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ABSTRACT

Unsupervised Offline Video Object Segmentation

Using Object Enhancement and Region Merging

Ken Ryan

Content-based representation of video sequences for applications such as MPEG-4
and MPEG-7 coding is an area of growing interest in video processing. One of the key
steps to content-based representation is segmenting the video into a meaningful set
of objects. Existing methods often accomplish this through the use of color, motion,
or edge detection. Other approaches combine several features in an effort to improve
on single-feature approaches. Recent work proposes the use of object trajectories to

improve the segmentation of objects that have been tracked throughout a video clip.

This thesis proposes an unsupervised video object segmentation method that in-
troduces a number of improvements to existing work in the area. The initial seg-
mentation utilizes object color and motion variance to more accurately classify image
pixels to their best fit region. Histogram-based merging is then employed to reduce
over-segmentation of the first frame. During object tracking, segmentation quality
measures based on object color and motion contrast are taken. These measures are
then used to enhance video objects through selective pixel re-classification. After
object enhancement, cumulative histogram-based merging, occlusion handling, and
island detection are used to help group regions into meaningful objects. Objective
and subjective tests were performed on a set of standard video test sequences which
demonstrate improved accuracy and greater success in identifying the real objects
in a video clip compared to two reference methods. Greater success and improved
accuracy in identifying video objects is first demonstrated by subjectively examining
selected frames from the test sequences. After this, objective results are obtained

through the use of a set of measures that aim at evaluating the accuracy of object
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boundaries and temporal stability through the use of color, motion and histograms.
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Chapter 1

Introduction

Due to the increasing volume of video content available on the internet and in video
archives, new methods of storing, transmitting and retrieving video are being devel-
oped [3-5]. For example, early MPEG-1 and MPEG-2 standards [6] focus on com-
pressing video pixels for efficient transmission. More recently, video object-based com-
pression standards like MPEG-4 overcome these traditional pixel-based approaches.
In addition, standards that provide a framework for the description of the video
content have emerged (e.g. MPEG-7). These video description standards aim at
facilitating video processing applications such as the indexing of audio-visual content
for content-based retrieval of video segments. The MPEG-7 standard, for instance,
allows a high-level description of a video’s content to be stored along with the video
data [7-9]. The MPEG-7 standard does not aim at fixing the means of extracting
the content of a video, it only provides a framework to describe and compress the
video description [10]. Determining the video content and how to best describe it is
the responsibility of the content provider. Developing software tools to automatically
extract the video content is a important current research topic in video processing for

which one of the key steps is segmenting the video into a meaningful set of objects.
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1.1 Background and objective

The goal of video object segmentation is to classify the pixels of a video into groups
that represent the objects in that video. For example, in a video shot of an inter-
section, we might classify each moving vehicle into its own group, and everything
else into one group representing the background. However, this decision can vary
depending on context. A different segmentation method might identify each of the
cars tires as a separate object. For this reason, there can be several interpretations
of what is a correct segmentation for a particular video sequence. Our objective is
to segment video clips into semantically meaningful objects, focusing on the main
objects of a sequence. A correct segmentation would consist of such video objects
as person, automobile, and the background, as apposed to dividing the video into
smaller objects such as, head, hands, tires, headlights, etc. While the human visual
system is able to easily identify the objects in most videos, this remains a very chal-
lenging task for automated systems. Many approaches to video object segmentation
have been proposed. These techniques rely on using several basic cues contained in
video clips to determine the best segmentation. Two of the most commonly used
cues are color and motion. The most basic pieces of information contained in each
frame of a video are the color values of the pixels. In the case of the RGB color space,
each pixel has three color values representing the red, green and blue components of
the color. Other color spaces have also been developed, with the goal of producing
color distributions that better represent the way the human visual system interprets
color. For example, the YUV color space has one value, representing the intensity, two
values representing the chrominance. Many segmentation methods rely on grouping
pixels with similar color into the same object, often using algorithms developed for
the segmentation of still images. While color is an important tool for segmentation,

it is limited in its applicability. Clearly, real objects are not always homogeneous in
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color, so segmentation techniques relying on color alone will not always yield satis-
factory results. Another cue that can be used to segment video is motion. Motion
in a video clip can be expressed as a set of motion vectors, one for each pixel, that
describe the displacement of each pixel in the current frame with respect to the last
frame. Several methods of calculating this displacement have been proposed. One
commonly used method is block-based motion estimation, where the current frame
is divided into blocks, and each block is matched with a block in the last frame by
minimizing an error function. Once the block matching has been done, each point in
the frame is assigned a motion vector that represents the displacement of the block
it is contained in. Another way to represent motion in a video clip is through the
use of parameterized models. For example, the block motion vectors can be used to
estimate the 6 affine, or 8 bilinear parameters that model the camera motion in a
video clip. The objective of this thesis is to develop a segmentation method that
uses motion, color and other cues that are available in video sequences to meet the

following requirements of the segmentation:
1. It should be unsupervised.
2. It should be applicable to a variety of video clips.
3. It should effectively segment videos with or without global motion.

4. Tt should segment objects which are moving in some frames, but stationary in

others.

5. It should segment objects which are non-homogeneous in color or motion at the

frame level.

6. It should segment the video into regions that correspond to the main objects

being captured in the video.
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1.2 Overview of proposed approach

The proposed segmentation method follows the common approach of segmenting the
first frame (initial segmentation) and tracking segmented regions through the remain-
der of the clip. Since there is no prior knowledge of the video content, the first frame
segmentation must be adaptable to numerous video characteristics. Since global mo-
tion may be present, techniques that require a stationary background, such as, frame
differencing, are not good candidates to aid in the first frame segmentation. Tech-
niques based solely on using object motion will not be able to segment objects which
are not moving in the first frame. To increase the range of applicability of the al-
gorithm, statistical clustering methods can be used. These techniques, such as the
K-means, and other expectation maximization algorithms can be applied to a wide
variety of videos, but only segment the image into regions which are homogeneous
in color. Our first frame segmentation employs a variant of the K-means algorithm
that includes terms for both color and motion. This way, both moving and non-
moving objects can be segmented, as well as multi-colored objects. Due to noise,
inaccuracies in motion estimation, and other factors, boundaries of segmented objects
may not be accurate in all frames of a clip. To improve on the accuracy of object
boundaries, a histogram-based object enhancement procedure is used.  Since the
first frame segmentation relies on using color and motion at the frame level, complex
objects which are non-homogeneous with respect to either color or motion will not
be segmented correctly. These objects will be over segmented. Since our segmenta-
tion method is off line, we are able to use information gathered through the tracking
process to iteratively improve the segmentation. In this way, objects that could not
be properly identified in the first frame can still be well segmented. To meet the re-
quirements described in Sec. 1.1, our video object segmentation consists of an initial

segmentation, followed by a tracking process, a histogram-based enhancement stage,
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and finally a region merging process. A high-level block diagram of the proposed

method is shown in Fig. 1.1.

vec

final

Figure 1.1: Block Diagram of the Proposed Segmentation Algorithm.

1.3 Contributions

This thesis introduces a number of innovations to video object segmentation. The

following list describes the contributions of this thesis that are original to the best
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knowledge of the author. *

e An improved initial segmentation where the following improvements have been

made:

1. Incorporating color and motion variance into an existing region clustering

scheme.

2. The addition of a histogram distance and motion variance-based merging

stage to reduce over segmentation of the first frame.

e Histogram-based object enhancement, where a set of segmentation measures
taken while tracking objects are used to improve the accuracy of object bound-

aries.

e Merging tracked objects based on cumulative histograms gathered throughout

the video clip.

e Trajectory-based merging that has been extended to handle partial occlusion

and isolated regions.

1.4 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 provides a review of
related work in video object segmentation and describes two reference methods which
have been studied and implemented. Chapter 3 describes the proposed segmentation

method. Results are presented in Chapter 4 and Chapter 5 concludes the thesis.

LA paper based on this thesis was published in Proceedings of the 2006 IEEE International
Conference on Multimedia and Expo [11]. A related journal paper is being prepared to be submitted
to the IEEE Transactions on Multimedia.
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Chapter 2

Literature Review

This chapter provides a review of the existing literature in video object segmentation.
A general review of related work is presented in section 2.1. Sections 2.2 and 2.3
provide detailed descriptions of two reference methods that will be used as a basis of

comparison for the method proposed in Chapter 3.

2.1 Related Work

The concept of segmenting video into layers was introduced by [12] and [13]. These
papers describe how different regions of an image are segmented and stored as lay-
ers, which contain information, such as, an intensity map of the region and motion
information. These layers correspond to the video object planes used in the MPEG
verification model. The entire video clip can be represented by the segmented ob-
jects in each layer and the relative motion between layers. The authors of [13] use a
robust estimation method to iteratively estimate the number of layers and the pixel
assignments to each layer. In [12] an affine motion model is fitted to blocks of optical
flow. Then, a K-means [14] approach is used to cluster the image points according to

their affine parameters.
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As previously mentioned, many video segmentation approaches involve segmenting
the first frame and tracking the segmented objects through the rest of the sequence.
Normally, still image segmentation techniques combined with motion information are

used to perform the initial pixel assignments.

2.1.1 Color-Based Approaches

Color characteristics are sometimes used to segment video objects. One recent ex-
ample of this is [15], where color-based deformable models are used to segment and
track objects. This method uses color constant gradients, and a model is proposed
for estimation of sensor noise through these gradients. As a result, this method is
robust when dealing with noisy data. As well, only color, and not intensity is used so
that the method can deal with illumination changes. However, this method is only

effective when dealing with homogeneous objects and does not handle occlusion.

2.1.2 Motion-Based Approaches

Motion-based approaches to video object segmentation are commonly employed as
they often provide improved results on video clips for which color-based methods
encounter problems. The authors of [16] present a number of region-based affine-
parameter clustering methods using motion vector and intensity matching to align
motion boundaries with real object boundaries. They then go on to use a specific
combination of these methods to segment a number of video clips.

A different motion-based approach to segmentation is presented in [17]. Here,
the motion estimation error along occluding boundaries of moving objects is studied.
The authors show how the nature of this error can be used as a depth cue. Their
segmentation approach involves segmenting the image based on color and motion

independently. Then, by examining the motion estimation error at region boundaries,
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they are able to determine what are the occluding and occluded objects. In this way
they are able to establish the relative depth of the image segments.

The focus of [18] is on extracting objects with similar motion. The two step
process consists of generating 3D watershed volumes followed by a Bayesian merging
of these volumes. In the first frame, markers are extracted which provide reliable seed
regions for segmentation in subsequent frames. One weakness of this method is that
it is assumed that the number of video objects is previously known.

In [19], deformable binary object models are used to segment and track objects.
The models are updated from frame to frame and are therefore able to accommodate
complex object motion as well as changes in shape. The models are updated using
a modified watershed-based method. Like other methods, there is an initial detec-
tion/segmentation step followed by a tracking step. This method can handle moving
backgrounds and partial occlusion. However, since the segmentation is based on mo-
tion and is done on the first frame, only objects that are present and moving in the

first frame are detected. Newly appearing or stationary objects cannot be detected.

2.1.3 Edge-Based Approaches

There has also been significant research into using edge detection to segment video.
The extracted edges are used to determine the boundaries of the segmented objects.
One major difficulty with this approach is deciding which edges represent object
boundaries and which are the result of other image properties, such as textured
surfaces. The authors of [20] try to deal with this problem by using a multi-resolution
approach to edge detection. A method of determining the optimal scale at each edge
by examining edge strengths is presented. The edges at these optimal scales are then
used to segment the image.

Boundary completion techniques are used in [21] to complete contours that are
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smooth, but have low contrast. However, this method is vulnerable to problems when
dealing with textures.

In [22], textures are dealt with explicitly by modeling them with textons. By
combining texture cues with intervening boundary cues, this approach is able to deal
with both textured and non-textured areas.

A different approach to improving edge-based segmentation is taken by [23]. This
algorithm uses information from edges at multiple scales. Instead of trying to select
the optimum scale for each edge, and then segmenting the image on the selected
edges, this approach collects edge information at multiple scales and then does a
simultaneous segmentation over all the edges. This method can capture both large

and small scale image properties as well as deal with textured areas.

2.1.4 Segmentation Using Multiple Features

Much of the recent work focuses on using multiple video features to aid in segmenta-
tion. The authors of [24] use color and motion to segment objects in the first frame,
which are then tracked by using their estimated motion to predict their location in
the next frame. This method can also segment new objects that appear after the first
frame.

In [1], a maximum a posteriori (MAP) framework is proposed. They assign weights
to color and motion terms, which are adjusted at every pixel. They also model the
spatial probability density function (pdf) of each region in order to impose temporal
consistency.

A slightly different approach is employed by [2]. Instead of segmenting based
on motion at the frame level only, regions which have been divided based on color,
motion and position are tracked. The long-term trajectories of these regions are used

to group them into an appropriate segmentation. Segmentation algorithms such as
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this one, which perform multiple passes through a video clip are referred to as offline
methods. Methods which only require knowledge of the current and previous frames

being segmented are referred to as online methods.

2.2 Segmentation Using Multiple Features With
Adaptive Weighting

The section introduces a segmentation method entitled "Object based segmentation
of video using color, motion and spatial information”, [1]. This method proposes a
Maximum A Posteriori (MAP) framework to combine motion and color to segment
the first frame, and uses the spatial pdf of the formed regions to track them through
the remainder of the clip. This is an online segmentation method since only one pass
is made through the video clip. However, it is not completely unsupervised, since
the number of objects must be known prior to performing the segmentation. The

algorithm consists of the following steps (Fig. 2.1):
1. Initial segmentation using expectation maximization (EM) algorithm.
2. Feature weight calculation and pdf modeling.

3. Region tracking using spatial pdfs and maximum likelihood estimate (MLE).
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Input Sequence

Figure 2.1: Block Diagram of Segmentation Algorithm Proposed in [1].
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2.2.1 Initial Segmentation

The initial segmentation uses an EM algorithm to break the image into seed regions
roughly corresponding to the objects in the frame. First, motion vectors are estimated
using the Lucas-Kanade [25] method, so that a pair of motion vectors are generated
for each pixel. These motion vectors as well as the Y, U, and V color components of
each pixel are fed into the EM algorithm which uses an iterative process to estimate a
Gaussian mixture model for the data. This Gaussian model is then used to re-classify

each pixel in the image to its region of maximum probability.

2.2.2 Feature Weight Calculation and PDF Modeling

The seed regions generated in the initial segmentation are used to calculate statisti-
cal models for each region in the first frame. The color and motion distributions are
modeled by a 5-dimensional mixture of Gaussians over the [u,v,Y,U,V] space which
represents the color and motion components for each pixel. The terms u and v rep-
resent the horizontal and vertical motion vectors. The image is represented in the
YUYV color space, where Y is the luminance component, and U,V are the chromi-
nance components. Spatial pdfs are calculated by modeling each region as a sum of
Gaussian distributions, with a distribution centered at each point in the region. This
is accomplished by convolving the binary segmentation map of each region with a
Gaussian kernel. Once the pdf of each region has been calculated, a maximum log
likelihood (MLL) estimate is used to re-classify each pixel in the image. The MLL
estimate calculates the probability of a pixel belonging to each region, based on a
weighted sum of the MAP probabilities for each feature (Eq. 2.3).
The MLL estimate is derived from the MAP estimate (Eq. 2.1) as

Fi(z,y) = argmaz{ P(X) x P(zi(z,y)|R:) x P(z{"(z,y)|Ri)}, (21)
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where P,(X), P(z¢(x,y)|R;), and P(xf (x,y)|R;) are the MAP probabilities of the spa-
tial, color and motion terms, respectively. By multiplying both sides of this equation

by a log function, it can be re-written as a log likelihood

Ly(z,y) = argmaz;{in(Ps(X)) + In(P(af(z, y) | R:))+
(2.2)

In(P (7 (z,y)|Ri))}-

Calculating the probability in this way allows the addition of weighting terms to each

feature in the likelihood equation,

Li(z,y) = argmaz{w; L{(z,y,1) + wiL{(z, y, 1) + wP L7 (2, y,7)}, (2.3)

where wf, wf, and w;" are the weights for the spatial, color and motion terms. The
addition of feature weights allows the pixel re-classification to assign a heavier weight
to features that are more reliable. The spatial weight for each pixel is fixed at 1, while

the color and motion weights are adjusted at every pixel according to Eq. 2.4.

Wm = P1P2 (2.4)

Wy = 1 — p1p2, (2.5)

where p1, and ps are variables that represent how well the motion of the pixel under
examination matches with the highest MLL distribution, as well as the level of dif-
ferentiation with the second highest MLL distribution. Both terms are regularized

using modified sigmoid functions as shown in Egs. 2.6 to 2.7.

p1 = {1 + exp(—a(maz;(LMz,y,1)))} 7}, (2.6)
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where

p2 = {1+ exp(—a(d — 1))}, (2.7)

d = |maz(L(z,y)) — maz2(L™(z,y))|. (2.8)

2.2.3 Region Tracking

Regions are tracked using the region statistics from the previous frame to calculate
the maximum likelihood estimate for each pixel in the current frame. The color
and motion weights are re-calculated for each frame, and the spatial pdf term in the
likelihood equation enforces temporal consistency. After pixels are re-assigned, region
statistics are re-calculated and the process is repeated for every frame in the video

sequence.

2.3 Segmentation Using Multiple Features With
Trajectory-Based Region Merging

This section describes an unsupervised offline segmentation method aimed at provid-
ing segmentations suitable for content-based video applications. The method is enti-
tled ”Video object segmentation using Bayes-based temporal tracking and trajectory-

based region merging”, [2]. The algorithm is composed of three main steps (Fig. 2.2):

1. Initial segmentation using K-means with connectivity constraint (KMCC) al-

gorithm over color, motion and spatial information.

2. Tracking algorithm using a Bayes classifier, and rule-based processing to re-

assign changed pixels to existing regions and detect newly appearing objects.

3. Trajectory-based region merging procedure, to group objects based on long term

motion.
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Figure 2.2: Block Diagram of Segmentation Algorithm Proposed in [2].
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2.3.1 Initial Segmentation

To segment the first frame, initial region centers are calculated, which are then used
as input to the KMCC algorithm. After the KMCC algorithm converges, a first frame
enhancement is applied to the segmented frame. These three steps are described in

more detail below.

Initial Centers

To estimate initial object centers, color and motion features for each pixel are ex-
tracted. The CIE L*a*b* color space is chosen for its perceptual uniformity, and
motion vectors are calculated using a full search block matching algorithm. The im-
age is then broken down into blocks and a color feature vector and motion feature
vector are assigned to each block [26]. Then, the initial number of centers is estimated

using a variant of the maximin algorithm [27] consisting of the following steps:

1. Find the block with the maximum color and motion distance from first block

Dmax-

2. Examine every other block in the image, and accept any block that is at least

v % Dpqy from every other block as a valid region. Where 7 is set to 0.4.

Once the initial number of centers has been estimated, a K-means algorithm is
applied to the blocks. The K-means algorithm clusters the blocks into K homogeneous
regions, where K is the number of initial centers previously estimated.

Since the regions generated by the K-means algorithm are not necessarily con-
tinuous, (i.e., there can be many disconnected parts classified to the same region),
a 4-connectivity component labeling procedure is used to divide the image into con-
nected regions. The color, motion, and spatial centers of these connected components

are then calculated and used as input to the KMCC algorithm.
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KMCC

The KMCC algorithm consists of the following steps:

1. Each pixel in the image is classified into one of the previously defined connected

regions based on the distance function in Eq. 2.9.

Dynyce = ”C(P) _aRiH + A ||M(p) _MRiH +
(2.9)

Ao [lp — Bl

where ERN MR“ and §Ri are the color, motion and spatial centers of region R;,
respectively. C(p) and M(p) are the color and motion vector values for image
point p. Ag, is the area of region R; in pixels, and A is the average region area.

A1 and A, are regularization parameters defined as

= . Dm z
)\1 =2 \/(2uma1)zi(2’vma1)2’ (210)

_ D,
Ao =01 Bpar (2.11)

where 4, and v, are the maximum allowed block displacements used in the

block-based motion estimation, and X and Y are the image width and height.

2. The formed regions are broken down into their minimum number of connected

components, and the color, motion, and spatial centers are re-calculated.

3. Regions considered too small to be meaningful (their area is less than 2% of

image size) are dropped.

4. The connected components are examined to determine neighbour relationships

of the regions, and neighbouring regions whose motion and color centers are
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below a threshold, p, are merged, where, j, is defined as:

p=715 if C <25,

u=15 if C>75, (2.12)

u =10 otherwise,

where C is a measure of the image contrast [2].

5. The number of regions and the region centers are re-calculated. If the remaining

regions meet Eq. 2.13, the algorithm terminates.

N = Nyq,

6}21- - aRi,old < Ccy (213)
MRi - MRLv,old < CMm,

Sk, — SRr,.0d < Cs,

where N is the number of regions, and c¢, ¢y, and cg are color, motion and

spatial distance thresholds.

6. If the algorithm has not converged by 20 iterations, then stop, otherwise return

to step 1.

First frame enhancement

After convergence, the first frame segmentation is enhanced using a histogram-based
Bayesian process. Pixels close to the edge of each region are marked as disputed, and
a color histogram for each region is calculated using only the non-disputed points
in that region. Then, the disputed pixels are re-classified into the region of highest

probability based on the histogram value for that point in each neighbouring region.
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2.3.2 Temporal Tracking

After the initial segmentation, a temporal tracking module is used to track the seg-
mented regions through the remainder of the clip. The temporal tracking begins with
a frame difference and thresholding, which marks regions as disputed or non-disputed.
This is followed by tracking the existing regions. Next, new regions are detected and
classified into their own segmentation mask. Finally, the segmentation mask for the

new regions is merged with the mask for the existing regions.

Frame Difference and Thresholding

The first step in the tracking process is to determine which image points are un-
changed from the previous frame, and which ones will need to be re-classified. To do
this, a three by three Gaussian smoothing filter is applied to the current frame I,
and the previous frame I;_1, and an image color difference is calculated between the
two frames. Pixels whose color difference are below an experimentally determined
threshold are considered to belong to the same region as in the previous frame. All
other pixels are marked as disputed, and are divided into connected disputed regions
using a four-connectivity component labeling algorithm. This results in an interme-
diate segmentation mask consisting of non-disputed regions, and connected disputed

regions, IINT-

Tracking Existing Regions

Neighbour relationships for the intermediate segmentation mask I;y7 are evaluated,
and a Bayes classifier is used to assign the pixels in each disputed region to one of
it’s neighbouring non-disputed regions, using the histograms for each region from the
previous frame as the a priori probability. The result of this process is a segmentation

mask with all pixels in the current frame classified to one of the existing regions from
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the previous frame Ig.

Detection of New Regions

To detect new regions, a separate segmentation mask is created In. Here, two rules
are used (labeled rules 1 and 2) to detect new regions. Using the intermediate mask

IrnT, the homogeneity measure given in Eq. 2.14 is calculated for every region R;.

Pr, = E{C(p)|R;}, (2.14)

where E is the expected value operator, and C(p) is the MAP probability of each
pixel p in R;. Then, for each disputed region, the homogeneity measure is calculated

as,

PRmerge = E{maminondisp(E{C(p)IRinondisp})}' (215)

This measure gives an indication of how each disputed region would effect the ho-
mogeneity of its closest non-disputed neighbour, if the pair were to be merged. Any
disputed region that dramatically lowers the homogeneity value of its nearest non-
disputed region as in Eq. 2.16, is classified as a possible new region.

Dhnerge .05 (2.16)

Next, histograms are calculated for each possible new region, and each pixel in each
of these regions is re-classified to either the new region or to its nearest existing region
based on its Bayesian probability. After this re-classification, a component labeling
algorithm is again applied to the mask, and all new regions that exceed a predefined
size threshold t,¢,, = 0.002 * X Y are identified as valid new regions and marked in

the new region segmentation mask Iy.

Reproduced with permission of the copyright owner. Further repr(;duction prohibitediwithouf bérmiss}on.



22

Segmentation Mask Fusion

The final step in tracking is to merge the new and existing segmentation masks I
and I. Here, the mask for the existing regions Ig, is fused with the new region mask
Iy. Any pixels that are not specified as valid new regions in the new region mask Iy,
stay in their existing regions. Otherwise they are categorized as new regions and the

following rules are then applied to the new regions.

e New regions are appended to their nearest existing neighbouring region if the

color center distance is below a threshold.

e New regions are assigned to extinct regions, if their color centers are below a
threshold and the spatial distance is below a threshold. This also allows for
the tracking of fast moving objects whose regions of support do not overlap in

consecutive frames.

2.3.3 Trajectory-Based Region Merging and Background De-
tection

The final stage of the segmentation algorithm is grouping the tracked regions into real
objects. The regions that were segmented in the first frame and tracked through the
clip consist of image areas that were homogeneous with respect to color and motion in
the first frame. However, real objects often consist of more complex regions that are
not necessarily homogeneous with respect to color or motion in any single frame. The
result of this is an over segmentation of the clip. To determine which regions should
be grouped together in order to represent the real objects in the clip, the long term
trajectories of the regions are examined. The following three steps are employed to
generate the final segmented output; Region Trajectory Calculation, Region Merging,

and Background Region Detection.
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Region Trajectory Calculation

For each frame, a block-based motion estimation is applied to generate motion vectors
for every pixel. These motion vectors are then used to estimate the 8 parameters of
the bilinear motion model (Eq. 2.17), for every region in the frame.

U= ag+ a1 + agy + azry (2 17)

U = a4 + a5T + agY + a72Y

The motion parameters are estimated using the least squares estimation method,

where the estimation error is calculated according to Eq. 2.18.

Eall = szil (uz - '&1)2 + (U,‘ — @1)2 (218)

Where u;, and v; are the motion vectors generated from the estimated bilinear param-
eters, and 1; and ©; are the vectors obtained from the block-based motion estimation.
To improve robustness, the bilinear motion estimation employs an iterative rejec-
tion scheme [28]. This is done by first calculating the estimation error of all blocks,

according to Eq. 2.19

Bave = 500 (i — )% + (v; — 0,)? (2.19)

Any blocks with an estimation error higher than the average F,,. are marked as
rejected. The bilinear motion parameters are then recalculated using only the non-
rejected blocks. This process repeats until the set of rejected blocks in the current

iteration are the same as those from the previous iteration.

Motion parameters are estimated for every object so that a region motion param-
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eter vector, UY(R;), is calculated for each object in the frame as,

UY(R;) = [ao, a1, ....az). (2.20)

The region motion parameter vector is calculated for every frame, so that a trajectory
matrix U(R;) is formed for each region, containing its bilinear parameters for every

frame in the clip.

U(Rl) = [Ul(Ri)vUQ(Ri)a """ UT(Ri)] (2'21)

Region Merging

Region merging begins by defining spatiotemporal neighbours as all pairs of regions
that are connected in every frame in which they co-exist. The following rules are

employed in this stage.

e If a region is in the scene for less than 4 frames, then it is merged with it’s

nearest neighbour.
e If a region is too thin, it is merged with it’s nearest neighbour.

Next, the trajectory matrix parameters are used to determine which regions will be
merged into real objects. This is done by first merging each pair of spatiotemporal
neighbours and calculating a new set of bilinear motion parameters for the merged
pair. Then, these new parameters are used to motion compensate each region of
the pair independently, and the compensation error is calculated. This compensation
error is compared to the compensation error generated when using the original bilinear
parameters of each region. Regions that belong to the same real object should be well
represented by one set of motion parameters, so the motion error from the parameters

of the merged pair should not be drastically higher than the original estimation error.
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A motion difference measure, D} (R,,, R,.), is defined for each frame as,

Epon(Bm) = Bfn(Bm) | Efyn(Bn) =B} (Rn) (2.22)

where Efnwn(Rm) is the motion compensation error when the combined region pa-
rameters are used to compensate region R,,, E! (R,,) is the error using the original
parameters to compensate Ry. Similarly, E} . (Ry), and E}(R,) are the combined

and individual parameters for region R,. N{, and N}, are the sizes of regions R,

m?

and R,. A trajectory difference measure, Dy (R,,, R,), is formed by combining the

motion similarity measures for all frames,

— ST Ty(Rm)Tt(Rn) DY (Rm, Rn)
Dy (B, Rn) = rtnctlx{l,zf:‘llrt(fzm)%t(m)} ’ (2:23)

where I'; is a function to express whether or not an object is present in a particular

frame, defined as:

[':(R;) =1 if R; is present in frame t
(2.24)

0 otherwise

The pair of regions with the lowest trajectory difference will be merged. Region tra-
jectories are then re-calculated, and the merging process is repeated. The trajectory
difference measure will increase after each merge. However, merging regions that
belong to the same object should result in small increases in the difference measure,
while merging regions belonging to different objects will produce a large increase.

Therefore, the process terminates when the rate of error increase is at a maximum,

gTU:’,:Nk € [K — 2,1}, Dyg+1 > 0, Dy > Dy min, (2.25)
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where Dy in 18 set to 0.1.

Background Region Detection

After the image has been segmented into objects, the camera motion is estimated
by the method proposed in [28], and objects whose trajectory is consistent with the
camera motion are marked as background. This is done by comparing each object’s
trajectory to the background trajectory using the same similarity measurement as in

the region merging stage.

2.4 Summary

The trend in multi feature-based object segmentation goes towards developing ef-
fective means to combine numerous video features at both the frame and sequence
level. The authors of [1] propose an innovative technique for combining color, motion,
and spatial features at the frame level with adaptive weighting. The authors of [2]
propose a promising technique for using long term object trajectories taken over an
entire video sequence to improve on an initial color, motion, and spatial feature-based
segmentation. For these reasons, we have selected the papers in [1,2] to implement

and compare.
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Chapter 3

Proposed Segmentation Method

3.1 Overview

The segmentation method we propose is based on [2]. The proposed method consists
of an initial segmentation, object tracking, histogram-based object enhancement, and
region merging. A detailed block diagram of the proposed approach is presented in
Fig. 3.1.

We have introduced the following improvements:

1. Initial segmentation: We include motion and color variances in the distance

function of the KMCC algorithm, and add histogram distance-based merging.

2. Histogram-based object enhancement: We take a set of segmentation measures

while tracking objects to improve the accuracy of object boundaries.

3. Post-tracking merging: Regions are merged based on cumulative histograms

gathered over the entire clip.

4. Trajectory-based merging: We handle partial occlusion and deal with isolated

regions.
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Figure 3.1: Detailed Block Diagram of the Proposed Segmentation Algorithm.
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3.2 Initial Segmentation

The initial segmentation of [2] uses the euclidean distance of each pixel from each
color and motion center to classify pixels. This is effective for regions that have
relatively simple color and motion distributions, but can result in errors for more
complex regions. In order to more accurately classify pixels higher order statistical
information has to be taken into account. Fig. 3.2 shows a simple example PDF of
two color regions. If color distance alone were to be used to classify pixels, all color
values below 100 would be assigned to the distribution on the left. However, it is
clear from looking at the pdfs that all color values above 60 should be assigned to the

distribution on the right.

01 T 3 T - T
0.09| : : .
0.08+
0.07}
0.06

Toost
0.04
008}
0.02}

0.01

1 i 1 1
0 50 100 150 200 250
Color Value

Figure 3.2: Simple Example Showing Color Distributions of Two Regions.
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We propose to include variance information about the color and motion distri-
butions of each region in the KMCC distance function. After the initial centers are
estimated, the feature variance of each region is calculated, and pixels are classified
according to their distance from the center of each feature divided by the variance.

So we propose the distance function in Eq. 3.1.

C(p)-Cr, M(p)—-Mp,
DKMCC: || (:Z R,” +)\1|| (:2) Rz||+
R;,C Ry M

Ao g [Ip - S,

3

where 0%, . and 0% ,, are the color and motion variances of region R;.

Classifying pixels in this way is more accurate than using only distances from
region centers as in [2], since more information about the distribution of each region
is being utilized. Also, this method divides the image into a smaller number of more
complex regions, which reduces the over-segmentation normally associated with the
KMCC algorithm. Reducing the over-segmentation of the first frame decreases the
chances for error in later stages of the algorithm.

To improve the robustness of the initial segmentation, we examine the regions at
the end of each iteration of the KMCC. If the algorithm converges to less than two
regions, R;, };, that meet Eq. 3.2, indicating under segmentation, the entire process

resets and the original KMCC is used.

Ap, >ax X xY (3.2)

where Ag, is the area of region R;, and « set experimentally to 0.02.
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3.3 Histogram and Motion Variance-Based Region
Merging

The next stage of the initial segmentation is a histogram and motion variance-based
merging stage. As described in section 2.3, the reference KMCC algorithm incor-
porates merging of neighbouring regions whose color and motion centers are below
a certain threshold. This merging process is another area that can be improved by
using higher order statistical information about the regions being examined. We ac-
complish this through the use of color histograms and the motion variance of each
region.

First, color histograms are calculated for each region. This is done by dividing
the region into a three dimensional array of bins, where the value in each bin is the
number of occurrences of that color in the region. This provides a more complete
representation of a regions color distribution than using a motion center or a simple
statistical representation, such as a Gaussian. Fig. 3.3 shows a hypothetical example

of two regions with the same color centers, but different histograms.
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Figure 3.3: Example Showing Two Regions With the Same Color Center but Different
Histograins.
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Once color histograms have been calculated, the ¥? histogram distance between

each pair of neighboring regions is measured as

— Hg, (b))?
VR, R; € P,, x*(Hg, H 3.3
) 1 R; R ; _|__ HR (b)) ( )
where P; is the set of all pairs of neighboring regions (R;, R;) in the first frame, Hp,
and Hp, are the histograms of R; and R;, and b is the histogram bin. After the
distances have been calculated, all neighboring regions satisfying Egs. 3.4 and 3.5 are

merged.

XQ(HRN HRJ-) < /6 * Shist (34)
Mg, — Mg, || < € maz(o%, 4, UIQ%j’M) (3.5)

where Sy;s: is the histogram size, § experimentally set to 1.3, and e experimentally
set to 2.

After merging, we re-evaluate the region motion centers and histograms and re-
determine neighbor relationships. The merging continues until no more regions meet
Egs. 3.4 and 3.5.

By reducing over-segmentation compared with [2], we identify and merge regions

in the first frame that better represent the true video objects.

3.4 Histogram-Based Object Enhancement

During object tracking, we measure the segmentation quality of each object in each

frane. We use the following three measures to do this:

1. Color homogeneity of the region [2]. This is defined as the average of the MAP
probabilities of every pixel in the region, and is determined from the color

histograms for each region.
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2. Color contrast across the object boundary [29]. This measure was shown in [29]
to be an effective objective measure of segmentation quality. The object contour
is traced, and all along the object boundary pairs of blocks are chosen, with each
pair consisting of one block inside and one block outside the object. The mean
color value for each block is calculated and the absolute difference between each
pair of blocks is taken. The color contrast is the average of all these absolute

differences along the object boundary.

3. Motion contrast across the object boundary [29]. This is calculated in a similar
manner to the color contrast, except that motion vectors are used instead of

color values.

After objects have been tracked through the entire clip, we examine these seg-
mentation measures and each object’s movements to determine which objects we will
enhance, and for which frames we will perform the enhancement.

For a given object, most variation in object segmentation quality between frames
is due to movement. Therefore, we are here mainly interested in moving objects. To
this end, we examine the trajectories of all objects in the entire video clip and choose
which ones to enhance as follows.

The (x, y) coordinates of each object’s center in each frame are used to calculate
the maximum displacement of every object in the clip. The displacement is taken with
respect to the first frame. Objects whose maximum displacement is above a certain
threshold are considered to have undergone significant motion and are candidates for

enhancement (Eq. 3.6).

zRﬂ
2

5

VR;el and t=

ADg, ez >t : enhance R; (3.6)

ADpg, o <t:keep R,
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where ADR, max is the maximum displacement of region R; over the entire clip I and
ZRi is the size of R; averaged over I.
Once we have chosen which objects to enhance, we examine their segmentation

quality measures for each frame and enhance objects according to the following rules:

1. If an object’s color homogeneity in a given frame is below that same object’s
average color homogeneity for all frames, this indicates that pixels belonging
outside the object have been classified inside the object in this frame. In this
case, pixels within the object and close to the boundary will be marked as

disputed and re-classified.

2. High color homogeneity with below average color contrast indicates that pixels
belonging inside the object have been classified outside. In this case, pixels close

to the boundary but outside the object will be re-classified.

3. High color homogeneity with high color contrast indicates a good segmentation.

Nothing will be done.

We re-classify pixels through a Bayesian approach using histograms from key
frames of the clip to determine the MAP probability of each disputed pixel. Out of
every five frames, the frame with the highest homogeneity and contrast is a key frame.
The disputed pixels in each frame are re-assigned based on each object’s nearest key
frame histogram.

After re-assigning pixels, we perform an error check based on the assumption that
object enhancements should not result in drastic changes in object size. We measure
the size of the object, and if it has increased in size by more than 200% or decreased by
more than 70%, the test fails. If the object’s motion contrast has decreased, the error
check fails as well. Due to the use of block-based motion estimation, motion contrast

is not effective for locating small inaccuracies in object boundaries, so it was not used
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in selecting the frames needing improvement or the key frames. However, a decrease
in motion contrast does indicate a significant reduction in boundary accuracy, making
motion contrast an effective measure for error checking. If the enhanced object fails
either of the error checks, the enhancement is rejected, otherwise it is accepted.
This enhancement stage improves the boundaries of tracked objects over that
of [2]. This also allows more accurate motion parameters to be estimated for each

object, improving the performance of the trajectory-based merging stage.

3.5 Post Tracking Region Merging

Post-tracking region merging simplifies the trajectory-based merging stage (Sec. 3.6).
This is desirable, because trajectory-based merging can fail when an object’s motion
is too complicated (deformation or articulated motion), or when accurate motion
vectors are not available (e.g., when objects are highly uniform in color).

Color histograms are used to merge regions which are spatio-temporal neighbors.
Here we use cumulative histograms calculated from an object’s pixels taken over all
frames in the clip. Compared with histograms computed for an object in a single
frame, cumulative histograms are less sensitive to noise, inaccurate object boundaries
for particular frames, changing illumination, and occlusion. For example, an object
with lighting that varies across it’s surface in the first frame could be segmented into
two regions, but as the object moves these illumination differences could even out, and
the two halves of the object can be merged. As with the first frame histogram-based
merging (Sec. 3.3), the x? histogram distance (Eq. 3.3) is used to select regions to
merge. This stage improves the segmentation of objects with complex motion that

present problems for [2].
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3.6 Trajectory-Based Region Merging

We propose a trajectory-based merging that accounts for high occlusion of the back-
ground. The trajectory-based merging stage of [2] only examines regions which are
spatio-temporal neighbors. However, since region connectivity is enforced during the
initial segmentation with the KMCC algorithm, it is possible for the background to be
initially segmented into multiple regions that are not spatio-temporal neighbors. One
example is when there is a large object, extending from top to bottom in the middle
of a frame. In these cases, the video cannot be segmented correctly without merging
these non-neighboring background regions. To account for this, any region that con-
tains a corner point, (0,0}, (X-1,0), (0, Y-1), (X-1,Y-1), of a frame is considered to be
a potential background region, and will be treated as a spatio-temporal neighbor of
all other potential background regions in the clip for the purposes of trajectory-based
merging. Note that the trajectories are still used to decide if to merge these potential
background regions. Thus foreground objects with corner points can still be correctly
identified (e.g., Fig. 4.11). With this change of the spatio-temporal neighbor criteria,
we are able to correctly segment the disconnected pieces of the background, while still
enforcing connectivity of all other objects. Furthermore, after the trajectory-based
merging is finished, any island regions (those with only one spatio-temporal neighbor

which is not a potential background region) are merged into their surrounding object.

3.7 Summary

In this chapter we have proposed an offline unsupervised video object segmentation
method. The proposed method reduces first frame oversegmentation through the
use of color and motion variance in the re-classification of pixels, as well as using

histograms and motion variance to merge segmented regions. Tracked objects are
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selectively enhanced through the use of segmentation quality measures after which

two merging stages are employed to merge regions into meaningful objects.
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Chapter 4

Results

4.1 Algorithm Parameters

The proposed segmentation algorithm utilizes the following fixed parameters which

have been optimized through experimentation.

1. Ag, First frame under segmentation threshold (Eq. 3.2), set to 0.02. This
parameter is set so that if there is not at least one object in the first frame with
an area greater than 2% of the image size, it is assumed that we have under

segmented and the initial segmentation resets.

2. $ Histogram merging threshold (Eq. 3.4), set to 1.3. The value of this pa-
rameter is chosen to provide an effective histogram-based merging stage, while

preventing the merging of regions which do not belong to the same object.

3. € Motion variance merging threshold (Eq. 3.5), set to 2. It is used along with the
histogram merging threshold during the histogram and motion variance-based

region merging stage.

4. t Threshold used to determine whether or not to enhance a given object (Eq.
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3.6). The value is set to @. This provides a means of measuring an

objects motion relative to its size. Larger objects would require a larger absolute

displacement to be considered for enhancement.

4.2 Subjective Results

Comparison results are presented for a number of standard video test sequences (Table

4.1) in Figs. 4.1 to 4.14. Results for the method proposed in [2] are labeled reference

method 1, and results for the method proposed in [1] are labeled reference method 2.

In each case, our proposed method compares favorably with both reference methods.

Test Sequence Dimensions Number of Frames | Global Motion
Coastguard 352 x 288 (CIF) 300 Pan
Harbour 564 x 240 50 Pan
Mobile 352 x 288 (CIF) 100 Pan
Foreman 352 x 288 (CIF) 300 Pan
Basket Ball 352 x 288 (CIF) 20 Pan
Gameshow 352 x 288 (CIF) 600 Zoom
Tennis 352 x 288 (CIF) 60 Zoom
Miss 176 x 144 (QCIF) 150 None
Suzie 176 x 144 (QCIF) 150 None
Roadl 352 x 288 (CIF) 30 None
Carphone 176 x 144 (QCIF) 95 None

Table 4.1: Test Sequences (total of 1855 frames).

Figs. 4.1 and 4.2 present results for the Gameshow and Miss America test se-

quences. The main objects in these clips consist of multiple colors, and motion that

is difficult to model accurately (there is some movement of the neck and head, while

the bodies mostly remain stationary). In both cases, significant improvement can be

seen in our proposed method with respect to reference method 1. Reference method

2 performs poorly on the Gameshow sequence and has results comparable to ours for

the Miss America sequence. In each case, improvement over reference method 1 is
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due mainly to our improved first frame segmentation. The Miss America sequence is
initially segmented into 2 regions, one corresponding to the actor, and one correspond-
ing to the background, so that the merging stages consist of simply distinguishing a
single object from the background. The Gameshow sequence is initially segmented
into 6 regions, with 1 region corresponding to the actor, and the background divided
into several regions, which are all correctly merged in the histogram and trajectory-
based merging stages. In comparison, reference method 1 initially segments the actors
of both these clips into several regions, corresponding to their head, shoulders, and
torso. Due to the inconsistency of motion between the head and torso of the actors,
the reference method’s trajectory-based merging stage is unable to correctly merge
all of the initially segmented regions.

Figs. 4.3 and 4.4 present results for the Foreman and Carphone sequences. These
methods consist of moving faces with complex backgrounds. Significant improvement
over both reference methods can be seen. Due to the complexity of the backgrounds,
these clips are initially segmented into many regions (14 regions in the case of Foreman
and 15 for Carphone). The histogram-based merging stages are important for these
clips since they begin the merging process, reducing the chance for error in the final
trajectory-based merging stage. To further illustrate this point, simulations were run
using the proposed method, but with the histogram-based merging disabled. Fig.
4.5 shows results for selected frames demonstrating that parts of the background are
misclassified when the histogram-based merging is not employed.

Figs. 4.6 and 4.7 present results for the Harbour and mobile test sequences. These
sequences contain complex backgrounds with a moving camera, which present difhi-
culties for both reference methods. In both cases, the proposed method exhibits
significantly improved performance over both reference methods. The Harbour se-

quence also demonstrates the improved effectiveness of our trajectory-based merging
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stage, obtained by accounting for background occlusion. Since the main object in
the Harbour sequence is large enough to divide the background into 2 disconnected
regions, it is important to account for this when performing region merging. Fig.
4.8 shows results for the proposed method when the trajectory-based merging does
not account for background occlusion. It can clearly be seen that in this case the
background is not correctly segmented, but is instead merged with the actor as part
of the foreground.

Fig. 4.9 presents results for the Tennis sequence. The proposed method and
both reference methods are able to correctly segment the main objects of this video
sequence (the player and the tennis ball). This sequence also demonstrates the ef-
fectiveness of our proposed histogram-based object enhancement. Fig. 4.10 shows
results for selected frames when the proposed method is run with and without the
histogram-based object enhancement. In each case, the tennis ball was selected for
enhancement and significant improvement of the object’s boundary can be seen in
the enhanced frames.

Fig. 4.11 presents results for the Suzie test Sequence. This is another head and
shoulders clip with a simple background, but with some movement of the foreground
objects. Due to the improved initial segmentation, the proposed method performs
significantly better than reference method 1, and comparable to reference method 2.

Fig. 4.12 presents results for the Basketball test sequence. This sequence contains
repaid object motion along with a fast moving camera, which presents difficulties for
both reference methods. The proposed method is able deal with these characteristics
and accurately segment the clip. Also, Figs. 4.12 and 4.13 show that the proposed
method’s histogram and trajectory-based merging stages can still be effective when
histograms and trajectories are taken over relatively short periods.

Figs. 4.13 and 4.14 present results for the Roadl and Coastguard test sequences,
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for which reference method 1 performs well. In each case we achieve similarly strong
results, correctly segmenting the car in the Roadl sequence and both boats in the

coastguard sequence.

(a) Original Clip

(b) Proposed Method

(c) Reference Method 1

(d) Reference Method 2

Figure 4.1: Frames 1, 120, 240, 360, 480 and 600 of the Gameshow sequence (with
some global motion).
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(a) Original Clip

(b) Proposed Method

(c) Reference Method 1

(d) Reference Method 2

Figure 4.2: Frames 1, 30, 60, 90, 120 and 150 of the Miss America clip (without global

motion).
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(b) Proposed Method

5 S

(¢) Reference Method 1

(d) Reference Method 2

Figure 4.3: Frames 1, 60, 120, 180, 240, and 300 of the Foreman sequence (with global
motion).
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(d) Reference Method 2

Figure 4.4: Frames 1, 19, 38, 57, 76 and 95 of the Carphone sequence (without global
motion).
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(a) With histogram-based merging enabled

» B

(b) With histogram-based merging disabled

Figure 4.5: Proposed method results for frames 1 and 60 of the Foreman sequence.
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(b) Proposed Method

(c) Reference Method 1

(d) Reference Method 2

Figure 4.6: Frames 1, 10, 20, 30, 40 and 50 of the Harbour sequence (with global
motion).
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(a) Original Clip

(b) Proposed Method

(c) Reference Method 1

(d) Reference Method 2

Figure 4.7: Frames 1, 20, 40, 60, 80 and 100 of the Mobile sequence (with global
motion).
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(b) Without accounting for background occlusion during trajectory-based region merging

Figure 4.8: Results of the proposed method for frames 1 and 20 of the Harbour
sequence.
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(d) Reference Method 2

Figure 4.9: Frames 1, 12, 24, 36 and 60 of the Tennis sequence (with some global
motion).
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(b) Before histogram-based enhancement of the ball

Figure 4.10: Results of the proposed method for frames 14 and 15 of the Tennis
sequence.
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(b) Proposed Method

(c) Reference Method 1

(d) Reference Method 2

Figure 4.11: Frames 1, 30, 60, 90, 120 and 150 of the Suzie clip (without global
motion).
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(a) Original Clip

(c) Reference Method 1

(d) Reference Method 2

Figure 4.12: Frames 1, 4, 8, 12, 16, and 20 of the Basketball sequence (with global
motion).
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(a) Orlgmal Chp

(b) Proposed Method

(c) Reference Method 1

(d) Reference Method 2

Figure 4.13: Frames 1, 5, 10, 15, 20, 25 and 30 of the Road Sequence (without global

motion).
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(c) Reference Method 1

(d) Reference Method 2

Figure 4.14: Frames 1, 60, 120, 180, 240, and 300 of the Coastguard sequence (with
global motion).
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4.3 Objective Results

This section presents a set of objective results [29] for our test sequences. There
are three measures presented for each clip; color contrast, histogram distance, and
motion contrast. The color and motion contrast measures trace the object boundary
and compare color values and motion vectors inside and outside the object. The
histogram distance measures calculate the stability of object histograms throughout
the clip.

The color and motion contrast measures are calculated by first tracing the object
contour and then drawing a set of normal lines at equally spaced locations across the
object boundary. The points on either side of these normal lines are selected to be
the centers of blocks inside and outside of the object. In this way, a set of sample
blocks containing pixels on either side of the object boundary are constructed. The

pixels inside these blocks are used to calculate the object’s color contrast as in Eq.

4.1,
0 < dootor(t) = 1= 75 - 1% Seotor () < 1 (4.1)

where
Bootor (#]1) = 120G, (4.2)

K, is the total number of normal lines used to calculate the blocks inside and outside
the object in frame ¢t. C!(t) and C%(t) are the average color values for the 3 by 3
blocks on the outside and inside of each normal line.

The motion contrast across the object boundary is calculated using the same set

of sample blocks inside and outside of the object, according to Eq. 4.3

K .
0 < dynotion(t) = 1 — Liz‘;;w—“') <1 (4.3)
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where

. vi () —vi(t
Smotion (t]i) = (1 — exp (—M)) w;. (4.4)

v, (t) and vi(t) are the average values of the motion vectors in the sample blocks

outside and inside the object boundary. The weighting term w; is calculated as
0 < w; = R(vh(t)) - R(vi(t)) < 1 (4.5)

where

] vi(t)—bi 2 S8 fd Ll 2
R(vi(t)) = exp (——I o QU;H)' ) - exrp (— il c(pgcjv iz )) . (4.6)

The term bi(t + 1) is the backwards motion vector in frame ¢ + 1 at the location
c(p*+vi(t)). In this way, the motion reliability term R(v*(t)) estimates the reliability
of the motion vectors at each point by measuring the similarity of the backward
and forward motion vectors, and the difference in pixel intensities at the estimated
displacements.

The histogram distance measure for each object is determined by calculating the

object’s x? histogram distance between each frame and the first frame, as in Eq. 4.7

= 2 _ 1 (r1-Hg,(b)—r1-Hg, (b))?
0w = X (Hta Href) - (NHt+NHref) . Zb (HR,(b)+HRj(l]))) <1 (47)

where H; is the histogram for the current frame, and H,.; is the histogram for the

first frame. The normalization factors 71, 79, Np,, and Ny, ; are defined as

7"1 = _7’eL (4.8)
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r2 = (4.9)
Nu, = ¥, Hij) (4.10)

and
NHref = Zb Href(j) (4.11)

where Ny, and Ny . are the sizes of the current and reference histograms.

The objective measures for each of our test sequences are presented in Figs. 4.15
to 4.25. In each graph, lower normalized values of the color and motion contrast
measures indicate more accurate segmentation and lower values of the histogram
distance measure means the object histogram is more stable over the clip, indicating
better object tracking.

Figs. 4.15, 4.16 and 4.17 present objective measures for the Gameshow, Basket-
ball and Harbour test sequences. In these graphs it can clearly be seen that the
objective measures confirm the improved performance of the proposed method over
both reference methods. Improvement (lower values) can be seen in each of the color,
histogram and motion measures, indicating improved accuracy and stability of the
proposed segmentation method.

Figs. 4.18, 4.19, and 4.20 present objective results for the Foreman, Mobile and
Carphone sequences. In these clips, the backgrounds contain several colors and tex-
tures so that the sharpest color contrast does not always occur on the boundary of
the main object of the clip. For this reason, the color contrast and color histogram
measures do not produce a reliable indication of segmentation quality. For these
clips, the motion contrast is the most reliable quality measure. From the graphs it

can be seen that the motion contrast of the proposed method shows improvement
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with respect to the reference methods.

Fig. 4.21 shows the objective results for the Miss America sequence. In this clip,
it can be seen that there is high color contrast within the object combined with non-
rigid motion. The result of this is that reference method 1 can achieve low color and
motion contrast measures without entirely segmenting the main object of the video
sequence. The proposed method achieves objective results that are similar to those
of reference method 2, as would be expected from viewing the subjective results.

Fig. 4.22 presents objective results for the Suzie test sequence. As in the case of
the Miss America sequence, reference method 1 is able to achieve good segmentation
measures by segmenting a smaller object with high color and motion contrast. Also, in
agreement with the subjective results, the proposed method achieves similar objective
measures as reference method 2.

Figs. 4.23, 4.24 and 4.25 present objective results for the Tennis, Coastguard
and Roadl test sequences. For these clips, the proposed method achieves objective
results that are similar to reference method 1, and improved over reference method

2, as would be expected from observing the subjective results.
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Figure 4.15: Objective Results for the Gameshow Sequence.
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Figure 4.25: Objective Results for the Roadl Sequence.
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4.4 Computation Time

Simulations were performed on an Intel Pentium processor running at 1.5 Ghz. The
simulation run times for all test sequences are given in table 4.2. Simulation times can
vary depending on the complexity of the sequence under test. The main bottleneck
of run time performance is the trajectory-based merging stage. This is because the
merging involves iteratively running through the entire clip and re-estimating bilinear
motion parameters for each region identified in the initial segmentation. Scenes that
are more complex will normally have more regions identified in the initial segmenta-
tion, resulting in more iterations of the trajectory-based merging being necessary to
identify the real objects.

Although the proposed segmentation method is not real-time, this does limit its
practical applicability. In MPEG-7 applications for archive mining, content-based
extraction is done off-line on the database. Therefore, CPU time is not a critical
factor. The main requirement is that the segmentation be unsupervised, so that

content extraction on large databases can be done with minimal user intervention.

Test Sequence | First Frame CPU Time | Average CPU Time Per Frame
Miss 20s 3.2s
Suzie 33s 10.15s

Harbour 121s 121.5s
Mobile 100s 37.85s
Basket Ball 68s 69.85
Gameshow 63s 25.28s
Tennis 69s 62.33s
Coastguard 62s 46.37s
Roadl 75s 25.57s
Foreman 59s 32.33s
Carphone 27s 7.08s

Table 4.2: CPU Run Time for Test Sequences.
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4.5 Summary

This chapter has presented both subjective and objective results for a number of video
test sequences. The proposed method’s computational complexity was discussed and a
description of the algorithms parameters provided. From the results, we can conclude
that the proposed method shows improved performance with respect to both reference

methods.
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Chapter 5

Conclusion

Video object segmentation remains a challenging topic in video processing. In this
thesis we have proposed an offline unsupervised video object segmentation algorithm
that is applicable to a variety of video sequences. The proposed method consists of
an initial segmentation, object tracking, histogram-based object enhancement, and
region merging. The proposed method introduces a number of innovations for video
object segmentation. These include reducing over-segmentation of the first frame,
using segmentation quality measures to enhance object accuracy, merging tracked
regions based on histograms, and accounting for background occlusion. Experimental
results have been presented which demonstrate that our algorithm meets all of the
objectives outline in Sec. 1.1, as well as demonstrating improved performance over
two reference methods.

This proposed system meets its objectives through the following contributions:

e An improved initial segmentation where the following improvements have been

made:

1. Incorporating color and motion variance into an existing region clustering

scheme.
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2. The addition of a histogram distance and motion variance-based merging

stage to reduce over segmentation of the first frame.

e Histogram-based object enhancement, where a set of segmentation measures
taken while tracking objects are used to improve the accuracy of object bound-

aries.

o Merging tracked objects based on cumulative histograms gathered throughout

the video clip.

e Trajectory-based merging that has been extended to handle partial occlusion

and isolated regions.

Possible extensions to the proposed methodology include improved handling of
heavy object occlusion, as well as mechanisms to deal with object splitting and
merging. These two issues present problems for many segmentation methods, and
designing methods to deal with them is an active area of research in video processing.

Another area where improvement is possible is in the execution speed of the algo-
rithm. For example, by reducing the number of frames used in the trajectory-based
merging stage, significant improvement in execution speed may be attainable. As
can be seen in Figs. 4.12 and 4.13, an accurate segmentation can sometimes be
achieved by examining object trajectories over a relatively small number of frames.
By selectively applying the trajectory-based merging to sub-segments of longer clips,
accurate segmentations may be attainable at reduced computational complexity. The
challenge to this approach is determining when to apply it and which sub-segments
to choose.

Finally, improvement may also be obtained by making algorithm parameters more
adaptable to video content. For example, clips with global motion might have different

optimal settings for certain thresholds than clips without.
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