INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0800

UMI

Simulation of Traffic at an Intersection

Jun Zhao

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Science at
Concordia University
Montreal, Quebec, Canada

November 1999

© Jun Zhao, 1999

i~l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fle Votre réference

Qur file Notre réMrence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-47860-2

Canadi

ABSTRACT

Simulation of Traffic at an Intersection

Jun Zhao

This simulation is a tool that a user can use to simulate various situations in a traffic
intersection. The tool allows a user to change the environment settings while simulating
the design of a crossroad. Two kinds of moving objects are considered: vehicles and
pedestrians. The multi-threads method is applied to simulate real time system. Certain

assumptions are made so that the simulation can focus on interesting scenarios.

iii

Acknowledgements

I wish to express my sincere gratitude to my supervisor, Professor Peter Grogono. He had
spent his valuable time, patiently directed and guided me in writing this report even

during his sabbatical leave.

I would also like to thank my wife, Linda, who read this report and offered me her best

suggestions.

iv

Table of Contents

Chapter 1

INtroductioncccooiiiiiiiriiiiiiiiiiiii ettt ecee e s ane e e ae
1.1 Crossroad — An Accident-Prone Area
1.2 Purpose of Creating the TSSToerimiiiiiiiii e e e
1.3 Outline of the Simulation Toolc....ilt,

1.4 ChoiCe Of PlatiOrTi < ontvneee s cetaeeatesenesseseasessesessseessastsssesmocessssasssoessnnnnnessns

Chapter 2

Implementation of the Simulation Methodologiesc.ccoiiiiia.
2.1 Basic Concepts of Simulationc.cceiveiiiiiiiiiiiiiiiiiiiii e
2.2 The Purpose of Building a Simulation Tool
2.3 Problem Formulationcccooeiiieiiiiiiiiiiiiiiiie e
2.4 Simulation Modelingcoooriuniiiiiiiii i e e ees

2.4.1 Brief Analytic Modelccceeeemiiiiiiii

2.4.2 Simulation Modelottt et e e e
2.5 Advantage of @ SImMUIationcooiiiiiiiiiiiiiiiiiiiire e

2.6 Simulating Real Time SyStemcooviiiiiieiiiiiiiiieiii e eeeee

Chapter 3

The Design of the Simulation Toolcooiiiiiiiiin

3.1 Specification of Problem Definitions and Requirementsccccviivvinnnnnnn...

.. 17

17

3.1.1 Simulation COMPONENLScccvvtuiiiieiiatrrnionnnnsntieneaierencteeneranneecnsamen
3.1.2 Simulation Managementcccciiuiiiueuiiiiieientieteiiiieennciearercntenaernnn
3.2Modeling the TSST SYStemouviviuiiiniiiiiiiiiiiiitiiiiciiee e cenernennnanns
3.2.1 Settings of Simulation Environmentccceiiieiiiiiniiiiiciiiiiiiiiinee e
3.2.2 View, Document and Backgroundccoeiiiiiiiiiniiiiiinioiiiiiiieecieeen,
323 MOVINE ODBJECE ..ttt ittt ee e e et st e ee e er et e
3.2.5 Simulation ENGINEooiiiiiiiiiiiiiiiiiiiiiierei ettt et tereareeenereee e e

RIV R R D 1 717 T

3.2.8 RePOIt GENEIationiiieuuiintiiiiininanieteersetuentereetnnene ceesrmmesanaraenesons
3.3 Design of the User Interfacecccccciiiviiiiiieciieninennnn..

3.4Using UML as a Design ToOolcciviiiiiiiiiiiioriiiiiiiiiiie e creeeereeee e veeene

Chapter 4

Implementation of the Simulationc...iiiiiiiiiiiiiiniiiiceeinne
4.1 INtrOAUCHION .. .euuniiiiiiiiii ittt it et tes ettt e enan e teaeasanecannesonns
4.2 Implementation of the User Interfacec.cccovveiiiiiiiiiiicicniiiiiiiiannnn...
4.2.1 The Class CMajorRepViewcccoiiiiieiiiancriananennnn.
4.2.2 The function CMajofRepView::OnBuildRunO

4.2.3 The Operation CMajorRepView::OnPaint()

vi

17

.19

veeenn 20

20

21

22

.23

24

26

26

27

.27

30

.. 41

41

42

.42

43

.. 43

4.3 The Class CSettings

4.4 Properties of Moving ObjJECtScccvuiiiinuiniieniiiiiiiiiiiiiiiciict et eeeeee e e
4.4.1 The class CMOVINGOD] ..cuuuinniiniiiiiiiiiiiii ittt vie e ve e va e e eeens
4.4.2 The class CPedestrianc.ccveeviiiiiiiiiiineenennnne..
4.43 Theclass CVehiClecooeuuiniiniiiiiiiii e e e e,
4.5 Implementation of the Simulation Engineocooiiiiiiiiiiiiinininnn...
4.5.1 AIZOTItRIMIS ..ottt ettt vt tre e e e ere e e e e

4.5.2 The Function toCalNextStep(.....ccoveveeiiceerircaieennnnnn.

4.6 Implementation of the Animation

4.6.1 The method thePlay().....ccociiiitiiiiiiiiiicerciiieriiiii i e cirerenee e ereennonne
4.6.2 The method theReplay().cuenuiniiii it rcr e eee e e e

4.6.3 The Method theReVerSE(). . cccuuuiiiiiiiiiieeiereneaetretettetireeereeeesonsnsenseaesoees

Chapter 5§

Multi-Threads

S.1.1 WhatIs AThreadccooeiiiiiiiiiiiiiiiiiiirericee e ieneneaees
5.1.2 Using Worker Threads to Do Background Workcccoceviviiiiiiinnnnnne..
5.2 Implementation of Worker Threads in the Simulation Toolc..............
5.2.1 The TIMer Threadccuuueiiiminiiiiiiiiir ettt rcrer et ecer e vnneeeenns
5.2.2 The Thread of Traffic Light Control Systemc..cccccveeiiiiiiiniennnnnnnnnn..

5.2.3 The Threads of Moving ODBJECtSco.oeeiiieieiiiiiiiiiiiiiieiiieceeeeenernannne.

vii

...

...

... 43

45

47

... 47

48

.. 50

53

53

54

54

55

55

.. 55

56

.. 57

57

.. 58

.. 58

5.3 Message Handling Functions

5.4 SynChronizationeeeviiiiieiiieiiiieeeiieiieeeeeaeanannn,

Chapter 6

UsingDatabase ...
6.1 Motivation for Using Database in this simulation tool

6.2 The Tables and the Relationshipscc.ceueeeieeeiiniiniiineenannn..n..
6.3 The class CTSSTDBoiiniinitiiiitiiieet e e e
6.3.1 The Functions toSaveSteps() and toCleanSteps()

6.3.2 The Function toRetrieveSteps()occvevrrerenneecenienrnnnnnnnn.

Chapter 7

Results from Simulation,

7.1 Simulation without a Pedestrianccocooviieiiennenennnn.....
7.2 Simulation without a Vehiclecccoucvvenenienennnn.....

7.3 Simulation with Vehicles and Pedestrianccoeuueiuvenineenienoneneninnnnnnnn ..
7.3.1 Chaos from a Poor Design of a Crossroadcccoueeeveoeeneeneneenenvnnnnnns
7.3.2 An Improved DeSigncoeiuininiiiiiiiieieeoe e ae s

U % do15) 1 1 1

Chapter 8

ConcluSion ...

8.1 Advantages of Simulationcooveviiieieeeiennvnnnnannn.

viii

..................

.................

.... 61

...63

.. 63

... 63

64

.. 65

66

68

68

.. 70

72

72

.73

.74

.75

.75

8.2 Disadvantages of Simulationc.ccoiieiiiiiiiiiiiriiiiiii i 75

BB FULUIE WOTK . ettt ittt cee e teeenseaesaseaenssennanesesasnnsessnsnssneennnnan.nT6

Appendix
Part A. The Class CENGINE.cc.oiiiiiniiireieiiiieieiiieciieeeieeeirereeteeeeaenesnseeee T8

Part B. The Class CANIMAtION ...co.ooevuneveiineieeeteeaeeeeseeeeenssesessesessessnnn... 84

REEIOICESoooceriiiitit ittt ettt ettt e eetseenssoeanasesasemnneeneensorseennense. 87

List of Figures

Figure 3.1 The Diagram of Traffic Intersection.cccceceeeiviimrecveeeceinnnnennn... 31
Figure 3.2 This diagram shows the different views from a user and a designer of the
SIMUIAtION tOOL. ..ottt ettt e e e ee e a e aneaes 32

Figure 3.3 Relationship between main program and its three control systems generated.

Figure 3.4 A class diagram of the hierarchy of moving objects. 34
Figure 3.5 An aggregation diagram of moving objects.ccccovviiiiviinnnininnnnn... 34
Figure 3.6 A class CMovingObj and a class Vehicle with its member attributes and
operators. The Vehicle is a subclass of CMovingObj.c.cccccccvivininvinninnninnnee.. 35
Figure 3.7 Classes CPedestrian and CVehicle with part of their member attributes and
operators. They are subclasses of CMovingObj.ccccceviiiiiiiiiiiiiiiiiiinniienen. 36

Figure 3.8 A class Car and a class Truck are the subclasses of Vehicle; and a class Adult

and a class Senior are the subclasses of Pedestrian.ceevvvevueieeneeneeeeneinnennnn. 37

Figure 3.9 A state diagram of life cycle of a moving object. 38

Figure 3.10 A state diagram that explains the detail of the state Moving in figure 3.9 for a

JeLTe (S g F: T W] oo RGP IRG 1

Figure 3.11 A state diagram of the detail of the state Moving in figure 3.9 for a vehicle

Chapter 1

Introduction

This report describes a simulation tool, named TSST (Traffic System Simulation Tool). It
elaborates the motivation of creating the simulation tool, the design idea, methods of

implementation, features of the tool and possible future development.

1.1 Crossroad — An accident-prone area

Nowadays, most people use buses, cars, trucks or trains as their means of transportation.
It is not uncommon to find traffic congestion in certain places during rush hours. There
are also places labeled as "Accident Black Spots". Serious traffic accidents happen not
only on highways, but also on local routes. The cause of many traffic accidents is the poor
behavior by certain drivers. Other accidents are the results of pedestrians not following
traffic regulations properly when crossing a road. The traffic light system, though useful,
might also be a factor. Most accidents happen in places where there are numerous
diversions or exits. The busier the road is, the greater the possibility of having an

accident.

1.2 Purpose of creating the TSST

Consider the following situations, each of which could cause an accident.

e There are drivers who do not reduce their speed when approaching a yellow light.

e There are inconsiderate drivers who often ignore a red light.

e There are uncooperative pedestrians who do not follow traffic light signals when
crossing a road.

® A green light time is improperly or unreasonably set up, too long or too short and

could cause traffic-flow bottleneck.

In addition to the above situations, efficient utilization of a traffic system is another area
to consider. This includes the balance of current and future utilization of a road. For the
safety of a driver or a pedestrian, for saving every road user’s time, for increasing the
efficiency of road use and for the better development of cities, it is the ultimate goal of a
designer to consider various factors together in a design of a traffic network. Simulating a
traffic system is an economical and easy way to collect and analyze possible situations
that could happen on roads. The purpose of building a good simulation tool is to provide
the designers with a vivid picture of the future traffic system to be constructed. At the

same time, the designers could recognize in advance possible design flaws.

1.3 Outline of the Simulation Tool

The simulation tool comprises three parts: the user interface, the simulation engine and
the animation. The UI allows the user to decide on details of a project such as how many
vehicles or pedestrians will be generated per minute; how the traffic light system works,
etc. based on the statistics collected from real traffic intersection using sampling methods.

These settings come from the research on the statistics. A serious design flaw could arise

from a lack of statistical data on traffic and pedestrian flows in certain areas. Such
statistics would be extremely useful to a designer in determining how a traffic system
should be constructed and how a traffic light system should be set up. By involving the
simulation tool, a designer could consider and compare various designs and obtain further

statistics data according to different settings.

The simulation engine is responsible for the generation of vehicles and pedestrians;
communication between threads; and sending signals to change the color of traffic lights.
Finally, the animation part implements the display of all moving objects and the changes

in the traffic lights.

1.4 Choice of Platform

The simulation tool, TSST, is designed in Object Oriented language, the UML, and coded
in Visual C++ under Windows NT Platform, using Microsoft Foundation Classes. There
are several reasons for using Windows Programming and Visual C++. First, with
Windows programming being widely used, many development tools are very user
friendly, such as Visual C++ 6.0. For instance, Visual C++ can automatically build up a
skeleton of the program according to programmer’s selection. This function saves time
for programmers who can thus concentrate on creating appropriate classes and building

up relationships among them.

Second, although Windows programming requires more expensive hardware and could
not run on some machines, it is a full-featured, multiprocéssing, 32-bit operating system
<Ref. [2]>. As the prices of memory and hardware drops continuously, the cost on
computer hardware system comparing with that on software system is not significant any

more. The enhancement of CPU speed has largely improved the quality of animation.

Third, using multi-thread in Windows programming to simulate a real time system makes
the TSST open. Later, different machines could be connected together by network to
simulate pedestrian-generating resource, light-signal-generating resource and vehicle-

generating resource.

Chapter 2

Implementation of the Simulation Methodologies

This chapter presents the basic concepts of the simulation system, the purpose of building

the TSST simulation tool and the simulation model of the TSST.

2.1 Basic Concepts of Simulation

Simulation could be defined as follows:

The task of running experiments with a mathematical model using numeric

technique to imitate the behavior of a system over a given period of time. [5]

Numeric techniques are more appropriate in cases where there are no known
mathematical analytic solutions, the solution is tco difficult, or it is not practical to solve
the set of mathematical expressions. For example, the behavior of a system can be
observed when the system is simulated with external input actions, conditions, and the
passage of time. A simulation model is a mathematical model implemented on a
computer, usually in a programming language or in a simulation language, in order to run
experiments. [5] Every execution of this experiment with some given set of parameters is

a simulation run.

2.2 The Purpose of Building a Simulation Tool

Many situations could happen at crossroads because of different human behavior. For
instance some pedestrians prefer to wait on the sidewalk when the light is yellow, but
some people would go hastily across the road. A pedestrian decides on crossing a road
according to the situation of the road and his motivation. It is not possible to model a
crossroad system completely with formal mathematical expressions. Simulation may be
the only method to solve such informal mathematical models. As José M. Garrido
claimed, simulation can be used as an analysis technique and as a design technique, as a
general pedagogical tool to complement analytical techniques and to gain better
understanding of the behavior of a real system. [5] The purpose of building the TSST
simulation tool is to let a designer or an analyst get more information of a crossroad

system through simulation runs.
2.3 Problem Formulation

Before proceeding further with the description and analysis of the TSST 'system, some
critical questions are explicitly raised and we hope the simulation model can answer
them. It is obvious that the success or failure of an analysis using simulation models rests
upon how clearly we state the objectives of the simulation model. This means careful

formulation of the problem is essential when modeling a system.

Questions about pedestrian are as follows:
1. What is the maximum rate of generating pedestrians?

2. What is the speed range of a pedestrian?

3.

4.

5.

What is the maximum density of pedestrians in the display area?
What is the average walking distance of pedestrians?

What is the average walking time of pedestrian?

Questions about vehicle are as follows:

1.

2.

What is the speed range of a vehicle?

What is the average life time (running time) of vehicles?

What is the probability distribution invoked to decide the running direction of a
vehicle?

What is the probability distribution invoked to decide on which lane a vehicle will
adopt?

What is the maximum rate of generating vehicles?

Questions about traffic light, congestion and accident are as follows:

1.

2.

What is the range of the duration of each traffic light?
What is the probability of having an accident?

What could be applied to measure or predict that congestion has happened?

What is the primary factor causing an accident?

Part of the answers to the above questions is found in section 2.4.1. The rest can only be

expressed by the results of a simulation run.

2.4 Simulation Modeling

The TSST is built to achieve two goals. One is to get the probabilities of accidents under

given conditions. Another is to get certain conditions that will cause congestion.

2.4.1 Brief Analytic Model

To develop a simulation model of the TSST system, we would analyze it first. To reach
the first goal, we use a mathematical formula to explain the analysis. Let A; represents the
event of accident caused by the i-th vehicle. Assume each event A; is independent with
other events, where i = 0, 1, 2, Let A represent the event of accident caused by all
vehicles. Then

P(A) = P(Ui02Ai) = 1 — P(MicgnA) = 1 — [Tic0aP(A) = 1 = [Ticoa(1 — P(AY).
Where n is the number of vehicles. [14] If we assume that all vehicles have the same
probability of accident, say p, then

P(A) = 1 — (1 = p)" — 1 when n — =, where n is the number of vehicles.

From the formula above, we can obtain the following conclusions.

1) Unless every vehicle follows the traffic rules completely, i.e. p = 0, accident will
happen someday.

2) For given n, the probability P(A) will decrease when the p decreases. That is, a
designer of a traffic system could improve the safety of a crossroad area by reducing
the average of the probabilities of accidents caused by vehicles.

3) For given p, the probability P(A) increases according to the increase in n, the number

of vehicles. If the rate of the flow of vehicles can be controlled, it means that the

number of vehicles running through a traffic intersection per minute is limited under a

threshold, the probability P(A) of occurring an accident will reduce.

To achieve the second goal, we need a criterion to measure situations to see if any
congestion has occurred. A congested system may broadly be described as a system in
which there is a demand for the resources of a system, and when the resources are not
available, those requesting the resource wait for them to become available. [7] In the
TSST, when a moving object is generated, it is put into the waiting queue. If there is
proper space to display even part of the object in the simulation area, (i.e. the resource is
available to this object), it changes to a proper list that contains running objects. The level
of congestion in the TSST system is measured by the waiting queues of resources
requests. Let Q represents the waiting queue length and Ty the threshold defined by user.

When Q;> Ty we can say there is congestion.

There is another way to measure if congestion has happened. Let D, and D, represent the
density of pedestrians and of vehicles respectively; let user-defined Tgp and Tgy represents
the threshold of pedestrian density and of vehicle density respectively. When Dp > Tg4p or

D, > Tyv we could conclude that the road is congested.

The answers to part of the questions listed in section 2.3 are as follows:
1) The maximum rate of generating pedestrians can be obtained from collecting of
samples. For example, the maximum rate is defined as 100 pedestrians per minute.

This definition is used to limit a user’s setting of the rate of generating pedestrians.

2)

3)

4)

5)

6)

The walking speed of a pedestrian is equal to the length per step multiplied by the
steps per minute. Considering the adult and senior, the length of step ranges between
50cm/step and 135cm/step. Assuming that a person should use a wheelchair and
move by someone if one’s step length is less than the lower limit. The upper limit,
135cm/step, is given by the medical studies. The steps per minute ranges between
40steps/minute and 200steps/minute.

The speed range of a vehicle should neither be less than O nor greater than 200km/Hr.
We let a user to decide on the running direction of a vehicle. But we use uniform
distribution to decide on which lane a vehicle will adopt. We can see that a driver
often changes to a lane where there are less vehicles.

The answer to the maximum rate of generating vehicles is 1000 vehicles per minute.
Assuming there is a maximum of 8 lanes at each direction, and there is a maximum of
4 directions. The average of vehicles passing each lane per minute is 30. Thus, 8 * 4 *
30 = 960 vehicles/minute.

It is easy to define the duration of a traffic light. The range can be from 1 second to 5

minutes.

2.4.2 Simulation Model

We have not discussed more about the analytic model in the above section because the

analytic model could not describe the TSST system completely. The cause of an accident

by an individual vehicle could be complex. The driver’s motivation and behavior, the

road situation, the vehicle speed, the pedestrian’s behavior, or the color change of traffic

10

light, all these may affect a driver’s decision. The cause of congestion is also complex. In
general, accident and construction are the two major causes. The design flaw of a traffic

system could also be an implicit cause. For example, during rush hour, some exits and

entrances are always congested.

An advantage of the simulation model is that we do not need to make assumptions and

constraints as we did in the analytic model. We will let simulation runs to answer part of

user’s questions listed in section 2.3.

Variables for pedestrians:

R, = the rate of generating pedestrians.

Ny(t) = number of life pedestrians at time t.

NoRunover(t) = number of pedestrians who has left the simulation at time t.
Tpq = the threshold of pedestrian density, defined by user.

Dy(t) = the density of pedestrians.

Sp = the pedestrian speed.

L, = the distance that a pedestrian walks from origin to destination.

T, = the time that a pedestrian spends on walking from origin to destination.
Qgi(t) = the length of pedestrians waiting queue of at time t.

Tpq = the threshold of pedestrians waiting queue length, defined by user.

Variables for vehicles:

R, = the rate of generating vehicles.

11

S, = the vehicle speed.

Q.i(t) = the length of vehicles waiting queue at time t.

T.q = the threshold of vehicles waiting queue length, defined by user.
Ny(t) = number of life vehicles at time t.

Nyrunover(t) = number of vehicles which has left the simulation at time t.
A; = the event of an accident caused by the i-th vehicle.

A = the event of an accident.

Conditions:

C(1) : R, < maximum rate of generating pedestrians, say Rpx.

C(2) : Rv < maximum rate of generating vehicles, say Rvx.

C(3) : minimum pedestrian speed, say Spmim < Sp < maximum pedestrian speed, say Spmax.

C(4) : minimum vehicle speed, say Svmim < Sv< maximum vehicle speed, say Symax.

Formula for pedestrian:

Ly = Tp * S, + Ap; the distance that a pedestrian walked from origin to destination. The
variable A, describes random factors such as the interaction of pedestrians and road
situations, which would affect the walking speed and the walking route of the pedestrian.
PedGen(t) = Rp * t; the number of pedestrians generated from the beginning of a
simulation run to time t.

Np(t) = PedGen(t) — Nprunove(t) — Qpi(t)-

Niorunover(t) is influenced by the interaction of pedestrians and road situations.

Dp(t) = Np(t) / size of sidewalk; where the size is fixed.

12

If D, (t)>Ty =>define: congestion has taken place.

If Qui(t) > Tpq = define : congestion has taken place.

Formula for vehicles:

L, =T, * S, + A,; the distance run by a vehicle is fixed, but the running time is affected
by some random factors. The variable A, describes the random factors, such as traffic
light change or pedestrian’s behavior, that would affect the running time of a vehicle.
VehGen(t) = R, * t; the number of vehicles generated from the beginning of a simulation
run to time t.

N.(t) = VehGen(t) — Nirunovet) — Qui(t) < maximum number of vehicles that could be
displayed.

If Q.i(t) > T.q = define : congestion has taken place.

We have to point out that the simulation model built in this version is simple. We could
always improve the simulation model in future work. For example, the calculation of the
probability of an accident could be considered complicatedly. Recall that,

P(A) = P(Ui0,Ai) = 1 — P(Mie00Ai) = | = [[iw0aP(A) = 1 = ITic0a(1 — P(AY).
In real system, those P(A;) could be different because each driver is an individual.
Furthermore, we could divide A; into three parts as foilows:
A;; = the event of accident caused by driver’s behavior.
A2 = the event of accident caused by driver’s motivation.
Ai3 = the event of accident caused by road situation.

Thus, A; = A;; + Aj2 + Aiz.

13

Then we could weight items of A; as below:

Ai=a*A;+B *An+8*As.
Whereaa +B+8=1; ¢=0; B=0; 8 20. Then,

P(A;)) = o0 * P(A;;) + B * P(Ai2)+ 8 * P(Au).
Then Aj; could be finely divided into the events of accidents caused by vehicles’ position,
by pedestrians’ position and by color of traffic light, etc.. However, such division will not
largely improve the quality of the simulation tool. We prefer to use a simple model in this

version.

2.5 Advantage of a Simulation

Simulation modeling can be used effectively to achieve the following objectives: [5]
e Predict the behavior of an existing system subject to some specified condition;

® Study a system before it is built (i.e., at its design stage).

Some of the most relevant cited advantages of simulation are: [5]

1. A simulation model can be used repeatedly to analyze proposed designs or policies.

2. Simulation data are usually much less costly to obtain than similar data from the real
system.

3. Simulation methods are usually much easier to apply than analytical methods.

4. Simulation models do not have restrictive simplifying mathematical assumptions
common to analytical methods. Almost any conceivable performance measure can be

estimated from data generated with simulation models.

14

5. In some cases, simulation may be the only approach that can be used to reach a

solution to a given problem.

2.6 Simulating Real Time System

The TSST is to simulate a real time system in which behavior changes with time. A user
could obtain both visible results and analysis results. When increasing moving objects are
walking or waiting in the traffic intersection, we could predict that congestion has risen.
When a collision occurred, be it with a vehicle or a pedestrian, user could hear a beep and
see the overlap of two moving objects. Alternatively, user could get the analysis results
by running the generating-reports functions. In other words, what a user can see from a

simulation run are recorded for statistics analysis later.

Let us view the inside of TSST system. There are three independent resources of
generating vehicles, pedestrians and traffic light signals respectively. When these data
arrive at the main program loop, they follow the first-come-first-serve rule. Any delay in
transferring the data could change the situation of road so that an individual occurrence

could change. However, user could get a statistical result by running a simulation for a

certain time.

15

Chapter 3

The Design of the Simulation Tool

Designing Object-Oriented software is hard, and designing reusable Object-
Oriented software is even harder. The design should be specific to the
problem at hand but also general enough to address future problems and

requirements. [11]

In chapter 2, we have built the simulation model and in this chapter we will discuss more
about the high level design of the TSST system according to the design architecture to

avoid (or at least to minimize) redesign.

3.1 Specification of Problem Definitions and Requirements

Tracing requirements in a large project is one of the most basic and, at the same time, the
most difficult needs of development. In this section, we will discuss the important part of

the problem definitions and the requirements.

3.1.1 Simulation Components

16

Goal of TSST

Recall that the TSST is a simulation tool to simulate a real time traffic system and to

provide traffic system designer a tool to analyze various situations taken place in a

crossroad.

User Interface

A user should set up the simulation environment before running a simulation. The TSST
system provides default settings for the environment. The environment includes
parameters as follows:

1) the kind of moving objects;

2) the maximum number of moving objects generated per minute;

3) the speeds of different kinds of moving objects;

4) the origin and destination of a moving object;

5) the number of lanes associated with directions;

6) the duration of the colors of traffic lights;

A user could run, pause, continue or stop a simulation run.

A user could save or load a simulation project.

A user could play a real-time simulation, replay or reverse a simulation run.

A user could use the TSST system to generate several reports. The formats of the reports

are built-in.

17

Moving Object

The moving objects refer to pedestrians who walk on sidewalks and vehicles that run
along lanes. Different kind moving objects could have different moving speeds. The same
kinds of moving objects have the same physical sizes and shapes.

Moving objects have their own life cycles, that is, from generation to appearance

(walking or running), then to disappearance.

3.1.2 Simulation Management

Traffic Light
A traffic light system comprises red, yellow, green lights and a control center. The control

center controls the duration of different colors of traffic lights. The order of changing

light colors is from Green to Yellow then Red.

Crossroad Area
Crossroad area is a place where pedestrians walk around, vehicles run through and traffic

lights are erected. This area should include lanes, stop lines, sidewalks, crosswalks,

boundaries of the crossroad area and traffic lights.
Animation

The TSST should provide not only the function of playing real-time simulation but also

the functions of reversing and replaying a simulation run.

18

Save and Load a simulation run

A simulation run is also called a simulation project. The TSST system should allow a

user to save current simulation run in a file and load a saved simulation project.

Report Generation

The TSST should have functions of generating statistical reports. This part will be

developed in the future.

3.2 Modeling the TSST System

Analysis, the first step of the OMT methodology, is concerned with devising a precise,
concise, understandable, and correct model of the real world. [13] At top level design, we
have divided the TSST system into several independent objects based on the analysis.
The objects are the Settings, the View, the Document, the Background, the Moving
Object, the Traffic Light, the Simulation Engine, the Database, the Animation and the

Report Generation. We will discuss these objects in the following sections.

3.2.1 Settings of Simulation Environment

The Settings object acts as a container that holds all user-input parameters of the
simulation environment and the name of a simulation project. It also provides users an
interface by which the simulation settings could be modified or reset. A user could either

save only the settings of a simulation run or the whole simulation run. To save a

19

simulation run, its settings must be saved into a file with other information and data. Each
saved simulation project must have a name. Reloading a saved project implies resetting
the simulation environment. The Settings object will be invoked by the Simulation
Engine for calculation, and by the Document object for saving the settings of a simulation

project.
3.2.2 View, Document and Background

The View brings a user an interface of user-computer interaction. It contains certain menu
items by that a user can run, pause, continue or stop a simulation; save or load a project;

generate various reports.

The View is responsible for drawing moving objects. When the View is to draw, it
requests the moving object lists from the Animation object. After drawing all objects

from the lists, the View releases the object lists.

When the size of a crossroad area or the number of traffic lanes are changed, the View

will redraw the crossroad area by calling the Background object. The Background object

contains built-in methods for drawing sidewalks, stop lines, traffic lanes, boundaries of

the crossroad, buildings and traffic lights.

The Document takes care of saving and retrieving of the settings of a simulation to or

from a file. The Settings are saved or retrieved in a certain format and order.

20

3.2.3 Moving Object

A moving object could be anything that moves either on a road or on a sidewalk, such as
pedestrians, bicycles, or vehicles. A moving object must contain all information relative
to its characteristics. The information includes unique name or identifier, object type,
moving speed, object size and shape, origin and destination. The same kinds of objects
have the same moving speeds, sizes and appearances. Dynamically, each moving object
also contains its own current position. The View can display all information of a moving

object on the screen.

Moving objects are generated from two independent resources: the pedestrian generation
system and the vehicle generation system. Each moving object is unique. A new
generated moving object will be put in a buffer. The Animation checks the buffer
periodically to fetch the new objects and put them to the proper lists according to each
object type. When .arriving at its destination, a moving object is removed from the
Animation object. The Database saves all steps of a moving object from the origin to the

destination until no more space is available.

A moving object’s life cycle contains the following status:
Generated = Birth = Moving & Stop < Moving = RunOver.

Where, the ‘=’ represents ‘changes to’, and the ‘<>’ means ‘changes to and back’.

21

The Moving Object is divided into two types: the Vehicle and the Pedestrian. We do not
consider other type objects such as bicycles because they appear very less in a crossroad
area and their speeds are not fast. We can see them as those pedestrians at fastest walking
speed. To simplify the simulation model, the Vehicle is sub-divided into the Car and the

Truck, and the Pedestrian is sub-divided into the Adult and the Senior.

We have mentioned that moving objects are generated from independent resources. These
resources consist of the Pedestrian-Generation resource and the Vehicle-Generation
resource. They are responsible for generating adults and seniors, cars and trucks,
respectively. These moving object generation resources request the proper buffer to

append the new generated moving objects.

3.2.4 Traffic Light

The Traffic Light consists of red, yellow and green lights. There are, at maximum, four
sets of traffic lights: one facing north (named south light), one facing south (north light),
one facing west (east light) and one facing east (west light). The north and south lights are
always lit in the same color. The same applies to the east and west lights. When
north/south lights are green or yellow, east/west lights must be red. Such rule also applies

vice versa.

The Traffic Light signal changes in order and lasts certain minutes according to the

settings of the traffic light system. The sequence is: green, yellow, red, green, The

22

duration is defined by users and kept in the Settings object. The Traffic Light object

periodically sends signals to notify the View object to redraw colors of lights.

3.2.5 Simulation Engine

The Simulation Engine is the core of the TSST system: its quality depends on how the
engine is designed and implemented. The Simulation Engine contains all algorithms and
constraints of the simulation for calculating the next steps for all moving objects and
removing the run-over objects from the moving object lists. A programmer could

improve the TSST system by modifying the Simulation Engine.

The real world situations and the activities that take place in a crossroad are very
complicated. Some assumptions and constraints are necessary to catch the major points of
the TSST system and to simplify the coding of the simulation tool. The assumptions and

constraints are listed as follows:

About vehicles

e A vehicle is not allowed to turn left or right.

e A vehicle can not change lanes.

e A vehicle can not make U-turns.

e A vehicle has to keep a minimum distance away from vehicles ahead.

e A vehicle can not move onto a crosswalk where a pedestrian is walking on at the

same time.

A vehicle can not move onto the center section where there is a vehicle from left or

right side.

About traffic lanes

All traffic lanes have the same width.

Any traffic lane is straight.

The direction of a lane could be one of the followings: from north to south (N2S),
from south to north (S2N), from west to east (W2E) and from east to west (E2W).

For a given direction, the number of lanes cannot be reduced or increased at both
sides of the center section. For instance (see figure 3.1), the number of southbound

lanes south to CS must be equal to the number of southbound lanes north to CS.

About pedestrians

A pedestrian could only walk along sidewalks or crosswalks.

A pedestrian must wait at the sidewalk if there is a vehicle in the crosswalk he is to go
across.

A pedestrian could step on the crosswalk only when the traffic light is not red.

While walking on a crosswalk, a pedestrian will continue forward to his destination

no matter what will happen or had happened.

By these constrains, the collision could occur only when two vehicles entering center

section simultaneously from the left or right sides of each other. We, in this version, do

24

not consider the accident occurred between vehicle and pedestrian. This is a shortcoming

of the TSST.

3.2.6 Database

To reverse and replay a simulation, a physical database, called TSSTDB, is applied to
keep all data of a simulation run. The Database contains data variables and methods. The
methods includes saving, retrieving, searching and deleting data. Since the capacity of a
database is limited, when the database is full, a message will be prompted to the user. The

Database object will connect with the physical database by ODBC.

A user could save a simulation run by retrieving its data from the Database then saving
them in a file. The data includes the simulation settings, information of all objects and the

sequence of objects’ steps. Alternatively, a user could choose not to save those steps.

Before running a simulation, the Database posts a message to remind a user if he wish to

save the last simulation run. If his answer is ‘No’, all data of the last simulation run are

cleared from the Database.
3.2.7 Animation

The Animation object contains lists of moving objects and methods for playing, replaying

and reversing a simulation. When it is called to play a real-time simulation, the

Animation checks the buffers that hold all newly generated moving objects. If the buffers
are not empty, it fetches the new objects and appends them to appropriate lists. It in turn
invokes the Simulation Engine to calculate the next steps of moving objects and calls the
Database object to save all living objects’ positions to the TSSTDB. Finally, the View

will redraw all moving objects again.

The Animation allows users to replay or reverse a simulation. If a user selects a saved
simulation project, the Animation will reload the project. Reloading a project means to
reset up the simulation environment, to put all generated objects on appropriate lists and
to store all steps of moving objects into TSSTDB. The Animation fetches an object’s next
step from TSSTDB instead of calculating the position by calling the Simulation Engine.

To reverse a simulation run, the Animation fetches data from the end to the beginning.
3.2.8 Report Generation

The Report Generation is responsible for generating various predefined-format reports. Its
implementation is left for future development. We describe its functionality in high level
to make the TSST system design complete. The Report Generation either opens saved

project files or calls the Database to obtain original data for generating report.

3.3 Design of the User Interface

26

The TSST system is built on the Document-View architecture. The View provides users
an interface to control a simulation run. We tried to make the interface as simple as
possible so that a user could use the simulation tool easily. Another reason of choosing

the Document-View architecture is that the architecture meets our requirements and has

already been accepted by many users.

A user can control a simulation by clicking on items from the menu bar of the View. We
arrange those items into four submenus, the ‘Project’, the ‘Build’, the ‘Animation’, and
the ‘Report’. The ‘Project’ submenu is responsible for generating a new simulation
project, opening an existing one, saving the settings of a currently opened project. Every
simulation project must be associated with a title. To save a newly generated project, a
dialog box appears to let user type in a project name. If the name already exists, another

dialog box pops up to confirm that the user is to replace the previous one.

The ‘Project’ submenu is also responsible for the settings of a simulation. When a user
click on the Settings item to set up the simulation environment, a property-sheet pop up,
which contains four pages that allow a user to set up a simulation environment. The first
page, named as Lane page, consist of the number of lanes in different directions and the
utilities of each lanes. The second page, named as Pedestrian page, allows a user to select
the kinds of pedestrians included in a simulation. It also lets a user determine the walking
speeds of adults and seniors, the percentages of adults among pedestrians and the rate of
generating pedestrians (per minute) and the probabilities of possible origins and

destinations that pedestrians move from and to. The third page, named as Vehicle page,

27

allows a user to determine which kinds of vehicles are included in a simulation, to input
the percentage of cars among total vehicles and to set the rate of generating vehicles (per
minute). The last one, named as Light page, consists of the settings of the duration of

traffic light signals and the probabilities that a vehicle might run red or yellow lights.

The °Build’ submenu is responsible for clicking on the ‘Run’, ‘Pause’, ‘Stop’ and
‘Continue’ items by a user. When one of these items is selected, a relative call back
function is invoked to implement certain tasks. The selected item is disable meanwhile. A
simulation starts running when item ‘Run’ is clicked. A running simulation could pause
then continue by clicking on the items ‘Pause’ and ‘Continue’ respectively. But, clicking

on the item ‘Stop’ means to terminate a simulation.

The ‘Animation’ submenu contains three subsidiary items: ‘Play’, ‘Replay’ and
"Reverse’. These items do not have call back functions. A check mark appears beside the

item selected. One and only one item can be marked at a time. The default selected item

is the ‘Play’.

The ‘Report’ submenu comprises named items that reflect the report types to be

generated. Recall that the Report is left for future developer.

Another user interface is the simulation drawing. Figure 3.1 illustrates the drawing of the
area. The area is divided into several sections. Each section is labeled in a unique

abbreviation. The labels are used in programming to represent individual sections.

28

3.4 Using UML as a Design Tool

The Unified Modeling Language (UML) is used to help the design of the TSST system.
The UML is a kind of Object-Oriented Language and destined to be the dominant,
common modeling language used by the industry. The UML comprises views, diagrams,

model elements and general mechanisms.

Views (not the View object) show different aspects of a system that are modeled. A view
is not a graph, but an abstraction consisting of a number of diagrams. The views also link

the modeling language to the method/process chosen for development. <Ref. [3]>

Diagrams are the graphs that describe the contents in a view. UML has nine different
diagram types. Model elements represent common object-oriented concepts such as
classes, objects, and messages, and the relationships among these concepts including
association, dependency, and generalization. General 'mechanisms provide extra

comments, information, or semantics about a model element.

The following figures illustrate part of our high level design as discussed in section 3.2.

29

North Boundary

Notth Stop Line : X
: :
WN i NWC NCW NECi EN
E : East Stop Line
' 1 -
i i
WestBoundary} _______________ ! wew cs ECW : _____________ East Boundary
z (Center Section) :
i i
i i
West Stop Line | | H
--------------- i i
i i
i i
!]
WS ! swC SCwW SEC ! ES
South: Stop Line
lane 2 i3
swW SE
South Boundary

Figure 3.1 The Diagram of Traffic Intersection.

Comments: This figure is a crossroad map of a simulation run. The purpose of this map
is to show the sub-areas and their relative names mentioned in this report.

Keys : NCW = north crosswalk; SCW = south crosswalk; WCW = west crosswalk; ECW
= east crosswalk. The NW, NE, WN, EN, WS, ES, SW, SE, NWC, NEC, SWC, SEC are
different segments of the sidewalks.

30

-
(> (D

\
Background designer

@laﬁon Engine

@ Generation

Moving Object

Figure 3.2 This diagram shows the different views from a user and a designer of the
simulation tool. A user can only view the User Interface that includes part of the View
and of the Settings, the Animation and the Background. A designer can view all of these
objects.

31

draws moving objects

sends newly generated moving objects

Pedestrian
Control
System

uses

| Pedestrian
Information

sets a simulation
uses
[Backegr Oundl sets background
draw background
uses
: - .
Engine I~
retumns calculated moving objects

Vehicle
Information

saves or retrieves data to or from

Figure 3.3 Relationship between main program and its three control systems generated.

32

Moving Object

I
l 1
Vehicle Pedestrian
[[

I 1 L 1

Truck Car Adult Senior

Figure 3.4 A class diagram of the hierarchy of moving objects.

Adult
Pedestrian fo>-<onsistsof | *
* consists of
Moving Obket [Senior
Car
* consists of *
Vehicle
=
Truck

Figure 3.5 This diagram shows the aggregation associations between the Moving Objects and the
Pedestrian, Vehicle; between Pedestrian and Adult, Senior; between Vehicle and Car, Truck.

33

CMovingObj

m_objType : objType_enum
m_objName : CString

m_objStatus : ObjStatus_enum
objIndex : int

objCount : static int
m_generatedTime : ColeDateTime
m_birthTime : ColeDateTime
m_stepTime: ColeDateTime
m_runOverTime: ColeDateTime
next : CMovingObj*

CMovingObj()
~CMovingObj(} : virtual

getObjName() : CString&
2etObjType() : objType_enum
getObjStatus() : ObjStatus_enum
getObjIndex() : int

getBirthTime() : ColeDateTime
getGeneratedTime() : ColeDateTime
getStepTime() : ColeDateTime
getRunOverTime() : ColeDateTime
getMaxStepLen() : virtual double
drawNext(CDC* dc) : virtual

Figure 3.6 A class CMovingObj and a class Vehicle with its member attributes and operators. The
Vehicle is a subclass of CMovingObj.

34

Pedestrian

Vehicle

m_Size : static int
m_currPos : CPoint
m_nextPos : CPoint
m_xPosRec : double
m_yPosRec : double
curtWSS : WSS_enum
currWSCS : WSCS_enum
currCRS : CRS_enum
m_orig : WSS_enum
m_dest : WSS_enum

m_laneNum : laneNum_enum
m_JlaneDir : LaneDir_enum
m_currTopLeftPos : CPoint
m_currBotRightPos : Cpoint
m_nextTopLeftPos : CPoint
m_nextBotRightPos : CPoint

Pedestrian()

~Pedestrian() : virtual
drawNext(CDC* dc) : virtual
setPersonSize(int laneWidth) : static
getPersonSize() : int

getWSS() : WSS_enum

getWSCS() : WSCS_enum
getCRS() : CRS_enum

getOrig() : WSS_enum
setOrig(WSS_enum orig)

getDest() : WSS_enum
setDest(WSS_enum orig)
getCurrPos() : CPoint
setWSS(WSS_enum aWSS)
setWSCS(WSCS_enum aWSCS)
setCRS(CRS_enum aCRS)
tolnvalidateRect(CWnd* a_wnd)
validPedestrian(CMovingObj*) : bool

VehicleQ

Vehicle(CVehicle&)

~Vehicle() : virtual
drawNext(CDC* dc) : virtual
setVehWidLen(int)
getVehWidth() : virtal int
getVehLength() : virtual int
getVehLaneNum() : int
getVehDir() : int
renewPosition(CPoint&) : virtual
tolnvalidateRect(CWnd*) : void
toCalNextStep(int, int) : void
validVehicle() : bool
copyNextToCurr(
getCurrTopLeft():CPoint&
getCurrBotRight():CPointé&
getNextTopLeft():CPoint&
getNextBotRight():CPoint&

Figure 3.7 Classes CPedestrian and CVehicle with part of their member attributes and operators. They
are subclasses of CMovingObj.

35

Car

Truck

c_maxStepLen : static double
c_vehWidth : static int
c_vehLength : static int

t_maxStepLen : static double
t_vehWidth : static int
t_vehLength : static int

Car()

~Car() : virtual
draw(CDC* dc) : virtual
setMaxStepLen(int) : static
getMaxStepLen() : double
setVehWidLen(int) : static
getVehWidth() : int
getVehLength() : int

Truck(

~Truck() : virwal
draw(CDC* dc) : virtual
setMaxStepLen(int) : static
getMaxStepLen() : double
setVehWidLen(int) : static
getVehWidth() : int
getVehLength() : int

Adult

Senior

a_maxStepLen : static double

o_maxStepLen : static double

Adult)
~Adult() : virtual
drawNext(CDC* dc¢) : virtual

Senior ()
~ Senior () : virtual
draw(CDC* dc) : virtual

setMaxStepLen(CString&) : static

setMaxStepLen(CString&) : static
getMaxStepLen() : double

getMaxStepLen() : double

Figure 3.8 A class Car and a class Truck are the subclasses of Vehicle; and a class Adult and a class
Senior are the subclasses of Pedestrian.

36

Being > Being characterized by generating
Generated time, object name and type, status
GENERATED, etc.

ldelivered to a buffer

Waiting in a buffer

ketched by the CAnimation object

Being set status to BIRTH and waiting in a queue for activation.

Activated to move

Being attached to a moving object
list and set status MOVE

I

' reaching destination Moving

Be removd

stop then
continue

©

Figure 3.9 A state diagram of life cycle of a moving object. The detail of the state Moving will be further
drawn into two other figures. One is of pedestrian moving state. The other is of vehicle moving state.

37

continued

actived
Walking in sidewalk reaching destination
reaching a crosswalk Setting status as RUNOVER
continue

—| Checking if it is red light

red light not red light
Waiting poor situation Checking road situation
Igood situation

idewalk

continue Walking in crosswalk

L ¥

Figure 3.10 A state diagram that explains the detail of the state Moving in figure 3.9 for a pedestrian
object.

38

3 Being set
activated ¢————> g

status
MOVE

/

no vehicle

Being set status RUNOVER

reaching a boundary

Running in Road

Eneeting center section

Checking if there is a
vehicle running from

contin Je
P right or left side in

center section

meeting a crosswalk

Checking traffic light

some vehicle

Being set a status STOP

% lyellow light

To Determine
if to stop

repeat ¢t0 stop

Being set status
STOP and waited
before stop line

if green light
Checking

to run C'r oss?valk safe
Situation =
dangerous

Figure 3.11 A state diagram of the detail of the state Moving in figure 3.9 for a vehicle object

39

Chapter 4

Implementation of the Simulation

In this Chapter, we will describe the implementation of the design described in Chapter 2.

Concentrations are put only on those important classes and their member functions.

4.1 Introduction

From the viewpoint of programming, the implementation could be divided into four
modules. The first module, the User Interface Group, concems the classes
CMajorRepView, the CSettings, the CMajorRepDoc, the CAnimation, the CLightCtrlSys

(the traffic light controller system) and the CReport.

The second module, the Animation Group, includes the classes CAnimation, the CEngine
(the simulation engine), the CTSSTDB, the CMovingObj and the CMovObjCtriSys (the

moving object generation controller).

The third module, Simulation Engine Group, includes the classes CEngine, the

CLightCtrlSys, the CSettings and CAnimation.

The fourth module, the Database Group, only includes class CTSSTDB, which will be

discussed solely in Chapter 6.

Recall that the traffic light system is an independent control system. A work thread is
applied to simulate the traffic light controller. Multithreading method will be discussed in

Chapter S.
4.2 Implementation of the User Interface

As mentioned above, the User Interface Group concemns those classes relative to the user

commands discussed in section 3.3. This section will illustrate the details of some

functions.
4.2.1 The Class CMajorRep View

The class CMajorRepView is derived from the MFC member class CView. The

following functions react immediately to the user commands.

e The function OnProjectNew() is to create a new simulation project.

e The function OnProjectOpen() is to open a saved simulation project.

e The function OnProjectSave() is to save the current simulation project. If the project
has not been assignedAa title, it will invoke the OnProjectSaveAs().

e The function OnProjectSaveAs() is to save a simulation project with a new title.

e The function OnProjectSettings() invokes the CSettings object to set up a simulation
environment.

e The method OnBuildRun() will run a simulation.

41

¢ The method OnBuildPause() will make a running simulation a pause.

e The method OnBuildStop() will terminate a running simulation.

¢ The method OnBuildContinue() will resume a paused simulation.

e The operation OnAnimationPlay() sets up the type of a animation as PLAY.

e The operation OnAnimationReplay() sets up the type of a animation as REPLAY.

e The operation OnAnimationReverse() sets up the type of a animation as REVERSE.

4.2.2 The function CMajorRepView::OnBuildRun()

The function OnBuildRun() initializes the execution of a simulation by calling the
member function toExeSimulation() of the class CAnimation. Then, it launches the
timerThread and the trafficLightThread. After that, it calls the pDC(Q and the

OnPrepareDC() to prepare the client paint device context.

4.2.3 The Operation CMajorRepView::OnPaint()

Screen flicker is a severe problem in animation. To overcome this problem, we added
code to handle WM_PAINT messages directly. Only the CView class in MFC
implements the OnDraw(), so we override the function OnPaint() to improve the quality
of the simulation through the use of a memory device context. The animation of the TSST
system uses GDI (Graphics Device Interface) bitmaps. GDI bitmap objects are

represented by the MFC Library version 4.2.1 CBitmap class.

42

We cannot select a bitmap into a display device context in the program of OnDraw().
Thus, a special memory device context is created for the bitmaps using the
CDC::CreateCompatibleDC() function in CMajorRepView::OnlnitialUpdate() function.
This program generates its own bitmap to support the smooth motion on the screen. The
principle is: drawing on a memory device context with a selected bitmap and zapping the
bitmap onto the screen <Ref.4>. Then, every time when OnPaint() is called, it prepares
the memory device context for drawing, passes function OnDraw() a handle to the
memory device context, and copies the resulting bitmap from the memory device context

to the display.

The function OnPaint() performs in order the following three steps to prepare the memory

device context for drawing:

1. Select the bitmap into the memory device context.

2. Transfer the invalid rectangle from the display context to the memory device context.
The functions CDC::SelectClipRgn() and CDC::IntersectClipRect() are invoked to
minimize the clipping rectangle otherwise the program may run much slower.

3. Initialize the bitmap to the current window background color. The CDC::PatBlt
function fills the specified rectangle with a brush pattern. The brush is constructed

first and selected into the memory device context.

After the memory device context is prepared, OnPaint() calls OnDraw() with a memory
device context. Then the CDC::BitBlt() function copies the updated rectangle from the

memory device context to the display device context.

43

4.3 The Class CSettings

Two points need to be described briefly here. One is that the class CSettings is defined as
a pure static class, i.e. its all data and function members are declared as static. This
definition permits other objects, such as the CEngine object, to access the function

members by using the fully qualified class syntax.

For example, the data member nsLanes represents the number of lanes southbound. The
function member theNSLanes() returns the address of nsLanes. An object could directly
call theNSLanes() to access the nsLanes as follows:

CSettings::theNSLanes().

The second point is that the member function toOpenSettingsSheet() of the class
Csettings. It pops up a property sheet that is composed of the CLightPage, the
CLanePage, the CVehiclePage and the CPedestrianPage objects. A user could modify a
simulation environment through these property sheet pages. Default values of a

simulation environment are provided.

4.4 Properties Moving Objects

In this section, we will introduce the characteristics of moving objects.

4.4.1 The class CMovingObj

The class CMovingObj is a base class which describes common features of moving
objects including the object type (m_objType), the object name (m_objName), the object
status (m_objStatus), the object index (objIndex) and the generating time (startTime).
Note that the terms in the parenthesis are its data members. It also has some virtual

functions to be overridden by its subclasses.

To make a link list of moving objects, the CMovingObj has a data member, called the

next, of type CMovingOb;.

4.4.2 The class CPedestrian

The class CPedestrian is the subclass of the CMovingObj, which stores unique
information of the pedestrians. Information includes the current position (m_currPos), the
next position (m_nextPos), the origin (m_orig), the destination (m_dest) and the body

size (m_Size). Terms in the parenthesis are the data members of the CPedestrian.

The operation toPrepareForDraw() is responsible for preparing the drawing of a
pedestrian. It first checks the pedestrian’s status. If the status is ‘Birth’, it registers the
pedestrian’s current and next positions. Then, another operation draw() will draw the

registered next position of the pedestrian.

45

The classes CAdult and CSenior are subdivided from the class CPedestrian. In addition to
the inherited features from their parent class, they also carry their unique maximum step

lengths and walking speeds.

4.4.3 The class CVehicle

Similarly, the class CVehicle is derived from the class CMovingObj and has its own two

subclasses, the CCar and the CTruck.

The class CVehicle contains the data member m_laneNum for the number of lane; the
m_Dir for the driving direction; the m_currPos for a vehicle’s current position; the

m_nextPos for the next position. It also overrides the toPrepareForDraw() of its parent.

4.5 Implementation of the Simulation Engine

The key function of the CEngine is to calculate the next steps for all moving objects
based on the assumptions, constraints and calculation algorithms. The assumptions and
the constraints have been explained in section 3.2.5. In this chapter, we will describe the
algorithms and the most important function, the toCalNextStep(). To depict a clearer
picture, we will use examples to describe the relative algorithms. Figure 3.1 illustrates the

abbreviated terms invoked in following sections.

4.5.1 Algorithms

a) The algorithm of calculation the next step of a vehicle (using an example).

Assume that a vehicle, called the GMCYV, is running northbound in lane 1.

Before the GMCYV appears, it checks if there is some space to show at least its
hood. If space is available, it changes its status to ‘Birth’.

The moving GMCYV will check that the distance between it and the rear of the
next vehicle in the same lane does not fall below a stipulated minimum.

When approaching the South Stop Line, the GMCYV vehicle checks if there is any
pedestrian in the area SCW. Then it checks the traffic ligit color. It will stop
before the South Stob Line when in the following situations: 1) there is at least
one pedestrian walking inside the area SCW, 2) it decides to stop when the light is
red or yellow.

Before entering area CS, the GMCYV checks if any vehicle in area CS moves
westbound or eastbound.

When approaching area NCW, the GMCYV checks if any pedestrian is walking in
area NCW.

When the GMCYV has crossed the north boundary, its status changes to RunOver,

then it is removed from the moving object list.

b) The algorithm of calculating the next step of a pedestrian (using an example).

Assume a pedestrian, called the AMAN, is moving from NW to ES.

His status will change to ‘Birth’ if there is space for him to enter the NW.

47

c)

e The AMAN always checks if there is any moving objects blocking his way
forward. If he is being blocked, he will check his right to see if he could move one
step to the right. If not, he will then check his left. If it is impossible to move, he
stays.

e When amriving at area NWC, he chooses either NCW or WCW as his next
walking area. Assume he determines to walk across NCW.

e Before he steps in the NCW, he checks the traffic light color first. If the light is
green, he checks if there is any vehicle crossing NCW. When the situation is safe,
he walks across NCW.

e After arrived at NEC, he checks the traffic light and the road situation again to
determine when to cross ECW.

e When arrived at SEC, he walks to his destination ES.

e After crossing the East Boundary, he changes his status to RunOver and is

removed from the moving list.

Recall that we use a timer to control the time gap of drawing moving objects. The gap
is DTIME milliseconds. In other words, the TSST system draws moving objects
1000/DTIME times per second. Thus, the maximum step length of a vehicle per
drawing is calculated by the following formula:

vehicleSpeed * DTIME

maxVepLen = * FACTOR
dSecond

where dSecond = 3600 milliseconds.

d) Similar to the explanation in above c), the maximum moving length of a pedestrian
per drawing is calculated by the following formula:
(steps/min) * (length/step) * DTIME

maxPedLen = * FACTOR
dSecond

where dSecond = 60* 1300 milliseconds.
Where, in c) and d), the unit of DTIME is millisecond. The unit of the maxPedlLen and
the maxVecLen is pixels per DTIME milliseconds. The FACTOR is predefined by the

programmer, which maps centimeters to pixels.

4.5.2 The Function toCalNextStep(

In brief, the function toCalNextStep() is to search all pedestrians and vehicles from
moving object lists and to calculate their next positions. Before storing a new position to
the m_nextPos, the m_nextPos’ value is copied to the m_currPos. The toCalNextStepQ
calls the toCalPedNextStep() and toCalVehNextStep() to calculate the next steps of

pedestrians and vehicles respectively.

The toCalPedNextStep()

A moving pedestrian always moves from one area to another or otherwise to his
destination. Thus it checks a pedestrian’s current area and destination to determine the
next area the pedestrian will move to. When the next area is given, it restricts to check the
objects’ positions in the two ‘current’ and ‘next’ areas. This saves the time in searching

for object lists.

49

We would like to use an example to explain further the function toCalPedNextStep().
Assume that a pedestrian called AMAN, is to move from SE to NW. His route could be
one of the following two paths:

Pathl: SE = SEC = ECW = NEC = NCW = NWC = NW, or

Path2: SE = SEC = SCW = SWC = WCW = NWC = NW.

Assume AMAN chooses the pathl.

e When his current area is SE or ECW or NCW, he always invokes the function
moveToWSCS() to calculate his next position till he reaches SEC or NEC or NWC
respectively.

e When he is in area SEC or NEC, the function moveToCRS() is called for calculation.

e When arrived NWC, he calls the function moveToWSS() to determine his next step.

e While being in NW, his destination is the North Boundary, so the function

moveToBoundary() is applied till he disappears.
The toCalVehNextStep()
The primary idea here is to obtain the maximum steps in different situations, then find the

min step from them. The list below represents the steps of the toCalVehNextStep().

1. It checks the moving direction of a vehicle because different moving directions

determine different procedures for calculating next steps.

50

2. Tt gets the rear position of the vehicles in front. This is to keep two vehicles between a
minimum distance.

3. When a vehicle has crossed the stop line, it ignores the light commands and keep
moving forward. Two situations will happen as follows:

e When the hood of a vehicle has already in center section, it only checks the front
crosswalk. If there are pedestrians, it calculates its maximum step forward but not
crossing the crosswalk.

e If the hood of a vehicle is already in the crosswalk just beyond the stop line, it
checks the center section. If some vehicles inside CS moves from right or left
side, it calculates its maximum siep forward but not crossing the center section

4 When a vehicle has not crossed the stop line, we will consider the following cases:

e If there are pedestrians in the front crosswalk, it calculates its maximum step to
the stop line.

e If there is no pedestrian in the front crosswalk, before entering the crosswalk, a
vehicle has to consider the traffic light commands.
> If GREEN light, the vehicle calculates its maximum step without constraint.
> If YELLOW or RED light, the vehicle must determine either to stop before the

stop line or to run red/yellow light. Based on its choice, then it calculates its
maximum step.
5 Among those “maximum” steps above, a vehicle chooses the min step as its next step

and calls the function renewPosition() to save the step to its data member m_nextPos.

51

4.6 Implementation of the Animation

In the Animation Group, the class CAnimation is another interesting point to describe. It
has several pointers of type CMovingObj and fetches the moving objects either from

some tuffers or from the database.

The class CAnimation has a public member function, called the toExeSimulation(), which
calls an appropriate method for a simulation run according to the user’s selection. The

method could be thePlay() or theReplay() or theReverse().

4.6.1 The method thePlay()

The function thePlay() is responsible for the real time simulation. Once invoked, it checks
if the current simulation project has started. If not, it empties the moving object lists by
invoking the toClearObjList() and launches two work threads to generate pedestrians and
vehicles. Then it opens the database TSSTDB and calls the member function

toCleanSteps() of CTSSTDB to delete all data from TSSTDB. After that, it retums.

When the thePlay() is called during a simulation run, it first fetches the moving objects
from the BufferOne for pedestrians and from the BufferTwo for vehicles. Then it calls the
operation toCalNextStep(of the CEngine object to calculate the next steps of all moving
objects. Finally, it calls the member function toSaveSteps() of CTSSTDB to save those

new calculated next steps to the TSSTDB database and returns.

52

4.6.2 The method theReplay()

Different from thePlay(), the member function theReplay() does not launch any work
threads and does not call the toCalNextStep() to calculate next steps of the moving
objects. Instead, it fetches the steps of moving objects in descending order from the
TSSTDB database by calling the method theRetrieve() of the CTSSTDB object. Before
updating the moving object lists, it calls the method checkLists() to remove all run-over

objects from the moving object lists.

4.6 .3 The method theReverse()

The only difference to theReplay() is that the operation theReverse() fetches the next

steps of moving object in ascending order from the TSSTDB database.

53

Chapter §

Multi-Threads

Win32 and MFC support multiple threads within a process. When an application starts, it
has one primary thread. The application may then start up additional threa.ds that execute
independently. All threads share the one memory space of the process in which they are
created. When an application has multiple threads, the order in which they are executed is

a random one.

We used the multithreading method to simulate the real time situations. In this chapter,

we will explain why we use threads and how the threads are applied.

5.1 Motivation for Threads in Simulation

According to the requirements in Chapter 3, the work of the traffic light control system,
of generating pedestrians and of generating vehicles could be hidden in background. In

the next two subsections, we could see that multithreading will satisfy our requirement.

5.1.1 What Is A Thread

Mike Blasaczak in his book “MFC with Visual C++ 5" mentioned the thread as follows:

54

The term thread is shorthand for ‘a thread of execution’, and it represents the
most fundamental information a running program needs while it is executing: a
user-mode stack to hold temporary variables and return addresses for subroutines,
a kernel-mode stack to hold addresses for interrupt service returns, and a set of

processor registers. <Ref.[1]>

A process is a running program that owns its own memory, file handles and system
resources. A thread is a separate execution path contained in an individual process. In
other words, threads are managed by the operating system and each thread has its own

stack.

MFC (Microsoft Foundation Class) implements two types of threads. One is called user-
interface thread. A user creates such a thread to deal with parts of a user interface. If a
user is interested in creating a thread that simply goes off on its own and does something
else, such as background calculations, without interfacing with the user, worker thread

can be invoked. These threads are based on CWinThread.
5.1.2 Using Worker Threads to Do Background Work

Worker threads are handy any time when a user wants to do something such as
calculations or background printing. To get a worker thread up and running, a user
implements a function that will be run in the thread, then creates the thread with

AfxBeginThread() which returns a pointer to the newly created CWinThread object. The

55

new thread will continue to execute the function specified until that function returns, or
until the AfxEndThread() is called from within the thread. The thread will also terminate

if the process in which it is running terminates. Each thread may have its own priority.

A Windows message is the preferred way for a worker thread to communicate with the
main thread and the main thread always has a message loop. This implies, however, that

the main thread has a window and that the worker thread has a handle to that window.

5.2 Implementation of Worker Threads in the Simulation Tool

The TSST simulation tool uses worker threads to simulate the real time system. These
worker threads are the timer thread, the thread of traffic light control system, the thread of

pedestrian generation and the thread of vehicle generation.

5.2.1 The Timer Thread

The timer thread is launched when users click on the Run item from the menu bar. The
purpose of using a timer thread is to periodically notify the CMajorRepView object that it
is time to redraw the moving objects stored in the CAnimation object. The timer thread is
initialized in the function OnBuildRun() which is a member of the CMajorRepView, and
pointed by a pointer timerThread of type CWinThread. The timerThread is the data
member of class CMajorRepVeiw. By the timerThread, the parent of the timer thread

could send it some requests, such as SuspendThread or ResumeThread.

56

We provide a controlling function, the timerCtrlSysThread(), to implement the timer
thread. The timerCtrlSysThread() simply consists of an inner loop and the function
Sleep(). Every DTIME milliseconds it wakes up and posts a message to the
CMajorRepView object. Here the DTIME represents the predefined time gap between

two times of drawing moving objects.

5.2.2 The Thread of Traffic Light Control System

In real life situation, the durations of traffic lights are predefined and independent of
drivers and pedestrians. A worker thread is created for this purpose and named as the
light thread pointed by the lightCtriThread of type CWinThread. Its controlling function

is the trafficLightThread().

Similarly to the time thread, the trafficLightThread() has an inner loop. Within the loop,
there are three Sleep() functions and three PostMessage() functions. Each time the
lightThread wakes up, the global variable, the lightCol, will be assigned a different color
in order of Green, Yellow and RED, and then the function PostMessage() is invoked to

notify the CMajorRepView object that the traffic light color needs to redraw.

5.2.3 The Threads of Moving Objects

57

There are two worker threads responsible for generating pede-strians and vehicles
respectively. One is pointed by the vehGenThread, the member of the CPedestrian; and
another is pointed by the pedGenThread, the member of the CVehicle. These two worker
threads are launched when the member function thePlay() of the CAnimation is called for

the first time to start a simulation run.

The controlling function vehicleCtrlSysThread() periodically generates vehicles then
appends them to the buffer BufferOne. Within its while loop, the function
generateNewVehicles(), followed by the Sleep() function, is called to generate a
pedestrian. The sleeping time depends on the rate of generating vehicles. The function
generateNewVehicles() is a member of the CVehicleCtrlSys class which is inherited from

CObject.

The class CVehicleCtrlSys contains all necessary information on generating a vehicle
including the numbers of lanes and the probabilities of generating vehicles in different

directions, the rate of generating vehicles, etc..

We do not describe the controlling function pedestrianCtrlSysThread(and only brief the
class CPedestrianCtriSys here. The CPedestrianCtrlSys is inherited from CObject and
plays the role of pedestrian generation. It includes all information input by the user,
decides on what type of a pedestrian to be generated and determines the origin and

destination where a pedestrian will follow.

58

5.3 Message Handling Function

A thread class may implement a message map just as for any other classes derived from

CCmdTarget. However, a user may also use a special message map macro,

ON_THREAD_MESSAGE, to handle messages that are sent directly to the thread rather

than to a given window. A user can send messages directly to a thread as follows:
pMyThread-> CwinThread::PostThreadMessage()(, ,);

This is similar to the ::PostThreadMessage() API call. We have seen this API call above.

How is the message handling implemented in this simulation tool?

Recall that the ::PostThreadMessage() API call is invoked in the threads to post
messages. It dispatches a message to the receiver according to the input parameter. The
value of the input parameter is predefined. We define the values as follows:

#define LIGHTCTRLMSG WM _USER + 5

#define TIMERCTRLMSG WM _USER + 6
The two predefined values connect to message member by a pair of message map macros,
the BEGIN_MESSAGE_MAP and the END_MESSAGE_MAP. The message map is a
way provided by MFC to associate Windows and user messages with the functions that
handle them. Within this pair of macros, we can use several other macros to indicate
exactly what messages we will map. The macros take care of the actual definition of the
data structures and functions. For instance, in our programming two message maps are
defined between the macros as follows:

ON_MESSAGE(LIGHTCTRLMSG, lightCtriMsg),

59

ON_MESSAGE(TIMERCTRLMSG, timerCiriMsg).
Here, the ON_MESSAGE is used instead of a special message map macro

ON THREAD MESSAGE.

The two parameters lightCtriMsg and timerCtriMsg are two member functions defined in
class CMajorRepView. Every time when a worker thread posts a message to its main
thread, one of these functions is invoked by the main message loop. The function
lightCtriMsg() calls the member function drawLights() of class Background to redraw the
colors of the traffic lights. The function timerCtriMsg() calls the member function

OnPaint() to redraw all vehicles and pedestrians.

5.4 Synchronization

Synchronization is a very important aspect of thread programming. Synchronization
objects are a collection of system-supplied objects that allow threads to communicated
with one another. There are four such objects in Windows: critical sections, semaphores,
mutexes, and events. All of these objects have different patterns of initialization,
activation and use, but they all eventually represent one of two different states: signaled
or unsignaled. Except for critical sections, all of these objects are waitable. <Ref. [1]> In

this simulation tool, critical sections are used to synchronize different objects.

Two synchronization objects of type CCriticalSection are defined. One is the

m_sinLockOne defined in file vehicleCtrSys.cpp. After generating a new vehicle, the

CVehicleCtuSys object invokes its member function AddToBuffer() to append the newly
generated moving object to the BufOne. To protect interruption, the AddToBuffer() calls
the function Lock() to block other threads to access the BufOne. Then the new generated
vehicle objects are attached to the buffer BufOne. When the attachment is done, the

function Unlock() is called to release the synchronization object m_sinLockOne.

On the other hand, the CAnimation object is to feich the moving objects from the BufOne
by calling its member function getObjFromBufOne() which in tumn calls the
m_sinLockOne.Lock(). If the BufOne is currently blocked, the CAnimation object will
wait until the resource is released. Otherwise, the CAnimation object accesses the

blocked BufOne and fetches the moving objects then releases the synchronization object.

Another synchronization object, defined in file pedestrianCtrSys.cpp, is the
m_sinLockTwo. Similar to the description above, the CAnimation object and the
CPedestrianCtrSys object will block the BufTwo when they are to access the buffer.
Since the action of m_sinTwo.Lock() is very similar to m_sinOne.Lock(), we will not

describe it in detail.

61

Chapter 6

Using Database

6.1 Motivation for Using Database in this simulation tool

We have mentioned several times in previous chapters that the Simulation tool uses a
database to realize the replay and the reverse of a simulation run. The reason of using a
database is that this simulation tool is a real time system, each step of a moving object is
dynamically calculated in the run time. Since multithreading is applied, we could imagine
that the time slots might not be distributed to all threads evenly. In other words, the same
simulation environment could result in different simulation runs. To exactly repeat a

simulation run, we use a database to store all moving objects and all their steps for

retrieval later.

6.2 The Tables and the Relationships

We use the database tool Microsoft Access to build our database project named TSSTDB
(see section 3.2.6). The MS Access is a small database tool that makes it is easy to
generate and to maintain a database project. After building up the TSSTDB, we need a
driver to access the data source. The ODBC driver manager is invoked to register the

TSSTDB so that our application can access an open database.

We create two tables, named Objects and ObjSteps as follows:

62

Objects

ObjID | ObjType | ObjName | ObjBirthTime

ObjSteps

StepID | ObjID | CoorX | CoorY

The primary key of the table Objects is the ObjID. Each moving object has a unique ID.
A sequence of steps of a moving object is retrieved by checking the object’s ObjID. The
key of the table ObjSteps is (StepID, ObjID). An object could stay at a place for a few
seconds so its CoorX and CoorY could keep unchanged, however its StepID changes

every time it is drawn.

6.3 The class CTSSTDB

To implement database under Visual C++ and Windows NT environment, we use the
MFC ODBC classes. ODBC defines a standard set of functions for data access and carries
a specification for which vendors can write drivers that grant the application access to
almost any of the database currently available. ODBC specifies that each driver must
implement a standardized set of SQL keywords, setting on a very specific syntax for its

SQL queries. [] In short, ODBC is the interface between the database TSSTDB and the

TSST system.

63

By using CDBC, we use objects instead of connection handles and statement handles.
The two principal ODBC classes are CDatabase and CRecordset. Objects of class
CDatabase represent ODBC connections to data source and objects of class DRecordset
represent scrollable rowsets. The class CTSSTDB is derived from CRecordset to match

the columns in tables Objects and ObjSteps.

The class CTSSTDB has three major member functions: toSaveSteps(), toCleanSteps()

and toRetrieveSteps(). We will describe them in the following sections.

6.3.1 The Functions toSaveSteps() and toCleanSteps()

In section 4.5.1, we have described the operation thePlay(). When thePlay() is invoked the
first time, it calls the CTSSTDB::Open() to open the database TSSTDB and then calls the

toCleanSteps() to remove all data from the TSSTDB.

The function toCleanSteps() executes a loop, calling Delete() to delete a database record
during each iteration. The loop terminates when the database is empty. When thePlay() is
called during a simulation run, it calls CTSSTDB::toSaveSteps() to save all newly

calculated steps.

In turn, toSaveSteps() calls the CTSSTDB::AddNew() to begin the process of adding a
new record to the record set. Then it sets those member variables of CTSSTDB object as

appropriate. Finally it calls CTSSTDB::Update() to complete the saving process.

6.3.2 The Function toRetrieveSteps()

Different from the function thePlay(), the function theReplay() and function theReverse()

call the member function toRetrieveSteps() of the CTSSTDB to retrieve data from the

database TSSTDB.

The toRetrieveSteps() has a parameter which passes the step number to variable StepID.
It, with the StepID, fetches the appropriate data from table ObjSteps simply by using an
inner loop and calls the appropriate variables of CTSSTDB. The second argument of the
toRetrieveSteps() is a pointer of type CMovingObj, which points to the moving object list
stored in CAnimation object. The newly fetched steps are inserted into the appropriate
moving objects. If a newly fetched ObjID does not appear in the list, the moving object
with this ObjID will be fetched from table Objects and be appended to the moving object

list. The m_strFilter member of CTSSTDB object is invoked to join tables Objects and

ObjSteps.

Finally, we would like to point out that the database TSSTDB and the class CTSSTDB
should be greatly improved if the Report part is to be added into the TSST system. This is
because different reports may requests different data set. Retrieving sufficient data set
from the database TSSTDB can largely save memory space and enhance execution speed.
Another reason is that to develop a new report may request to generate a new relational

table in the TSSTDB and to create a new function in class CTSSTDB. Since the TSST is

65

an open system, many new features and functions can be developed. However, we cannot

implement all of them in limited time. So we leave them for future work.

Chapter 7

Results from Simulation

In this Chapter, we will discuss some results from the simulation runs. Since the replay
and reverse of a simulation run do not influence the results, we concentrate on playing
simulation runs. The simulation runs include the one without pedestrian, the one without

vehicle and the one with both pedestrians and vehicles.

7.1 Simulation without a Pedestrian

Simulation 1. A user can simulate a road situation without a pedestrian. To do this, a user

should unmark the Adult and the Senior check boxes in Pedestrian Page. The following is

the settings of the simulation:

North to South | South to North | West to East | East to West
No. of Lanes 3 2 1 0
Probability of 70% 50% 30% 0%
having a vehicle
Car Truck
Selection v v
Speed (KMPH) 70 50

67

The percentage of cars among vehicles is 50. The maximum number of vehicles

generated per minute is 80.

The duration of traffic light is defined below:

Direction North — South West — East
Duration of green light 2000 3003
Duration of yellow light | 1500 2000

The probabilities of a vehicle running a red light and a yellow light are set 10% and 50%

respectively.

During a simulation run, we could see that most vehicles stopped before stop lines when
the light was red except for a few vehicles ran a red light. And many vehicles ran yellow
light. The reason is that even when a vehicle ignored a red or yellow light, it could not
neglect a possible running vehicle at the center section. Thus, most of them were forced

to stop before the stop line. A few of collisions occurred.

Simulation 1.2. If the probability of running a red light changed to 50%, we found that
more vehicles ran the red light and the number of collisions increased obviously. Some
vehicles waited at a crosswalk just before entering the center section where vehicles had

already entered from the left or right side.

68

Simulation 1.3. Finally we changed the probability of running a red light to 0 and that of
running a yellow light to 100%, we found that no collision occurred. In this simulation,

running a yellow light did not cause serious trouble except increasing traffic jams.

7.2 Simulation without a Vehicle

Simulation 2. To simulate situations without a vehicle, a user should unmark the check

boxes of Car and Truck in the Vehicle Page. The settings are as follows:

North to South | South to North | West to East | East to West

No. of Lanes 3 1 2 0

Generate a vehicle | 70% 50% 60% 0%

Adult | Senior

Selection Yes Yes

Speed (MPH) | 130 55

The percentage of adults among pedestrians is 51%.
The maximum number of pedestrians generated per minute is 50.

The probabilities of a pedestrian from different origins to different destinations are

defined as follows:

69

Origin 10/0 o |0 |0 |0 |O o

Destination | 0 0 0 0 0 0 0 100

The duration of traffic lights in different direction are set up as below:

Direction North & South | West & East
Duration of green light 2000 3003
Duration of yellow light | 1500 2000

Based on the settings, all pedestrians originate only from the NW and moved only to the
ES. There were two paths that a pedestrian could follow:

1. NW->NWC->NCW->NEC->ECW->SEC->ES.

2. NW->NWC->WCW->SWC->SCW->SEC->ES.
All the abbreviations above are given in figure 3.1. When arriving at NWC, a pedestrian
either turned left to NCW or walked straight to the WCW. We found that the pedestrian’s

decision matched our design:
= If the east light was green, the pedestrian walked across NCW.

= If the south light was green, the pedestrian walked across WCW.

We also found that while a pedestrian is walking at NCW and the east light changed to

red, the pedestrian continued ahead to NEC.

Simulation 2.1. Next, we changed the origin-destination settings as follows:

70

Origin 10 {10 |10 |10 |10 |10 {20 |20

Destination | O 0 0 5 5 10 20 | 60

We could see that pedestrians appeared from every origin but no pedestrian walked to
NW, NE and SW sections. When two pedestrians met, they tried to give way to each

other. When they had no way to step aside, they stayed and waited.

7.3 Simulation with Vehicles and Pedestrians

The simulations mentioned above worked well. Now, we proceed with a combination of

Simulation 1 and Simulation 2, named Simulation 3.

7.3.1 Chaos from a Poor Design of a Crossroad

Simulation 3 ran well for the first three minutes or so. Then came the traffic congestion.
After another five minutes, it seemed that Simulation 3 had run out of all internal

resources. The animated display showed a very messy situation. Performance also went

down.

One of the reasons was that too many pedestrians were walking on crosswalks and too

many vehicles were waiting at the center section or crosswalks. In the last five minutes of

71

the traffic jam, with all the moving objects in their active status, a maximum of 400
vehicles and 250 pedestrians were found on the crossroad. Moreover, the shorter duration

of green lights was hindering vehicles from driving away quickly from the center section.

7.3.2 An Improved Design

A user could improve a design of a crossroad in different ways according to real

situations otherwise a design could be distorted.

Simulation 3.1 was a modification from Simulation 3, its maximum number of vehicles
generated per minute and number of pedestrians were reduced half to the 40 and 25
respectively. In this case, we assume that numbers of lanes in different directions were
predefined. After running the simulation five minutes, we saw that the situation has been
eased out and there was no more traffic congestion. Thus we concluded that the crossroad

design in Simulation 3.1 was better than that in Simulation 3.

If we assumed that the maximum number of vehicles generated per minute and number of
pedestrians in Simulation 3 were predefined. Then we modified the number of lanes in
certain directions and prolonged the duration of the green light signal. This modification

is called as the Simulation 3.2.

Simulation 3.2. This last simulation was modified from Simulation 3 as follows:

72

North to South | South to North | West to East to West
East
No. of Lanes 6 4 4 4
Generate a vehiclel 70% 50% 50% 50%
Direction North & South | West & East
Duration of green light 10000 10000
Duration of yellow light | 3000 3000

This simulation worked well without serious traffic congestion and the design of the
crossroad was fair. There are many criteria for a good design but detailed discussions are

beyond the scope of this report.

7.4 Problems

A serious problem had occurred when the traffic condition in a simulation became
chaotic. In such case, we could see that more and more vehicles jammed at the center
section, crosswalks and all lanes whereas, at the same time, an increasing number of
pedestrians were either waiting or walking on the sidewalks. A user could not stop a
chaotic simulation by clicking on item STOP from the main menu bar. Thus, we added a
detector to check if the waiting queue of the moving objects is too long. If it is too long, a

message dialog pops up to let users suspend all work threads and then terminate the

chaotic simulation.

73

Chapter 8

Conclusion

8.1 Advantages of Simulation

The TSST simulation tool provides users an alternative to analyze their crossroad design.
With this tool, a user could easily modify the different settings of a construction project.
By the functionality of replay and reverse of a simulation run, users could compare
different designs and could repeat a simulation in ascending or descending order. The
greatest advantage of the TSST system is the property of simulating real time situations.
Many unexpected situations could happen based on the settings obtained from the

statistical results of the real world.

From the viewpoint of a programmer, the TSST system still has a lot of room for future
development because this simulation tool is designed in Object-Oriented Methodology
and implemented in C++ language. For example, we might, instead of using multi-threads
to simulate a real time system, use a network system to transfer real data obtained directly
from radar and the traffic light system. Connection to a real world will be enormously

helpful for analyzing a constructed crossroad.

8.2 Disadvantages of Simulation

74

The TSST system has too many constraints on performance. Restrictedly speaking, the
TSST system currently only simulates part of real time system. For instance, in
simulation, it is reasonable to permit a vehicle to turn left or to turn right or to change

lanes. Keeping the situation as close to reality as possible might largely increase the

complexity in programming.

Another disadvantage is that, in the TSST system, we use ‘symbols’ to represent the
different moving objects. This may help in reducing animation flicker but make the
animation less vivid. It is possible to use some images, such as a car, a truck, an adult or a
senior instead of ‘symbols’ because nowadays the speed of the CPU is fast enough and

the memory is large enough for running a simulation.

8.3 Future Work

A lot of new features could be added in the future. The most interesting one is to add the
report generation feature. Although the TSST tool offers a visible simulation result, a

statistical report will be more helpful in analyzing the design of a crossroad.

As mentioned in section 8.2, the interface needs to be improved in many fields. We could

add a simulation control bar to quickly, for example, stop or pause a simulation run.

75

To repeat a segment of a simulation run, we could add a field to the database table
ObjSteps. The new field will record the running time of the next step. By then, a user

could select a time interval and repeat a simulation within that time gap.

In general, to improve the quality of the TSST system, a programmer could always

develop some new features into the system.

76

Appendixes
Part A. The Class CEngine

L1771 11777 777777 7 /7 I/ 7/ 7777777777777/
// Engine.h: interface for the CEngine class.
LILIIII7 777777 S 7 777/ /7777777 /7777777777777 77

#1f
tdefined (AFX_ENGINE_H___4452DFF9_78DB_11D3_A7F4_820EEA6AE49B___INCLUDED_)
tdefine AFX_ENGINE_H_ 4452DFF9_78DB_11D3_A7F4_820EEA6AE49B__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#¢endif // _MSC_VER > 1000

#include "MovingObj.h"
#include "Vehicle.h"”

#include "Pedestrian.h"
class CEngine {

COleDateTime m_currTime;
CPoint xxRearArr([4][8]:

public:

CEngine();
virtual ~CEngine():

void toCalNextStep():
void toCalPedNextStep():
void toCalvehNextStep():

/t

to sort pedestrian list according to their current positions:
sidewalk sections : NWS, NES, SWS, SES, WNS, WSS, ENS, ESS
intersected sidewalk sections : NWC, NEC, SWC, SEC
crossroad sections : NCRS, SCRS, WCRS, ECRS

*

/

void sortPedList():;

void sortWSSlist(CMovingObj** WSSlist):

void sortwWsCSlist(CMovingObjr* WSCSlist):

void sortCRSlist(CMovingObj** CRSlist);

void sortUnIssuedPedList(CMovingObj** unIlssuedPed):

77

/*
called by above sorting functions.

~

void addToList(CMovingObj** listOne, CMovingObj* listTwo);

/*

to check road situation

if situation & 1 > 0 : some vehicle from N2S across the center section;
if situation & 2 > 0 some vehicle from S2N across the center section:
if situation & 4 > 0 : some vehicle from E2W across the center section:;
if situation & 8 > 0 : some vehicle from W2E across the center section;
if situation & 16 > 0 : some vehicle’s head in north crosswalk;

if situation & 32 > 0 : some vehicle’s head in south crosswalk;

if situation & 64 > O some vehicle’s head in east crosswalk;

if situation & 128 > 0 : some vehicle’s head in west crosswalk:

*/

/t

to check if there is any vehicle in center section;

the return value stores the situation happened in center section about
vehicle;

if situation is 0 no vehicle is crossing the center section.

*/

int anyVehInCenSec():

/t

to check if any vehicle from direction "dir" is crossing center section.
the second input parameter, "total", represents the number of lanes in
direction dir;

return 1 if any; otherwise 0.

*/

int anyvehFromTheDirInCenSec(LaneDir_enum dir, int total):

bool isIntersectedWithCenSec(CvVehicle* ptr):

/*

only to check if any hoods of vehicles is in corsswalk;

a vehicle’s hood is in second crosswalk 1is equvilent to that the vehicle
is across the center section.

the return value stores the situation happened in corsswalks about
vehicles;

if situation is 0, no vehicle’s hood is in any crosswalk.

*/

int anyVehInCrossWalks():

/*

to check if any vehicle’s hood is in the first corsswalks from input
direction.

in the input direction has "total" number of lanes.

return 1 if any; otherwise 0.

*/

int anyVehInTheFirstCroSec(LaneDir_enum dir, int total);

/t

to check if any vehicle’s hoods in the first crosswalks.
if any, return 1l; otherwise 0.

*/

bool isHoodInFirstCroSec(CVehicle* ptr, LaneDir_enum dir);

bool IsPtInRect(CPoint pt, CRect rt);

78

bool IsPtInRect(CPoint* pt, CRect rt):
/*calculate next stepst*/

//to generate next steps for all living pedestrians
void generateNextStepsForAllPedObjs(int situation);

void toFindNextStep(CPedestrian* curr, int situation);

/t

to check if it is possible to launch an unissued object.

rule : search the start edge of the origin from middle to right to left.
When possible, return true immediately otherwise flase.

*/

bool isPossibleTolssue(CPedestrian* curr):;

void copyNextPosToCurrPos (CPedestrian* curr);

/t

when option is true, consider horizontal way : input coor is a y value;
when option is false, consider vertical way : coor is a x value;

*/

bool getStartPos(CPedestrian* curr, int first, int second, int coor,
bool option);

/t

this function will search pedListHead to check if there is any
pedestrian walking in given section.

If not return false immediately.

If found, let pl points to the first one; then to find the last one
walking in the given sectioin and let p2 point to the one just follow
it.

*/

bool getPlP20fWSS(CMovingObj** pl, CMovingObj** p2, WSS_enum aWss):

void posInSection(CPedestrian* curr);

/*

the rules for a person moving are as below:

(1) a pedestrian can move forward, or turn to left, or turn to right, or
stay at the same place without moving;

(2) a pedestrian could not mobe backward;

(3) if there is a vehicle in his front crosswalk or center section, the
pedestrian cannot move forward to that crosswalk;

(4) a pedestrian cannot run red or yellow light;

(5) a pedestrian has to move forward if he is walking in a crosswalk no
matter what color the traffic light is.

*/

/t
if a pedestrian is in WSS
if his current section is equal to the origin, move forward to WSCS:
if it is equal to the destination, move to the end of the section;
if a pedestrian is in WSCS
if it is beside destination section, move to his destination;
if not, move to CRS;
if a pedestrian is in CRS
move to WSCS.
*/

79

void toGetCurrObjNextStep(CPedestrian* curr, int situation);

/*

curr is the moving object;

aCRS is the name of the section moved to;

aSection is the section moved to:;

*/

void moveToCRS(CPedestrian* curr, CRS_enum aCRS, CRects aSection, int
situation):

/*

if pnt is right to rect, set pt = (-1, 0);

if pnt is left to rect, set pt = (1, 0);

if pnt is top to rect, set pt = (0, 1);

if pnt is bottom to rect, set pt = (0, -1);
*/

CPoint getMovingDir(CPoint pnt, CRects rect);

/*

if pnt is right to rect, set pt = (-1, 0);
if pnt is left to rect, set pt = (1, 0);

if pnt is top to rect, set pt = (0, 1):

if pnt is bottom to rect, set pt = (0, -1);

*/

CPoint getMovingDir(CPedestrian* curr); //this is for moving to boundary

/*

This function searchs pListHead for objects walking in aWSCs;

if found, pl will point to the first object who is walking in aWsCs;
otherwise, pl points to NULL.

p2 will point to the object who just follows the last one walking in
awsSCS or to NULL.

*/

bool getPlP20fWSCS(CMovingObj** pl, CMovingObj** p2, WSCS_enum aWSCS);

/-k

This function searchs the pListHead for objects walking in acCRS
if found, pl will point to the first object in acCRS;

otherwise, pl points to NULL.

p2 will point to the object just next to the last object in acCRS

if pl != NULL;
otherwise, p2 points to NULL.
*/

bool getP1P20fCRS(CMovingObj** pl, CMovingObj** p2, CRS_enum acCRS);

bool isNextPosAvail (CPedestrian* curr, CPoints dirPnt, CMovingObj* pl,
CMovingObj* p2, CMovingObj* p3, CMovingObj* p4);

int isPosAvail(CPedestrian* curr, double xM, double yM, CMovingObj=* pl,
CMovingObj* p2, CMovingObj* p3, CMovingObj* p4, int blockObjID);

int isPosAvail(double x, double y, CMovingObj* pl, CMovingObj* p2,
CPedestrian* curr, int blockObjID):;

/t

if return value is zero, it is OK to get a position;

otherwise return the index of the object blocking the curr move forward.
*/

int isPosAvail(CPoints pnt, CMovingObj* pl, CMovingObj* p2, CPedestrian*
curr, int blockObjID);

80

/*

this function is to correct the calculation of the next step of the curr
object. This is because the calculation of the next step does not
considerthe boundary of the section the moving object is walking on and
the traffic light color.

*

/

void constrianNextPos(CPedestrian* curr, CPoints dirPnt, CRects
aSection, bool isToCRS, CRS_enum aCRS, int situation);

void moveToBoundary(CPedestrian* curr, CRect& aSection);

void issueDeadPed(CPedestrian* curr):

void moveToWSCS(CPedestrian* curr, WSCS_enum aWSCS, CRecté& aSection);

/t

to check if any vehicle from left or right side in center section.

the return value depends on input direction and follows the definition.
*/

int anyLRVehInCenSec(LaneDir_enum key):

/*

to check if any vehicle’s head coming from left or right side in their
first crossroad section.

any vehicle’s head in second crossroad are ignored because the vehicle
is in center section.

the input direction is the current checking vehicle.

return value depends on input direction and definition if any;
otherwise 0.

*/

int anyLRVehInCroSec(LaneDir_enum key):

//about pedestrian in corssrcad section

/*
the return value stores the pedestrian’s situation in all corssroad:
if situation = 0 : no pedestrian in any crosswalk;

if situation & 256 > 0 : some pedestrian in north crosswalk;
if situation & 512 > 0 : some pedestrian in south crosswalk;
if situation & 1024 > 0 : some pedestrian in ease crosswalk;
if situation & 2048 > 0 : some pedestrian in west crosswalk;

*/
int anyPedInCroSec():;

//check if any pedestrian in the given crosswalk.
//return 1 if any; 0 for none.
int anyPedInTheCroSec(CRS_enum target):

//check if any pedestrian in first crossrcocad of the given direction.
//return value depends on input direction and definition if any;

/70 for none

int anyPedInFirstCroSec(LaneDir_enum key);

//check if any pedestrian in second crossroad of the given direction.
//return value depends on input direction and definition if any;

//0 for none
int anyPedInSecondCroSec(LaneDir_enum key):

void initRearBound():

81

bool generateNextStepForNextVeh(CVehicle* curr, int situation);

bool IsObjbDead(CvVehicle* curr):;

/t

this function is to check if it is possible to issue an unissued object

*/
bool isPossibleToIssue(CVehicler* curr):

// to use bitwise AND "&", only 12 low bits used

//if situation = 0 : no vehicle in center section

//1if situation & 1 > 0 : some vehicle from N2S in center section
//if situation & 2 > 0 some vehicle from S2N in center section
//if situation & 4 > 0 : some vehicle from E2W in center section
//71if situation & 8 > 0 some vehicle from W2E in center section

//1if situation = 0 : no vehicle’s head in any crossroad

//if situation & 16 > 0 : some vehicle’s head in north crossroad
//if situation & 32 > 0 : some vehicle’s head in south crossroad
//if situation & 64 > 0 : some vehicle’s head in ease crossroad
//if situation & 128 > 0 : some vehicle’s head in west crossroad

0 : no pedestrian in any crossroad
256 > 0 : some pedestrian in north crossroad
//71f situation 512 > 0 : some pedestrian in south crossroad
//7if situation 1024 > 0 : some pedestrian in east crossroad
//if situation & 2048 > 0 : some pedestrian in west crossroad
void toFindNextStep(CVehicle* curr, int situation);

//71if situation
//if situation

- o |

1

#endif //
tdefined (AFX_ENGINE_H__4452DFF9_78DB_11D3_A7F4_820EEA6AE49B__ INCLUDED_)

82

Part B. The Class CAnimation

//
// Animation.h: interface for the CAnimation class.

//

4if
!defined(AFX_ANIMATION_H__4452DFF8_78DB_11D3_A7F4_820EEA6AE49B__INCLUDED

=)
#define AFX_ANIMATION_H__4452DFF8_78DB_11D3_A7F4_82OEEAGAE4QB__INCLUDED_

#if _MSC_VER > 1000
fpragma once
#¢endif // _MSC_VER > 1000

#include "Engine.h"

#include "VehicleCtrlSys.h"
¢include "PedestrianCtrlSys.h"
#include "template.h”

//controlling functions

UINT vehicleCtrlSysThread(LPVOID pParam);
UINT pedestrianCtrlSysThread(LPVOID pParam);
class Canimation {

friend class CEngine;

protected:

bool animRun;

bool replayRun;

bool reverseRun;

CEngine* m_Engine;

public:

bools IsAnimRun() { return animRun; }:
void startAnim() { animRun = true; };

void stopanim() { animRun = false; };
void startReplay() { replayRun = true; };

83

void stopReplay() { replayRun = false; };
void startReverse() { reverseRun = true; };
void stopReverse() { reverseRun = false; };
void theReverse():;

void theReplay():

void thePlay():

void toClearObjList():

void drawMovingObj(CDC*);

void toInvalidateObjects(CWnd*, int):;

void toTerminatePlay():

CAanimation():

virtual ~CAnimation():
protected:

void getObjFromBufOne():

void getObjFromBufTwo():

void toInvalidatePedCurr(CWnd* a_wnd):

void toInvalidatePedNext(CwWwnd* a_wnd);

void toInvalidateVehCurr(int idx, int jdx. CWwnd* a_wnd);
void toInvalidatevehNext(int idx, int 3jdx, CWnd*r a_wnd);

/t
pointer to the vehicle thread which is created when user clicks on Run

button.
The vehCtrlSysThread is a connection between the main thread and the

work thread.
*/
CwinThread* vehGenThread;

/t

pointer to the vehicle control system which is passed to the new created
work thread about vehicle system so the control system can access view
window.

*/

CVehicleCtrlsys* vehCtrlSys;

/*pointer to the pedestrian thread which is created when user clicks on

Run button.

84

The pedCtrlSysThread is a connection between the main thread and the
work thread.

*/

CWinThread* pedGenThread:

/*

pointer to the pedestrian control system which 1s passed to the new
created work thread about pedestrian so the control system can access
view window.

*/

CredestrianCtrlSys* pedCtrlsSys:

}:
#¢endif //

tdefined (AFX_ANIMATION_H__4452DFF8_78DB_11D3_A7F4_820EEA6AE49B___ INCLUDED
=)

85

References

[1] Mike Blaszczak (1997). Professional MFC with Visual C++ 5. WROX.

(2] David Bennett, et al.. Visual C++ 5 Developer’s Guide. SAMS PUBLISHING.

[3] Hans-Erik Eriksson and Magnus Penker. UML Toolkit, WILEY COMPUTER
PUBLISHING.

[4] David J. Kruglinski, Inside Visual C++ Fourth Edition, Microsoft Press.

[5] José M. Garrido. Practical Process Simulation Using Object-Oriented Techniques
and C++. Artech House, Boston, London

[6] M.M. Woolfson and G.J. Pert. An Introduction to Computer Simulation. OXFORD
UNIVERSITY PRESS.

[7] Stewart V. Hoover, Ronald F. Perry. SIMULATION A Problem-Solving Approach.
ADDISON-WESLEY PUBLISHING COMPANY.

[8] Peter Robinson. Object-oriented Design. CHAPMAN & HALL.

[9] Mohamed Fayad, Mauri Laitinen. Transition to Object-oriented software
development. John Wiley & Sons, Inc.

[10] Wolfgang pree. Design Patterns for Object-Oriented Software Development.
ADDISON-WESLEY PUBLISHING COMPANY.

(11] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Parterns,
Elements of Resuable Object-Oriented Software. ADDISON-WESLEY PUBLISHING
COMPANY.

[12] Robert J. Muller. Database Design for Smarties using UML for Data Modeling.

MORGAM KAUFMANN PUBLISHERS, INC.

86

[13] James Rumbaugh, et al.. Object-Oriented Modeling and Design. PRENTICE HALL.
[14] Bemmard Ostle, Linda C. Malone. Fouth Edition, Statistics in Research, Basic

Comecepts and Techniques for Research Workers. IOWA STATE UNIVERSITY PRESS /

AMES.

87

