On the FPGA implementation and performance analysis of a digital carrier synchronizer
Rahman, Sayed Hafizur

ProQuest Dissertations and Theses; 2007; ProQuest

pg. na

On the FPGA Implementation and Performance

Analysis of a Digital Carrier Synchronizer

Sayed Hafizur Rahman

A Thesis

The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Masters of Applied Science at

Concordia University

Montréal, Québec, Canada

November 2006

© Sayed Hafizur Rahman, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliotheque et
Archives Canada

Library and
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-28925-9
Our file Notre référence
ISBN: 978-0-494-28925-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

On the FPGA Implementation and Performance Analysis

of a Digital Carrier Synchronizer

Sayed Hafizur Rahman, M.A.Sc

Concordia University, 2006

The evolutionary growth of digital communication has an acute impact on the
digital integrated circuit (IC) design industry. Nowadays instead of ASICs
(Application Specific Integrated Circuits), Field programmable gate arrays
(FPGAs) are often employed to implement digital communication systems due to
the speed, performance, reliability and flexibility. Digital communication systems
such as modulation-demodulation and M-PSK require the use of carrier
synchronization in phase and frequency. This work addresses the FPGA
implementation and analysis of a Digital Carrier Synchronizer (DCS), which is a
phase-locked loop (PLL), realized using digital circuits. This novel methodology
highlights implementation promises towards some of the critical issues
associated with the design of its analog counterpart, usually known as PLL. The
principle function of this DCS is heavily dependent on the Numerically Controlled

Oscillator (NCO) and the Loop Filter (LF). There are various methods to

it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implement NCOs and LFs that are used in the architectural model of DCS. This
research work examines the performance of two different NCOs and LFs
realization in DCS for modem (modulator-demodulator) application using FPGA
based design solutions. The methods presented are Look up Table (LUT) and
Xilinx ROM based NCO in one hand, and 1% order and 2" order based LF in the
other hand. Each has its own merits and de-merits. A DCS mathematical model
has been developed in order to analyze the stability of the design. Furthermore,
the performance of this two implementations based on three performance metrics
i.e. stability, locking-time and tracking range has been studied. From the
analysis, Xilinx ROM based NCO with 2" order LF performs better and are more

suited for modem’s DCS.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

First and foremost, my wholehearted thanks and admire are due to the Holy One,
Allah, Who has always been with me through out my entire struggle in life wiping

out all my fears, for oblation His countless blessings.

| would like to express my sincere gratitude and appreciation to my supervisor
Dr. Otmane Ait Mohamed for providing me the opportunity to work in this
challenging but exciting field and to be part of his research group, for his expert
guidance, and for his support and encouragement throughout my research and

thesis process.

| would like to specially thank Asif Igbal Ahmed of Hardware Verification Group,
Concordia University, for his invaluable guidance. Without his insight and
steering, needless to say, this project would have never got completed. Also, |
would like to curiously thank Dr. Youcef Fouzar, Zarlink Semiconductor, Ottawa,

Canada, for valuable discussion of my project.

To all my fellow researchers in Hardware Verification Group (HVG) at Concordia
University, thank you for encouragement, thoughtful discussion, and productive
feedback. | wish to express my sincere and heartfelt thanks to Kamran Hussain,
Amer Samara, Abu Nasser Mohammed Abdullah and Haja Moinudeen who have
helped me during the course of my research work. | would specially like to thank
to my eldest brother, Mujibur Rahman in Texas Instrument, USA, who helped me

out whenever | was in difficulties.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Last but not least | would like to thank my eldest brothers, father and the rest of
my family members in Bangladesh for their constant moral support and

encouragement which were invaluable in completing this thesis.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To

My Father,
Sayed Mostafizur Rahman

And

My Mother,
Late — Firoza Begum

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE of CONTENETS

LISt OF FIQUIES ..ottt e st st nme s e e s e re s n e s me s pas s m s e me s e ranenn e nons xi
LiSt OF TADI@S....cco e s s s xiii
LiSt OF ACFONYIMS ..o rici e re e re e s e s e st s s me s e s san et e e me e s meseme i ranesemr s saresenennne xiv
L0 =T =1 gl I 174 o T 8o ' o O S 1
1.1 ThesSisS CONIDULIONScccvviiiiiereeiereee ettt n st e aeecnenane 4
1.2 TRESIS OFQAINUZALION.coeeveeieeerieeeceieeee e eeeca e et e s e s e er e s e st aee e nrenees e neneas 6
Chapter 2 Related Work and Preliminaries.......c.ccccovrerierienccemrvccr s scicn e sscinssns s ne s nsene s 7
2.1 LR 1= o I o ¢ N 7
Y T g g Ty =L PO 9
2.21 SYNIhESIS PrOCESS ...ceiiiiii ittt st s n e n s s ns b e 9
2.2.1.1 Synthesizable vs. Non-Synthesizable RTL 11
2.2.1.2 Synthesis for FPGAccvcvivecvviriernrcnnns e ee ey ressarrreeesanes 13

2.2.1.3 Xilinx Integrated Software Environment (ISE)cc.cccocevvviviiennivieeeniiieee e 13

2.2.2 Functional Verification Using Simulationccocvii e 16
2221 Whatis Functional Verification?cccooniiiocimiicienni e 16
2.2.2.2 The Importance of VerifiCationccccccuareoiniiniiii et 17
2.2.2.3 WRatiStOSIDONCA? ...t 19

b B 1 V1 111 T 20
Chapter 3 Conventional Analog Phase Locked (APLL)........ccccovvmmminiiecmrinicnsrmennnnennnennsnenns 21
3.1 INEOTUCHION ...ttt nen e s nnce e 21
3.2 Phase DeteCtOr (PD).........ciiiieriiiscivsinciississicesrisins s saessessns s 22

R T T Moo To N o 11 =T ol (I) O ORI TOTRN 24
3.4 Voltage Controlled OSGIllator (VCO)........cucvveerirircriiiiciitiieinieiiiisceiiensiserreres e 26

B T 17 o111 T PO 30

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.1 Mapping the Poles of a second-order system from S-domain to Z domain.............. 32

4.2 Mathematical model of DCS Archit@CIUre...........ccccovmeeeieieceeeeeeeee v 33
4.3 Analysis of the DCS........cccocvvevvevvririeeirescieviev st scesentresseeressesecsses e 34
4.3.1 Transfer function of Loop Filter in the Z-domainccccoovevvnicvvniivieeeeeeieeennans 34
4.3.2 Transfer function of NCO in the Z-domaiN...........c.coeoeeeiveriecieirneceeesieeesees e 36
4.3.3 Phase Error Response 0f the DCS.........c..cccvivrveeicieiciiniessieeceecstecrreeserees e cressven e 39
4.3.4 Stability analysis OF the DTSccoireieiiiieee ettt ere e ee e ens 41
4.3.5 Tracking Range Of the DCS.............coo oot 43
4.4 T 11147 TV O 43
Chapter 5 Design and Datapath Implementation of Digital Carrier Synchronizer (DCS)..... 44
5.1 INTFOTUCTION ..ottt ettt et ettt s beeer e s s e nnns 44
5.2 PRASE DBIBCIONcocveeeeee ittt vt te et ae v v et sarasnas e e et e e e e 45
5.2.1 Data path of the PRase DEtECIOrccococovvviieiiiviic e e 46
5.3 First Order Digital LOOP FiltEF (LF) ...c.vvcceeciiieeireeeeeiveesieesvesnesteenseesssesssseseanssensnesssessns 48
5.3.1 Data path of the LOOP Filterc.ccooviiriciiiiiiiiiieeit e e 49
5.4 Numerically Controlled OScillator (NCO)cccooreeiiecieviireeeee et 50
5.4.1 Datapath of LooK Up Table (LUT) Based NCOcccccoveeiiiveeeceeecirieeeieee e 51
5.5 ID o= 1 Moot O (- OSSPSR 53
5.5.1 Designing @ lIR LOW Pass Fller........cccc.ooveiiiviieiriniiiieie e 54
5.5.2 Designing a FIR LOW PASS filter..........cccoovviviiriniiicniiin s scsien st e s erinen s seenssnnens 55
5.6 XilinX SYSIOM GONEIALONevvei it eeccet e et ee s et e e s e sttt e s e e s arenaeaassnsenasenasannas 57
L R Y (- (- e | OO e et e e e ereereaas 58
5.6.1.1 Selecting an FPGA BOGIU..........cccovuiivieeeeieeeesiescseescierssenessiee s ssseeennes s senevennes 58
5.6.1.2 Selecting a Digital Filter Design Method.................ccoccveeeieviviieeerciieeecceeee e, 58
5.6.1.3 Kaiser Window Method..............ccovveriiiiiiieiiiiireces e e s 59
5.7 CORDIC Based NCO ...ttt st s e s e 62
5.8 Xilinx ROM Based NCO........ooeeeeieeeereeeee et ee et st e e st nseseae s snene 65
LR I 17 11 T PPN 67
ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 Synthesis and EMUIAtion ..., 68

6.1 Space Exploration via SYNthesiS PrOCESSuuiveveecuiveriiieeecreeei vttt 68
6.1.1 Comparison of Different NCOSc.ccccoivirieiriniinicnrerec e e 68
6.1.2 DCS Synthesis Using Various Configuration of NCO and LFcccccoovivvvveniens 71

6.2 EMUIGLION ..ottt bbb s s 71
B.2.1 INIPOAUCHONeommeiiiieieece et e 71
6.2.2 The EmuIation ProCess...........ccmiiimimmniiii i sessnssis sresns 73
6.2.3 Synthesized Emulation Environment SEIUDccceuvvcevcreiinreinier e iineressenees e 73
6.2.4 Design Implementation.............cccoiie i e 75

6.2.4.1 Internal Reset Generator through an FSM ..o, 76
6.2.4.2 Linear Feedback Shift Register (LFSR)..........ccoveeivvierveiieiiicvreennincren e 77
6.2.4.3 Digital Magnitude COmMPAaratorccoveeviieeioereeeeseieesr e 78
6.2.4.4 ADC (Analog to Digital CONVErter)..........cccccuvviriineiririneiiineecr e 81
6.2.4.5 CIOCK DIVIGEF (CIK_GIV) werevevveoeeeeeeeeeeoeeeeeeseeessee s sress s ssssssesssnesssssenesnes 82
B.2.4.6 DISPIAY ...ooveeeee vttt ettt s rer e e e e s ra e seneeenenees 83
6.3 Y 1111 RO 83

Chapter 7 Simulation Results and Performance Evaluation of Different DCS

IMPIEMENtAtiONS ... e R s R e 84
7.1 e 7ot (7o oo B SO 84
7.2 Simulation Environment FOr DCS..........ocv et 85

7.2.7 INSIANUALONS ..o e e s 86
7.2.2 Initial and AIWaYs BIOCKScccoveeeieeeeiieisiiesiriis oo eeeeenrenesasresesneeesennesaennnaesenenennness 87
7.2.3 Printing Using $display During SimuUl@tionceriinecncccncneeonicinns 88

7.3 Simulation Results @nd DiSCUSSIONcowecvmerircesinerereerrcrrecreccecvcvineisssssissenesssssenonas 89
7.4 Tracking Range and Locking Time ANAIYSISc.cuvveeuueercorcneeiircecneeearrceieeenvciiainsivns 93
R T Y 11 71 T- oV 97
Chapter 8 Conclusion and FUture WOrkK...........occvccmiiiniiiininiemis s e ianensues 98
L] =T T Lo U OO 101

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1. Digital Carrier Synchronization (DCS) path ... 2
Figure 2. Logic Synthesis Flow from RTL t0 Gatesccccvvvvvieineivncinnenneeneerenenns 10
Figure 3. Screen shot of Xilinx Project Navigator, from the ISE Software Suite............... 14
Figure 4. A Functional Verification Pathccccovieriiciiiiiccc e 16
Figure 5. Verification Dominates Designcccccvviveiniiieininnicieeerssseesssesenenserenes 18
Figure 6. Block Diagram of @ TeStbenChcccccvvivviiienic s 20
Figure 7. Analog Phase LOCKEd LOOPcccviriiieniiiii e 21
Figure 8. Phase Detector as a MURtiplier............ccovvvniicinnicec s 23
Figure 9. Filtering the Phase Detector Output signal to removecccceeveevieiicnines 25
Figure 10. The Circuit Implementation of the first order passive Loop Filter.................... 25
Figure 11. Block Diagram of Voltage Controlled Oscillator............cocoevnrviecnneninennnninn. 27
Figure 12. Mathematical model of DCS in discrete time domain (Z-domain).................... 34
Figure 13. Block diagram of Loop Filter in Z-domainc..cccovvcnnicnncicnnncnen, 35
Figure 14. Block diagram of NCO in Z-domaincccccevvrivvieiiiinninneseneensenesee e 36
Figure 15. Pole-Zero Plot for a stable DCS.........ccoooioeec s 42
Figure 16. Digital Carrier Synchronization Path on the FPGA platform 44
Figure 17. Datapath of the Digital Carrier Synchronization...........c.ccoceovvnirnnccnicnnnnee. 45
Figure 18. Datapath of Phase DeteClor..........ccooviiieii e 46
Figure 19. Phase Detection State maching.........c.cccoevvivcniniinncnneenecone 48
Figure 20. Datapath of 15 Order LOOp Filter.............oocvivevereeereeeeeceeesee e ses s, 49
Figure 21. Look Up Table (LUT) Based NCOcccoor vt crvcsrive e sssene e e 51
Figure 22. Second Order Low Pass IIR Filter ..o 54
Figure 23. Second Order Low Pass FIR Filter........ccouvveeiiiciiininciicreeeescerre e eeresves s 56
Figure 24. CORDIC Based NCO.........cciiiiiniinineineieieereeseene s sesesssseresesenens 62
Xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 25. XilinX ROM 1024X1 ..ottt eve ettt s sb st n e sb s 65

Figure 26. Xilinx ROM Based NCO with Modulo N Counter..........cccooeveervrrrrnerenennninnnns 65
Figure 27. Emulation Environment for DCS ... 72
Figure 28. FSM for internal Reset signal generator ..., 77
Figure 29. An 8-bit Pseudo Random Generatorc.cccveiviireiniinenninensnnessrenesnes 78
Figure 30. 8-Bit Digital Magnitude Comparatorc.ccoveiiiriveevinre e 79
Figure 31. ADC with a Magnitude Comparatorc.c.ccoovveieinnercnnee e 80
Figure 32. Datapath of Analog to Digital Converter ... 81
Figure 33. Simulation Environment for DCScccocooviiiiniiiiceceese s 85
Figure 34. Stimulus Module Instantiation............cccevviiiin e 86
Figure 35. DCS Using LUT based NCO and 1st Order LF (When Fs = 72 MHz) 89
Figure 36. DCS Using LUT based NCO and 1st Order LF (When Fs = 75MHz) 89

Figure 37. DCS Using Xilinx ROM based NCO and 1st Order LF (When Fs = 73 MHz) 90
Figure 38. DCS Using Xilinx ROM based NCO and 1st Order LF (When Fs =77MHz).. 90
Figure 39. DCS Using LUT based NCO and 2nd Order LF (When Fs =85 MHz)............ 91
Figure 40. DCS Using LUT based NCO and 2nd Order LF (When Fs = 88 MHz)............ 92
Figure 41. DCS Using Xilinx ROM based NCO and 2nd Order LF(When Fs = 95 MHz) 92
Figure 42. DCS Using Xilinx ROM based NCO and 2nd Order LF(when Fs = 105 MHz)93
Figure 43. Tracking Frequency vs. Lock Time of DCS using LUT Based NCO and 1st
OFAEI LF . e 94
Figure 44. Tracking Frequency vs. Lock Time of DCS using Xilinx ROM based NCO and
TSEOIAEN LF ...ttt bbb bbb 95
Figure 45. Tracking Vs. Lock Time of DCS using LUT based NCO and 2nd Order LF... 96
Figure 46. Tracking Frequency Vs. Lock Time of DCS using Xilinx ROM based NCO and

BT To B O (o [=1 ol I OO OO USRS 96

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1. Physical resources Occupation on FPGA board for FIR and IIR Filter.............. 59
Table 2. Angle Value & Shift Sequences of CORDIC Based NCOccceevvvvvcvnennnn, 64
Table 3. Xilinx ROM1024X8 Initialization (When Fs = 50 MHz)..........cccocvveveeiccnnnnnenae 66
Table 4. Performance Evaluation Using XiliNXcccooeevrivnmiininiinreenieeseeeneens 69
Table 5. Performance Evaluation UsiNng SYNOPSYSc.cccoveierninieennnenineeenecineencenes 69
Table 6. Synthesis Report of Different DCS Implementations.............cccoovvvevenviincviennnn. 71
Table 7. Summarized Emulation Results of Different DCS Implementations 83
Table 8. Summarized Analysis of Different DCS Implementationsccccovvvnirrcennen, 97
xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ADC
ASIC
APLL
CORDIC
DAC
DCS
DPLL
FPGA
FIR
FSM
IR
LUT
LF
LPF
NCO
PD
PM
SOC
UCF

VCO

List of Acronyms

Analog to Digital Converter
Application Specific Integrated Circuit
Analog Phase Locked Loop
Coodinate Rotation Digital Computer
Digital to Analog Converter

Digital Carrier Synchronizer

Digital Phase Locked Loop

Filed Programmable Gate Array
Finite Impulse Response

Finite State Machine

Infinite Impulse Response

Look Up Table

Loop Filter

Low Pass Filter

Numerically Controlled Oscillator
Phase Detector

Phase Modulation

System-On-Chip

User Constraint File

Voltage Controlled Oscillator

Xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

The continuous progress in modern digital communication systems, such as
wireless, telecom, and datacom require a stable periodic signal to offer timing
solutions. This stability provides the basis for synchronizing, aligning the
sampling clock, restraining the clock skew or synthesizing frequencies. Phase
locking, studied for more than half a century, is the principal technique to provide
timing solutions. A list of tasks recognized by phase-locked loops (PLL) includes
carrier synchronization, carrier recovery, clock recovery, phase modulation‘,
phase/frequency demodulation, frequency synthesis, duty cycle correction, and
jitter reduction [1]. Carrier Synchronization is an important part in coherent
communication systems, especially for those employing a high bandwidth
efficiency modulation schemes such as modem. Conventionally, a feedbaék Idop ‘
called the phase-locked loop (PLL) is used to implement the carrier
synchronization [2]. Digital carrier synchronizers (DCS) (Shown in Fig. 1) follow
the analog phase locked loop techniques to synchronize any given signal [3]. The
input signal of the DCS is sampled by the analog to digital converter (ADC) [4],
which is not synchronous with the signal of the receiver's digital to analog

converter (DAC) [3] [5]. There is a frequency or phase offset that exists between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the transmitter (ADC) and the receiver (DAC). In order to remove this offset a

digital carrier synchronizer (DCS) is required.

DCS Core

ADC |—| ForFPGA I 31 pac
Implementation

Figure 1. Digital Carrier Synchronization (DCS) path

In this research work, the carrier synchronization is considered in digital domain
in the context of digital modulation application, i.e. modem, which are designed
mainly using a digital approach, because of the flexibility and high performance
of digital systems. The carrier synchronization in digital modems is achieved by
phase-locked loops, and as the DPLL is purely digital, it can be used in these
systems. In modem applications, the locking time and tracking frequency are of
extreme importance. Whenever the phase-locked loop loses lock in a modem, it
means that hundreds of bits of data will be lost before the modem can regain
synchronization [6]. The carrier frequency of our target application, modem, is
2.048 MHz. In this research work, two distinct realizations of DCS are
investigated. The first one is the LUT based NCO with 1% and 2" order LF and
the second one is the Xilinx ROM based NCO with 1 and 2™ order LF. For each

design we try to obtain the optimal locking time, and a wider tracking frequency

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

range, when changing the frequencies from 35 MHz to 110 MHz. Furthermore,
the stability of our design was analyzed using MATLAB and showed that it's
stable under certain constraints, which become then our design requirements.

Our implementation targets a Field Programmable Gate Arrays (FPGAs).

As the technology of a multi-million gate in new devices is advancing very fast,
both FPGAs and Application Specific Integrated Circuits (ASICs) are
competitively demonstrating their capabilities in very large and high-speed
applications. Consecutively, choosing the right technology to implement a given
design is becoming the key question for several applications. In one hand, with
ASICs one can implement multi-million gates in a small area of silicon using a
library of reusable hardware and software blocks as Intellectual Property (IP)
cores [7]. On the other hand, FPGAs have also satisfied wonderfully the
requirements of fulfilment large complex designs in their today’s multi-million gate
ranges. Large variety of high performance IP cores (Microprocessors,
Microcontrollers, Intellectual functional logics etc.) as well as high speed
memories are much more accessible in today’'s FPGAs [8]. These features
facilitate the implementation of a large complex system designs in FPGAs. Since
the FPGAs are programmable, this indeed lowers the cost of any required
changes or modifications in the design for future, and considering the importance
of shorter Time To Market (TTM) in industry, which is a great benefit. For our
DCS implementation we chose Xilinx Virtex-ll Pro FPGA family which is based
on IP cores and customized modules. It has multi-gigabit transceivers and

PowerPC CPU blocks. It empowers complete solutions for telecommunication,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wireless, networking, video, and DSP applications. Virtex-ll Pro architectures are
optimized for high performance designs in a wide range of densities. Combining
a wide variety of flexible features and IP cores, the Virtex-ll Pro family enhances
programmable logic design capabilities and it is a powerful alternative to mask-
programmed gate arrays [9]. Virtex-ll Pro has some highly advanced features

which include high performance Digital Clock Manager (DCM), and large storage.

1.1 Thesis Contributions

The main contributions of the thesis are as follows:

= A mathematical model of our DCS implementation was developed in order to
verify the stability of the model. The mathematical model was derived by the
z-transform techniques. Initially the transfer functions of each component of
the DCS model (i.e. phase detector, loop filter and NCO) were derived in the
Z-domain. Subsequently the transfer function of our full DCS model was
developed using negative feedback loop criteria. Finally the pole-zero
condition was investigated using MatLab in order to verify the stable condition
of our DCS architecture. The pole-zero plots also presented which are
depicting the location of the poles and zeroes in the unit circle. Details about

this development are provided in Chapter 4.

= Our initial focus was started of on the improvement of the NCO. Provided that
a precomposed datapath was consisted of an NCO implemented in Look Up

Table based method. The NCO using CORDIC based method was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reimplemented and afterwards used Xilinx ROM based method. Details about

this development are presented in Chapter 5.

» After that our goal was to enhance the loop filter configuration as it played a
major role in the feed forward gain of DCS along with NCO. Originally
different NCOs were integrated with first order loop filter and checked the
performance. Although synthesis wise it was the perfect candidate our goal
lied to implement an NCO for faster locking time and wider tracking range.
Therefore a second order loop filter was opted in order to accomplish the
tracking range and locking criteria. A detail explanation is described in

Chapter 5.

» Qur developed emulation environment was portable and was two fold: First
we wanted to validate the sanity of DCS core and second, we wanted to

reuse the same emulation environment for different DCS configurations.

= Qur initial examination was involved with the locking time and tracking
frequency range of DCS model using first order loop filter and LUT based
NCO. Subsequently, a LUT based NCO was replaced with the Xilinx ROM
based NCO and observed the locking time and tracking frequency range. At
last, the first order loop filter was substituted with the second order loop in the
DCS datapath in order to examine the locking time and tracking frequency

range.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Thesis organization

This thesis work illustrates the different DCS implementations using different
order of loop filters and various NCOs. The highlight of our research work is to
present a novel idea of DCS using Xilinx ROM based NCO in order to carry out
the better performance metrics in the context of locking time and tracking
frequency range for modem applications. The rest of this thesis is organized as
follows: Chapter 2 provides a detailed explanation of the synthesis procedure
and the functional verification using simulation. Chapter 3 gives a brief overview
of the conventional analog phase locked loop. Chapter 4 explains a mathematical
model of DCS architecture with some analysis. Chaptér 5 discusses the detail
datapath design and implementation of different DCSs with some modifications.
Chapter 6 elaborates the emulation environment for FPGAs and Chapter 7 is
devoted to simulation results and discussions. Finally Chapter 8 concludes this

research work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Related Work and Preliminaries

2.1 Related Work

An assortment of NCO implementation schemes, using both LUT and CORDIC
algorithms, can be found in Kadam ef al. [10]. The work revealed that CORDIC
based NCO requires less space (hardware) than the LUT based implementation.
Our work leads to that Xilinx ROM based NCO uses less hardware than others
NCO. However, the major difference is rooted in the performance of NCO block
in the framework of DCS in our research. However, the major difference is
rooted in the performance of NCO block in the framework of DCS implementation
in our research while in Kadam et al. [10]; their investigation tackles single
modular implementation of NCO.

Ray et al. [11] is another noteworthy research that studied the use of CORDIC
architecture in implementing commonly used functions into specific FPGAs. They
mainly focused on applicable Digital Signal Processing applications. Once again,

the difference with our research to the mentioned work is in the context of DCS.

Liang Yi & others [12] analyzed a direct digital frequency synthesizer (DDS)
which is also called NCO. Their work focused only on the size of ROM lookup
table and the precision of sine wave. In our work, we focus on the different

performance metrics of NCO for speeding up the DCS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A notable work to mention is the research performed by Khalid et al. [13]. They
mainly focused on designing the emulator for quantum algorithms. Their work did
not mention about the emulation environment nor did they mention about the
complexity of the emulation environment. The principal contribution of our
research to the above mentioned work is in the context of designing an emulation
environment for DCS architecture. Our emulation environment provides the
flexibility of integrating any data synchronizer. With a Xilinx soft IP (e.g. ADC)
core, an internal reset signal generator, LFSR, Comparator and a clock divider,
ours was truly a well fitting emulation environment.

Kyung-soo Oh et al. [14] as well developed an emulator environment for
functional verification of a multi-media processor. They needed customized board
control functions to control the specific FPGA board but on the contrary our
environment can target on any Xilinx family of FPGA without any control circuitry.
Last but not least we would like to cite the work done by P. Civera et al. [15].
Their work presented FPGA based circuit emulation for performing fault-injection.
The key difference between this research to theirs is the application area. Our
work focused more on verification of DCS circuits used on MODEMS, whereas

their prescribed work completed the flow for Design-For-Testability (DFT).

In the following sections some preliminaries will be discussed which are required

for our research work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Preliminaries

2.2.1 Synthesis Process

Synthesis is a process, which enables the conversion of a behavioral-level
model, in the form of RTL coding, to a gate-level model. It is important to note
that the synthesis process will not always implement the same section of code in
the same manner, since the tools employed for the task are powerful and have
the capacity to optimize the design; attempting to provide an optimal solution in
terms of timing, area, and power. In order for a design to be optimized, a
compromise must be reached between the minimization of area, power, and
timing requirements. The best compromise for a particular design depends on
the requirements of the system that the design is to be used in. In order for the
synthesis engineer to have some control over the optimization process,
constraints can be set to define the maximum acceptable area and power, and to
define the operating frequency of the module. The synthesis tool will work,
iteratively, to meet these requirements; however, if they are too optimistic then
timing violations may result, requiring the design of the module to be addressed,

or the constraints relaxed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RTL
Description

!

Translation
Unoptimized

Intermediate
Representation

I

Logic
Optimization

l

Technology
—n——- Mapping and |-=
Optimization

__--_______.__i ________ -

Optimized Gate
Level
Represenatation

Technology
Library

Design
Constraints

Figure 2. Logic Synthesis Flow from RTL to Gates [16]

Managing a complex datapath requires that the synthesis possess a high degree
of automation. The synthesis procedure can be automated so that it is only
necessary to run a single script (i.e. dc_shell); nevertheless, it is useful to have a
good understanding of this process throughout the development of the design.
Although a variety of synthesis tools are available, to address our research need
we have employed Xilinx ISE and Synopsys Design Compiler [9]. The main
characteristics of these tools are they work on similar principles and involve

similar stages during synthesis. Figure 2, extracted from [16], provides a good

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

illustration of the key stages of the synthesis process. In Figure 2, RTL
Description represents behavioral-level Verilog coding which describing the
functionality of the design. Translation is a process, which converts the RTL
coding at the input into a representation more convenient for the tool;
‘unnecessary’ code such as comments will be removed at this stage.
Unoptimized Intermediate Representation converts the output of the
Translation process to a form based on the structure of the design, which is
incomprehensible to the user. Logic Optimization employs various techniques
to remove redundant logic, providing an optimized representation of the initial
RTL Description, a very significant stage before the physical information and
constraints are considered. Technology Mapping and Optimization maps cells
in the gate-level representation to cells from a specified Technology Library and
then iteratively optimizes the design in an attempt to meet the specified
Constraints. An Optimized Gate-Level Representation of the design is the
output from the synthesis process, along with reports on timing, area, and power
of the design. A number of alterations are required in the synthesis scripts in
order to define design characteristics, such as the interface, the clock periods,

the top-level module name and the Technology Library.

2.2.1.1 Synthesizable vs. Non-Synthesizable RTL

There are three levels of abstraction that may be used to represent the design;
Behavioral, RTL (Register Transfer Level) and Structural. The behavioral code is

at a higher level of abstraction. It is used primarily for translating the architectural

specification, to a code that can be simulated. Behavioral coding is initially

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performed to explore the authenticity and feasibility of the chosen implementation
for the design. Conversely, the RTL coding actually describes and infers the
structural components and their connections. This type of coding is used to
describe the functionality of the design and synthesizable to produce the
structural netlist, which uses the leaf cells of a library [17].

If the modules in a design contain only synthesizable statements, software can
be used to transform or synthesize the design into a netlist that describes the
basic components and connections to be implemented in hardware. The netlist
may then be transformed into, for example, a form describing the standard cells
of an integrated circuit (e.g. an ASIC) or a bitstream for a programmable logic
device (e.g. FPGA). For example the following snapshot of the multiplexer code

is synthesizable:

module mux (a, b, sel, y)
input a, b, sel;
outputy ;
assign y=sel7a:b;

endmodule

The following code signifies that when sel = true, y will get the value of a,
otherwise b. This characterizes the behavior of a multiplexer. On the contrary,
there is also non-synthesizable verilog RTL coding style exist. For instance, let's
examine the following lines of code,

initial begin // beginning of the simulation

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clock = 0;

clear_ n=1;

cycle_count = 0;
end

always # 100 clock = ~clock; // clock period of 100 time unit

The above code segment is generally adopted to generate the clock in the
testbench but in reality the synthesis tool will not allow to synthesize the code
segment. The main reason for this is in real digital circuit we can not assume an

initial value without a reset.

2.2.1.2 Synthesis for FPGA

The Synthesis for FPGA phase of the project includes similar stages to those
involved in standard synthesis procedure, but has additional stages to convert

the design to a format, which can be successfully programmed onto the FPGA.

The following section considers the use of the Xilinx Integrated Software
Environment (ISE) employed in the synthesis for FPGA of the different NCOs,
LFs and Digital Carrier Synchronization (DCS). Issues specific to the synthesis
of the module are also addressed.

2.2.1.3 Xilinx Integrated Software Environment (ISE)

The Xilinx Integrated Software Environment (ISE) is a tool suite developed for the

synthesis and conversion process. Project Navigator is a tool from this suite

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which enables a design flow to be set up to automate the control of the other

software tools in the suite [18].

; U //FILE NAME: carr_racov_more.w
I mDCS_USing_LUT_Bassd_NCD Sf S Author Sayed Hafizur Rahman
[E] digital_core_parameters.tat YS/PROJEDT: Tap Level Module of Digital Carri
i 23 xc2vpb0-6if1152 5/
& %carrqucov_t?oro [ear fecav corev] i . Y BESCRIPTIONS

e &3 phase,_del_ins - phase_det (phase,_det,v) g2

v 08 4/ This ¥ile is the top leével of vwhe carrisr
' loop_filte:_ins - loop_fitter (loop_filter.v) /Y deszign.lt consistz on three basic elements
i [¥lneo_ins - noo [neo.v)

; S oa loop filter, and a nuwericsally convrolle

Eca"_ cov_core.uct (c Thz goal of this design is to produse a lco

2 Sources [P napshots ” f T o ; data samples called ddca Fo locked to inpu
L .. : £ oalled data ref.

W S7/REVISION HISTORY:

S @View Synthesis Aeport i i .)

<[ViewRTL Schematic BN A T e s
~H View Technalogy Schematic: :

-~ #3EhCheck Syntak

@) Generate Post:Synthesis Simulation Mods|

moduie ¢srr_recov_core (
R rst_b; - -
tﬂ.ta@Map . | smplg _clk,

¢5] ﬂ)@Place & Route i d:t:—,;:fl .

@ P2 Generate Programming File : ii_ 1ff_limic,

. m Update Bitstream with Processoi Data ph’ step offset,
- Analyze Design Using Chipscope - - :

i
@ﬂ Piocesses

Nuwber of warnings:
Total time: 4 secs

Process “Generate FPost-Place & Route Static Timing” completed successfully

Figure 3. Screen shot of Xilinx Project Navigator, from the ISE Software
Suite.

The user has control over how the design progresses through the flow, and can
easily view reports from different stages of the synthesis flow. Figure 3 shows a
labelled screen shot from Project Navigator. The Project Sources area includes
links to the Verilog coding and instantiated modules, which are required at the
input to the synthesis procedure, and also allows the assignment of constraint

files to any of the listed Verilog files. The Design Flow area shows the complete

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

flow, user constraints and also provides indication as to the design’s progress
through this flow. The Editing Window allows for the modification of any input
file, while the Run Window shows the report for either: the stage which is

currently running or the last stage to be run.

In the Design Flow window (see Fig. 3) the options to setup the user constraint

files for the design should be specified. The constraint files are:

¢ Create Timing Constraints: This constraint file enables us to setup the clock

period on the FPGA global clock pin.

e Assign Package Pins: Assign package pins were used when we

downloaded into our target device.

e Create Area Constraints: Since no area constraints are not specified in our

design, so we didn’t use this constraint for our implementation.

There are three main stages in the Synthesis for FPGA flow shown in the Project
Navigator Design Flow window in Figure 3. The Synthesis stage of the flow is
essentially the same as standard synthesis processes, converting behavioural
Verilog RTL to a gate-level equivalent. The XST (Xilinx Synthesis Technology)
synthesis tool is employed in the design flow for the Digital Carrier
Synchronization Module. The Implement Design phase employs NGDBuild
software to translate the netlist, which is output from the Synthesis stage, along
with design constraint information, to an intermediate format. The design is then

mapped to pins of the Xilinx FPGA in use; this is specified in Project Navigator.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The design then undergoes the place and route operation, which provides output
to the bit-stream-generator. The Generate Programming File phase is entered
largely on the IMPACT tool, which is capable of generating various file formats,
depending on how the download to FPGA is to be conducted. Project Navigator
also enables the incorporation of the Xilinx ChipScope™ Pro Integrated Logic

Analyser into the flow.

2.2.2 Functional Verification Using Simulation

2.2.2.1 Whatis Functional Verification?

The main purpose of functional verification is to ensure that a design implements
intended functionality. A functional verification path is shown in Figure 4.
Functional verification reconciles a design with its specification. Without
functional verification, one must trust that the transformation of a specification
document into RTL code was performed correctly, without misinterpretation of
the specification’s intent [19]. It is important to note that, unless a specification is
written in a formal language with precise semantics, it is impossible to prove that

a design meets the intent of

RTL Coding

Specification RTL

Functional

Verification

Figure 4. A Functional Verification Path [19]

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

its specification. Functional verification, as a process, can show that a design
meets the intent of its specification [19]. Functional verification can be realized
using three complementary approaches: Black-box, White-box, and Grey-box

verification.

In our DCS project, we follow the simulation-based verification, which is also
called Black-box verification. In a Simulation-Based Verification, the test

environment has the following features:

* The testbench consisted of HDL procedures that provided stimulus data to the
DUT or read data from it.

» The tests (testcases), which called the testbench procedures in sequence to
apply selected input stimuli (random or directed) to the DUT and check the

results, were directed towards specific features of the design.

2.2.2.2 The Importance of verification

Today, in the epoch of multimillion gates of ASICs, reusable Intellectual Property

(IP), and System-on-a-Chip (SoC) designs, verification consumes about 70% of
the design effort. The number of verification engineers is usually twice the
number of RTL designers. When design projects are completed, the code that

implements the testbenches makes up to 80% of the total code volume.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U Verification Dominates Design

- Bynthesis
cdatiog : - Timing Anatysis
Emuiation Structural Equivalence Checking

- DFT

- Behavioral Modeling

- ABIC-Level Simulation B, | Dresign

- Mulli-chip Simulation {28 - High-Level Design

. e i - RTL Coding
Simulation - Block-Level Verification

Verification is two-thinds of our design cycle.. Coding s a small
fraction.of that, and reuging code makes verification more difficult.
So design reuse-doesn’t make sense without verfication reuse.’

- Allan Silburt, Nortel, DesignCon98

Figure 5. Verification Dominates Design [20]

Most of the case studies have shown that functional verification consumes more

than 50 percent of the design-cycle time (Fig. 5) [20].

With functional verification involving such a dominant portion of the chip
development process, SoC teams look for any opportunity for leverage. Some of
the best leverage comes from the designers who wrote the RTL code that must
be verified. Designers can no longer pass their code “over the wall” to the
Verification team; they need to be involved in the verification process in order to
ensure that the SoC works as intended. Therefore, the process of SoC
verification is becoming a necessity for large, complex chip projects. This
process encompasses a broad range of concepts, including verification friendly

RTL coding standards for the designers, cross-participation in design and

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Verification plan reviews, and clean, consistent interfaces at multiple levels of

design abstraction.

2.2.2.3 Whatis testbench?

To simulate a design, an external apparatus called a test bench is often required

to mimic the environment in which the design will reside. Among other
functionality, the main purpose of a test bench, written in HDL, is to supply input
waveforms to the design under test (DUT) and to monitor the response using
waveform viewer such as Simvision whether the DUT produces the expected
outputs.

Figure 6 shows a simple block diagram of a testbench that surrounds the DUT. A
test bench is not manufactured as the design; it has far fewer coding style
restrictions. Together with the perception that test benches are discarded once
the design is verified, the structures of a test bench are often at the mercy of
verification engineers [21]. Consequently, test benches frequently generate
wrong stimuli, compare with wrong results, or miss corner cases, eventually
diverting valuable engineering time to debugging the test benches instead of the

design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— — a— G— wm— e ewme Cvem Gmem v . m— — —

I I
| I
4 N \ | 4 N\
: : Output
(Response)

Input Pattern
(Stimulus)

Design Under Test
(DUT)

Figure 6. Block Diagram of a Testbench [19]

Furthermore, without well-organized guidelines, test benches can be a nightmare
to maintain and hence are not reusable. Therefore, to have easily maintainable
and reliable test benches, it is important to understand organizations and designs

of test benches [21].

2.3 Summary

In this chapter, related works and also some preliminaries such as synthesis,
testbench and simulation which are related to our research work are presented.
In the following chapter, the analog phase locked loop (APLL) techniques and the

operations of its key components will be discussed.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Conventional Analog Phase Locked
(APLL)

3.1 Introduction

This chapter focuses on the most common analog phase locked loop technique

which enables us the thinking about the digital carrier synchronization.

Asin{wit + O,
PD Error
Reference Phase Detector 1 Loop Filter
Signal PD
VCO
Voltage Control
cos{wgt + ;) Controlled Voltage
<+ Oscillator il
Signal VCOo
Phase-Locked
to Reference

Figure 7. Analog Phase Locked Loop

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An APLL is a circuit shown in Figure 7 synchronizing an output signal generated
by an Oscillator, with a reference or input signal in frequency as well as in phase
[22]. The synchronized Oscillator in analog PLL is a Voltage controlled Oscillator
(VCO). If a phase error builds up, a control mechanism acts on the Oscillator in
such a way that the phase error is again reduced to a minimum. In such a
control system the phase of the output signal is actually locked to the phase of

the reference signal.

In a feedback-system PLL regulates the phase ¢, of its periodic output signal,
with the frequencyw,, in a constant relationship to the phaseg, of a periodic

input signal, with the input frequency o,

..» Dy a feedback process [23]. The basic
functional blocks of a classical analog PLL are phase detector (PD), loop filter
(LF) and voltage controlled oscillator (VCO). In analog PLL all the functional

blocks are in analog. In the following section we will introduce about the different

components of Analog PLL.

3.2 Phase Detector (PD)

A phase detector (PD) is a circuit capable of delivering an output signal that is
proportional to the phase difference between its two input signals S¢ (t) and S;
(t). In analog PLLs, different types of phase detectors are used. In this analog
PLL, we are considering an ideal multiplier phase detector shown in Figure 8

which is the first phase detector in the history of the PLL.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reference
signal

Feedback
signal of VCO

Figure 8. Phase Detector as a Multiplier

The multiplier phase detector (Figure 8) is completely used in analog PLL. Here
we are considering with two sinusoid signals S+ (t), which is the reference signal
and S; (t), which is the feedback signal of the VCO. Both signals have same
frequency but the phases are 90° out of phase. We have set the phase of these

signals as a variable. Note that S; (t) is a cosine hence is 90° shifted from Sy (t).

Multiplier Output, S; (t) = Reference Signal (t) * Feedback Signal of VCO
— sk
S3 = S1 ® 52)

S1 (1) = A1 sin[¢ + ?| 2]
Where,
52 = A2 cos[art + Py 3]

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The output of the multiplier is

S3 () = KdA1A2 sin[¢ + qpl(t)] cos[art + @, (0]

Where Ky is the gain of the multiplier. Now manipulating the above equation, we

can get

K A4 A4 K A A
__dl 2. _ _d1l2.
S3 = 5 sm[(o1 (®) qoz (t)} + 3 sin[2a¢ + (01)+ (pz (t)} (L1

.

First Part Second Part

In the equation (1.1), we can see that the multiplier signal consists of two parts,
the first one is the function of only the phase difference of two signals S4(t) &
S2(t) and the second term is at a frequency which is twice the signal frequency

(the 20 term) plus the sum of the two phases [24].

We can use the equation (1.1) to develop the PLL by recognizing that the outp‘ut
signal of the multiplier is a function of the phase difference of the two input
signals. We can use this useful information to synchronize the two signals. The
higher frequency terms in the second part of equation (1.1) (twice the frequency)

can be eliminated by filtering it out.

3.3 Loop Filter (LF)

We need a filter from getting rid of the unwanted higher frequency term which is

in the second part of equation (1.1).

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Filter

Filter

Si(t) X S;(1) > Low Pass >

Sa(t)

Figure 9. Filtering the Phase Detector Output signal to remove

Now we can add a loop filter shown in Figure 9, which acts as a low pass filter, at

the output of the PD. In this APLL, we consider a passive first order loop filter.

R
® AVAYAY ®

R2

— C
v

v
® ®

Figure 10. The Circuit Implementation of the first order passive Loop Filter

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The circuit representation of the passive first order loop filter is shown in Figure
10. The output of the low pass filter (LPF) in Figure 9, as the phase difference is
varied. It is called LPF because it only passes the lower frequency term and
eliminates the higher frequency term. When there is a phase difference, then the
signal out of the LPF is just the first part of Equation (1.1). We call this part the

error signal which is also called the control signal.

K ,A A
Se(t) =~ sinlg, (1)~ 9 ()] (1.2)

If phase difference is 0 degrees then we would expect the signal S () to be zero,
which is the desired and the locked-state of the PLL. If the phase between the
two signals (S1 and S;) varies from that, then, we would expect the filtered S;
signal to change [24]. If the phase difference is not zero, i.e. S¢ (t) is not zero; we
need to oscillate the signal. For oscillating the signal, i.e. for making the S¢ (t)
signal is zero, we need an oscillator. In order for that we are using the Voltage

Controlled Oscillator (VCO).

3.4 Voltage Controlled Oscillator (VCO)

Oscillators are a natural and expected part of the electronic scene. They occur in
many applications and make possible circuits and subsystems that perform very
useful functions. A voltage-controlled oscillator (VCO) (in Fig. 11) is an oscillator
where the principle variable is a voltage. The VCO is an integral part of every

phase locked loop circuit. It is an electronic oscillator, which is specially designed

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to be controlled in oscillation frequency by a voltage input. The frequency of
oscillation, or rate of repetition, is varied with an applied DC voltage, while
modulating signals may be fed into the VCO to generate frequency modulation

(FM) or phase modulation (PM).

Se(t) Voltage | sy(t)
> Controlled >
Oscillator

Figure 11. Block Diagram of Voltage Controlled Oscillator

The error signal provides an indication of what is happening to the input phase.
We need an error signal to have zero amplitude and we can do that only by
changing the phase of the signal S2 to match the phase of signal S1. VCO which

produce the signal allows us to do that.

VCO in Figure 11 produces a periodic signal, the frequency of which changes
based on a control signal applied externally. If the error signal is zero then, the
VCO produces just its quiescent (center frequency). But if the error signal is
something other than zero, then it responds by changing its operating frequency

[24].

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A constant of ko represents the sensitivity of the VCO. It represents the change in

the instantaneous frequency of the VCO as a function of the error signal

dw
amplitude such that X =—9 The signal out of the VCO is given by,
07 a

82 = 4, cos(wt + ¢2 (1)) . The units of Ko are Hertz per volts. For a given certain

input voltage, it will produce a change in the output signal frequency by the

following relationship.

oy =@c¢ + kOv(t)

Where, w . is its center or operating frequency. So, if K =5000Hz/volt, then an

input of 0.1 volt would produce a new output frequency of @, *+ 500 Hz.

For a periodic signal p (), if its frequency in Hz is equal to the rate of change of

do.(t
phase in 27 segment, or f(t)=_21_ @; (1)
T

and conversely, phase is the integral

part of frequency over certain period of time, ¢, (¢) = 27;5 f;@)dt (1.3)

This relationship applies to all periodic signals, even those that are non-

sinusoidal.

Now we can write the phase of the feed-back signal as,

@,(t) = 27rK00jSe(t)dt (L.4)

= 27K S, (1)t

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

So as long as the error signal has non-zero amplitude, the phase of the VCO
signal will keep on increasing until such time as it is decreased to zero. By

substituting the equation (1.4) into equation (1.2) we get,

Ky 4,

Se(t) = —E—SXH[(I)I (t) - ¢2 (t)]

K44,

t
S, () = sin[g, (1) - 27K , ({ S, (1)dt] (1.5)

The equation of S can be linearized by making the following assumption,

sin(@) = ¢ for small @

sin[g, () - ¢,)] = [¢, (1) - ¢, (1)]

Now we can rewrite equation (1.5) by removing the sine function.

K, A A
Se () =—— =210, ()= 9,)
K _ A A t
S 0y =—2p, (- 27K, [S,(1)] (1.6)
e 2 0
KAy A,

In the equation (1.6), S¢ is the amplitude of S (t) at time t.

For example, if the input signal changes by 10 degrees, this causes that the error

signal to slowly increase in amplitude from 0 to 0.1. At time t, the frequency of the

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signal produced by the VCO increases by K¢Se, where Sg is the instantaneous

amplitude of the error signal and time T is the sampling time.

As long as error signal is present, the phase keeps changing linearly. However,
as the phase of the signal out of the VCO changes, the new difference in phase
increases and the error signal amplitude decreases at the next go-around. This
decreases the phase change further until the error signal amplitude has gone to

zero. This is how an analog PLL works.

3.5 Summary

In this chapter, the conventional analog phase locked loop techniques and its
important components are introduced. In the following chapter, the mathematical
model of digital carrier synchronization (DCS) which is the digital version of
analog phase locked loop will be introduced. Some important analysis of our

DCS implementation will also be discussed.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Mathematical Model of a Digital Carrier
Synchronizer (DCS) in the Discrete Time

Domain (Z-Domain)

4.1 Introduction

Before analyzing the mathematical model of a DCS system in the discrete time
domain (Z-domain), we have to analyze the corresponding model in the
continuous time domain (S -domain). In automatic control system theory, the
transfer function of the second-order system in the S-domain (e.g. continuous

time domain) can be written as,

2
(/)

H(S)= = 4.1
(5) S+ 20 S+ (41

Where @, is defined as natural undamped frequency, and £is defined as

damping ratio. This system is called a standard prototype second-order system.
Based on the transfer function of a second-order prototype system, a

characteristic equation of the system is defined as

A(S)=5"+2¢0,S +0, (4.2)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By solving the roots of the characteristic equation, two poles of the system, S

and S4, can be derived.

S, ==, + jo,(1-&) (4.3)
S, ==¢w, - jo,J(1-&) (4.4)

4.1.1Mapping the Poles of a second-order system from S-domain to Z
domain
The transfer function of a second-order system in the Z-domain can be written in

a general format as

Nz
T2z, o

Where Zy and Z, are two poles of the system in Z-domain. Corresponding to S-

domain analysis, a characteristic equation of a discrete-time system is defined as
ANZ)=(Z-Z,)(Z-2,)=2"~-(Z,+Z,)Z+Z,Z, (4.6)

C4 and Cy are defined as coefficients of the characteristic equation:

CI Z_(Zl + Zo)
C, =22,

(4.7)

Then the characteristic equation can be written in the simplified format
ANZ)=2Z+CZ+C, (4.8)
By the definition of a discrete-time transformation [25], two poles of this system in

the Z-domain can be mapped from the poles in S-domain as

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-7 (—¢onT +jonT J(1-£7)

0 = € and
ZI = ew
. Z _ (~¢w,T,~jo,T,(1-£) (49)
LT e

Where, Ts is the sampling period of the discrete system.

With the poles mapped in the Z-domain and Equation (4.7), coefficients Co and

C of the characteristic equation (Equation 4.8) described by the parameters &
andw,:

—wa,,T:

C,=¢

C,=-2¢ " cos(0, T,\J(1-¢E%)

(4.10)

4.2 Mathematical model of DCS Architecture

The mathematical model of DCS in discrete time domain (Z-domain) is shown in

Figure 12. This DCS consists of three most important functional units:

(a) phase detector
(b) loop filter

(c) numerically controlled oscillator (NCO)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 12. Mathematical model of DCS in discrete time domain (Z-domain)

Initially phase detector (PD) computes the phase error (¢@.) depending on the
phase (@) Of the reference signal, data_ref and the phase (@) of the feedback
signal, data_fb. Then this phase error is filtered and finally, it is used to control
the instantaneous output phase of the NCO (@g). In figure 4.1, the coefficients C;
and C, are used as a parameter of the digital loop filter, where C; =1 and C,=0,

+1 or -1. In NCO, the parameter C is fixed for a constant value of 1.

The transfer functions of each component in the DCS are in the Z-transform

format and analysis shown in the next section.

4.3 Analysis of the DCS

4.3.1 Transfer function of Loop Filter in the Z-domain

Figure 13 shows the loop filter in the discrete time (Z-domain) domain. The loop

filter takes the phase error (@e) as an input and outputs yz depending on the

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value of the coefficients Cq4 and C,. The transfer function of the loop filter is as

follows:

y2 :C2¢e+y2Z_I

= Zyz -V, = sz(De

=, _CZo, (4.11)
(Z-1)

and y,=Ca (4129

Y1

Y2

zZ'

Figure 13. Block diagram of Loop Filter in Z-domain
Now adding the equation (4.11) and (4.12), we can get

y3:y2+y1
C,Z
=y, = 2. +C,0,
(Z-1)
___>y3:CZZgoe+C1(Z—1)(oe
(Z-1)
=y, =H1(z)=‘pe[CZZ(+ C}()Z“”] (4.13)
Z—-.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Transfer function of NCO in the Z-domain

The NCO in the discrete time (Z-domain) domain is shown in Figure 14. This

NCO takes ys as an input which controls the instantaneous output phase of the

NCO (om).

o
1]
-

Y4

2 C— z" C— + + Y3

Figure 14. Block diagram of NCO in Z-domain

The transfer function of NCO in the discrete time domain is as follows:

Ve=(y,)27 +(y,)Z"7'
=>y,L=y,+Y,

Vs

:>y4:(Z_])

(4.14)

Now combining the equation (4.13) and (4.14), we can get

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * ¢e[czz +C1(Z —1)]

Y

Tz -1 (Z - 1)
1 * —
= Yy, = Z -1 . [C,Z +C (Z - 1)]
So,
__¢e[CZZ+C1(Z—1)]
Pu(Z)= 71
— _ ¢e[(c1 + Cz)Z '"C1]
:>(0ﬂ,(Z)—H2(Z)~ (Z-1) (4.15)
We know that,
P,(Z)
H(Z)=21£""7 4.16
(Z) 0. (Z) ()

Then the closed-loop transfer function of our DCS model, H (Z), would be

H(zy=2s2)_ 4 _ H(Z)H . (Z)
p,(Z) 1+ p4 1+ H (Z)YH ,(Z)B
H(zy=- H.(Z)H (Z)

1+ H (Z)H ,(Z)

Since, the data from the NCO goes directly back to the phase detector, this DCS

has unity feedback. Therefore, we set 8 = 1.

The expanded format of the transfer function of H (Z) can be derived as follows,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CP(L)=0 (Z)+ (=@)(Z)

)___ ¢e[(cl + Cz)Z _C]]
(Z-1)

= ¢e(Z) = ¢ref(Z

1

= 0L) =0 (2N Z -1 e v C)Z = C]

(Z-1)
(Z—I)Z+[(C1+C2)Z_C1]

= 9(Z)= *@(Z) (4.17)

Substituting Equation (4.17) into Equation (4.15) produces

_[(Cl +C2)Z_C1] (Z—])Z *
Pl T (Z=iF+cC,+cz—, (%
~ (C,+C,)Z - C, .
= 2= e, ¢z -c, (%)
¢ﬂ(Z) _ (Cl +C2)Z_C1
0,(Z) (Z-1)+[(C,+C,)Z-C,
H(Z)___rpﬂ,(Z)= (2C,+C2)Z—C, (4.18)
¢’ref(Z) (Z"]) +[(C1+C2)Z—C,
H(Z) = (C, +C)YZ-C,
) Z’-2Z-1+CZ+C,Z-C,
_ (C1+C)Z~C1
S ZP4+(C,+C,-2)Z+(1-C,)
H(Z)z(gl +22)Z—(1—-go) (4.19)
(Z°+g,2+g,)
where, C,+C,-2=g and 1-C, =g, (4.20)

The coefficients C1 and C; can be resolved based on Equations 4.20 and 4.10:

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-2 nTs
_I_e o

C, =

C,=1+e """ =2 cos(@, T A\J(I-E%)

4.3.3 Phase Error Response of the DCS

Due to the reference phase ((pref) i.e. input phase, the phase error response (@,)
is

(z -1y
(Z _1)2 +[(C1 + Cz)Z - Cl]

9 (Z) = *0.,(Z)

Assume that the phase of the input signal, i.e. reference signal has a step
change. In the time domain, step changing of the phase of the reference signal

can be described by the step function

P (t)=A4p*u(t) (4.21)

Where, u(t) is the unit step function and A¢ is the constant phase value of the

reference signal by which the input signal phase jump. Now applying the Z-

transform to the equation (4.21) yields

Adp* Z
(Z2-1)

Py (Z)= (4.22)

The output-response function of the DCS for a phase-step input can be written as

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pp(Z) =H(Z)o,(Z)

Ap*Z (g, +2)Z—-(1-g,)
(Z_']) (Z2+g1Z+go)

= 0,(Z)= (4.23)

Based on the Equation (4.22), a numerical analysis can be carried out by using
an existing software tool such as MATLAB. By this way, the steady-state error of

an implemented DCS system can be observed.

By the definition of phase error, a phase error (Err(Z)) function can be written

as
Err(Z) =¢,(Z)-0,(Z) (4.24)
Substituting Equation (4.16) into Equation (4.23) produces

Err(Z)=[1-H(Z)]9,,(Z) (4.25)

Now substituting Equations (4.18) and (4.22) into Equation (4.25), the phase-

error function can be written as

Erm(Z)= ‘ZWZ(Z —1) (4.26)
Z°+gZ+g,)

According to the Final-Value Theorem,

lim e(KT) = lim (I - Z") Err(Z) (4.27)

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The steady-state error, which is the final value of e (KT) in the time-domain, can
be derived by using this Final-Value Theorem [26]. The condition for using the
Final-Value Theorem is that the function (7- Z7) Err (Z) has no poles on or

outside the unit circle |Z|=1 in the Z-plane.

Substituting Equation (4.18) into Equation (4.21) yields

lim e(KT)= lim —222(Z =1 _
P Z-1 (Zz +ng + go)

It shows that the steady-state phase error is zero for the phase step input (A).

4.3.4 Stability analysis of the DCS

One mandatory requirement for designing DCSs is that the DCS system must be
stable. Basically, the stable condition of a discrete-time system occurs when the
roots of the characteristic equation are inside the unit circle |Z| = 1 in the Z-plane
(Shown in Fig. 15). Normally, after a system is implemented, numerical
coefficients can be substituted into the characteristic equation. By solving the
characteristic equation numerically, the positions of the poles can be found to
determine if the system is stable.

One of the most efficient methods for testing the stability of a discrete-time
system is Jury’s stability criterion [27]. This method can guide the designs of a
DCS to converge to an optimized stable system quickly, without a large amount

of numerical calculation and simulation.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8}
0.6 _
0.4} K ﬂ
0.2} |

&2

imaginary Part
=}

02t
04} \ / 1
0.6}

0.8+

-1 -0.5 0 0.5 1
Real Part

Figure 15. Pole-Zero Plot for a stable DCS

It can be applied directly to the DCS model (Shown in Fig. 12) to determine the
stable condition. According to this criterion, the necessary and sufficient

conditions are that the characteristic equation of DCS,

ANZy=aZ"+aZ +a,=0

Should meet the following conditions in order to have no roots on or outside the
unit circle:

A(l)> 0,
A(-1)>0,and |a,l|< a,

Applying these conditions to the denominator of Equation (2.11), the stable

condition ranges of this DCS model can be derived as

0<C <2
0<C,<4

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.5 Tracking Range of the DCS

In the previous section we showed that the 2™ order DCS is stable. Now it will be

shown that this loop can also track a step input. To study the tracking, we

examine the phase error (@,)that results from a simplified reference or
input(e,.,) . A small phase error is usually desired and is considered to be the

criterion of good tracking performance. If the error should become so large that
the NCO skips cycles, the loop is considered to have lost lock, even if

momentarily [28].

As the tracking range of DCS is proportional to the loop DC gain [29], we can
expect a very wide tracking range. The tracking range is only limited by the half

of the sampling frequency, which is f;/2. The loop DC gain is given by

K, =Zl[c2(z-1)+c,}_)w (4.28)
(Z-1)
4.4 Summary

In this chapter, a mathematical model of DCS architecture was derived, through
which an in-depth understanding of DCS is attained. Some important parameters
and stability of the DCS model are also analyzed. In the next chapter, the
methodology and datapath implementation of DCS and the analysis of its

important components will be presenetd.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Design and Datapath Implementation of

Digital Carrier Synchronizer (DCS)

5.1 Introduction

An important task for a digital communications receiver is to remove any

frequency or phase offsets that might exist between the transmitter and receiver

oscillators. A carrier-recovery loop is designed and implemented in order to

remove this offset. A key component of a carrier-recovery loop is a phase-locked

loop (PLL).

Externally

Generated —pf ADC
Sinusoid

—

Digital PLL
Core

for FPGA —»p
fmplementatiorﬂ

DAC

—>

Synchronized
Sinusoid

Figure 16. Digital Carrier Synchronization Path on the FPGA platform

The use of a PLL enables the receiver to adaptively track and remove frequency

or phase offsets [30]. Figure 16 shows the digital carrier synchronization path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

An analog to digital carrier (ADC) receives the externally generated sinusoid
signal and outputs the sample data as input to the digital PLL which is
implemented in the FPGA, and a digital to analog converter (DAC) receives the

locally generated data and outputs the synchronized sinusoid signal.

The goal of this digital carrier synchronization (DCS) is to produce a locally
generated data samples called data_fb which is synchronized to input data
samples called data_ref. Three major functional units of DCS shown in Figure 17
are A. Phase Detector (PD), B. Loop Filter (LF), and C. Numerically Controlled

Oscillator (NCO).

5.2 Phase Detector

A PLL is driven by the phase error, in analog PD it was S; (t), signal which is

Input data Phase
signal Phase Difference > Il::.ﬁop
data_ref Detector ilter
A
S
3 Correction
output data to the NCO
, - <t
Signal Locally generated NCO
Feedback data signall

Figure 17. Datapath of the Digital Carrier Synchronization

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generated by the phase detector. The phase detector generates the phase
difference value on the input signal and the oscillated signal, i.e. data_ref (in
analog it was S (t) and data_fb (in analog it was S» (f)), with respects to their

rising edges.

5.2.1 Data path of the Phase Detector

The datapath of the phase detector is shown in Figure 18. The data_ref signal is
driven by the sampling clock, which is the system clock. In order to achieve the

higher detection accuracy, a higher frequency for the detection clock may be

used.
data ref data_ref
ald_re ! and data_fb | Rising edges
rising edge precedence
data_fb ’ detectors
a ~»
N c
o)
) 0
& ! &
! Phase difference
Up/Down counter >
to generate the
phase difference
Phase timeout
difference | Comparator >
limit

Figure 18. Datapath of Phase Detector

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Figure 18, the edge detector block detects the edges of the data_ref and

data_fb signals with respect to the rising edge of the clock.

e if(data_ref(n-1) < 0 and data_ref(n) 2 0), posedge_ref = 1

e if(data_fb(n-1) < 0 and data_fb(n) 2 0), posedge_fb = 1

Where, posedge_ref indicates the rising edge of the data_ref and posedge_fb
shows the rising edge of the data_fb signal. The rising edge of the data_ref and

the rising edge of the data_fb are determined in one clock cycle.

The rising edges precedence block provides the precedence of the data_ref or
the data_fb rising edges, which are indicated by ref leads and fb_leads (in Fig.

18) respectively.

e if (posedge_ref =1 and data_fb < 0), ref_leads = 1
o if (posedge fb =1 and data_ref < 0), fb_leads = 1
Where, ref_leads =1 shows that the posedge_ref comes before the posedge_fb

signal, i.e. the reference signal comes before the feedback signal, and fb_leads

=1 indicates that the posedge _fb occurs before the posedge_ref.

And an up/down counter accumulates the phase steps between the two edges to
output the phase difference. If ref_leads = 1, the up/down counter (in Fig. 18) will
increment, and if fb_leads = 1, the counter will decrement. In this way the counter

provides the phase difference value at the output of the phase detector.

Finally, the timeout signal indicates that the phase difference between the two

input signals data_ref and data_fb are larger than the phase limit, which is set by

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the user. For reducing phase difference value (phase error), we need to filter the

signal.

Posedge_ref=0/
Posedge fb =0

Posedge_ref=1/
Posedge_1fb =1

Ph_det_done =1

Figure 19. Phase Detection State machine

A phase detect state machine is shown in Figure 19. It has three states phase

initialization, phase difference, and phase detects state.

5.3 First Order Digital Loop Filter (LF)

A first order digital Loop Filter is used to filter the phase difference or phase error
(@,) signal, which is generated by the phase detector in order to supply the

required correction to the NCO.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.1 Data path of the Loop Filter

Figure 20 shows the datapath of the first order loop filter. It has two parts: the

U Eitapes T N T 3
{ Filtering o Correction :
| i Generation |
| [|
E ph_err Z1 i"t> o 2k fo | Z_1 i
Phase error ' E E i
| from the | i
i phase 2k |
' detector ! Comparator i
| Lo » I
| | |
| o i
| b {
] b 0 l
| N 1 |
E E E Correction%
! Do to the NCQ
| | |

Figure 20. Datapath of 1 Order Loop Filter

filtering part and the correction generation part. The filtering part, firstly,

it

integrates the phase error (ph_err) signal, which is obtained from the output of

the phase detector. Secondly, it accumulates the value and finally, it shifts the

accumulated value to set the required bandwidth for the filter. If the output of the

filtering part, which is the integrator value, provides the most significant bit

(MSB), the filter will pass the lowest phase error frequencies.

And if the output

of the integrator is least significant bits, it will pass the highest phase error

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

frequencies. For this implementation, the filter passes the LSBs as the integrator

(int in Fig. 20) is divided by the 2,
The expression of the integrator is,
int(n) = ph_err(n)+ ph_err(n-1) (5.1

If we compare the equation (5.1) with the equation (4) of analog loop filter, we
can see the same relationship. In the correction generation part, it compares the
previous value of the output of the filtering part with the old value of the filtering
part. This gives the trend of the phase error. The expression for the correction

generation part is:

r

=L if fo(m)< fo(n-1)
Correctiontothe NCO =<0, if fo(n)= fo(n-1)

+1, if fo(n)> fon-1)

Where, fo determines the output of the filter. In order to ensure that the output of
NCO changes smoothly, the absolute correction value doesn’t go over 1. Last but
not the least; we also use the 2" order loop filter in order to examine the overall

performance of our DCS.

5.4 Numerically Controlled Oscillator (NCO)

Numerically Controlled Oscillator (NCO) is one of the key components of digital

carrier synchronizer (DCS). In DCS, NCO allows to perform the precise

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adjustment of the carrier frequency based on the output of the phase-detecting
circuit. The NCO is controlled by the numerical value or the sampling index
(discussed later). For generating periodic-like signal, NCO is an established
method. In this research, we investigate three different types of NCO, which are
used in DCS. The first one is the Look Up Table (LUT) based NCO, the second is

CORDIC based NCO, and the finally Xilinx ROM based NCO.

5.4.1 Datapath of LooK Up Table (LUT) Based NCO

A Lookup Table (LUT) based NCO implementation is shown in Figure 21. It is

Sinus —>
Table ; generated signal

g

Phase step

offset > ﬁ
17\ LUT
Correction from peyinter
the loop filter
I/v initializatidn

Figure 21. Look Up Table (LUT) Based NCO

one of the popular schemes to implement numerically controlled oscillator based
on table-look-up. A lookup table method stores the samples of the sinusoidal

signal depending on the carrier frequency, the sampling frequency and the

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

carrier amplitude. Afterwards those samples are being read out of the lookup
table to produce the sinusoidal signal in an order determined by the total number

of samples or sampling index. According to our design specification [30], the

given parameters are, carrier frequency, Fc 2.048 MHZ, the sampling
frequency, Fs = 50 MHz. Since our data bus has one sign bit [MSB] and seven
data bits, the carrier amplitude, A is equal to 2" — 1 = 127. Hence, the maximum
value of the sample index n, is equal to, (Fs / Fc), 24. Bearing this in mind, wek

can state that the data_fb, which is generated by the NCO block, is a function of

n and can be represented by Equation (5.1).
data _fb(n)= Asin(2pi* (Fc/Fs)* n) (5.1)

The above equation signifies the output value of data_fb in terms of the sampling
index n, carrier Frequency F;, sampling frequency Fs and the amplitude A. Note
that the number of sampling clock periods in one carrier period cannot exceed
the value of Fs/ F. and the smallest angle value is 2*pi/(Fy/F.). It is easily visible
to the readers that the sample index n is the LUT pointer value which is shown in
Figure 21. If the LUT_Pointer exceeds the value of F/F., the previous value of

data_fb is retained with the Flip-Flop.

In the following sections, we will explain the datatapath modification of different
DCS implementations that means modification of Loop Filter and NCO. The first
order digital loop filter and NCO with look up table were explained in section 5.3

and 5.4 respectively. Now we will first discuss the implementation and analysis of

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the second order digital loop filter with its different parameters. Then we will

explain the implementation of CORDIC based and Xilinx ROM based NCO.

5.5 Digital Loop Filter

Digital filters are preferably used in the place of analog filters as they eliminate a

number of problems associated with their classical analog counterparts. Digital
filters belong to the class of discrete-time LTI (linear time invariant) systems,
which are characterized by the properties of causality, recursibility, and stability
[25]. They can be characterized in the time domain by their unit-impulse
response and in the frequency domain by their transfer function. The unit-impulse
response sequence of a causal LTI system can be of either finite or infinite
duration, which determines whether they are classified as Finite Impulse
Response (FIR) or Infinite Impulse Response (IIR) systems. FIR filters include

low-pass, high-pass, band-pass, and band-stop filters [25].

A few basic steps are involved to design a digital filter. Initially, it needs to be
established the desired response and based on that, a class of filters needs to be
selected that approximate the desired response. The next step is to select the
best member in the filter class, implement the best filter using a general purpose
computer, a DSP, or a custom hardware chip, and analyze the filter performance
to determine whether it satisfies all the given criteria. For the DCS, we decided to

design a second order digital low pass filter using FIR and IIR.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.1 Designing a lIR Low pass Filter

A low pass filter is a device that passes all frequencies below its cut-off
frequency and rejects those above the cut-off. IIR filters have traditional analog
counterparts (Butterworth, Chebyshev, Elliptic, and Bessel) and can be analyzed
and synthesized using more familiar filter design techniques. Infinite impulse
response filters get their name because their response extends for an infinite

period of time. This is because they are recursive, i.e. they utilize feedback.
] 112 T
A)

112

Output

Input
——

—>

Figure 22. Second Order Low Pass IIR Filter [31]

The basic IIR filter is based on the biquadratic (biquad) structure [31]. A second

order low pass IR filter is shown in Figure 22, which is chosen for the design of

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DCS. The delay elements are denoted as 1/Z in this diagram. The 1/Z term is

sometimes written as Z7, especially in transfer function equations.

The second order digital 1IR filter shown in Figure 22 uses four adders, two
delays, and four multipliers. The multiplier coefficients are A0, A1, A2, B1, and
B2. These coefficients are calculated during the filter design process. The

transfer function of the second order IR filter is:

_Y(Z) A, +AZM+ 477

HZ =
2 X(Z) 1-BZ'-BZ

The feed-forward element Ay gives the DC gain and is often unity. There is no
feedback element By, which is replaced by a unity-valued element because the

signal path through this element is forward, not backward [31].

5.5.2 Designing a FIR Low pass filter

An FIR filter comprises an array of delay elements (labelled Z™") connected in
series. The input samples, X (n) are passed through these delay elements. A tap
is taken after each element, and, at any sample instance, the value of the sample
is multiplied by a filter coefficient. Thus a multiplier is needed for each delay
element. Finally, the outputs of all the multipliers are added together to give the
output. The number of taps is given by N, but there are N-1 delay elements; the
term N-1 is sometimes referred to as the filter order. It is common to use an odd

number of taps, which results in an even number of delay elements [31].

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x(n) -1 x(n-1) -1 x(n-2)

h(0) h(1) h(2)

y(n)

>
>

Figure 23. Second Order Low Pass FIR Filter [31]

For our design we chose 3-tap FIR filter, which has an order of 2, is given in
Figure 23. The input samples of the second order FIR filter, shown in Figure 23,
are x (n), x (n-1), and x (n-2), and the coefficients are h (0), h (1) and h (2). So

the output becomes
y(n)=h0)x(n)+ h(H)x(n-1)+ h(2)x(n - 2) (5.2)
and the generalized form of the N-tap FIR filter is

y(n) =h(k)*x(n)

= y(n) = gh(k)x(n —k) (5.3)

By varying the weight of the coefficients and the number of filter taps, virtually

any frequency response characteristic can be realized with an FIR filter. Various

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

methods are available for designing FIR filter, such as Equiripple, Least square,
Window etc. We chose Kaiser Window method for designing the second-order
FIR filter. The cut-off frequency of an FIR filter is directly proportional to the data
sampling clock frequency. Using a single set of coefficients, the cut-off frequency
can be doubled by doubling the sampling clock frequency. The normalized clock

frequency for a digital filter is 1 Hz or 217 rad / s [31].

In the following section we will analyze the designed low pass FIR and IIR filter to
make sure that they met the required specifications, and using the verified
coefficients to generate RTL so that the FPGA resources usage could be

determined and compared.

5.6 Xilinx System Generator

System Generator is a tool from Xilinx that is used to generate HDL (Hardware
Description Language) designs using high level constructs in Matlab. System
Generator is capable of generating a diverse set of logic components, including
mathematical, communication, and DSP components. System Generator can
also generate a variety of digital filters, which is one of the primary concerns for

our research.

System Generator makes use of a custom “FDATool” (Filter Analysis and Design
Tool), which is an interface that allows the design of many types of digital filters
to meet required filter specifications at a very high level. With this toolkit, we were

able to graphically design FIR filters and interactively review filter responses. We

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viewed the time waveforms and the spectra of both the input signal and the
filtered output signal to show how the present filter performs on real-world
signals. The FDATool panel provides its users with an interface with digital
controls that allows users to adjust the desired filter specifications such as the
required sampling, pass band, and stop band frequencies. In our case, initially
we chose the cutoff frequency 0.042MHz and the sampling frequency 50MHz.
These allowed us to design several different low-pass filters, some designed for
accuracy, while others sacrificed accuracy for simplicity of design. We use
System Generator to implement the entire filter design, from high level

specifications down to synthesized HDL / RTL models.

5.6.1 Strategy
5.6.1.1 Selecting an FPGA Board

We designed a second-order Window FIR and Butterworth |IR low-pass filter in
Matlab FDATool with 3 coefficients. The coefficients were then quantized using
fixed-point arithmetic algorithm to generate the Verilog HDL code using Xilinx
System Generator. Finally, we synthesized the Verilog HDL code for the FPGA

board, which is Virtexll-Pro (XC2VP50-6FF1152).
5.6.1.2 Selecting a Digital Filter Design Method

We designed FIR filter using Kaiser Window method and I[IR filter using
Butterworth method. So that we could determine which type of filter used up the
least resources on the FPGA selected. Once we had results of the resource

usage for each of the types of filters designed, we picked one. In this case we

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decided to select the Kaiser Window FIR filter design method for the rest of our
simulations and analysis of DCS since it is one of the more commonly used filter
design methods in digital signal processing. The physical resources occupations

of the Virtexll-Pro PFGA board are shown in Table 1.

Table 1. Physical resources Occupation on FPGA board for FIR and IIR

Filter
Device (Virtexll-Pro) Report Using Xilinx ISE 8.1i
XC2VP50
Second Order Second Order
Package FF1152 IR Filter FIR Filter
Speed Grade -6

LUT 315 156

FFs 106 55

Slices 172 94

Gate Counts 1,615 3,546

5.6.1.3 Kaiser Window Method

Through the choice of the window shape and duration, we can control the
properties of the resulting FIR filter. Kaiser developed a simple formalization of
the window method of the digital FIR filter in 1974 [25]. The Kaiser window is
defined as

o[l ~[(n~a)/al*)"]

To (B)
0, Otherwise

0<n<M

b

w(n) = (5.4)

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Where a = M/2, and lo (.) represents the zeroth-order modified Bessel function

of the first kind. The Kaiser Window has two parameters: the length (M + 7) and a

shape parameterﬂ. By varying (M + 1) and ,3, the window length and shape can

be adjusted to trade sidelobe amplitude for mainlobe width. If the window is
tapered more, the sidelobes of the Fourier transform become smaller, but the

mainlobe becomes wider. The peak approximation errord is determined by the

choice of,B. Given that oJis fixed, the passband frequency is@w,, and the
stopband cut-off frequency is @, so the transition region has width
Ao =0 -0,

for the lowpass filter approximation. Defining4 = —-20 log , 5, Kaiser

determined empirically that the value of ,B needed to achieve a specified value

of A is given by

0.1102 (A - 8.7), A >50
B=<0.5842 (A —21)0.4 + 0.07886 (A — 21), 21 AL50 (5.5)
0.0, A<21

Furthermore, to achieve prescribed values of A and A@, M must satisfy

A - 8
2 . 285 A o

(5.6)

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Equation (5.6) predicts M to within & 2 over a wide range of values of A®@ and
A. Thus these formulas, the Kaiser Window design method requires almost no

iteration or trial and error [25].

It is straightforward to design an FIR lowpass filter to meet prescribed our

specifications using the design formulas. The procedure is as follows

Step 01: Initially we have to establish the specifications. This means that we

have to select the desired®, ,@, and the maximum tolerable approximation

error. For window design, the resulting filter will have the same peak error 6 in

both the passband and the stopband. For this FIR low-pass design, we choose

the following specifications W, = 2.048 MHz, @, = 3.12 MHz, and o =0.0001.
Step 02: To determine the parameters of the Kaiser Window, we first compute
Aa)za)s—a)p=3.12—2.048=1.072, A=-20log , 6 =60

To obtain the required values of ,B and M, we substitute these two quantities in

Equations (5.5) and (5.6).
=565, M=21

Now in the following sections we will analysis the CORDIC and Xilinx based NCO

for the implementations of DCS.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7 CORDIC Based NCO

A look-up table based NCO was discussed in Section 5.4. One alternate
candidate for NCO design, which is well suited to FPGA implementation, is
coordinate rotation digital computer (CORDIC) arithmetic [32]. The CORDIC
algorithm is an iterative procedure that can be used to compute a diverse range

of mathematical functions.

N

LH

4

v
N

<

+<

Figure 24. CORDIC Based NCO

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CORDIC arctangents are computed using the vectoring mode as equations
defined by Equation (5.7) and (5.8). The CORDIC algorithm is highly suitable for
FPGA mechanization because it is dominated by additions and subtractions.
These functions are very efficiently implemented by FPGA technology and

require only N/2 logic slices for an N-bit adder/sub tractor.

A CORDIC based NCO implementation is shown in Figure 24. CORDIC
(COordinate Rotation Dlgital Computer) algorithm is an iterative method which
performs the rapid coordinates rotation by arbitrary angles in digital plane. It

uses only shifts and adds for performing the coordinates transformations.

The CORDIC plays an important role in digital computing. The basic idea of the
CORDIC system is that the trigonometric functions of sine, cosine and phase to
any desired precision can be calculated by a rotation of a vector through
successive smaller angles. If a vector v with the components (x, y) is to be

rotated by an angle ¢, the new values of X’ and y’ are [11}]:

x'= xcos(@) — ysin(@)

(5.7)
y'= xsin(@) + ysin(g)
The equation can be re-written as:
x'= cos x — ytan
(@) x — ytan(@) (5.8)

s(#)ly + xtan()

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The multiplication by the tangent term can be avoided, if the rotation angles
tan(g)are restricted so thattan(¢) =+2"'. In digital hardware, this indicates a
simple shift operation which simplifies the hardware. The arbitrary angles of

rotationg are decomposed into sums and differences of smaller angles ¢,[11].

The summary of computation which was applied for our CORDIC based NCO

design is shown in Table 2.

Table 2. Angle Value & Shift Sequences of CORDIC Based NCO

Angles ¢, = arctan(2™) Shift sequence (i)

0, 15, 29, 44, 59, 74, 88, 2, | ©»,2,1,0,-1,-2,-5,2,1,0, -1, -

26, 41, 56, 71, 86 2,-4

The CORDIC based NCO (in Fig. 24) computes the sine and cosine of the input
phase value by iteratively shifting the phase angle to estimate the Cartesian
coordinate values for the input angle. At the end of the CORDIC iteration, the x
and y coordinates for a given angle represent the sine and cosine of that angle
respectively. The unrolled processor (Shown in Fig. 24) can also be converted to
a bit serial design. Each adder sub tractor is replaced by a serial adder/sub
tractor, separated by w bit shift registers. The shift registers are necessary to
extract the sign of the y or z element before the fast bits (LSBs) reach the next

adder/sub tractors [11].

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.8 Xilinx ROM Based NCO

An NCO using Xilinx ROM (Shown in Fig. 26) has been implemented by
instantiating a 1024X1 ROM [33] shown in Figure 25 from Xilinx library instead of

behavioral code of LUT.

AQ — >
Al —P»
A2 ——P

ROM1024X8 ——o

A8 ————p
A ———»

Figure 25. Xilinx ROM 1024X1 [32]

It is a 1024-word by 1-bit read-only memory. The data output, O (in Fig. 25)

reflects the word selected by the 10-bit address which is Ag to A.

\ > s
Address |y A poy | generated

Address Generator : ———T
. 2 10208 | siong
Pozn’er (Modulo N A §

- Counter)

Phase step offset

1

correction from

the loop filter
b ol mitiglization

Figure 26. Xilinx ROM Based NCO with Modulo N Counter

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Xilinx ROM based NCO is shown in Figure 26. It consists of two parts:
automated Address Generator (which is a Modulo N Counter, where N = Fs / Fc¢)
and a ROM from Xilinx library. |

This configuration gives us the benefit of scaling the Xilinx ROM's address size
because of the automated address generation scheme via Modulo N counter for
any Fs/Fc. The values of the Xilinx ROM are resolved by Equation (5.7). In the
Xilinx ROM based NCO, we are using a large ROM, which is 1024X8, as the

larger ROM length (address range), the finer the frequency resolution.

Table 3. Xilinx ROM1024X8 Initialization (When Fs = 50 MHz)

ROM Block # (0..7) ROM Contents

ROMO(ROM1024X1) EA317600

ROM1(ROM1024X1) CD1CF300

ROM1024X8 rROM2(ROMT024X1) | 4518A200
Using Xilin

SIng A "ROM3(ROM1024X7) 000CF300
ROM1024X1

ROM4(ROM1024X1) 88047300

ROMS(ROM1024X1) 5059F600

ROM6(ROM1024X1) 306EF100

ROM7(ROM1024X1) FF700000

As our output data bus is 8-bit wide, we designed 1024X8 ROM using Xilinx
ROM1024X1. In our design, the addresses (Ag — Ap) are specified by the pointer
value and the output (O) is defined by the data_fb. The addresses generation of

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the Xilinx ROM can be done using the Modulo N counter which depends on the
Sampling Frequency (Fs) and the Carrier Frequency (Fc). The benefit of the
Modulo N counter is the control of the frequency granularity. ROM is initialized to

a known value during configuration with the INIT value parameter.

INIT value parameter is used only for the purpose of the synthesis and defparam
parameter is for simulation [34]. The values have been calculated by using the
equation (5.1). Those values are consisted of eight hexadecimal digits that are
written into the ROM from the most-significant digit to the least-significant digit.
An error occurs if the INIT value is not specified [34]. The initialization of a Xilinx

ROM1024X8 is shown in Table 3.

5.9 Summary

This chapter focused on the methodology of different DCSs datapath
implementation along with the different implementations of loop filter and NCO
which increased the performance of our DCS. In the following chapter, synthesis
and emulation of different DCS implementations will be discussed which target

the Xilinx Virtexll Pro FPGA board.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Synthesis and Emulation

Synthesis is an important stage in the development of IP, occurring after high-
quality verification has taken place. The synthesis process provides quantitative
information relating to the timing, area, and power requirements of designs. The
following sections address the concept of synthesis in further detail and examine
the synthesis phase in the development of the digital carrier synchronization

(DCS) using different NCO and loop filter.

6.1 Space Exploration via Synthesis Process

The space analysis played a major factor in order to bias our verdict more
towards CORDIC based implementation in the context to design a DCS Core for
FPGA platform. DCS using CORDIC based NCO is appropriate when it will be
used as on-chip device or as portable device where, area is more important than
performance. But if we consider the other performances, we can observe that

DCS using Xilinx ROM based NCO is more suitable.

6.1.1 Comparison of Different NCOs

The synthesis process results in a physical representation of the behavioral RTL,

which is coded in the implementation process. This determines whether the code

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be translated to digital logic gates and whether the realized design meets the

specified requirements in terms of timing, area, and power.

Table 4. Performance Evaluation Using Xilinx

Xilinx Report Using Xilinx ISE 8.1i

Device LUT CORDIC | Xilinx DCS DCS DCS
xc2vp50 Based | Based ROM Using Using Using
package NCO NCO Based LUT CORDIC | Xilinx
ff1152 NCO ROM
speed -6

4-inputsLUT | 195 84 56 411 300 275
Slices 120 45 29 239 164 152
Gate Count | 1070 686 885 4113 3194 3228
Time 3.818 | 3.148 3.478 5.471 6.141 4.892
Delay(ns)

The Verilog HDL model represented the actual design specification in order to

serve the purpose of defining and verifying the behavior of the system.

Table 5. Performance Evaluation Using Synopsys

Xilinx Device Report Using Synopsys Design Compiler

xc2vp50 LUT | CORDIC | Xilinx DCS DCS DCS

package Based | Based ROM Using Using Using

ff1152 NCO | NCO Based LUT Xilinx
NCO CORDIC |ROM

speed -6

Total Cell 241 84.5 117 588 431 463

Area (um*)

Power (mW) |62.26 |30.94 24.55 95.47 93.38 86.09

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This procedure enabled us to compare the performance and the actual hardware
implementation cost for LUT, Xilinx ROM and CORDIC (Table 4 and 5) based

NCO for DCS in terms of the logic gates, or even later silicon implementations.

By means of the flexible HDL implementation as discussed above the area,
power and the performance were investigated. The timing constraints were set
to synthesize the design using Fc = 2.048MHz which was the design clock speed
for synthesis. From Table 4 and Table 5, it is easily visible that Xilinx ROM
based NCO implementation is the most suitable choice between the three

methods when considered at the modular implementation level.

On the contrary, if a top level implementation of DCS is considered we can
observe that the significance of this difference becomes much more relaxed. For
example, the ratio of LUT count (Table 4) between single LUT based NCO vs.
CORDIC Based NCO is 195/84 = 2.32, whereas in the DCS implementation this
ratio becomes 411/300 = 1.37. On the other hand, single LUT count (Table 4)
between CORDIC based NCO vs. Xilinx ROM based NCO is 84/56 = 1.5, while
in the DCS implementation this ratio becomes 300/275 = 1.09. The power
consumption (Table 5) also depicts the same result, 62.26/30.94 = 2.01 vs.
95.47/93.38 = 1.022 and 30.94/2455 = 1.26 vs. 93.38/86.09 = 1.085.
However, only in the gate count analysis, CORDIC based NCO proved its
efficiency i.e. 1070/686 = 1.56 vs. 4113/3194 = 1.29 and 686/885 = 0.78 vs.

3194/3228 = 0.99.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.2 DCS Synthesis Using Various Configuration of NCO and LF

The area usage of the FPGA implementation of different DCS implementations is
displayed in Table 6. It is easily visible that the configuration involving second
order LF in both scenarios occupies more gate, slices and LUT. Therefore,
synthesis wise DCS using Xilinx ROM based NCO with first order LF seems to
lucrative choice. Finally about synthesis results we can comment that as our
DCS was not to be implemented on chip, therefore area was not a concern of our
design. This was the reason behind the non-usage of Xilinx ISE's area
constraint. In the latter chapter it will be discussed that our design goal was
served better with DCS configuration using Xilinx ROM based NCO and second

order LF, as it provided a faster locking time and better tracking frequency.

Table 6. Synthesis Report of Different DCS implementations

Xilinx Device DCS using LUT DCS using Xilinx

xc2vpS0 package based NCO ROM based NCO

ff1152 speed -6 1* Order LF 2" Order LF 1¥Order LF | 2"¢ Order LF
4-input LUT 411 663 275 412

Slices 239 379 152 298

Gate Count 4113 7736 3228 6121

6.2 Emulation

6.2.1 Introduction

The aim of our emulation is to precisely model a system in an environment

similar to that in which a fabricated design would operate. Since the emulation

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process usually employs clocks operating at realistic frequencies, systems can
operate close to full capacity. Design functionality can be verified at a much
faster rate than that attainable through design simulation. The emulation of the
design enabled full functionality to be verified; and the display showed only a
small section of the expected output of the system. The emulation process in this

case prevented the undertaking of highly-expensive fabrication of a system which

did not function as expected.

Random AgiR
Internal | reset] Vallsef(A Estm
@) Reset LFSR ol | Comparalor | ——pp ADCout
Generator Value (B ADC
m = :
3 g
<] ~
; f g
Q g
al)
0
&
>
DCS Core
Clk_div
input dat phase —->
signal Phase difference Loop
s | detector | > filter o §
Kil(Set by User‘ - A X Clk_div_out
0
Ph istep offset % g lock
(Set by User) QX
> data_fb 3
Ph| diff limit Lock | NCO
(St by User) P | Detector Lodplly generated output data £
Feedpack data signal signal 3
_ 53
SEG_VAL_GEN 3 ¥
9
b

Figure 27. Emulation Environment for DCS

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

< T rMOoOwmw-—0

The benefits associated with emulation, both in terms of the potential quality of
verification and in terms of the author's personal development, lead to the
emulation phase in the development of the DCS Module being highlighted being
prioritized over a number of other development stages. This Section considers

emulation and the emulation phase of the DCS.

6.2.2 The Emulation Process

Figure 27 shows the data path of the full emulation environment. The emulation
process shown in Figure 27 can be considered to be relatively opaque, in that it
can be difficult to determine whether systems are operating correctly, why a
system is not operating correctly, and sometimes whether a design has even
been downloaded to the FPGA correctly. For this reason the strategic,
methodical approach, which should be applied to all areas of digital design, is

particularly crucial during this phase.

The following section addresses the emulation process, considering the setup

employed in the emulation phase of the Digital Carrier Synchronization Module.

6.2.3 Synthesized Emulation Environment setup

After the development of a suitable system, for emulation with the board
provided, the system’s interface must be mapped to the physical pins of the
FPGA. The required input-output pins of the Virtex-ll Pro FPGA board are
identified and then mapped to the equivalent interfaces in the system using a

UCF (User Constraint File). The synthesis process takes at its input: RTL,

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memory and instantiated components, the UCF, and information on the setup of
the board and FPGA. The output of the process is a bit-file which can be

downloaded to and interpreted by the FPGA.

For downloading the bit-files to the Virtex-1l Pro FPGA, the most suitable method

being the use of a CompactFlash™

storage device alongside the embedded
SystemAce™ controller; this enables the storage of multiple bit-files and permits
the selection of the design and re-loa‘ding of the FPGA without the use of the PC.
Since the CompactFlash™ storage devices are not available for use, the only
option for the emulation of the Carrier Synchronization project is the use of a
JTAG interface on the Virtex-1l Pro FPGA board alongside a MultiLINX™ ‘cable’.
The speed of configuration of the FPGA using the JTAG interface is poor in
comparison to the use of CompactFlash™ storage devices, but this form of
interface is still used and is adequate for the task being undertaken. If the output
of the Reference Design is to be directly compared with the output from the

Emulation System, then the use of a CompactFlash™

storage device would be a
great advantage to the Carrier Synchronization project, significantly reducing the
time required to switch from one design to the other. The PC is connected to the
board via the MultiLINX™ cable and the JTAG interface, allowing the bit-file to be
downloaded onto the FPGA. The FPGA status LED’s help to show when data is

being downloaded to the FPGA.

Both the Reference Design and the Emulation System are adapted to include
control of the User LED’s with one of the User DIP Switches. The control of

these LED'’s is very important to the emulation process as their correct operation

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

provided indication that the design has been successfully downloaded and
mapped to the FPGA. The manner in which the LED’s are assigned for the
Reference Design is made purposely discernible from that for the Emulation
System, so that it is clear which design has been downloaded. The LED's can
also be assigned synchronously to confirm the operation of the system clocks.
The system reset of the designs is assigned to the other DIP Switch, since this

allows the system to be manually reset at any point.

6.2.4 Design Implementation

The design is generated by inputting the circuit into Xilinx ISE 8.1i [17], which is
done by using Verilog HDL. Once the design is implemented, the Synthesis
Tools in the ISE are used to generate the bit stream files for configuring the Xilinx
FPGA chip. However, it is important to perform simulations before configuring the
chip, since errors often exist, even though the synthesis process is successful.
The simulation process allows the debugging of both the invisible errors at the
design stage and the technical problems caused by the characteristics of the
FPGA, such as delays and FPGA design constraints.

A. User Constraints and Synthesis Flow

Design implementation is the process of translating, mapping, placing, routing,
and generating a BIT file for the design [35]. In order to implement the designs, a
UCF (User Constraints File) has to be created. The UCF is to provide timing
constraints through the Constraint Editor, and pin location constraints through
PACE (Pinout Area Constraints Editor). There are 3 main stages in the design

implementation:

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Translating: to merge all of the input netlists as well as design constraint
information into a Xilinx database file.

2. Mapping: to map a logical design to a Xilinx FPGA.

3. Placing and routing: to place and route the FPGA, and produce output for the
bit stream generator.

User constraints were set relating timing and package pin assignments.

Timing Constraint was used in order to set up the clock period of 500ns on the
FPGA global clock pin. As our design clock was running at 2.048 MHz frequency.
Package Pins Assignment was used in order to download the design into our
target device. LED pin was used to check the lock signal and seven segment
display pins for displaying the locked data.

The main challenge in the process was to deal with the high frequency clock
(2.048 MHz) in order to be visible the locked data on the seven-segment display.
Therefore, the clock divider and the display module of the emulation environment

enabled the locked data and the lock signal to visible through the FPGA display.

The following section discusses the different components of the emulation

environment for the DCS project.

6.2.4.1 Internal Reset Generator through an FSM

The internal reset signal generator (Shown in Fig. 28) is composed of an internal

Finite State machine (FSM).

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Clock= 1/ reset=1

state
=Tra

clock= 1/ reset=0

Figure 28. FSM for internal Reset signal generator

The state transition was based on the positive edge of the clock. There were
three states namely: ro, r1 and rp. At initial state ry, the value of the reset signal
was set to zero. The following positive clock edge, the state machine transits to rq
where the value of the reset signal was set to 1. Afterwards, in the next rising
edge of the clock, the value of the reset signal was assigned to 0. The r; state
ensured that the reset signal was set to 0. Since the emulation environment and
the DCS needed an active high reset to initialize, the scenario at state rq took
care of it. Therefore, with the reset signal asserted low at state ry, enabled the

datapath to resume its normal operation.

6.2.4.2 Linear Feedback Shift Register (LFSR)

We have implemented an 8-bit LFSR (Shown in Fig.29), which is also known as

Linear Feedback Shift Register, in order for generating the pseudo random

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

numbers for the digital comparator producing the reference signal data_ref for

the DCS.

q7 g5 q4 q3 q0

reg_7 . x| reg.d reg 4 reg 3 e reg 0

o | I |

Figure 29. An 8-bit Pseudo Random Generator [36]

In theory, an n-bit LFSR can generate a (2"-1)-bit long pseudo random sequence
before repeating. In our case, the width of the LFSR is 8-bit. So, it can generate
the number from 0 to 255. This 8-bit random pattern generator generates up to
90% coverage by simulation out of 248 = 256 before it repeats. The characteristic

polynomial equation of this LFSR is:

X(n)=X"+X"+ X'+ X°+1

6.2.4.3 Digital Magnitude Comparator

A digital magnitude comparator is a combinational circuit that compares two

digital numbers. Figure 30 shows an 8-bit digital magnitude comparator,

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D

(A>B)

D

Figure 30. 8-Bit Digital Magnitude Comparator [37]

which compares the relative magnitudes of two digital numbers. We are
considering two numbers, A and B, with 8-digit each. This comparator outputs
any one of the following control signal, A = B, A > B or A <B. In this case we are
only considering the output signal when A > B. To determine if A is greater than
B, we inspect the relative magnitudes of pairs of significant digits starting from
the most significant position. If two digits are equal, we compare the next lower
significant pair of digits. This comparison continues until a pair of unequal digits
is reached. If the corresponding digit of A is 1 and of B is 0, we conclude that A >
B. The sequential comparison can be expressed logically by the following

Boolean function [37].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4>B)=AB +X AB +.+ X, XXX XXAB +X.XXXXXXAB,

Verilog
adc ;
- A(Output of module L data ref
LFSR U
SR) | ADCout i > gglét) of
Magnitude |[A>B | AGtR ADCsample|——-
B(Ref .Input) Comparator g Sample———§—>
—P i
— Fstm[n:0] ‘
Reset ‘

Figure 31. ADC with a Magnitude Comparator [4]

One of the inputs (e.g. A) of this magnitude comparator receives \)alues from the
LFSR and the other input (e.g. B) is fixed as a reference. We chose 8'h05 as a
reference input in order to get the more number of coverage when A > B. Please
note that the reference value of 8'h05 was acquired by simulating the testbench

composed of LFSR and digital magnitude comparator.

For this project a magnitude comparator replaced the analog comparator, i.e. Op-
Amp since the Analog to Digital Converter (ADC) needed an analog comparator

as own in Figure 31. The ADC will be discussed in detail in the latter section.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AgtR

[}
3
2
3

Reference

Shift |
Shift

RefShftr[8:0]
Q —

M[8:-0 DACout

DAC

Mask Shifter
0
]
Shifter

RefShit(8:1)

ADCcut! 7,01

ADCSampied
o éspa

Shift, o

Fstm[3:0)

MI8:0]

% Mutiplier Counter
0
* Y
Ve
ADCout
Register
0

5 Filter Settle Time

FatmCnir{3:0}

DecFstmCntr

FstmCntr] 'O

DACSampleCntr[8:0,
Q =0 -

DAC Sample
Counter

o Q DACsampled :l

Figure 32. Datapath of Analog to Digital Converter [4]

The main goal of replacing the analog comparator with the digital magnitude
comparator was to create a synthesizable emulation environment consisting of all
digital signals. This magnitude comparator gives a control signal AgtR (which

means if A>Ref., value will be 1, otherwise value will be 0).

6.2.4.4 ADC (Analog to Digital Converter)

This Analog to Digital Converter (ADC) shown in Figure 32 [4] receives a control
signal (AgtR in Fig. 31) from the digital magnitude comparator and outputs the 8-
bit data, ADCout, which is used as a reference signal (dafa_ref) for the Digital
Carrier Synchronization (DCS). This ADC is useful only on signals that are
changing at a fairly low rate, i.e. data_ref signal in our case. Since our DCS

model requires an unchanged datfa_ref for several clock cycles in order to

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

synchronize with dafa_fb signal, this ADC served our data_ref generation quite

comprehensively.

This ADC, implemented in a single verilog module, was taken from the Xilinx Inc

[4]. The sample rate of this ADC may be expressed as follows:
ADC, = £, /(Z(MSB’ D # (Fstm + 1) * (MSBI +1))samples / second

ADC outputs ADCout which is used as a data reference signal for the digital
carrier synchronizer (DCS). Our goal is to verify the timestamp when data_ref
and data_fb (output of the NCO) are equal. This event is defined as locking time

of the DCS.

6.2.4.5 Clock Divider (clk_div)

A clock divider circuit was used in the emulation environment path shown in
Figure 27. It has one input clock which is running on 2.048 MHz frequency and it
provides an output clock of 30 Hz frequency. The clock divider circuit was
controlled by a counter which generated the output clock. The counter
incremented based on the positive edge of the input clock (2.048MHz). The value
of output clock was initially set to 0 by the counter. When the count value
bécame 20h’10AAB, the output clock was asserted to high. This ensured that the
outpUt clock of the clock divider circuit had a period of 30Hz. This dividing was
performed to lower the input clock frequency in order for the locked data to be

visible through human eyes.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.4.6 Display

The display module displayed the locked data onto the seven segment display.
The seven segment display used the output clock from the clock divider as its
input and displayed the locked data value. A summarized emulation results of
different DCS implementations by targéting Xilinx Virtexll-Pro FPGA are shown in

Table 7.

Table 7. Summarized Emulation Results of Different DCS Implementations

Xilinx Device | DCS using LUT DCS using Xilinx
xc2vp50 based NCO ROM based NCO
package
ff1152 1st Order LF | 2nd Order LF | 1st Order LF | 2nd Order LF
speed -6
Checking Locked Locked Locked Locked
Locked Signal
(When Fs = (When (When Fs = (When Fs =
73MHz) Fs = 86MHz) | 73MHz) 95MHz)
Locked Data | 66 D5 29 79
(Hex)
Phase Angle | 53.43 19.79 18.83 72.32
(Deg.)
6.3 Summary

This chapter focused on the synthesis results and an emulation environment of
different DCS implementations. In the following chapter the performance
evaluation of different DCS implementations will be discussed in the context of

locking results and tracking frequencies by applying simulation technique.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Simulation Results and Performance |
Evaluation of Different DCS

Implementations

7.1 Introduction

We have followed a top-down design flow to finish the FPGA based digital carrier
synchronizer. The hardware design was done in using synthesizable Verilog-HDL
codes. Aftér each individual module was compiled and tested, they were
integrated and compiled together. Furthermore, the final design was targeted to
an FPGA device provided by Xilinx Inc. where a Virtexll-Pro (XC2VP50-FF1 152
and Speed Grade -6) device was chosen to fit the whole design. The master
clock of our design is chosen to 2.048 MHz whether the board has the clock
frequency of 50 MHz. Initially individual modules of the DCS were simulated
using VCS from Synopsys and Active HDL from Aldec. In so doing, we wrote
different testbenches for testing the operation of each individual hardware
module and the whole system. We utilized the same emulation environment (i.e.
generating stimulus) in order to verify the different DCS implementations. We
implemented the DCS using first and second order loop filter and two different

NCOs for comparing the performance of DCS.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Simulation Environment for DCS

By applying stimulus and simulating the design, the designer can be sure the
correct functionality of the design is achieved. This design used a DCS and test

bench to illustrate the basic elements of a Verilog simulation.

Test Bench (Using Same
Emulation Environment)

r
| |
| |
| 1
| |
I | !
| | Top Level of | i
| (\1 DCS | :
Input ldataref |
: Stimulus Em I, cik | Phase | I
resetb] || Detector |
| |(Generated by »> | |
| the Same | r g | |
I Emulation || |8 i Loop . | 7 \ |
Environment) [K data_fp |
[LB Filter | NCO st |
| | [_’ | |
I | | Output |
| 4| (Response) |
| : datafb | |
I |
| | Lock lodk |> :
| | Detectecor I\ / |
I
| | : |
| ' | !
L |

Figure 33. Simulation Environment for DCS

The DCS (which vis our DUT) is instantiated into the test bench, and always and
initial blocks apply the stimulus to the inputs to the design. The outputs of the
design are printed to the screen, and can be captured in a waveform viewer as
the simulation runs to monitor the results. We employed the same emulation
environment in order to construct the testbenches (i.e. Simulation Environment)

of our different DCS implementations which were our DUT (Shown in Fig. 33).

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following sections go into detail on each part of the test bench and its

function.

7.2.1 Instantiations

The test bench applied stimulus to the DCS. To do this the DCS must be
instantiéted in the test bench, which is the equivalent to placing a component on
a schematic. Stimulus generator was composed of the following components:

» Reset generator using a counter

> LFSR (Linear Feedback Shift Register) for random value generation

» Digital magnitude Comparator

> Analog to Digital Converter (ADC)

4 N
decs_stimulus Ul (

.ClkIn(smplg clk)

.rst b(rst b),

.B(B),

.Fstm (Fstm),

.ADCout (ADCout),

.ADCsampled (ADCsampled) ,

.Sample (Sample)

)

N | J

Figure 34. Stimulus Module Instantiation

The wrapper was created using the above four components and was instantiated
inside the testben’ch shown in Figure 34. dcs_stimulus is used to place an

instance of the input stimulus in the test bench with the instance name U7. In

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between the outer parenthesis are the‘signals connecting up to U1. The signals
with a dot in front of them are the names for the signéls inside the dcs_stimulus
module, while the wire or reg they connect to in the test bench is next to the
signal in parenthesis. For example, the clock to the DCS is called Clkin in
des_stimulus, but in the test bench smplg_clk is used, which now ‘cor‘mects to
Clkin of des_stimulus. This type of instantiation is called “named instantiation”
and allows the signals to be listed in any order, or even omitted when a module is

instantiated.

7.2.2 Initial and Always Blocks

Always and initial blocks are two sequential control blocks that operate on reg

types in Verilog simulation.

reg smplg clk;
initial
begin
$display ($time, “<<Starting the Simulation>>”");
smplg clk = 0; // at time 0
#10000000 $finish; // at time 10000000 stop s:.mulatlon
end

always
begin

#250 smplg clk= ~smplg clk; // Every 250 ns toggle (invert)
// clock sigmal

end

Each initial and always block executes concurrently in every module at the start

of simulation. Initial block starts executing sequentially at simulation timeVO. Initial

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

blocks start executing sequentially at simulation time 0. Each initial and always
block executes concurrently. The initial block (Shown above) starts by.printing <<
Starting the Simulation >> to the screen, and initializes the reg type’s smplg_clk
to 0 at time 0. The initial bléck initializes the smplg_clk reg types at the beginning
of simulation and the always block executes every 250ns staﬁing at time index O.
~ Hence, the value of smplg_clk wi‘Il invert from the initialized value (in initial block)
of every 250ns. This causes a clock pulse to be generated on smplg_clk with a
period of 500ns or a frequency of 2.048MHz which .is the carrier frequency of our

DCS implementation.

7.2.3 Printing Using $display During Simulation

As a simulation runs, it's important to include a printoui to the screen to inform
the designer on the status of the current simulation. The value a net or register
holds at a certain time in the simulation may be important in debugging a
function, so signals can also be printed. A snapshot of $display used for our DCS

testbench shown below:

Sdisplay ("\nData has Locked at time : $%0t”, $time);
sdisplay (”"\ndata Ref value : %h", ‘“data ref);
$display ("\ndata Fb value :@ %$h", data_ fb);,
The characters found between the quotes will be printed to the screen followed
by a carriage return. The locked time of DCS will be displayed when the value of

data_ref and data_fb are equal. It also displays the value of data ref and

data_fb. In the following section

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 Simulation Results and Discussion

A snapshot of the DCS using LUT based NCO and first order LF is displayed in
Figure 35. It shows the locking time of 11;735us‘ which was the optimal locking

for this implementation, when the sampling frequency was 72 MHz. It

synchronized the data when the Locked data was 8’h66.

Figure 35. DCS Using LUT based NCO and 1st Order LF
(When Fs =72 MHz)

The locking time was stable until the sampling frequency changing to 75MHz.
When the sampling frequency was 75 MHz, the locking time was 11.775us and

the locked data was 8'h5C (ShoWn in Fig. 36).

Figure 36. DCS Using LUT based NCO and 1st Order LF
(When Fs = 75MHz) ‘

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 37 shows the locking time of DCS using Xilinx ROM based NCO and first

order LF.

FRpe g bt R

1E2r

o R s e A e

A RO " S

Figure 37. DCS Using Xilinx ROM based NCO and 1st Order LF
(When Fs =73 MHz)

It displayed the locking time of 6315.059ns, which is 6.315us, better than
preVious implementation, when the sampling frequency was 73MHz and the

locked data was 8’h29.

Figure 38. DCS Using Xilinx ROM based NCO and 1st Order LF
" (When Fs =77MHz) '

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When sampling frequency was 77MHz, DCS using Xilinx ROM based NCO and
first order LF locked the data at 11.9133us (Shown in Fig. 38). The locking time

was stable until the sampling frequency Changing to 76MHz.

Figure 39. DCS Using LUT based NCO and 2nd Order LF
(When Fs =85 MH2z)

Figure 39 shows the locking time (9.342us) of DCS using LUT based NCO and
second order LF which signifies better locking than DCS using LUT based NCO
and first order LF but different sampling frequency (85MHz). It also shows that

the locking data was 8’hD5.

The locking time of DCS using LUT based NCO and second order LF was stable
until the sampling frequency changing to 88MHz. When the sampling frequency

reached to 88MHz, the locking time changed to 9.4995us (Shown in Fig. 40).

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 40. DCS Using LUT based NCO and 2nd Order LF
(When Fs = 88 MHz)

Figure 41. DCS Using Xilinx ROM based NCO and 2nd Order LF
(When Fs = 95 MHz)

Figure 41 shows the locking time (3.31625us) of DCS using Xilinx ROM based
NCO and second order LF, when the sampling frequency was 95MHz. It shows

the optimal locking time. When it locked the data, the locked data was 8'h79.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

me -

Figure 42. DCS Using Xilinx ROM based NCO and 2nd Order LF
(when Fs = 105 MHz)

The locking time (3.774us) of DCS using Xilinx ROM based NCO and second
order LF was changed when the sampling frequency reached to 105MHz (Shown
in Fig. 42). The following section we will discuss the tracking frequency and

locking time of different DCS implementations.

7.4 Tracking Range and Locking Time Analysis

The fracking range of the DCS is the range over which the loop is able to track
and lock ohto a carrier. A small phase error is usually desired and is considered
to be the criterion of good tracking performance. If the error becomes so large
that the NCO skips cycles, the loop is considered to have lost lock, even if

momentarily [9].

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frequency Vs. Time

10000

100

LockTime (us)

1 S i i Z = i Z 2

35 40 45 50 52 54 55 58 61 66 67 68 70 72 73 74 75 77
Frequency (MHz)

Figure 43. Tracking Frequency vs. Lock Time of DCS using
LUT Based NCO and 1st Order LF

The important characteristics of DCS performance for the modem application are
locking time and tracking frequency. Figure 43 - 47 shows the analysis of
different DCS implementations in the context of tracking frequency and the
locking time. The proposed DCS acquires lock with a reference frequency of
2.048 MHz. The tracking frequency range over which the DCS can maintain a

lock is 35 — 110 MHz from the simulation results.

Simulation begins with an investigation of the stability of the closed-loop DCS
configuration. The loop filter parameter values are obtained by loop stability
analysis using MATLAB. Then we developed a simulation environment using a
counter for internal reset generator, a LFSR for Pseudo Random Generator, and

an ADC from Xilinx for providing the reference signal, data_refto the DCS.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frequency Vs. Time

10000

100

Lock Time (us)

1
P ® & & & & & & @ 4 4~ 4

Frequency (MHz)

Figure 44. Tracking Frequency vs. Lock Time of DCS using Xilinx ROM
based NCO and 1st Order LF

Initially, we observed that the lock time and tracking frequency of DCS with 1°

order LF using LUT (Shown in Fig. 43) and Xilinx ROM based NCO (Shown in
Fig. 44) and then we monitored the different locking times and tracking frequency
of DCS with 2™ order LF using LUT and Xilinx ROM based NCO. Fig. 43, which
is DCS with 1% order LF and LUT based NCO, shows that a steady state
condition (or lock) is accomplished when the sampling frequency is about 75
MHz and the locking time is 11.735 us. Similarly for the DCS with first order LF
and Xilinx ROM based NCO, which is shown in Figure 44, has same tracking

frequency but a different locking time which is 9.325 us.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frequency Vs. Time

10000

100

Lock Time (us)

o T R <5 %

35 40 45 50 55 60 62 64 65 70 72 74 75 76 78 80 82 84 85 88 90
Frequency (MHz)

Figure 45. Tracking Vs. Lock Time of DCS using LUT based NCO and 2nd
Order LF

Frequency Vs. Lock Time

10000
1000

L)
% 100
10

1
AR I I T N R S I BN

Frequency (MHz)

Figure 46. Tracking Frequency Vs. Lock Time of DCS using Xilinx ROM
based NCO and 2nd Order LF

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DCS using LUT based NCO and second order LF shown in Figure 45 has a
locking time of 9.325us and a tracking frequency of 88 MHz. Figure 46 shows an
optimal locking time (3.31625 us) and a wider tracking frequency (110 MHZz)
which are achieved using DCS with 2" order LF and Xilinx ROM based NCO
when the sampling frequency is about 110 MHz. The performances of different

DCS implementations are summarized in Table 7.

Table 8. Summarized Analysis of Different DCS Implementations

DCS using LUT based DCS using Xilinx ROM
NCO based NCO
DCS Analysis 1% Order 2" Order 1* Order 2" Order
LF LF LF LF
Stability Stable Stable Stable Stable
Locking Time (us) 11.735 9.325 6.315 3.31625
Phase Angle (Degree) 53 42 19 72
Tracking Range ~75 ~88 ~75 ~110
(MHz)
7.5 Summary

In this chapter the locking time and the tracking frequency range of our different
DCS implementation using simulation based verification are investigated.
Simulation results showed that DCS using Xilinx ROM based NCO and second
order LF performed better. In the next and last Chapter of this thesis, the

conclusion with some future works will be presented.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusion and Future Work

In this thesis, initially a mathematical description of the Digital Carrier
Synchronizer (DCS) architecture was established which is used as a
synchronizer in a modem application. One obligatory constraint for designing
DCSs is that the DCS system must be stable. For this reason, afterward the

stability of our DCS was verified using MatLab.

We started the design of our DCS using first order loop filter and LUT based
NCO and the implementation was done using Verilog HDL. We then improved
the design of our DCS architecture with first order loop filter and Xilinx ROM
based NCO. Our DCS architecture was simulated using VCS7.0.1 from
Synopsys and Active HDL from Aldec. These two designs were investigated and
analyzed the simulation results in the context of locking time and tracking
frequency. It showed that DCS using first order loop filter and Xilinx ROM based
NCO provides better performance. We then again modified the datapath of DCS.
We replaced the first order loop filter with the second order loop filter. The
deified datapath of DCS was then simulated. The simulation results showed
that DCS using Xilinx ROM based NCO and second order loop filter performed

better.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The architecture was build from the ground up using digital techniques that
exploit faster locking and wider tracking range. We have investigated three
different implementations of DCS design using different NCOs and Loop Filters.
Our goal was to analysis and compares the locking time and tracking range of
the DCSs for the specific application. It has beén shown that the DCS using
Xilinx ROM based NCO and 2™ order Loop Filter is very efficient. The locking
time in the case of a 2" order LF with Xilinx ROM implementation outperformed
the locking time in the case of LUT. Also 2" order LF with Xilyinx ROM based
implementation shows wider tracking range. FinvaIIy in this research work, we
developed a flexible synthesizable emulation environment for FPGA based
design solution. It should be noted that, in spite of its many benefits, our
emulation system was not a replacement for verification and simulation; it merely
augmented simulation. While emulation is ideal for system-level testing,
simulation is a must for performing detailed, feature-level testing, which cannot
be done effectively in an emulation environment. Finally we can conclude that
our simulation results (Shown in Table 8) are corresponded to our emulation

results (Shown in Table 7).

As future work, we consider the following research directions:

= The aspect which was not included in my reseérch was the noise analysis.
Since noise is an important parameter which affects the performance of a
design mostly in non-lineér fashion, is necessary to accurately measure the
performance of the design. Including noise consideration provide more details

about the sensitive points and parameters of a design
99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

» Verifying the design using model checking technique.

» Performing equivalence checking between the RTL level and the gate level of

our DCS models.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

R. E. Best, Phase-Locked Loops: design, simulation, and applications, Fifth
Edition, New York; McGraw-Hill, 2003.

Wei-Tsen Lin and Dah-Chung Chang, “The Extended Kalman Filtering
Algorithm for Carrier Synchronization and the Implementation,” IEEE
International Symposium on Circuits and Systems, May, 2006.

K. Gunnam et al., “New Optimizations for Carrier Synchronization in Single
Carreir Systems,” IEEE International Conference on Acoustics, speech, and
Signal Processing, vol. 5, pp v/661 — v/664, March 2005.

Xilinx Inc. Application Note, XAPP155, hitp./direct.xilinx.com/bvdocs
/appnotes /xapp155.pdf, Version 1.1, Sept. 1999.

Xilinx Inc., Application Note, XAPP154, http.//www.nalanda.nitc.ac.in
findustry /appnotes/xilinx/documents/xapp/xapp154.pdf, Version 1.1, Sept.
1999.

Ronald R. Stephens, Phase-Locked Loops for Wireless Communications:
Digital, Analog and Optical Implementations, Second Edition, New York;
Kluwer Academic Publishers, 2002.

Virtual Socket Interface Alliance- VSIA. Web Page: Fact Sheet.

Richard Munden, ASIC and FPGA Veriﬁcationf A Guide to Component
Modeling (Systems on Silicon) Morgan Kaufmann, 2004.

Synopsys Corporation, Synopsys Design Compiler, Version V-2004.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] S. Kadam, D. Sasidaran, A. Awawdeh, L. Johnson, and M. Soderstarnd,
“Comparison of various numerically controlled oscillators”, The 45" Midwest
Symposium on Circuits and Systems, vol. 3, pp. 200 - 202, Aug. 2002.

[11] Ray. J. Andraka, “A survey of CORDIC algorithms for FPGA based
computers”, Proc. ACM/SIGDA sixth international symposium on Field
programmable gate arrays, pp. 191 — 200, Feb. 1998.

[12] Liang Yi ,Yang Yuan, Yu Ningmei and Gao Yong, “The Application of a
Novel Direct Digital Frequency Synthesizer for the IP Core Design of All
Digital Three Phase SPWM Generator’, The 4" International Power
Electronics and Motion Control Conference, vol. 2, pp. 730-733, Aug. 2004.

[13] Khalid A. U. et al. “FPGA Emulation of Quantum Circuits,” IEEE International
Conference on Computer Design: VLSI in Compuerts and Processors, Oct.
2004.

[14] Kyung-Soo Oh, Sang-Yong Yoon, Soo-lk Chae, “Emulator environment
based on an FPGA prototyping board,” IEEE International Workshop on
Rapid System Prototyping, pp. 72-77, June 2000.

[15] Civera, P, Macchiarulo, L.,Rebaudengo, M., Reorda, M.S., Violante, M.,
“Exploiting Circuit Emulation for Fast Hardness Evaluation,” [EEE
transactions on Nuclear Science, vol. 48, pp. 2210-2216, Dec. 2001.

[16] Samir Planitkar, Verilog HDL: A Guide to Digital Design and Synthesis,

Second Edition, Pearson Education Asis, 2002

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[17] Himanshu Bhatnagar, Advanced ASIC Chip Synthesis: Using Synopsys’
Design Compiler and Primetime, First Edition, Kluwer Academic Publishers,
1999.

[18] Xilinx Inc., Xilinx ISE 8.1i. http:/toolbox.xilinx.com/docsan/xilinx8/books
/manuals.pdf

[19] Janick Bergeron, Writing Testbenchers: Functional Verification of HDL
Models, Second Edition, Boston, Kluwer Academic Publishers, 2003.

[20] Thomas L. Anderson, “Using VCS with White-Box Verification Techniques”,

Synopsys Inc., SNUG San Jose 2000.

[21] William K. Lam, Sun Microsystems, Hardware Design Verification:
Simulation and Formal Method-Based Approaches, First Edition, Prentice
Hall PTR, 2005.

[22] William F. Egan, Phase-Lock Basics, First Edition, A wiley-Interscience
Publication, New Ydrk, 1998.

[23] Ellinger and Jackel, Scripts: Integrated Circuits for High-Speed
Communication, http://www.ife.ee.ethz.ch/~ichsc, 2005

[24] Intuitive Guide to Principles of Communications, http://www.complextoreal
.com, 2002.

[25] Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing,
Second Edition, Prentice Hall, 1999.

[26] Lokenath Debnath, Ihtegral Transforms and Their Applications, First Edition,

CRC Publishers, 1995,

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[27] Benjamin C. kuo and Farid Golnaraghi, Automatic Control Systems, Eighth
Edition, A Wiley-Interscience Publication, 2002.

[28] Giovanni Bianchi, Phase-Locked Loop Synthesizer Simulation, First Edition,
McGraw—HiIl, 2005.

[29] Floyd M. Gardner, Phaselock Techniques, Second Edition, A Wiley-
Interscience Publication, 1979

[30] Design Spec, http://www.us.design-reuse.com/articles/article5187.html.

[31] Steve Winder, Analog and Digital Filter Design, Second Edition, Newnes,
2002.

[32] J. E. Volder, “The CORDIC Trigonometric Computing Technique”, IRE
Trans. On Electronic Computers, vol. 8 no. 3, pp. 330-334, 1959.

[33] XiIinx Inc., http:/ftoolbox.xilinx.com/docsan/xilinx7/books/data/docs/v4ldl/
v4|dI0093_85.html

[34] Xilinx Inc., Answers Database.

[35] Xilinx Inc, “FPGA Design Flow Lab Manual," Xilinx University Program,
2003.

[36] Xilinx Inc., Application Note, XAPP 052, July 1996.

‘[37] M. Moris Mano, Digital Design, Second Edition, Parentice Hall of India Pvt.

Ltd., 1998.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

