A New MAP Based Channel Estimation Technique for

Multiple-Input Multiple-Output (MIMO) Systems

Wajih Hoteit

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial a Fulfillment of Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montreal, Quebec, Canada

August 2006

© Wajih Hoteit, 2006



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-37754-3
Our file  Notre référence
ISBN: 978-0-494-37754-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



ABSTRACT

A New MAP Based Channel Estimation Technique for

Multiple-Input Multiple-Output (MIMO) Systems

Wajih Hoteit, Ph. D.

Concordia University, 2006

Multiple-Input Multiple-Output (MIMO) systems that provide significant increase
in channel capacity is rapidly emerging as the new frontier of wireless industry.
MIMO systems require the simultaneous use of multiple transmit and receive antennas
to dramatically increase data rates and to improve performance reliability. An effec-
tive and practical way to approach the capacity promised by MIMO systems is to
employ space-time coding (STC). It elegantly combines temporal and spatial correla-
tion into the transmitted symbols to realize diversity and coding gains. Most STC
schemes are designed for known quasi-static channels however this assumption is not
always justified. MIMO channels often undergo frequency selective fading that leads
to intersymbol interference (ISI), which limits the performance of MIMO systems.

The effect of imperfect channel estimation on the bit error rate (BER) of MIMO
systems utilizing STC is investigated. An analysis and comparison into the BER
degradations of simple transmit diversity (STD) and maximal ratio combining (MRC)

schemes due to multipath channel estimation errors are presented. Closed form
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expressions are derived for the BER performances of the schemes that employ an
equalization process to mitigate the ISI caused by the multipath in frequency selective
channel. BER curves show that the performance deterioration in the MIMO scheme
outweighs the benefits achieved over the single antenna case when the channel
estimation errors are large. Results expose the deleterious effects: of inaccurate channel
estimation on the performance of MIMO systems. Hence, the development of practical
and novel channel estimation approaches are desired for MIMO systems using STC.

This dissertation introduces a new MAP based channel estimation technique that is
amenable to STC scheme employing two transmit antennas and operating in multipath
bandlimited channel. The complex channel parameters are treated as two real-valued
tap coefficients; each taking one of M possible amplitude levels with equal probability.
The proposed estimation technique is based on an iterative procedure derived through
the maximum a posteriori (MAP) probability approach. Unlike classic estimation
techniques, we iterate on the probabilities of the different coefficients rather than on
the values of the coefficients.

Two low complexity algorithms based on the developed channel estimation
technique and simple to implement in practical MIMO systems are also introduced.
The performances of the two algorithms are assessed by combined analysis and
simulation. Results are presented and compared against the performance of
conventional channel estimation techniques. Results show that the required
performance can be achieved with less number of iterations using the proposed

algorithms compared to conventional techniques.
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Chapter 1

Introduction

1.1 Literature Review

More than one hundred years ago, the notion of transmitting information without
the use of wires must have seemed like magic. In 1897, Marconi made it possible by
demonstrating the first wireless communication system between a land-based station
and a tugboat [1]. Since then, unbelievable, extraordinary, and rapid developments in
the field of wireless communication have been taking place, which will shrink the
world into a global communication village (GCV) by 2010 [2]. Today’s wireless
communication systems are limited to voice and low-speed data transmissions but

multimedia services are envisaged for 21* century applications [3].

Many industry practitioners believe that wireless subscribers worldwide will ex-
ceed two billion by the end of 2007. Such rapid consumer growth brings with it radio

frequency (RF) interference and spectral crowding, as well as an urgent need to



develop wireless systems with sufficient capacity, that would let subscribers make
phone calls, surf the Web, exchange e-mail and conduct video conferences simultane-
ously. The most important issues in wireless multiple access techniques are the
reliable and flexible transmissions of various data rates, and the efficient utilization of

the limited frequency resources by as many users as possible.

The new frontier of wireless communications is rapidly becoming the introduction
of Multiple-Input Multiple-Output (MIMO) diversity systems that require simultane-
ous use of multiple transmit and receive antennas. Deploying multiple antennas at both
the transmitter and receiver achieves high date rate and provides significant increase in
capacity without increasing the total transmission power or bandwidth [4], [5]. The
capacity grows linearly with the smaller of the number of transmit or receive antennas,
provided that perfect channel estimation is available at the receiver. However, in real

world perfect channel estimation is never known a priori [6].

An interesting perspective of multiple antennas is that a channel affected by fading
can be turned into an additive white Gaussian noise (AWGN) channel by increasing
the number of antenna diversity branches and using maximum ratio combining
(MRC). This observation that was indeed investigated and verified by analysis and
simulations by the authors in [7]-[9], required the knowledge of channel estimates at
the receiver. An effective and practical way to approach the promised capacity of
MIMO channels is to employ space-time coding (STC). STC is a coding technique
performed in both spatial and temporal domains and designed for use with muitiple

transmit antennas. There are various approaches in STC structure; space-time block



codes (STBC) and space-time trellis codes (STTC) are the two prevailing techniques.

The first bandwidth efficient coding and modulation technique designed for multi-
ple antenna schemes was proposed in [10], and it included the transmit diversity
scheme of [11] as a special case. STTC for two transmit antennas was introduced in
[12], and later generalized to more transmit antennas in [13], [14]. These STTC
schemes provide full diversity with coding gain however; the coding gain is obtained
at the cost of increased decoding complexity [15]. Alamouti proposed STBC in [16] as
a full rate code for two transmit antennas, which appeared as a simple way to achieve
diversity gain as MRC with low decoding complexity. Motivated by the simplicity of
the Alamouti scheme, and despite the performance penalty compared with STTC,
STBC now extends to an arbitrary number of transmit antennas and varying code rates

[17], [18].

A central issue in all these schemes is the exploitation of multipath effects in order
to achieve high spectral efficiencies and performance gains [19]-[21]. Space-time
codes were originally designed and analyzed assuming flat fading channels and the
availability of accurate channel estimates at the receiver. However, the assumption of
known flat fading channels is not always justified, especially for MIMO wireless sys-
tems. MIMO channels often undergo frequency selective fading that causes the trans-
mitted symbols to overlap, resulting in intersymbol interference (ISI) in the received
signals. ISI significantly limits the performance of MIMO wireless systems because an

irreducible bit error rate (BER) results if no mitigation mechanism is employed.

Equalization is an effective measure against ISI in wireless communications



systems. The term equalization is used to describe any signal processing for finding
the coefficients of a digital filter or equalizer in order to minimize distortion. The Zero
forcing (ZF) and minimum mean square error (MMSE) criteria are the most used
techniques to optimize the equalizer coefficients. For any sequence detection criterion,
the knowledge of the channel coefficients is required, which can be provided by a
separate channel estimator connected in parallel with the detector algorithm. The
channel estimator is a replica of the equivalent discrete time channel filter that models
the ISI. The channel estimation is based on the known training sequence of bits that is

repeated in every transmission burst [22].

A broad class of equalizers, known as channel estimation based equalizers [23]-
[25], require an estimate of the discrete time equivalent channel in order to minimize
the BER. The performance of these equalizers have been analyzed in [26]-[30] and
shown to be sensitive to the accuracy of the channel estimates. A simple channel
estimation algorithm for STC was firstly proposed in [31], using observations
associated with orthogonal pilot symbols. Proposed technique did not lead to efficient
estimation, especially when used over a frequency selective channel. The performance
analysis of the STTC in [12] was done in [32] assuming a flat fading channel. The
analysis showed that the design criteria of STTC is still optimum when used over a

frequency selective fading channel.

While designing a whitened filter is well known for classical equalization problem,
it is not yet known when STC with multiple antennas is used. ZF and MMSE equali-

zation schemes exploiting the structure of STBC with two transmit antennas and using



highly idealistic assumptions were presented in [33]. A least-squares (LS) algorithm
designed for a training sequence was employed to compute the channel coefficients.
Although the ZF equalizer eliminated all interference, it produced higher error rates
than the MMSE equalizer. However, it was possible to express the BER exactly with a

Q-function for the ZF case, but an upper bound was given for the MMSE case.

A different approach that is receiving increasing interest recently is the
investigation of joint channel estimation and data detection methods. Here the data
decision obtained from decoding is used as additional training to refine the channel
estimate. Based on this approach, a low complexity space-time receiver for linear
MIMO channels was proposed in [34]. Results suggest that the receiver can approach
within 1 dB the performance of optimal decoder with perfect channel knowledge.
Combining joint data detection and channel estimation with an iterative algorithm is a
method that is gaining popularity. Iterative channel estimation proposed for MIMO
systems use strategies that are based on the expectation-maximization (EM) algorithm

[35]-[39], overlay pilots [40], and pilot embedding [41]-[43].

These suggested approaches require a large number of pilot symbols and can be
complex to implement. Due to the high computational complexity of matrix inversion
and the fact that the matrix inversion has to be calculated in each iteration, optimal
maximum likelihood (ML) channel estimate for MIMO channels is difficult to
implement in practice [36], [38], [39]. To avoid matrix inversion, an iterative decision
directed channel estimation method for MIMO systems was proposed in [44].

Simulation results suggest that at high signal-to-noise ratio (SNR), performance is



within 0.5 dB of optimal decision directed channel estimate performance with known

channel estimation.

In blind channel estimation techniques no explicit training signals are used. Instead
the receiver estimates the channels from the sighals received during normal data
transmission. Substantial work has been done on blind estimation for MIMO channels
and a number of leverages including cyclo-stationarity, finite alphabet, and constant
modulus were used to estimate the channel. The use of blind methods has generally
not been popular in practical systems. Although, a considerable amount of work has
been done in this area, yet very few of the existing methods can be directly applied
because of the high implementation complexity and their low suitability for practical

MIMO communication systems.

Performance analysis of the Alamouti scheme [16] has been discussed in many
papers in recent years, see for instance [45]-[47]. Even if a lot of effort is spent on the
analysis in these and other papers, all of them assume perfect channel estimates. Since
good channel estimation turns out to be very important for accurate investigation of
MIMO systems performance. It is of interest to know how the performance depends
on uncertainties in the channel estimates over channels with ISI. Channel estimation
for MIMO systems is a major challenge and requires additional effort. When the
number of antennas increases, accurate channel estimation becomes more difficult
because of the increase in the number of parameters to be estimated [48]-[50]. In
addition, equalization techniques for general space-time codes are still an open

problem.



1.2 Problem Statements and Objectives

As mentioned in the previous section, MIMO diversity systems employ STC to
achieve the promised increase in capacity of MIMO channels and to provide reliable
and flexible transmissions of various data rates. However, in order to achieve high
spectral efficiencies and performance gains, flat fading channels and the availability of

perfect channel estimation at the receiver were assumed.

The performance analysis of MIMO schemes that utilize STC and in particular the
Alamouti scheme [16] was mostly presented assuming known flat fading channels.
When the inaccurate channel estimation was investigated, the effects of the ISI created
by multipath within the frequency selective fading channels were ignored. Channel
estimation for MIMO channels is a major challenge due to the increased number of
parameters to be estimated and reduced transmit power for each transmit antenna.
Substantial work has been done in this area using a number of various methods and
different approaches. However, these suggested approaches can be complex to
implement and yet very few of the existing methods are suitable for practical MIMO

channels that suffer from channel induced ISI.

Observing the above problems, our goal is to develop a new channel estimation
technique suitable for MIMO diversity systems that utilize STC. A tradeoff between
implementation complexity and practical high performance channel estimator will be

considered with the emphasis on frequency selective fading channels.

Four specific objectives are listed below:



An analysis and comparison into the BER degradations of simple transmit
diversity (STD) and MRC schemes due to multipath channel estimation errors are
presented. Performance curves to determine the impact of channel estimation

errors at various numbers of multipath components are obtained.

The effects of imperfect channel estimation on the BER of MIMO communication
systems utilizing STC are investigated. A multipath channel between each transmit
and receive antenna pair that results in ISI is considered. A closed form expression
for the BER performance that is a function of the channel estimation error and the

multipath components is derived.

A novel channel estimation technique for STD scheme employing STC now
applied in MIMO communication systems is developed. The technique will focus
on estimating the channel parameters for a two branch transmit diversity scheme
operating in multipath environment that induces ISI. The proposed estimation
technique will be based on an iterative procedure derived through the maximum a
posteriori (MAP) probability approach. Unlike classic estimation techniques,
iteration is done on the probabilities of the different coefficients rather than on the

values of the coefficients.

Low complexity algorithms that are based on the developed channel estimation

technique are designed. Two practical approaches will be proposed that are also

based on the MAP principle and are simple to implement in practical MIMO
systems. The two suggested algorithms would be assessed by a combined analysis/

simulation and results will be compared against those of conventional techniques.



1.3 Contributions

In this dissertation, the effects of imperfect multipath channel estimation on the
performance of a MIMO diversity system employing STC is investigated. Then a new
technique to estimate the channel parameters for a two branch transmit diversity
scheme is derived. In addition, two practical low complexity algorithms are proposed

for MIMO channels that are characterized as frequency selective fading channels.

An STD scheme utilizing two transmit and one receive antennas was shown to
have the same error performance in non-time-selective fading channels as MRC when
perfect channel knowledge is available at the receiver. In practice, it is impossible to
achieve the perfect channel estimation at the receiver. Hence, an analysis and
comparison are presented into the BER degradations of the STD and MRC schemes
due to imperfect multipath channel estimation at the receiver. A theoretical approach
to investigate the BER performance of the STD and MRC schemes with perfect and
imperfect channel estimation is proposed. BER curves will show that the performance
deterioration of the STD scheme increases quite rapidly compared to the degradation
in the MRC performance when the channel estimation and multipath components are
incremented. Thus, the practical implementation of the STD scheme should be

carefully considered under such conditions.

The effect of imperfect channel estimation on the BER of MIMO communication
systems utilizing STC is investigated. A multipath channel is considered and a given

level for the channel estimation error is assumed. The receiver employs an



equalization process to reduce the ISI in the received signal. A closed form expression
for the BER performance of the scheme that employs the results of imperfect channel
estimation is derived. Results are applicable to any channel estimation technique.
Performance curves show that the deterioration of performance in the multiple
transmit antenna scheme outweighs the benefits achieved over the single antenna case
when the SNR and channel estimation error are large. Results show the deleterious
effects of inaccurate channel estimation on the performance of MIMO systems. Hence,
novel channel estimation épproaches are desired for MIMO communication systems

using STC.

The effectiveness of STC schemes and in particular the Alamouti scheme relies on
accurate multi-channel estimation at the receiver in order to achieve diversity
advantage and coding gain. In reality, reducing the channel estimation error entails
using a multitude of techniques. Many of those would require complex processing and
a large number of iterations to reduce the channel estimation error. This may become
prohibitive for real time applications such as voice and video in fast fading situations.
Channel estimation for MIMO systems is a major challenge and requires additional
effort; especially for MIMO channels that often undergo frequency selective fading.
Thus, STC schemes require the development of practical and effective channel
estimation algorithms that can accurately estimate a large number of channel

parameters.

A new MAP based channel estimation technique that is amenable to the STC

scheme employing two transmit antennas and operating in multipath fading channels

10



that result in ISI is proposed. The channel parameters are the attenuation and delay
incurred by the signal transversal along the propagation paths. The complex channel
parameters are treated as two real-valued tap coefficients; each taking one of M
possible amplitude levels with equal probability. First, we derive the various
expressions required to compute the a posteriori probabilities for each coefficient.
Based on the MAP criterion, then select as a coefficient value the one that gives the
largest probability. The obtained algorithm involves a large amount of computation

per received signal, especially if the number M of amplitude levels {4, } is large. To

alleviate the computational operations, two practical algorithms are introduced instead.

In the first algorithm, we reduce the number of multiple summations used to
perform averaging over all coefficients except the one being optimized in the current
iteration. The optimization of the first coefficient would still require averaging over
the still unknown probabilities of all possible levels of all other coefficients. Then
assign as a first coefficient value the level that corresponds to the largest probability.
In estimating the following channel coefficients, we use the selected value of the
previously estimated coefficients and set the probabilities of previously estimated
levels of the channel coefficients to one. This reduces the number of summations as
we proceed, until reaching the last coefficient, which will be optimized using a simple
expression. In the second algorithm, a further simplification is achieved by randomly
selecting one of the assumed levels for each channel coefficient except the first one.
To improve the reliability of the initial estimates of the coefficients, different iterative

procedures are used for the two algorithms. The performance of the two algorithms
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has been assessed by a hybrid analysis and simulation based technique. Simulation
results show that significant improvement over conventional channel estimation

techniques can be obtained using these iterative procedures.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, we discuss preliminaries
that will be useful for the subsequent development of this dissertation. In Chapter 3, an
analysis and comparison into the BER degradations of the STD and MRC schemes
due to channel estimation errors are presented. Numerical results and discussion of the
impact of various channel estimation errors and multipath components on the BER
curves of the two schemes are provided. In Chapter 4, the effects of imperfect
multipath channel estimation on the performance of MIMO system using STC are
examined. The error performance and numerical results of the MIMO system are
presented. In Chapter 5, a new channel estimation technique for MIMO systems
utilizing STC is introduced. Discrete time model of the MIMO channel that is subject
to ISI is described. Expressions required to compute the a posteriori probabilities for
each channel coefficient are derived. In Chapter 6, two practical algorithms to reduce
computational operations are proposed. Combined analysis/simulation results are
presented and compared against the performance of conventional channel estimation

techniques. Conclusions and future works are introduced in Chapter 7.
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Chapter 2

Background Review

2.1 Wireless Communications

Wireless communications is a broad and dynamic field that has spurred
tremendous excitement and technological advances over the last few decadeé. It is the
fastest growing segment of the communication industry. The wireless channel is an
unpredictable and difficult communication medium. The characteristics of the channel
appear to change randomly with time, which make it difficult to design reliable

systems with guaranteed performance.

2.1.1 Fading Channels

Wireless channels pose a severe challenge as a medium for reliable high-speed
communication. The fundamental phenomenon that makes reliable wireless

communications difficult is the time-varying multipath fading [51]. A signal
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propagating through the wireless channel usually arrives at the destination along a
number of different paths, referred to as multipath. These paths arise from scattering,
reflection, refraction, or diffraction of the radiated energy off objects in the
environment. The received signal is much weaker than the transmitted signal due to
mean propagation loss, long-term fading and short-term fading. The mean propagation
loss arises from square law spreading, absorption by foliage, and the effect of ground-
generated vertical multipath.

Long-term fading, also known as shadowing, results from signal blocking by
buildings and natural features. On the other hand, short-term fading results from
multipath in the vicinity of the mobile. Multipath propagation results in the spreading
of the signal in different domains, including delay (or temporal) spread, Doppler (or
frequency) spread, and angle spread. These spreads have significant effects on the
signal. The mean path loss, long-term fading, short-term fading, delay spread, Doppler
spread, and angle spread are the main channel effects.

In addition to mean path loss, the received signal exhibits fluctuations in signal
level called fading. Fading can be modeled statistically with probability distributions
as noted in [52]-[55]. In addition to a statistical description of the fading channel, we
can describe the severity of fading in the time, frequency, and spatial domains. These

lead to the following different channel characterizations:

e Flat Fading: A channel is said to exhibit flat fading if the channel has a constant
gain and linear phase response over a bandwidth, which is greater than the

bandwidth of the transmitted signal. In this case, all of the received multipath
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components of a symbol arrive within the symbol time duration; hence the spectral
characteristics of the transmitted signal are preserved at the receiver. Flat fading

channels are sometimes referred to as narrowband channels.

Frequency Selective Fading: A channel is said to exhibit frequency selective
fading if the signal bandwidth is greater than the channel coherence frequency,
which is the range of frequencies over which the channel passes all spectral
components with approximately equal gain. Frequency selective fading channels
also known as wideband channels. In this case, the received signal includes
versions of the transmitted waveform, which are attenuated and delayed in time.
Frequency selective fading gives rise to intersymbol interference (ISI); this ISI
results in an irreducible error floor that is independent of signal power. The first
extensive analysis of the degradation in symbol error probability due to ISI was

done by Bello and Nelin [56].

Slow Fading: A channel is referred to as slow fading if the time duration of the
transmitted symbol is smaller than the channel coherence time, which is the
expected time duration over which the channel response is essentially invariant. In
this case, the channel may be assumed to be static over one or several symbols

duration. Slow fading channels are also referred to as quasi-static fading channels.

Fast Fading: A channel undergoes fast fading if the time duration of the
transmitted symbol is greater than the channel coherence time. In fast fading, the
fading character of the channel will change several times during the time span of a

symbol, leading to channel induced ISI. Hence, the received signals will be
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distorted often resulting in an irreducible error rate.

These channel characterizations are not mutually exclusive, thus a channel could
exhibit both fast fading and flat fading or slow and flat fading. Similarly, a channel
could be specified as a fast fading and frequency selective fading channel or slow
fading and frequency selective channel [57], [58]. Often the time varying impulse
response channel model is too complex for simple analysis. In this case a discrete-time
approximation for the multipath model can be used. In fact most continuous-time
systems can be converted to discrete-time systems via sampling. However, care must
be taken in choosing the appropriate sampling rate for this conversion.

A discrete-time model that approximates a wide range of multipath environments
has been developed by Turin [59], which has been successfully used in mobile radio

communications. The discrete-time model is given by:
N-1
h(t)=2a,. o(t—iT) 2.1
i=0

where N is the number of multipath components (bins), 5(.) is the Dirac delta function,
and «; is the complex gain associated with the ith multipath component. The statistics

of a, have been characterized empirically by Turin [59] for wireless channels.

2.1.2 Diversity Techniques

Severe attenuation in a multipath wireless environment makes it extremely
difficult for the receiver to determine the transmitted signal unless the receiver is

provided with some form of diversity. Diversity techniques are widely used in wireless
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communications to reduce the effects of multipath fading and improve the reliability

of transmission without increasing the transmitted power or sacrificing the bandwidth.

Diversity techniques can be applied in the transmitter or the receiver. Diversity implies

the use of more than one copy of the signal, such that a more robust signal results in

reduction of the effects of short-term fading. 4. de Haas first discovered this effect

while experimenting with two spaced antennas [60].

It was observed that the probability that the signals on both antennas will fade

simultaneously is much smaller relative to the probability of fading on either of

channels alone. Examples of diversity techniques are (but are not restricted to)

introduced below.

Temporal Diversity: Channel coding in conjunction with time interleaving is used.
Thus replicas of the transmitted signal are provided to the receiver in the form of

redundancy in temporal domain.

Frequency Diversity: The fact that waves transmitted on different frequencies
induce different multipath structure in the propagation media is exploited. Thus
replicas of the transmitted signal are provided to the receiver in the form of

redundancy in the frequency domain.

Antenna Diversity: Spatially separated or differently polarized antennas are used.
The replicas of transmitted signal are provided to the receiver in the form of
redundancy in spatial domain. This can be provided with no penalty in bandwidth

efficiency.
In most scattering environments, antenna diversity is a practical, effective and
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widely applied technique for reducing the effect of multipath fading [51]. The classical
approach is to use multiple antennas at the receiver and perform signal recombining. If
several replicas of the transmitted signal over uncorrelated fading channels are
available, then the receiver can exploit them to increase signal-to-noise ratio (SNR)
and thereby reduce the bit error rate (BER). While both diversity and coding improve
system performance, the nature of these gains is very different. Diversity gain
improves the slope of the BER curve, while coding gain shifts the BER curve to the
left. In receiver diversity, the independent fading paths associated with multiple
antennas are combined to obtain a signal that is then passed through a standard
demodulator. The method of combining two or more independent fading signals is

termed as diversity combining. There are several diversity combining techniques:

1. Selection Combining (SC) means that the best of the two or more received signals

1s selected according to signal level, power or SNR.

2. Switched Combining means that one of the diversity signals is selected, based on a
given threshold level in one receiver. This signal is received until it falls below

threshold level and the process is again initiated.

3. Maximal Ratio Combining (MRC) first proposed by Kahn [61], the signals from
all diversity branches are weighted and then combined. The SNR is maximized at
the combiner output and it produces the best statistical reduction of fading of any

known linear diversity combiner.

4. Equal Gain Combining (EGC) means that baseband signals are summed. In EGC

there is no signal scaling like in the MRC, the branch weights are all set to unity
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but the signals are co-phased to provide EGC diversity.

Receiver diversity is a well-known technique to improve the performance of
wireless communications in fading channels. A large body of work has addressed
approximations and numerical techniques for computing the integrals associated with
the average probability of symbol error for different modulations, fading distributions,
and combining techniques of receiver diversity (see [62] and the references therein).
The main advantage of receiver di\}ersity is that it mitigates the fluctuations due to
fading so that the channel appears more like an additive white Gaussian noise
(AWGN) channel. However, the major problem with using the receive diversity
approach is the cost, size, and power of the remote units. The use of multiple antennas
and radio frequency (RF) chains makes the remote units larger and more expensive.

As a result, diversity techniques have almost exclusively been applied to the base
stations to improve their reception quality. Transmit diversity is desirable in systems
where more space, power, and processing capability is available on the transmit side
than on the receive side, as best exemplified by cellular systems. For this reason,
transmit diversity schemes are very attractive. In transmit diversity there are multiple
transmit antennas and the transmit power is divided among these antennas. Transmit
diversity has been studied extensively as a method of combating impairments in
wireless fading channels [4], [5], [6], [11], [12], [32]; [63]-[67]. It is particularly
appealing because of its implementation simplicity and the feasibility of multiple

antennas at the base station.
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2.2 MIMO Systems

Transmit diversity can be combined with receive diversity to further improve the
system performance. Band-limited wireless channels are narrow pipes that do not
accommodate rapid flow of data. Deploying multiple transmit and receive antennas
broadens these data pipes. Communication systems with multiple antennas at the
transmitter and receiver are commonly referred to as Multiple-Input Multiple-Output

(MIMO) systems.

2.2.1 MIMO Channels

In MIMO systems the multiple antennas can be used to increase data rates through
multiplexing and to improve performance through diversity gains. The growing
demand for MIMO communication systems makes it important to determine the
capacity limits of the underlying channels for these systems. The maximum error-free
data rate that a channel can support is called the channel capacity. The channel
capacity for AWGN channels was first derived by Shannorn in 1948 [68]. In contrast to
scalar AWGN channels, MIMO channels exhibit fading and encompass a spatial
dimension. The capacity results for MIMO channels have been developed only in the
past few years.

The research activity in this area stems from the breakthrough results in [4], [5],
[64], [65] indicating that the capacity of a MIMO fading channel is N times larger than |
the channel capacity without multiple antennas, where N = min (N, N,) for N, and N,

the number of transmit and receive antennas, respectively. These predictable spectral
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efficiency gains require accurate knowledge of the MIMO channel at the receiver and
sometimes at the transmitter as well. Where there is no accurate estimation of the
channel at either the transmitter or the receiver, the linear growth in capacity as a
function of transmit and receive antennas disappears, and in some cases adding
additional antennas provides negligible capacity gain.

The capacity of general fading channel models without transmitter or receiver
channel state information (CSI) was investigated in [69]-[71]. These works indicate
that at moderate to high SNR, capacity is limited by channel estimation error. At very
high SNR, there is no capacity gain for slowly varying channels without recetver CSI.
The multiple antennas can be used to obtain array and diversity gain instead of
capacity gain, which is also referred to as multiplexing gain. The diversity-
multiplexing trade-off or the trade-off between data rate, probability of error, and
complexity of MIMO systems has been extensively studied in terms of space-time
code designs [12], [72]-[74]. This work has primarily focused on block fading
channels with receiver CSI only.

Consider a MIMO system with N, transmit and N, receive antennas as shown in
Fig. 2.1. The MIMO channel must be modeled properly in order to examine the
performance of the system. The channel models that are considered in this thesis are
presented in this section. The primary MIMO channel model under consideration is
the quasi-static, Flat or frequency non-selective, and frequency selective fading

channel model.
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Figure 2.1: MIMO system model.

The MIMO channel is described by an N, x N, complex matrix, denoted by H that

is given by

hu(t) huv,(t)

H= (22)

hN,l(t) hN,N, (t)
where h;(f) is the channel impulse response between the jth transmit and the ith
receive antennas. For a flat fading channel, a single path exists between each transmit
and receive antenna pair. If a quasi-static channel is further assumed then the channel
remains constant over the length of a frame, we can thus write

h(0)=h,(t+T) =@, ,i=1..,N,,j=1.,N, (2.3)

i
where T is the frame time and ¢ is the complex fading coefficient representing the
channel path gain from transmit antenna j to receive antenna i.

MIMO channels are often frequency selective that results in significant number of
resolvable paths (L). Such channel can be modeled as a finite impulse response (FIR)

filter with memory L. If the frequency selective MIMO channel is assumed to be
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quasi-static, then the impulse response of the channel between transmit antenna j and

receive antenna i can be written as
L-1
hy(O=>a,(D6(t-17) ,i=1,..,N,,j=1..,N, (2.4
1=0

where & (.) is the Dirac delta function, ¢; (/) and 7; are the complex path gain and time
delay of the /th path, respectively. If the antennas on both ends of the MIMO system
are separated by more than half of a wavelength, it is usually safe to assume that their
path gains are independent of each other [75].

Equalization is a signal processing technique used at the receiver to alleviate the
ISI problem caused by multipath delay spread. However, equalization is much more
éomplex in MIMO channel because it must be done over both time and space. The
structure of the code can be used to convert the MIMO equalization problem to a
single input single output problem for which well-established equalizer designs can be
used [75]. Equalizationv function requires an estimate of the channel impulse response
to cancel ISI. A known training sequence is sent in order for the receiver to reliably
estimate the channel. Zero forcing (ZF) and minimum mean square error (MMSE)
criteria are the most used criteria for linear equalization. The ZF criterion enables the
equalizer to completely suppress ISI but can lead to noise enhancement. The MMSE
criterion provides a better balance between ISI mitigation and noise enhancement but

does not lead to a closed form expression for the BER. While under the ZF criterion

the BER can be expressed with Q-function [33].

23



2.2.2 Space-time Coding

Space-time coding (STC) is a coding technique designed for wireless systems that
employ multiple transmit antennas and single or multiple receive antennas. STC
elegantly combines temporal and spatial correlation into the transmitted symbols in an
effective way to approach the promised capacity of MIMO channels. STC also realizes
diversity and coding gain without increasing the total transmitted power or
transmission bandwidth. Space-time trellis codes (STTC) and space-time block codes
(STBC) are the two prevailing STC techniques.

STTC is an extension of conventional trellis codes that have been primary applied
to MIMO systems. STTC combine modulation and trellis coding to achieve full
diversity and offer substantial coding gain on flat fading MIMO channels [12]-[14].
However, these gains are obtained at the cost of increased decoding complexity [15].
Fig. 2.2 shows a block diagram of STTC scheme with N, transmit and N, receive
antennas. The space-time trellis encoder maps the source binary data into N, streams of

modulation symbols that are simultaneously transmitted using N, transmit antennas.

“Soures |

Figure 2.2: Block diagram of space-time trellis codes scheme.

24



The received signal at each receive antenna is a linear superposition of the N,
transmitted symbols perturbed by noise.

STBC are an alternative technique that can also extract diversity gain with low
decoding complexity. Originally proposed by the Alamouti scheme, which yields the
same diversity advantage as MRC scheme with linear receiver complexity. Fig. 2.3

shows a block diagram of STBC scheme with two transmit and one receive antenna.

Combining
Scheme

Data
ML e )yt

IPZ 1 S— ¢
in_ - d
oy,

Channel
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Figure 2.3: Block diagram of space-time block codes scheme.

This scheme was generalized to STBC that achieve full diversity order with an
arbitrary number of transmit antennas in [17], [18]. However, while these codes
achieve full diversity order, they do not provide coding gain and thus have inferior

performance to STTC, which achieve both full diversity and coding gains.

Most space-time codes are designed for known flat fading channels however;
successful implementation of STC over frequency selective channels requires the
development of practical and high performance signal processing algorithms for
channel estimation. This task is challenging due to the long delay spread of frequency

selective channels, which increases the number of channel parameters to be estimated.
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2.3 Estimation Theory

Estimation is the process of extracting information from data, which can be used to
infer the desired information and may contain errors. The development of data proc-
essing methods for dealing with random variables can be traced back to Gauss who
invented the technique of deterministic least-squares (LS). LS error techniques were
also devised independently by Legendre as a method for estimating parameters from
noisy measurements. The next significant contribution to the broad subject of
estimation theory occurred when Fisher introduced the approach of maximum
likelihood estimation. Wiener set forth a procedure for the frequency domain design of
statistical optimal filters. Kalman and others advanced optimal recursive filter
techniques based on time domain formulations. This approach, now known aé Kalman
filter, is in essence a recursive solution to Gauss original LS problem [76].

Estimation problems can be roughly stated as the approximation of an unknown
quantity from a combination of known quantities. An optimal estimator is a
computational algorithm that processes data to deduce a minimum error estimate of
information produced at another source by utilizing knowledge of the source and
assumed statistics of the system noise. A performance criterion that measures the
quality of the estimation and leads to practical implementations is the mean square
error (MSE). Often this criterion results in optimum or near optimum performance
compared to other measures of performance. In the case of estimating a signal‘
received in white Gaussian noise, minimization of the MSE is equivalent to maximum

likelihood estimation.
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2.3.1 Likelihood Decision

For a signal transmitted over an AWGN channel, the Bayes’ theorem allows us to
expresses the a posteriori probability (APP) in terms of a continuous-valued random
variable x in the following form:

p(x|d=m)P(d =m)
p(x)

P(d=m|x)= m=1,..,M 2.5)

and

p(x)=) p(x|d =m)P(d =m) (2.6)

=l
where p(x|d = m) indicates the probability density function (pdf) of a received con-
tinuous-valued data-plus-noise signal, x, conditioned on the signal d = m, and d = m
represents data d belonging to the mth signal class from a set of M classes. The a priori
probability P(d = m), is the probability of occurrence of the mth signal. The random
variable x represents the observed signal at the output of a demodulator or some other
signal processor. The pdf of the received signal x, denoted by p(x), is obtained by
averaging over all the classes in the space. The computation of the APP, P(d = m|x), is
based on the observation of the received signal, and requires the knowledge of a priori
probability P(d = m) and the conditional pdf p(x|d = m), or some statistical knowledge
of the signal classes to which the signal may belong. The calculation of the APP can
be thought of as a “refinement” of our prior knowledge about the data.

Consider the transmission of binary signal over an AWGN channel. The transmit-

ted data bit is indicated by the variable d, which takes on values +1 or —1 that corre-
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spondence to the binary elements 1 or 0, respectively. The conditional pdfs also
known as likelihood functions are illustrated in Fig. 2.4. The functions p(x|d =+1) and
p(x|d = —1) are used to represent the pdf of the random variable x given that d = +1
and d = -1 were transmitted, respectively. In Fig. 2.4, one such arbitrary value x, is
shown where the index denotes an observation in the kth time interval. A well-known
hard-decision rule, known as maximum likelihood (ML), is to choose the data

d, =+lor d, =-1associated with the larger of the two intercept values ¢, or /,,
respectively. For each data bit at time £, this is tantamount to deciding that d, = +1 if
x, falls on the right side of the decision line labeled y,, otherwise deciding that
d, =-1[58].

Likelihood of d = -1 _ Likelihood of d = +1
pxld=-1 plxld = +1)

Figure 2.4: Likelihood functions.

A similar decision rule, which takes into account the a priori probability of the
data, is called the maximum a posteriori (MAP). It can be shown that this rule

minimizes the probability of error. Labeling the two possible choices as Hj and H,;

when a 0 is sent we call it H, when a 1 is sent we call it H,, The general expression
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for the MAP rule in terms of APPs is

H,
pd=+1]x)2 p(d=-1]x) 2.7)

HO
The decision rule indicates that one should choose the hypothesis H,, if P(d =+1]x)
exceeds P(d =-l|x). Otherwise, one should choose hypothesisH,. We can be

replace the APPs in (2.7) by their equivalent expressions using the Bayes’ theorem of
(2.5), yielding
H,
p(x|d=+)P(d=+1)2 p(x|d =-1)P(d =-1) (2.8)
. Hy
where the pdf p(x) appearing on both sides of the inequality in (2.5) has been canceled.
The principle advantage of LS algorithms compared to MAP and ML estimation
techniques, is that they require little information on the statistics of the data, and are
usually simple to implement. MAP estimation, on the other hand, requires both the a
priori probability pdf and a posteriori pdf of the random variable to be estimated. ML
estimation assumes that the a priori pdf is unavailable. However, as a result of the

relaxed statistical description required for the LS methods, these methods do not

always provide the best performance [77].

2.3.2 Discrete Model of a Continuous-Time System

Digital data transmission involves the transmission of an information sequence
consisting of discrete symbols through a bandpass channel. The channel used in this

thesis is characterized in general as a quasi-static channel. Thus, the channel can be
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considered as being essentially time invariant over a large number of signaling
intervals. A mathematical model used to represent the digital communication system is
depicted in Fig. 2.5. Digital signal a is transmitted over a fading multipath channel h
with L different paths. The channel is characterized as frequency selective case with
maximum channel length of L, after which the signal has a memory of L symbols. Flat

fading channel corresponds to L equal to zero case.

NOISE

n

MULTIPATH i
SIGNAL RECEIVER
SOURCE a—pw CHA;INEL FILTER

¥

Figure 2.5: Model of digital communication system.

At the output of the channel noise n is added, which is assumed to be AWGN with
zero mean and variance o, . At the receiver, the output of a filter matched to the
received signal is sampled every signaling interval then passed through a detection
algorithm to detect the transmitted bits a from the received signal y. Besides the

received signal the detector needs also the channel estimates h, which is provided by
a specific channel estimator device. Since the transmitter and receiver operate with
discrete time symbols, it is reasonable to develop an equivalent discrete-time model of

the communication system. The cascade of the transmitter filter, the channel, the
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receiver filter, and the sampler can then be represented as a discrete-time transversal

filter having L tap coefficients spaced at the sampling interval [77].

The receiver uses a known training sequence to estimate the L unknown channel
coefficients. In practice, these channel coefficients are continuous in terms of
amplitude characteristics as a function of discrete-time. To obtain a model suitable for
the utilization of the MAP based channel estimation technique, it is convenient to use
a sampling representation. Also, envisioning a digital implementation of the receiver
algorithms, a discrete amplitude model is necessary for the channel coefficients, such

that each coefficient takes one of M values, equally spaced around zero.

There are several quantization methods designed to quantize signals depending on
the characteristics of the signals source [22]. Amplitude quantizing is the task of
mapping samples of a continuous amplitude waveform to a finite set of amplitudes. A
typical uniform quantization operation that exhibits equally spaced quantized output

levels of a sampled waveform is shown in Fig. 2.6.
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Figure 2.6: Uniform quantizer.

31



The quantizer allocates M levels to the task of approximating the continuous range
of inputs with a finite set of outputs. The spacing between levels and the overall range
of amplitude variation of the signal are denoted by Q and R, respectively. Each sample
of the signal is assigned to the quantization level closest to the value of the sample.
The process replaces the true signal with an approximation; the approximation will
result in an error no larger than Q/2 or —Q/2 in either direction. Quantization of the
amplitudes of the signal results in some distortion of the waveform. This distortion is
referred to as quantization noise, which is inversely proportional to the number of
levels used in quantization process.

If we assume that the quantization error is uniformly distributed over é single
quantile interval Q-wide. The quantizer variance that represents the quaritizer noise or

error power for the zero mean error is found to be [58]

2
o= 0 2.9

It is intuitively satisfying to see that the quantization noise degrades as a function of
the quantile interval (Q is less than one) squared. A typical quantile interval of 0.2 and
0.1 will result in quantization noise of 3.3 x 10 and 8.3 x 107, respectivély. The
performance quality, on the basis of discrete channel coefficients estimation, will have
no significance degradation when adding the negligible quantization error to the MSE
arising from our channel estimation technique. In addition, one should expect that the
channel estimation methods dealing with continuous valued coefficients have to be
implemented in one quantized form or another, thus suffering from the same

quantization error.
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2.3.3 Channel Estimation

Channel estimation is an important part of a communications system. Channel
estimates are required by detection algorithms such as maximum likelihood sequence
estimation (MLSE) or MAP estimation. Channel estimates are also needed by
equalizers that minimize the BER to ensure successful removal of ISI and can be used
to compute the coefficients of lower complexity equalizers such as ZF or MMSE
equalizers [57]. To estimate the unknown channel, a channel estimator is connected in
parallel with the detection algorithm, as shown in Fig. 2.5. The channel estimator is a
replica of the equivalent discrete-time channel filter discussed in the previous Section.
Usually a training sequence of known bits is sent and repeated in every transmission
burst for the purpose of channel estimation. The channel estimator is able to reliably
estimate the channel for each burst separately by exploiting the known symbols and
the corresponding received samples [22].

STC schemes run open loop that makes them very attractive for MIMO wireless
transmission. Nevertheless, CSI is still required at the receiver to perform key receiver
functions as decoding and equalization. Since our focus in this work is on quasi-static
channels, we consider STC processing, where CSI is estimated at the receiver using a
training sequence embedded in each transmission block. If the channel has delay,
more channel parameters have to be estimated. Additional challenge in channel
estimation for multiple transmit antenna systems are the increased number of channel
parameters (proportional to N,) to be estimated at reduced transmit power (by a factor

N;) for each transmit antenna [6].
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The problem of channel estimation for flat fading space-time channels was first
considered in [31] using orthogonal pilot symbols. A channel estimation algorithm
was proposed that used only observations associated with pilot symbols, however such
technique did not lead to efficient estimation. Channel estimation for frequency
selective space-time channels has been often done using interpolation techniques.
Usually the receiver estimates the channel at discrete points adequately spaced in time
or frequency, then the full channel is determined through interpolation. There are a
few different approaches to channel estimation such as LS or MMSE methods.

Consider a MIMO system utilizing STC transmission over quasi-static channel
with two transmit and one receive antennas that is only corrupted by additivé noise.
Fig. 2.7 illustrates the system model for training based MIMO channel estimation
methods. Training symbols are transmitted from each transmit antenna simultaneously
in blocks of length M, symbols. The channel between each transmit and receive

antenna pair is modeled as frequency selective with channel length of L.
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Figure 2.7: System model for a training based MIMO channel estimation.
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Two known training sequences a, and a, are transmitted simultaneously from the
first and second antennas over two channels h, = [h1 © - h (L—l)]T fori=1, 2,
where ()7 stands for transpose. An AWGN noise n with zero mean and variance
o’ / 2 per dimension is added to the sum of the two signals to form the received signal

y. The receiver uses the training sequences to estimate the 2L unknown channel
coefficients, which are assumed to remain constant over the transmission block. The

vector of observation for the received signal y can be written in matrix form as

y=Ah+n=[A, Az][zl}rn (2.10)

2
where y=[y(L) - yp(M)]" and n=[n(L) - n(M,))]" each with dimension
(M,-L+1)x1. Ajand A; are an (M, — L + 1) x L Toeplitz matrices consisting of the
training symbols,

a(L-1) - a;(0)

a(Lly - a(l)

i

, =12 2.11)
a(M,=1) - a(M,~L)

The LS estimate of the channel is found by minimizing the following quantity

A

h= arg(mhin"y — Ah|? ) (2.12)

For white Gaussian noise the solution is given by

~

h,=(A"A)"A%y=h+(A”A)"A"n (2.13)
where ( )" and ()™' denote the Hermitian and inverse matrices, respectively. For the

channel impulse response to be identifiable, the auto-correlation matrix (A”A) in
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(2.13) has to be invertible. Thus, the training sequence matrix A has to be of full
column rank, such condition is satisfied if (M, — L +1)>2L [6], [67], [77].

The computational complexity of the LS estimation depends on the number of
transmit antennas and the number of channel coefficients being estimated. To achieve
acceptable BER performance, more training symbols are required as the number of
transmit antennas increases. A longer training sequence matrix results in a more
complex matrix inversion. The computational complexity of finding the inverse of an
M, x L training sequence matrix is O(M>L+ L*M, +min(M,, L))[57], [75].

An alternative to LS estimation that yields comparable performance is the MMSE
channel estimation. The optimal MMSE estimate of h based on the received signal
vector y and transmitted training sequence matrix A is the conditional mean, which is
equivalent to the MAP estimate of h. The MAP estimate of h is found to be

b, =(A"R;' A+R;')'A"R]'y (2.14)
where R, and Ry, are the noise covariance matrix and channel covariance matrix,
respectively. Applying the matrix inversion lemma, (2.14) can be expressed as

b, =R, A7(AR, A" +R, )y (2.15)
The total computational cost to find the MAP estimate consists of QL*M,+L M 2+ LM,
+M?) multiplications, (2L*M; + L M?+ LM, + 2 M?) additions, and O(M) operations
for the inversion of an M, x M, training sequence matrix, which is highly undesirable

for practical implementation. Furthermore, such large computational complexity is

unsuitable and may be prohibitive in most channels of practical interest [44], [67].
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Chapter 3

Performance Comparison between Receive

and Transmit Diversity Schemes with

Imperfect Multipath Channel Estimation

3.1 Introduction

The simple transmit diversity (STD) scheme utilizing space-time coding (STC)
proposed in [16] is now applied in Multiple-Input Multiple-Output (MIMO)
communication systems. STD scheme was shown to have the same error performance
in non-time-selective channels as maximal ratio combining (MRC) when perfect
channel knowledge is available at the receiver [78]. In practice, it is impossible to
achieve the perfect channel estimation at the receiver. Hence, an analysis and

comparison are presented into the bit error rate (BER) degradations of the STD and
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MRC schemes due to imperfect multipath channel estimation at the receiver.

A theoretical approach investigating the BER performance of STD and MRC
schemes with perfect and imperfect channel estimation was proposed in [79].
Numerical results showed that the STD scheme has the same BER as the MRC
scheme with perfect or imperfect channel evaluation in Gaussian channel.
Performance analysis in [80] illustrated that the BER degradation for the STD scheme
can be significantly worse than that for an MRC scheme in Rayleigh fading channel
and that STD suffers a 3 dB degradation relative to MRC when the channel estimation
error is dominant. The performance of the STD scheme with channel estimation error
out performs no diversity (ND) system with perfect channel estimation regardless of

modulation technique or channel model [81].

BER expressions that are directly dependent on the mean square error of the
channel estimator were derived for the STD scheme in [82]. Simulation results showed
that the gap in performance caused by the error of the imperfect channel evaluation is
within 1 dB compared to the case of perfect channel estimation for the STD scheme
over nonselective Rayleigh fading channel. The sensitivity of the STD scheme to
channel estimation errors was investigated in [83] to determine the effects on
performance as the levels of the channel error and multipath components are varied. A
performance comparison of the STD and MRC schemes in multipath channel that
leads to frequency selective fading causing intersymbol interference (ISI) in the

received signal has not been studied.

An analytical approach is proposed to obtain a closed form expression for the BER
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in each scheme based on the derived SNR value at the output of the equalizer that is
employed to compensate for the ISI in the received signal. Performance curves are
obtained to analyze the impact of channel estimation errors and multipath components
under the assumption that transmit branches are independent with the same number of
multipath components. Results show that the degradation in the STD scheme is almost
8 dB compared to the MRC scheme to achieve a BER of 10 with 5% channel

estimation error.

In this analysis, it is assumed that the channels are independent, remain stationary,
and the noise is following Gaussian distribution. Thus, the channel multipath
coefficients change so slowly for the channel estimation technique to converge with
small estimation errors, which are a percentage of the actual values of the channel

coefficients. The obtained BER is the probability of error in Gaussian channels, where

each channel coefficient denoted by «, has scalar quantity. For a Rayleigh fading
channel, o, has a Rayleigh distribution, the obtained BER in Gaussian channel can be
viewed as a conditional error probability, where the condition is that ¢, are fixed.
Averaging the Gaussian BER over the Rayleigh distributed of &, for all i, yields the

probability of error for Rayleigh fading channel. However, in later case it will be
difficult to obtain a closed form expression to evaluate the exact BER for a Rayleigh
fading channel. To compute the Rayleigh BER expression, which will include multiple
integrations (one integration for each channel coefficient) numerical integration

methods can be employed.
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3.2 No Diversity System

Figure 3.1 shows the baseband representation of a typical no diversity system with

one transmit and one receive antennas. At a given time, a signal s, is sent from the
transmitter. For binary phase-shift keying (BPSK) modulation s, is real and hence

s; =s;, where * is the complex conjugate operation. The transmitted signal is

1

assumed either +1 or —1.

S

Tx antennav

ho

Y

Rx antennav

Interference

A‘& noise
N

v

Channel
Estimator

Mazimum Likelthood Detector

sul

Figure 3.1: System configuration of a classical no diversity scheme.
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The multipath channel including the effects of the transmit chain, the propagation

channel, and the receive chain is denoted by #,. The received signal at time ¢ denoted

by r, is given by

¥y = hysy + 1, (3.1)

where 7, is the additive white Gaussian noise (AWGN) with zero mean and variance

o’ . Throughout this analysis, all random variables are complex valued with variance
equal to the sum of variances of its real and imaginary components. The channel
estimator produces an estimate of the multipath channel coefficients denoted by };0.

Based on a linear combination of the received signal, the receiver forms the following

decision statistic

5, =hyr, (3.2)
Substituting (3.1) in (3.2), we obtain
5, = hohys, + hon, (3.3)

In (3.3) the first term is the desired signal, whereas the second term is effectively

interference and thermal noise. Based on s, the maximum likelihood detector selects

an estimate of s, in order to minimize the BER. If the real part of s, Re (s, )is greater

than zero, s, =+1 is chosen; otherwise s, =—1 is chosen, for BPSK modulation [78].

3.2.1 System Model
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The analysis herein deals with channel estimation errors and is not related to Fig.
3.1, which was shown above for just completion purposes. Due to multipath
propagation and time dispersion, the multipath channel is characterized as frequency
selective channel that results in ISI. The channel model considered in this analysis has

an impulse response that can be expressed as

h(t) = ia,. S(t—iT) (3.4)

with a total of (m+1) path components (bins), J(.)is the Dirac delta function, and «,
is a complex valued coefficient with zero mean. The sum of all variances of different
o, 1s normalized to one [57]. Equalization mitigates the ISI created by multipath
within the dispersive channel. A linear transversal filter that matches the estimated
channel is often used for equalization. Following the estimation of the channel
coefficients at the receiver, the equalizer is accordingly adjusted. The baseband

impulse response of an equalizer with (n+1) taps is given by

0= p, 8¢~ 1) (3.5)

The required length of the filter (number of tap weights) is a function of how much
smearing the channel introduces. For an equalizer with finite length, it is possible to
select the tap weights to minimize the ISI. One can use a zero forcing equalizer; the

coefficients B, (resulting from the process of channel estimation) are chosen to force

the samples of the combined channel and equalizer impulse response to zero at all but
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one of the spaced sample points in the tapped delay filter [58].

Without loss of generality, we consider the first term in (3.3), the corresponding

equalizer output denoted by §,(¢), 1s found by convolution as follows:

5,(6) =5, ®h(t)® " () = iiso a, B, 64 —iT - jT) (3.6)

i=0 j=0

where n>m, and ® denotes the convolution operation. The equalizer output at the

kth sampling interval can be expressed in the form

S,(k)=s,0t0 By » k=0
m 3.7
S )= D soa; B, k=i+j=12..,m+n 3.7)
i=0 j=0

The desired output of the equalizer corresponds to the & = 0 term while, the other

terms corresponds to ISI. An equalizer of sufficient length will use (3.7) to solve

simultaneously for the set of (n+1) complex weights S;. Such that the second term in

(3.7) is eliminated for all £ [83].

3.2.2 BER Analysis

Due to imperfect channel estimation, the equalizer coefficients can be expressed as

A~

B, =8, +¢; (3.9
where &; represents the channel estimation error. The estimation error in each channel

coefficient value is modeled as an independent Gaussian random variable with zero
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mean and variance o, which is equal to the mean square error (MSE) of the channel

coefficients estimation process (o= MSE). Replacing , in (3.7) by ,Bj from (3.8)

and as result of the zero forcing equalizer, we have

S0 = 8,0 ﬂ(;

7k=izn:soa,.£;, k=i+j=012,.,m+n

i=0 j=0

(3.9)

The second term in (3.9) denoted by y, is a sum of extra AWGN noise due to

channel estimation errors and their reflections on the signal following the equalizer.

Since ¢, is independent of «; and the variance-summed terms of (3.9) are independ-

ent. Thus, the sum of the mean square values of y, for all values of £, is given by
S el )=l (e )(Elo ]+ Eloz -+ Elo]) o (3.10)
k=0

Imposing the normalizing condition D_E [af]: 1 obtains
i=0

n+m

> Ely]=ls,[ (n+1)o? 3.11)

k=0
Therefore the intended data symbol term §, has a signal term of peak equal to s, and

noise term due to the channel estimation error of variance given in (3.11), because

Ely,1=0 forall £ [83].

The second term fzo n, in (3.3) is basically AWGN with zero mean and variance
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o . Thus, the total noise variance of 5, in (3.3), is given as

ol =|s,| (n+Do? +0? 3.12)

For BPSK signals |s0|2 =|s,[2 =E_, where E_ is the energy of the signal, (3.12)

becomes
o; =E,(n+)o; +0, (3.13)
The mean of 5, in (3.3) is given by
E[5,]=]s | (3.14)

The required SNR at the output of the equalizer due to 5, can be written as

2
SNR;, = ! (3.15)
1+(n+1)(ES2JO'§
g

n

It is interesting to see that in (3.15) with perfect channel estimation (o> =0), we
obtain SNR; =E| / o as it should be. The BER of the ND scheme is Q(1 /2SNR30 ) for

BPSK modulation [22].

3.3 MRC System Performance

Figure 2.2 shows the baseband representation of the classical two-branch MRC

scheme with one transmit and two receiving antennas.
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Figure 3.2: System configuration of two branch maximal ratio combining scheme.

Even though two-branch MRC scheme is discussed, the analysis herein can be
easily generalized to any arbitrary number of receiving antennas. At a given time, a
signals, is sent from the transmitter. The multipath channel coefficients between
transmit antenna and receive antennas zero and one that are denoted by 4, and

respectively. The corresponding received signals at receive antennas zero and one are

given as
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Yy = hySy + 1y (3.16)
n=nhs,+n '

where n; (i = 0,1) is the AWGN in the ith channel branch with zero mean and variance

o’ . The channel estimators produce an estimate of the multipath channels, which are

denoted by fzo and ftl . The receiver-combining scheme for two-branch MRC is

5, =hin,+h'n (3.17)

Substituting the received signals given in (3.16) into (3.17), we obtain

~ ~

5 =(flgh0+};;h,)(so)+h;n0+h;nl (3.18)

In (3.18) the first two terms describe the combined desired signals from the two
receive antennas, whereas the remaining terms are effectively interference and thermal

noise. For BPSK modulation, if the real part of s;, Re(s,) is greater than zero, s; = +1

is chosen; otherwise s, = —1 is chosen by the maximum likelihood detector in order to

minimize BER [79].

3.3.1 Channel Characteristics

The analysis herein deals with channel estimation errors and is not related to Fig.
3.2, which was shown above for just completion purposes. Due to multipath
propagation and time dispersion, the channel between transmit and each receive
antenna pair is characterized as frequency selective channel that results in ISI. The

receiving antennas must be separated far enough to ensure independently fading
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channels from transmit to each receive antenna. The delay spread per transmit and
receive antenna pair is assumed to be the same for all channels [84]. The channel

model has an impulse response that can be expressed as
h(D)=Y a,6(-iT), = k=0, (3.19)
i=0

Each of the kth channel branch has a total of (m+1) path components (bins), 5(.)1s the
Dirac delta function, and «; is a complex valued coefficient with zero mean. The sum
of all variances of different ; is normalized to one [57]. The index k is dropped from

the channel model given above, since all channels are assumed to have the same

statistical characteristics, i.e. A(f) = () for k = 0,1.

Following the estimation of the channel coefficients at the receivers, the equalizers
are accordingly adjusted. Recall we have few channel estimators not just one as in Fig.
3.2, but occasionally we mention only one for clarity purposes. The equalization
process in this case will be similar to that derived for the ND case. This is justified by
the fact that each of the two channels has the same mathematical formulation as the
channel model for the ND system. The equalizer output samples will consist of a

signal term and noise term due to the channel estimation error [58].

3.3.2 SNR Evaluation of MRC Scheme

A close look at (3.18) shows that each of the terms /.k, and /4 k, is similar to the

first term given in (3.3). Therefore, the combined noise variance for these two terms in
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(3.18) can be easily obtained as
o2 =2|s,[ (n+1)o? (3.20)
The last two terms ﬁo n,and lfAzl’"n1 in (3.18) are just AWGN each with zero mean and
variance . Consequently, the total noise variance of 5, in (3.18), is given as
ol =2|s,[ (n+Do?+20? (3.21)
The mean of 5, in (3.18) is given by
E[s5,]=2|s,| (3.22)

For BPSK signals |s0|2 = |s1|2 =E_, where E_ is the energy of the signal. The required

SNR at the output of the equalizer due tos, in (3.18) can be written as

SNR; = L

1+(n+1)(E;Jaj
(e}

n

(3.23)

We notice that in (3.23) with perfect channel estimation (o’ =0), we obtain

SNR, =2E, / o, which is twice that of ND case. The BER for the MRC scheme is

O(/ZSNR; ), where SNR is given in (3.23) for BPSK modulation [22].
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3.4 STD System Analysis

Figure 3.3 shows the baseband representation of the STD scheme with two
transmit and one receive antennas. A typical STD system is discussed even though the
analysis herein is applicable to an arbitrary number of receive antennas. As in [16],
two signals are simultaneously transmitted from two transmit antennas during two

consecutive symbol intervals. In the first symbol period at time ¢, signals s, and s,
are transmitted from antennas zero and one, respectively. In the next symbol period at
time ¢+7, signals (— s, ) and s, are transmitted from antennas zero and one
respectively, where 7T is the duration of a symbol.

The multipath channel coefficients at time ¢ between transmit anteﬁnas zero and
one to the receive antenna are denoted by 4,(¢r) and A, (¢), respectively. Assuming

that the channels remain stationary across at least two consecutive symbols, thus
multipath channel coefficients change slowly and look like constants to be estimated

(details for such estimators will be presented in Chapters 5 and 6). Then, we can write
h(D=h(@+T)=h, i=0,1 - (3.24)

The received signals at time # and time 7 + T can be expressed as

¥y = hyS, + s, +n, (3.25)
ho==hyS +hsy+n

where »; (i = 0,1) is the AWGN in the ith channel branch with zero mean and variance

2
ne

o
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Figure 3.3: System configuration of a simple transmit diversity scheme with one
receiving antenna.

As shown in Fig. 3.3, the combiner receives the estimates of the multipath channel
coefficients from the channel estimator denoted by ﬁi(i =0,1). The combiner builds

the following two decision statistics

(3.26)
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Substituting (3.25) 1n (3.26), we get

A A~

5, =y + i V(5o )+ U = 2ol )(s, )+ g + oy (3.27)

~ A A A A~ A~

5, = oty + B (s, )+ ey — Bl J(so )+ oty — o (3.28)

In (3.27) and (3.28) the first two terms describe the combined desired signals, whereas
the remaining terms are effectively interference and thermal noise. For BPSK

modulation, the maximum likelihood detector computes Re(5,), if it is greater than

zero, §; = +1 1s chosen; otherwise s, = —1 1s chosen to minimize BER [80].

3.4.1 Impact of Channel Estimation Error

The analysis herein deals with channel estimation errors and is not related to Fig.
3.3, which was shown above for just completion purposes. Due to multipath
propagation and time dispersion, the channel between each transmit and receive
antenna pair is characterized as frequency selective channel that results in ISI. The
transmit antennas must be separated far enough to ensure independently fading
channels from each transmit antenna to receive antenna. The delay spread per transmit
and receive antenna pair is assumed to be the same for all channels. If the transmit
antennas are physically co-located at the same station, then this assumption is justified
by the fact that the number of multipath components with different delays is dictated
by large structures and reflections [85]. The channel model has an impulse response

that was given in (3.19).
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Since all channels are assumed to have the same statistical characteristics, the
impact of the imperfect channel estimation on the equalization process will be similar
to that outlined in the MRC case. Thus, the equalizer output samples will again consist
of signal terms and noise terms. Without loss of generality, we consider thé first two
terms in (3.27), which are similar to the first two terms in (3.18). Therefore, their

combined noise variance at the equalizer output is given in (3.20). Now for terms like

130 h;s, in (3.27), notice that 120 tries to approximate as much as possible %,. However,

ﬁo has no relation whatsoever to %, . Developing two such terms in (3.27), e.g.,

z=h ®h®s —h®K ®s,

Em:Zslb (a;+Aa)S(t—iT - jT) ZZsla (b, +Ab)S(t—iT — jT) (3.29)

n

f (5,680 8 ~iT - JT) =35> (s,a'Ab) 5(1~iT — JT)

i=0 i=0 j=0
where a;,b; resemble the role of a,, B;, while a,, B, were related as stated before,
a;,b; on the other hand have no relation. In (3.29) equality holds if n = m, Aa;, A},

are all independent noise terms due to imperfect channel estimation. Clearly F [z]= 0,

and each term of (3.29) is similar to y, in (3.9), so the variance due to imperfect
channel estimation is given as

o2 22| (n+1)o? (3.30)

The remaining two terms in (3.27), 4, and An; are basically AWGN each with

zero mean and variance o.. For PSK signals (equal energy constellations),
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Iso|” =|s,| . the total noise variance of 5, in (3.27) is obtained as
o 2 45| (n+)o? +202 (3.31)
The equality holds if » = m. The mean of 5, in (3.27) is given by

E[5,]=2]s)| (3.32)

3.4.2 BER Derivation for STD System

The required SNR at the output of the equalizer due tos; can be written as

2 |s0

2ls [ (r+D)o? + 07

|2
SNR

So

(3.33)

By symmetry the SNR at the output of the equalizer for the symbol &, in (3.28) is

2 Isl

S 2|s1|2(n+1)0'f +O'f

|2

(3.34)

In (3.33) and (3.34) equality holds if # = m. In the STD scheme being considered, two
symbols are simultaneously transmitted. By symmetry, the performances for both

transmit symbols are the same, so we need only consider the BER for the symbol s, .

Assuming the average symbol energy as E and with #» = m, then the output SNR is

E
(2
SNR, = z

1+2(n+1) E ]of
g

(3.35)

x NI%
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It is interesting to see that in (3.35) with perfect channel estimation (o> =0), we
obtain SNR, = 2E / o> which is the equivalent MRC conclusion in (3.23). The BER

for the STD scheme is Q(\2SNR, ) for BPSK modulation [22].

In this work, the BER performance for each diversity scheme is evaluated, if the
channels are independent, remain stationary, and the noise is following Gaussian
distribution. To compute the probability of error for a Rayleigh fading channel, the
obtained BER for either MRC or STD schemes is viewed as a conditional error

probability, where the condition is that ¢, are fixed. Averaging over the Rayleigh

distributed ¢, , yields the probability of error for Rayleigh fading channel [57].

3.5 Numerical Results and Discussions

For presentation of the numerical results, two parameters are considered in our

investigation. The number of channel multipath components (n) and the channel

estimation error (. = MSE). The BER performance curves are computed for the ND,

the STD, and the MRC schemes at a certain value of » with various values of MSE.
Fig. 3.4 shows the BER performance comparison with both » and MSE set equal to
zero, which represents the case of a single path to be estimated between each pair of
transmit and receive antennas and perfect channel estimation. In this case, both the '

STD and MRC systems outperform the ND system.
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Figure 3.4: The BER performance comparison of the ND scheme with MRC and STD
schemes at zero estimation error and n = 0.
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For n = 0, Fig. 3.5 and Fig. 3.6 compare the BER curves for the three schemes
with MSE of 5% and 10%, respectively. As the estimation error is increased, the MRC
scheme outperforms the STD scheme for SNR values above 2 dB. However, both
MRC and STD systems perform better than the ND case. For comparison pﬁrpose and
at a target BER of 10™, there is a one dB SNR loss in STD scheme relative to MRC
scheme with 5% MSE as shown in Fig. 3.5. However, at the same target BER, the
SNR loss increases to about 4 dB in STD compared to MRC with 10% MSE as shown

in Fig. 3.6.

The BER performance comparison for the different schemes versus the SNR are
illustrated in Fig. 3.7 and Fig. 3.8 at estimation error of 5% and 10% respectively, with
n set equal to 2. Note that the BER curves for the case of perfect channel estimation
(MSE equal to zero) are those shown in Fig. 3.4 regardless of the value of n. By
increasing the value of n, the performance of the STD scheme becomes worse than
that of the MRC scheme for all values of SNR. The degradation in STD scheme is
almost 8 dB relative to MRC scheme at an estimation error of 5% to achieve a BER of
10 as seen in Fig. 3.7. In Fig. 3.8, it is found that the deterioration in the performance
of the STD scheme increases rapidly as SNR increases, such that the BER curve of the

STD scheme approaches that of the ND system.
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Figure 3.5: The BER performance comparison of the ND scheme with MRC and STD
schemes at 5% estimation error and n = 0.
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Figure 3.6: The BER performance comparison of the ND scheme with MRC and STD
schemes at 10% estimation error and n = 0.
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Figure 3.7: The BER performance comparison of the ND scheme with MRC and STD
schemes at 5% estimation error and n = 2.
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Figure 3.8: The BER performance comparison of the ND scheme with MRC and STD
schemes at 10% estimation error and n = 2.
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For n = 4, The BER performance curves of the three schemes are shown in Fig. 3.9
and Fig. 3.10 with channel estimation error of 5% and 10%, respectively. The STD
scheme exhibits the same degradation behavior in performance compared to the
performance of the MRC scheme. At 5% estimation error the loss in SNR of the STD
performance exceeds 8 dB relative fo that of the MRC scheme to achieve a BER of
only 3x107. Amazingly, the deterioration in the STD performance outweighs the
benefits achieved over the ND case when the SNR exceeds 10 dB with 10%
estimation error. In addition, there is an irreducible error floor in the STD performance

when SNR is above 10 dB.
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Figure 3.9: The BER performance comparison of the ND scheme with MRC and STD
schemes at 5% estimation error and n = 4.
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Figure 3.10: The BER performance comparison of the ND scheme with MRC and
STD schemes at 10% estimation error and n = 4.
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3.6 Conclusions

An analysis and comparison of the error performance of the STD and MRC
diversity schemes as well as the ND scheme under estimation inaccuracies of
multipath channels were presented. A theoretical approach was proposed to obtain the
SNR at the output of the equalizer employed to compensate for the ISI in the received
signals for the three schemes. The derived expressions showed that the SNR is

inversely proportional to two parameters, the number of channel multipath

components (#) and the multipath channel estimation error (o> = MSE).

To analyze the impact of various estimation errors, the BER performance curves
for the three schemes were plotted, if channels are independent and exhibit the same
statistical characteristics. Performance cufves showed that the STD scheme is
significantly more susceptible to errors than the MRC scheme. To achieve a BER of
10, the degradation in the STD is almost 8 dB compared to MRC with estimation
error of 5% at n = 2. The deterioration in the STD performance increases rapidly

relative to the MRC performance with # = 4 and 5% estimation error.

At an estimation error of 10%, there is an irreducible error floor exhibited in the
BER performance curve of the STD scheme, such that the deterioration in its
performance outweighs the benefits achieved over the ND scheme. Thus, the practical
implementation of the STD system should be carefully considered in channels with
large number of channel multipath components and channel estimation error

exceeding 5% at the receiver.
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Chapter 4

Effects of Multipath Channel Estimation

Error on Space-Time Coding Performance

4.1 Introduction

In this chapter, the effect of imperfect channel estimation on the bit error rate
(BER) of Multiple-Input Multiple-Output (MIMO) communication system utilizing
Space-time coding (STC) is investigated. A simple transmit diversity (STD) scheme
using two transmit and multiple receive antennas was first proposed in [16]. It was
shown to yield the same diversity order as a maximal ratio combining (MRC) scheme

under the assumption that perfect channel estimation is available at the receiver.

In reality, reducing the channel estimation error entails a multitude of techniques.
Many of those would require complex processing and a large number of iterations to

reduce the channel estimation error. This may become prohibitive for real time
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applications such as voice and video in fast fading situations. Effects of channel
estimation errors on the BER were first discussed in [32]. In the simulation, quadrature
phase-shift modulation (QPSK) modulation on slow Rayleigh fading channels with

two transmit and two receive antennas were employed.

It is assumed that the channel can be described by a slow Rayleigh fading model
with constant coefficients over a frame of 130 symbols. The simulation results showed
that the STC performance degraded by at most 1 dB compared to the case of ideal
channel state information. However, as the numbers of transmit antennas increases,
the sensitivity of the system to channel estimation error increases [32]. An analysis
and comparison of the performance degradations of the STD scheme and MRC
receiver due to errors in estimating the channel parameters were presented in [78].
Performance curves showed that the STD scheme is significantly more susceptible to

errors in the channel estimates than that of an MRC receiver.

It was found that an STD system with one receive antenna has a 3 dB performance
degradation compared with MRC when SNR and channel estimation error-to-signal
ratio (ESR) are large [80]. An ESR of —15 dB results in an SNR loss of 7 dB
compared with the perfect channel estimation case at a target BER of 107 [80].
Theoretical analysis of the error performance of STD scheme for Rayleigh and Rician
fading using QPSK was carried out in [81]. The sensitivity of the system to channel
estimation error was investigated by analyzing the effects of reducing the error caused
by noise when estimating the channel. It was found that the deterioration of

performance in STD scheme is about 5 dB due to channel estimation error [81].
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In this analysis, a multipath channel that lead to frequency selective fading is
considered. Frequency selective fading caused by multipath time delay spread causes
intersymbol interference (ISI), which leads to an increased probability of bit error at
the receiver. The receiver employs an equalizer to compensate or reduce the ISI in the
recetved signal [57]. No particular channel estimation technique is discussed herein
and the results apply to any channel estimation technique. Curves for the BER are
obtained based on the derived SNR at the output of the equalizer. Results show that
the degradation of performance in a two transmit and two receive antennas scheme

exceeds 8 dB when the channel estimation error is 5% to achieve a BER of 10™.

4.2 STD Scheme with Two Receivers

A typical STD system with two receive antennas is discussed even though the
analysis herein is applicable to an arbitrary number of receive antennas. As in [16],
two signals are simultaneously transmitted from two transmit antennas during two
consecutive symbol intervals. Fig. 4.1 shows the block diagram of the two-branch
Alamouti scheme [16] with two receivers. The signals transmitted from antennas zero

and one are denoted by s, and s, , respectively. During the next symbol period signals

(— sy ) and s, are transmitted from antennas zero and one respectively, where * is the

complex conjugate operation.
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Figure 4.1: Alamouti two-branch transmit diversity scheme with two receivers.

The multipath channel coefficients between transmit and receive antennas are
denoted by 4; (i = 0,1,2,3), where A, and A, represent the channel at time ¢ between
transmit antennas zero and one to receive antenna zero, respectively. Similarly, 4, and
h, represent the channels to receive antenna one as illustrated in Fig. 4.1. Assuming

that the channels remain stationary across at least two consecutive symbols, thus

69



h,(t)=h(t+T)=h,, where T is the duration of a symbol. Many wireless channels

typically have a coherence time larger than one packet time, which is the time to
transmit a large number of consecutive symbols [57], [58]. Thus multipath channel
coefficients change slowly and look like constants to be estimated. The received
signals at time ¢ and time ¢ + T at receive antenna zero are denoted by r, and r;,
respectively. The received signals at time ¢ and time ¢ + T at receive antenna one are

denoted by r, and r,, respectively. Thus, the received signals can be expressed as:

Yy = hysy + hys, +n,

* *
no=—hys, +hs, +n,

4.1)

vy = hyS, +hy8, +n,

v, ==h,s; +hysy +n,
where »; (1 = 0,1,2,3) is the AWGN 1in the ith channel branch with zero mean and

variance o . Throughout this analysis, all random variables are complex valued with

variance equal to the sum of variances of its real and imaginary components. Note that
for BPSK modulation s, is real and hence s; =s,. The transmitted signal is assumed
either +1 or —1. The combiner [16] receives the estimates of the multipath channel
coefficients from the channel estimator denoted by ﬁi(i =0,1,2,3). Two decision

statistics based on the linear combination of the received signals are formed. The

decision statistics, denoted by 5, and s, are given by

(4.2)
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Substituting (4.1) in (4.2), we get

5, = (o + i + By + bk (s, )+ (e, — By + By — B )(s,) @3)
+ i, + b+ Bn, + byl

(4.4)

In (4.3) and (4.4) the first four terms describe the combined desired signals from the
two receive antennas, whereas the remaining terms are effectively interference and

thermal noise. If the real part of s,, Re(5s;) is greater than zero, s, =+1 is chosen;
otherwise s, = -1 is chosen by the maximum likelihood detector to minimize BER,

for BPSK modulation [79].

4.2.1 Multipath Channel Model and Equalization Filter

The analysis herein deals with channel estimation errors and is not related to Fig.
4.1, which was shown above for just completion purposes. Due to multipath
propagation and time dispersion, the channel between each transmit and receive
antenna pair is characterized as frequency selective channel that results in ISI. The
antennas on both ends are separated far enough to ensure independently fading
channels from each transmit to each receive antenna. The delay spread per transmit
and receive antenna pair is assumed to be the same for all channels. If the transmit
antennas are physically co-located at the same station, then this assumption is justified

by the fact that the number of multipath components with different delays is dictated
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by large structures and reflections [85].

The channel model has an impulse response that can be expressed as
h()=Y o, 6(—iT), k=0,123 (4.5)
i=0 .

Each of the & channels has a total of (m+1) path components (bins), &(.)is the Dirac

delta function, and ¢, is the complex valued coefficient with zero mean. The sum of

all variances of different ¢, is normalized to one [57]. Since all channels are assumed

to have the same statistical characteristics, we consider a channel A(¢) = hx(f) for k =

0,1 to illustrate the equalization process.

Following the estimation of the channel coefficients at the receiver (a process that
should take a small period of time), the equalizers are accordingly adjusted. Equaliza-
tion cancels the ISI created by multipath within the dispersive channels. A linear
transversal filter that matches the estimated channel is often used for equalization. The

baseband impulse response of an equalizer with (#+1) taps is given by

h(t) = Z B, 8t~ jT) (4.6)

The required length of the filter (number of tap weights) is a function of how much
smearing the channel introduces. For an equalizer with finite length it is possible to

select the tap weights to minimize the ISI. One can use a zero forcing equalizer; the

coefficients S, (resulting from the process of channel estimation) are chosen to force

the samples of the combined channel and equalizer impulse response to zero at all but
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one of the spaced sample points in the tapped delay filter [22].

Without loss of generality, we consider one of the first four terms in (4.3), the

corresponding equalizer output denoted by §,(¢), is found by convolution as follow:

5,() =5, ®h)®R ()= ‘Z iso a, B, 8(t—iT - jT) 4.7)

i=0 j=0

where n > m, and ® denotes the convolution operation. Each equalizer output at the

kth sampling interval can be expressed in the form

So(k)=s,a, B » k=0
m n 4-8
§O(k)=22s0 a, ;.’, k=i+j=12,.,m+n 8
i=0 j=0

The desired output of the equalizer corresponds to the £ = 0 term while, the other
terms corresponds to ISI. The ISI terms may be eliminated by a zero forcing equalizer

of sufficient length [22].

Equation (4.8) is used to solve simultaneously the set of (n +1) complex weights
B; such that for k = 0, Re(s,e,f;)=s5, and Im(s,a,f;)=0, which leads to the

following:

Re(a,)Re(B,) +Im(e, ) Im(4,) =1

4.9)
Im(e, ) Re(f,) —Re(a,) Im(5,) =0

Knowing Re(e,) and Im(e,)enables one to compute Re(f,)and Im(/f,) from (4.9).

Similarly, for £ > 1, we have
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Re s, |=0
i=0 j=0

Im[iisoa,ﬂ;]

i=0 j=0

k=i+j=12,.,m+n (4.10)
0

Each equalizer will solve the above real and imaginary equations to find the

components of the complex S, such that the second term in (4.8) is eliminated for all

k.

4.2.2 Impact of Imperfect Channel Estimation

Channel estimation is needed to adjust the tap weights of the equalizer to eliminate
ISI. Due to imperfect channel estimation, the equalizer coefficients can be expressed

as

B, =p,+¢; 4.11)
where ¢; represents the channel estimation error. The estimation error in each channel

coefficient value is modeled as an independent Gaussian random variable with zero

mean and variance o, which is equal to the mean square error (MSE) of the channel

coefficients estimation process (o = MSE).

Replacing S, in (4.8) by ﬁj from (4.11) and as result of the zero forcing

equalizer, which imposes the condition in (4.10), we have
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§o=5,a, B,

ykziisoaig;f, k=i+j=0,1,2,...,m+n

=0 j=0

(4.12)

The first term in (4.12) is the signal term, which is typically s, due to the action of the
equalizer that follows the channel estimation. The second term denoted by y, 1s a sum

of extra AWGN noise due to channel estimation errors and their reflections on the

signal following the equalizer. Note that &, is independent of &, and the variance-

summed terms of (4.12) are independent. Thus, the mean square value of the kth term

of y,, is given by

El2)=|s.f o2Elad]
Elpt)=)s.f o2(Ela21+ Ela?)

£l =l 02l
Noting the independence of all ¢,, the total reflection of the ISI terms of one data

symbol on neighboring data symbols or vice versa, the ISI encountered by the symbol

s, is the sum of the E[y;] for all values of k, i.e.

nmE[y,f]: |s0l2 (n+1)(E [a§]+E[af]+-~-+E[ai])of (4.13)

k=0

Imposing the normalizing condition ZE [af]z 1 obtains
i=0
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n+m

> Ely =l (n+1)? (4.14)

k=0
Therefore the intended data symbol term s, has a signal term of peak equal to s, and

noise term due to the channel estimation error of variance given in (4.14), because

El[y,1=0 for all k. The analysis of the remaining terms of (4.3) is similar and yields
the same signal peak and noise variance as that of §,. Thus their combined variance is

given as

o2 =ds,[ (n+1)o? (4.15)

4.3 BER Performance and Numerical Analysis

Now for terms like 12; hs, in (4.3), notice that 120 tries to approximate as much as

possible A, (there is only a small noisy difference between them). However, ﬁo has no

relation whatsoever to 4,. Developing two such terms in (4.3), e.g.,

2=k Oh ®s,~h O s,

2= sb(a;+Aa))S(—iT - jT)-Y. Y sa’ (b, +Ab,)S(t—iT - jT) (4.16)
i=0 j=0 i=0 j=0

22 Y (spAa))S(t—iT - jT) =Y. > (s,a;Ab))8(t —iT - jT)
i=0 j=0 i=0 j=0

where a,,b, resemble the role of «;, f;, while a;, B, were related as stated before,

a;,b; on the other hand have no relation. In (4.16) equality holds if n =m, Aa;, A},
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are all independent noise terms due to imperfect channel estimation. Clearly E [z] =0,
and each term of (4.16) is similar to y, in (4.12), so the variance due to imperfect

channel estimation is given as
o2 22)s[ (n+Do? (4.17)
The same procedure is followed for the other two similar terms given in (4.3), 1.e.
g=h Oh ®s —h,®h ®s, (4.18)
The noise variance due to estimation error is expressed as
o2 22ls, [ (n+1)o? (4.19)

The remaining four terms in (4.3), hjno, hn', hn,,and hn are basically AWGN

each with zero mean and variance o .

Therefore the total noise variance of 5, given in (4.3) is obtained as

ol 24ls| (n+) ol +4)s| (n+ D)ol +40? (4.20)

So

For PSK signals (equal energy constellations) |s0|2 = Isll2 , then (4.20) becomes

ol 24fs,|' (n+1)o? +407 (4.21)

The equality holds if n = m.
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4.3.1 BER Evaluation with Imperfect Channel Estimation

The mean of s, in (4.3) is given by‘

E[5,]=4]s,| (4.22)

The required SNR at the output of the equalizer due tos, can be written as

2
4s
o < > I °| — (4.23)
’ 2|s0| (n+l)o; +o,
By symmetry the SNR at the output of the equalizer for the symbol s, in (4.4) is
2
4|sl| »
SNR. (4.24)

S 2|s,|2(n+1)0'§ +0'3

In (4.23) and (4.24), equality holds if n = m.

In the STD scheme being considered, two symbols are simultaneously transmitted.
By symmetry, the performances for the both transmit symbols are the same, so we

need only to consider the BER for the symbol s,. Assuming the average symbol

energy as E; and with » = m, then the corresponding output SNR i1s

SNR, =

(4.25)
1+2(n+1)[£—§—]0'§ -
O

n

It is interesting to see that in (4.25) with perfect channel estimation (o’ =0), we
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obtain SNR, =4E; / o’ which is the equivalent MRC conclusion in [16]. The BER is

O(/2SNR, ) for BPSK modulation [22].

In this analysis, it was assumed that multipath components change so slowly for
the channel estimation technique to converge with small error o?. Even with this
assumption, slow Rayleigh fading channel coefficients a; may occur. To compute
SNR, in the last-mentioned case, one could assume an additional Rayleigh
distribution for each ¢, that reflects the effect of channel time fading. The sum of
power of &, in (4.13) will now be conditional and the values SNR, and BER will be
conditional on «, values. Averaging over the Rayleigh distributed «; then yields the
average BER [79].

For fast fading channels, even the last analysis may not apply; almost all channel
estimation techniques will not converge properly before the fast channel multipath

components change again. The result in (4.25) could still apply in such cases,

however a much larger ¢ has to be assumed.

4.3.2 Numerical Results and Discussions

It is assumed that each transmit antenna radiates half the energy in order to ensure
the same total radiated power as that of the classical no diversity (ND) case with a

single transmit and single receive antennas. With this power normalization, if we

define the SNR for the ND case as I' = 1/ 0'3 , then the SNRy for the STD scheme with
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perfect channel estimation is 2I'. The benefit of using transmit diversity is
outweighed by the errors resulting from estimating the channels, when I' exceeds a

certain threshold SNR, denoted by T, .

Figure 4.2 shows the BER curves for various values of ¢ = MSE with n = 0,

which represents the case of a single path to be estimated between each pair of

transmit and receive antennas. At a target BER of 107, the loss in SNR compared to

perfect channel estimation is about 0.7 dB, 1.6 dB, and 2.8 dB for 0'52 of 2%, 5% and

10%, respectively. Note that I", corresponds to higher values of 17 dB, 13 dB, and 10

H

dB for the three different values o .

For n = 1, the BER curves of the STD scheme against SNR (T") for various o’

are illustrated in Fig. 4.3. For comparison purposes, the performance curves for ND
case (1 Tx, 1 Rx) and an STD scheme with perfect channel estimation are included.
The T, is about 14 dB, 10 dB, and 7 dB for af = 2%, 5%, 10%, respectively. At BER
of 10™ there is about 1 dB, 2.3 dB, and 3.8 dB degradation with the three different

values of ¢ relative to perfect channel estimation case.

At low SNR from 0 dB to 7 dB, the STD scheme with imperfect channel
estimation outperforms the ND system. Amazingly, the performance of the STD

scheme is worse than that of the ND system with perfect channel estimation at SNR

values above T, .

80



H —— MSE=0,ND (1Tx,1Rx)
] —e— MSE =0, STD (2Tx, 2Rx)

: —— MSE = 2%, STD
g | ~o- MSE=5%, STD
3 o0 MSE=10%, STD
: n=0
10° L
& E
1] .
g L crccmecrvacecnderaccimccacccanadome e i it e e ncncmcanaca et iccnicmcmcmcamendiccccnacacnananaad]
& [ N R
10
10°
oo e AN
emsseeeends ' i S
10'6 1 i 1 % > H .\ﬂ
] 2 4 b 8 10 12

SNR (dB)

Figure 4.2: BER performance of the STD scheme with two receivers against SNR for
various values of channel estimation error at n = 0.
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Figure 4.3: BER performance of the STD scheme with two receivers as a function of
SNR for various values of channel estimation error at n = 1.
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In Fig. 4.4, the BER curves are plotted versus the SNR for various values of
channel estimation error with » = 2. To achieve a BER of 107, it is found that the

deterioration in performance is in the range of 1 dB to 5.6 dB as the variance of error

is varied. In addition, the BER degrades quite rapidly with increase o> and increase

of SNR beyond the threshold SNR T, .

The BER curves of the STD scheme with » = 4 are exhibited in Fig. 4.5. From
these curves we can see that an increment in the thermal SNR of 1 dB, 2.2 dB, and 7.7
dB are required to obtain a BER of 5x10~ with the three different values of o
compared to perfect channel estimation case. At high SNR, the deterioration of
performance in the STD scheme exceeds the benefits achieved over ND system as the
channel estimation error variance increases. The BER difference between perfect and

imperfect channel estimation increases quite rapidly as SNR increases. Moreover,

there is an irreducible error floor with o> of 10% for SNR above 15 dB.
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Figure 4.4: The BER curves of the STD scheme with two receivers versus SNR for
several values of channel estimation error at n = 2.
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Figure 4.5: The BER curves of the STD scheme with two receivers

SNR for several values of channel estimation error at n = 4,
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4.4 Conclusions

The error performance of a simple transmit diversity (STD) scheme due to
imperfect channel estimation over multipath channels that lead to frequency selective
fading was evaluated. An expression was derived for the SNR at the output of the
equalizer, which is employed to compensate for the ISI in the received signal. To
analyze the effects of channel estimation error, the BER of the STD scheme was
obtained, based on the derived SNR. These results are applicable to any channel

estimation technique.

Performance curves showed that there is a significant deterioration in BER when
the SNR, number of multipath components, and the channel estimation error are large.
To achieve a BER of 107, the use of STD scheme with ¢ = 5% and n = 4 result in a
SNR loss of about 8 dB compared to the perfect channel estimation case. For
o2 =10% and n = 4, there is an irreducible error floor at SNR values higher than 10

dB, which is required to achieve a BER of 5x107°.

It was also shown that the degradation of performance in the STD scheme exceeds
the benefits achieved over no diversity (ND) case when the SNR and the channel
estimation error are large. Possible trade-off can be considered between the
transmitted power and the channel estimation errors. Increasing the SNR level can

compensate the degradation in the BER performance due to large estimation error.
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Chapter 5

A New Channel Estimation Technique for

Multiple Input Multiple Output Systems

5.1 Introduction

Transmit diversity has emerged in the last decade as an effective mean for
achieving spatial diversity in fading channels with an antenna array at the transmitter
[86]. Band-limited channels are narrow pipes that do not accommodate rapid flow of
data. Deploying multiple transmit antennas broadens this data pipe by exploiting the
spatial dimension [87]. Transmit diversity is an attractive area as it enables the
designer to move diversity burden from the subscriber unit to the base station where

the use of multiple antennas is more feasible [18].

However, the main problem with deploying transmit diversity resides in the lack of

instantaneous channel state information (CSI) at the transmitter. Thus, one must
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employ a channel code that will guarantee good performance over a broad range of
channel realizations [88]. An important such class of Multiple-Input Multiple-Output
(MIMO) communication system, i.e. Space-time Coding (STC) schemes combine the
channel code design and the use of multiple transmit antennas. The encoded data is

split into 7, streams that are simultaneously transmitted using », transmit antennas.

At a certain reception antenna, the received signal is a linear combination of these
simultaneously transmitted symbols (with fading coefficients as weights) corrupted by
noise and channel-induced intersymbol interference (ISI). Space-btime decoding
algorithms follow channel estimation techniques incorporated at the receiver in order
to achieve both near perfect diversity advantage and coding gain [12]. Alamouti [16]
presented a two-branch transmit diversity scheme, which utilizes two transmit and two

receive antennas.

The scheme in [16] achieves the same diversity benefits at the subscriber unit as
maximal ratio receiver combining (MRRC) with one transmit antenna and four recetve
antennas. Although the diversity benefits can be replicated, the gain from coherent
combining is not noticeable unless the channel is known at the transmitter. Thus, the
effectiveness of [16] and most STC schemes relies on accurate multi-channel
estimation techniques at the receiver in order to achieve diversity advantage and
coding gain [89]. Moreover, the scheme assumes that there is no ISI in the channel.
This will not be the case if the channel experiences multipath and a non-negligible

delay spread [90].
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5.2 Preliminaries

One method of channel estimation is to turn off all transmit antennas apart from
antenna i at some time instant and to send a pilot signal using antenna i. The fade

coefficients «,

i,j?

between transmit antenna i and receive antenna j, are then estimated
for 1< j<n,. This procedure is repeated for 1<i<n, until all coefficients «, ,,

i=12,..,n,, j=L12,.,n, are estimated, where the over bar indicates that the

@, ; consists of n,, channel multipath coefficients. A second method of estimation is to

send orthogonal sequences of signals (similar to Walsh functions) for pilot signals, one

from each transmit antenna [32].

Minimum mean square error (MMSE) and least-squares (LS) channel estimators
have been widely investigated for use in multiple transmit antenna systems. These
estimators can be implemented to efficiently estimate the channel given certain
knowledge about the channel statistics. The MMSE estimator assumes a priori
knowledge of noise variance and channel covariance. It seeks to minimize the mean
square error between the estimated and the quantity being estimated. Mean-square

estimation is based on statistical averages.

Least-squares " estimators require very little information on the statistics of the
parameters to be estimated. The LS criterion specifies that one should choose as an
estimate the value that minimizes the sum of squared errors. Minimization of the
squared error can be achieved either by differentiation or by application of the

orthogonality principle. The MMSE estimator has good performance but high
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complexity. The LS estimator has low complexity but its performance is not as good

as that of the MMSE estimator [91], [92].

In [31], orthogonal pilot sequences insertion along with training sequences are
used to estimate the channel at the receiver. The estimates of the channel coefficients
are chosen such that the mean square error (MSE) is minimized. However, simulation
results showed a substantial error flooring due to severe ISI caused by the channel. An
MMSE estimator that makes full use of the correlation of the channel frequency
response at different times and frequencies was derived in [93]. If the channel
parameters are estimated using the method developed in [93], the signals from other
transmitter antenna(s) will become interference, and the MSE of the estimation

process will be very large.

Consequently, a channel parameter estimation approach was proposed for
transmitter diversity using STC in [94]. However, the approach in [94] required the
inversion of a large matrix, which involves intensive computation. To simplify
computation, Ye Li proposed two reduced-complexity channel estimation techniques
in [95], which are based on minimum mean-square error channel estimation for
orthogonal frequency division multiplexing (OFDM) systems. Results in [95] show
the deleterious effects of inaccurate channel estimation on the performance of ST
codes. Hence, novel parameter estimation approaches are desired to improve

performance MIMO systems using STC.
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5.3 Channel Estimation Based on MAP Approach

The challenge in channel estimation for multiple-transmit-antenna systems over
the single-transmit-antenna case is the increased number of channel parameters to be
estimated and reduced transmit power (by a factor of two) for each transmit antenna.
Intersymbol interference created by the multipath in band-limited time dispersive
channels distorts the transmitted signal, causing bit errors at the receiver [57]. The
channel is viewed as path gains having complex-valued parameters with unknown
deterministic quantities. The channel parameters are the attenuation and delay incurred

by the signal transversal along the propagation paths.

The channel is assumed to be of finite length, thus the maximum number of paths
is considered known a priori [96], [97]. The complex channel parameters are further
treated as two real-valued tap coefficients; each taking one of M possible amplitude
levels {4,,} with equal probability. In order to evaluate the channel parameters, two
known fixed-length training sequences are simultaneously sent from the two transmis-
sion antennas. The training sequence is typically a pseudorandom binary signal or a
fixed, prescribed bit pattern. Assuming the channel varies very slowly for the duration

of the training sequence transmission, the parameters remain constant during that time.

The effectiveness of STC schemes requires the development of practical and high-
performance algorithms for channel estimation. This work presents a new channel
estimation technique amenable to STC. The objective is to derive the estimates of the

MIMO channel parameters for a simple two-branch transmit diversity scheme from
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the received waveforms at one of the reception antennas. The proposed estimation
technique is based on an iterative procedure built around the maximum a posteriori
(MAP) probability that is related to the basics of turbo coding. First, we derive the
various expressions required to compute the posteriori probabilities for each
coefficient. Based on the MAP criterion, we select as a coefficient value the amplitude

level that gives the maximum probability [98], [99].

Unlike classic estimation techniques, we iterate on the different probabilities of
different coefficients rather than on the coefficient values themselves. The concept is
to pass the reliability of the decisions made in one iteration to serve as a refinement of
the prior knowledge for the next iteration and repeat this process several times to pro-
duce better decisions. The estimation process is done in discrete values framework. In
practice, the channel coefficients are continuous but discrete values are used to enable
us to implement the proposed MAP approach. Such discretization or quantization is
not new to communication fields, e.g. matched filters and other components are based

on discrete realization, even if the original model is continuous.

This new MAP approach inherently uses the principle of turbo decoding, which
utilizes both the a priori probability and the a posteriori probabilities (APPs). All
estimation techniques used to estimate channel coefficients that are continuous apply
the Bayes theorem. However, their treatment does not include the a priori probability
of the channel coefficient, which we propose herein to improve results iteration after
iteration. Both the APPs and the a priori probability are updated which leads to

improving the convergence rate and the mean square error of channel estimation.
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5.3.1 Two Branch Transmit Diversity Scheme

Diversity is one of the most important factors in providing reliable
communications over wireless channels. To improve the quality and data rates, one
can use multiple transmit and receive antennas to obtain diversity. Fig. 5.1 shows the
baseband representation of the two branch transmit diversity scheme with two receive

antennas that focuses on the channel estimation.

dig diz
Tx antenna 1 VTX antenna 2
Hn Hxn o Hy

Ex antenna 1 i R

Py Y Interference Interference 4 )
—’69 & noise & noise E}—
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¥

Channel Chﬁnnel
Estimator Estimator

Hnl lﬁm Hul lez

X antenna 2

Figure 5.1: The two branch transmit diversity scheme with two receivers.
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At a given symbol period, two signals are simultaneously transmitted from the two
transmit antennas. The signal transmitted from antennas one and two are denoted

byd,, and d,, , respectively. The transmitted signals are given by

d,=x,+]
Lk 1Lk .].).)l,k .1)
dy, = Xy T IVok
where & is the time index, k = 1, 2, ..., K (maximum number of received preamble

signals). The channel between the transmit antenna i and the receive antenna j is
defined as Hy, i = 1, 2 and j = 1, 2. The received signals are a linear superposition of
the simultaneously transmitted symbols with the channel fading parameters as

weights. The signals received at receive antennas one and two are denoted by r,, and

r, . » tespectively. The received signals can be expressed as

hye= Hlldl,k + H21d2,k +n, (5.2)
By =H,d  +Hyd,, +ny,

where n,; and n,, are complex random variables representing receiver thermal noise

and interference,

The basic functional blocks used for estimating the channels shown in Fig. 5.1 are
independent of each other, but performs a similar function. Thus, we focus on one
channel estimator to explain the principle used to provide the space-time decoder with
a perfect knowledge of the channels. Fig. 5.2 shows a two branch transmit diversity
scheme with one receiver. The encoding and transmission sequence of the training

symbols for this configuration is identical to the case of two receivers.
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Figure 5.2: The two branch transmit diversity scheme with one receiver.

5.3.2 Model of MIMO Channel with ISI

Due to multipath propagation and time dispersion, the channel between each
transmit and receive antenna pair is characterized as a frequency selective channel that
results in ISI between each transmit and receive antenna pair. The antennas on both
ends must be separated far enough to ensure independently fading channels. The delay

spread per transmit and receive antenna pair is assumed to be the same for all
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channels. If the transmit antennas are physically co-located at the same station, then
this assumption is justified by the fact that the number of multipath components with

different delays is dictated by large structures and reflecting objects [85].

In dealing with band-limited channels that result in ISI, it is convenient to develop
an equivalent discrete-time model for the system. To model digital signal transmission
with diversity, the discrete-time channel model is extended to provide parallel multi-
channel operation. Fig. 5.3 illustrates the channel model of the equivalent discrete-
time system between the two transmit antennas and receive antenna one with four

delay paths for each channel.

| + ¥ {rig
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E * T ! Rx 1
K $ni«}:
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Tx 2! |
: " T » T T » T T
L {dax} :
: Channel Model ;

Figure 5.3: Equivalent discrete-time model of MIMO channel with ISL.
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The /th tap of the frequency selective channel from transmit antenna i to receive
antenna one is denoted #;(/) for /= 1,..., L and i = 1, 2. The tap gain parameters are

complex-valued and given by

hi(l) =ai,+ jpi (5.3)

The output sequence {7, , } at receive antenna one can be expressed as [100]

= |:ZZ: i h; (l)di,k+1-Lj| +n, (5-4)

i=] I=l

Substituting (5.1) and (5.3) in (5.4), the output sequence becomes:

(5.5)

where {7, ,}and {r,,}are AWGN sequences each with zero mean and variance
N, /2 [77], [101].

We have implicitly assumed a static channel, meaning that the channel parameters
are either fixed or vary so slowly that they remain constant for the channel estimation

period or one data packet. Expanding the output sequence and equating separately the

real and imaginary parts, we obtain

2 L

=|jz Z( xlxtk+1 YA llylk+1 L)]+n1k
=l =1
2 L

=|:Z Z( 11x1k+1L+a11y1k+l L)}-i_ngk

i=1" =1

(5.6)
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At the receiver, few symbols must be first received in order to start the estimation
process; the estimate of each coefficient is based on an observation of a sequence of
received signals. Thus, an index k is added to the coefficients’ indices to represent the

estimation at a certain kth symbol. Thus, «;,, and B, represent the kth symbol

estimate of the actual channel coefficients «;, and S, ,

respectively. So, (5.6) could

be rewritten as [101]

Mn

T2

1 k+L I:Z
i=l
2

Olhsr = |:Z

i=1

(14X — ﬂi,l,kyi,ku)]"'h,ku,

-~
1t

1

(5.7)

Mh

(B Xi g + Qi Vi k+1):|+77Q kL

T

1

The above equation represents the received sequence for k=0, 1, ..., K —4[77].

5.4 Principle of the Channel Estimation Algorithm

Successful implementation of STC in wireless systems, which employ multiple
transmit antennas and single or multiple receive antennas requires the development of
practical and high-performance signal processing algorithms for channel estimation.
The estimation technique is based on an iterative procedure derived through the MAP
approach. To implement the MAP approach the channel parameters are approximated
by discrete values from a finite alphabet. The channel coefficients are continuous in
practice, but using discrete realization even though the original model is continuous,

enables us to apply the proposed MAP approach.
This new approach inherently uses the principle of turbo decoding, which utilizes
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both the a priori probability and the a posteriori probabilities (APPs). All maximum
likelihood estimation techniques used to estimate channel coefficients, which are
continuous, apply the Bayes theorem. However, their treatment does not include the a
priori probability of the channel coefficients, which we propose herein to improve the
mean square error of the channel estimation. The technique will focus on estimating
the channel parameters for a simple two-branch transmit diversity scheme operating in

a multipath environment.

Multipath in band-limited time dispersive channels creates ISI, which distorts the
transmitted signal. The channel model considered in this work was shown in Fig. 5.3.
All taps of the frequency selective channel are viewed as complex-valued parameters
having unknown deterministic quantities. The parameters are further treated as two
real-valued tap coefficients. Each coefficient takes one of M possible equally spaced

amplitude values with equal probabilities. The coefficients «;;, and £,,,j=1,2,1=

1, 2,..., L, are the real and imaginary parts of the /th tap gain from transmit antenna j

to receive antenna one.

Without the loss of generality, each channel is represented by four taps for
convenience purposes to estimate when a known training sequence embedded in the
data symbols are transmitted. The training sequence is typically a pseudorandom
binary signal or a fixed, prescribed bit pattern. In addition, we assume the channel
parameters remain constant for the duration of the transmitted training sequence time.
The technique will be illustrated in the context of detecting a pulse amplitude

modulated (PAM) signal with M possible levels.
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5.4.1 Estimation Process Basis

Suppose it is desired to estimate the coefficient «;, in the kth symbol interval, and
1, be the observed received signal. Similar to the approach in [58], we compute the

APPs
P(a,,, = A, (5.8)

for the M possible amplitude levels and choose as a coefficient value the amplitude
level with the largest probability. Thus, the MAP criterion for deciding on the estimate

of a certain coefficient «; , , 18

1, = arg{max P(@ = 4, 17,0} 59

where arg denotes the quantized value of 4,, that maximize the right hand side (RHS)

of (5.9). The APPs in (5.8) are given by:

P(aj,l,k =4, |”1,k) =

ZZ ZZ }5(’1,1{ |aj,1,k =Am)P(aj,I,k—l = Am) Zjl (510)
other as B Zp(rl,k Lo o = A)P(a 4y = 4)
i=1

where

j is the transmitting antenna identifier, j = 1, 2.
[ is the /th path of the channel, /=1,2, ..., L =4.

kis the time index, k=0, 1, ..., K- 4.
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m is the number of possible levels for the channel coefficient, m=1,2, ..., M.
A, 1s the mth amplitude level.

The multiple summations perform averaging over all possible amplitude levels of

the channel coefficients except the one being currently estimated «;,,, when the
training symbols are known. The probability P(«; ;1 = 4,,) is the a priori probability

of the coefficient for the A4, amplitude level. This a priori probability can be obtained
from the probability computed in the previous iteration. Thus, it establishes the

iterative nature of the estimation algorithm.
For the received signalsr, , , the channel taps 4,(/) , and the symbols d, ,, which are

all complex-valued the conditional probability density for additive Gaussian noise is

p(n, |aj,l,k =4,)=

2
1 -1 2
22N, eXp{2N vl ZZ( Qg X gl — jlkyjk+1)} }x (5.11)

—

0 j=1 1=

Mb-

- 2
1 -1 2
€Xp Opir — Z ( jlkxjk+l+ajlkyjk+1) |aj,l,k=Am
2N, | :

27N, =

~
N

forj=1,2 and /=1, ..., L. For mathematical convenience, we define

-2
2

[HL Z (1% 000 = Biaid jist) |aj,l,k=Am
=1
’ - (5.12)

-2

(B Lk jk+l+ajlkyjk+l) ‘aj,l,k=Am

M~ EM~

2
Im =|:O-k+L z

j=l

-~
I

1

Thus, the conditional probability density in (5.11) can be expressed as
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R +1
p(rl,k Iaj,l,k =4,)= eXp(_ e ]laj,l,k =4, (5.13)

27N, 2N,

The joint probability Z;, in (5.10) is computed from the probabilities of the

possible amplitude levels beihg assumed in each of the multiple summations

corresponding to various coefficients. The joint probability is given by:

2 4 2 4
Zy= HH P(Qipi = A1.11) (HH P(Box = Al...M)j (5.14)

i=l n=l s=1 t=1

If i=j then n#l

The notation 4, ,, is used to represent the amplitude level being assumed by the

corresponding coefficient as dictated by the index of the corresponding summation in
(5.10). Thus, the general relation to compute the APPs given in (5.10) can be

expressed as follows:

P(aj,l,k =4, lri,k) =

exp[— ihat Iaj’l’k ~4 }P (aj,l,k—l = Am)

2N,
I I ID I

& +Io,,, = A, !
other ag Briu Z exp[— R, + I, |a],1,k i Jp(aj el = A,)
=1 2N, v

(5.15)

In computing the RHS of (5.15), the coefficient being currently estimated will be set
equal to amplitude level 4, , while each of the other coefficients will assume an

amplitude level set by its corresponding summation value.
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5.4.2 First Coefficient Estimation

In order to reduce the computational complexity, we set a constraint on the trans-
mitted preamble symbols without loss of generality. Such that the real and imaginary

parts are equal, thatto say x,, =y, forj=1,2and k=1,2, ..., K. This will allow us

to eliminate a number of terms and to reduce the number of variables involved in the

computation of the RHS of (5.15). Then, forj=1,2and /=1, ..., 4, we let

Pig=C 14Xk =04y kst and V= ﬁj,l,kyj,lﬁl =ﬂj,l,kxj,k+1
To illustrate the estimation process, we start by investigating a particular coefficient
a,,;. From the general relation given in (5.15), we want to derive the relation
required to optimize the quantized value of «,,, . By letting j = 1 and / = 1, we focus

on ¢y, which is a function of the currently considered coefficient. Thus, we have

Dy = O Xk = X1k
The sum of the R, and I, given in (5.12), could be rewritten as a summation of terms
involving ¢,,, denoted by F(p,,) and those not involving ¢, denoted by F(O).
Terms not involving ¢,, can be cancelled out from the numerator and the denominator
of (5.15). Thus, the function F ((pl,l) can be expressed as:

F((”l,]) = 2(”12,1 + 4¢1,1 ((Pl,z LSRR LW 2 s

(5.16)
Dot Pyst ¢2,4) -2¢,, (6,1 +04i1)

Therefore, the APPs required to optimize coefficient ¢, , are given by
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P(al,l,k =4, |rl,k) =

)33 3 3 3 35 30 3 38 3 S S 3

Uk A3k Cak Cox 2ok %3k Dak Bx Pak Bk Bax Poak Pk

F =4
exp[— (@) P =44 jp(al’l,k_l ___Am)

ZZ 2N,

F =4,
Brsx Prax Zexp(_ ((01,1) | (20}\1[ iX1k+1 ]P(am’k_l - Ai)
0

(5.17)

X Zl,1

i=l1

The joint probability Z,, is given as follows:

2

Zl,l = HH P(ai,n,k = Al...M) (HH P(,Bs,t,k = Al...M)] (5-18)

i=l n=1 s=1 1=1

i=1,n#]

Since no prior knowledge is available, we assume all amplitude levels are equally
probable. Thus, the probabilities required to compute the above joint probability are
set equal to 1/ M, for all M possible amplitude levels for each of the coefficients.

The notation 4, ,, is used to represent the amplitude level indicated by the coefficient

corresponding to the summation index.

Equation (5.17) will be computed for the M possible amplitude levels being
assumed for the channel coefficient. The decision criterion is based on selecting the
value corresponding to the maximum of the set of computed APPs. This MAP

decision criterion to estimate «,, ,, denoted by &, , is represented as

&1,1,1( = arg{n}flx P(al,l,k =4, | Nk )} (5.19)
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5.4.3 Sequential Coefficients Optimization

Consider next the optimization of the coefficient & ,, . Thus, we letj=1,/=2
and concentrate on the variable @,, = &, 4,2. The sum of R, and I, given in
(5.12), could be rewritten as a summation of terms involving ¢, ,, denoted by F ((/)1)2)
and those not involving ¢,,, denoted by F (O'). Terms not involving ¢,, can be

cancelled out from the numerator and the denominator of (5.15). Consequently, the

function F ((pm) is expressed as follows:

F(¢1,2) = 2(P12,2 +4¢,, (¢71,1 TP TPt Pyt

(5.20)
Prpt@Prat ¢2,4) - 2(P1,2 (G, +O1)

Hence, to estimate the coefficient «,,, on the basis of the received sequence, we

compute the following APPs

Play,,=4,|n,)=

I3 355 3 3 3 3 3 3 3 3 3

ik N3k Aax Quk %2k %23k %4k Puia Bak Bisk Puax Pk Prak

F =4
exp(— (¢’1,2) | D2 m¥ k42 jp(al,z,k—l _ Am)

Z Z wl

U M F =A

Prsu Prax § exp(— ((p"z)lg‘]’; H1k2 ]P(abz,k—l:Ai)
0

(5.21)

X Zl’2

i=l

for the M possible amplitude levels and select as a value for the coefficient being
investigated the amplitude level having the largest probability. The joint probability

Z,, in (5.21) is given by:
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Ziy= Hﬁ P(ai,n,k = Al...M) [ﬁﬁ P(ﬂs,z,k = Al...M)J (5.22)

i=l n=1 s=1 =1

i=l,n#2
In computing the above joint probability, the involved probabilities for the coefficient
a, > Play,, = 4, ) correspondence to the APPs previously computed in (5.17).

This is a refinement of our prior knowledge, while the other required probabilities are

set equal tol/ M , for all M possible amplitude levels for each of the other coefficients.

Following the same procedure, it is straightforward to derive the relations required
to optimize the remaining «, coefficients. Moreover, the same process could be
followed to develop the required equations in order to evaluate the coefficient 5;,, for
Jj=1,2and/=1,..., 4. Thus, to optimize the last coefficient £, ,,, weletj=2,1=4
and concentrate on the variable v, , = 8, ,,7,,.,. Terms involving the variable y, ,

can be written in a function denoted by F (l//z’ s ), which is expressed as:

F('/’z,4) = 2W22,4 +2, ('//1,1 Tttt

(5.23)
Wor tWas +¥53) 20, (60 — O1ir)
Hence, we compute the following APPs
P(Bray =4, 1) =
I35 305 30 3 3 35 3 3 38 3 3
X Q2p W3x Dax Cax %224 @ik %k Pk Prax Bk Pk Pk (5 24)

exp

22

2,2.k 2,3k F(l// )lv/ =Aly +:
Pras foo Zexp{— = 2;’\‘; == P(Bap1 = 4)
i=1 0

(_ F(W2,4) I Woa=A,Y2 44

2N, jp(ﬁ2,4,k—l = Am)
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for the M possible amplitude levels and select as a value for the coefficient being
investigated the amplitude level having the largest probability. The joint probability

V, 4 1n(5.24) is given by:

Vs =(ﬁfl P(as,t,k =4 y )] HH P(:Bi,n,k = Al...M) (5.25)

s=1 =1 i=l n=l

=2 n+4

All the probabilities required to evaluate the above joint probability are those
corresponding to the APPs that were previously computed during the process of
optimizing the other coefficients. This is a refinement of our prior assumption that all

amplitude levels are equally probable for each of the channel coefficient.

Thus, the estimate of 3, ,,, denoted by 52,4’,( , 18

Boas = arg{%ax P(Byay =4, |1y )} (5.26)

Therefore, an initial estimate for each coefficient would have been selected at this
point. The concept is to pass the reliability of the decisions made in one iteration to
serve as a refinement of the a priori values for the next iteration and repeat this process

several times to produce better decisions.
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5.5 Conclusions

A new MAP based channel estimation technique amenable to STC schemes was
unveiled in this chapter. The effectiveness of most STC schemes relies on accurate
multi-channel estimation technique at the receiver in order to achieve diversity
advantage and coding gain. A simple two-branch diversity scheme operating in band-
limited channels with ISI was discussed. An equivalent discrete-time model of MIMO

channel was developed.

The channel was parameterized in terms of complex-valued path gains with
unknown deterministic quantities. The channel parameters are the attenuation and
delay incurred by the signal transversal along the propagation paths. The channel was
assumed to be of finite length, thus the maximum number of paths was considered
known a priori. Assuming the channel varies very slowly for the duration of the

training sequence transmission, the parameters remained constant during that time.

Discrete realization for the channel coefficients were used even though the original
channel model is continuous in practice, this enabled us to apply the proposed MAP
approach. Unlike classic estimation techniques, the presented technique iterated on the
different probabilities of different coefficients rather than on the coefficient values
themselves. This new MAP approach inherently used the principle of turbo decoding,

which utilizes both the a priori probability and the APPs.

The APPs expressions required to optimize the various coefficients were derived.

For each coefficient, the derived APPs were computed for M possible amplitude levels
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and the level having the largest probability was selected as an estimate of the
coefficient being optimized. Initially since no prior knowledge was available, we
assumed all amplitude levels were equally probable for each of the coefficients. As we
proceeded in the estimation process, the newly computed APPs were used instead.
This was seen as a refinement of our prior assumption that all amplitude levels are

equally probable.

The concept was to pass the reliability of the decisions made in one coefficient to
serve as a refinement of the a priori values for the next coefficient. The proposed
technique required successive evaluation of M probabilities for each coefficient, which
involved intensive computational operations. In particular, the averaging performed
over all coefficients (except the one being currently optimized) if the number M of the
amplitude levels was large. We have computed and ran a few simulation results for the
new algorithm presented in this chapter, however, the mean square estimation errors
were not optimized. Therefore, low complexity algorithms are proposed next to

alleviate computational complexity.
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Chapter 6

Low Complexity MAP Based Channel

Estimation Algorithms for MIMO Systems

6.1 Introduction

In most channels of practical interest, an intensive computation is prohibitively
expensive to implement. To alleviate computational operations of the proposed
~technique, two simplified methods are devised instead. Two practical approaches,
denoted by the first algorithm and the second algorithm, are proposed to implement
the derived general expressions to estimate the actual channel coefficients in this

Chapter.

In the first algorithm, we reduce the number of multiple summations used to
perform averaging over all coefficients except the one being currently selected for

optimization in the current pass. The optimization of the first coefficient would still
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require averaging over the still unknown probabilities of all possible amplitude levels
of all other coefficients that are related to the coefficient being optimized. Then

choose as a coefficient value the amplitude level with the largest probability.

In estimating the following channel coefficients, we use the selected value of the
previously estimated coefficients and set their corresponding probabilities to one.
Thus, averaging over those previously estimated channel coefficients are no longer
needed. This reduces the number of summations as we proceed, until we reach to the

last coefficients, which will be optimized using simple expression.

In the second algorithm, a further simplification is achieved by randomly selecting
for each channels coefficient except for the first coefficient, one of the assumed
amplitude levels as a coefficient value. Consequently, averaging over all possible
amplitude levels of the channel coefficients except the one being currently estimated
that is performed by multiple summations is no longer needed. Thus, each coefficient

will be optimized using a simplified expression to compute the APPs.

To improve the reliability of the initial estimates of the coefficients, an iterative
procedure is used for the two algorithms. To ensure the convergence of the iterative
procedure an update process is used for the two algorithms. The performances of the
two algorithms are assessed by simulations. Combined analysis and simulation results
are presented and compared against those of conventional channel estimation
techniques. Results show that improvement over conventional techniques can be

obtained using the proposed iterative algorithms.
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6.2 First Algorithm Structure

In the first algorithm for computing equations like (5.17), (5.21), (5.24), and
further optimization of the various channel coefficients, the goal is to reduce the
number of multiple summations used to perform averaging over all coefficients except
the one being optimized. A close look at the derived general expressions in the
previous chapter (e.g. (5.17), (5.12), and (5.24)) shows that to optimize a particular

a,;, coefficient, we only need the values of the remaining @, coefficients. The same
applies to the f; coefficients.

Hence, we are able to subdivide the channel coefficients into two separate groups
with one group containing the «,coefficients and the second group containing the g,
coefficients. Suppose it is desired to estimate the coefficient ;; in the kth symbol
interval, and r,, be the observed received signal. Similar to the approach in previous

chapter, we compute the APPs, which can be now expressed as

P(aj,l,k =4, |”1,k) =

exp[_ R, +1|a;,, =4, JP(%J”] _4)

2N,
DI

Tother a3 z eXp{— R +1 ila ik =4 } P(aj,z,k-l _ Ai)
i=1

xZ 6.1)

Jid

2N,

for the M possible amplitude levels and choose as a coefficient value the amplitude

level with the largest probability. The functions R, and I, were given in (5.12) and

the joint probability Z;, is given by
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2 4
Z;',l = HH Ple,,, = A ) (6.2)

i=l n=1

If i=jthen n#l

The notation 4, ,, is used to represent the amplitude level being assumed by the

corresponding coefficient as dictated by the index of the corresponding summation.

6.2.1 First Algorithm Process

To illustrate the estimation process of the first algorithm, we start by investigating

a particular coefficient «,,, based on the received signal r,,. From the general

relation given in (6.1), the APPs required to optimize coefficient ¢, , are given by

Py, =4,15)=3.T.T.3.3.5.

Aok X3p CLap Qax X2k D3k

F =4
exp(_ ()] = Ay ] Plo,,,. = 4,) 6.3)
Z 0 A
Pt F(¢11)l¢11=‘47‘x1k1] :
2,4 exp| — : 2 al P(a a4 = Ax)
> ( 2N, LLk-1

where the function F ((pl,l) was given in (5.16). Equation (6.3) will be computed for
the M possible amplitude levels being assumed for the channel coefficient. Based on
the MAP criterion, the amplitude value having the largest probability will be selected

as an estimate of &, , coefficient.

As a result of examining a particular received signal, we compute the APPs, which
can be thought of as a “refinement” of our prior knowledge. Those APPs will serve as

a priori values for the next iteration. Computing (6.3) requires the knowledge of the a
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priori probability P(ey, . = 4,) form =1, 2,..., M. For the first iteration, we assume
that the M possible amplitude values are equally probable a priori, i.e.,

P(ay 41 = An)=1/M for all M levels. The joint probability Z,"l is given as
Z;,l ZHH P(ai,n,k = Al...M) (6.4)
—

Since no prior knowledge is available, we assume all amplitude levels are equally
probable. Thus, the probabilities required to compute the above joint probability are

set equal to 1/ M , for all M possible amplitude levels for each of the coefficients.

Consider next the optimization of the coefficient «,,, , while fixing a value for

the first coefficient that corresponds to the level with MAP, and assigning a

probability of one to that level. Thus, averaging over the coefficient ¢, , is no longer

needed and the number of summations is reduced by one. Hehce, the APPs to optimize

coefficient «,, , becomes as:

Pl =4, 11)=D.0 002D,

D3k Aak @0k X2k X234 2,4k

F =4
Xp(— 012) | P12 = Antiger JP(al,Z,k—l = Am) (6.5)
2N, xZ,
M F(o )0, =4x k+2) N
exp| - ————= = |P(t) 344 = 4))
; ( N, 1,2,k-1

where F (qol,:,_) was given in (5.20) with the computed estimate of the coefficient

ay i (&, ) used in the evaluation of (5.20).
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Again, (6.5) needs to be computed for the M possible amplitude levels of the
coefficient a,,,. The required a priori probabilities P(a 41 = 4,) for computing

(6.5) will be set equal to 1/M i.e. equally probable for all M levels. A decision based

on the MAP criterion will be used to select an estimate of the second coefficient ¢, , .
The selected value will correspond to the level of maximum probability. The joint
probability Z; , in (6.5) is given as:
' 2 4
Z,= HH Py = A1) (6.6)

i=l n=l

i=1,n21,2

In computing the above joint probability, the involved probabilities for the coefficient
a, ., Pla,, = 4,_,)corresponding to the APPs previously computed in (6.5). This
is a refinement of our a priori values, while the other required probabilities are set

equal tol/ M , for all M possible amplitude levels for each of the other coefficients.

The same procedure will be followed to derive the APPs relations required to
optimize the remaining coefficients in this group. Note that with each successive
coefficient estimation the number of summations is reduced by one. Such that when

we reach to the optimizing of the last coefficient in this group, which is «,,,, the

required APPs relations becomes as

F =4
exp[—— (@24) 1 P24 = A X3 414 ]P(Ol“,k_l - Am)

2N,
Pla, . =4,|n,)= " Flp )|¢0 P x1  (6.7)
Zexp(— - 22]’\; T )P (a2,4,k—1 = Ai)
i=1 0
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where F(g@,,)is given by

F((/’2,4) = 2%2,4 +49,, ((/’x,l +Q,TO TPt

(6.8)
Do)+ Py s+ Py 3) =20, (6,,, 0, ,)

In evaluating the above function, we substitute the estimate of the previously
optimized coefficients, i.e. a, =a, except for the one being currently estimated that
will assume the value set in the left hand side of (6.7). Note that the joint probability is
equal to one as seen in (6.7), since no averaging is required at this point.

In a similar fashion, we can derive the relations required to compute the APPs for
the second group containing the [, coefficients. We start with the first coefficient

B, ; the relations to compute it’s APPs will be similar to those derived for «,, , . For
the last coefficient in this group £, ,,, the relations will be similar to those derived for

a, ,,in (6.7) with function F(y, ,)that was given in (5.23) instead of F(g,,).

6.2.2 The Iterative Procedure

At the end of the first iteration and based on (6.3), (6.5), and (6.7), we would have
computed the APPs for all coefficients and selected based on the MAP criterion an
initial estimate for each coefficient of the channels. In order to increase the reliability
of the initial estimates, we need to continue the estimation process of the coefficients
to ensure convergence of the coefficients to their optimum values. This is

accomplished by means of an iterative procedure to adjust the coefficients estimates.
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Unlike classic estimation techniques, iteration will take place on the probabilities
of the coefficients rather than on the coefficients values. The concept is to pass the
reliability of the decisions made in one iteration to serve as a refinement of the a priori
values for the next iteration and repeat the process several times to produce
sufficiently reliable decisions. The computed APPs in the current iteration will be

adjusted and fed as a priori probabilities for the next iteration.

A scale factor A is used to control the rate of adjustment, A is a positive number
chosen small enough to ensure rapid convergence of the iterative procedure. Two
update processes will be utilized to achieve the adjustment and to ensure the
convergence of the coefficients to their optimum values. In the first update process,
the scale factor A is set equal to a fixed positive number to adjust all the APPs for all

coefficients of the channels.

Assuming that in the current iteration the MAP was found at level i (i =1, ..., M)

for coefficient ;,, (j=1,2,/=1, 2, 3, 4). The a priori probabilities for the coeffi-

cient &, , in the next iteration are obtained as follows:

P(aj,l,k—l = Al) ’Next = M4P(aj,l,k = Az) |Current +A
iteration iteration

(6.9
P(aj,l,k-l = Am) |Next = P(aj,l,k = Am) ICurrent —A/(M —1)’ m= 1’2""’M’m #1

iteration iteration

If a priori probability becomes negative it is set to zero, and if a priori probability
becomes greater that one it is set to one. Then normalization is preformed, such that

the sum of the a priori probabilities for the M possible amplitude levels of each

coefficient is equal to one. The same update is preformed for the S, coefficients.
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Alternatively, the second update process utilizes a dynamic A to update the APPs,
such that the APPs for each coefficient is adjusted using a particular positive number
that might be different from those used in updating the APPs for the other coefficients.

Assuming that in the current iteration the MAP of coefficients «,,, and fB;,, were

found at level i (i =1, ..., M) forj=1,2and /=1, 2, 3,4. Then, we compute the sum

of the entire MAP, denoted by SMAP as follows:

SMAP = 22: i [MaP(a,,, = 4)+ MaP(B,,, = 4] (6.10)

Jj
j=1 =l

The dynamic A denoted by DA is obtained according to the relation

DAl )= - varle, = 4 sviar

DA(:Bj,l,k ) = {[1 - Mp(ﬁj,l,k =4, )]}/SAMP

(6.11)

forj=1,2and /=1, 2, 3, 4. Then, the APPs for a, G=1,2,1=1,2,3,4) are
updated as follows:

P(aj,l,k—l = Az) |Naxt = M4P(aj,1,k = Ax) |Current +DA(aj,1,k)
iteration iteration

(6.12)
P(aj,l,k—l =4) ew = P(aj,l,k = A,) | current —DA(aj,I,k)/(M_l)’

iteration iteration

for m=1,2,...,M,m#i.If a priori probability becomes negative, it is set to zero, and

if a priori probability becomes greater, that one it is set to one. Then normalization is
performed, such that the sum of the a priori probabilities for the M possible amplitude

levels of each coefficient is equal to one. The updated APPs will serve as a priori

values for the next iteration. The same update is performed for the f; coefficients.
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In the second and the following iterations, we again start the process by optimizing

the coefficient ¢, , . The required APPs are given by

F =4
exp(— (@) o =4, % Jp(al’l’k_l =Am)

2N,
Pley,, =4 |r,)= 2 (6.13)
b L f Flp)|o, =4x, lj
exp| — e P = 4)
< [ 2N0 1,k—1

where the function F (gol,l) was given in (5.16), which will be evaluated using the

estimate of the coefficients found in the previous iteration, expect for the coefficient
being currently optimized. Equation (6.13) will be computed for the M possible

amplitude levels and select an estimate of «, |, coefficient the amplitude value having

the largest probability.

Similarly, the APPs to optimize the coefficient ¢, ,, can be expressed as

2N,

M F =4,
Z exp(— ((01,2) | (;\2[ X1 k2
0

F =4
exp[— ((01,2) | D1 X je+2 )P(al,z,k-l _ Am)

(6.14)

)P(al,z,k—l =4,)

where F (‘/’1,2) was given in (5.20), which will be evaluated using the estimate of the
coefficient 051,1,1((51,1,,‘) obtained in current iteration. For the other coefficients, we

substitute the optimum values from the previous iteration. Similar relations could be

derived for the remaining coefficients in this group.

It is straightforward to repeat the same procedure for the second group that

contains the f, coefficients. Therefore, the structure of the first algorithm
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encompasses two separate estimation process, one for the «, coefficients and another

for the f, coefficients. The iterative procedure of the first algorithm proceeds as

follows:

10.

In the first iteration, set the a priori probabilities = 1/M, for all M possible

amplitude levels and for all coefficients.

Estimate the first coefficient using (6.3) and select an optimum value based on

MAP criterion.

Optimize the second coefficient using (6.5) and choose an optimum value.
Repeat step 3 until the last coefficient in this group is estimated utilizing (6.7).
Proceed to optimize the second group that contains the S, coefficients and
repeat steps 2 to 4.

Update the computed APPs using either (6.9) or (6.12); set them as a priori

probability for the coefficients in the next iteration.

Start the next iteration by optimizing the first and the second coefficients using

(6.13) and (6.14) respectively.
Estimate the remaining coefficients until last one in this group is optimized.
Repeat steps 7 and 8 for the second group.

Repeat steps 6 to 9 enough iterations to yield a reliable decision (certain mean
square estimation error of channel coefficients, as will be defined shortly in

Section 6.3.1).
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6.2.3 Second Algorithm

In order to lessen the computational complexity of the first algorithm and to
produce an algorithm that is more practical to implement, we further propose a second
algorithm for estimating the actual coefficients of the channels. In this algorithm,
again the coefficients are subdivided into two groups, each group contains 8
coefficients. We start the procedure by randomly selecting for each coefficient a value
chosen from the range of amplitude levels being assumed, except for the first
coefficients in each of the two groups for which we always begin the estimation

process.

Thus, we utilize (6.13) to compute the APPs required to optimize the coefficient

a,,, in the first iteration. The a priori probabilities would still be equally probable,
1e. Playpa =A)=1/M for all M. To estimate the second coefficient, we utilize
(6.14) and in computing F(¢@,2), we set @, equal to its estimate obtained in the
current iteration. For other coefficients, we substitute the values that were randomly

selected at the beginning of the algorithm and fixing other coefficients at their most

recently estimated values in the current iteration.

This process should be continued until we reach to the last coefficient in this
group, which can be optimized using equation (6.7). In evaluating F(¢,,)given in
(6.7), we substitute the optimized values of each coefficient, which were previously
obtained in the current iteration. It is straightforward to repeat the same procedure for

the second group that contains the S, coefficients. The iterative procedure of the
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second algorithm proceeds as follows:

1. Set the a priori probabilities = 1/M, for all M possible levels and for all

coefficients.

2. Randomly select for each coefficient a value from the set of possible amplitude

levels being assumed.
3.  Estimate the first and second coefficients using (6.13) and (6.14) respectively.

4. Proceed to optimize the next coefficient, until we optimize the last coefficient
in this group.
5. Repeat steps 3 and 4 for the second group of coefficients.

6. Update the obtained APPs using either (6.9) or (6.12) and feed them as a priori

probability for the coefficients in the next iteration.

7. Repeat steps 3 to 6 enough number of iterations to yield reliable decision
(certain mean square estimation error of channel coefficients, as will be

defined shortly in Section 6.3.1).
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6.3 Analysis and Simulation Results

Simulations were conducted in order to examine the performance of the two
proposed algorithms. Simulations results are presented and compared against the

performance of conventional estimation techniques in this section.

6.3.1 Implementation Aspects

It is assumed that each transmit antenna radiates half the energy to ensure the same
radiated power as that of the classical no diversity (ND) system. A fixed-length
training sequence was sent from each of the two transmit antennas simultaneously.

The transmitted sequences {d, , } and {d, , } are complex-valued elements, their real and
imaginary components € {l,-1}. An observation interval of one hundred training
symbols is chosen (K = 100).

Without loss of generality, we have set each channel to four paths and the channels
were assumed static. Meaning that the channel coefficients are either fixed or vary so
slowly that they remain constant over the observation interval. The actual values

assigned to each of the channel coefficients were randomly selected from a set of M

possible amplitudes levels. The amplitude levels {4, } take discrete values, which are

equally spaced around zero.

Throughout the simulation, the carrier-to-noise ratio (CNR) is used as variable

input parameter to the simulation. The CNR is defined as
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\d,, |2 +|d2,k |2
CNR(dB) = 10log,, ———— (6.15)
2N,

for a required CNR value, the corresponding noise variance was computed. Two
independent blocks of Gaussian random noise with zero mean and computed variance
are generated and added separately to the received signals components. The received

signals are then obtained in terms of their real and imaginary parts using (5.7).

Since the most meaningful measure of performance for a digital communications
system is the average probability of errors, it is desirable to choose the coefficients
estimate to minimize this performance index. However, the probability of error is a
highly nonlinear function of the channels coefficients. Consequently, the probability
of error as a performance index for channel estimation is impractical. A performance
criterion that measures the quality of the estimation and leads to practical
implementations is the mean square error (MSE). Often this criterion results in
optimum or near optimum performance compared to other measures of performance.
In the case of estimating a signal received in white Gaussian noise, minimization of
the MSE is equivalent to rhaximum likelihood estimation, which is optimum from a
probability of error viewpoint. Thus, we consider the MSE as a criterion to evaluate
the two proposed algorithms performance. The normalized MSE is defined as

S |Ci _a'l

MSE =
i=1 Ci2

(6.16)

where C, is the actual coefficient value, selected by the randomization process

mentioned before, and 51. is the estimate of that coefficient [22].
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To avoid fluctuation in the computed MSE from one iteration to the next, we run a
number of trials for each specified CNR. Simulations were repeated enough times for
both algorithms and results were averaged (at each iteration) to yield a confidence

interval of 90% and an error of 5% (not to be confused with our MSE above).

6.3.2 First Algorithm Performance Evaluation

The first algorithm was implemented using four-level (M = 4). Thus, each actual
channel coefficient was randomly assigned a value from the set {-0.3, -0.1, 0.1, 0.3}.
The value of the fixed scale factor A was chosen to be 0.1. Several other values were
used, but A = 0.1 produced the most stable and smooth convergence of the iterative

process compatible with other input parameters such as CNR.

The average MSE of the first algorithm with a fixed A of 0.1 is displayed in Fig.
6.1 and Fig. 6.2. The average MSE versus the number of iterations with a variable
CNR 0f 0, 2, 4, and S dB is shown in Fig. 6.1. In Fig. 6.2, the average MSE is depicted
as a function of CNR for various numbers of iterations. From these plots, we can see
that the MSE decreases with the increase in the number of iterations, as well as with
the increment in CNR. Thus, the estimated coefficients values converge towards the
actual values in a smooth fashion and a satisfactory performance can be achieved with
only a few iterations. Possible trade-off can be considered between the number of
iterations and the transmitted power. The results were obtained by averaging the MSE
in 50 simulations, which were found enough to satisfy a confidence interval of 90%

with an error of 5% (85% to 95%).
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Figure 6.1: The Average MSE of the first algorithm versus the number of iterations
with a variable CNR of 0, 2, 4, and 5 dB for fixed A of 0.1.
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numbers of iterations for fixed A of 0.1.
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Figure 6.3 illustrates the average MSE of the first algorithm with a dynamic A
against the number of iterations for CNR of 0, 2, 4, and 5 dB. The average MSE seen
in Fig. 6.3 exhibits a generally identical convergence behavior to that of the fixed A
case, as shown in Fig. 6.1. Thus, we can achievé a satisfactory and a desirable
convergence rate of the channel coefficients towards their optimum values that is
minimum MSE. Possible trade-off can be considered between the number of iterations
and the transmitted power. The results were obtained by averaging the MSE in 50

simulations, which were found enough to satisfy a confidence interval of 90% with an

error of 5% (85% to 95%).

The average MSE performance comparison of the first algorithm between the
cases of fixed and dynamic A with a variable CNR of 0 and 5 dB are demonstrated in
Fig. 6.4. The performance curves for the two update processes are basically the same
as the number of iterations and CNR are increased. It is clear that with a single fixed
scale factor or with a slightly more complex adjustable scale factor the algorithm
results are almost the same. It requires the same number of iterations in both cases for

the algorithm to converge to a low MSE value and achieve a good performance.
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Figure 6.3: Average MSE of the first algorithm against the number of iterations with a
CNR 0of 0, 2, 4, and 5 dB for dynamic A.
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Figure 6.4: Average MSE performance comparison of the first algorithm with fixed
and dynamic A for CNR values of 0 and 5 dB.
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6.3.3 Second Algorithm Performance Results

The second algorithm was implemented using eight-level (M = 8) of estimation.
Thus, each actual channel coefficient was randomly assigned a value from the set of
amplitude levels {-0.35, -0.25, -0.15, -0.05, 0.05, 0.15, 0.25, 0.35}. The value of the
fixed scale factor A was chosen to be 0.1. Several other values were used, but A = 0.1
produced the most stable and smooth convergence of the iterative process compatible

with other input parameters such as CNR.

The average MSE of the second algorithm with a fixed A of 0.1 is displayed in Fig.
6.5 and Fig. 6.6. The average MSE versus the number of iterations with a variable
CNR 0f 0, 2, 4, and 5 dB is shown in Fig. 6.5. In Fig. 6.6, the average MSE is depicted
as a function of CNR for various numbers of iterations. From these figures, we can see
that the MSE decreases with the increase in the number of iterations, as well as with

the increment in CNR.

Thus, the estimated coefficients values converge towards the actual values in a
relatively fast fashion and a satisfactory performance can be achieved with only few
iterations. Possible trade-off can be considered between the number of iterations and
the transmitted power. The results were obtained by averaging the MSE in 100

simulations, which were found enough to satisfy a confidence interval of 90% with an

error of 5% (85% to 95%).
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Figure 6.5: The Average MSE of the second algorithm versus the number of iterations
with a variable CNR of 0, 2, 4, and 5 dB for fixed A of 0.1.
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Figure 6.7 illustrates the average MSE of the second algorithm with a dynamic A
against the number of iterations for CNR of 0, 2, 4, and 5 dB. The average MSE seen
in Fig. 6.7 exhibits a generally identical convergence behavior to that of the fixed A
case, as shown in Fig. 6.5. Thus, we can achieVe a satisfactory and a desirable
convergence rate of the channel coefficients towards their optimum values that is
minimum MSE. Possible trade-off can be considered between the number of iterations
and the transmitted power. The results were obtained by averaging the MSE in 100
simulations, which were found enough to satisfy a confidence interval of 90% with an

error of 5% (85% to 95%).

The average MSE performance comparison of the second algorithm between the
cases of fixed and dynamic A with a variable CNR of 0 and 5 dB are demonstrated in
Fig. 6.8. The performance curves for the two update processes are basically the same
as the number of iterations and CNR are increased. It is clear that with a single fixed
scale factor or with a slightly more complex adjustable scale factor the algorithm
results are almost the same. It requires the same number of iterations in both cases for

the algorithm to converge to a low MSE value and achieve a good performance.
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Figure 6.7: Average MSE of the second algorithm against the number of iterations
with a variable CNR of 0, 2, 4, and 5 dB for dynamic A.

135



: : —+— Fixed Delta= 0.1, CNR = 0dB
I —— Dynamic Delta, CNR = 0 dB
: : ~&- Fixed Delta=0.1, CNR=5dB
—+— Dynamic Delta, CNR = 5 dB
Second Algotithm

(1] SE— SR S—

MSE

0 5 10 15 20 25 30
Mumber of lterations

Figure 6.8: Average MSE performance comparison of the second algorithm with
fixed and dynamic A for CNR values of 0 and 5 dB.
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6.3.4 Performance Comparison of the two Algorithms and
with Conventional Estimation Techniques

Comparison curves between the MSE results of the proposed algorithms with a
variable CNR of 0 and 5 dB are presented in Fig. 6.9 for fixed A of 0.1. The first
algorithm converges much faster (fewer iterations) towards the actual values of the
channels coefficients. The second algorithm worsens the average MSE performance
slightly, but the computational complexity decreases by a factor of at least 20. This

reduction factor is because no averaging was performed in the second algorithm.

We conclude by comparing these results against the performance indexes of the
least mean square (LMS) [102] and recursive least square (RLS) [103] algorithms. The
LMS algorithm is a steepest-descent algorithm in, which the true gradient vector is
approximated by an estimate obtained directly from the data [23], [104]. In order to
achieve faster convergence, RLS (Kalman) algorithm that deals directly with the

received data in minimizing the cumulative square error is used [105].

Figure 6.10 depicts the results of our two algorithms against the performance
curves of the LMS and RLS techniques for the single antenna case provided in [77],
[22]. Comparison shows that we have obtained a faster rate of convergence and
produced an acceptable low and stable MSE values with fewer number of iterations,
even with the challenging task of estimating increased number of parameters for our
two transmit antennas case. Our first algorithm results in a comparatively good

performance relative to that obtained with the LMS algorithm.
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Figure 6.9: Performance comparison between the two algorithms with a variable CNR
of 0 and 5 dB for a fixed A of 0.1.
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Figure 6.10: MSE Performance comparison of the two proposed algorithms against
the LMS and RLS estimation techniques.
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6.4 Conclusions

The analytical expressions derived in the previous chapter to evaluate the APPs for
each coefficient involved a large amount of computation. Two low complexity
algorithms were introduced instead in the Chapter. The two proposed algorithms differ
in the way the first iteration is performed and the expressions used in computation. In
the first algorithm, we reduced the number of multiple summations as we proceeded in
the estimation process from one coefficient to the next. Thus, the last coefficients were

evaluated using a simple multiplication formula.

The computational operations in the first iteration were further reduced in the
second algorithm. We started the algorithm by randomly choosing for each coefficient
a value selected from the set of amplitude levels being assumed. Thus, the second
algorithm significantly reduces the complexity resulting in a simplified channel and
practical channel estimation technique. To improve the reliability of the initial

estimates of the coefficients, an iterative procedure was used for the two algorithms.

The iteration took place on the probabilities rather than the coefficients values. The
computed APPs in one iteration were updated and fed as a priori values for the
iteration. A scale factor with fixed and dynamic values was used in the update
procedure for the two algorithms. Simulations were conducted for the two algorithms
and the results were examined and investigated for the wvarious cases. The
performances of the two proposed algorithms were also compared against the

performance of LMS and RLS conventional estimation techniques.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

Multiple-Input Multiple-Output (MIMO) systems that use multiple transmit and
receive antennas to provide high data rates and achieve significant gain iﬁ channel
capacity emerged rapidly as the new frontier of wireless communications. Band-
limited (frequency selective) channels are narrow pipes that do not accommodate rapid
flow of data. Deploying multiple antennas at both transmitter and receiver broadened

this data pipe by exploiting the spatial dimension.

In this dissertation, the effects of imperfect multipath channel estimation on the
performance of MIMO diversity system employing STC was investigated. Then a new
technique to estimate the channel parameters for a two branch transmit diversity
scheme was derived. In addition,ktwo practical low complexity algorithms for MIMO

channels that are characterized as frequency selective fading were proposed.
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An effective and practical way to attain the promised increase in capacity of
MIMO channels was to employ STC technique performed in both spatial and temporal
domains. As a result, numerous MIMO schemes were developed that included STTC
and STBC to achieve high spectral efficiencies and performance gains. However, the
main problem of all these schemes was that they were originally designed and later
analyzed assuming known flat fading channels. In the real world, MIMO channels
often undergo frequency selective fading that causes ISI in the received signal. In
addition, the availability of accurate channel estimation at the receiver is not always
justified. In practice, it is impossible to achieve the perfect channel estimation
especially for frequency selective MIMO channels because a large number of channel

parameters have to be estimated at reduced transmit power for each transmit antenna.

A simple transmit diversity (STD) scheme utilizing STC and using two transmit
and multiple receive antennas had received recenﬂy a great deal of research attention.
The scheme appeared as a simple way to achieve the same diversity gain as MRC
scheme with low decoding complexity. However, the effectiveness of the proposed
scheme and most STC schemes relied on the assumption of known flat fading channel.
In reality, this will not be the case if the channel experience multipath fading and non-
negligible delay spread causing ISI in the received signal. Moreover, the diversity
benefits cannot be achieved unless the channel is accurately estimated at the receiver.
Hence, we conducted an analysis and comparison of the error performance of the STD
and MRC schemes with multipath channel estimation errors. Closed form expressions

for the BER of the two schemes were derived and the BER curves were plotted.
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Performance curves showed that the STD scheme is significantly more susceptible
to errors than the MRC scheme. The deterioration in the STD performance increased
rapidly relative to the MRC performance with » = 4 and 5% estimation error. Thus,
the practical implementation of the STD system should be carefully considered in
channels with large number of multipath components and channel estimation error

exceeding 5% at the receiver.

Our results showed the deleterious effects of inaccurate channel estimation on the
performance of MIMO systems and in particular the proposed STD scheme. Channel
estimation for MIMO systems is a major challenge and requires additional effort for
frequency selective MIMO channels because of the large number of channel
parameters to be estimated. Hence, the development of novel and effective channel
estimation techniques that can accurately estimate a large number of channel

parameter were required for MIMO systems utilizing STC.

We unveiled a new MAP based channel estimation technique amenable for two-
branch transmit diversity scheme employing STC. The multipath channel between
each transmit and receive antenna pair was characterized as frequency selective that
results in ISI. An equivalent discrete-time model of MIMO channel with ISI was de-
veloped. The channel parameters are the attenuation and delay incurred by the signal
transversal along the propagation paths. Assuming the channel varies very slowly for
the duration of the training sequence transmission, the parameters remained constant
during that time. Discrete realization for the channel coefficients were used even

though the original channel model is continuous in practice, this enabled us to apply
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the proposed MAP approach. Unlike classic estimation techniques, the presented
technique iterated on the probabilities of channel coefficients, rather than on the values
of the coefficients. This new MAP approach inherently used the principle of turbo
decoding, which utilizes both the a priori probability and the APPs. The APPs
expressions required to optimize the various coefficients were derived. For each
coefficient, the derived APPs were computed for M possible amplitude levels and the
level having the largest probability was selected as an estimate of the coefficient being
optimized. The proposed technique required successive evaluation of M probabilities
for each coefficient, which involved intensive computational operations. In particular,
the averaging performed over all coefficients (except the one being currently

optimized) if the number M of the amplitude levels was large.

To alleviate computational complexity, two low complexity algorithms were
introduced instead. In the first algorithm, we reduced the number of multiple
summations as we proceeded in the estimation process from one coefficient to the
next. Thus, the last coefficient was evaluated using a simple multiplication formula.
The computational operations in the first iteration were further reduced in the second
algorithm. We started the algorithm by randomly choosing for each coefficient a value
selected from the set of amplitude levels being assumed. To improve the reliability of
the initial estimates of the coefficients, an iterative procedure was used for the two
algorithms. Simulations were conducted for the two algorithms and the results were
examined and compared against the performance of LMS and RLS conventional

estimation techniques.
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7.2 Future Research Directions

We believe the estimation algorithms proposed in this thesis only scratch the tip of
the iceberg and thus many issues are still to be explored. As a continuation of the work

in this dissertation, the following research topics can be identified:

1. Max-Log-MAP Channel Estimation

We proposed a new MAP based channel estimation technique for two-branch
transmit diversity scheme in chapter 4. The APPs expressions required to optimize the
various channel coefficients were also derived. The next step would be to extend our
proposed technique to an arbitrary number of transmit antennas. Then, by taking the
logarithm of the expressions derived to compute the APPs for each channel
coefficient, the computational operations would be reduced to a simple logarithmic
addition. Thus, a reduced complexity channel estimation technique based on max-log-

MAP approach for MIMO systems would be developed.

2. Simplified Channel Estimation Algorithms

We introduced two low complexity algorithms that were derived from the general
technique to implement the computed expressions to optimize the channel coefficients
in chapter 6. The first and second algorithms were implemented using four and eight
amplitude levels, respectively. Following our approach, practical and low complexity
algorithms could be developed for max-log-MAP based channel estimation technique.
Then, the developed algorithms could be implemented using a larger number of

amplitude levels for the estimation of channel coefficients.
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3. Joint Channel and data detection Method

An approach that is receiving increasing interest is the investigation of joint
channel e‘stimation and data detection methods. Where data decision obtained from
decoding is used as additional training to refine the channel estimate. Combining joint
data detection and channel estimation with an iterative algorithm is a method that is
gaining popularity. Iterative channel estimation for MIMO systems use strategies that

were described above could be an interesting research topic to pursue.
4. Blind Channel Estimation

Blind channel estimation methods are of great interest because they avoid training
sequence and thus make efficient use of the available bandwidth. The challenge is to
develop an algorithm for blind channel estimation of MIMO systems utilizing STC
and operating in multipath environment. The algorithm based on the max-log-MAP

criterion described above with a focus on complexity issues could be pursued.
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