
necessary and sufficient conditions for the existence of decentralized supervisors for RDES. In
some cases, where only safety is considered, we also studied the corresponding decentralized
supervisory control problem, and presented simpler necessary and sufficient conditions for the

existence of decentralized solutions.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Example: Pump System

In this section, we illustrate the concepts introduced in Chapters 3 and 4 on a simple reactive
system: a pump/pipe configuration for pumping water. Throughout this chapter, we assume

that all outputs are controllable.

5.1 System Description

Our pump system consists of one pump and two pipes. The pump delivers water while both (or
only one) of the two pipes carry it to other components (which are not modeled in our system).
We assume that there is an operator who is in charge of the entire system, for example giving
orders to start or stop a mission, so it is natural to treat the operator as part of the environment.

We further assume that pipe 1 and pipe 2 are of different types, for example, they are
owned by two different companies. Suppose that pipe | and the pump are owned by the same
company. In contrast, let pipe 2 belong to another company, and any other company who uses
pipe 2 will be charged for the time that pipe 2 is in use. Furthermore, we assume that the
running expense of pipe 2 is higher than that of pipe 1. Therefore, when a command is issued
to the pump to start operating, pipe 1 will be the default pipe to use.

The system architecture is shown in Figure 5.1.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Normal

Pipe 2 Configuration
o &
- =
Pipe 1
Switching Speed up
Slow down
- — T — -
Pipe 2 Pipe 2
(b) @ @ (c)
Pipe 1 Pipe 1

Figure 5.1: Pump system: the system architecture.

When the operator issues a command to start a mission, the pump will use the default
pipe (pipe 1) (Figure 5.1(a)). If this pipe is found to be leaking, the pump will switch to
another pipe (Figure 5.1(b)). If the operator finds that the pumping speed is not enough to
finish the mission on time, a command to speed up the pump will be executed, i.e., both pipes
are used at the same time (Figure 5.1(c)). When both pipes are in use and if the operator finds
that the pumping speed is faster than necessary, a command to ask the pump to slow down
will be issued to reduce the total expense, i.e., the usage of pipe 2 is discontinued while pipe
1 remains in use.

We assume that there is a valve for each pipe that governs whether or not the pipe is in
use. In general, pipe 1 has three modes: the “On” mode when the valve is open, the “Faulty”
mode when the valve is open but pipe 1 is leaking, and the “Off” mode when the valve is
closed. Pipe 1 is initially in the “Off” mode waiting for the operator’s command to start a

mission. When the “start” command is issued, the valve will be opened and pipe 1 will start

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to deliver water. Consequently, pipe 1 goes to the “On” mode. If an input is issued ordering
pipe 1 to stop delivering water, the valve will be closed and the mode of pipe 1 goes back to
“Off”. Finally, if a sensor detects that pipe 1 is leaking, pipe ! goes into the “Faulty” mode.
In this mode, the valve will automatically be closed. Pipe 1 is modeled as an RDES shown in

Figure 5.2.

valClosed,

Pipel

starty

speedU py,slowDowny

valClosed, pilFaulty

pilLeak

Figure 5.2: Pump system: pipe 1.

Note that state 0 and state 1 correspond to the “Off” mode, state 2 and state 3 correspond
to the “On” mode, and state 4 and state 5 correspond to the “Faulty” mode.

The meaning of event labels in Figure 5.2 is listed below.
e starts: the input pipe 1 receives from the operator to open the valve.

e valOpeny: the output pipe 1 sends to its environment indicating that the valve has just

been opened.
e stopo: the input pipe 1 receives from the operator to close the valve.

e valClosed;: the output pipe 1 sends to its environment indicating that the valve has just

been closed.

e pilFaulty: the input from some sensors which informs pipe 1 that a leak has just been

detected.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e pilLeak:: the output pipe 1 sends to the pump indicating that pipe 1 is leaking and will

be turned off so that the pump should disconnect from pipe 1.

Note that speedUp> (which leads to transition from Figure 5.1(a) to Figure 5.1(c)) and
slowDown, (which leads to transition from Figure 5.1(c) to Figure 5.1(a)) are only possible
when pipe 1 is in state 2 (as indicated by selfloops at state 2). This can be interpreted as
the operator will only issue the “speed up” and the “slow down” orders (Figure 5.1(a) and
Figure 5.1(c)) when the valve of pipe 1 is open and no input has been issued to close the
valve. In other words, the “speed up” and the “slow down” orders are not defined when the
system is still in the start-up phase (states 0 and 1), in the faulty mode (states 4 and 5) or in
the termination phase (state 3).

We assume that pipe 2 is leakproof and is always ready to be used. Since pipe 2 and the
pump belong to different companies, we assume that the valve of pipe 2 will be automatically
opened when it is connected to the pump. In other words, in this example, we only design a
control policy for the company that owns the pump and pipe 1. The RDES that models pipe 2
is shown in Figure 5.3.

Pipe2

conPi2,

discPi2y

Figure 5.3: Pump system: pipe 2.

The meaning of event labels in Figure 5.3 is listed below.

e conPi2y: input from the pump indicating that the pump has just connected to pipe 2.

e discPi2,: input from the pump indicating that the pump has just disconnected from pipe

2.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With these two inputs, the owner of pipe 2 will be able to record the starting time and the
ending time of a given usage period and calculate the usage fee.

The behavior of the pump is described as follows.

When the start; event is received to start a delivering mission, pipe 1 will be the default

pipe used by the pump.

e When only pipe 1 is in use and the stop» event is received to stop the mission, the pump

will disconnect from pipe 1, halt and wait for the next starty command.

e When only pipe 1 is in use and the speedUp> event is received to accelerate, the pump

will connect to pipe 2 and both pipes are in use.

e When only pipe 1 is in use and pipe 1 is found to be leaking, the pump will switch the

mission to pipe 2 by connecting to pipe 2 first and then disconnecting from pipe 1.

e When both pipes are in use and the stops event is received, the pump will stop delivering
water by disconnecting from pipe 2 first and then disconnecting from to pipe 1, since

pipe 2 is always more expensive to use.

e When both pipes are in use and the slowDown, event is received, the pump will discon-

nect from pipe 2.

e When both pipes are in use and pipe 1 is found to be leaking, the pump will disconnect
from pipe 1 and the valve of pipe 1 will be closed. In this case, the system is running in
a faulty mode, and hence the speedUp» order and the slowDown- order are not defined.

When the stopy event is received, the pump will disconnect from pipe 2.

The RDES that models the pump is shown in Figure 5.4.

The meaning of event labels in Figure 5.4 is listed below.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

®stom @ discPil,

discPi2, pilLeak,
Pump
pillLeaky

OH starty @ conPil ', A speedU ps conPi2,

:’ . .

] pil Fault, pil Fault,
discPil
et discPi2; slowDown stopy

discPi2,

Figure 5.4: Pump system: the pump.

e start, and stop have the same meaning as in Figure 5.2.

e conPil,: output to the operator indicating that the pump has connected to pipe 1.

e discPil,: output to the operator indicating that the pump has disconnected from pipe 1.
e conPi2y: output to pipe 2 indicating that the pump has connected to pipe 2.

e discPi2,: output to pipe 2 indicating that the pump has disconnected from pipe 2.

e pileaks: input received from pipe 1 indicating that pipe 1 is leaking.

e speedUp»: input received from the operator ordering the pump to use both pipes.

e slowDowny: input received from the operator ordering the pump to use only pipe 1.

Note that pil Fault, is defined only at states 2 and 9 (indicated by selfloops). This can be
interpreted as the sensors of pipe 1 only function when pipe 1 is in use, i.e., pipe 1 is connected

to the pump and is delivering (then sensors can work by comparing incoming and outgoing

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

water flow speeds). In other words, it is assumed that pil Fault; does not occur when the pump
is in some transitional stage (since a transitional stage is very short in time), such as when the
pump is switching from the “Off” mode to the “On” mode triggered by start; (state 1) and
when the pump is switching from using only pipe 1 to using both pipes triggered by speedUpy
(state 8).

The entire plant behavior is shown in Figure 5.5.

Note that every state of the plant in Figure 5.5 is assigned a three-digit hexadecimal
number of the form ijk such as 000, which indicates that the pump is now in state i, pipe 1 is
in state j, and pipe 2 is in state k. The I/O automata that model the pump, pipe 1 and pipe 2 are

pairwise compatible. When they are composed, there are three internal connections:
o pilLeaky1ToPump Passes messages from pipe 1 to the pump,
o conPi2pumpTopiz Passes messages from the pump to pipe 2, and
o discPi2pumpTopin passes messages from the pump to pipe 2.

The sets of controllable and observable events of the pump, pipe 1 and pipe 2 are noted
below.
The pump: X, , = {starts, stops,conPily,discPily,conPi2y,discPi2,, pil Leaks,
slowDowns speedUps,val Open,valClosed, },
Zppc = {conPily,discPily,conPi2,,discPi2;}.

Pipe 1: 2,1, = {starts,stops,conPily,discPil,, pil Faults, pil Leak,,val Openy,valClosed, },

Zpit,c = {valopen, pilLeak,pil Off 1 }.
Pipe 2: Zpi1,0 = {conPi2y,discPi2»},

Zpile = 0.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pilLeakpil ToPump

discPil, valClosed

@t g

conP i2pumpT0Pi2

conPi2 - '
stopy pumpToPi2 @ .-~"valClosed pilLea kpilToPump

®

pilFaulty

discPi2 pymptopiz

valOpen, pilFaulty

starty - conPil,
valOpen,

speedUps conPi2 pumproprin

discPi2 pumpToPi2

valClosed)

discPi2 pumpToPi2

discPily
stopy

““ValClosed

Figure 5.5: Pump system: the entire plant behavior. Illegal events are shown by dashed lines.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Analysis

In this section we show how our supervisory control theory for RDES can be applied to this

pump system.

5.2.1 A Service Specification £

We define the following service specification E:
1. The valve of Pipe 1 should be already opened before the pump connects to pipe 1.

2. The pump should disconnect from pipe 1 before the valve of Pipe 1 is closed (either

caused by the stopy event order or by the leaking of pipe 1).

The service specification for 1 and 2 is shown in Figure 5.6.

The complete service specification E in Figure 5.6 is determined by (E; N Ey) NL(G).
Note that in Figure 5.6, Z denotes the union of all events in the pump system, i.e., T =X, , U
Zpi1,0UZpi20. The joint behavior of the entire plant and the service specification equals the
entire plant behavior in Figure 5.5 with illegal events (i.e., those events that must be disabled)
shown by dashed lines.

We denote the supervisors for the pump and pipe 1 by Sp, and S,;1, respectively. There

are 5 cases where an event should be disabled:

e The event conPil, that leads state transition from state 110 to state 210 should be dis-

abled by Spp.

e The event valClosed, that leads state transition from state a31 to state a0l should be

disabled by S;;.

e The event valClosed) that leads state transition from state 330 to state 300 should be

disabled by S;1.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E, E;

Z - {valOpen} = — {conPil\} X — {discPil,} T —valClosed,}
valOpen discPil,
conPil, valClosed;
stopq n
valClosed)
discPil,
651
discPily

pilFault, @'

slowDowny
stopy

discPil, stopy

Figure 5.6: Pump system: the service specification.

e The event valClosed, that leads state transition from state 551 to state 501 should be

disabled by Sp;1.

e The event valClosed; that leads state transition from state 450 to state 400 should be

disabled by Sp;;.

5.2.2 Decentralized Supervisors that Implement £

To check whether there exist decentralized supervisors that implement E, using Theorem 4.3.1,
we need to check whether or not there exists K € €' (P,;! (E)NL(G)) such that K implements E
and X is co-observable with respect to (G,Ppp,o,pr,c,Ppil,o,Zpil,c), where Pyp ot ¥ — Z;‘,p,o

and P10 : ¥ — Z;il , are natural projections. If such a K exists, it should be a subset of

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E' = sup%(P,;' (E) NL(G)). Therefore we start by checking E’, which is given in Figure 5.7.

El

valClosed discPily pilLeakpiiToPump

601 @ 551

conPi2 pynpropiz

¥ ®
stopy

pilLeakpilToPump

@ pil Faulr
(8

discPi2,,u,,,,,T,,p,-2
conPi2 pynpropr

speedUpy
conPil,

starty val Openy

stopy

@ 231

330
valClosed, discPily 7 discP2 pumpropsd

Figure 5.7: Pump system: E’' = sup%€(P;!(E)NL(G)).

We can see that P.,(E') = E, i.e., E' satisfies safety. E’ also satisfies progress, since
for every s € E' whose projection Pe,(s) is a prefix of another sequence ¢ € E, it is pos-
sible to extend s by another sequence u such that their catenation equals ¢ under P, i..,
P..(su) = t. For instance, consider the string s = startyval Open\conPil, speedUp, € E', its
projection is a prefix of ¢t = startyval Open\conPil\speedUprslowDown, € E. There exists
u = conPi2pumpropizslowDowny € T* such that Px(su) = t. Furthermore, E’ is co-observable
since all control decisions can be made without ambiguity. For example, conPil; should be
disabled after start; and enabled after startoval Open,. As starts, valOpen) € Zpp 5, Spp can
tell start, and startyval Open, apart and make the correct control decision.

Therefore, E’ is the right K we are looking for. The behavior of E’ can be interpreted in

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

our scenario as follows, which coincides with all our assumptions and requirements.

e When starts is issued, Sp;; enables val Open, and then Sy, allows the pump to connect
to pipe 1 and turn itself on. The pump system starts to work. When stop» is issued, Spp
enables the pump to disconnect from pipe 1 and turn itself off, and then S,;; enables

valClosed to close the valve. The pump system terminates.

e When the pump and pipe 1 are working and pipe 1 is leaking, S,;; sends a message to
Spp (pilLeakpiiToPump). Spp enables the pump to connect to pipe 2 and then disconnect

from pipe 1. Finally §;;; enables valClosed and the valve is closed.

e When the pump and pipe 1 are working and speedUp is received, S, enables the pump
to connect to pipe 2 and both pipes are in use. If later slowDown; is received, S, allows

the pump to disconnect from pipe 2 and only pipe 1 is in use.

e When the pump and both pipes are working and pipe 1 is leaking, S,;1 sends a message
to Spp (pilLeakpiiToPump). Spp €nables the pump to disconnect from pipe 1 and then

Spi1 allows the valve to be closed. In this case only pipe 2 is use.

Spp and Sp;) are shown in Figure 5.8 and Figure 5.9, respectively.

5.3 Pump System: Revisited

In this example, one can also model this pump system in a slightly different way: the en-
vironment of the pump (or pipe 1) is only the operator instead of the operator and pipe 1
(or the pump). In other words, some of the output events of pipe 1, such as valOpen; and
valClosed,, are no longer observable to the supervisor for the pump. Similarly, the output
events of the pump, such as conPily and discPil,, are no longer observable to the supervisor
for the pipe, which is more difficult to handle but more realistic. Thus, the sets of controllable

and observable events of the pump, pipe 1 and pipe 2 are updated as follows.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

discPily

starty

valClosed,
) 55D

diSCPizpu,,,pTopiz

valClosed)

pilLeakpittoPump

conPi2pu,,,pTop,-2

conPi2 pumpToPi2

@ /"\;aIClosedg pilLeakyiiToPump

®

pilFault;

pilFaulr

-

discPi2 pumptopiz

speedUpy conPi2 pumpToPi2

discPi2 pympropiz

~valClosed,

discPil,

decPi2pu,,,,,T,,p,~2 stopy

""’valClosedg

Figure 5.8: Pump system: the plant under the supervision of S,,. Events that are illegal but

uncontrollable to S, (i.e., should be disabled by S,;1) are shown by dashed lines.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Spil

valClosed) discPil, pilLeakpiToPump

601 @ 551
H

conPi2 pumpToPi2

@ 941

pilLeak pi\ToPump
@ CCW
|
Wum pToPi2
stopy slowDowny
(e

3 330,
valClosed; & discPil, 7 discPi2pumproris

pilFaulty

speedUps

stopy

Figure 5.9: Pump system: the plant under the supervision of S,;;. Events that are illegal but

uncontrollable to Sp;; (i.e., should be disabled by S,,) are shown by dashed lines.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The pump: Z,,, = {starts, stops,conPily,discPily,conPi2,,discPi2y, pil Leaky,
slowDownq speedUpn },
Zppe = {conPily,discPily,conPi2),discPi2:}.
Pipe 1: Xpi1 0 = {starty,stopy, pil Faults, pilLeak:,val Openy,valClosed},
Zpi1,c = {valopeny, pilLeak,valClosed,}.
Pipe 2: 2,10 = {conPi2s,discPils},
Zpite =0.

In this case, E’ still satisfies safety and progress, i.e., a centralized supervisor exists.
However, E is no longer P.x-co-observable. For example two sequences starty and startyval Open,
looks the same to the supervisor of the pump, and the event conPil, must be disabled after
the former and enabled after the latter sequence, but Py, o(startyval Openy) = Ppp o(starts) =
starts. In other words, Sp, cannot make the correct control decision without ambiguity. Thus,
a decentralized solution in our framework does not exist.

When E is P..-controllable but not P,,-co-observable, i.e., when at least one event must
be disabled but none of the local supervisors knows that, then communication between local
supervisors may help to solve the problem. In this section we show that existing results on
incorporating communication into decentralized discrete-event control, such as [29], can be
applied directly to RDES.

The “as early as possible” communication strategy introduced in [29] is concerned with
analysis of legal and illegal sequences that cannot be distinguished by supervisors (i.e., se-
quences that violate co-observability). For example, startsyval OpeniconPily is a legal se-
quence and startyconPil) is an illegal sequence, and the supervisor S, making the control de-
cision cannot tell them apart, i.e., Ppp o(startsval OpeniconPily) = Ppp o(startzconPily). The
communication strategy in [29] finds an “earliest possible” event & € X, , along those in-
distinguishable sequences. Since S,, must make the control decision for conPil,, there must

exist at least one event 7 that §p;; sees that will allow S, to distinguish the two sequences.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The property of observability guarantees that such an event © must exist. If S,;; communi-
cates the occurrence of 7 to Sy, Spp Will be able to make the correct control decision about
conPil,.

Our procedure for incorporating communication as adapted for decentralized RDES

proceeds as follows:

1. Isolate all legal and illegal sequences, i.e., families of sequences that violate F,.-co-
observability [25]. Find the first place the illegal/legal sequences differ, i.e., an “earliest

possible” event that the sender observes but the receiver does not.

2. Translate the RDES plant into a “monitoring automata” (Section 2.4.2) as the new au-

tomaton structure into which we incorporate communication.

3. Add a communication event comgenderToreceiver - ¢ right after each selected event in
Step 1, where i € Z* and sender (or receiver) denotes the supervisor who sends (or
receives) this communication event. Note that such a communication event, once sent

out, is observable to both the sender and the receiver.

We assume that the communication event occurs instantaneously. The communication
event represents the sending of the “sender” supervisor’s local state estimates; however, it
could also represent the communication of the last observed event of the sender.

We show how this procedure can be applied to our pump system. As stated in Sec-
tion 5.2.1, there are five cases where an illegal event must be disabled. Unfortunately, all these
five control decision cannot be made without ambiguity. For example, consider the pair of
strings startyconPil, and startoval OpenyconPil,. We show how to find the “earliest possible”
communication event for this pair. For the purpose of this thesis, only the observer automata
and monitoring automaton for a selected part of the plant, called G’, is shown in Figure 5.10.

The observer automaton in Figure 5.10(c) shows that the event conPil should be dis-

abled but S, does not exactly know whether this state transition will lead to state 210 (in

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Without communication

000,{000},{000}

starty

(110,110,120},{110,210})
conPily ~ valOpen;
,’
(210,210.220),(110210)) {120,{110,120).{120,220})

valOpen conPil,

(220,4210,220},{120,220})

(a) Part of the plant G’ (b) Monitoring automaton for G’

000]
starty starty
{110,120} @,210)
conPil, valOpen,
{210,220} {120,220}
(c) Obs,(G') for the pump (d) Obs,(G') for pipe 1

Figure 5.10: Observer and monitoring automata for a selected part of the plant.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which case, it has to disable conPil), or 220 (in which case, it has to enable conPily).
Therefore, this is a violation of P..-co-observability. This pair of illegal /legal sequences
are already isolated. Let the legal sequence s = startyconPily and the illegal sequence s’ =
startyval OpenyconPily, since conPil, is the event S,, must control, we consider their pre-
fixes startoval Open: and start, where P,,(start>val Openy) = Pyy(start;). When we remove
the common prefixes (i.e., start?), we are left with € and valOpen,. Therefore, we select
val Openy to be our “earliest possible” non-empty event to communicate.

The observer automata and monitoring automaton for G’ after incorporating communi-
cation is shown in Figure 5.11.

We can see that after incorporating communication into RDES, s and s/ no longer
look the same to Sp, since compiiropump : 1 is observable to Sp, and therefore Pypo(starty
valOpenicomyiiToPump 1) = startscompiitopump : 1 and Ppp o(starty) = starty are different.
That is to say, the control decision can be made without ambiguity. After incorporating com-
munication into RDES, we can design a decentralized solution even if the service specification

is not P,,-co-observable (as long as the service specification is P,.-observable).

5.4 Conclusion

In this chapter, we presented a pump system to illustrate the concepts developed in Chapters 3
and 4. We showed that the decentralized supervisory control theory in Chapter 3 can be applied
to this pump system when both safety and progress are considered. Finally we illustrated
that an existing strategy for incorporating communication into the decentralized supervisory

control of DES can be directly applied to our decentralized RDES framework.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With communication

@ 000,{000},{000}

starty
starty
(110,(110,120},{110210)]
conPily .~ valOpen; T
o conPil ' valOpen,
29 £
(210,4210220),{110210}) (120.{110.120},{120.220))

COMpi1ToPump * 1 .
valOpen fompnropump i1
'

valOpen, (120,{120°),{120° 220})

conPil, conPil,
' /
(220,{210220}.{120220) (220,{220}.{120"220;)

(a) Part of the plant G’/ (b) Monitoring automaton for G’
{000} {000)
starty starts
{110,210}
conPil, ,"', COMpi1ToPump * 1 valOpen,

Gzzm)

conPil, COMpi1ToPump * 1
Y
(220D (120 220}
(¢) Obs|(G') for the pump (d) Obsy(G') for pipe 1

Figure 5.11: Incorporating communication into RDES.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion and Future work

6.1 General Conclusion

In this thesis, we studied the supervisory control problem of Reactive Discrete-Event Systems
(RDES). The study of RDES is a research area of current vitality and plays an important
role in a wide range of application domains. The motivation of this thesis is based on the
observation that although many computer languages and software have been developed to
simulate reactive systems, the modeling and analysis problem from a control perspective is in
an early stage. Understanding how reactive systems can be modeled from a control perspective
and how existing results in supervisory control framework can be applied will allow us to
combine analysis tools and simulation tools to handle RDES better.

We made some necessary but minor modification to the Input/Output (I/O) automata
introduced by Lynch and Tuttle [5] to model RDES. We presented a compact but meaningful
decentralized RDES architecture to study how RDES co-operate with one another. Within
this framework, we defined the supervisory control problem and decentralized supervisory

control problem of RDES which concern with two important properties: safety and progress.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition, we illustrated how the standard definitions of controllability, observability and co-
observability cannot be directly applied to our framework. Substitute sufficient and necessary
conditions for the existence of decentralized solutions were given.

Furthermore, in many applications, only safety is considered. We also considered this
case, provided the definition of the corresponding supervisory control problem and decentral-
ized supervisory control problem, and gave simpler sufficient and necessary conditions for the
existence of their solutions.

Finally we illustrated our decentralized RDES architecture and the revised supervisory
control theory by an example. The example was revisited to illustrate that existing results on
introducing communication between supervisors can be directly applied to solve the problem
when the service specification is not P,,-co-observable (as long as it is P.c-controllable and

P.,-observable).

6.2 Future Work

Many interesting applications of RDES are real-time systems. Many real-time systems are
safety-critical [30]. A safety-critical system is a system whose functional failure could lead
to loss of life or property. For example, safety-critical systems that produce outputs too late
may cause harm to their environment, such as a heart-monitoring system. Therefore, it may
be interesting to extend the existing work to timed I/O automata.

The sufficient and necessary conditions for the existence of solutions to the supervisory
control problem and decentralized supervisory control problem of RDES concerning both
safety and progress given in Chapter 4 are in general difficult to check. We would like to find
a more suitable version of these conditions that lend themselves to a procedure for constructing
local supervisors.

We plan to further explore the modeling effects of introducing communication into

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RDES. The decentralized RDES architecture may possibly be more powerful with commu-

nication between local supervisors.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] S. L. Ricker, Knowledge and communication in decentralized discrete-event control.
PhD thesis, Department of Computing and Information Science, Queen’s University,

1999.

[2] K. Q. Zhu, W. Y. Tan, and A. E. Santosa, “Reactive web agents with open constraint pro-
gramming,” Proceedings of 5th International Symposium on Autonomous Decentralized

Systems, pp. 251-254, March 2001.

[3] B.Lee, Specification and design of reactive systems. PhD thesis, University of California,

Berkeley, 2000.

[4] W. M. Wonham, “Supervisory control of discrete-event systems,”

http://'www.control.toronto.edu/people/profs/wonham/wonham.html.

[S] N. A. Lynch and M. R. Tuttle, “An introduction to input/output automata,” CWI Quar-
terly, vol. 2, no. 3, pp. 219-246, 1989.

[6] Z.Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems: Spec-

ification. Springer-Verlag, 1991.

[7] D. Harel and A. Pnueli, “On the development of reactive systems,” in Logics and Models
of Concurrent Systems (K. R. Apt, ed.), NATO ASI series F-13, pp. 477-498, Springer-
Verlag, 1985.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[8] N. Leveson, M. Heimdahl, H. Hildreth, and J. D. Reese, “Requirements specification for
process control systems,” IEEE Transactions on Software Engineering, vol. 20, no. 9,

pp. 1270-1282, 1994.

[9] F. Maraninchi and Y. Remond, “Argos: an automaton-based synchronous language,”

Computer languages, vol. 27, pp. 61-92, 2001.

[10] P. LeGernic, T. Gautier, M. LeBorgne, and C. LeMarie, “Programming real-time appli-
cations with signal,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1283-1304, 1991.

[11] G. Berry and G. Gonthier, “The esterel synchronous programming language: Design,
semantics, implementation,” Science of Computing Programming, vol. 19, no. 2, pp. 83—

152, 1992.

[12] T. Jeron, H. Marchand, V. Rusu, and V. Tschaen, “Ensuring the conformance of reactive
discrete-event systems using supervisory control,” Proceedings of the 42th IEEE Con-

ference on Decision and Control, pp. 2692-2697, 2003.

[13] S.Balemi, “Input/output processes and communication delays,” Discrete-Event Dynamic

Systems: Theory and Application, vol. 4, pp. 41-85, 1992,

[14] L. Du, S. L. Ricker, and P. Gohari, “Decentralized supervisory control and communi-
cation for reactive discrete-event systems,” Proceedings of the 2006 American Control

Conference, pp. 6045-6050, 2006.

[15] K. Inan, “Supervisory control and formal methods for distributed systems,” Proceedings

of International Workshop on Discrete-Event Systems (WODES’92), pp. 2941, 1992.

[16] K. Inan, “Nondeterministic supervision under partial observations,” Guy Cohen and
Jean-Pierre Quadrat Ed., Lecture Notes in Control and Information Sciences, vol. 199,

pp. 39-48, 1994,

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[17] K. Calvert and S. S. Lam, “Formal methods of protocol conversion,” IEEE Journal on

Selected Areas in Communication, vol. 8, no. 1, pp. 127-142, 1990.

[18] R.Kumar, S. Nelvagal, and S. 1. Marcus, “A discrete event systems approach for protocol
conversion,” Discrete-Event Dynamic Systems: Theory and Application, vol. 7, no. 3,

pp. 295-315, 1997.

[19] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event
processes,” SIAM Journal on Control and Optimization, vol. 25, no. 1, pp. 206-230,
1987.

[20] W. M. Wonham and P. J. Ramadge, “On the supremal controllable sun;anguage of a
given language,” SIAM Journal on Control and Optimization, vol. 25, no. 3, pp. 637-
659, 1987.

[21] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, “Supervisory control of discrete-event
processes with partial observations,” IEEE Transactions on Automatic Control, vol. 33,

pp. 249-260, 1988.

[22] K. Rudie and W. M. Wonham, “Think globally, act locally: Decentralized supervisory

control,” IEEE Transactions on Automatic Control, vol. 37, no. 11, pp. 1692-1708, 1992.

[23] F. Lin and W. Wonham, “On observability of discrete-event systems,” Information Sci-

ences, vol. 44, no. 3, pp. 173-198, 1988.

[24] P.J. Ramadge and W. M. Wonham, “The control of discrete event systems.,” Proceedings
of IEEE; Special issue on Dynamics of Discrete Event Systems., vol. 77, no. 1, pp. 81-98,
1989.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[25] K. Rudie and J. C. Willems, “The computational complexity of decentralized discrete-
event control problems,” IEEE Transactions on Automatic Control, vol. 40, no. 7,

pp. 1313-1319, 1995.

[26] K. Rudie and W. Wonham, “Supervisory control of communicating processes,” L. Lo-
grippo, R. L. Probert and H. Ural, Ed., Protocol Specification, Testing and Verification,
vol. X, pp. 243-257,, 1990.

[27] K. Rudie and W. Wonham, “Protocol verification using discrete-event systems,” Pro-
ceedings of the 31th IEEE Conference on Decision and Control, vol. 3, pp. 3770-3777,
1992.

[28] S. Takai, A. Takae, and S. Kodama, “The extremal languages in supervisory control
of discrete event systems with service specifications,” Proceedings of the 35th IEEE

Conference on Decision and Control, vol. 2, pp. 2231-2236, 1996.

[29] S. L. Ricker and K. Rudie, “Incorporating communication and knowledge into decen-
tralized discrete-event systems,” Proceedings of the 38th IEEE Conference on Decision

and Control, pp. 1326-1332, 1999.

[30] R. J. Wieringa, Design methods for reactive systems: Yourdon, Statemate, and the
UML. The Morgan Kaufmann Series in Software Engineering and Programming, Mor-
gan Kaufmann Publishers Inc, 2006.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

