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ABSTRACT
Local gouging detection and tool size determination for 3-axis finish machining of

sculptured surface parts

Shahid Hameed Khan

Today compound sculptured surfaces have been widely used to design complicated
shapes and details of mechanical parts in the automotive, aeronautical, die and mold
industries. The technology of machining these surfaces with high quality and efficiency
is badly needed in the manufacturing industry. In Computer numerical control (CNC)
finish machining of compound sculptured surface parts, local gouging is a major concern
due to the geometric mismatch between the engaged regions of the cutting surface and
the part surfaces. Specifically, local gouging will occur at a cutter contact point along the
tangent direction, in which the normal curvature of the cutting surface is less than that of
the part surface. In the past years, some researchers have applied curvature analysis
techniques to local gouging detection for a single surface patch; however, a practicable,
reliable approach to evaluating the geometric mis/match between the cutting and part
surfaces has not yet been available. My research originally proposes an improved
approach to detecting potential local gouging for compound surface patches and to
determine an optimum tool size for local gouge free machining. This approach applies
comprehensive curvature analysis to the engaged regions between the cutting and part
surfaces in 3-axis finish machining by using different standard cutters. This research
contributes to the research on sculptured surface machining with in-depth understanding
about the geometric mis/match between the cutting and part surfaces and has great

potential impact to advance CNC machining technique in the manufacturing industry.
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Chapter 1 Introduction

1.1 Gouging in CNC Machining

Gouging is defined as an overcut/undercut phenomenon that is occurred by the
interaction between model part geometry and cutter geometry or movement. These days
in industries there is a high demand for parts with complex shapes mainly because of two
reasons. Firstly, because the physical laws require a product to have a special shape in
order to have good performance relating to aerodynamic or thermodynamic properties for
example the body of a modemn day car. Secondly, the consumer tastes tend to favor
product of aesthetic appearance. A lot of money is invested in the design and analysis of
these kinds of complex parts and if the part is gouged while machining, all the design and
analysis part will go in vain. Hence it is very important to check whether the tool used to
machine the part will gouge the part surface or not before the actual machining is done.
There are mainly two types of gouging namely global and local gouging. A brief

description is given below.

1.1.1 Global gouging

If a part surface is being machined by a tool at a point called the cutter contact point (CC

point) and if the tool crashes into the part surface at any point other than in the vicinity of
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2
the CC point, then this type of gouging is known as global gouging. This is illustrated

with the help of Figure 1.1-Figure 1.2 .In these figures the tool is moving along the part
surface at three different CC points namely A, B and C. In Figure 1.1 it can be seen that
the tool is machining the CC point A and no portion of the tool is crashing into the part
surface but as soon as the tool moves and starts to machine the CC point B, the other end
of the tool (see Figure 1.2) touches the part surface at the point D. At this point if the tool
follows the path from point D along the part surface. It will leave an uncut portion on the
part surface as can be seen from Figure 1.2, but if follows a path from CC point B to CC
point C, the other side of the tool will crash into the part surface and hence will overcut
the part as can be seen from Figure 1.3 .Hence on both of these cases, gouging will occur

and this type of gouging is known as global gouging.

Tool

Part Surface

Figure 1.1. Cutter machines the part surface at CC point A.
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/CC péint Underout Part Surface

Figure 1.2. Cutter machines the part surface at CC point B.

Gou?g /

CC point Part Surface

Figure 1.3. Cutter machines the part surface at CC point C.

1.1.2 Local gouging

If gouging occurs in the vicinity of the CC point, then this type of gouging in known as
local gouging. It occurs when the normal curvature of the part surface at a CC point is
greater than that of the normal curvature of the cutting surface of the tool. It has been
illustrated with the help of Figure 1.4. In Figure 1.4 (a), a tool is machining a part surface
at a CC point. At this CC point, the tool does not overcut the part in the vicinity of the

CC point and hence it can be seen that there is no local gouging. In Figure 1.4 (b), a
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4

bigger tool is used to machine the CC point and tool overcuts the part surface in the

vicinity of the tool and therefore local gouging occurs.

In this thesis work local gouging is checked at different CC points on the part surface
when being machined with different types of end mills on the 3-Axis CNC Machine. The
brief introduction about CNC machines and end mills and the different terminologies

involved with them is given in the following sections.

Rpm > RTool

Tool

s ‘
. ;
“ Y

.
y .
.
» >,
i i
. ‘
%

Figure 1.4. Tool and surface interaction at a CC point.

%’c / CC point
Part Surface Local Gouging %ce
(a) Without local gouging (b) Local gouging

1.2 Computer Numerically-Control Machining

Numerical control (NC) is defined by the Electronic Industries Association (EIA) as “a
system in which actions are controlled by the direct insertion of numerical data at some
point. The system must automatically interpret at least some portion of this data [14].
CNC is defined as a self-contained numerical control system for a single machine tool
that uses a dedicated computer controlled by stored instructions in the memory to

implement some or all of the basic NC functions [14]. CNC machining plays an
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important role in manufacturing industry. Unlike traditional machining methods, CNC

machines can manufacture parts with complex shapes and high precision. Most parts with
complex shape are currently machined with CNC machine tools. For example, the
turbine blades of airplane engines are machined by CNC machines. Usually CNC
machining has higher machining efficiency than traditional machining. They are being

widely used in the aeronautical, automotive, and injection mould/die industries.

1.3 CNC Machining Strategies and CNC Machine Types

1.3.1 CNC machining process

Generally, the CNC machining consists of three steps: (1) rough machining, (2) semi-
finish and finish machining, and (3) grinding/polishing. Rough machining removes the
excess stock material quickly to form a shape slightly larger than the part design, thus
high machining productivity or high metal removing rate is its primary concern.
Finishing machining produces adequate quality surfaces by cutting the rough shape to the
design. Better surface finishing requires costly and labor-intensive manual polishing at
the final stage. Adequate quality surfaces, no gouging, and minimum machining time are
the objectives of the finishing machining.  Different machining strategies and
determination of machining parameters lead to variations in machining productivity and

surface quality. Gouge free CNC machining is thus one of the most important

requirements of finish machining since it results in good surface quality.
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1.3.2 CNC machine types

CNC machines are classified into three types: 2'2-axis, 3-axis, and 5-axis CNC machines.
The cutter on these machines includes three common types: ball, torus, and flat end-mill
(see Figure 1.5). According to the different objectives of the rough and finishing
machining, normally 2}2-axis CNC machines are used for the rough machining, and 3-
axis and S-axis CNC machines are used for the finishing machining. Since this thesis
focuses only on 3-axis CNC machining, a brief description is given in the following

section.

- .

(a) Flat end-mill (b) Torus end-mill (c) Ball end-mill

Figure 1.5. Three types of common milling cutters.

1.3.3 Three-axis CNC machining

Three-axis CNC machines are quite popular in the manufacturing industry due to its
great features and added advantages. Three-axis CNC machining is exerted when a
cutter of a 3-axis CNC machine moves along planned tool paths. This is because a 3-axis
CNC machine executes three simultaneous motions including motions of the working
table along X- and Y-axis and the cutter motion along Z-axis. Determined by the

machine’s architecture, the main feature of the machine is that the cutter orientation with
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respect to the part is locked after the part is fixed on the worktable. A 3-axis CNC

vertical milling machine is shown in Figure 1.7, the cutter orientation is always in the

vertical direction.

Figure 1.6. Diagram of a 3-axis CNC vertical milling machine.

The 3-axis CNC machining feature enjoys some advantages. These advantages generally
are (a) higher stiffness and rigidity of the machine prevents chatter in machining; (b)
machine accuracy is high enough for finishing machining; (c) programming for tool paths
in 3-axis CNC machining is manageable; and (d) the machine is affordable even for small
businesses and its maintenance is not too expensive. Moreover, 3-axis CNC machining
is the main metal working operation in the production process. Statistics show that
besides the accurate prismatic parts, a majority of sculptured parts in the die/mould
industry are made with 3-axis CNC machines. Therefore, 3-axis CNC machining is a

major force in manufacturing industry.

While 3-axis CNC machines are popular, they are not universally able to mill all parts. In
certain setups, the cutter cannot access some surface regions (or surface patches) of a part

without interfering with the part. Three-axis CNC machining for some complex parts is
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only practical when all the surface patches to be machined can be accessed by the cutter.
This means that for some parts with complex shapes, a preferred solution is 5-axis CNC

machining

1.4 Related Work on Gouging Detection and Tool Size

Determination for 3-Axis CNC Machining

Gouging is a common problem and has not been well resolved up to the present time.
Gouge occurs in NC machining, but it may be caused in the design stage. Gouge can be
eliminated either by using a smaller cutter or by revising the original design geometry.
Therefore, the outcome of gouge detection is crucial for the consideration of parts

modeling.

Among the published, curvature-related works, Glaeser et al. [6] and Pottmann et al.
[7] mathematically described the concept of exhaustive curvature comparison and
presented local and global conditions for 3-axis collision-free milling of sculptured
surfaces. But neither a feasible method to implement these concept and conditions nor a
practical example to verify them was provided. Yoon et al. [9] proposed a local
condition for 5-axis collision-free milling based on the Taylor’s quadratic approximations
of the tool and part surfaces in the vicinity of a cutter contact point. Later Yoon [10]
introduced the concept of machined region width to optimize the tool orientation for 5-
axis machining. Since he assumed that these approximations were accurate in a large
area, which is not true, these works are impractical. Rao and Sarma [1] applied the

curvature comparison technique to the part and cutter-swept surfaces in order to detect
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local gouging when using flat end-mills in 5-axis machining. Wang and Yu [17]
determined the tool orientation along the minimum curvature direction for wider
machining strips and carried out rough inspection for gouging. Unfortunately, detailed

inspection for bull-nose end-mills was not conducted in these two research works.

To detect local gouging and select tool size, many approaches have been proposed
without using the curvature-related method. Oliver et al. [11] first identified highly-
curved regions on part free-form surfaces and then detected local and global gouging for
3-axis machining of these regions. Yang and Han [3] located iso-phote curves on the
sculptured surfaces to find the patches accessible in 3-axis machining and selected a
number of cutting tools for the minimum machining time. Yu et al. [5] initialized the tool
orientation according to the tangent plane at a CC point on the surface and then
determined a final orientation by detecting and eliminating the interference between the
cutter and the part surface. George and Babu [12] found the self-intersection curves of
the cutter location surface by applying optimization techniques and solving differential
equations and deleted the locations that cause local gouging. Hatna and Grieve [2] pre-
processed the surface in order to discard the zones of potential interference and generated
interference-free tool paths in a simple sweeping process of the surface parametric space.
These methods either cannot accurately detect local gouging or are very tedious in

computation.

To overcome the drawbacks of the existing local gouging detection approaches, this
research work proposes an improved approach to comprehensive curvature analysis for

detecting local gouging in 3-axis compound sculptured surface machining. First, the
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principal curvatures - the minimum and the maximum normal curvatures - and their
corresponding directions - principal directions - of the tool’s cutting surface are
calculated, and based on the relationship between the tool and the part coordinate
systems, these principal directions in the tool coordinate system are transformed to the
part coordinate system. Second, the principal curvatures of the part surface and their
directions are found in the part coordinate system. Then based on Euler’s formulae, the
normal curvatures of the cutting and the part surfaces can be calculated and compared in
each tangent direction. This new technique is not only applied on the interior points of
single surface but also on the interior points as well as on the boundary points of a
compound part surfaces Finally, some practical examples are provided to verify this
proposed approach. This research provides an in-depth understanding of the tool-surface
geometric mismatch and can be readily applied to CNC machining in the manufacturing

industry.

The part surface and the cutting surface of the tool is represented mathematically in
the form of parametric equation in the Computer Aided Design and Computer Aided
Manufacturing Systems (CAD/CAM). A brief introduction to the popular ways of

representing curves and surfaces is given in the next chapter.
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Chapter 2 Representation of Curves and Surfaces

2.1 Parametric and Non-Parametric Forms

A three dimensional (3D) object is composed of curves and surfaces. These curves and
surfaces must be represented in the form of mathematical equation. The two most
common methods of representing curves and surfaces in geometric modeling are
parametric and non-parametric form. In the parametric form, the x, y and z coordinates of
a point on a curve or surface are related to a parameter whereas in the nonparametric
form the x, y and z coordinates of the point are directly related to a function. The
parametric and nonparametric representation of a circle with radius R in the xy plane is

shown in Equation (2.1) and (2.2) respectively.

x=Rcos@, y= Rsinf, z = 0 6e[0,27] (2.1)
X4y —R =0,z=00r y=tJR* ~x*,z=0 (2.2)

Both of the forms have their own advantages and disadvantages depending on the
application for which the equation is used. Some properties of the parametric and

nonparametric form are listed below.
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Properties of parametric form:
e FEasy to trace a curve or surface.
e Relatively difficult to check whether a point lies on the curve, surface or not.
e Closed (e.g., circles) and multi-valued (e.g., parabolas) curves and surfaces are
easy to represent.
e Easy to evaluate tangent line to the curve when the curve has a vertical or near
vertical tangent.

e Axis independent (easy to transform to another coordinate system).

Properties of non-parametric form:
e Difficult to trace curves or surfaces.
e FEasy to check whether a point lies on the curve or surface.
e Closed (e.g., circles) and multi-valued (e.g., parabolas) curves and surfaces can be
represented.
e It is difficult to evaluate tangent line to the curve when the curve has a vertical or
near vertical tangent.

¢ Axis dependent (difficult to transform to another coordinate system).

In parametric form, each of the coordinates of a point on the curve or surface is

represented separately as an explicit function of an independent parameter
C(u)=(x(u),y(u)) (2.3)
Thus, C(u) is a vector-valued function of the independent variable u and the range

of u is usually is normalized to [0,1]. Therefore, the parametric representation is not
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unique. To define a surface, two parameters are required, # andv. A parametric equation

of a sphere of radius R is given in Equation (2.4). Holding u fixed and varying v
generates the latitudinal lines of a sphere and holding v fixed and varying u generates the

longitudinal lines as can be seen in Figure 2.1.

Rcos(27rv)cos£(2u—1)
x(u,v) 2
S@u,v) =| y(u,v) | = Rsin%(Zu—l) (uef0,1],ve[0,1]) 2.4)

z(u,v)

—Rsin(27zv cosz 2u-1
2

A Y u CUrves
AR
/ ¥ \ 4
X

A I .
17 —
. 1
|
|

P
Y

|
|

\ X
/

/]

|
|
|

v curves \ /

Figure 2.1. Parametric representation of a sphere.

Since interactive graphics is one of the most important feature of CAD/CAM/CAE

and it is easy to trace a curve or surface and also because of the added advantages listed
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above of using the parametric form, in CAD geometric modeling, the parametric form is

used commonly.

2.2 Parametric Representation of Curves

The standard curves (e.g. circle, ellipse, hyperbola etc) are generally not sufficient to
meet the functional requirements of the mechanical parts such as car bodies, airplane
blades, shoe insoles that require free form curves or surfaces. So curves should be
represented in such a way that it is represented with the help of control points and if
required, the shape of a curve can be changed by changing the control points. Major
CAD/CAM systems provide three types of free form curves namely: Bézier Curve, B-

spline and NURBS Curve. A brief description of these curves is given below.

2.2.1 Beézier curves

Bézier curve, named after its inventor Pierre Bézier, is defined by the vertices of a
control polygon that enclose the resulting curve. The degree of the curve is one less than

the vertices of the polygon. Mathematically, it is expressed as

P(u)= Y P,-B,,(n), uc[0,1] 2.5)

i=0

‘where n is the degree of the base functions and u is the parameter. The number of control

points is n+1. The base function B, ,(n) is the Bernstein Polynomial and is defined as
n! ; ;
B, () =———<u (1-u)" (2.6)
i! !

(n—i)

The properties of the Bézier curve are listed below
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o Bézier curve passes the first and last control points (Py and P,).

» The control points compose a control polygon with n + I vertices.

o The first-order derivatives (tangent vectors) of a Bézier curve at its ends are

P = (B 7F0) (2.7)

P =n-(P,-P_,)

'
(u=1)

» The curve is tangent to the first and last edge of the control polygon.
o If one control point is changed, it will affect the shape of the whole curve which is
also known as global modification property.

o The sum of all the base functions is equal to one

Despite of the several advantages of the Bézier curve it has some disadvantages such as
global modification property and the dependency of degree on the number of control
points i.e. if higher number of control points is used, say six, it will result in a curve of
degree five which is generally not used in CAD/CAM systems. These disadvantages are

dealt with the use of B-spline curve which is discussed below.

2.2.2 B-spline curves

B-spline curve is a generalization of Bézier curve. It shares most of the characteristic of
the Bézier curve but has some added advantage such as it provides local control of the
curve shape as opposed to global control and it also has the ability to add control points

without affecting the degree of the curve. Mathematically, it is expressed as
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P(u)=Y PN, (). (4 Sust) 2.8)

where the base (or blending) functions, NV, , (1) , are defined with the recursive formula.

(u =t )N, (u) + (tiy —u)N (1)

N, (u)=
‘ ti+k—] - ti ti+k - ti+1 (2 9)
1 ¢, fu<t, .
N, (u)= .
0 otherwise

where k is the order of the base function and is not related with the number of control

points. The base function N, () adjusts the effect of the control point P on the curve

shape; strong effect on the closer portion of the curve and weak effect on the farther

portion of the curve.

In this definition a sequence of non-decreasing integers, ¢, called a knot vector specifies
the range of the parameter u, and defines the base functions. Since there are (n+1) base

functions, N,,(w),N,,(u),...N,, (u),..N, ,(u), to be determined, the (n+k+1) knot

values (f,tor,,,) are determined beforehand. In addition 0/0 in Equation (2.9) is pre-

assumed to be zero. Basically two types of knot vectors are often used: periodic knot
vector and non-periodic knot vector. The periodic knot vector can be determined by the

following equation
t=i—k (0<i<n+k) (2.10)
The non-periodic knot vector can be determined as follows,

¢ When the value of » is greater than or equal to the order of the base functions %,
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the non-periodic knot vector are determined by

0 0<i<k
t,=5i-k+1 k<i<n (2.11)
n—k+2 n<ig<n+k

o When the value of n is less than the order of the base functions £, the non-

periodic knot vectors are determined by

t =

1

0 0<i<k
{ l 2.12)

1 k<i<n+k

Because the parameter intervals defined by the periodic and non-periodic knot vectors by
Equations (2.10), (2.11) and (2.12) are uniform, the B-spline curve based on the uniform

knots is called a uniform B-spline curve.

Properties of B-spline curves

o The order of the curve can be changed without changing the number of control

points as can be seen in Figure 2.2.

Quadratic B-Spline
ubic B-Spline
Fourth Order

B-Splinx

vertex

vertex

vertex

Figure 2.2. Different order B-spline curves with four control points.
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o Curve shape can be modified locally by moving the control points. A control

point only influences & curve segments of the B-spline curve.

B-spline curves were able to overcome the problems encountered by the Bézier curve i.e.
the global modification property and the dependency of the degree on the number of
control points. But it still has some disadvantages for example one cannot exactly
represent the conic curves (circle, parabola etc.) using the B-spline curves. The conic

curves can be exactly represented using NURBS curve which is discussed below.

2.2.3 NURBS curves

NURBS stands for Non-Uniform Rational B-Spline. It is a generalization of all the curves

discussed above. Mathematically it can be represented as

S BN, )
P(u) =+ (2.13)
2Ny ()

Where P, are the control points, and N, (u) are the &y, degree B-Spline basis functions

defined by the non-uniform knot vector.

For NURBS curves, each control point has an associated weight 4, value that affects
the shape locally near that point. This weight value is the result of the rational aspect of
NURBS, which means that the equation is defined as a fraction or ratio of polynomials.
The purposes of the weights are to allow for exact descriptions of conic shapes and to add
more user control over the shape of the surface. However, in practice, changing a control

point weight value can cause more problems for curve or surface fairing. The best
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approach is to apply weight changes only near the end of the design process to achieve

very specific local effects.

The NURBS equation can be represented in terms of rational (function) coefficients of

the control points:
Pw)=) R,)P, (2.14)
i=1

N, “h,
where R, (u)= T—’fg—l)—’—

Dk N )
j=0

(2.15)

The properties of the (rational) basis functions of NURBS, R, (). Thus, they carry
forward nearly all the analytic and geometric characteristics of their non-rational B-

Spline counterparts. In particular:

Non-negativity: each rational basis function is positive or zero for all parameter

values, ie., R, (u)=0.

e Partition of unity: the sum of the rational B-Spline basis functions is one,

ie. D R, (u)=1,foralluin [0, 1].

i=1

e Local support: R, (u)=0 except in the range wu, <u<u,,, This property
guarantees that changing the location of a given control point will only change the
shape of the curve in its neighborhood — not globally.

o Generic case of B-spline: If all the weights, 4, =1, then the NURBS becomes the

usual B-spline curve.

From the above definitions and properties, some other properties of the NURBS curve
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can be derived:

e P(0)=P, and P(1)=F,, that is, the curve begins at the first control point, and

ends at the last control point.

o Affine invariance: Since the curve depends linearly on each control point — hence
the affine transformation can be applied (rotation, translation) to the curve by just
applying it to the control points.

« Convex hull property: The curve lies entirely within the convex hull of the control
points.

e Local control: A change in position or weight of the iy, control point, P;, will only

change the curve in the interval[u;,u,,,,,]. Also note that increasing the weight

tends to ‘pull’ the curve towards the corresponding control point; decreasing the

weight ‘pushes’ the curve away from the control point.

Another big advantage that a NURBS curve has over a B-spline is that NURBS can
exactly represent the conic curves- circles, ellipses, parabolas, and hyperbolas. By
contrast, these curves can be represented by B-spline equations only in an approximate

manner.

2.3 Parametric Representation of Surfaces

2.3.1 Bézier surfaces

The Bezier surface is formed as the Cartesian product of the blending functions of two

orthogonal Bezier curves.
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n m

P(u,v)=Y. > P B, (B, (ue[0,1],ve[0,1])

=0 j=0
where P, is the i, j-th control point. There are n+1 and m+1 control points in the » and
v directions respectively. The corresponding properties of the Bezier curve apply to the

Bezier surface:

o The surface does not in general pass through the control points except for the

corners of the control point grid.
o The surface is contained within the convex hull of the control points.

Along the edges of the grid patch the Bezier surface matches that of a Bezier curve

through the control points along that edge.

Figure 2.3. Convex hull property of Bezier surfaces.

2.3.2 B-spline surfaces

B-spline surface is defined by the following equation:
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" m

Pw,v)=Y> P N, )N, () (s, Su<s,.t,,Sv<t,,) (2.16)

i=0 j=0

where P;; is the i, j-th control point , N, («)and N, (u) are B-spline basis functions of

degree k and /, respectively. These base functions are defined by the knot vectors, sy, s,
oo Sp+i and fo, ty, ... tem, respectively. When a B-spline is based on non-periodic knots, it

has properties similar to those of a Bézier surface except its strong local control property.

2.3.3 NURBS surfaces
A NURBS surface of order £ in the u-direction and / in the v-direction is a piecewise

vector function, defined as:

h

Z h P, N, ()N, )

P(u,v) == ’:0 ~ (ue [sk_l,snﬂ],v € [t,ﬁl,tm+1 ]) (3.15)
D kN, @) N, (v)
i=0 j=0
Pu,v)=> > R, ,(u,v)P, (3.16)
i=0 j=0
where

N, (u)-Nj’,(v)-hiyj

S h N, (u)N, (v) '

0

Ri,j(“av)=

i=0 j
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As for the B-Splines, the P, form a (n+1)x(m +1) mesh of control points; each

i

control point is associated with a positive, real weight, #, .; and the N,,(v) and N, (u),

(R

are the usual B-spline basis functions.

By and large, all the properties of NURBS curve, such as non-negativity, partition of

unity, local support, etc. Furthermore, it is easy to see that when each’, =1 , the

summation in the denominator is also equal to 1 (partition of unity property of B-spline
basis functions), and therefore the NURBS will become a B-Spline surface. Further, if the
knot vectors are restricted to the form {0, ..., 0, 1, ..., 1}, then the basis functions

become the Bezier basis functions of degree », and so P(u,v) is a Bezier surface.

Since NURBS are piecewise rational polynomials, they allow us exact representations
of some important surface/curve types (e.g. sphere/circle). With this characteristic, we
can potentially use the same representation scheme for all surfaces of a solid model,
without having to write separate “case-based” functions to handle each different surface

type in a CAD program.

For most practical designs, NURBS are considered to be fairly powerful — they can be
used to represent complex shapes, and allow easy interface for several important CAD
functional requirements. These requirements include ease/efficiency of computing the
surface coordinates, computing derivatives, changing shape of the surface, local control

on the shape using either the control mesh, or the weights, or the degree of the
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polynomial etc. Therefore, in this thesis the NURBS surface is used to represent part

surface and provide enough accuracy and easy adjustment properties.
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Chapter 3 Elementary Computational Differential

Geometry

The differential geometry of curves and surfaces is fundamental in Computer Aided
Design. In order to detect gouging, the normal curvatures of the part surface and the
cutting surface have to be calculated. A brief description of the mathematics involved in

determining the normal curvatures of curves and surfaces is discussed below.

3.1 Differential Geometry of Curves

3.1.1 Tangent to a curve

A unit tangent vector (T) to a parametric curve, r=r(u) is given by

T= dr J\dr 4.1
du/ |du
provided that% #0. If arc length s is taken as a parameter, then the tangent vector is
u
given by
y L .2)
ds '

From the above two equations and by denoting differentiation with respect to u by a dot

r=sT (4.3)
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3.1.2 The principal normal vector, binormal to a curve

. dT . . . .
The vector T = o is normal to the unit tangent vectorT. A unit vector N in the
u

direction of T is known as the principal normal vector. When the parameter is the arc
length s, the two vectors are related by the following equation

ar _

k-N 4.4
I (4.4)

where k is as the curvature of the curve. A third vector defined by the cross product of
the unit tangent vector (T) and principal normal vector (N) is known as the binormal
vector B . Mathematically, it is expressed as

B=TxN (4.5)
The three vectors are shown in Figure 4.1.

A=z

Figure 3.1. The tangent, normal, and bi-normal vectors of a space curve.

The plane defined by normal and binormal vectors is called the normal plane and the
plane defined by binormal and tangent vector is called the rectifying plane. The plane

defined by normal and tangent vectors is called the osculating plane.
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3.1.3 Torsion of a curve and Frenet-Serret formulae

The twisted nature of a curve can be determined by evaluating Al For a planar curve
s

%‘E— =0, but for the non-planar curve ;jﬁ =—7-N, where 71is called the torsion of the
s s

curve. Also it can be shown that ;ﬂ =7-B—-k-N.
s

These equations are collectively known as the Frenet-Serret formulae. They are listed

below

dr

=T 4.6
s (4.6)
dT

Z—=k-N 4.7
ds S
d—N:r-B—k-N (4.8)
ds

dB

—=-7-N 49
=T 4.9)

If the differentiation with respect to s is represented by a prime, the Frenet-Serret

formulae can be represented in matrix form as

T 0 k olT
N'l=|-k 0 <||N (4.10)
B' 0 -r O||B

When the parameter is u rather than s, the equivalent equations are
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T=t/s (4.11)
k-B=(x¥)/s’ (4.12)
N=BxT (4.13)
v = (Fx¥)/ 5% (4.14)
§ =¥l (4.15)

3.2 Differential Geometry of Surfaces

3.2.1 Tangent plane and surface normal vector

Tangent plane at a point r = r(uo,vo) is the union of tangent vectors of all curves on the

surface that passes throughr =r(u,,v, ), as shown in Figure 4.2.

Figure 3.2. The tangent plane at a point on a surface.

A unit surface normal vector n at point r =r(u,,v, ) is a unit vector perpendicular to

the tangent plane, as shown in Figure 3.3 , and is given by

n =J_r(gl;x§£)
Oou Ov

The sense of n must be chosen to suit the application

(4.16)

or 6rl
...___x J—
ou Ov
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Figure 3.3. The normal to the point on a surface.

3.2.2 Curves on a surface

Let a parametric surface be represented by r=r(u,v), then r = r(u (1) ,v(t)) is a curve

lying on the surface. A tangent vector to a curve on a surface is evaluated by

differentiating r=r(¢) with respect to the parameter ¢ by using the chain rule.

Representing differentiation with respect to ¢ with a dot, the tangent vector is given by

P= e Au (4.17)
ou ov

where

w=[u(0),v(0)]

[ox  ox ]
ou ov

4| {a_r ir.}
ou Ov ou Ov
0z Oz
[ou ov]
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3.2.3 Normal curvature of surfaces

The normal curvature k, of a surface in the direction Au is the curvature of the
intersection curve between the surface and the plane containing the surface normal n and
the tangent vector. The normal curvature of the surface is thus a measure of how much a

surface is "curving" in a certain direction as shown in Figure 3.4, it is calculated by

radius

Figure 3.4. Normal curvature of the surface.

w -D-u
k= 418
" a'-Gu ( )
Where G is the first fundamental matrix and is given by
al o o or
G= & g12 — 6uT ou atlT av (4.19)
1 8n] |Or Or Or or
ov ou oOv ov
D is the second fundamental matrix and is given by
o [
2
D=|: 1 12j|= 5124 oudv (4.20)
by d]T| g P o
ovou o?
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3.2.4 Principal curvature of surfaces

The maximum and minimum values of the normal curvatures are known as the principal

curvatures and the direction in which %, takes the maximum and minimum values with

respect to u is called the principal directions of the normal curvatures. Principal

curvatures and directions can be calculated as

From Equation (4.18), we have

W'Gu-k, =u"Du

or Du-Gu-k, =0
(D-G k)i =0
or d, —k,g)a+(d,-kg,)v=0
and (d, —k,g,)u+(dy,—k g,)v=0 4.21)

FEliminating u and v, we obtain

|G

an ~(gndy +4d,,8,, — 28,4, )k, +|D| =0 (4.22)

This equation can be considered as a quadratic equation. So we have the following

results;

D
K :kmakain :M
G|
H=(k_ +k )/2= (g dr+dugn—2gndn) (4.34)

e
ok =H+JH -K; k,=H-VH*-K
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where K is called Gaussian Curvature and H is called Mean Curvature. Kyax and Kpyi, 18

the maximum normal curvature and minimum normal curvature.

Meanwhile, the principal direction of the maximum curvature T is

§,max

=du,, S, (u,v)+dv, S, (u,v), where du, and dv, are obtained by the

§,max

solving the system of linear equation given in Equation (4.21)

[d"max _ | Ko 812 =y (4.35)
dvmax d]] —k ,max 'gll

s

If Equation (4.35) comes out to be a null matrix, then Equation (4.36) is used to obtain

the values of du,, and dv_,,

[dumale _ ks,max "En _d22 (4 36)
dv Ay =K, e " &1

max

Similarly, the principal direction of the minimum curvature T is

s,min

T

§,min

=du, -S,(u,v)+dv, -S (u,v), where du_, and dv, are obtained by the solving

X

the system of linear equation given in Equation (4.21).

!:dumaxi| — ks.min 'g12 —d12 (4 35)
dvmax dll —.ks.min ) gll .

If Equation (4.35) comes out to be a null matrix, then Equation (4.36) is used to obtain

the values of du_, and dv,

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

dumax — ks,min 'g22 _d22 (4 36)
dv d21 _ks,min 'g21

max
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Chapter 4 Principal Curvatures and Directions of
NURBS Surfaces

In CNC finish machining of sculptured surface parts, which are usually designed with
NURBS surfaces, the geometric difference between the cutting tool and the part design
surface in the vicinity of a CC point determines the local shape of the machined surface.
To represent the shape in the neighborhood at the CC point on the part surface, it is
necessary to determine the normal curvatures along different tangent directions and they
can be calculated with the principal curvatures. The derivations of the principal

curvatures and directions of a NURBS Surface are provided in the following.

Since a part is designed in the part coordinate system, its NURBS surface is generally

represented in this system as

Z W, 'Pi,j 'Ni,k(“)'Nj,z(V)
S(u,v) =222

m n

ZZW,-,,- 'Ni,k(u)’Nj,/(V)

i=0 j=0

(u€la,bl,ve(c,d]) 4.1)

where P, the controls are points and w, ; are their corresponding weights. N, , (1) and
N, ,(v) are the basis functions or order k and / respectively. u and v are the parameters

of the basis functions. The first derivatives of S(u,v) in terms of u and v are denoted as
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S,(u,v) and S, (u,v), respectively. The second derivative in terms of u is denoted as

S, (,v),ofvas S (u,v),andofuandvas S (u,v).

The above NURBS surface can be represented in the matrix form as

WooBoo WourFoy 0 WourBon | | Noy(¥)
I:No,k(”) N,@) - N,, (u):l W1,o:-P|,0 W p11 Wi, '. B, | N‘J:(v)
Su,v)= Wm’O‘P’"’O W’”»"P'"J Wm,nr'Pm,n Nn’,(v) (42)
Woo Wou 0 Wou | | Nos(¥)
I:No,k(“) N, (@) - N,, (u)] W:1,0 W” oW | N,,,:(v)
Voo Wpa W | [N 0)

This equation can further be simplified by assigning U and V for the base function

matrices
U=[Ny@) N - N, @] (4.3)
V= I:NO,I (w) N, - N, (”)] (4.4)
Woo Foo  Wor-Bow 0 W, R
Wo By W, B, o ow, B,

The scalar form of matrix 1s represented using X,

w, P

m,0 m m,l m,n m,n

w,,-F,

m

Y, and Z matrices, and the weight matrix is denoted as W.

Woo " Xoo  Wori Xor " Wo, Ko
W, X WX oW, X
1.0 *10 L1 %1 1a "X
X= . . . (4.5)
wm,O : xm,O Wm,l ' xm,l T Wm,n : xm,n
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Woo Yoo  Woi Yor 0 Wou Vo
v= Wio :'yl,O Wiy :'yu Win :'yl,n (4.6)
L_wm,O ) ym,O Wm,l ’ ym,] o Wm,n ) ym,n
_Woo Zoo  Woi 2o Won "Zon
7 = Wio :' Zip Wi :' Z1) Wi :' Zin (4.7)
__wm,O ’ Zm,O wm,] "2 Wm,n Zmn
Woo  Wou Wo.n
W= Wio W:Ll Wi (4.8)
Wm,O Wm,l Wm,n

Substituting the above equations into the equations of the NURBS surface to obtain the
scalar form.

wwy) | [UXV'
x(u,v) V) U.W'VTT
S,v)=| yu,v) |= yy:”(i”vv)) = S;Z]T (4.9)
 w,v) | [U-WVT

z(u,v)

4.1 The First and Second Derivative of Base Function of B-
Spline

According to [13] ,appendix I, the first derivative of B-spline base function:

Ni,k—l _ Ni+],k~1
tp—t

i+l

Ny =(k—1)( (4.10)

i+k-1 " Y i+

and
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N, N.
Nij =k~ 2)( LacSSRLL ] 4.11)
i+k=2 " i Livka _ti+1
Second derivative:
N/ N/
:(k_l)( ik=1 i+1,k-1 j (412)
livka _ti ti+ _tm

4.2 The First and Second Derivative of NURBS Surfaces

In order to simplify the calculation, the NURBS surface can be represented as

Sty =)

D(u,v)

(4.13)

where

ZW,, N, ()N, (v)

=

D(u,v)= fw,, N,, () N,,(v)

i=0 j=0
With the help of Equations (4.5) and (4.6), the first derivative with respect to u of the

NURBS surface can be calculated as shown in the following equations

S, (u,v) =§(N(u,v)/1)(u,v)) - (N" (”’V)J—(N(”’V)'D“ (”’V)] (4.14)

u D(u,v) D? (u,v)

where

:ai{ 'S w, BN, (N, ,(V)J

0 j=0

=

> w, P, N, ()N, (= ZN’ (u)Zw PN, (v)

i=0 j=0

In the matrix form the above equation can be represented as
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N, (u,v)=[ N, @) |- ([ ;)X | i.j])'[NJJ(V):I:

Woo Foo  Wor By 0 Wour B, ]VbJ(V)
P w, B, -~ w, B N,,(v)
W14, 4, L L1n 4
[Ny, ) Ni@) - N @] 0% MR :
Wm,O'Pm,O Wm,l'Pm,l wm,n'Pm,n Nn,l(v)
and
a n m
D, (u,v)=—-— Zwi,j 'Ni,k(u)'Nj,l(V)
Ou | 130 55

= Z w, ;N @) N, (v) = Z N/, (u)Z w, N, (v)
i i=0 j=0

In matrix form, the above equation can be represented as

D, (u,v)= |:N,~',k (u)]'[wi,j]'[NjJ(v)]

Woo WYWou 0 Wi No,1 (V)

i ' W, w‘ Wn N. (V)
=[N, N,@) - N @] o || Moo

Woo Way 00 W, NnJ v)

Similarly the first derivative of the NURBS surface with respect to the parameter v

can be calculated as shown in the following equation

sv(u,v)=w=(ﬂ]—(N'DVJ (4.15)

ov D D?

Nv(u,v):f{ "3 w, PN, (u)- Nj,(v)]

In the matrix form
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(wv)=[N k(“)] ([ ] [,J){N},,(v)]

Woo Pog Wou Boy o oW, By, N(;,l )
w . -P w,-P o w, P N/ (v
Z[No,k(“) N, @ - N, (u):l 1,0: 1,0 1,1: e l,n: | 1/( )
Wm,O ’ l)m,O Wm,] ’ Pm,] e wm,n ' Pm.n Nr,t.l (V)
and
D, (u,v)=— { Zwi,jN,.,k(u)Nj,,(v)}
i=0 j=0

=

> w,, N, N, = SN, @)D w,, N, (v)
i=0 j=0

i=0 j=0

In the matrix form, the above equation can be written as

D, (ua v) = I:]v:k (u)] ' [hi‘jjl ' [Nj,l(v)]

WO,O wo‘] cae WO,n N(;,/ (V)

W, W, e W NI v
=[N0,k(u) Nl,k(u) e Nm’k (u)]_ 1,0 'l,] 1.n ) l'lz( )

Wao Wm’l W, Nr,ll (V)

The double derivative of the NURBS surface with respect to the parameter u and v

can be calculated as shown in the following equation.

-5 (5)-2(2(2)-5(5 22
WA au-ov\ D) ovlieulD o D?

2(_Dv -Nu)+[ij_(_2N-Dv D,  O(N-D, )/6v)

D? D D’ D?
. .D - . N D
(B (M (MDD (B ) (HB) 1
D D D D D
where
N, (wv)=>> w,-P N ()N, = ZN (W) W, PN (v)
i=0 j=0 j=0

The above equation can be represented in matrix form as follows
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(u,v) [ 1(”)] ([ ] [i,j])'[N},,(V)]

!

Woo Poo Wou Py 0 W, By, Ny, (v)
!

o P oWy By o w, B, Nu(v)

Z[N(;,k(“) N () - N, (“):I
’ Pm,] '” wm,n ’ Pm,n Nr,u,[ (V)

Woo Pro Wa

and

(u,v)= " iw N ()N, (v) = ZN'k(u)Zw ‘N (v)

i=0 j=0

The above equation can be represented in matrix form as follows

D, (uv)=[Nu@][w, [N, ]

Woo Wou U Wou | | N, (;,1 (v)

WMo Wi 0 W, N, 1,,1 v)
=[Ny, () N,@) - N, @] . . S P

Wm,O Wm‘l e Wm,n NI:,[ (V)

Similarly the second derivative with respect to u of the NURBS surface can be

calculated as shown in the following equations

0’ [N) 0 ( 0 (ND G, (Nu N-Du)
(u V) i | | = = - 2
D) ou\ou\D ou\ D D

D,-N, N, ( N-D,-D, 6(N-Du)/6u)
+ D -2 +

- D D’ D?
:Suu(u,v)=_(zDu'2N“ +(N““)+2(N'D"3'D"j—(DW;Nj (4.17)
D D D D
where
N, (u,v)=> > w P N (u)N, (v)= ZN,.'fj(u)Zw,.J-P,.‘j-Nj‘,(v)
i=0 j=0 =0
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The above equation can be represented in matrix form as follows

N (9) =[N, @) ][, ] %[ B, 1) [V

Woo Boo W, By o MQJz'I%m ]VBJ(V)
W, P, w,, P w, P N (v
=[N(;’,k(u) N]/‘rk (u) . N” . ( )] 1,0 : 1,0 1,1 ) 1,1 1,n : L,n ],[.( )
Wm,O : Pm,O wm,l ' Pm,l T wm,n ' Pm,n Nn,l (V)
and
D,, (u,v)= w, NI ()N, ,(v) = Z N @)Y w N, (v)
i=0 j=0 j=0
_I:Nl"k(u ] [sz:l |: j,[(v):l
Wo.o Wou " Wy, Ny, (v)
" 1 1 W o W n N (v)
=[Ny, @) N, () - Ny, (u )] . I B
w w W | [N, ()

m,0 m,l
and the second derivative of the NURBS surface with respect to v can be calculated as
shown in the following equations
O*(NY 0(0(N (N, N-D,
S,uVy=—|=l=—|=—| = ||== —"
ovi\D) ovioviD ov\D D

D,-N, N, [2ND D,  OW- D)/Gv)

T p* D D’ D?
=8, =222 ) [ No ) of VoD oDy | (D NV (4.18)
D D D D
where
Nw(u,v): Zw,.‘j-P,.,j-Nl.‘j(u)~N;',,(v)=ZNi,j(u)-w,.‘j-P,.JzN}",(v)
=0 j=0 i=0 =0
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The above equation can be represented in matrix form as follows

N, () =[Ny@]-([w, ][R, ) [V, 0]

Woo Poo Wou P o W, By, N(;",(v)
[Nos@) Nl - Nyoy]| o Be P e B NG

Woo Py Wo P ow,, P NDO)
and

n

Dw(u,v)zz

w N NI, W) =D N, w)w > N,
i=0 i=0 j=0

[ Do [0

M=

j=0

e,
11

Woo Wou 0 Wy, N(’)’,l (v)

Wio Wi 0 W, lef[ (v)
=[Ny, () N,@ - N, ]| . S

Wm.O wm,l e Wm,n erll,/ (V)

Based on the derivative formulas of a NURBS surface S(u,v), the first and the

second fundamental matrices of this surface, denoted as G and D respectively, can be

calculated. Specifically, G is

G-= g 8 - Su(u,v):-Su(u,v) Su(u,v):-Sv(u,v) (419)
g2 8 Sv(u,v) -Su(u,v) S, (u,v) 'Sv(uav)
and D is
Do d, d, _ n-S_(u,v) n-S, (u,v) (4.20)
dy, dy n-S, (u,v) n-S, (u,v)
where the unit surface normal is defined as

n= I:nx,ny,nz ]T =8, (u,v)xSV(u,v)/ g,'8n—8h - The maximum and the minimum
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curvatures of the part surface are represented as k£, andk respectively. The Gauss

,max s.min ?

curvature K and mean curvature H can be calculated as

2
K =K, a Ky min =y dymdy d‘j (4.21)
811828
and
H =l.(ks,maX +ks,min) =l. 81 dy—2-8p -d122+g22 d, (4.22)
2 2 g1 8»n —8n

Hence, the maximum curvature isk. . =H +vH* -K , and the minimum curvature is

§,max

Meanwhile, the principal direction of the maximum curvature T, is

§,max

=du, -S,(u,v)+dv,,, S, (u,v), where

I:dumax:l =|:ks,max 'gZ] —dZI} (4 23)

§,max

dvmax dll —ks,max ' gll

Similarly, the principal direction of the minimum curvatureT is

s,min

T

§,min

=du,, S, u,v)+dv,, -S, (u,v), where

|:dumin:l — ks,min : g21 _dZI (4 24)
dvmin dll - ks,min ' gll

According to Euler’s equation, the normal curvature in a tangent direction at an interior

surface point can be calculated as
k,(B) =k, e -c08” B+k, . osin> B fe[0,27] (4.25)
Where angle S represents this tangent direction in terms of direction T, in counter-

§,max

clockwise. At a convex point, all normal curvatures are negative; at a concave point, they
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are positive; and at a saddle point, they are either positive or negative. Figure 4.1 shows
the curvature curves along different tangent directions at these points. For a point on the
boundary of the surface, the formula of normal curvatures is the same as Eq. (4.20);

however, the range of angle f is determined by the tangents of the boundary at this

point, instead of being[0,27].

Concave I

it T T Lt
|
|
|

0,8 T 1
) 1
1 1
1 1
' 1

0.6

e
>

Normal curvatures
(=)
(=] [\8)

Figure 4.1. NURBS surface curvatures along all the tangent directions at a convex, a
concave, and a saddle points.
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Chapter 5 Principal Curvatures and Directions of
Bull- and Ball-Nose End-Mills

In 3-axis milling on a vertical CNC machine, in which the cutting tool is vertically
oriented, a NURBS-surface part is set up on the machine table. Among the three different
common types of cutting tools available in the market, namely bull-nose, ball-end and
flat end mill, the bull-nose end mill represents a generic case. The shank and corner radii
of this end-mill are denoted as R and r, respectively; and R = r. When R=r, it represents
a ball-end mill and when r=0 it represents a flat end mill. Therefore in order to build a
generic model, a bull-nose end-mill which is represented by a toroidal shape is used to
machine the surface at each CC point. (see Figure 5.1 ). In this work, the part coordinate
system (X-Y-Z), in which the NURBS-part surface is represented, is assumed to be the

reference coordinate system. A CC point Py on the NURBS surface S(u,v) , and the tool
axis is along the direction [O, 0, 1]T are represented in this coordinate system. To

facilitate finding the principal curvatures and principal directions of the cutting surface of
the tool, a new coordinate system called the tool coordinate system is established in the

following.
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5.1 Tool Coordinate System

To establish the tool coordinate system (x-y-z) for the bull-nose end-mill at CC point Py,
four steps are involved: (1) the tool tip (the center of the bottom circle) is set as the origin
of this coordinate system; (2) its z-axis is aligned with the tool axis; (3) its x-axis is
perpendicular to its z-axis and is on the plane formed by this z-axis and the surface
normal n at this CC point; and (4) its y-axis is the cross-product of these z- and x-axes

(see Figure 5.2)

Shank radius (R)

Bull-nose end-mill
Corner radius (r)

: surface : i : \

. Y
Part coordinate system: O

Tool coordinate system: o

Figure 5.1. Bull-nose end-mill cuts the NURBS surface at CC point Py in the part
coordinate system.

T
O it
. surface |-

S U N - E—
e | PO
- gurface - | 2

Tool coordinate system o
y

Figure 5.2. Toroidal cutting surface of the bull-nose end-mill in the tool coordinate
system.
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Thus, the equation of the cutting surface of the bull-nose end mill in terms of the tool

coordinate system can be derived as follows. Consider a point P, on a curve as shown in
Figure 5.2 which makes an angle 6, with the vertical direction. The location of this point

in terms of the tool coordinate system is

X, R—r+r-sinf,
B=|y, |= 0 (5.1)
z, r—r-cost,

The parametric equation of the curve can be represented by varying the parameter,

6 €[0,7/2]. Hence the equation of the curve is given by

X R—r+r-sin@
P=|y|= 0 5.2)
z r—r-cos@

where 6 €[0,7/2].

Rotating the curve about the z-axis by an angle ¢ gives the equation of the cutting
surface of the bull-nose end mill. Mathematically,
cosp —sing O||R-r+r-sind

CS(9,60)=R(z,p)-P(8) =| sinp cosp 0} 0
0 0 1 r—r-cos@

(R—r+r-sind)-cos¢p
= CS(p,0)=| (R—r+r-sinf)-sing (5.3)
r-(1-cos )
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where @ € [O, n/ 2] and g € [O,Zﬂ]. These parameters are illustrated in Figure 5.2

5.2 Principal Curvatures of the Toroidal Cutting Surface

For a CC point Py on the toroidal cutting surface of the tool in the tool coordinate system,

the principal curvatures and their directions need to be calculated. At this CC point, the

values of its parameters ¢ and & are 0 and §, respectively as can be seen from Figure

5.2. First the elements of the D and G are calculated.

In the cutter coordinate system, the parametric equation of the cutting surface is

(R—r+r-sinf)-cose
CS(p,0) =|(R-r+r-sinf)-sing 5.4
r-(1-cos )

The first derivative with respect to ¢ is calculated to be
9CS(0.0 —(R—r+r-sinf)-sing
%M: (R—r+r-sin6)-cosg (5.5)
@
0

Ata CC point(¢ = 0,8 = 6,), the value of the first derivative is calculated to be

0
GCS((P,Q) ¢:0 = R_r+r.sin 00 (56)
6(0 =6, 0

The second derivative with respect to ¢ is calculated to be

—~(R—r+r-sinf)-cosp
0°CS(9,0)

Py =| —(R—-r+r-sind)-sing (5.7)
¢ 0
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At a CC point(¢ = 0,8 = 6)), the value of the second derivative is calculated to be

—~(R~r+r-sinf,)
0 (5.8)
0

0’CS(p,9)
op° 6=

0
%

The first derivative with respect to @ is calculated to be

2CS(0.0 r.cos ¢.cos @
——égg’—) =| r.singp.cos® (5.9)
rsin @

At a CC point (¢ = 0,60 = 0)), the value of the first derivative is calculated to be

r-cosd,
@0 | (5.10)
06 |5 , '
r-sin@,

The second derivative with respect to @ is calculated to be

2CS(0.0 —r.cos@.siné
9CS@,0) —7.sin @.sin @ (5.11)
00" os@
rc

At a CC point(p =0,8 = 8,), the value of the second derivative is calculated to be

5CS(0.0) —r-sin 6,
i G12)
" | recosé,

The mixed second derivative is calculated to be

2CS(0.6 —r-sing-cosd
—%%l: r-cos@-cosf (5.13)

0

Ata CC point(p =0,8 =60,), the value of the mixed second derivative is calculated to be
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2
% poo =| 7-C086), (5.14)
0=6,
0

The next step is to find the surface normal (n,) of the cutting surface in terms of the tool

coordinate system at a CC point. The surface normal is given by

n =[aCS(¢,9) 9CS(p, 9)} 5.15)

O0p 00

At a CC point, the surface normal can be calculated by the following equation

n _| 9CS(p,0)| . 9CS(9,0)
‘152, op |5 09 |5,
i J k
n, o0 = r-cos 6, 0 r-sin 6,
- 0 R—r+rsing, 0

Hence, the surface normal of the cutting surface at a CC point is calculated to be

(R—r+rsing,)-r-sinf,
= 0

p=0
=6, .
" |~(R—r+rsing,)-r-cosf,

—n, (5.16)

The unit normal at a CC point in terms of the tool coordinate system will be

(R—r+rsinf,)(rsin6,) |
0
~(R-r+rsing,)(rcos) |

“ n
nt =0 =]l'_lt—|: . . 2 . 2
=6y t —r-+rsin rsm —r+rSin ¥ COS
J(R=r+rsin6)(rsin6)) +{(R 6,)(rcos )}
—sin 6,
= |, =| 0 (5.17)
0=6,
cos 6,
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The D and G matrix are represented as

. ¢ 0’CS(0,0) . . 3°CS(9,0)

llt . B llt § —————
. ¢ 0p-06 _[dn d,z}

ﬁ T, 62CS(§09 0) ﬁ T, aZCS((ﬁ,G) d21 d22

‘' 06-0¢ ' 06*

-

([ 8CS(¢,9))T _[acsw, 9)] (GCS((D,G))T (aCS((p, 9))
09 o9 op 00

| &1 8
[aCS(q),e))T(aCS(go,e)j (8CS(¢,6’))T.(6CS(¢;,6?)j [gn gzj

00 op 00 00

The elements of D matrix at a CC point can be calculated as

—(R—-r+r.sinf,)

) 8°CS(p,0) ,
Al g =B |peo ——a——ip— oo =|—sing, 0 cosf,]- 0
o=t =6, o =) 0
=d))| 9 =(R—r+r.sing,) sinf, (5.18)
0=6,

Similarly the second element of the second fundamental matrix D can be calculated

0
n 0°CS(p,6) .
dy; | =0 =h," g0 oo |e=0 -—-[smé’0 0 cosﬁo]- r-cos b,
9=0, 0=6, Q- =6, 0
= dlZ @=0 =0 =d21 @=0 (5.19)
0=6, 0=6,

and
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5CS (0.0 —r-sin 6,
Ay lpeo =1, [, (ZD’ ) o =[-sing, 0 cos6,]: 0
6=6, o0, 00" b=,
r-cos 6,
=r-(sin* G, +cos’ 6,)
=dy 2=0 =r (5.20)
Similarly the elements of the G matrix at a CC point can be calculated
oCS(0,0)\ ([ 8CS(0,6) X
201l peo =( a‘”’ j ( a‘/” J=[0 R—r+rsing, 0]:|R—r+rsin6,
6=€() ¢ ¢ 0
= gy lpo  =(R—r+rsing,) (5.21)
0=6,
Similarly,
r r-cos @,
g oo _ 6CS((0,9) (GCS((O,H)):[O R—r+r.sin 00 0] 0
6=6, op 00 .
‘ r-sin@,
= & 20 0 =g, 9=0 (5.22)
and
r r-cos 6,
N GCS((Dae) . 6CS(¢’9)j=[r-COS(90 O r.sineo]. 0
b=, 06 06 _
r-sin g,

=r? - (cos’ g, +sin’ 6,)
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= gulpo =1 (5.23)

=0,

Hence the D and G matrix at a CC point on the cutting surface of the tool is

D (R—r+r.sin@))-sin@, 0
0 ¥

G (R-r+rsing,) 0
0 r
Substituting the above calculated values in Equation (5.16) and (5.17), the Gaussian
curvature K and mean curvature H at a CC point on the cutting surface of the tool can
be calculated as follows

_dy-dy ~d’  ((R=r+r-sing,)-sin6,)-(r)-0°

K 2 : 2 2 m
g8 g (R—r+r-sing,) -r’ -0

sin 6,
r-(R-r+r-sing,)

> K= (5.24)

and

H:l.(gll dy—2-g,-d,+gy, 'dnj
2
2 811" 8»n " &n
1 [ (R=r+rsing,) -(5)=2-0-0+()-(R-r+r-sing,)-sin6, )
2 (R—r+r-sin00)2(r2)—02

. (R—r+r-sin@y)+(r)-sinf,
(R—r+rsing,)-r

:>H_%.((R—r+r-sin90)+r~sin90) (5.25)

B (R—r+r-sing,)-r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53



The maximum curvature is k,,, =H+vVH’-K, and the minimum curvature is

kyn = H—-NH*-K . So,

Tk - (R—r+rsing,)+r-sind, 2_ sin 6,

2(R-r+rsin6,)-r r-(R-r+r.sin6,)
_ (R—r+r-sin00)2+(r-sin00)2+2-(R—r+r.sin90)-r-sin6?0_4-(R—r+r-sin490)-r-sin90
4-(R-r+r-sing,) -r* 4-(R—r+r-sing,) - r*

(R—r+r-sing,)—r-sing, :
2/(R-r+r-sinfy)-r

o (R—r+r-sin,)—r-sinb, (5.26)
2-(R—r+r-sin6’o)-r '

Hence, the maximum curvature £ of the cutting surface of the tool at a CC is

t,max

calculated to be

Ky =H +H? K

1 ((R=r+r-sing)+r-sinf, R (R—r+r-sing,)—r-sin6,
2 (R—r+r-sin,)-r 2 (R—r+r-sing,)-r

(R—r+r-sinf,)-r

1 (2(R—r+r-sin90)j
=

{,1max

= k== (5.27)
4

Similarly the minimum curvature k&, . is calculated to be

t,min
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k!,minzH_ “HZ——K

1 (R—r+r-sin@,)+r-sin6, 1 (R—r+r.sing,)—r-sinf,
2 (R—r+r-sing,)-r 2 (R-r+r-sing,)-r

_ 1 2-r-sin§,
2 | (R-r+r-sinfy)-r

sin g,

= . (5.28)
R—r+r-sing,

=k

t,min

Meanwhile, the direction of the maximum curvature t in the tool coordinate system

§,max

is t . =do.,, - CS, (9,0)+d0,,, -CS,;(p,0), where

d(omax kt,max ’ g12 - d]z
demax

lrdn K, max " 811

~.0-0
r

(R-r+r.sin 6,)-sin 6, ——::(R—r+r.sin 4,)

0

(R-r+r.sin6,) sin6, ——l-(R—r+r.sin 6,)

(. -

Substituting these values

tomax = APuax " CS,(0,0)+d0,,, - CS(9,0)
0 r-cosf,
=0-| R~r+r.sin6, +((R—r+r.sin6?o)-sin<90——l—(R—r+r.sin6’0)2)- 0
0 ’ r-sing,
cos 6,
=t =((R—r+r.sin00)-sin¢90——l—(R—r+r.sin90)2)-r- 0 (5.29)
’ sin 6,

The unit vector t in the maximum curvature direction t is given by

s,max s,max
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ts,max - ts,max/ s,max

cos 6,
>t =/ 0 (5.30)
sin g,

Similarly, the principal direction of the minimum curvature t,, is
tomin = APuin *CS ,(0,0) +d0,, - CS,(9,0) , where
sin 6, ' 0-0
|id¢min]_|tks,min'g2]_d2li| _ R—r+r.sing,
do.. | 1 d =k - ;
i ™ Hsmin " S (R—r+r.sin90)vsin90——————Slneo_ R—r+r.sin90)2
R—r+rsing,
do_. 0
:> (omm —
|:d0min :\ |:0:|
Since this cannot represent any direction, so the other set of equation is used i.e.
sin . Sy
|:d¢min} I:ks,min "8y —dy R—r+r.sing,
AP Ay =Ky in " 821 0 sin 90. 0
| R—r+r.sing, |
T | . R,
= =|{ R—r+r.sin6, (5.31)
dgpmin

0
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ts,min = d(omin Cs(p(¢’ 9) +d6min Csﬁ((p’ 6)
g 0 r-cos 6,
= | —220 | 2—p || R-r+rsing, [+0| 0
R—r+r.sing, _
0 r-sin g,
g 0
=t i __31_n_0___ ¥ —r || R—r+r.sing, (5.32)
’ R—r+r.sing, 0

The unit vector @s’mm in the minimum curvature direction t,,, is given by
ts,min = ts,min/ ts,min
0
=t =] 1 (5.33)
0

So, the maximum curvature of this cutting surface at the CC point can be found as
k... =1/r; and its direction {_,. is [cosd, 0 sing,] in the tool coordinate system
=sin6,/(R-r+r-sin@,);

(see Figure 5.2). Meanwhile, the minimum curvature is k

and its direction f,‘m.m is [O 1 O]T in the same system. A feature of the cutting surface

is that all the normal curvatures are positive as shown in the example of Figure 5.3.
Figure 5.3 shows the curvature plot along all the tangent directions at a point (6, =45")

on a bull-nose end-mill (R =10 mm and r =2 mm).
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Figure 5.3. Normal curvatures at a point on the cutting surface of a torus end-mill.

For ball-nose end-mills (R=r), the principal curvatures are the same as

k... =k, =1/R, and for the normal curvatures are all equal to 1/R as well.
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Chapter 6 Comprehensive Curvature Analysis for

Single Surface Machining

Evaluating the geometric mis/match between the cutting surface and the part surface in
the vicinity of a CC point cannot be completely done by only comparing their principal
curvatures, because their principal directions may not necessarily coincide with each
other. To make a correct evaluation, the normal curvatures of these surfaces should be
compared in every tangent direction. However, the principal directions of the cutting
surface are represented in the tool coordinate system whereas the principal directions of
the part surface are represented in the part coordinate system; and since the part
coordinate system has been used as a reference, so the principal directions of the cutting

surface should be converted into the part coordinate system.

6.1 Transformation Matrix for Converting the Principal

Directions of the Cutting Surface

According to the position relationship between the part and the tool coordinate systems,

the transformation matrix R for converting the principal directions of the cutting surface

and T

t,min

should be found such that T = [R] -t

t,max

t,max = [R] ) Et,min :

where
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T, .. isthe direction of maximum curvature represented in the part coordinate system
t... isthe direction of maximum curvature represented in the tool coordinate system
T,.. isthe direction of minimum curvature represented in the part coordinate system
t... isthe direction of minimum curvature represented in the tool coordinate system
ax bx CJC
R=l|a, b, c, | isthe transformation matrix
aZ bZ CZ

a,,a,,a, are respectively the XY and Z components of a unit vector along the x axis of
the tool coordinate system(x-y-z). Similarly b,,b,,b, are the X, Y and Z components of a

unit vector along the y axis and c,,c,,c, are those of the z axis.
In order to determine the elements of the mapping matrix, first of all a relation between
the part and the tool coordinate system has been established as shown in Figure 6.1

Let (x, -y, -Z,) represent the principal axes of the tool coordinate system (x-y-z) in

terms of the part coordinate system
Z=[001]

Bull-nose end-mill

Sculptured

Cutting Part Surface

surface

Tool coordinate system o
yo=[nw x 2.}

X
Part coordinate system

Figure 6.1. Relationship between part coordinate system and tool coordinate system.
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Based on the definition of the tool coordinate system
o The z axis of the tool coordinate system is vertically upwards, so z_ = [0 0 1]T
ey, axis is perpendicular to the plane formed by the unit surface normal f and the

z, axis, so it can be calculated by the cross product of n and the z, axis.

Mathematically,
Yy =Xz,
Pog ok ",
Yo =|n, n, n|=i(n)-jn)+k0)=|-n (6.1)
0 0 1 0
e x, is given by the cross product of y,, and z,,
XW = yW X ZW
PGk n,
x, =|n, -n,_ O\=i(-n)-j(n)+kO0)=|-n, (6.2)
0 0 1 0

The unit vector X, andy  in the direction of x, and y, axis respectively are calculated

to be

T T

— — n —
k L 0| and y, = L ki 0

Jo " n2) (@l +nl) J@+m) @k +m)

X, =

The unit vectors in the direction of the (X —Y — Z) axis in the world coordinate system

are respectively,i=[1 0 O]T,j =[0 1 O]T and k=[0 0 1]T. Based on the relation

between the tool and part coordinate system the elements of the transformation matrix

can be calculated as
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a_ is the X component of a unit vector along the x axis of the tool coordinate system

1
- n -
: . n, 0l= n, (63)

= —— 0.
Jo+nl)  Jo+nd) ol [N +n)

a, is the ¥ component of a unit vector along the x axis of the tool coordinate system

T . —n —n —n
w

= 1= —2— (6.4)

: L o|l1]=
Jei+n?) o +n) ol e +n)

a, is the Z component of a unit vector along the x axis of the tool coordinate system

ay=x

T —n —n
w

X Y
Jo2 vy Jor+n)

b_isthe X component of a unit vector along the y axis of the tool coordinate system

0
0/.10|=[0] (6.5)
1

|
~ — n
b =97 i=| 2 % ollo]=| —— (6.6)

Joi+nl) ) NS

b, is the Y component of a unit vector along the y axis of the tool coordinate system

0
n —n —n

= y x 0f1]=| —=— (6.7)

Je2+m) il +n) ol o)

b, is the Z component of a unit vector along the y axis of the tool coordinate system

Gamnto >

0

n n —n

b=y k= X —=— 0] 0|=[0] (6.8)
\Kni"‘"j) (n§+ni) 1

¢, isthe X component of a unit vector along the z axis of the tool coordinate system
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1
¢, =2y xi=[0 0 1]-|0|=[0] (6.9)
0

c, isthe Y component of a unit vector along the z axis of the tool coordinate system

~

2T xj=[0 0 1]-

€y

=[0] (6.10)

o = O

¢, is the Z component of a unit vector along the z axis of the tool coordinate system

¢, =it xk=[0 0 1]-{0|=[1] (6.11)
1

Plugging the above values of the elements of the transformation matrix, the

[R]=——e|-n -n 0 (6.12)

2

n,+n, —
0 0 4/nx+ny

With the help of the transformation matrix the direction of maximum curvature of the

cutting surface of the tool can be determined in terms of the part coordinate system

. -n, n, 0 cos 6,

=[R]-t Fem———| N, —N 0 40

t,max y x

2 2
n . +n .
o 0 JuPes? | Lsing

(-nx -cos@o)/, [n’ +n,
=T, =|(-n, cos8,)/\Jn: +n’ (6.13)

sing,

T,

{,max
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Similarly, the direction of minimum curvature of the cutting surface of the tool can be

determined in terms of the part coordinate system

T

¢,min

=[R]t,pe=——="| -1, -n 0 |1

f,min ¥ x

2 2
n +n
o 0 Jien2 | L0

ny/,/nj +nj
=T, =|-n/[n+n (6.14)
0

Thus, in the part coordinate system, the direction of the maximum curvature T,  is

T
[(—nx-coseo)/‘[ni+ni (—ny-cos@o)/,/nj+n§ sin@o:l, and the direction of the
T
minimum curvature T, is [ny / Jr+n -n, / Jn+n O:l . The values of the

principal curvatures are the same in the two coordinate systems. The direction of the

maximum curvature of the cutting surface T is designated as a reference to identify

the tangent directions (see Figure 6.2).

Tumax (Reference)
TJ,H]BX
> Tangent
direction
Ti.min
/
/
T s.min Tangent plane

Figure 6.2. Principal directions of the toroidal cutting surface and the part surface.
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According to Euler’s formula, the cutting-surface normal curvature along any tangent

direction can calculated, the tangent direction is represented with angle o measured

positive counter-clockwise from the direction of the maximum curvatureT, . , and can
be calculated as
1 in 6 .
k(o) =—-cos’ o + SM% __ sin?a a [0, 27] (6.15)
r R—r+r-sing,

For the normal curvatures of the part surface, given in Equation (5.20), the angle £

of a tangent direction is measured from the maximum curvature direction T, of the

,max
part surface. To find the normal curvatures of the cutting and the part surfaces in a

direction, the angle «, between the directions of the maximum curvatures of these two
surfaces should be found.

TS max ’ ’I‘l max
a, = arccos ——T—— (6.16)

{,max

§,max

where ¢, is measured in counter-clockwise from T, and is between 0 and ~.

Therefore, the relationship between o and f is f=27x+a-o,(0<a<q,) or
B=a—-a, (a,<a<2r). Based on this angle, for an interior surface point, the normal

curvature of the part surface in a direction measured from T __ can be calculated as

t,max

k(B) =k, o -cos*(a — o) +k

s.min

sinf(a-a,)  ael0, 27] (6.17)

where angle « starts from T __ and is positive in counter-clockwise direction

7,max
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With Egs. (6.15) and (6.17), the normal curvatures of the cutting and part surfaces can
be calculated in the same direction, and they can be analyzed to detect local gouging at a
CC point using the following conditions. Curvature Conditions for Different Shape

Machining with Ball- and Bull-Nose End-Mills

To facilitate the curvature comparison between the cutter and the different shapes of
the local area around the CC point on the part surface i.e. based on the values of the
principal curvatures of the cutting surface of the tool and the part surface, the different
curvature conditions are provided in the following cases.

6.1.1 Case1: ko 2 Ky uin 202 K, 1 2 K

t,max — T“t,min & s,ma)f s.min,
First, at a convex CC point on the part surface the normal curvatures are negative in all
the tangent directions but the normal curvatures of the cutting surface are always positive

in all tangent directions. Hence, the condition for this case is

k

t,max

>k

t,min

2 O 2 ks,max 2 ks,min (6 1 8)

The curvature comparison along all the tangent directions can be omitted, because no
matter what the phase difference (¢, ) is, the normal curvature of the cutting surface of
the tool will always be greater than that of the part surface in all the tangent directions
ie. f e[O,Zzz] and hence local gouging does not occur when the cutter contacts the

convex CC point on the part surface. An example of the above case is illustrated in

Figure 6.3.
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Figure 6.3. Normal curvature comparisons for an example for case (1).
In Figure 6.3 the principal curvatures of the part surface at a CC point are
~0.01 and —0.1mm™ respectively and that of the cutting surface of the tool are

0.1 and 0.0261 mm™' respectively. Three different normal curvature plots of the cutting
surface of the tool with the same principal curvatures but with a phase difference of 0°,
45° and 90° respectively are plotted as shown in Figure 6.3 i.e. it can be seen that
irrespective of the phase difference the normal curvatures of the cutting surface of the
tool are always greater than that of the part surface in all tangent directions and hence
local gouging will not occur at this CC point , therefore is no need of curvature

comparison in all tangent directions.

6.1.2 Case2: k >k >k >k

t,max t,min s,max s,min
Since all part-surface curvatures at a concave CC point and some at a saddle CC point
are positive, the curvature comparison between the tool and the concave/saddle part

surfaces should be conducted in detail. In one extreme case, if, at a CC point, the

curvature conditions are such that as in Equation (6.19).
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k. 2k .2k 2k

{,max {,min s, max s,min

(6.19)

In this extreme case all the normal curvatures of the cutting surface are larger than those
of the part surface, local gouging does not occur at this point. An example of this case is

explained with the help of Figure 6.4.

In Figure 6.4 principal curvatures of the part surface are 0.05 and -0.03 mm™’ and that of
the cutting surface of the tool are 0.06 and 0.1 mm’ at a CC point. It can be seen from the
figure that irrespective of the phase difference, if the condition of Equation (6.19) is met,
the normal curvature of the cutting surface of the tool will be greater than that of the part
surface in all tangent directions and hence there will be no local gouging at that CC point
and therefore there is no need of detailed curvature comparison in this extreme case as

well.

0.12 T T T T T I T
Tool{Phase=0 deg) * Tool(Phase=45 deg) === Tool(Phase=90 deg)

0.1 S e S o i, ] e

...........
... - v

™,

Normal surface curvatures at a CC point
(=]
L=
£
‘1-‘~r-—1:\;|——f

w
<
=Y
=

[N S
<

b

S - =

-0.04
0 0

1
W
=
w
<
[N}
V3
=

Figure 6.4. Normal curvature comparisons for an example for case (2).

>k

t.min

6.1.3 Case 3: k > k > k

s,max — "“s,min t,max
In another extreme case of a concave or saddle CC point on the part surface could be as

shown in Equation (6.20).
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ks.max 2 ks,min > kt,max 2 kt,min (620)

In this extreme case, the normal curvatures of the cutting surface are smaller than

those of the part surface in all the tangent directions i.e. fe[0,27] and the tool will

over-cut the part surface in all tangent directions. An example of the above case is

illustrated with the help of Figure 6.5.

In Figure 6.5 the principal curvatures of the part surface are 0./ and 0.05 mm™’ and
that of the cutting surface of the tool are 0.04 and 0.0 mm™'. It can be seen from the
figure that irrespective of the phase difference, if the condition of Equation (6.20) is met,
the normal curvatures of the cutting surface of the tool will always be less than that of the
part surface and hence the tool will overcut the part surface at that CC point in all tangent

direction and therefore detailed curvature comparison in not required.

T T .- I I T -
Tool(Phase=0 deg) s+ Tool{Phase=45 deg) =—==-= Tool(Phase=80 dag),

[ O i

i
’

g o
o =]
S &

Normal surface curvatures at a CC point
o
o
8

Figure 6.5. Normal curvature comparisons for an example for case (3).
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>k >k

t,min —

6.1.4 Case4: k >k

§,max t,max s,min
In one specific case at a concave or saddle CC point on the part surface, the principal
curvatures of the part surface and the cutting surface of the tool a could be related as

shown in Equation (6.21).

>

>k 2k

t,min §,min

(6.21)

§,max {,max

In this specific case, local gouging will occur but not necessarily in all the tangent

directions. The tangent directions in which gouging will occur will depend on the phase

difference(a, ). An example of this case is illustrated with the help of Figure 6.6. In this

example the principal curvatures of the part surface are 0.1 and 0.01 mm" and that of the
cutting surface of the tool is 0.08 and 0.03 mm™’. It can be seen from Figure 6.6 that
irrespective of the different phase differences, gouging does occur in some tangent

directions.

1 I T I
Tool(Phase=435 deg) —===~
— I

T

= = o,

/

| | |

\ X: 31 i A ! (

— — A YI007707 _ _ 1 |7 _ ! . ! !
N r’-."'ﬁ‘ f [ o,

L} Lo, 4
SN N

Normal surface curvatures at a CC point

Figure 6.6. Normal curvature comparisons for an example for case (4).
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For example when the phase difference is 0° and 90°, gouging occurs in the tangent
directions from 0%-45°,135%-225° and 315°-360° but the gouging is more when the phase
difference is 90° than that compared to that of 0°. When the phase difference is 45°,
gouging occurs in the tangent directions from 0°-31°, 121°-211° and 301°-360°. So in
order to know the tangent directions in which gouging will occur, the detailed curvature

comparison has to be done.

6.1.5 Case 5:k,,,, 2k >Kgmn 2 K

max s, max s,min t,min

In other specific case, if the principal curvatures are such that as in Equation (6.21)

ko.2k . 2k

t,max §,max s, min

2k

t,min

(6.21)

In this specific case as well, local gouging will occur in some tangent directions. The
tangent directions in which gouging will occur will depend on the phase difference(ao) .

And hence detailed curvature analysis has to be performed. An example of this case is

illustrated with the help of. Figure 6.7.

0.11 1 I T T T

1 Y

1

Normal surface curvatures at a CC point

Figure 6.7. Normal curvature comparisons for an example for case (5).
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In this example the principal curvatures of the part surface are 0.08 and 0.05 mm™' and
that of the cutting surface of the tool is 0.1 and 0.03 mm™’ It can be seen from Figure 6.7
gouging does occur in some tangent directions for all the three different phase
differences. For example when the phase difference is 0°, gouging occurs in the tangent
directions from 45°-135° and 225°-315°, when the phase difference is 45°,gouging occurs
from 0°12°101%191° and 281°-360° and when the phase difference is 90°,gouging
occurs in the tangent directions 0°-45°,135%-225° and 315%-360°. So also in this case in
order to know the tangent directions in which gouging will occur, the detailed curvature

comparison has to be done.

6.1.6 Case®6: k,,,, >k > Ky min 2 K

t,max s, max s,min

If the principal curvatures of the part and cutting surface of the tool are related as given

by Equation (6.22)

Ky omox Z Ko 2K

t,max s, max t,min

>k

§,min (6'22)
This is a very special case in which the cutter may or may not gouge the part surface; thus

the detailed curvature comparison is needed. An example of this case is illustrated with

the help of Figure 6.8.

In this example the principal curvatures of the part surface are 0.08 and 0.02 mm™ and
that of the cutting surface of the tool are 0./ and 0.05 mm™. It can be seen that the
condition of Equation (6.22) has been met. It can seen from the figure that if the phase
difference between the two normal curvatures is zero, then the normal surface curvature

of the tool will always be greater than that of the part surface in all tangent directions and
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hence gouging will not occur in this case. But if the phase difference is 45°, it can be seen
from figure that in some tangent directions (0-5°,135-185° and 315-360° approx.) that the
normal curvature of the tool is less than that of the part surface and hence there will be
gouging in these tangent directions. And similarly when the phase difference is 90°,

gouging will occur in the tangent directions from 0-31°,148.1-211° and 328.1 - 360°

respectively.
0.11 , - : : : : :
[ === Part — Tool(Phase=0 deg) Tool(Phase=45 deg) ===~ Tool(Phase=90 deg)|
0.1 === e ;""*'C\ ————— = NN e ki
(e | “, |
V\( g AN
0091, N

008 _vio07e3a A “
OB TN T e T

Normal surface curvatures at a CC point

Figure 6.8. Normal curvature comparisons for an example for case (6).

For these types of cases, a mathematical model for its comparison, an optimization

problem, can be formulated as

sin @,

fla)= Lcosa+ sin’ @ -k, . cos” (a—a,)—k, . sin* (a—a,)  (6.23)
r

R—r+r-sing,

where o € [0, 27r] . An existing global optimization method can be employed to find the

minimum of f (a) . If this minimum is positive or equal to zero in its domain, gouging is

free at this point; otherwise, it will occur.
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Therefore, in order to detect gouging first of all the principal curvatures of the part
and cutting surface are calculated and if any of the conditions of the Egs. (6.18) — (6.20)
are met then there is no need to calculate the normal curvatures but if the conditions of
Egs. (6.21)-(6.22) is met then gouging will occur in some tangent directions and in order
to find these tangent directions the normal curvatures of the surfaces need to be
compared but if the condition of Equation (6.22),then gouging may or may not occur and
in that case Equation.(6.23) is used to detect gouging. This comprehensive curvature
analysis can be quickly carried out at every CC point in order to detect local gouging, and
if the tool over-cuts the surface at a CC point, a warning message will be sent suggesting

to use a smaller tool.

6.2 Verification of Comprehensive Curvature Analysis

To verify this new approach to analyzing the tool-and-part surface curvatures for local
gouging detection, a part with a NURBS surface is adopted in this example, and a bull-
nose end-mill with a radius of 12 mm and a corner radius of 4 mm is used for CNC
machining. Figure 6.9 shows this cutter is machining part surface at a CC point. By
conducting the comprehensive curvature analysis, local gouging on the surface is

detected at this CC point

“T7 T~ Direction of the — _

: minimum j

i _normal curvature Direction of the
o maximum

it
s normal
curva‘ture of the

Direction of
the maximum
normal

m <

e Part surface .

Direction of

the minimum

normal
curvature of

- s

P /hﬁ

—1/:1 *
)

"

Figure 6.9. Bull-nose end-mill cuts a part surface at a CC point in 3-axis CNC milling.
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At this CC point, the maximum and the minimum curvatures of the part surface are

calculated to be & =0.0575 and %

§,max s,min

=0.0109 mm™', respectively; and those of the

=0.25 and £k

t,min

cutting surface of the tool are k& =0.0246 mm™ , respectively. From

{,max
the above values of the principal curvatures, it can be seen that

k. .2k 2k

¢, max 5, max t.min

>k

.min and hence the condition of Equation (6.21) is met, and the
optimization problem should be solved. To demonstrate the normal curvatures of the tool
and the part surfaces along all the tangent directions, they are plotted in Figure 6.10. In
this figure, the normal curvatures of the cutting surface of the tool are less then that of the
part surface in two zones i.e. in the tangent directions, whose angles are between 68° to
107° and 248° to 287° the angles are measured anticlockwise positive and from the
maximum curvature direction of the cutting surface of the tool . So it can be seen that
gouging occurs in two zones, first in the tangent direction whose angles are from 68°
to107° i.e. for a period of 39° (107° - 68°) and the second in the tangent directions from

248° to 287° i.e. for a period of 43° (287° - 248°) . These two zones are represented by

angles ¢ and y in Figure 6.9 respectively.

107
©0.04301

Soxx

ok~ A
S
“w
=}

Figure 6.10. Normal curvatures of the part and the cutting surface at a CC point.
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To verify this result, the neighbourhood of the CC point in is enlarged and projected

from a viewpoint inside the cutter along the surface normal direction. This is shown in

Figure 6.11. In this figure, the lighter and darker regions represent the tool and the
part surfaces, respectively. The two regions of the part surface come out of the tool
surface at the CC point, which means the end-mill is cutting inside the part surface. With
respect to the direction of the maximum curvature of the part surface, the left and right-

hand side gouging regions are within the ranges, ¢ and y, which are well approximate to

the calculated result.

of the ool surface

Local gouging

Figure 6.11. Local gouging at the CC point.

6.3 Curvature Analysis for Flat End-Mills

The way of curvature analysis is different when using flat end-mills, compared to that
when using bull- or ball-nose end-mills. This is because the toroidal/spherical cutting
surface of the bull-/ball-nose end-mills degenerates into a planar cutting circle of the flat
end-mills (» =0). To conduct the curvature analysis between the cutting circle and the

local part surface at the CC point, first, the intersection curve between the plane of this
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circle and the part surface can be identified; second, the curvature of this curve at the CC
point should be calculated; and third, this curvature is compared with the curvature of the

cutting circle, 1/R.

However, the curvature of the intersection curve is not equal to the normal curvature
of the part surface along the tangent direction of this curve. By using Meusnier’s
theorem, the curvature of the intersection curve can be computed as

1
cosn

k= (ksmx -cos’ By +k, n +sin’ ,80) (6.24)

where angle f; is the angle between T, and T

5,max ¢,min >

and angle 77 is the angle between

the tool axis and the surface normal n (see Figure 6.12). To compare the tool-and-part
surface curvatures, if this curvature k is less than 1/R, the local surface is free of

gouging; otherwise, it will be gouged.

Figure 6.12. lllustration of sculptured surface machining using a flat end-mill.
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Chapter 7 Practical Tool Size Determination

One of the main applications of the comprehensive curvature analysis is to determine a
practical tool size for machining a CC point on the part surface for 3-axis CNC local
gouge free machining. An algorithm is proposed to select a practical tool size based on
the concept that local gouging occurs when the normal curvatures of the cutting surface
of the tool is less then that of the part surface at a CC point. A practical tool size means
that a tool of standard sizes that are available in the market or available in the machine

shop.

For a CC point on the part surface, its principal curvatures, their directions and the
normal curvatures can be calculated. Furthermore the principal directions of the cutting
surface of the tool and the hence the phase difference between the maximum curvature
directions can be calculated. From the list of the available tool sizes in the machine shop
at Concordia University the principal curvatures and the normal curvatures of the cutting
surface of the tool and compared with that of the part surface for gouging check in each
tangent direction. Based on this idea, the tool size determination is divided into three
different cases which are discussed below. The shank radius (Raymipe) of the tools

available in machine shop 1s [30, 25, 20, 18, 16, 12, 10, 8, and 6] mm. The corner radius
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() should be equal or less than the shank radius. The minimum corner radius is generally

2 mm.

7.1 Case (a): Machining Impossible

If the normal curvatures of the part surface are such that even the smallest tool available
in the machine shop will locally gouge the part surface in any tangent direction, then a
message will be send out to modify the original design of the part surface. This is

illustrated with the help of an example given in Figure 7.1.

Normal surface curvatures at a CC point

Figure 7.1. An example of case (a)

In this example the principal curvatures of the part surface are 0.5 mm™' and -0.2 mm
! The phase difference between the maximum curvature directions is 40°. The smallest
tool available in the machine shop is of size R=6 mm and r = 2 mm, the principal
curvatures with this tool is found out to be 0.5 mm” and 0.024 mm”’. And from the

curvature plot it can be seen that the normal curvature of the cutting surface of the tool is
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less than that of the part surface in some tangent directions, hence local gouging will

OCCur.

7.2 Case (b): Convex CC Point on the Part Surface

At a convex CC point on the part surface, the principal curvatures are less than zero,
whereas at the cutting surface of the tool, all the CC points are concave i.e. the principal
curvatures are greater than zero as a result of which local gouging will not occur. And

hence the biggest tool available in the machine shop is selected. This is illustrated with

the help of Figure 7.2.
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Figure 7.2. An example of case (b)

It can be seen from Figure 7.2, that the normal curvature of the cutting surface of

even the biggest tool will be greater than that of the part surface in all tangent directions

and hence local gouging will not occur.
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7.3 Case(c): Saddle and Concave CC Point on the Part Surface

At a saddle and concave CC point the normal curvature of the part surface in the

minimum curvature direction (k T )of the cutting surface of the tool is calculated. If

5,

for a saddle CC point, this value is negative the steps of case (c (i)) are followed. For the
other cases of saddle CC point and for the concave CC point the steps of case (c (ii)) are

followed.

7.31 Case(c (i)

The following are the steps to select the tool size

1. The biggest shank radius available (R

emp = 30 mm) is chosen as the temporary

shank radius.

2. The temporary corner radius(r,emp) is calculated from the equation given below

1

I = meee——
temp
ks ,max

3. Based on the temporary shank and corner radius, the temporary principal curvatures

t,max_temp > ""s,min_temp t,temp

(k )as well as the temporary normal curvatures(k ) of the
cutting surface of the tool are calculated. These are compared in each tangent
direction with the normal curvature of the part surface and if any tangent direction
the criteria for local gouging is met, Step (4) is followed to determine another tool

size otherwise these temporary tool sizes are taken to be as the final tool size for

local gouge free machining.
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4. The temporary corner radius is updated by reducing the size by 0.1 mm i.e.

v —(r —O.l) mm . Then the local gouging is again checked by Step 3. This

temp — \ "temp
process keeps on going until the value of corner radius is 2 mm or the tool size is
such that there is no local gouging. Even after that if the local gouge free tool size is
not determined, then the next biggest shank radius available of the tool sizes is
selected as temporary shank radius and Steps (2-4) are again followed until the
suitable tool is not selected.

An example is given in Figure 7.3 to illustrate this case
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0 50 100 150 200 250 300 350

Figure 7.3. An example of case (c (i))

It can be seen from the figure that the condition for this case is met since

k =-0.015mm™ .So from Step (1), the temporary shank radius is selected

:’T/,mm

R,,, =30 mm and the corner radius from Step (2) 1is calculated to be 7,,, =10 mm,

based on these values the temporary normal curvatures are calculated and compared .The

curvature plot is shown in Figure 7.4.
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It can be seen from the normal curvature comparison plot in Figure 7.4 that local
gouging condition is met, and hence the corner radius of the tool is updated and local
gouging is again checked, the loop goes on until the tool size is such there is no local
gouging. For the above example the tool size determined from the algorithm is

R =30 mm and r =5.6 mm . The curvature plot is shown in Figure 7.5.

0.25

0.25

02

0.15

0.1 =

0.05

Normal Curvatures

Figure 7.5. Solution for the case (c (i)).
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7.3.2 Case(c (ii))

The following are the steps to calculative the tool size

1. The temporary corner radius(r,emp) is calculated from the equation given below

1

rtemp = k

§,max

2. The biggest shank radius (R,emp ) is calculated from the following equation

_ sin &,

kx’Tlmin 3
* Ry = Fiomp + Fiomp SN O,

tem, temp temp

3. This value of R is updated by the biggest shank radius available which is less

temp

than that R__ calculated from Step (2).

temp

4. Based on the temporary shank and corner radius, the temporary principal curvatures

)are calculated and then the temporary normal curvatures(k,‘,emp)

(kt,maXA temp ? ks,min_ temp

of the cutting surface of the tool are calculated .These are compared in each tangent
direction with the normal curvature of the part surface and if any tangent direction
the criteria for local gouging is met; Step (5) is followed to determine a suitable tool
size otherwise the temporary tool size is taken to be as the final tool size for local
gouging free machining.

5. The temporary corner radius is updated by reducing it by 0.1 mm i.e.

v :(r —0.1) mm. Then the local gouging is again checked by Step (4). This

temp temp
process keeps on going until the value of corner radius is 2 mm or a tool size is such
that local gouging would not occur. Even after that if the local gouge free tool size is

not determined, then the next biggest shank radius available of the tool sizes is
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selected as temporary shank radius and Step (5) is used to calculate temporary corner
radius. The Steps (2)-(3) are followed only for the first loop, after that they are

always skipped. The procedure is illustrated with the help of Figure 7.6

In this example the principal curvatures of the part surface are 0.1 and 0.01 mm ' The

phase difference between the maximum curvature directions is 20° and

koy =0.021 mm™'. Hence the condition of case(c (ii)) is met. From Step (1), the

temporary corner radius(r,emp) is calculated to be 10 mm .And from equation in Step (2),

the temporary shank radius (Rtemp ) is calculated to be 13.79 mm. From Step (3) this value

is updated to 12 mm. And then normal curvatures are compared to check for local

gouging as shown in Figure 7.7.
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Figure 7.6. An example for case (c (ii))
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Figure 7.8. Solution for case (c (ii))
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It can bee seen that criteria of local gouging has been met, and hence the corner
radius of the tool is updated and local gouging is again checked, the loop goes on until
the tool size is such there is no local gouging. For the above example the tool size
determined from the algorithm is R =8 mm and r = 5.6 mm. The curvature plot is shown

in Figure 7.8.

With this algorithm the tool size will be determined at one CC point, applying this
algorithm over all the CC points would give a list of different tool sizes and the smallest
of the shank radius and comer radius from the list of all shank radii and corner radii will
be selected. The tool size determined will not locally gouge the part surface at any CC

point and hence can be used for CNC machining for these parts.
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Chapter 8 Comprehensive Curvature Analysis for

Compound Surface Machining

Compound surfaces are widely used in the computer-aided mechanical design, and a
compound surface usually consists of several surface patches connected with G' or G
continuity. The curvature analysis at an interior surface point on the compound surface is
the same as the way introduced in Chapter 6 . However, for a CC point on the borders
between the patches, the evaluation of the geometric mis/match between the cutting
surface and the neighboring patches becomes more difficult, although the governing
equations of curvature analysis for a single surface are still effective.

To solve this problem, for Patch 1, the maximum curvature is & its principal

sl,max ?

directionis T

sl.max *

and the angle between T,  and T

t,max 51, max

is a,. The tangents of the

patch boundary at the border point, which define the interiors of the neighboring patches,

can be calculated as B, and B, (see Figure 8.1). So the angles between the boundary

tangents and the reference axis T, are a, and a,,, and the normal curvatures of
Patch 1 is

. 2
ko (@) = Ky - 008" (@ = )+ by e sin* (@ —at)) @ €[0,ay ] and [ag,,27]  (8.1)
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Similarly, the normal curvature formula for Patch 2 at the border point can be found as

(see Figure 8.1)

ky(a)=k sin’(@-a,,) €|y, omn] (8.2)

§2,max

-cos’ (a—a,,)+k

§2,min

By applying the technique introduced in Chapter 6 , the curvatures of Patches 1 and 2 can
be compared with those of the cutting surface in order to detect gouging for the border

points.

Patch 1

Patch 2

Figure 8.2. lllustration of compound surface machining using a bull-nose end-mill.
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This technique can also be applied to compound surfaces with many patches to inspect

the border points among the neighboring patches for potential local gouging.
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Chapter 9 Applications

One of the main applications of this new approach for comprehensive curvature analysis
is to detect local gouging for sculptured surface machining. To demonstrate its validity
and efficiency in local gouging detection, this approach has been applied to several

examples of sculptured surface machining. These examples are discussed below in detail.

9.1 Gouging Detection on a Horizontal Quarter Cylinder and a
NURBS Surface with Similar Shape

In the first example, a horizontally oriented quarter cylindrical part with a radius of 20
mm and a length of 80 mm is as shown in Figure 9.1 (a), and a free- form part surface
(Figure 9.1(b)) with a similar shape are adopted for gouging check. Both of these part
surfaces are represented by NURBS surface with the same 3 by 5 control points, which
are listed in Table 9-1. The weights of the control points for the free-form part surface
are all assigned as one where as the weights for the quarter cylinder are as shown in

Equation (9.1).
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Table 9-1. Control points of the part surfaces.

v direction

(20,0,0) (0,0,0) (0,0,20)
(20,20,0) (0,20,0) (0,20,20)
u direction (20,40,0) (0,40,0) (0,40,20)
(20,60,0) (0,60,0) (0,60,20)
(20,80,0) (0,80,0) (0,80,20)
1 0.707 1]
1 0707 1
w=[1 0.707 1 9.1)
1 0707 1
1 0707 1

w
!

(=3
-
o3
o

(b)

Figure 9.1. A horizontal quarter cylindrical part and a free-form surface part.

The gouging check is applied to both these parts at a CC point with parametric value

of u=3 and v=0.5. In the part coordinate system these parametric values represent CC

point (5.85, 60, 5.85) and (5, 60, 5) respectively for the horizontally oriented quarter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

cylinder and the free form surface respectively. In order to check gouging the
comprehensive curvature analysis has to be applied at the CC point. For demonstration
purposes a bull-nose end mill with shank radius of 20 mm and corner radius of 15 mm is

chosen to machine the part surfaces at that point.

9.1.1 Comprehensive curvature analysis on the horizontally oriented
quarter cylinder

The principal curvatures of the part surface are calculated to be 0.05 and 0.00 mm™’ and
that of the cutting surface of the tool are calculated to be 0.07 and .046 mm™’. It can be

seen that from the principal curvatures that the condition of Case (6) is met. So the phase

difference between the maximum curvature directions has been calculated to bea, =0°,

and based on this angle the normal curvatures are calculated in each tangent direction.
The normal curvature plot is shown in Figure 9.2 (a). It can be seen that the normal
curvature of the cutting surface of the tool is greater than that of the part surface in every
tangent direction and hence it can be concluded that gouging will not occur at this CC
point. This can be also be visually verified from the Figure 9.3 (a) that the tool does not

cut into the part surface.

9.1.2 Comprehensive curvature analysis on free-form part surface

The principal curvatures of the part surface are calculated to be 0.07 and 0.00 mm ™’ and
that of the cutting surface of the tool are calculated to be 0.066 and .046 mm™’. It can be
seen that from the principal curvatures that the condition of case (4) is met. So gouging
will occur in some tangent directions and hence normal curvatures have to be compared

in order in order to know these tangent direction. The phase difference between the
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maximum curvature directions has been calculated to bew, =0°. The normal curvature
plot is shown in Figure 9.2 (b). It can be seen that the normal curvature of the cutting
surface of the tool is greater than that of the part surface in the tangent directions 0°-
16°,163%-197° and 344°-360° and hence it can be concluded that gouging will occur in
these directions at this CC point. This can also be visually verified from the Figure 9.3

(b) that the tool comes out of the part surface in these tangent directions.
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Figure 9.2. Normal curvatures of the part and the cutting surface at a CC point.

(a) (b)

Figure 9.3. Surface and tool interaction at a CC point shown by CATIA.
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Therefore it can be concluded that when these parts are machined with the same size
tool, there is no gouging in horizontal cylinder whereas there is gouging in the free form
part at the same CC point (u=3 and v=0.5.) although they have a similar shape. This is

because of the fact that there curvatures have different values at the CC point.

9.2 Tool size determination for an horizontal quarter cylinder

and NURBS surface with similar shape

From the algorithm for the tool size determination, since the principal curvatures of the
horizontal quarter cylinder is same at all the CC point, the tool size determined at a CC
point will be the same as that for all the other CC points and hence will be the tool size
for local gouge free machining. The tool size determined for the horizontal cylinder by
applying the practical tool size algorithm is R=30 mm and r=20 mm. The principal
curvatures of cutting surface of the tool are calculated to be 0.05 mm’ and 0.03 mm’’,

The surface and tool interaction as well as the normal curvature plot at a CC point is

shown in . It can be seen from that local gouging will not occur at this CC point.

Tool

Part surface

Normal surface curvatures

CC point

| b (

1 I t h

| 4 | 4 |
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(a) Surface and tool interaction (b) Normal curvature plot

Figure 9.4. Surface and tool interaction and normal curvature plot.
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For a NURBS surface of similar shape as that of the horizontally oriented cylinder the
principal curvature varies along the different CC points and hence the minimum of the
different shank and corner radii will be the tool size. The tool size determined from the
practical tool size determination algorithm is calculated to be R=30 mm and r =15 mm.
The principal curvatures of the cutting surface of the tool are calculated to be 0.071 mm’’
and 0.028 mm™'. Since the principal curvatures for the part surface varies along different
CC point and in order to show the validity of the practical tool size determination
algorithm, the surface and tool interaction along with the normal curvature plot is shown
at a CC point on the part surface which has the highest value of the principal curvatures.
These are shown in Figure 9.5. It can be seen from the figure that gouging does not occur

even at a CC point with highest value of principal curvatures and hence it can be

concluded that gouging will not occur at any CC point.

Part surface Tool

<
cc p&;t

(a) Surface and tool interaction at a CC point.
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(b) Normal curvature plot at a CC plot.

Figure 9.5. Surface and tool interaction and normal curvature plot.

9.3 Gouging Detection on the Vertical Quarter Cylinder and
NURBS Surface with Similar Shape

In the second set of example, both of the parts are the same as in the first set of example,
the only difference is that they are vertically oriented instead of horizontally oriented.
The control points of these parts are listed in Table 9-2.The tool used to check gouging is
of the same size as that used in the first example i.e. R = 20, » = 15 .The CC point for
gouging check is =3 and v=0.5. In terms of the part coordinate system these points are
(5.858, 5.858, 12.5) and (5.0, 5.0, 12.5) for the vertical cylinder and free form part

respectively.
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Figure 9.6. A vertical quarter cylindrical part and a free-form surface.

Table 9-2. Control points of the part surfaces.

v direction
(20,0,50) (0,0,50) (0,0,50)
(20,0,37.5) (0,0,37.5) (0,20,37.5)
u direction (20,0,25) (0,0,25) (0,20,25)
(20,0,12.5) (0,0,12.5) (0,20,12.5)
(20,0,0) (0,0,0) (0,20,0)

9.3.1 Comprehensive curvature analysis on vertically oriented quarter

cylinder
The principal curvatures of the part surface at a CC point are calculated to be 0.05 and
0.00 mm™' and that of the cutting surface of the tool are calculated to be 0.066 and .05
mm’!. From the values of the principal curvatures, the condition for case (2) has been

met, and hence no local gouging will occur and therefore detailed curvature analysis can
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be omitted. This can be visually verified from the Figure 9.7 (a). This figure is tilted a
little bit in order to show that the tool does not gouge the part in any direction. The same
figure is shown from a different view i.e. when projected from a viewpoint inside the

cutter along the surface normal direction in Figure 9.7 (b).

9.3.2 Comprehensive curvature analysis on free form part surface

The principal curvatures of the part surface are calculated to be 0.07 and 0.00 mm and
that of the cutting surface of the tool are calculated to be 0.066 and .05 mm™’ at the CC
point. From the values of the principal curvatures the condition of case (4) is met. So
gouging will occur in some tangent directions and hence normal curvatures have to be

compared in order in order to know these tangent direction. The phase difference
between the maximum curvature directions has been calculated to bea, =90°. The

normal curvature plot is shown in Figure 9.8.

Part surface

T

fEX ? Tsumin

<~ -

sanax? Croanin

CC point
Cutting surface of the
tool

(a) (b)
Figure 9.7. Surface and tool interaction at a CC point shown by CATIA
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Figure 9.8. Curvature plot for a free-form surface.
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Figure 9.9. Surface and tool interaction at a CC point shown by CATIA.
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This can be clearly seen from Figure 9.9 (a) that the tool is coming out of the part surface
in some tangent directions. The exact directions can be seen from a different view i.e.
when projected from a viewpoint inside the cutter along the surface normal direction as

shown in Figure 9.9.Since the CC point for the cutting surface of the tool is at §, =0.So

there will be no portion of the cutting surface of the tool in the tangent directions from 0°-
90° and 270°-360°. Hence gouging will occur in some regions in tangent directions from

90°-270° .These regions are shown in Figure 9.9 (b).

9.4 Comprehensive Curvature Analysis on Quarter Horizontal

and Vertical Cylinder
In the above two examples, gouging did not occur at the CC points of the horizontal and
vertical cylinders. In this example, a different size tool (R = 30, r =10) is adopted to
check gouging at the same CC points of the two cylindrical parts. The principal

curvatures of these two cylinders are the same and they are 0.05 and 0.00 mm.

When machining at the CC point on the horizontal quarter cylinder, the principal
curvatures of the cutting surface of the tool are 0.1 and 0.02 mm™ and when machining a
vertical cylinder, the principal curvatures are 0.1 and 0.033 mm. It can be seen with both
the parts, the condition of Case (6) has been met and hence gouging may or may not
occur. The phase difference between the maximum curvature directions for the horizontal
quarter cylinder and maximum curvature direction of the cutting surface is calculated to

bea, =0°. For the vertical cylinder a,=90° .The normal curvature plots are shown

Figure 9.10. It can be seen that in there is no gouging when the bull-nose end mill
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machines a CC point on the horizontal quarter cylinder, whereas there will gouging on

vertical quarter cylinder when machining with the same size bull nose end although both

the part surface have the same principal curvatures. The tool and surface interaction for

both the cases have been shown in Figure 9.11. It can be visually verified from the figure

that the tool is not coming out of the horizontal quarter cylinder but it is coming out

(gouging) from the vertical quarter cylinder.
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Figure 9.10. Comparison of normal curvature plots.
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Figure 9.11. Surface and tool interaction at a CC point shown by CATIA.
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9.5 Tool Size Determination for a Vertical Quarter Cylinder and
NURBS Surface with Similar Shape

Similar to the case of horizontally oriented cylinder, the principal curvatures of the
vertically oriented cylinder are the same at all the CC point, so the tool size determined
for any CC point will be valid for all the other CC point. The tool size determined for the
vertical cylinder by applying the practical tool size algorithm is R=16 mm and r=16 mm.
The principal curvatures of cutting surface of the tool will be the same and equal to 0.063
mm'. If the comparison of the principal curvatures is done, the condition of case (2) is
met and can be concluded even without the normal curvature comparison that local
gouging will not occur .The surface and tool interaction at a CC point in Figure 9.12

For the part surface with a similar shape, the principal curvature value changes at
different CC points and hence the smallest of the shank radii and corner radii is taken as
the tool size. Since the principal curvatures for the part surface varies along different CC
point and in order to show the validity of the practical tool size determination algorithm,
the principal curvature of the part surface having the largest value is compared with the
principal curvatures of the cutting surface of the tool. For this part surface the tool size
determined is R=I12 mm and r =11 mm. The principal curvatures are calculated to be
0.091 mm™ and 0.083 mm "’ .Similar to the above the condition of case(2) has been met
hence it can be concluded that gouging will not occur as can be also be seen from Figure

9.12 (b) and there is no need of normal curvature comparison.
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Part surface Part surface

Surface normal

CC point

Tool

(a) Vertical quarter cylinder (b) Similar NURBS surface

Figure 9.12. Surface and tool interaction at a CC point shown by CATIA.

9.6 Comprehensive Curvature Analysis on Compound Surfaces

Compound surfaces are widely used in the computer-aided mechanical design, and a
compound surface usually consists of several surface patches connected with G' and G*
continuity. In this example a compound sculptured surface with two patches and with a
G' (Tangent Continuity) is adopted. This is designed with the help of CATIA software
and then with the help of IGES files, the control points are obtained which are then
plugged into the MATLAB program to detect gouging for a compound surface on the
border points. The compound surface is shown in Figure 9.13.Local gouging is checked

at a CC point on the part surface with two different size bull nose end-mill.
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Figure 9.13. Compound surface with two patches.

With both the tool all the values to be calculated will be the same at that CC point
except the principal curvatures of the cutting surface of the tool. The common values are

calculated and listed in Table 9-3. The tangent of the patch boundary is calculated to be

B, =-B,=[-0728 0 -0.685] .
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Table 9-3. Calculated parameters of compound surface.

Parameters of the part Surface Patch 1 Patch 2
Number of control points

(13 x 5) (12 x 4)
(u (row) x v (column))
Order(k =u curve , [ =v curve) k=4, =2 k,=4,l,=4

Range of parameter

u, €[0,10] , v, €[0,4]

u, €[0,9] , v, €[0,1]

Parametric value at CC point

ul,cc = 57 s Vl,cc = 4

U, . =4563,v,,.=0

CC point in part coordinate system

(69.108,0,-17.235)

(69.108,0,-17.235)

Maximum curvature at CC point Ky mex =0.0454 mm™ | k,, ... =0.0444 mm™
Minimum Curvature at CC point Koy min =—0.0122mm™ | k,, .. =—0.1158 mm™

[-0.723] [ —0.732]
Mgmmum curvature direction at CC T, =| 0.027 =] 0.025
point on the part surface : '

| =690 | | —.681 |

[-0.188] [—0.162 ]
Mi.nimum curvature direction at CC T, . =|-0.969 T, =|-0972
point of the part surface shmin :

| 0.159 | L0.171 ]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106



Table 9-4. Calculated values of the bull-nose end mill.

107

Parameter Value

Maximum curvature direction at CC point T, =[0662 -0245 .708]
on the cutting surface of the tool omax

Minimum curvature direction at CC point | -

- =[0.346 O.
on the cutting surface of the tool fmin [O 34609381 O]

Angles between boundary tangents (Bl,
B2) reference axis T,

t,max

g, =165° g = 345°

Anglebetween T, and T, . a, =167

Angle between T, and T, . a,, =165

9.6.1 Gouging check with a bull nose end-mill (R =25 mm, r =12 mm)

In order to check gouging at a border point, a bull nose end mill adopted with a shank
radius of 25 mm (R) and a corner radius (r) of 12 mm. The principal curvatures of cutting
surface of the tool at the CC point are calculated to be 0.083 and 0.033 mm’'. Comparing
the values of the principal curvatures of the cutting surface of the tool and the two
patches that the condition of Case (6) has been met and hence normal curvatures have to

be compared in each tangent direction to check gouging.

Plugging the above calculated values in Equation (8.1) and Equation (8.2), and by

representing the angles in degrees, we have

k(@) =0.045-cos’ (@ —167°)-0.0122-sin* (@ -167°)

9.2)
ae [00,1650] and [3450,3600]

k., (@) =0.044-cos* (165"}~ 0.116 sin’ (¢ —165°)  a €[165°,345° ] (9.3)
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The normal curvatures of the cutting surface of the tool is calculated to be

k,(a)=0.08-cos’ (@) +0.033-sin’ (@) ae [00,3600} (9.4)

A mathematical model for its comparison, can be formulated as

fi@) =k, (a)=k,(a) ae[0°165 ] and [345°,360° ] 9.5)

f(@)=k(a)-k,(a) acl165°,345°] (9.6)

If the value of the function is negative in any tangent direction, gouging will occur in
those directions otherwise, there will be no local gouging. For this case both the functions
are positive in their domain and hence gouging will not occur. The same result can be
obtained by plotting the normal curvatures of the cutting surface of the tool and the
compound surface as in Figure 9.13 .It can be seen from the curvature plot that the
normal curvature plot of the tool is greater than that of the compound part surface in all
directions and hence there will be no local gouging. This can also be visually that the tool

does not overcut the compound part surface at the CC point verified from Figure 9.15

9.6.2 Gouging check with a bull nose end-mill (R =35 mm, r =25 mm)
In this example a bigger size tool is adopted for gouge check at the same CC point at the
boundary of the compound surface. The only values that are different from that of

previous example are that of the principal curvature of the cutting surface of the tool and

=0.04 mm™" andk . =0.026 mm™.

t,min

they are calculated to be &

{,max
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Figure 9.14. Normal curvature plot for compound surface and tool.

Figure 9.15. Tool and compound surface interaction at boundary.
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The only difference would be in the value of Equation (9.3), and will become
k() =0.04-cos” (@) +0.026-sin’ (&) & e[0°,360° ] (9.6)
Similarly the mathematical model for its comparison, can be formulated as

f@)=k,(a)-ky(a) ae[0°,165° ] and [345°,360° ] 9.7)

f@) =k (a)-k,(a) ae[165°,345 ] (9.8)

For this case, the values of the function f, becomes negative in the tangent directions 0°-
4°,141°-165" and 345°-360°,whereas the function f, becomes negative in the tangent

directions 165°-177° and 336°-345°. And hence gouging will occur in these tangent
directions. The same result can be seen from the curvature plot in Figure 9.16 and from

Figure 9.17-Figure 9.18.
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Figure 9.16. Normal curvature plot for compound surface and tool.
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Figure 9.18. Local gouging on compound surface.
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Chapter 10 Summary and Contributions

My thesis work provides a practical, accurate solution to local gouging detection and
cutter size determination for 3-axis milling of sculptured surfaces, which is summarized
in this section. In this work, first, I have reviewed a number of published literatures
related with local gouging detection, and then I become familiar with the current ways to
check local gouging. With extensive study on computer-aided geometric design and
differential geometry, 1 fully understand the advantages and shortcomings of these
methods; all of them are neither accurate nor practical due to lots of assumptions and

approximations in them.

In order to overcome the shortcomings of the current methods, a new approach for
comprehensive normal curvature analysis has been proposed to conduct accurate local
gouging detection. The main idea of this approach includes (1) rough check based on the
principal curvatures of the cutting and part surfaces at the CC points, and (2) detail check,
if necessary, by comparing the normal curvatures of these surfaces along all tangent

directions.
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Second, the technical procedure of this approach is established, which contains four
main steps. (1) The principal curvatures of the cutting and part surfaces are calculated.
(2) The principal directions of the cutting surface are calculated, if required, and then
transformed from the tool coordinate system to the part coordinate system. (3) The
principal directions of the part surface are found in the part coordinate system. (4) Based
on Euler’s formula, the normal curvatures of the cutting and part surfaces are calculated
and compared in all tangent directions in order to check against the criteria for local
gouging. This new technique is applicable to single sculptured surfaces, more
importantly, it is effective to inspect for local gouging on the borders of compound
surfaces, where this defect always occurs. Furthermore, this approach has been employed

to determine optimal, standard tool sizes for 3-axis finish milling of sculptured surfaces.

Next, a program system using MATLAB is made to implement this innovative
approach. In the structure of the system, the program to detect local gouging at a CC
point given the control points, weights and orders of a NURBS surface and the cutter size
is the basis. Another advanced program is written to detect local gouging on the
compound surfaces including their borders. A supplementary program is developed to

determine tool sizes for effective surface machining.

Finally, to demonstrate its validity and robustness, this approach has been applied to
some examples of different and typical surfaces. By using dominating CAD/CAM

software - CATIA, I design all these surfaces with NURBS surface modeling and save
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them in IGES format. After retrieving all the surface information from the IGES files, I

feed it into my program system to get the results, which are presented in Chapter 9.

This research work significantly contributes to the scientific research on multi-axis CNC
machining, and some of the highlights are listed here.

e Based on the comprehensive curvature analysis, local gouging can be detected
quickly, accurately and completely for 3-axis finish machining of sculptured
surface.

e Local gouging can be detected on the border points of a compound surface.

e Gouging can be detected for the regular tools, namely, torus , ball and flat end-
mills.

e A practical tool size can be determined for machining without local gouging.

¢ A fundamental understanding has been raised that local gouging not only occurs
along the principal directions of the cutting and part surfaces but also along other

tangent directions.

Although this work solves the problem in local gouging detection, it is constrained to
sculptured surfaces without global gouging during machining. A powerful app%oach can
be obtained by combining this approach with an established method for global gouging
detection, which can completely solve the gouging problem. The future work will be
carried out on this topic. In all, my research has laid a solid foundation for gouging
detection in 3-axis finish machining, and this work could be developed for 5-axis CNC

machining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

Chapter 11  Bibliography

[11 A. Rao, R. Sarma, “On local gouging in five-axis sculptured surface machining using

flat-end tools,” Computer-Aided Design, 32 (2000) 409-420.

[2] A. Hatna, R.J. Grieve, “Pre-processing approach for cutter interference removal,”

International Journal of Production Research, 39(3) (2001) 435-460.

[3] D.C.H. Yang, Z. Han, “Interference detection and optimal tool selection in 3-axis
NC machining of free-form surfaces,” Computer-Aided Design, 31(5) (1999) 371-

377.
[4] D.M. Etter, D.C. Kuncicky, Introduction to MATLAB 6, Prentice Hall, 2002.

[5] D. Yu,J. Deng, Z. Duan, J. Liu, “Generation of gouge-free cutter location paths on
freeform surfaces for non-spherical cutters,” Computers in Industry, 28 (1996) 81-

94.

[6] G. Glaeser, J. Wallner, H. Pottmann, “Collision-free 3-axis milling and selection of

cutting tools,” Computer-Aided Design, 31 (1999) 225-232.

[7]1 H. Pottmann, J. Wallner, G. Glaeser, B. Ravani, “Geometric criteria for gouge-free
three-axis milling of sculptured surfaces,” Transactions of ASME, Journal of

Mechanical Design, 121 (1999) 241-248.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[8] 1. Zeid, Mastering CAD/CAM, McGraw Hill Higher Education, 2005.

[9] J.H. Yoon, H. Pottmann, Y.S. Lee, “Locally optimal cutting positions for S-axis

sculptured surface machining,” Computer-Aided Design, 35 (2003) 69-81.

[10]J.H. Yoon, “Tool tip gouging avoidance and optimal tool positioning for 5-axis
sculptured surface machining,” International Journal of Production Research,

41(10) (2003) 2125-2142.

[117J.H. Oliver, D.A. Wysocki, E.D. Goodman, “Gouge detection algorithm for
sculptured surface NC generation,” Transactions of ASME, Journal of Engineering

for Industry, 115 (1993) 139-144.

[12]K.K. George, N.R. Babu, “On the effective tool path planning algorithms for
sculptured surface manufacture,” Computers and Industrial Engineering, 28(4)
(1995) 823-838.

[13]K. Lee, Principals of CAD/CAM/CAE Systems, Addison Wesley Longman,1999.

[14]L. Zhou, Y.J. Lin, “An effective global gouge detection in tool-path planning for
free-form' surface machining,” The International Journal of Advanced

Manufacturing Technology, 18 (2001) 461-473.
[15]S.C. Lin, Computer Numerical Control, Delmar Publishers,1994.
[16]S.J. Chapman, MATLAB Programming for Engineers, Thomson Learning.

[17]1X.C. Wang, Y. Yu, “An approach to interference-free cutter position for five-axis
free-form surface side finishing milling”, Jowrnal of Material Processing

Technology, 123 (2002) 191-196.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116



117

[18]X.M. Ding, J.Y.H. Fuh, K.S. Lee, “Interference detection for 3-axis mold

machining,” Computer-Aided Design, 33 (2001) 561-569.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



