INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

A Survey on Microsoft Component-based Programming Technologies

Junping Li

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal. Quebec, Canada

November 1999

© Junping Li, 1999

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Oftawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et]
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your filg Votre reference
Qur fiie Notre relérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-47848-3

Canadia

Abstract

A Survey on Microsoft Component-based Programming Technologies

Junping Li

Component-based programming is the trend in the software industry. Software
components are reusable software units in executable form that can be plugged into other
components from other vendors with relativeiy little effort. The components present a set

of functionality through interfaces.

This report will discuss the Microsoft component-based programming technologies such
as DLL. COM/DCOM. OLE Automation and ActiveX Controls. The motivation for
establishing each of these techniques. the fundamental architecture. and the
implementation examples for creating software objects using these techniques will be

discussed.

il

Acknowledgement

I would like to thank Dr. Lixin Tao for being my project advisor. His guidance is greatly

appreciated.

My thanks also go to my wife. Jingyi. and my sons Simon and Raymond. for their

patience.

1Y

TABLE OF CONTENTS

1 INTRODUCTION 1
2 DYNAMIC LINK LIBRARIES 3
2.0 THE MOTIVATION OF USING DILLS et eeee e e e eeeeeee e ee e s s aeeeeee e enesseeesssnnes 3
2.2 THE ADVANTAGES OF USING DILLS oot eeeem e m e eee e ee e e e e e e nsonn 3
23 HOW TOBUILD A DL oot eeee et eee e e s e e e e ea e e e s e e emess s e s mmemse e e e eeeeemmsssmssesnn 4
2l HOW TOLINK A DLL oot e te e e e ee s s e e e e e e e s smee s seeem s e aae e e s e s sneeeeeeesmsnaes 7
QA0 LiNK 10 @ DLL STQTICAI ... e e e e e e e 8
232 Link 10 @ DLL DYRAMUCALIY ... e ee e 9
243Link 1o a DLL in a Visual] BaSic CIIONT ... e 10

3 COM/DCOM 11
ST WHATIS COMPY ettt eeete e s et eee s e e s eaesaeeseae s e e e e s e e e e e e m e sses s s mmee e e e e e e nsensnesoas 11
B2 NWHY IS COMY ettt ete e e et eaatte s sasassess e s e eesseme e eesses e mems s ememseeesesaeeeasaeeessensensessns 11
3.3 THE REQUIREMENTS FOR A COMPONENT ..ecveiietiiteeeeeceeeee e et eeeee e e eeae e aeaean e s esesseeememenmeeeeeenmseeeneens 12
3 WHAT IS AN INTERFACE? oot ettt et oo e s ee e e e e e e eemesemamensee e e s e s e e e e e e smemmneeesesmmmnnns 12
3.5 QUERYING FOR INTERFACE uueeiiiriiirceercreenieescresasasssssesssaeeesens s ssssnsssseemsssssssnassesssannsssnnsnsssssssnmeen ennen 14
3.6 THE CONTROL OF COMPONENTS LIFETIME .. eeoiiiieeeeeeeeeeeeeeeeee e teeeee e eeeamsesaeesenseesseeaseeeeemmmeeesenmsnnens 16
3.7 DYNAMIC LINKING OF COMPONENTS «eeeuteteeeeeeeieseessssesssesesomeesaseasss s sasssesesssesssessesesssssessssssssesmmmnnns 19
3.8 SOME COM DCOM TYPES AND THE REGISTRY .otiimmeeteeeieceteeeaeeeaseeeeeeeemseeeeeaeemesssssaseenmemeeeessenmemeees 20
BB HRESULT ..ot e ee e e e e e e e e e e e e ee e e e e e 20
BB GUID ..o et e e ee e e e e e e e s e et e e st e e memee e e e e et e et e e et e e e e e e e e 21
383 THhe WinAOWS REGISIFY ..o eeee e eeereee e eeee e eeeeenneeeeeenveasannnns 22
3.9 IN-PROC SERVER oeiereieieeeieeneeieeeceeeteteemam e ssssesesnsesmsmssomeeesatessesaesaranan oemeseseeeseesesssssenmnnsnnnnnnmnssemmenennnns 24
F.9.0 ClASS FUCIONY .ot ettt e e e oo e et e e e et e e e ae e eeeeeseseeee e e eere e e s eemeeenn 25
3.9.21In-proc Server DLL ENIFY POINES ...ooo.oooiiiiiieeeeeteeeee e eeeeeeeeaes e e e 28
FL9 3 ROGISIOT U NI CQESIOT SOPVOIS. ..o oot e e e e eee e e e e e e e eee e e e e ee e 29
3.9.4 Example of an In-proc Server COMPONCIEoo.eeeeeeeeeeeeeee e e aeenennn 29
310 CONTAINMENT AND AGGREGATION «oevriceeeeeieeneeteeeeeeceeteeseesteeaeseee et eee s meenes essmsaae seseseaea s aeeseeaeemns 30
31T LOCAL SERVER .oooeeeeeeeeeeeeeeeeeeeeetes e eee s e m s aessssssnsmans s s et amemseeeesmm e eemenameaneeesssseeasseneseseseeesaeesaaenenne 32
BB T RP CS et ettt ae s e e e e e s e e e e e e e et e e e e e e e em e 33
FIT 2 MAPSIAIING .ottt ettt ee e e e e e et e e staseaes et s emeeeemeeeneaesene e 33
T3 Proxy StD DLLS. ..ottt ettt e et eaeee e e e e eseesea et eeansensenreneennnea 34
ST T T ID et e aeaaa e s 35
3T2 REMOTE SERVER .ooeeiiieiireieeeeieceiineeaeesnessasssasaresenssnsssssssoesssass sastesesane e eeseese s sem e nmene e ee s o s memmmammaaeeaeeen 40
3020 Use Local Server REMOICINooveoeiioiiiiiiiieeeeeeeeeeee e et ens S0
3A22Us€ Remote Server EXPICIIINccooviiiieiieeeeeeeeeeeeee e anae s 42

4 OLE AUTOMATION 4
Bl VW HAT IS OLLE ... e e re et eee e see s e s sannsasasas e s s e sseamaeaeam e aeeeseeeaeesemmemanam e s eeeeeeemmnem e eenn 44
F.2 AUTOMATION coeeeeeeeeeeereeveteeeeeemeecee s esteeesseesssssnsssessessnsseesreasaseteaeason amee e emeeeeeennsaaseennnameanaeaeeeesenmmmeanenen 16
.3 D ISP AT C Hueennceeeeteeeeeeeieereeeereeeeeeraenessnsesnssassssesnssnnsssensseesestsesestesesaann mmeseeaes e ennmemeaesmaaememeeneesaeseseeanes 47
4. DISPINTERFACE «eeeeeeeiieeeeeeeicrerreeeeseseressesnssssssssssssssnssssnsesessstossiosseessnan s ameaeeses s sennatesessmmnmneetamnaneaesennees 50
B3 DUAL INTERFACE coeiceeeeeettreeeeeecee s seeseaeee s sesssesnasesseseansessssare s aeea e e seesstaseseses saeneeenenmnonnseeesesaameneeenn 50
F.6 USING IDISPATCH INTERFACE ceoteeeeereenereenesentensessssssneesnsteseresseesesn e samesesesesaesessamtseesemessssmseanssasessaeses 50
4.7 METHODS AND PROPERTIES .c.oeveeeeieereceeeeeieiseensseseeesssssmsseesssssssanasee s esasestase seessenansassssesmanesseessmsemsesmses 52
BB NV A R I AN S ettt eee e er et s e e e s s nastessbe s s s bassteaeaeeees s eaeeseeeseneeaaaeaeaeoamennnesaneonsaneammnas 54
O B OTRS oo eeieeerereceeeteee it ete e s s e sssn s s s s st anannsanasseanstsnnsaresesseaeaane et eeteeeeeneeeannoeeaann st enteteseneeaeaeaneenan 56
IO SAFEARRAY Sttt st ste e sessansse s mses sesestesasen s aaeteseeaenn s easeeasssssassssasnasaessaaeees 57
B Ll TYPE LIBRARIES cooeeeeceeeeiieeeeeeeieeeeeeevesesessassssensesnnnsnstesssessseseessessaessesnasastasn oosesssssesesessssstssssnssesssonnesses 58
BT INMPLEMENTING IDISPATCH oeieeeeeeeeeeteteereseesnesnseesasssessssaessm et eesesesnsnmmsamaeseenesasaesansnssansasanaeann 62
B3 ENXCEPTION HANDLEING ccceieeeeieieeteeeaessss s eesseesesesassasasssessaeessseeasessasesessssnnnmesoeens st anesasssaesssesenssns 64

5 ACTIVEX CONTROLS 66

5.1 ACTIVEX CONTROL OVERVIEW eoeietiinieeeteeet e tetiece e eeee et s e e e e e e s e e e e e eme e e e e e e 66
SAT What is @n ACtVEX CORIFOL? ... e e 66
3.1.2 Characteristics f ACHVEX COMIPOLS c..ooueeoiioeeeoioooeoeoeeeeeeeeeeee e e 66
5.0.3 Features 0f ACTVEX COMIFOLS ..ot 68

5.2 TOOLS FOR CREATING ACTIVEX CONTROLS .ttt ee e e eeeeeeeeeee e et e 78
S 2T MECTOSOSt TOOIS ... e et e 78
5 2.2Crearing @ SKCICION PrOJOCE.... oo 79
3.2.3 The ControlWizard Cre@Ued FIlEsS............ooeueecooeooeeeeeoee 8/
523 The COnIrol MOAUIC CIASS ..o e 82
525 THE CORIFOI CIASS e e e 83
5.2.6 THE Property PAGE CLASS ..o e e e e e e e 87
527 TESITHE CORIIOL ... e e e 88

5.3 PROPERTIES ... ecceceeeceetesce e e as e st memse s e e meseeemsess s ssmesaoe e s eeeeseesesssnsesss e seen s eemeem e e eee e e e eeeeeees e 89
3.3.1 Ambient Propernes .. &9
5.3.2 SI0CK PrOPEIHES ...t e ee e 90
5.3.3 AdAING SIOCK PrOPEITICS ..ot eeees e s e 9/
I3 S AdAiNg CUSIONE PrOPOITICS .ot eee e e eeee e e s e e e e e 92

5.4 PROPERTY PERSISTENCE wueteuemeutimientietmessmeemeseseeseteeioeeseeseee et eessessamsessesssessessaensem e eeees e es e e eee s 93

5.5 METHODS .ttt et n e e e e ee s e am e ee e s sees e e et e e e s ees 2 ee e e mmem e e e e e 94

SUO EVENTS oottt et e et s st eesese et te e se e e eneeeses s s emaen 96

ST PROPERTY PAGES oottt ee e e et e e e sea e ee e e e e e e e e e e s ems e ee e e e e e e e 100

6 CONCLUSIONS 103
REFERENCES: 104
APPENDIX 1| A DLL EXAMPLE 105
APPENDIX 2 AN CLIENT EXAMPLE USING A DLL STATICALLY 107
APPENDIX 3 A CLIENT EXAMPLE USING A DLL DYNAMICALLY 108
APPENDIX 4 A VISUAL BASIC EXAMPLE USING ADLL 109
APPENDIX 5 AN INTERFACE EXAMPLE 110
APPENDIX 6 AN EXAMPLE TO QUERY INTERFACES 111
APPENDIX 7 A COMPONENT LIFETIME CONTROL EXAMPLE 115
APPENDIX 8 USE A COMPONENT IMPLEMENTED IN A DLL 118
APPENDIX 9 AN IN-PROC SERVER COMPONENT EXAMPLE 124
APPENDIX 10 AN IN-PROC SERVER COMPONENT CLIENT EXAMPLE 138
APPENDIX 11 AN ACTIVEX CONTROL EXAMPLE 137

vi

1 Introduction

Today’s software applications become more and more complex and they require more
and more time and resources to develop. They are difficult and costly to maintain. In
addition. most of the software applications are still monolithic. They are developed with
many features. each of them is usually related to many of others. Each of these features
cannot be easily removed. upgraded or replaced with alteratives independently. Further.
applications are not easily integrated with each other. The data and functionality of one

application is not readily available to other applications.

Software reusability has long been discussed to solve the problems faced by the software
industry. Currently. the Object-oriented Programming (OOP) technique is used widely to

achieve software reusability. C++ is one of the mostly used OOP languages nowadays.

While Object-oriented Programming is powerful. it still suffers from some major
problems. Software objects created by different vendors cannot interact with one another
through a standard framework in the same address space. in different address spaces or
on different machines. OOP software reuse is still at the source code level and subject to

breaking it any of the base-classes in an inheritance hierarchy changes its interface.

The solution to these problems is to create reusable software components. Software
components are reusable software units in executable form that can be plugged into other
components from other vendors with relatively little effort. The components present a set

of functionality through interfaces.

The component-based programming is the trend in the software industry. Various
techniques have been developed. Among them. Microsoft has made a lot of effort to
establish a series of component-based architectures. The techniques on Dynamic Link
Library (DLL). Component Object Model (COM)/Distributed Component Object Model
(DCOM). Object Linking and Embedding (OLE) and ActiveX all contribute to the

component-based programming.

This survey will go through the basics of Microsoft component-based programming
techniques such as DLL. COM/DCOM. OLE Automation and ActiveX Control. It
discusses the motivation for establishing each of these techniques. the fundamental
architecture. and the implementation examples for creating software objects using these

techniques.

2 Dynamic Link Libraries

DLL technique is the foundation of Microsoft component-based technologies.

2.1 The Motivation of Using DLLs

Very often. a function in a library will be used in many applications. If the function is
statically linked to them when the applications running concurrently. then the code is
replicated and memory is allocated multiple times for the same function. This problem
will happen not only on functions used by different applications running concurrently.
but also applies to any functions used by a single application that has multiple instances
loaded at the same time. This results in memory waste and makes the size of application
executables bigger. Furthermore. it makes the application monolithic as every function it
uses is built in a single executable file. This leads us to ask: can we allow multiple
applications that are running at the same time to share the same library functions? The

answer is the Dynamic Link Libraries (DLLs).

2.2 The Advantages of Using DLLs

A Dynamic Link Library (DLL) is an executable file to be used as a library. When
multiple applications are using the same DLL. only one copy of the DLL is maintained in
the memory. The linker maps the DLL into the address space of the executable that uses
it. Using DLLs will result in the following advantages(1]:

e Using DLLs reduces the memory used when multiple processes are accessing the

DLL simultaneously because a single copy of the DLL resides in the memory. This

results in less virtual memory swapping and enhances the performance of the
applications that use the DLL.

® As long as the function prototype. i.e.. its interface. is not changed. changing the
functions implementation in a DLL will not require to recompile or relink the
applications that use the DLL'’s function. However. if the function is statically linked
to an application and the function is changed, the application has to be relinked. This
decouples the software clients from their servers’ implementation and makes the
applications more component-oriented.

e Since a DLL's implementation can be modified without affecting the applications that
use it. the vendor of the DLL can make additional support after the DLL is shipped.
For instance. a display driver DLL can be updated incrementally to support new types
of the display.

e Applications written in different programming languages can use the same function in
a DLL as long as the applications follow the same calling convention as specified for
the function in the DLL. This will break the programming language boundary and
make it possible that a component can be used by different programs regardless what

languages they are written.

2.3 How to Build a DLL
Certainly. the first step in using a DLL is to build a DLL. It is easier to build a DLL by
using a programming tool. For instance, in Visual C++. version 6.0. going through the

following steps will create a new DLL project:

I. Select New from the File menu and click the Projects tab. choosing "Win32

Dynamic-Link Library':

!\)

In Project name edit box. type the DLL name. e.g.. Example. then specify the
directory where the DLL project will be created:

3. In the step | Wizard dialog. select "An empty DLL project". then finish the Wizard
by clicking the Finish button: The Wizard will then create the files used in the DLL

project.

Once the DLL project is created. the DLL source files must be added to the project. This
can be done by selecting Add to Project from the Project menu. then selecting Files to

invoke the dialog to add the files.

A DLL can contain variables and functions to be used by its clients. A DLL can also
contain variables and functions used by the DLL internally. The variables and functions

that can be used outside the DLL must be exported.

There are two ways to mark the symbols in a DLL as exported:
I. Use a definition file in the DLL project;

2. Use storage class modifiers to declare the symbols:

A DLL’s definition file has the same name as the DLL, but it has the file extension DEF
instead of DLL. For example. a DLL called Example.dll can have a DLL definition file

called Example.def. A variable or a function can be marked as exported in the EXPORTS

W

section of the DLL's definition file. The following code is an example of a DLL's
definition file:

Example. DEF

; Example.dil’'s module definition file

LIBRARY Example.dl!

EXPORTS
ExampleFunction @]/

In this example. a DLL called Example.dll implements a function called
ExampleFunction. This function is exported by specitying it in the DLL's definition file

called Example.def.

The other way to export a variable or a function in a DLL. which is available in 32-bit
Windows. is to use ___declspce(dllexport) extended storage class modifier defined in the
Microsoft C++ language. You can mark a function or data as being exported to
applications and other DLLs with this modifier, e.g..

__declspec(dllexport) int ExportedFunction(int arg):
__declspectdllexport) int j:

C++ compiler will decorate or mangle the function names to allow the overloading of
methods. If a function is exported as a C++ function. the decorated name will be
exported. This will not be a problem if the client of the DLL and the DLL itself will use
the same C++ compiler. To remove this limitation, we can tum off the name decoration
by marking the function with extern "C" or use

extern "C" { }

to turn off the name decoration for a block of code.

The client of the DLL that will uses the DLL's exported variables or functions will have
to mark the variables or functions with __declspec(dllimport) modifier. e.g..
__declspectdllimport) int ExportedFunction(int arg):
__declspectdllimport) int j:
The DLL author should provide the header file. which contains the imported variables or
functions marked with __declspec(dliimport) modifier. of the DLL to be used by the
DLL’s clients. The same header file. which contains the exported variables or functions
marked with __declspec(dllexport) modifier. can be used by the DLL implementation file
as well. Appendix | gives the list of the header and the implementation files of a simple

DLL using the __declspec modifier.

An exported function in a DLL can also take or return parameters like a function in an
EXE program. For example. the second exported function in the Appendix | example
DLL. dllParamFunction. takes an integer. a string. an array of 3 float numbers. passes

back the sum of the 3 array elements to the caller and returns 1 to indicate success.

2.4 How to link a DLL

When a DLL is ready to use, the clients of the DLL can use its exported data or functions.
If the DLL is linked statically. the header file containing the imported data and functions
must be included in the client program. Furthermore, the program must be able to access
the DLL library. The easiest way of doing this is to place the DLL in the same directory

where the client program is located. Alternatively. a path to the DLL can be specified in

the Windows environment. A DLL can be linked either statically or dynamically by a

client application.

Following the steps below will create a console application in Visual C++ version 6.0
that can be used as a client to use the DLL:
I. Select New from the File menu. click the Projects tab. choosing “Win32 Consoie

Application™;

!\)

Specify the name for the application in the Project name edit box and the directory
where the application will be created in the Location edit box:

3. In the Wizard dialog. choose "An empty project™. then clicking the Finish button:

2.4.1 Link to a DLL Statically

To statically link to a DLL. also known as implicit linking. the linker links to an import
library of the DLL that was generated by the compiler that created the DLL. For instance.
when Example.dll was built. a companion library file called Example.lib was generated
as well. The client of the Example.dll links statically to Example.lib. This .lib file
essentially consists of the stub functions that forward the calls on to the DLL. In this way.
the client uses the DLL as if it uses the static library. In implicit linking, the DLL is
loaded when the client EXE file is started and it is released when the client EXE exits.
Certainly. the client program that uses the DLL's exported functions must include the
header file containing the declarations of the functions and the client application must

specity Example.lib as one of its linked libraries.

The console application example listed in Appendix 2 shows a client written in C. which
links to the Appendix | example DLL statically. When vou run this client. the example
DLL is loaded into the client’s address space. When running the client program. it calls
the first DLL's exported function which simply pops up a message box saying that '"The
example DLL APl is called!" as specified in the implementation of function.
dlIExampleFunction. in dllIExample.c. The client then passes an integer 12345. a string
"Example String Parameter". an array of 3 real values. 1.1. 2.2, 3.3. to the second DLL
function. dllParamFunction. The function in the DLL will print out the passed-in values.
calculate the sum and pass it back to the client. The client then checks the returned value

from the DLL function and print out the calculated sum value on success.

2.4.2 Link to a DLL Dynamically

A DLL can also be loaded when it is needed. This kind of linking is known as dynamic
linking. or explicit linking. To dynamically link to a DLL. there is no need to link to the
companion .lib file of the DLL when the compiler generates the client application.
Instead. when the client needs to call a function in a DLL, it will call the Windows API:
LoadLibrary("dlIFileName")

to explicitly load the DLL and then, use the Windows API
GetProcAddress(dlIModuleHandle, "functionName")

to get the function pointer. Use the function pointer to call the function. When the DLL is
no longer needed. call the Windows API

FreeLibrarv(dliModuleHandle)

to release the DLL explicitly.

9

The console example listed in Appendix 3 shows a client application written in C. which
loads the Appendix | example DLL when it wants to use the DLL's exported function.
Upon success. it gets the exported function address and calls the function and finally. it

releases the DLL.

2.4.3 Link to a DLL in a Visual Basic Client

The services of a DLL can also be used by the clients written in other programming
languages. However. the calling convention of the client must conform to the calling
convention of the exported functions in the DLL that the client uses. Generally. the
functions exported from a DLL are C functions in standard calling convention. also

known as Pascal calling convention. where the called functions clean up the stack frames.

The example listed in Appendix 4 shows a client application written in Visual Basic
which uses the Appendix | example DLLY exported function. It uses the Visual Basic
Declare statement to define the function name and the DLL name where the function
resides. When the user clicks the Use DLL... button. the handler of the event will call the
example DLL function. which simply pops up a message box. If the user clicks Exit

button. the program exits.

3 COM/DCOM

Component Object Model(COM)/Distributed Component Object Model(DCOM) is the

fundamental architecture on Microsoft's component-based programming technologies.

3.1 What is COM?

Components are defined as small executable files that provide certain services. Different
components can be glued together to create complex software applications. An
application using a component is called a client of the component. Components are linked
to their clients dynamically. Therefore. the client applications do not need to be
recompiled or relinked if the components they use are changed. COM/DCOM is the

technology developed in Microsoft for developing software components.

COM:DCOM itself is a specification[2] and any programming language can be used to
write. COM'DCOM components. COM/DCOM is the base for other Microsoft

technologies such as OLE. ActiveX.

3.2 Why is COM?

Why does Microsoft develop COM/DCOM? Currently, a software application is just a
big executable file. The services provided by different applications cannot be shared.
Further. to incorporate any change. the application must be recompiled and relinked. To
solve these problems, we can break the application into separate. smaller components.

The benefits of using components can be listed as follows:

A new application can be built by assembling existing components. This speeds up
the developing of new applications:

An application can be enhanced by replacing the old components with the new ones:
An application can be customized by plugging in new components or unplugging the

components they do not need:

3.3 The Requirements for a Component

Since a component must have the capability to plug and unplug from an application

dynamically. it must satisfy the following requirements{3}:

I.

2.

(9]

A component must be linked dynamically:

Components can be written by any programming language and can be used by
applications written in any language:

Components must be shipped in executable files and ready to use. That is. they have
to be in DLL form if they are used in the same address space of their clients or in
EXE form if they are used in ditferent address space of their clients:

New versions of a component should work with both old and new clients:

A component and their clients should be able to run in the same process. in different

processes. or on different machines:

3.4 What is an Interface?

A component provides certain services. These services are specified by interfaces. An

interface is a contract between two different software objects. In COM/DCOM. an

interface is defined as a set of related function declarations. A component supports an
interface by implementing the functions in the interface. More precisely. at low level. an
interface in COM/DCOM is an array of memory addresses. each array element is an
address of a function implemented by the component. The following diagram shows an

example interface IX.

’—HFX1 Implementation}
1

FX2
o— X : —'—Pﬁxﬂmplementatiorﬂ

FXn | glFiXn implementation|

The Representation of an Example Interface [X

From the point of view of clients. a component is just a set of interfaces. Anything the
clients do to the component must be through the interfaces that the component provides

and implements.

Any programming language and data structure can be used to define interfaces. Appendix
5 lists an example from Rogerson[3] which defines two interfaces in C++ using two pure
abstract base classes. In C++. any class that inherits from a pure abstract base class must
implement the pure virtual functions declared in the base class. Hence. the derived class
can be used to define a component that supports the interface defined by the pure abstract

base class.

3.5 Querying for Interface

A component provides its services through the interfaces that it supports. Therefore. if a
client of the component wants to use the services provided by a component. the client
will have to get the interface that defines the services. To enable the clients to get the
interfaces supported by a component. COM/DCOM specifies that all interfaces must
inherit from a special interface called IUnknown. The IUnknown interface is declared as
follows in unknwn.h:

interface [lUnknown

{
virtual HRESULT __stdcall Quervinterface(const [ID & iid.

void** ppv) = 0:
virtual GLONG __ stdcall AddReft) = 0:
virtual ULONG __ stdcall Release() = O:

}
In other words. every interface must have QuerylInterface. AddRef and Release as its first
three functions. Since a component is just an implementation of a set of interfaces. a
component must implement these three functions. In short. any COM/DCOM interface is
an [Unknown interface. Any component must implement Queryinterface. AddRef and

Release functions.

To get an interface from a component, a client must call the component’s Querylinterface
function. The first parameter taken by the Queryinterface function is the id of the
intertace to be queried. It is an IID(interface identifier) structure which uniquely
identifies the interface. The second parameter the function takes is the returned address of

the requested interface pointer. The QueryInterface function must either return S_OK or

E_NOINTERFACE. The return value must be compared in the clients with a macro

SUCCEEDED or FAILED to find out if the requested interface is found or not.

The implementation of the QueryInterface function must obey some rules so that the
interface queries can be performed and the clients can know about the components’
interfaces in a deterministic way. Rogerson[3] listed the following rules:

I. The same IUnknown interface pointer must always be returned whenever the

[Unknown interface for a component is queried:

v

The query of an interface on an instance of a component must always succeed or

always tail:

3. An interface queried from itself must get itself’

4. If you can get interface A from interface B. you must be able to get interface B from
interface A:

5. [f you can get an interface from a component. you must be able to get that interface

from any interface that the component supports.

Appendix 6 is an example of Querylntertace implementation{3] and usage. This example
shows a component that supports two interfaces IX and 1Y, both inherit from the required
[Unknown interface. The component implements the Querylnterface function in a

manner that satisfies the COM/DCOM rules.

You can see that the IUnknown interface pointer returned from the Querylnterface
function will always be the same 'this' pointer casted to IX pointer. The same is true in

the Createlnstance function. The 'this' pointer cannot be casted to [lUnknown pointer as it
p

15

will be ambiguous. since both IX and IY inherit from [IUnknown. To make IUnknown
pointer always the same. it must be casted consistently to IX or to IY. In this example. the
implementation of the functions of IUnknown is the same when calling the functions
through IX or through IY. However. casting to IY will cause the change of the pointer
value by the C++ compiler. which might give problem when cleaning up the memory
pointed to by the pointer. Another observed fact is that the queries for IUnknown. X and
[Y (or in terms of IIDs. [ID_IUnknown, IID_IX and IID_IY) will always succeed and it
will always fail for other interfaces such as [Z. It is shown that querying an interface from
the interface itself from the example components Querylnterface function will get the
same interface. The example also shows that after interface 1Y is retrieved from IX
interface. IX can also be retrieved from IY. It is also apparent that a supported interface
can be retrieved through any supported interface of the component in the example. This
example also demonstrates that the client of the component uses SUCCEEDED macro to

test if an interface is supported in the component.

Since the supported interfaces define a component and Querylnterface defines what
interfaces that a component supports. the implementation of QueryInterface defines the

component.

3.6 The Control of Components Lifetime

As for any software object, the lifetime control is important. When can a component be

removed from the memory? Only when the component is not being used by any of its

clients. Since a client of the component only knows the components” interfaces it is using.

it is very hard for a client to know if the component is being used by other clients.

The strategy is to let the component itself take care of its lifetime. In COM/DCOM. a
memory management technique. reference counting. is used. In this technique. the
component keeps a reference count number. Each time a client gets an interface from the
component. the reference count is incremented. When a client is finished with using an
interface. the reference count is decremented. When the reference count becomes zero.
which means no interface of the component is being used. the component deletes itself
from the memory. This is exactly what the two other member functions of IUnknown
intertace. AddRef and Release. are for. As the name implies. AddRef is used to increment

the reference count and Release is used to decrement the reference count.

When implementing reference counting. certain rules must be followed[3]:
l. Whenever an interface is returned. either as a return value of the function or as an out

parameter of the function, AddRef should be called by the function:

!\J

Whenever an interface is no longer used. Release should be called:

3. Whenever a new reference to an interface is created such as an interface pointer is
assigned to another interface pointer. AddRef should be called:

4. An interface pointer passed as an in parameter in a function does not need to call

AddRef and Release as the function is nested inside the lifetime of the caller:

5. A function must call Release on an interface pointer passed as an in-out parameter
before overwriting the in parameter with another interface pointer. The function must
also call AddRef on the out parameter before the function returns:

6. Local variables as the copies of the interface pointers are not required to call the
AddRet and Release as local variables only exist for the lifetime of the function;

7. Always use AddRef and Release pairs whenever in doubt.

In short. the AddRef function should be called for every new copy of an interface pointer

of a component. Each AddRef function should be paired with a Release function call.

The client should also treat each interface as if it has its own reference count although the

component may implement a single reference count for all interfaces it supports.

Appendix 7 is an example component[3] with lifetime control implementation. In this
example. the component keeps a reference count variable. The AddRef function is
implemented using the Win32 API InterlockedIncrement and the Release function is
implemented using InterlockedDecremented API. These APIs will only allow one thread
to access the variable at a time. The component will also delete itself in the Release
function if the reference count reaches 0. The return values from AddRef and Release
function are the new reference count. However. the clients should not depend on these

return values as these values may not be stable. These return values should only be used

for debugging purpose.

18

In the example. the AddRef is called on an interface whenever a copy of the interface is
made such as in Querylnterface and Createlnstance functions. The client calls Release
function on an interface whenever it finishes using the interface. Note that the client is
not bothered with deleting the component at all. The component deletes itself when no

interface is being used.

3.7 Dynamic Linking of Components

One basic requirement in COM is that changing component should not affect the clients
that use it. This requires that the component must be in a ready-to-use executable form.
We can use a DLL to contain components. A DLL is in the same address space as the
application it is linked to. For this reason. DLLs are also called in-process server. or in-

proc server.

How to dynamically link a component to the client? As mentioned in the DLL section.
the component has to be built in a DLL project and the functions called directly by the

clients must be exported.

Appendix 8 is an example of a component implemented in a DLL and a client using the
component. In this example. the component and the client are in two separate
executables. The component is in a DLL and the client is in an EXE file. When the client
wants to use the component. it loads the DLL that contains the component and then

creates the component by calling the component’s exported function Createlnstance. This

19

function returns an IUnknown interface pointer. which will be used by the client to query

for other interfaces and use the functions in the interfaces.

3.8 Some COM/DCOM Types and the Registry

Some predefined structures and constants are widely used in COM/DCOM.
Understanding them will greatly help to understand the COM'DCOM architecture.
Besides. the Windows registry of the computers plays an important role in COM/DCOM

implementation.

3.8.1 HRESULT

Most of COM:DCOM interface functions use HRESULT as their return value. This is
because any function call can fail and COM/DCOM is designed to apply not only on a
local machine. but also on networks(DCOM). Since network transmissions can fail. and
the error conditions have to be reported. therefore, most of COM/DCOM functions will
reserve the return value for reporting function status purpose. HRESULT is the data type
to be returned to indicate the status of the function calls. By the same token. when
implementing COM/DCOM interface functions. the functions should almost always

return vaiues of HRESULTs.

HRESULT is a 32-bit value. The WINERROR.H file contains the definitions of all of the
COM/DCOM. OLE. ActiveX status codes currently generated by the system. By

convention. the successful return codes contain an S_ in their name. while failure codes

have an E_ in their names.

The most common HRESULT return values are:

S OK Function succeeded.

S FALSE Function succeeded and returns a Boolean false.
NOERROR Same as S_OK.

E_UNEXPECTED Unexpected failure.

E_NOTIMPL Member function is not implemented.

E_NOINTERFACE Component does not support requested interface.

E_OUTOFMEMORY Could not allocate required memory.

E_FAIL Unspecified failure.
One important point on using HRESULT return values is that the value can have multiple
success codes or multiple failure codes to provide more information on the call status.
This is why the SUCCEEDED and FAILED macros should be used to test if the

HRESULT value is succeeded or failed. One should never compare the HRESULT value

with S_OK or E_FAIL or other constants directly.

3.8.2 GUID

In COM'DCOM. every object such as a component or an interface which needs identified
uniquely has an id associated with it. This id is defined as a GUID. A GUID is a 128-bit

structure which stands for Globally Unique Identifier.

GUID is defined as:

rvpedef struct GUID {
unsigned long Datal:
unsigned short Dara2 :
unsigned short Data3:

unsigned char Data4[8] :

3
7

21

A GUID must be unique both over space and time. The GUID will uniquely identify the
computer on that generates it. The GUID will also uniquely identify the time stamp when
the GUID is created. To get a GUID. the Microsoft’s utility program GUIDGEN.EXE or

UUIDGEN.EXE can be used.

When a GUID is used for an interface. its typedefed symbol IID is usually used instead.
When a GUID is used to identify a COM/DCOM component. the typedefed CLSID from

GUID i1s used.

3.8.3 The Windows Registry

The Windows operating system has a system database called Registry. All the necessary
information about the system's hardware. software. configuration and the users are stored
in the Registry. Any Windows-based applications can place their information in the
Registry so that their clients can retrieve the information there. The Registry can be
explored by using the utility programs such as REGEDIT32.EXE under WindowsNT or
REGEDIT.EXE under Windows95/98. Registry is a very important database and if it is

messed up. the computer may not work properly.

The registry is a hierarchy of elements. Each element is called a key. A key can include a
set of subkeys. a set of named values, and/or one unnamed value which is the default
value. Subkeys can have other subkeys and values. but values cannot have subkeys or

other values.

1~
9

For COM:DCOM. one branch of the Registry. HKEY_CLASSES_ROOT. is used. Under
this key. there is a subkey called CLSID. Under the CLSID subkey. the CLSIDs for all
components installed on the computer are listed. Each CLSID key has a default value of
string for its component’s friendly name as CLSID itself is too complicated to look up.
Each CLSID key has a subkey called InProcServer32 storing in-proc server information.
The default value of this InProcServer32 subkey is the full path name of the DLL

containing this component.

The CLSIDs and the file names are the most important information in the Registry for
COM'DCOM components. Any component must have at least these information

registered in the Registry.

Under the HKEY_CLASSES_ROOT key. there are also other subkeys that map a GUID

to some piece of information. These subkeys include the following ones:

e ApplD contains the subkeys used to map an APPID (application ID) to a remote
server name. This key is used by DCOM.

e Component Categories maps the CATIDs(component category IDs) to a component
category.

e Interface key is used to map IIDs to information specific to an interface.

e Licenses key stores licenses information on using COM/DCOM components.

e TypeLib key maps a LIBID to the file name where the type library is stored.

The registry also contains the ProgIDs which stands for programmatic identifiers under

the HKEY_CLASSES_ROOT key. A ProgiD maps a programmer-friendly name string

23

to a CLSID. Some languages such as Visual Basic. identify components by ProgiD
instead of CLSID. By convention. a ProglD has the following format:

ProgramNmae.ComponentName.Version

Once a component is registered in the Registry. some COM/DCOM library APIs can be
used to query these information. The APIs CLSIDFromProgID and ProgIDFromCLSID

can be used to find a CLSID trom a ProgID or to find a ProgID from a CLSID.

Windows provides some APIs for Registry operations. The following ones might be
useful when writing component registration code:

RegOpenKevEx

RegCreateKevEx

RegSetValueEx

RegEnumKevEx

RegDeleteKex
RegCloseKey

3.9 In-proc Server

It a component is used in the same address space as its clients reside. the component is

called an in-proc server. Let’s look at how to implement a COM/DCOM in-proc server in

this section.

Because some common tasks must be performed on all COM/DCOM components and
clients. COM/DCOM defines a library of functions to make these tasks performed easier

and in a standard and compatible way. The library is implemented in OLE32.dll.

24

3.9.1 Class Factory

First of all. a COM/DCOM component must be created to use by its clients. The
COM/'DCOM library provides a function. CoCreatelnstance. for this purpose. This
tunction is declared as:
HRESULT _ stdcall CoCreatelnstance(

const CLSID &clsid.

IUnknown *plUnknown,

DWORD dwClsContext.

const IID &iid.

void **ppv);
where clsid is the CLSID of the component to be created. plUnknown is used 1o
aggregate components, dwClsContext defines the component execution context, iid is the

IID of the interface that is requested. ppv is the returned pointer to the requested

interfuce:

The parameter dwClsContext represents the class context where the created component
will be executed. This parameter can be a combination of the following values[3]:
CLSCTX_INPROC_SERVER means that the client will use the components in the
same process. which implies that the components must be implemented in DLLs.
CLSCTX_INPROC_HANDLER means that the client will use in-proc handlers. An in-
proc handler is an in-proc component that only implements part of the component and
other parts are implemented in an out-of-process component.
CLSCTX_LOCAL_SERVER means that the client will use components in a different

process but on the same computer.

~
w

CLSCTX_REMOTE_SERVER means that the client will use components on different

machine across the network. This option requires DCOM to work.
There are other values defined as the combinations of the above values.

In-proc servers are faster because the function calls do not go across the process
boundary. Out-of-process servers are secure as the components cannot access the clients’

memory. Regardless of the class context. a component should behave the same way.

The function CoCreatelnstance does not create the COM/DCOM component directly.
Internally. it will create a class factory and use it to create the requested component. A
class factory is a component used for creating other components. The reason to use the
class factory is to isolate the knowledge on how to create a component from the clients of
the component. The clients use the standard interface of the class factory. IClassFactory.

through CoCreatelnstance function to create the component.

The IClassFactory interface is declared as:

interface IClassFactory : IUnknown

{
HRESULT __stdcall Createlnstance(IUnknown *pUnknownOuter,

const IID &iid,

void **ppv);
HRESULT _ stdcall LockServer(BOOL bLock):
F

The class factory is normally implemented along with the component since it will be used

later by the clients of the component to create this component. That is. the CreateInstance

26

and LockServer functions have to be implemented for the component. The CreatelInstance
function will create the specified component. The function LockServer is used to manage
the lifetime of the DLL server containing the component. When a client needs the DLL
server. it can call LockServer(TRUE) and when it finishes with the server. it can call

LockServer(FALSE) to release the server.

The function used to create a class factory for a specified component represented by its
CLSID is CoGetClassObject. This function is called by the CoCreatelnstance function.
CoGetClassObject is defined as:
HRESULT __stdcall CoGerClassObject(

const CLASID &clsid.

DWORD dwClsContext,

COSERVERINFO *pServerinfo.

const IID &iid

void **ppv;
pServerlnfo is used by DCOM to control accessing remote components. The returned 11D
in CoGetClassObject and the CoCreatelnstance functions are different. The returned [ID
in CoGetClassObject is the pointer to the class factory of the requested component. while
in CoCreatelnstance. the returned IID is the pointer to the requested component itself.

The returned pointer from CoGetClassObject is usually an IClassFactory pointer and the

desired component is created using this interface pointer.

Each instance of a class factory only creates components corresponding to a single

CLSID. The class factory for a particular component is usually contained in the same

DLL as the component it will create.

27

3.9.2 In-proc Server DLL Entry Points

For a client of an in-proc server. the COM library function CoGetClassObject needs an
entry point in the DLL to create the component’s class factory. This entry point function
is specified as DIIGetClassObject.
Dl1iGetClassObject is declared as:
STDAPI DlIGerClassObject(

const CLSID &clsid.

const [1D &iid.

void **ppv):
The STDAPI is a macro defined in OBJBASE.H which expands to

extern "C" HRESULT __ stdcall

All COM'DCOM components must be registered in the registry so that their clients can

find them. The DLL server must implement an exported function that will be called to

register the components contained in it. The standard function for doing this is defined as:
STDAPI DIlIRegisterServer():;

The DLL should also implement an exported function to unregister the components

contained in it. The standard function doing this is defined as:

STDAPI DllUnregisterServer():

To control the lifetime of the DLL. the DLL must also implement an exported function so
that the clients of the DLL can query the DLL if it can be unloaded from the memory
safely. This standard function is defined as:

STDAPI D!lICanUnloadNow():

For better memory management. COM/DCOM library implements a function called
CoFreeUnusedLibraries to free the resource. This function calls the DLLY
DliCanUnloadNow function to determine if the DLL can be freed from the memory. The

client application should periodically call this function to free the unused resources.

3.9.3 Register/Unregister Servers
To register or unregister components contained in a DLL in the Registry. the Windows
system provided utility program. REGSVR32.EXE. can be used. To register a DLL. run
the REGSVR32.EXE in the command prompt as:

REGSVR32 -c dliName
To unregister a DLL. run it like:

REGSVR32 -u dlIName
This utility program will load the DLL using LoadLibrary into the memory. get the
pointer to DIIRegisterServer function and call it to register. or get the pointer to

DilUnregisterServer function and call it to unregister.

3.9.4 Example of an in-proc Server Component

Let’s look at how an in-proc server component is implemented and how a client is
implemented to use the in-proc server component using the COM/DCOM library

functions.

Appendix 9 and Appendix 10 show an example from Rogerson[3] of a COM’'DCOM in-

proc server component and a client to use the component.

The server is registered in the registry by using the utility program regsvr32. The real
registration code is written in the component. Usually. the registration or unregistration is

performed in the setup program that is shipped with the component product.

During the execution of the application. the client will call COM/DCOM library function
CoCreatelnstance to create the component and request the interface [X. The
CoCreatelnstance will call CoGetClassObject which will in turn look for the component
in the registry. If it finds it. it will load the DLL and call DLL’s DIiGetClassObject
function. DIIGetClassObject will create the class factory for the component. CFactory.
and requests the IClassFactory interface from the created class factory. This
[ClassFactory interface pointer is returned to the CoCreatelnstance and is used to call its
Createlnstance function to create the component and returns the IX interface. After
getting the interface. CoCreatelInstance releases the class factory and return the IX pointer
to the client. The client can then use the interface to use the services provided by the

component through QuerylInterface function.

3.10 Containment and Aggregation
Component reuse is certainly desired to reduce the duplication of program codes. How

can a component be reused by other components?

30

COM'DCOM does not support implementation inheritance. This is because
implementation inheritance violates the principle of component-based programming. The
implementation inheritance will couple the object with its base class object. If the base

object changes. the derived object will have to be changed as well.

On the other hand. COM/DCOM supports interface inheritance which a class inherits the
interfaces of its base class. This allows a component to be extended or specialized. In
COM'DCOM. the component specialization is achieved by using containment and

aggregation.

Containment and aggregation are techniques which one component uses another
component. One component contains another component or aggregates it. In
containment. the container component contains pointers to the interfaces of the contained
component. When the container component is created by its client. it will create the
contained component and requests the contained component’s interface pointers. These
interface pointers are stored in the container component. The container component can
then uses the contained components services through these interface pointers. The
container component is acting as a client of the contained component. Some of the
container component’s interfaces are implemented using the interfaces of the contained
component. The container component can also re-implement an interface supported by
the contained component. It can just forward the calls to the contained component
through the stored contained component’s interface pointers. or specialize the interface by

adding code before or after the code for the contained component. From the point of view

31

of the container component's clients. the contained component did not exist. All functions

are provided by the container component.

Aggregation is a specialization of containment. In aggregation. the container component
passes the contained component’s interface pointer directly to the client. The client then
calls the contained component’s interface directly. By doing aggregation. the container
component does not need to re-implement and forward all of the functions in an interface.
On the other hand. the container component cannot specialize any of the functions in the
interface. The key in aggregation is that the client must not know that it is acting to two
different components. The container and contained component must be made to behave

as a single component. This is achieved by properly implementing the QueryInterface.

3.11 Local Server

It a component is implemented in an EXE file. it will run in a different process as its
client application. The component is then an out-of-process server. If the component
server i1s physically located on the same machine as its client. the server is known as a

local server.

Each process has a different address space. If the client and the component are in
different processes, the client cannot access the memory associated with an interface of
the component. Therefore. a way of inter-process communication must be established.
More precisely[3].

e A process needs to be able to call a function in another process:

e A process must be able to pass data to another process:

® A client should use the same way to access in-proc or out-of-proc components.

3.11.1 RPCs

In COM/DCOM. the technique used for inter-process communication is the Remote
Procedure Call(RPC). For a local server., COM/DCOM uses the Local Procedure
Call(LPC) which is a means of inter-process communication on a single machine based
on RPC technique. For a remote server., COM/DCOM uses the RPC technique to
communicate across the network. The RPCs are implemented by the operating system

that can call functions in any process.

3.11.2 Marshaling

The parameters must be passed to a function from the address space of the client to the
component’s address space. This is known as marshaling. If both client and the
component are on the same machine. then the data needs to be copied to the other address
space. If the client and the component are on different machines, then the data has to be

put in a standard format to tackle with the differences between the machines.

COM/DCOM provides an interface. IMarshal. for marshaling a component. IMarshal

interface is responsible for marshaling the parameters before calling functions and

33

unmarshaling the parameters after calling functions. The COM/DCOM library

implements a standard version of [Marshal that can be used for most of the interfaces.

3.11.3 Proxy/Stub DLLs

In COM'DCOM. the communication from the client to a component in a different
process is through a DLL that acts like the component. This DLL is called a proxy. The
client calls a function in the proxy and the proxy does the marshaling and the RPC calls
to the actual code of the out-of-proc component. A proxy must be a DLL as it needs to
access the address space of the client so it can marshal the data passed to the interface

functions of the component.

Similarly. the component has a DLL to unmarshal the data that is marshaled by the
client’s proxy DLL. This DLL for the component is called a stub. The stub DLLs will

also marshal the data sent back from the component to the client.

In a word. the client and the component in different processes communicate each other
through the proxy and stub DLLs. The client communicates with the proxy DLL. the
proxy marshals the data and calls the stub DLL using RPCs, the stub DLL unmarshals the
data and calls the correct interface function in the component with the unmarshed
parameters. The returned parameters are marshaled by the stub DLL to the proxy DLL

and unmarshaled back to the client.

34

Since for every out-of-process server. the proxy and stub code has to be impiemented and
the RPC calls have to be made to cross the process boundary. a means is desired to
automate all these implementations. The people at the Open Software Foundation(OSF)
defined an environment called Distributed Computing Environment(DCE). A language
called Interface Definition Language(IDL) and other things like the GUID design and the
RPC specification are defined as part of the DCE. The IDL language is used to facilitate
the task of creating proxy and stub DLLs and making RPC calls. This language. IDL. has
a syntax similar to that of C and C++. It describes the interfaces and data shared by the
client and the component. When the interfaces and the data are described by IDL. the
MIDL compiler will generate the C-source files for the Proxy and Stub DLLs. After
compiling and linking these C files. a DLL that implements the proxy and stub will be

generated.

3.11.4 IDL

Writing IDL files is for providing enough information on the functions and their
parameters in the interfaces so that the RPC can be made and the parameters can be
marshaled. Here is an example of an IDL file for specifying an interface[3}:

import "unkmwn.idl” ;
/# Interface IX attribute list and the body

[
object,
wuid(32bb8323-b41b-11cf-a6bb-0080c7b2d682).
helpstring("1X Interface”).
pointer_default(unique))
/
interface IX : IUnknown
{

HRESULT FxStringln([in. string] wchar_t* szIn):

HRESULT FxStringOut([out. string] wchar r** szOut):

In IDL. each interface is specified with an interface header and an interface body. The
interface header contains the attributes for the interface. The interface header is delimited
by the square brackets([]). In the above example interface header. we have a keyword
object which means this interface is a COM/DCOM interface. The uuid attribute is the
IID to identify the interface. The helpstring attribute is to put a help string into the type
library that is used in OLE Automation. The attribute pointer_default will tell the
compiler the default way to treat pointers. This also applies to the embedded pointers.
pointers that are in structures. unions. and arrays. The pointer_default attribute has three

options[4}:

Ref: Pointers are treated as references. They cannot be NULL. They will not change
within a function. They cannot be aliased within the function.
Unique: Pointers can be NULL. They can also change within a function. But theyv cannot

be aliased within the function.

Ptr: Pointers are equivalent to the C pointers. That is. the pointers can be aliased. they

can be NULL and they can change.

These attribute values in the header are used by the compiler to optimize the proxy and

stub code it generates.

IDL also contains the keywords in and out as the function parameter attributes. As the

attribute name implies. an in parameter is an input-only parameter going into the

36

function. An out parameter is an output-only parameter used as a returned value from the
function. All out parameters specified in IDL must have pointer type. A parameter can
also be marked as both in and out. For example.

HRESULT foo([in] int x. [in. out] int *v, [out] int *Z):

The string attribute keyword used for function parameters informs the compiler that the
parameter is a null-terminated string. The compiler can then determine the length of the
string by looking for the terminating null character. It is very important when writing IDL
files to specify the size of the data so that it can be copied during marshaling. In
COM'DCOM. the strings used are the Unicode characters. wchar_t. or its equivalent
macro OLECHAR. The Unicode is a character-encoding standard to take into account

different types of characters in different languages such as Asian languages.

Functions in interfaces marked with object attribute in IDL must return HRESULTS.

Therefore. other types of return values have to use out parameters.

By convention. if a function returns a string in an out parameter. the function usually
allocates the memory for the string using CoTaskMemAlloc function or its equivalent
APIs in OLE and other technologies and the caller of the function is then responsible for

deallocating the memory for the string using CoTaskMemFree or its equivalent APIs..

The import keyword in IDL is used to include definitions from other IDL files. For
instance. the above example includes the IDL definition for the IUnknown interface. All

the standard COM/DCOM. OLE and ActiveX interfaces are defined in IDL files.

Here is another example of IDL file[3] on interface specifications that passes arrays and

structures between the client and the component:

/i Interface 1Y

[
object.
uuid(32bb8324-b41b-11cf-abbb-0080c7b2d682).
helpstring("lY Interface").
pointer_default(unique)
/
interface IY : IlUnknown
{
HRESULT FxyCount([out] long* sizeArrayv):
HRESULT FyArravin([in] long sizeln.
[in. size_is(sizeln)] long arravin(]):
HRESULT FyArravOui({out, in] long* psizelnOut.
[out. size_is(*psizelnOut)] long arrayOut[]):
4

/i Structure for interface 1Z
npedef struct
{
double x:
double v:
double -:
} Point3d:
! nterface IZ

[
object.
uuidi32bb8325-b41b-11cf-a6bb-0080c7b2d682),
helpstring("1Z Interface").
pointer_default(unique)

]

interface IZ : [Unknown

{
HRESULT F:zStructin([in] Point3d pt);
HRESULT F:StructOut([out] Point3d* pt):

S

In the above example. the size_is modifier is used in the function FyArrayIn to inform the

IDL compiler. MIDL. that sizeln is the number of elements in the array argument.

38

arrayln. The size_is modifier can only be used with in or in-out parameter. The purpose

of using the size_is modifier is again to specify the size of data for parameter marshaling.

Structures can also be defined in the IDL file and used as the function parameters. The

above example defines a struct Point3d and uses it in the IZ interface functions.

If a structure contains pointers. the compiler MIDL must know exactly what a pointer is
pointing to so that the data that the pointer references can be marshaled at runtime.

Therefore. void* should never be used for a parameter.

Suppose an IDL file is called foo.idl. it can be compiled by the MIDL compiler using the
following command:
midl foo.idl

After compiling. the compiler will generate a C/C++ compatible header file. foo.h.
containing all declarations for the interfaces described in the IDL file. The name of this
generated header file can be changed by using /h switch. The compiler will also generate
a C file. foo_l.c. which defines all the GUIDs used in the IDL file. This file name can be
changed by using /iid switch. Another C file, foo_p.c, is generated which implements the
proxy and stub code for the interfaces in the IDL file. The name of the file can be
changed by using /proxy switch. Finally, a C file. dlldata.c. is generated used to
implement the DLL containing the proxy and stub code. Again. the file name can be
changed by using /dlldata switch. As we will see later, the compiler may also generate a

type library if there is a library statement in the IDL file.

39

3.12 Remote Server
Both local server and the remote server are out-of-process servers. However. a remote
server is located physically on another computer in the network. Because of this. the

communications between the client and the component are performed over the network.

There are two ways to use a remote server. The first way is to use a local server as a
remote server by changing the Registry settings and the second way is to use an out-of-

process server explicitly as a remote server.

3.12.1 Use Local Server Remotely

When a client is set up to use a local server. without changing the code of the client or the
component. they can work each other across a network. To set this up. two systems are
required to be connected over a network. each is running either Windows NT4.0 or
Windows 95/98 with DCOM installed. To let the client use the remote server. a DCOM
configuration tool. DCOMCNFG.EXE. can be employed. This tool allows the user to
change various parameters for the applications on the computer including whether they

run locally or remotely.

The following steps show the procedure to run a server remotely[3]:

I. Build the client executable, the server executable and the proxy dll on the local

machine:

~

Copy the client executable. the server executable and the proxy dil to the remote

machine:

3. Register the server executable as a local server on both the local machine and the
remote machine:

4. Run the client executable to use the local server on both the local and the remote
machines to make sure that the programs are working on both machines:

5. Run DCOMCNFG.EXE on the local machine. Select the component. and click
Properties. Select the Location tab. Deselect the option Run Application On This
Computer. and select the option Run Application On The Following Computer. Type
the name of the remote computer. Click the Identity tab. and select the Interactive
User radio button:

6. Run the server executable on the remote machine:

7. Run the client executable on the local machine:

8. Verify that both client and the server executable are working correctly.

When the local server is registered, The CLSID subkey under the
HKEY_CLASSES_ROOT key will store the information about the component. It will
have the default value which is the friendly name for the component. It will also store the

path to the application in which the component is implemented under the LocalServer32

subkey.

When running DCOMCNFG.EXE for the component. this program will add an AppID
named value under the CLSID subkey for the local server component in the Registry and

an ApplD subkey under the HKEY_CLASSES_ROOT key. An AppID is a GUID. It will

41

store the information used by DCOM. The AppID subkey will have at least three values.
The default value is a friendly name. The named value RemoteServerName contains the
name of the server where the application is located. the named value RunAs tells the
DCOM how to run the application. In addition. the name of the application is stored

directly under the AppID key.

In DOCM. the CoGetClassObject function will open the specified component server with
the correct context. If the context is CLSCTX_LOCAL_SERVER. CoGetClassObject
will check the Registry to see whether the specified component has an AppID. If it does.
the function then checks the RemoteServerName key in the Registry. If it finds the server
name. CoGetClassObject then attempts to run the server remotely. This is the mechanism

why a local server can be used as a remote server in DCOM.

3.12.2 Use Remote Server Explicitly
A remote server can also be programmaticaily specified by the client to be accessed
remotely. To wuse this method. the client must use the DCOM function

CoCreatelnstanceEx or modifying the calls to CoGetClassObject.

The following example code[3] demonstrates how to use CoCreatelnstanceEx to create a

remote server component.

It fill in the server information

COSERVERINFO Serverinfo:

memset(&Serverinfo. 0. sizeof(Serverinfo)):
Serverinfo.pwszName= L"ExampleRemoteServer" :

/1 set up MULTI_QI structure with the desired interfaces
MULTI QI mqi[3]:

mqi[0] .plID=IID IX: //[in] IID of desired interface
mqi[Of .plif= NULL: I/{out] pointer to interface

mqi[0] .hr=S OK: //[out] result of query interface

mqi[l].plID=IID IY:
mgifl].pltf= NULL:
mqifl].hr=§ OK:

mqif2].plID=IID IZ:
mqif2].pltf= NULL:
mqif2].hr=S OK:

HRESULT hr=
CoCreatelnstanceEx(CLSID _Component! .
NULL.
CLSCTX_REMOTE SERVER.
&Serverinfo.
3. /inumber of interfaces to request
&mgqi):
Calling CoCreatelnstanceEx. the remote server information can be specitied directly by
the COSERVERINFO parameter. This function also allows query of multiple interfaces

at the same time by using the MULTI_QI parameter. This will save the network traffic

overhead.

43

4 OLE Automation

Microsoft’s Object Linking and Embedding(OLE) is an important technology on
component-based programming. We will overview the OLE functionality and discuss

OLE Automation technique.

4.1 What is OLE?

OLE is a mechanism for communications between components. It provides a standard
conceptual framework to create. manage. and access various components that provide
services to other components or clients. OLE is a technology based on COM/DCOM to

allow applications to transfer and share information.

OLE originally stands for "Object Linking and Embedding' when it was designed for
making compound document. i.e.. to place a reference of a document into another
document or physically copy a document into another document to make the latter a
compound document. a document containing other documents. Today's OLE is not just as
its acronym stands for. It has become the term that represents the application component
communication technology.
Built on top of COM/DCOM. OLE has the following core facilities[5]:

I. The structured storage model defines a scheme to store and retrieve objects that reside

inside files and other containers.

2. The moniker mechanism that provides persistent naming of objects.

3. The uniform data transfer model provides a single. standard mechanism for transter

objects and data between applications.

OLE provides a solution to store multiple types of objects in one document. namely a file
system within a file. A single file is treated as a collection of two types of objects:
storages and streams. Storages act as directories and streams act as files. Together. they
function as a file system inside a file. An OLE compound file has a root storage object
containing at least one stream object for its native data and some storage objects
corresponding to its linked and embedded objects. Therefore. a compound file can have

many levels of nested objects.

The monikers provide a way to identify an object. The monikers are themselves objects
which provide services for binding, allowing a component to obtain a pointer to the

object identified by the moniker.

The OLE uniform data transfer model provides a mechanism for transferring data
between applications through clipboard. through compound document or by using drag

and drop.

Based on these core facilities. OLE currently provides two features: Automation and

Compound Document.

Automation provides another way for a client to communicate with a component. This

technique will be discussed in the rest of this section.

4.2 Automation

In COM/'DCOM. a component implements the functions of some interfaces. The client
ccde includes a header file containing the declarations of the interfaces. If a client of the
component wants to use the component’s services. it gets the interface pointer and calls

the interface functions directly.

OLE Automation. or Automation for short. provides another mechanism of
communications between a component and its clients. In Automation. the component
offers its services through a single standard interface called IDispatch. It implements the
functions of this standard interface. The client of the component calls the functions of this

standard interface to use the component’s services.

The COM/DCOM component in Automation is called an Automation server and the
client of the Automation server is called an Automation controller. An Automation
controller does not need to include the header files containing the declarations of the
server's interfaces. Instead. it passes the function name and the parameters required by the
function to the IDispatch interface function. and based on these runtime information
provided by the controller. the Automation server calls its right function. Hence.
Automation does not perform compile-time type checking, also known as early-binding.

It does run-time type checking. also known as late-binding.

The intention for Microsoft to invent this Automation technique is to make it easier for
interpretive and macro languages, such as Visual Basic, Java. Microsoft Word and

Microsoft Excel. to access COM/DCOM components. Automation will also make it

easier to write components using these languages since Automation provides the same
way to execute a function via the function’s name as these languages’ run-time system

does.

4.3 IDispatch

IDispatch is the single standard interface in Automation for the controllers to access the

servers. The IDispatch interface in IDL format is defined in Oaidl.idl as follows:

interface IDispatch : IlUnknown
{
HRESULT GetTvpelnfoCount([out] UINT *pctinfo):
HRESULT GerTypelnfo([in] UINT itinfo.
[in] LCID Icid,
[owt] ITypelnfo ** pptinfo):
HRESULT GetlDsOfNames([in] REFIID riid.
[in. size_is(cNames)] LPOLESTR *rgszNames.
[in] UINT cNames,
[in] LCID Icid.
[in, out. size_is(cNames)] DISPID *rgdispid):
HRESULT Invoke([in] DISPID dispidMember,
[in] REFIID riid,
[in] LCID lcid.
[in] WORD wFlags,
[in. unique] DISPPARAMS *pdispparams.
[in. out, unique] VARIANT *pvarResult.
[out] EXCEPINFO *pexcepinfo,
[out] UINT *puArgErr);

IDispatch interface, like any COM/DCOM interface. is derived form IUnknown.
Therefore. any Automation server must implement the three functions in [Unknown. that
is. the Querylnterface. AddRef and Release functions, and the above four functions in

IDispatch.

47

In OLE. type information is a term referring to any information about objects and their
interfaces. A C/C++ header file teils all the information about its implementation file.
such as what functions are declared in the file. what parameters each of these functions
have. and what data is defined in this file. etc. The type information can contain all the
necessary information like what interfaces an object supports. what functions each of

these interfaces contains. what parameters each of these functions requires and so on.

GetTypelnfoCount function returns the number of type descriptions for the object. For
Automation objects that support IDispatch. the type information count is 1. If an object
does not provide type information. this function should return 0. GetTypelnfo retrieves

the type information for an object.

The two most interesting functions in IDispatch are GetIDsOfNames and Invoke. In
Automation. each name such as a function name or an argument name is associated with
a long integer ID. This ID is called a dispatch ID. also known as DISPID. The DISPID
must be unique within an implementation of IDispatch. Each implementation of
[Dispatch. as an interface. is identified by its own IID. The function GetIDsOfNames
maps a single member function and an optional set of argument names to a corresponding

set of DISPIDs. which can then be used to call the IDispatch::Invoke function.

The parameter riid in GetIDsOfNames is reserved for future use and it must be
IID_NULL currently. The parameter rgszNames in the function is the passed-in array of
names to be mapped. Parameter cNames is the count of the names to be mapped.

Parameter Icid is the locale context in which to interpret the names. A locale represents a

48

language for a particular geographical region. For example. Canada has two languages
officially: English and French. Thus. Canada has two distinct locales: Canadian-English
and Canadian-French. Therefore. Icid specifies if the names are in U.S. English or
Canadian French. or in another language. Parameter rgdispid is the retuned array. each
element of which contains a DISPID corresponding to one of the names passed in the
rgszNames array. The first element represents the function name and the subsequent
elements represent each of the function’s parameters. A function in Automation is usually

referred to as a method.

Zero and negative IDs are reserved regarding DISPIDs. Therefore. an IDispatch
implementation can only use positive DISPID value with a given name. The method and
method’s parameter DISPIDs should be kept unchanged to allows a controller to obtain

these DISPIDs once. and cache them for later use.

Whenever an Automation controller wants to access a server's exposed properties or
methods. it must call the server’s Invoke function. To execute a method. the controller
passes the DISPID to the Invoke function of the IDispatch interface and based on the
DISPID of the method. the server will find and call the correct function. That is. the
behavior of the Invoke function is controlled by the DISPID passed to it and the DISPID

is used as an index for the methods supported in the dispatch interface.

The first parameter of the Invoke function. dispidMember, is the DISPID of the member

function to call. The DISPID can be retrieved by using GetIDsOfNames or from the

49

object’s documentation. The second one is reserved and must be ID_NULL. The third

parameter is the locale information. The rest parameters will be explained subsequently.

4.4 Dispinterface

An implementation of the IDispatch’s Invoke function consists of a set of functions.
These functions define the services that the Automation server supports. In Automation.
this set of the functions implemented by the Invoke function is called a dispatch interface

or dispinterface for short.

4.5 Dual Interface

A COM'DCOM interface provides functions which can be called by its clients through
the function pointers in the virtual table. or vtbl. A dispinterface. however. makes its
functions available through the IDispatch::Invoke method. If an interface makes its
functions available both through the vtbl and through the dispinterface. it is called a dual
interface. Therefore. a dual interface is a COM/DCOM interface that inherits from
[Dispatch. Dual interface implementation is preferred because it allows C++ programs to
make their calls through vtbl which is faster to execute, while macros or interpretive

languages still can use the interface through Invoke method.

4.6 Using IDispatch interface

When an Automation controller uses a dispinterface. the controller has to know the

ProgID of the Automation server and the function name. The controller will use the

50

ProgID to get the CLSID of the server by calling CLSIDFromProgID API. The CLSID
can then be used to create the server and get the server's IDispatch interface. This
interface is then used to get the DISPID for the function by calling GetIDsOfNames
member function of the IDispatch interface. Once this DISPID is available. the function

can be called indirectly by calling the Invoke function.

The following is an example[3] on how to use IDispatch interface in an Automation

controller's code.

/linitialize the OLE library
HRESULT hr= Olelnitialize(NULL):

/! get the CLSID of the component

/I OLE uses wide character strings

wchar_t progID(]= L"Example Dispatch Component” :
CLSID clsid:

::CLSIDFromProgID(progID. &clsid):

/! create the component and get the IDispatch interface

IDispatch *pldispatch= NULL:

s:CoCreatelnstance(clsid, NULL.. CLSCTX_INPROC SERVER.
11D _IDispatch, (void**)&pldispatch):

/i get the DISPID of the function we want
DISPID dispid:
OLECHAR *name= L"Fx":
plDispatch->GetldsOfNames(
IID_NULL., /lreserved, must be ID NULL
&name, //the function name
I, /Inumber of names
GetUserDefaultLCID(). //locale info
&dispid); //return the DISPID of Fx

/1 prepare to call Fx. Named arguments will make their
!/ orders immaterial to the IDispatch implementation.
DISPPARAM dispParam=

{NULL. llarray of VARIANT arguments

NULL. /larray of dispaich IDs of named arguments

0. /inumber of arguments

0): I!Inumber of named arguments

i7 call Fx indirectly through Invoke
plDispatch->Invoke(
dispid, //DISPID of Fx function
IID NULL. !lreserved, must be IID NULL
GetUserDefaultLCID().//locale info
DISPATCH _METHOD, /!Inormal method

&dispParam. //method arguments
NULL, /lresults

NULL, /lexception info
NULL): /larg error

Note that in COM/DCOM and OLE. the strings used are wide character strings. This is

why any string literal should be prefixed with L as defined in C++.

4.7 Methods and Properties

A C++ object has methods and variables. Variables define the properties and methods act
on these variables. In COM/DCOM. all members of an interface are functions. There are
no variables for interfaces. How to implement properties in interfaces? One way is to use
the "Get'Set" functions. In IDL. the propget and propput attributes specify that an
interface function is treated as a property. The following example interface definition[3]
shows how to define a property in IDL:

interface IWindow : IDispatch

{

[propput]
HRESULT Visible([in] VARIANT BOOL bVisible):

[propget]
HRESULT Visible([out, rerval] VARIANT BOOL *pbVisible):

/

This example interface definition segment specifies that the interface has a property

called Visible. The function marked with propput takes a parameter as a value to set the

property Visible and the function marked with propget returns the value for property
Visible. The name of the property is the same as the name of the function. i.e.. Visible.
When the IDL is compiled by MIDL. the compiler will attach the prefix get_ or put_ to
the functions based on the attribute associated with the function name.
VARIANT_BOOL used in the above example is a type used in OLE for Boolean
variables. and its value VARIANT_FALSE is 0 and VARIANT_TRUE is defined as

OxFFFF.

The retval attribute in IDL designates the parameter that receives the return value of the
member function. This attribute can be used only on the last parameter of the member.

The parameter must have the out attribute and must be a pointer type.

Because the way of property is implemented in Automation. a single name for a DISPID
might be associated with four different functions: a normal function, a function to put a
property. a tunction to get a property and a function to put a property by reference. They
all have the same function name and the same DISPID. Therefore, we need a way to
distinguish them. The fourth parameter in IDispatch’s Invoke function is a flag used for
this purpose. It has the following four constant values:

DISPATCH METHOD

DISPATCH _PROPERTYGET

DISPATCH _PROPERTYPUT
DISPATCH PROPERTYPUTREF

53

4.8 VARIANTs
Since IDispatch::Invoke is a generic function to call any function in the dispinterface
which could take any number of arguments. each argument could be any type of data. the
arguments must be supplied in a generic way. The fifth parameter in the Invoke function
takes the parameters to the function being invoked. It is a pointer to a structure used in
Automation called DISPPARAMS which is defined as follows:
rvpedef struct tagDISPPARAMSY

VARIANTARG FAR* rgvarg:

DISPID FAR¥* rgdispidNamedArgs:!! Dispatch IDs of named arguments

unsigned int cArgs: /! Number of arguments

unsigned int cNamedArgs: |/ Number of named arguments
} DISPPARAMS:

The rgvarg field is an array of arguments, each has a VARIANTARG type. The field
rgdispidNamedArgs is an array of DISPIDs of named arguments which is used in Visual
Basic. Named arguments allow the parameters to be passed to a function in any order by
specifying the names of the parameters because the arguments will be identified by their
names. This concept is not used in C++. The field cArgs denotes the number of
arguments in the cArgs array and cNamedArgs represents the number of named

arguments.

The VARINATARG type used in the DISPPARAMS structure is the same as
VARIANT. VARIANT is an important generic data type used in Automation. A
VARIANT is a union of different types. So it can represent all types of data that specified

in its union fields. All data must be converted to VARIANTSs before passing in

dispinterfaces.

54

Here is the definition of the VARIANT type:

struct tagVARIANT{
VARTYPE vi:
WORD wReserved| ;
WORD wReserved?:
WORD wReserved3:;

union

{

long Val: 1*VT 14 */

unsigned char bVal: * VT _Ull */

short iVal: * VT 12 */
Sfloar fltVal: /* VT R4 */

double dblVal: 1* VT RS */

VARIANT BOOL boolVal: * VT _BOOL */
SCODE scode: /* VI _ERROR */

cY cvVal: I* VT _CY *

DATE date: I* VI _DATE */

BSTR bstrval: /* VT_BSTR */
[Unknown *punkVal: 1* VI_UNKNOWN */
[Dispatch *pdispVal: I* VI _DISPATCH */
SAFEARRAY *parray: /* VI _ARRAY* */
unsigned char *pbVal: * VT _BYREF\WVT UIl %/
short *piVal: /* VT_BYREFI\VT 12 */
long *plVal: i* VT_BYREF\VT 14 */
Sfloat *pfliVal: /* VI_BYREFIVT R4 */
double *pdblVal: /* VI_BYREFIVT RS */
VARIANT BOOL *pbool: /* VT_BYREFIVT BOOL %/
SCODE *pscode: /* VT _BYREFIVT ERROR */
cY *pevVal: /*VI_BYREF\VT CY */
DATE *pdate: /* VI _BYREF\VT DATE %/
BSTR *pbstrVal; /* VT_BYREF\VT BSTR */
[Unknown **ppunkVal: I* VI _BYREFI\VT UNKNOWN */
IDisparch **ppdispVal: /* VI_BYREF\VT DISPATCH */
SAFEARRAY **pparray: /* VT_BYREF\VT ARRAY!* */
VARIANT *pvarVal: /* VT_BYREF\VT VARIANT */
void * bvref: /* Generic BvRef */

}'.
} .

pedef struct tagVARIANT VARIANT ;

The vt field of the VARIANT indicates the type of the data stored in the VARIANT. For

example. if vtis VT_BSTR. then we can cnly use the bstrVal field as the data.

|

Due to the characteristics of run-time binding of the data type in dispinterface. only a
generic type of data can be specified for the functions® arguments. Unlike using a C++
header file to strictly specify the argument types at compile time. a VARIANT can be

used to let the Automation server to bind the data type at run-time.

For the Invoke function in IDispatch interface. the sixth parameter. pVarResult. is a
pointer to a VARIANT that holds the result of the method or the propget executed
through Invoke function. If the method has no return value or for propput and propputref.

then this parameter is NULL.

The seventh parameter of the Invoke function is used for exception handling purpose
which is a pointer to an EXCEPTINFO structure that should be filled with the exception

information it an error occurs on executing the method or the property.

The last parameter in Invoke function. puArgErr. will contain the index of the argument

corresponding to a DISP_E_PARAMNOTFOUND or DISP_E_TYPEMISMATCH error

it such errors occurred.

4.9 BSTRs

One VARIANT type is BSTR which is widely used for strings. A BSTR is a pointer to a
wide character string. There are three characteristics for the BSTRs[3]:

I. A BSTR is a counted string.

2. A BSTR stores the count before the array of characters.

56

3. A BSTR can have multiple null characters inside the string.

Due to these characteristics. a string cannot be assigned tc a BSTR directly like:

BSTR bStr=L'"Test BSTR":

because the count will not get set correctly. You have to use a Win32 API.
SysAllocString. to allocate a BSTR. For example.

wchar twstr[]= L"Test BSTR":

BSTR bStr= SysAllocString(wstr):

Once a BSTR is allocated. the Win32 API SysFreeString should be used to deallocate the

BSTR.

4.10 SAFEARRAYs
Another VARIANT type is worth of paying attention to. the SAFEARRAY. A

SAFEARRAY is an array that includes the bound information. The SAFEARRAY is

defined as follows:

rvpedef struct tagSAFEARRAYBOUND {
ULONG cElements:
LONG [Lbound:

} SAFEARRAYBOUND:;

rvpedef struct tagSAFEARRAY

unsigned short cDims:

unsigned shorit fFeatures:

unsigned long cbElements;

unsigned long cLocks:

BYTE *pvData;

[size_is(cDims)] SAFEARRAYBOUND rgsabound(]:
} SAFEARRAY :

57

The structure SAFEARRAYBOUND represents the bounds of one dimension of the
array. The lower bound of the dimension is represented by ILbound field. and cElements

represents the number of elements in the dimension.

In the SAFEARRAY structure. the cDims field is the number of the dimensions of the
array. The fFeatures specifies what type of data is stored in the SAFEARRAY and how
the array is allocated. The allowed data types in an SAFEARRAY are as follow's:

FADF BSTR Anarray of BSTRs

FADF _UNKNOWN An array of IUnknown*

FADF _DISPATCH An array of IDispatch*
FADF _VARIANT Anarray of VARIANTs

The ways of allocations for the SAFEARRAYS are listed as well:
FADF _AOTU The array is allocated on the stack
FADF _STATIC The array is statically allocated

FADF_EMBEDDED The array is embedded in a structure
FADF_FIXEDSIZE The array cannot be resized or reallocated

The Automation library contained in OLEAUT32.DLL contains a set of functions to

manipulate SAFEARRAYs. All these functions begin with the prefix SafeArray.

4.11 Type Libraries

So a controller can access a server through a dispinterface without any type information
about the dispinterface or its method. It can use the run-time type checking and

conversion on VARIANTS.

58

However. this Kind of type checking and conversion is very time-consuming and error
prone. Therefore. we need a language independent equivalent of the C++ header files that
is suitable for interpretive and macro languages to get the servers exposed objects
information. In Automation. type libraries are used for such purpose to specify type
information about the servers. their interfaces. methods. properties. arguments and

structures. The type libraries act like the C++ header files.

A type library is a binary file generated by the compiler. MIDL. from the source code
written in IDL. The type libraries will be accessed programmatically and the OLE library
provides standard components for creating and reading the type libraries. With the help of
the Type Libraries. Visual Basic can access a server through the vtbl part of its dual
interface. which is faster and type safe. Otherwise. Visual Basic can only access the

server through its dispinterfaces.

Here an example of an IDL file which can be compiled into a type library[3]:

/ Interface IX header and body
[
object,
uuid(32BB8326-B41B-11CF-A6BB-0080C7B2D682),
helpstring("IX Interface").
pointer_default(unique).
dual,
oleautomation
/
interface IX : IDispatch
{
import "oaidl.idl" ;
HRESULT Fx():
HRESULT FxStringin([in] BSTR bstrin);
HRESULT FxStringOut([out, rerval] BSTR* pbstrOut);
HRESULT FxFakeError():

/1 tvpe library header and body

[
uuid(D3011EEI-B997-11CF-A6BB-0080C7B2D682),
version(1.0}.
helpstring("Exampic Type Library")
/
library ServerLib
{
importlib("stdole32.1lb"):
/1 Component header and body
[
uuid(0C092C2C-882C-11CF-A6BB-0080C7B2D682).
helpstring("Component Class")
/
coclass ExampleComponent
{
[default] interface IX:
4
#

The dual attribute identifies an interface as a dual interface that exposes properties and
methods through IDispatch and also directly through the vtbl. The oleautomation attribute
indicates that an interface is compatible with Automation. The keyword library indicates
that everything inside the library block will be compiled into a type library. After
compiling by the MIDL compiler. a type library with the given name. e.g.. ServerLib.tlb
for the above example, will be generated. The importlib directive will include type library
content from other existing type library. The version attribute identifies a particular
version of an interface. The coclass keyword defines a component. In the above example.

it defines the component with name ExampleComponent that has a single interface IX.

Once the type libraries are generated. they can be shipped as separate files or included in
the resource file of the application. To use a type library, it must be loaded in the

memory. We can call LoadRegTypeLib if the type library is stored in the Registry. We

60

can also call LoadTypeLib to load the type library from a disk file. Or call
LoadTypeLibFromResource to load it from the resource in an EXE or a DLL. If the type
library is successfully loaded. an ITypeLib interface pointer will be returmed. This pointer
can then be used to register the type library by calling RegisterTypeLib API. The type
fibrary can now be used to get the interfaces or components by calling

ITypeLib::GetTypelnfoOfGuid function passing the CLSID or IID.

The following is an example on using the type libraries[3].

HRESULT hr:
! Load Typelnfo on demand if we haven't already loaded it.
if (m_plTvpelnfo == NULL)
{
ITxpeLib* pliTvpelLib = NULL:
hr = ::LoadRegTypeLib(LIBID ServerLib,
1. 0. !l version numbers

0x00.
&plTvpeLib):
if (FAILED(hr))
{
hr = ::LoadTvpeLib("Server.lib",
&plTvpelLib):
ifFAILED(hr))
{

trace("LoadTypelLib Failed.", hr):
return hr:

}

/I Ensure that the tvpe library is registered.
hr = RegisterTypelLib(plTvpeLib, wszTypeLibFullName, NULL):
iftFAILED(hr))
{
trace("RegisterTvpelLib Failed.". hr);
return hr;
/
/

11 Ger rype information for the interface of the object.
hr = pITxpeLib->GetTypelnfoOfGuid(lID_IX.,
&m_plTyvpelnfo):

61

plITypelib->Releasel):
if(FAILED(hr))

{
trace("GetTvpelnfoOfGuid failed.”. hr);
return hr:

/

/
return §_OK:

The type library must be registered in the Registry before it can be used by Automation
controllers. After the type library is registered. its LIBID, a GUID. will be written under

the key HKEY_CLASSES_ROOT\TypeL.ib.

4.12 implementing IDispatch

There are various ways to implement IDispatch interface. For instance. a table of function
names and function pointers can be built for the dispinterface. However. the simplest and
most popular way to implement IDispatch is to delegate GetIDsOfNames and Invoke to

the ITypelnfo interface pointer for the implemented interface.

As shown before. after the type library is loaded. a pointer to the ITypeLib will be
received. The ITypelnfo interface pointer can be retrieved by calling

ITypeLib::GetTypelnfoOfGuid passing it the IID of the interface.

The following is an example of IDispatch implementation(3]:

HRESULT _stdcall CA::GetTypelnfoCount(UINT* pCountTypelnfo)

{
*pCountTypelnfo= |
return §_OK:

HRESULT _stdcall CA::GetTvpelnfo(

}

UINT iTypelnfo,
LCID, /! This object does not support localization.
ITypelnfo** ppITypelnfo)

*pplTypelnfo= NULL:
iftiTvpelnfo = 0)
return DISP_E BADINDEX:

!t Call AddRef and return the pointer.
m_plTypelnfo->AddRef():
*pplTypelnfo= m_plTypelnfo:

return S OK:

HRESULT _stdcall CA::GetlDsOfNames(

}

const [ID & iid,

OLECHAR** arravNames,

UINT countNames,

LCID. /! Localization is not supported.
DISPID* arravDispIDs)

if tiid '= ID_NULL)
return DISP_E UNKNOWNINTERFACE:

HRESULT hr= m_plTvpelnfo->GetlDsOfNames(arravNames.
countNames.
arravDisplDs):

return hr:

HRESULT _ stdcall CA::Invoke(

DISPID dispidMember,

const IID & iid,

LCID., /! Localization is not supported.
WORD wFlags,

DISPPARAMS* pDispParams,

VARIANT* pvarResult,

EXCEPINFO* pExceplinfo,

UINT* pArgErr)

if (iid != IID_NULL)
return DISP_E_UNKNOWNINTERFACE:

2:8etErrorinfo(0, NULL):
HRESULT hr= m_plTypelnfo->Invoke(

static_cast<IDispatch*>(this),
dispidMember. wFlags. pDispParams.
pvarResult, pExcepinfo. pArgErr):

return hr:

4.13 Exception Handling
Exception handling is important in writing robust code. The mechanism for exception

handling in Automation is as follows:

The Automation server must implement the interface ISupportErrorinfo which only has
one function InterfaceSupportsErrorinfo. For example.

virtual HRESULT __stdcall InterfaceSupportsErrorinfo
(const IID &iid)

{
retrn (iid == 1ID _IX)?S OK : S FLASE:

}

which tells that interface IID_IX support error reporting.

Then in the implementation of I[Dispatch::Invoke. call SetErrorinfo(0. NULL) before
calling ITypelnfo::Invoke. This will set the error information object to NULL for the

current thread of execution. The first parameter of SetErrorinfo is reserved and must be 0.
When an exception is thrown, call CreateErrorinfo to get an ICreateErrorinfo interface

pointer. Use this pointer to fill in the information about the error. Call SetErrorinfo.

passing it the ICreateErrorinfo pointer. The client should react to the exception.

64

Here is an example on implementing error reporting when an exception occurs[3]:

1! Create the error info object.
[CreateErrorinfo* pICreateErr:
HRESULT hr = ::CreateErrorinfo(&plCreateErr):
if (FAILED(hr))
return E_FAIL;

plCreateErr->SetSource(L"Example Component"):
plCreateErr->SetDescription(
L"An error generated by the component."):
[Errorinfo* plErrorinfo = NULL:
hr = pICreatcErr->Queryinterface(IID_IErrorinfo.
(void**)&plErrorinfo):
if (SUCCEEDED(hr))
{
::SetErrorinfo(OL. plErrorinfo):
plErrorinfo->Release():
}
plCreateErr->Release():
return E_FAIL:

5 ActiveX Controls

ActiveX controls apply the principles of COM/DCOM and OLE. In this section. we will
discuss ActiveX controls in general and on how to create an ActiveX control using

Microsoft Foundation Classes (MFC) in detatl.

5.1 ActiveX Control Overview

A control is a user interface object. Controls are used to provide the building blocks for
creating user interfaces in applications. A control container is the client of the control. A
control is typically embedded in the control container. For example. a button control
allows the user to click on it and this clicking event is passed to the control container to
take some action. Other common controls include text boxes. radio buttons. check boxes.

list boxes. tree controls. etc.

5.1.1 What is an ActiveX Control?
An ActiveX control is a control and it is also a COM/DCOM component. Since an
ActiveX control is a COM/DCOM component, it exposes its [Unknown interface. Since

an ActiveX control is used as a control, it is usually an in-proc server.

5.1.2 Characteristics of ActiveX Controls

Since an ActiveX control will be used to perform some user interface activities such as

responding to mouse and keyboard events, it should have a visual representation. This is

66

common to all controls. As a control. it should also have the capability to notify its

container about what have happened on it.

ActiveX controls can be placed on the web pages.

ActiveX controls can be dragged and dropped by using OLE Uniform Data Transfer

facility.

An ActiveX control can also support in-place activation. In-place activation is a user
interface technique. When a user activates an embedded server such as an ActiveX
control within a container. a new menu bar that consists of both menu items from the
container and from the activated server will replace the containers original menu bar.

When a user deactivates the server. the container’s original menu bar will be restored.

Each ActiveX control usually has some property pages associated with it to allow the

user to view and change its properties.

ActiveX controls usually support OLE Automation..

As a control. an ActiveX control should save its states such as its property values and its

user interface status.

67

5.1.3 Features of ActiveX Controls
Due to its characteristics. ActiveX controls usually need to provide some specific

functionality.

Language Integration

ActiveX controls are programmable objects. The container should be able to
communicate with an ActiveX control embedded in it using any programming language
so that it can get or set the control’s properties. call its methods and react to its

notifications. To facilitate this task. ActiveX controls should support OLE Automation.

A client site is a means for the embedded object to request services from its container. A

container can implement client sites for the ActiveX controls in it.

A container can also aggregate the ActiveX control to extend the controls functionality.
Theretore. all ActiveX controls should be able to be aggregated. All controls created with

MFC can be aggregated.

Ambient Properties

Ambient properties are the properties of the container and they can be used by its
embedded objects such as ActiveX controls as their environmental values. The container
can make the decision on what ambient properties it will implement. The embedded
object can choose which of the ambient properties it uses. The ambient property values

cannot be changed by the embedded objects. They can be changed by the user of the

68

container application. If the user changes an ambient property. the new property value

will be applied to those embedded objects that are using the changed ambient property.

The ActiveX controls specification defines a list of standard ambient properties. Each
standard ambient property has a name and is associated with a specific DISPID. The

DISPID designates the ambient property.

The container’s client site will expose the ambient properties through its IDispatch

interface so that the embedded ActiveX controls can get them through this interface.

Events

The controls can send notifications to its container. These notifications are called events.
The meaning of each event is defined by the control and the container should provide
interface to react to these events. The control can fire events at any time after it is

embedded in the container.

Since the control fires events and the container provides an interface to handle these
events. the control is called an event source and the container’s interface is called an
event sink. The events are handled by the container through an Automation interface. The
control's type library describes the event interface that it wants its container to handle.
But the event interface is marked by the control as a source in the coclass section of its
Object Description Language(ODL) file. This means that the control will not implement

it.

69

IDL is a general language for specifying components. interfaces and other objects. ODL
is a specific language for OLE and is extended from IDL. In terms of defining OLE

interfaces. ODL and IDL are the same.

Here is an example trom Denning[7] of the ODL file segment for event descriptions:

[
unid(37D341A5-6B82-101B-A4E3-08002B291EED).

helpstring("example control”)

/

coclass exampleControl

{

[default] interface IExample:

interface IDispatch:

[default. source] interface IExampleEvents:
F
This example specifies that the component exampleContro! will have three Automation
interfaces. IExample. IDispatch. and the lexampleEvents interfaces. The [Example will
be implemented by the control itself. However, [ExampleEvents will not be implemented

by the control because it is marked as source. The attribute default designates the

interface as the default Automation interface.

How does the control connect to the container’s Automation interface for its events? The

answer is to use a technique called connection points.

Connection Points
A connection point is an interface exposed by an object. The responsibility of this
intertace is to hook up to the implementations of an interface in another object so that the

former object can talk to the latter object. Take the ActiveX control’s events as an

70

example. A control describes the event interface as an Automation interface in its type
library. But it marks the interface as a source. The control then provides a connection
point so that the container can connect its implementation of the control’s event's
Automation methods to the control.
A connection point is defined in the IConnectionPoint interface. It has the following
methods:

HRESULT GetConnectionInterface(lID *plIID);

HRESULT GetConnectionPointContainer(IConnectionPointContainer **ppCPC):

HRESULT Advise(IUnknown *pUnkSink, DWORD *pdwCookie):

HRESULT Unadvise(DWORD dwCookie):

HRESULT EnumConnections(IEnumConnections **ppEnum):
The GetConnectionInterface is used to get the interface connected to this connection
point. The GetConnectionPointContainer retrieves the container’s implementation of the
interface. The container calls Advise function to connect its interface implementation.
Unadvise is used to disconnect from the connection point. A connection point may be
connected by multiple client sites. each has an implementation of a connected intertace.

If this is the case. the function EnumConnections can be used to find all of the

connections to this connection point.

The container gets the connection point through another interface.
IConnectionPointContainer. It has two methods:

HRESULT EnumConnectionPoints(IEnumConnectionPoints **ppEnum);
HRESULT FindConnectionPoint(REFIID iid. IConnectionPoint **ppCP):

EnumConnectionPoints function can be called to get all of the connection points for a

given control. FindConnectionPoint is used to get a particular connection point.

71

For the ActiveX control's events. the container reads the event type from the control's
type library and creates an IDispatch implementation. It then calls the controls
connection point's Advise method to hook up its event implementation so that the control

can fire events through this implementation.

Data Binding

An ActiveX control. like a regular control, is usually mapped to a data. The control
displays the data. If the user changes the control content. its associated data will change
too. If the data is changed. the control will reflect the change by displaying the new
value. This Kind of association is called data binding in ActiveX controls. ActiveX
controls™ properties can be specified to be bound. When a bound property of an

embedded control is changed. its container will decide what action will be taken.

A bound property will send a notification to its container when its value changes. Further.
a property can ask its container if a property value can be changed before the property
actually being changed. The connection point mechanism is used for property change
notification as well. A control supporting data binding will implement a connection point
used to hook up the implementation of the [PropertyNotifySink interface. The container
will implement this interface and connects it to the control's connection point. The
control then notifies all changes to bindable properties through this interface.
Furthermore. the same interface is used when a control wants to ask its container if a

specific property value can be changed.

The definition of property binding is also in the control’s type library. Some attributes are
used for data binding. The attribute bindable means that a property will send notifications
when it is changed. The attribute requestEdit indicates that a property will call the
container’s IPropertyNotifySink::OnRequestEdit function before its value is changed.
Note that properties that support edit request must also be bindable. The displayBind
atribute. which again can only be used when the property is bindable. informs the
container that this property should be displayed as a bindable property. The defaultBind
attribute tells the container that this property represents the control and therefore should
be bound. Only one property per control can have the defaultBind attribute. The edit box

would be a typical case for defaultBind.

The interface for data binding is the [PropertyNotifySink which has the following two

methods:

HRESULT OnChanged(DISPID dispid):
HRESULT OnRequestEdit(DISPID dispid);

OnChanged function is called by the control after a bound propertys value has changed.
while OnRequestEdit is used by the control before a property marked with requestEdit is

changed. The DISPID is used in these functions to identify the property.

Control and Container Communication

The ActiveX controls specification defines a set of interfaces to allow more specific
control and container communication. [QleControl is implemented by the control. while

I0leControlSite is implemented by the container.

73

|
|
!

The [0leControl has four methods:

HRESULT GetControlinfofCONTROLINFO *pClI):

HRESULT OnMnemonic(MSG *pMsg):

HRESULT OnAmbientPropertyChange(DISPID dispid):

HRESULT FreezeEvents(BOOL bFreeze):
GetControllnfo is called by the container to get the control’s keyboard handling
information. OnMnemonic is called by the container when a key in the controls
accelerator table is pressed. OnAmbientPropertyChange is called by the container when

one or more container’s ambient properties is changed. FreezeEvents prevents the control

from firing any events.

The 10leControlSite has the following methods:

HRESULT OnControlinfoChanged(void):

HRESULT LockinPlaceActive(BOOL fLock):

HRESULT GetExtendedControl(IDispatch **ppDis);

HRESULT TransformCoords(POINTL *IpptlHimetric,
POINTF *lpptfContainer,
DWORD flags):

HRESULT TranslateAccelerator(MSG *IpMsg.

DWORD grfModifiers):
HRESULT OnFocus(BOOL gGotFocus);
HRESULT ShowPropertvFrame(void):

OnControllnfoChanged and TranslateAccelerator functions are client side keyboard
handling. LockInPlaceActive is called by a control to let the container to lock the

control’s in-place active state if such state may cause problem.
GetExtendedControl returns the interface of the extended control implemented by the
client site when the control is aggregated. This allows the control to get the current values

of its extended properties. OnFocus is called by the control when it is having the focus.

74

Keyboard Handling

An accelerator is a shortcut keyboard key to initiate a specitic event. An accelerator table
maintains all the accelerator mapping information for a program. A handle is a variable
that identifies an object in the Windows system. A control can tell its container which
accelerators it is interested in by passing the container its handle of the accelerator table
when the container calls IOleControl::GetControiInfo. If a control dynamically changes
this information. it calls IOleControlSite::OnControlinfoChanged which tells the
container that it should call I0leControl::GetControlInfo again on that control to update

the information.

When a keystroke is received and is recognized as a control’s mnemonic. the container
calls I0leControl::OnMnemonic to give the control a chance to take an action for the

keystroke.

Types and Coordinates

ActiveX control specification defines a set of standard types to represent specific
information. For example, OLE_COLOR holds color information by controls and their
containers. ActiveX control also defines and implements a standard object for fonts. The
standard picture type is used for bitmaps, icons, and metafiles. As for the standard font

object. ActiveX control provides an implementation of the standard picture object.

The coordinate system in different containers might be different. Controls may also use
coordinates. However, since a control is used inside a container. the container must know

which control event parameters are coordinates so that it can convert them into its own

coordinate space. This type of information is also stored in the control’s type library by

specitying such parameter using one of the standard types defined in OLE.

For coordinate-based properties, the control can ask the container to do the conversion by

calling the I0leControlSite:: TransformCoords.

Persistence

The control generally needs to remember its state when it is used inside the container so
that the state can be restored next time the container application is run and the control is
used again. Saving the state is called persistence. When persistence is needed. the

container will ask the control to do it through the persistence interface.

Miscellaneous Status Bits

A container might want to know various information about a control before loading and
creating the control for efficiency purpose. COM provides this capability through a

Registry entry under the CLSID key for the component called MiscStatus..

A container can read the control’s MiscStatus bits by calling I0leControl::GetMiscStatus
or by reading the Registry entry directly. One such bit is OLEMISC_INSIDEOUT. which
tells a container that this control wants to be activated inside-out, i.e.. it is capable of

being in-place active as well as Ul-active.

Another bit is OLEMISC_ACTIVATEWHENVISIBLE which means that this control

wants to be activated whenever it becomes visible even if it is not active.

76

The bit OLEMISC_INVISIBLEATRUNTIME indicates that this control wants to be

invisible at run time.

The bit OLEMISC_SIMPLEFRAME is for some controls that are just a holder for other
controls. A group box control is an example. A control marked with this bit indicates that

it acts as a control container but delegates most of the work up to the real container.

The bit OLEMISC_SETCLIENTSITEFIRST indicates that an ActiveX control can

access the client site before their persistent state has been loaded.

Registration
Like all COM/DCOM objects. ActiveX controls need to be registered in the Registry.

Besides the entries registered as for all OLE servers. ActiveX controls have some special

entries.

The Insertable and Control keys are empty keys. They do not have values associated with
them. Insertable means that the control will appear in standard Insert Object dialog boxes
presented by the containers. Controls are often not marked as insertable because in many
cases controls are useful only in containers that know the controls. The key Control tells
the containers that this is a control so that the containers can fill in the dialog box for

displaying only the ActiveX controls. This attribute is usually set for the controls.

The Defaultlcon key is used when the control is displayed as an icon. The container uses

this key to find the icon to display.

77

The key ToolboxBitmap32 indicates the bitmap to display for the control in the

container’s control toolbox.

Property Pages

A property page is a user interface object implemented by the control to allow the
control’s properties to be view and changed. The control sees property pages as a set of
dialog box templates. These templates contain fields for each of the properties that a
control wants to expose through property pages and the code behind the dialogs manages

the content.

Property pages are COM/DCOM objects with their own CLSIDs and interfaces. This
allows property pages to be shared among controls. The property pages of a control are

contained in a single property sheet.

5.2 Tools for Creating ActiveX Controls

5.2.1 Microsoft Tools

To ease the task of creating an ActiveX control, various tools can be employed. These
tools are developed by Microsoft for different programming purpose. The choices of

tools on creating ActiveX controls that are currently available are the following ones[7]:

e C++ and the ActiveX Template Library(ATL):
e Visual Basic:

e Java:

78

e C++ and Microsoft Foundation Classes (MFC):

Visual Basic and Java use programming languages other than C++. while ATL and MFC
both use C++. MFC is designed to make it as easy as possible for the C++ programmer to
create controls and applications. whereas ATL is designed to make controls in C++ that

are as small and as fast as they can be.

Since using MFC to create an control is relatively easier. an example ActiveX control
from Denning[7] will be created using this tool(Visual C++. version 6.0) in this section

and various aspects of the control will be enhanced in the subsequent sections.

MFC is built within the Visual C++ tool. Once the tool is installed. the following

components on developing controls will be available:

o The MFC run-time libraries:
e An ActiveX control wizard:

® A test container for verifying the control:

5.2.2 Creating a Skeleton Project
The first step in creating a control using MFC is to use the wizard to generate a skeleton

control project.

Select New from the File menu. The New dialog will be displayed. Select the Projects tab

and choose the MFC ActiveX ControlWizard. Type in the project name, e.g. First and

79

specity the directory for the project. Click the OK button to go to the first step wizard

page. This page presents the following four options:

¢ The number of controls in this DLL. default: I

e Whether the controls have run-time license. default: No:

e Whether you want source code comments, default: Yes:

e Whether you want the help files generated. default: No:

In this example. leave all the defaults as they are. Click Next button to go to the next page

of the wizard. This page has the following options:

* The name of the control to apply properties in this wizard page:

e Whether the control should be activated when it is visible. default: Yes:

e Whether the control should be invisible at run time, default: No:

e Whether it appears in a regular Insert Object dialog in containers. default: No:

e Whether it has an About box. default: Yes:

® Whether the control is capable of acting as a simple frame for other control. default:
No:

e Which standard Windows window class should be used as base class for this control,

if any. default: None.

Again. keep all the defaults. Click the Finish button and confirm the options that have
chosen. The MFC ActiveX ControlWizard creates a set of skeleton files for the control

project.

80

5.2.3 The ControlWizard Created Files

The MFC ActiveX ControlWizard has created a set of files used to build the control.

First.

First.dsp is the Visual C++. version 6.0, project file and First.dsw is the workspace file.
They are used to build the control.

First.clw is used by the Visual C++ ClassWizard to edit existing class or to add new
classes. ReadMe.txt is a text file to briefly describe the files that have been generated.
First.rc and resource.h are the project resource files. The control’s icon is displayed in the
control’s default About box anrd is contained in First.ico. Likewise. the control has a
bitmap which is used as the toolbox bitmap when the control is embedded in a container
such as Visual Basic. This bitmap is contained in FirstCtl.bmp. First.ncb is the file used
for displaying ClassView information. Stdafx.h and stdafx.cpp are the standard MFC files

for efficient use of precompiled headers.

First.def is the ActiveX control DLL module definition file. It exports the four standard
functions for any COM/DCOM in-proc server, that is. DIICanUnloadNow.

D1iGetClassObject, DIIRegisterServer and DIlUnregisterServer.

The file First.odl is the automatically generated ODL source file for the control in the
project. It defines the type library FIRSTLib as well as the controls dispatch interface.
_DFirst. It also defines the controls primary events interface called _DFirstEvents.

Finally. the coclass First itself is defined. When compiled. the generated type library is

81

included in the project’s resources. Storing the type library in the control's resources is the

recommended way of holding type information.

The remaining files generated in the projects. First.h, First.cpp. FirstCtl.h. FirstCtl.cpp.
FirstPpg.h. FirstPpg.cpp are the C++ source files used to define the control. Let’s look at

them in detail in order to understand the working mechanism behind these files.

5.2.4 The Control Module Class

Appendix 11 lists the files created by the MFC ControlWizard. First.h and First.cpp
contain the class CFirstApp. Any MFC user DLL has a CWinApp derived application
object. With MFC based ActiveX controls, the application class is actually derived from

COleControlModule. which is itself derived from CWinApp.

In First.h. the wizard declares Initlnstance and Exitlnstance functions. It then declares
three global variables as external references because although they are defined in
First.cpp. they are used elsewhere and this header file is included elsewhere. The variable
_tid is the GUID of the controls type library, and _wVerMajor and _wVerMinor are

control’s major and minor version number respectively.

In First.cpp. a global instance of the CFirstApp class is created. Then the tree global
variables are initialized. The type library is assigned a GUID and the version is initialize

to 1.0.

The InitInstance and ExitInstance functions just call the base class’s functions to initialize

and uninitialize the application.

DliRegisterServer and DilUnregisterServer are the control DLLs exported function used

to register and unregister the DLL as an in-proc server.

In DlIRegisterServer and DIllUnregisterServer. the macro AFX_MANAGE_STATE is
called to set up the module state. A module refers to an executable program. or to a DLL
(or set of DLLs) that operate independently of the rest of the application. but uses a
shared copy of the MFC DLL. An ActiveX control is a typical example of a module.
MFC has state data for each module used in an application. Each module is responsible
for correctly switching between module states at all of its entry points such as an
exported function or a member function of COM/DCOM interfaces. The actual
registration and unregistration are done by calling the appropriate well-defined MFC

functions.

5.2.5 The Control Class
The majority of the control’s functionality is implemented in the COleControl derived

class. In this example. it is CFirstCtrl which is contained in FirstCtl.h and FirstCtl.cpp.

In FirstCtl.h, the class CFirstCtri uses the macro DECLARE_DYNCREATE to set up the
class for dynamic creation. This is the normal MFC standards. This macro is matched by

a call to IMPLEMENT_DYNCREATE in the implementation file. Besides the

83

constructor and the destructor. the class has the drawing function(OnDraw). the property
persistence function(DoPropExchange) and the function OnResetState which is called

when the control is asked by the container to reset its property values to default ones.

The macro DECLARE_OLECREATE_EX declares the functions to set up the object’s
class tactory. DECLARE_OLETYPELIB declares functions to get an ITypeLib pointer
for this control’s type library and to implement type library caching. an optimization
performed by MFC. DECLARE_PROPPAGEIDS declares a function to retrieve the
control’s property page CLSIDs. DECLARE_OLECTLTYPE declares functions to get

the control’s ProgID and miscellaneous status bit values.

The class also declares a few of MFC maps including the message map. the dispatch map

and the event map.

Windows applications are basically message-driven programs. A user action will be
represented by a message sent to the operating system. and the operating system will
handle the message. Due to the large number of messages involved. providing a separate
virtual function for each Windows message would result in a huge vtable. MFC provides
an alternative to handle messages sent to a window. A mapping from messages to
member-functions may be defined so that when a message is to be handled by a window,
the appropriate member function is called automatically. This message-map facility is
designed to be similar to virtual functions. The DECLARE_MESSAGE_MAP macro

declares functions for a class to have a message map table. The message map’ table is

84

defined in the implementation file with a set of macros that expand to message map
entries. A table begins with a BEGIN_MESSAGE_MAP macro call. which defines the
class that is handled by this message map and the parent class to which unhandled
messages are passed. The table ends with the END_MESSAGE_MAP macro call.
Between these two macro calls is an entry for each message to be handled by this

message map.

MFC establishes a dispatch map for the dispinterface. It designates the internal and
external names of object functions and properties, as well as the data types of the
properties themselves and of function arguments. DECLARE_DISPATCH_MAP is used
in the class declaration to declare that a dispatch map will be used to expose a class’s
methods and properties. BEGIN_DISPATCH_MAP starts the definition of a dispatch
map. END_DISPATCH_MAP ends the definition of a dispatch map. DISP_FUNCTION
is used in a dispatch map to define an Automation function. DISP_PROPERTY defines

an Automation property.

MFC offers a programming model optimized for firing events. In this model. event maps
are used to designate which functions fire which events for a particular control. Event
maps contain one macro for each event. DECLARE_EVENT_MAP is used in the class
declaration to declare that an event map will be used in a class to map events to event-
firing functions. In the implementation file. BEGIN_EVENT_MAP begins the definition

of an event map and END_EVENT_MAP ends the definition of an event map.

Finally an enumeration is declared in the header file to hold the DISPIDs for control’s

properties. methods and events.

In FirstCtl.cpp. the message map only contains one ON_OLEVERB entry for the
Properties verb. which will cause the control to display its property pages. The
ON_OLEVERB entries allow the control to react to an invocation of one of its verbs. or
the OLE actions. Normally. the container places the verb on the Edit menu when an

object is selected.

The dispatch map so far only contains the About box entry and the event map is empty. A
property page map is also defined starting with BEGIN_PROPPAGEIDS and ending
with END_PROPPAGEIDS macros. The numeric parameter in the
BEGIN_PROPPAGEIDS macro is the number of pages in the map. and each entry

contains the CLSID of the property page.

The IMPLEMENT_OLECREATE_EX macro creates the object’s class factory and
initializes it with the CLSID and ProgID passed in. Likewise.
IMPLEMENT_OLETYPELIB implements the functions for type library with the given
GUID and the version number. Then the [IDs of the control’s primary dispatch interface
and the events interface are defined. Next, the control’s miscellaneous bits are initialized.
The flag OLEMISC_CANTLINKINSIDE indicates that the control cannot be used as a
link source when it is embedded. OLEMISC_RECOMPOSEONRESIZE tells the

container that the control likes to re-create its rendition if the size is changed in the

86

container. IMPLEMENT_OLECTLTYPE macro implements the functions declared in
DECLARE_OLECTLTYPE to retrieve the control’s ProgID and miscellaneous status

bits.

MFC implements the class factory as a nested class. CFirstCtriFactory. in the control
class. CFirstCtrl. The function CFirstCtrl::CFirstCtriFactory::UpdateRegistry function is
implemented by MFC to be used by code elsewhere to register or unregister the control in

the system Registry.

The constructor of the control class by now only initialize the IIDs of the dispatch and
events interfaces. The OnDraw function is called whenever the control needs to be
redrawn. It just draws an ellipse now. Note the parameter to this function. It is the
rectangle in which the control can draw something. This rectangle is an area inside the
container window. The DoPropExchange is used to transfer persistent property values
between the property member variables and the container-provided storage. At present.
only the controls version is saved. The base class function call will cause any standard

properties used by this control that need saved to actually get saved.

5.2.6 The Property Page Class

The MFC ActiveX ControlWizard creates one blank property page and the property page
is wrapped in a class derived from COlePropertyPage. In this example, the page class is
called CFirstPropPage which is contained in FirstPpg.h and FirstPpg.cpp files. The class

is dynamically creatable and has a class factory since it is a COM object itself. However.

87

it does not have a type library since it is not an Automation object. It has a function
DoDataExchange which is the standard MFC dialog data exchange and validation routine
for exchanging data between class member variables and dialog controls. The
DDP_PostProcessing call will finish the transfer of property values from the property

page to the control when property values are being saved.

5.2.7 Test the Control

The first step is to build the control. Select Rebuild All from the Visual C++ Build menu
while the First project is the current project. This will build the control and register it in
the system Registry. By convention. an ActiveX control file has the extension of ocx.

Hence. the example control is contained in First.ocx.

Test Container(TSTCON32.EXE) is provided in Visual C++ and can be used for quick
testing on an ActiveX control. Run the Test Container from Visual C++ Tools menu.
After the program is running, choose Insert New Control command from the Edit menu
and select First Control from the dialog box. While the control is selected in the

container’s window, test the following aspects of the control:

Invoke its methods. Test Container leamed about the control’s methods from its type
library. Select Invoke Methods command from the Test Containers Control menu. The

only available method is the AboutBox method which will display the control’s About

box.

88

Display the control's properties by showing its property pages. Choose Properties ... First
Control Object from the Test Container’s Edit menu. Currently. only the control’s name is

displayed in the Extended page and the General page is empty.

If the control provides any events. they can be viewed from the event log by selecting

Logging command from the Control menu.

Move and resize the control on the container’s window.

Other ActiveX control container programs can also be used to test the control. For

example. Visual Basic. Internet Explorer.

5.3 Properties

There are three types of properties for an ActiveX control. Ambient properties are
exposed by the client site which the control uses as its environment values. Extended
properties are those properties that the container implements on behalf of the control and

the control usually does not need to know. Control properties are the ones implemented

by the control.

5.3.1 Ambient Properties

ActiveX controls specification predefines a set of standard ambient properties. Some of
these are listed below in terms of their names, their symbols and DISPIDs[7]:

BackColor DISPID AMBIENT BACKCOLOR -701

89

DisplayName DISPID AMBIENT DISPLAYNAME -702

Font DISPID AMBIENT FONT -703
ForeColor DISPID AMBIENT FORECOLOR -704

LocalelD DISPID AMBIENT LOCALEID -705
MessageReflect DISPID AMBIENT MESSAGEREFLECT -706
ScaleUnits DISPID AMBIENT SCALEUNITS -707
TextAlign DISPID AMBIENT TEXTALIGN -708
SupportsMnemonics DISPID AMBIENT _SUPPORTSMNEMONICS -714
AutoClip DISPID AMBIENT AUTOCLIP -715
Palette DISPID AMBIENT PALETTE -726

LocaleID indicates the locale. MessageReflect tells the control that if it is true, the
container will reflect the Windows messages back to the control. TextAlign tells the
control how it should arrange the text it displays. SupportsMnemonics means that. if it is
true. the control can provide mnemonics keypresses and the container will handle them.
AutoClip indicates the container will automatically clip the control. Palette returns the
handle of the container’s color palette. If a container supplies a palette. only this palette

can be realized into the foreground.

A container can add more ambient properties and the controls that will be embedded in
the container must know these extra ambient properties in order to use them. The control

can choose those ambient properties to use that make sense to the control and ignore the

others.

5.3.2 Stock Properties
Some control properties are likely to be implemented so often that MFC and other tools

provide standard implementation for them. These standard properties are called stock

properties. Again. the implementation of a control can decide to use some of these stock

properties and not to use the others.

Any other properties are custom properties that are specific to the control.

5.3.3 Adding Stock Properties

Stock properties can be added in the control by using the MFC tool. For the example
control created by MFC tool before. Open the project. First. Invoke ClassWizard and
select Automation tab. check that CFirstCtrl class is selected. and click Add Property
button. Select BackColor from the External Name combo box and click OK. Repeat for

Caption. Enabled. Font. FontColor and hWnd stock properties.

The tool will add description in the properties part of the control’s dispinterface in the

ODL file. First.odl. For example.
[id(DISPID BACKCOLOR), bindable, requestedit] OLE _COLOR BackColor:

Note that the property is defined as bindable and requestedit.

The tool will also add entries in the control class’dispatch map, e.g.,

DISP_STOCKPROP_BACKCOLOR()

91

5.3.4 Adding Custom Properties
A HRESULT is a 32-bit value used as the return value of most of the COM/DCOM
interface functions. The highest bit is the severity bit. the lower 16 bits is the error code

and the rest of 15 bits is the facility bits.

A control is not much useful unless some custom properties are added to the control.
Suppose the example control[7]. First. will be used to convert an existing HRESULT to
its component parts. the following custom properties are added: Code having the short
type which is the error code of a HRESULT. ErrorName with BSTR type which is the
name of the error. Facility with BSTR type which is the facility portion of the
HRESULT. Message with BSTR type which is a message associated with the
HRESULT. HResult with type long which is the HRESULT itself. Severity with type
BSTR which is the severity portion of the HRESULT. Among these. except the

HRESULT itself. all other properties are read-only.

Similar to adding stock properties. the custom properties can be added using the
ClassWizard. Each property will use the Get/'Set Methods implementation scheme. which
can be specified in the Add Property dialog box. A read-only property is made by not

defining a Set function. which can be achieved by leaving the Set Function edit box

blank.

Although the MFC ClassWizard actually allows to add a property as a member variable,

or a member variable with a notification. or Get and Set functions, COM/DCOM actually

allows only the Get/Set function implementation scheme. For the other two options. MFC

will implement the code to simulate the options.

For each property. the ClassWizard adds a property definition entry in the ODL file. It
also adds a dispatch map function declaration and the dispid in the control header file.
FirstCtl.h. The dispatch map entry and the function definitions are added in the control
implementation file. FirstCtl.cpp. Certainly. these functions need to be modified to

perform their tasks.

To test the control. run Visual Basic and add the First control to the project by using
Components option on the Project menu. Draw a copy of the First control on the form by
selecting the First control bitmap on the toolbox. While the control is selected. look at the

Properties window. Those added properties are displayed.

5.4 Property Persistence

A control’s properties can be saved to make it persistent. The control has to make a
decision on what custom properties should be made persistent. The stock properties will
be saved automatically. Also there is little point to save dynamic properties that are

recalculated each time they are retrieved.

MFC wraps almost all ActiveX control functionality in the COleControl class. It provides
the support for property persistence. When the container asks a control to provide its

persistent properties, ultimately the control's DoPropExchange member function is called

93

to serialize the controls properties. The default override function
CFirstCrrl:: DoPropExchange generated by the MFC ActiveX ControlWizard will call
ExchangeVersion function to persist the version number and call the

COleControl::DoPropExchange to persist the stock properties.

The DoPropExchange function is used both to write the properties from the control to the

requester and to read them from a previously saved set.

To serialize the custom properties. the DoPropExchange must be modified. MFC
provides a set of helper functions to do this task. The names of these functions all begin
with PX_. Therefore. they are generally known as PX_ functions. For example. add the
following line of code in CFirstCtri::DoPropExchange function, the HResult property
will be made persistent:

PX _Long(pPx. _T("HResult").m_HResult):

This function takes the MFC provided serialization context object. the name of the

property and the value of the property.

In addition to the PX_ functions to handle the obvious types. the PX_Blob function adds

persistence support for properties that are BLOBs. A BLOB is a chunk of binary data.

5.5 Methods
A method is a way to ask an object to perform some action. ActiveX controls allow

custom methods to be added. A method can take any of the standard types supported by

94

Automation as arguments and return values of any of these types. In other words. any
data types that can be placed in a VARIANT can be used in the ActiveX controls

methods.

Methods can be added to a control by using MFC ClassWizard. Similarly. MFC provides
two stock methods. DoClick and Refresh takes no parameters and returns no values.
DoClick simulates the action of clicking the left mouse button and Refresh causes the
control to be repainted.

For example, to add two methods. a stock method Refresh and a custom method
AddHResult. to the example control[7]. First, load the project into Visual C++. invoke
the ClassWizard. and select the Automation tab. Make sure that CFirstCtrl is selected as
the class name. and click the Add Method button. Add the stock Refresh method by
choosing it from the External Name combo box and clicking the OK button. Then add the
AddHResult method, choosing BOOL as its return value and giving it three parameters:

hResult as a long, Symbol as a LPCTSTR and Message as a LPCTSTR.

As for adding properties. for each method added, the ClassWizard adds a method
definition entry in the ODL file. It also adds a dispatch map function declaration and the
dispid in the control header file. FirstCtl.h. The dispatch map entry and the function
definitions are added in the control implementation file, FirstCtl.cpp. Again. the method

requires implementation to perform its task.

95

Therefore. adding methods to a control is pretty much identical to adding properties.
except that with a property. typically two functions(Get and Set) are implemented. a
method implements only one. A method is just an Automation method. The important
point. as with properties. is to make sure that the description of the interface in the
control’s ODL file matches the actual implementation so that the type library built from

the ODL file accurately reflects the interface.

5.6 Events

Events are a powerful addition to the ActiveX controls. Standard Automation objects can
inform their controllers that something has happened only as the result of a call to one of
the object’s properties or methods as a synchronous response. ActiveX controls. on the

other hand. are able to inform their containers at any time. asynchronously. of any action.

There are four types of events: Request events. Before events. After events and Do

events[7].

A control fires a Request event to ask its container to allow the control to do something.
The last parameter that a Request event takes is a pointer to a variable with type
CancelBoolean that is a standard type introduced in ActiveX control. The value of this
parameter is set to FALSE by the control prior to the event being fired. If the container
changes the parameter to TRUE. then it tells the control not to perform the action
signaled by the event. By convention, a Request event has the name beginning with

Request. followed by the name of the action. e.g.. RequestUpdate.

96

A Before event is fired by the control before it takes a specific action. giving the
container or its user a chance to prepare before the action is taken. A Before event is not

cancelable and should be named starting with Before, e.g.. BeforeClose.

An After event is fired by a control to let the container or its user perform some action
after the control’s action has occurred. After events dont have any naming convention
and they are not cancelable. A typical After event is a mouse click in which a control

notifies its container that it has been clicked.

A Do event allows the container or its user to override an action or to perform some
behavior immediately before the default action is taken. If a Do event has a default action
that it can take, it passes in the event as the last parameter a pointer to a variable of type
Boolean. conventionally called EnableDefault. which is set to TRUE by the control
before the event is fired. If the container sets this parameter to FALSE. it asks the control
not to perform its default action. Do events typically are named starting with Do.

followed by the name of the action.

Currently. a control fires an event by calling the Invoke method on the dispinterface
pointer it extracted from the container when the container connected to its connection

point through IConnectionPoint::Advise.

The ActiveX Controls specification defines a set of standard events that controls can

choose to fire. This assures that certain common events have the predefined semantics.

97

Custom events should use positive dispids so that they do not conflict with standard

events. methods. or properties.

The following list shows the names. dispids and description of some standard events{7]:

Click -600 control is clicked.

DbiClick -60] control is double clicked.

KevDown -602 a key is pressed while a control has focus.
KevUp -604 a key is released while a control has focus.
MouseDown -605 mouse button is down over a control.
MouseMove -606 mouse is moved over a control.

MouseUp -607 mouse button is released over a control.
Error -608 an error has occurred.

ReadyStareChange -609 used during loading properties and the
data received by a control causes it to
transition to the next ready state.
MFC implements the previous standard events as stock events. any other events are

treated as custom events. To add an event. invoke the ClassWizard. click the ActiveX

Events tab. Select the class to which to add events and click the Add Event button.

After adding a stock event. e.g.. Click. the ClassWizard will add an entry in the method
part of the event dispinterface of the control's ODL file as:

[id(DISPID CLICK)] void Click():

It will also add a macro EVENT_STOCK_CLICK() to the classs event map in the
control’s implementation file. The implementation function for firing Click event is
FireClick which can now be called anywhere within the control code to fire the Click
event. The FireClick is a member function of COleControl class which calls, via a helper
function. the Invoke method the IDispatch interfaces attached to the control’s event

connection point. If nothing is connected to the connection point, no event gets fired.

98

If a custom event is added through the ClassWizard. the ClassWizard adds a function
prefixed with Fire to the classs event map in the header file. For example. adding a
custom event. InvalidHResult with a long integer as its parameter, would add an entry in
the control’s event dispinterface in the ODL file as

[id(1)] void InvalidHResult(long HResulr):

and a definition entry in the control's event map in the header file as

void FirelnvalidHResult(long HResult)
{FireEvent(eventidInvalidHResult. EVENT PARAM(VTS 14). HResult):}

Basically. the FireEvent function is used for all event invocations. including stock events.
It is a member function of COleControl which takes a variable number of parameters

since it is a generic function designed to handle all event invocations.

Also a dispid is generated in the controls header file for this event and another entry is
inserted in the event map in the control’s implementation file as
EVENT _CUSTOM("InvalidHResult", FirelnvalidHResult, VTS 14)

which defines the event name. the function that fires it and the parameters it takes.

After an event-firing function is defined in the event map, it can be called at any point
within the control to cause the event fired up to its container. However, there is no

guarantee that a container is always ready to handle the event.

When a container connects to a controls event connection point. it calls
IConnectionPoint:: Advise. This is sent on to the control’s instance of the COleControl

class by MFC to a member function called OnEventAdvise. This function will get called

99

each time a connection is made. It also gets called each time a connection is broken.
Another COleControl virtual function, OnFreezeEvent. is called whenever a control’s

IO0leControl::FreezeEvents method is called.

5.7 Property Pages
Property pages as defined by the current user interface paradigm are sets of related
dialogs that appear as a number of pages in a tabbed dialog box. However. each page is a

COM object.

Every control created with the MFC ActiveX ControiWizard has a property page unless it
is deliberately removed. The property page is the user interface for the control to present
their properties for access. You can add controls to the page. add new pages. and tie the
controls on each page to specific properties exposed by the control. MFC’s property page
functionality is wrapped in a class called COlePropertyPage. from which the MFC
ActiveX ControlWizard and ClassWizard derive specific classes to wrap a given control s

property pages.

The first step in adding a field to a property page is deciding what type of control to use
to present the property. For example, for the HResult property in the example control[7].
the most logical representation is an edit box, but the content must be numeric as the
property has the type long. The following steps add the controls for HResult property in

the controls property page:

e Using Visual C++ Resource editor. edit the dialog resource called
IDD_PROPPAGE_FIRST by adding to it a static text with &HResult: as the text. The
& character signifies that the character following it is the mnemonic character in the
dialog box.

® Add an edit box beside the static text.

® Invoke the ClassWizard. select the Member Variables tab. and ensure that
CFirstPropPage class is selected. select the control id, IDC_EDIT!. which is the id
for the newly added edit box. Click Add Variable button.

¢ Enter a name for the variable. e.g.. m_HResult. Make sure that the Category box says
Value. Choose long as the variable's type.

e Type in HResult as the OLE Property Name. Click OK button to finish.

The ClassWizard adds in the header file of the property page class. FirstPpg.h. a member
variable like

long m_HResult:

This member variable will be initialized in the page class’s constructor. The binding
between the edit box and the member variable as well as the ActiveX control’s property is
done in the page’s DoDataExchange function. the MFC standard dialog data exchange
and validation routine. Two lines of code is inserted in this functions data map:

DDP _Text(pDX. IDC _EDITI. m_HResult, T("HResult")):
DDX_Text(pDX, IDC_EDIT!. m_HResult);

Extra property pages can also be added if there are too many controls to fit on one page.
To add a new page. a new dialog resource and a new class to wrap the dialog must be

created. Then increment the page count in the BEGIN_PROPPAGEIDS macro located in

101

the control’s implementation file. e.g.. FirstCtl.cpp. Add an entry in between the
BEGIN_PROPPAGEIDS and END_PROPPAGEIDS macros for the new page.
Implement the new page class as appropriate. The new page will be displayed when the

ActiveX control’s property is displayed.

Some common property pages. known as stock property pages. are already implemented
and provided by MFC. These are for colors. fonts and pictures. The stock pages can be
added by modifying the code block in the control’s implementation file between the
BEGIN_PROPPAGEIDS and END_PROPPAGEIDS macros. Add the following entries
to add the stock pages:

PROPPAGEID(CLSID CColorPropPage)

PROPPAGEID(CLSID _CFontPropPage)

PROPPAGEID(CLSID CPicturePropPage)

The stock pages will interrogate the control’s type library to learn which properties have

the requisite types and display them on the appropriate page.

6 Conclusions

The component-based programming technologies surveyed in this report. namely. DLL.
COM/DCOM. Automation and ActiveX controls. are important technologies for software
reuse. More and more applications are developed utilizing these technologies. They
provide a consist approach for creating different small binary software objects. These
components can be used by the end user as building blocks to create different

applications at run time.

However. creating components without using tools is cumbersome. and the tools for
creating components cannot be easily mastered. As C++ is a natural language for writing
object-oriented software applications. a programming language suited for creating

components is certainly more desired.

103

References:

/. “The Advantages of Using DLLs". Visual C++ Programmer’s Guide. MSDN Library.

April. 1999.

|89

“The Component Object Model Specification . Draft Version 0.9. October 24. 1995.
Microsoft Corporation and Digital Equipment Corporation.

3. ~Inside COM™, Dale Rogerson. Microsoft Press.1997.

4. “Three Pointer Types™. MSDN Library. October 1996.

5. “Inside OLE™, Kraig Brockschmidt. Microsoft Press. 1995

6. “Professional DCOM Programming”. Dr. Richard Grimes. Wrox Press Ltd. 1997,

7. ActiveX Controls Inside Out”, Adam Denning, Microsoft Press. 1997.

8. “Inside Visual C++". David J. Kruglinski. Microsoft Press. 1996.

9. “Teach Yourself Visual Basic 4 in 21 Days™. Nathan Gurewich and Ori Gurewich.

Sams Publishing. 1995.

104

Appendix 1 A DLL Example

*dilExample.h
Declarations of the DLL functions. It will be used
by both of the implementation file of the DLL and
the client application of this DLL. *

:* To prevent multiple inclusion *:
#ifndef DLLEXAMPLE_H
#define DLLEXAMPLE_H

:* The extern "C" block is defined if C++ compiler is used.
It will turn off the C++ name mangling to the exported API
names and make them usable by non-C++ client applications. *

#ifdef __cplusplus
extern "C" {
#endif * __cplusplus *

#ifdef DLLEXAMPLE_C

* The implementation file for this declaration will
define DLLEXAMPLE_C. hence the function is declared with
__declspec(dliexport) modifier and make it an exported API. *:

__decispec(dllexport) void dHExampleFunction(void):
—declspec(dllexport) int dliParamFunction(int n. char *str.
float data[3]. float *sum):

#else
~* The client application will not define DLLEXAMPLE_C.
When the client include this header file. the
function is declared with __declspec(dllimport)
madifier and make it an imported API from the DLL. *
__declspec(dllimport) void dilExampleFunction(void):
__declispec(dllimport) int dliParamFunction(int n. char *str.
float data[3]. float *sum):
#endif * DLLEXAMPLE_C */
#ifdef __cpluplus

#endif - * __cplusplus *

#endif * DLLEXAMPLE_H *

* dlIExample.c.
Implementation of the DLL function. It will
define DLLEXAMPLE_C so that the right function prototype
is declared when dllExample.h is included. *

#define DLLEXAMPLE_C

#include "dlIExample.h"
#include "windows.h"
#include "stdio.h”

void dlIExampleFunction(void)
{
MessageBox(NULL. "The example DLL API is called!".,
"Message”. MB_SYSTEMMODAL):
b

int ditParamFunction(int n. char *str.
float data[3]. float *sum)
{
printft"interger parameter: Sed n". n):
printf("string parameter: %s.n". str);
printf("data 1= gndata 2= S%g 'ndata 3= Seg'n".
data[0]. data[1]. data[2}):
*sum= data[0] + data[1] + data[2]:
return 1:

Appendix 2 An Client Example Using a DLL Statically

* dliIClientExample.c
Implementation of an example client application to use
DLLExample.dll. It will statically link to the dlI's
import library DLLExample.lib when the application stars up. ~.

#include "dliExample.h"
#include "windows.h”

void main()
{
int n= 12345;
char *str= "Example String Parameter":
float data[3]= {1.1.2.2.3.3 }:
float sum:
int ret:

MessageBox(NULL. "Calling a DLL function...". "Message". MB_SYSTEMMODAL):
dlIExampleFunction():

MessageBox(NULL. "Calling a DLL function with parameters...".
"Message”. MB_SYSTEMMODAL):

ret= dlIParamFunction(n. str. data. &sum):
if (ret==1)
{
printf(""nThe sum is: S g'". sum):
MessageBox(NULL. "Function called successfully...”.
"Message". MB_SYSTEMMODAL):
}
else
MessageBox(NULL. "Function call failed...".
"Message". MB_SYSTEMMODAL):

107

Appendix 3 A Client Example Using a DLL Dynamically

= dlIClientDynamic.c
Implementation of an example client application to use
DLLExample.dlIl. It will dynamically load the dll. use the
DLL’s API and free the DLL. *

#include "windows.h"

typedef void (EXAMPLEPROC)(void):
void main()
{
HINSTANCE hModule= NULL:
EXAMPLEPROC* pFunc= NULL:

MessageBox(NULL. "Loading the example DLL...".
"Message”. MB_SYSTEMMODAL):

hModule= LoadLibrary("DLLExample.dH"):
if thModule '= NULL)
{
MessageBox(NULL. "Getting the function address...".
"Message”. MB_SYSTEMMODAL):
pFunc= (EXAMPLEPROC*) GetProc Address((HMODULE)hModule.
"dilExampleFunction"):
if (pFunc !'= NULL)
(*pFunc)():

MessageBox(NULL. "Releasing the example DLL...".
"Message". MB_SYSTEMMODAL):
FreelLibrary(hModule):
}
}

108

Appendix 4 A Visual Basic Example Using a DLL

VERSION 5.00

Begin VB.Form frmDLLCiient
Caption = "DLL Chlient”
ClientHeight = 3195
ClientLeft = 60
ChientTop = 345
ClientWidth = 4680
LinkTopic = "Forml"
ScaleHeight = 3195
ScaleWidth = 4680

StartUpPosition = 3 Windows Default
Begin VB.CommandButton,cmdUseDLL

Caption = "Use DLL..."
Height = 495
Left = 1560
Tablndex = 1
Top = 840
Width = 1213

End

Begin VB.CommandButton cmdExit
Caption = "E&xit"
Height = 495
Lett = 1560
Tablndex =0
Top = 1920
Width = [215

End

End

Auribute VB_Name = "frmDLLClient"

Auribute VB_GlobalNameSpace = False

Aturibute VB_Creatable = False

Attribute VB_Predeclaredld = True

Attribute VB_Exposed = False

“Call a DLL procedure.

‘See VB Help for more information on Declare statement.

Private Declare Sub dilExampleFunction Lib "DLLExample.dil" ()

Private Sub cmdExit_Click()
End
End Sub

Private Sub cmdUseDLL_Click()
Call dlIExampleFunction
End Sub

Appendix 5 An Interface Example

L%

An example of two interfaces defined using two pure
abstract base classes in C++.

The word interface is defined as struct.

A pure abstract base class which only contains a set of
pure virtual functions can be used to define an interface.

The __stdcall specifies that the function uses the standard.

also known as the Pascal. calling convention where the called
function clean up the stack frame. Virtually all functions

offered by COM DCOM interfaces on Microsoft platforms use the
standard calling convention.

A component written in C++ class can inherit the pure abstract
base classes to implement the interfaces that the component
wants to support.

#include "objbase.h" where interface’is defined

interface lnterfaceX

{
virtual void __stdcall FuneXI(void) = O:
virtual void __ stdcall FuncX2(void) = 0:

I 5

interface lnterfaceY

{
virtual void __stdcall FuncYl(void) = O:
virtual void _stdeall FuncY2(void) = 0

J

class CExampleComponent : public linterfaceX.
public [InterfaceY
{
public:
//implementation of interface InterfaceX
virtual void __stdcall FuncXi(void)
{ cout << "Implementation of FuncX1" << endl: }
virtual void __stdcall FuncX2(void)
{ cout << "Implementation of FuncX2'" << endl: }

s implementation of interface llnterfaceY
virtual void __stdcall FuncY l(void)

{ cout << "Implementation of FuncY 1" << endl: }
virtual void __stdcall FuncY2(void)

{ cout << "Implementation of FuncY2" << endl: }

IR

1o

Appendix 6 An Example to Query Interfaces

-* QuerylnterfaceExample.cpp
Implementation of standard Querylnterface function
and the usage of QueryInterface in an example component *

#include "iostream.h"
#include "objbase.h”
#include "windows.h"

* helper function used in this file
void displayMessage(const char *msg} { cout << msg << endl: }

Interfaces [X. IY and IZ all inherit IUnknown
interface to conform to the COM, DCOM specification
interface IX : [Unknown

{

virtual void _stdcall Fx(void) =
¥
interface 1Y : [Unknown
{

virtual void _ stdcall Fy(void) = 0:
»
interface I[Z : [Unknown
{

virtual void __stdcall Fz(void) = 0:
¥

.. Forward declarations for interface ids
extern const [ID [ID_IX:
extern const [ID [ID_IY:
extern const [ID [ID_IZ:

4n example component that supports [X and IY
interfaces. It will implement all function that
- declared in the interfaces it supports.
class CA : public IX.
public I'Y
{
/- IUnknown interface implementation
virtual HRESULT __stdcall Querylnterface(const [ID &iid.
void **ppv):
virtual ULONG __stdcall AddRef() {returnO: }
virtual ULONG __stdcall Release() { return O: }

IX interface implementation
virtual void __stdcall Fx(void) { displayMessage("Fx function is called!): }

1Y interface implementation
virwal void __stdcall Fy(void) { displayMessage("Fy function is called!"): }

Implementation of QueryInterface for the example component
HRESULT __stdcall CA::QueryInterface
(const [ID &iid. -iwhich interface to get?
void **ppv) /the returned interface or NULL
{

if (iid == [ID_IUnknown)

{
displayMessage("QueryInterface returns pointer to IUnknown!"):
ppv= static_cast<IX>(this):

¥

else if (iid == [ID_IX)

{
displayMessage("'Queryintertace rewurns pointer to IX!"):
ppv= static_cast<IX>(this):

)

else if (iid == [ID_IY)

{
displayMessage("QueryInterface returns pointer to [Y!"):
*ppv= static_cast<lY *>(this):

)

else

{
displayMessage('This component does not support the interface!"):
*ppv= NULL.:
return E_NOINTERFACE:

b

static_cast<IUnknown*>(*ppv)->AddRef():
return S_OK:

Creation function
IUnknown *Createlnstance()
{
IUinknown *pl= static_cast<IX*>(new CA):
pl->AddRef():
return pl:

}

gl

: 1IDs

/- {32bb8320-b41b-11cf-a6bb-0080c7b2d682}
static const [ID IID_IX =
{Ox32bb8320. Oxb41b. Ox1 Icf.
{0xa6. Oxbb. 0x0. 0x80. Oxc7. Oxb2. 0xd6. Ox82}} :

.. {32bb8321-b41b-1Icf-abbb-0080c7b2d682}
static const [ID IID_IY =
{0x32bb&321i.0xb41b. Ox1 Icf.
{0xa6. Oxbb. 0x0. 0x80. Oxc7. Oxb2. Oxd6. 0x82}} :

{32bb8322-b41b-11cf-a6bb-0080c7b2d682 }

static const [ID IID_IZ =
{0x32bb8322.0xb41b. Ox 1 Icf.
{0xa6. Oxbb. 0x0. 0x80. 0xc7. Oxb2. 0xd6. 0x82}} :

An example for the client of the component
int main()
{

HRESULT hr:

" creates and get the returned [Unknown pointer
displayMessage("Client creates an instance of the component!"):
IUnknown *plUnknown= Createlnstance():

get [X interface from [Unknown interface
IX *pIX=NULL:
hr= piUnknown->Quervinterface(IID_IX. (void**)&pIX):
if (SUCCEEDED(hr))
{
displayMessage(""Succeed to get IX from [Unknown!"):
pIX->Fx(): ‘use interface [X
}

~get I'Y interface from IUnknown interface

1Y *plY=NULL:

hr= plUnknown->QueryInterface(IID_IY. (void**)&plY):

if (SUCCEEDED(hr))

{
displayMessage(""Succeed to get ['Y from [Unknown!"):
plY->Fy(): use interface 1Y

}

get an unsupported interface
1Z ~plZ=NULL.:
hr= pIUnknown->QueryInterface(11D_IZ. (void**)&plZ):
if (SUCCEEDED(hr))
{
displayMessage("Succeed to get [Z from [Unknown!"):
plZ->Fz(): "use interface 1Z
H
else
displayMessage("Failed to get IZ from IUnknown!"):

~get interface IX from itself
IX *pIXFromIX= NULL.:
hr= pIX->QueryInterface(11D_IX. (void**)&pIXFromlX):
if (SUCCEEDED(hr))
{
displayMessage("Are the IX interface pointers equal?");
if (pIXFromlX == pIX)
displayMessage("Yes. they are equal!"):
else
displayMessage("No. they are not equal!"):

}

get interface I'Y from interface IX

IY *plYFromIX= NULL:
hr= pIX->QueryInterface(IID_IY. (void**)&pl YFromIX):
if (SUCCEEDED(hr))
{
displayMessage(""Succeed to get ['Y from IX!"):
pIY->Fy(): ruse interface Y
}

get interface IUnknown from interface Y
[Unknown *plUnknownFromiY= NULL:
hr= plY->Querylnterface(IID_lUnknown. (void**)&plUnknownFromlY):

if (SUCCEEDED(hr))
£

displayMessage("Are the [Unknown interface pointers equal?"):
if (plUnknownFromlY == plUnknown)

displayMessage("Yes. they are equal'"'):
else

displayMessage("'No. they are not equal!"):

}

- delete the component
delete plUnknown:

MessageBox(NULL.
"When finish viewing the execution result. click OK to terminate!".
"Message". MB_SYSTEMMODAL):

return O:

114

Appendix 7 A Component Lifetime Control Example

* ReferenceCountExample.cpp
Implementation of an example component with
reference counting *

#include "iostream.h"
#include "objbase.h"
#include "windows.h"

" helper function used in this file
void displayMessage(const char *msg) { cout << msg << endl: }

Interfaces IX. IY all inherit I[Unknown
intertace to conform to the COM specification
interface IX : [Unknown

{

virtual void __stdcall Fx(void) = 0
¥
interface [Y : [Unknown
{

virtual void __stdeall Fy(void) = 0:
h3

Forward declarations for interface ids
extern const [ID [ID_IX:
extern const [ID IID_IY:

~ An example component that supports IX and 1Y
interfaces. It will implement all function that
. declared in the interfaces it supports.
class CA : public IX.
public 1Y
{
IUnknown interface implemeniation
virtual HRESULT __stdcall Queryinterface(const LD &iid.
void **ppv):
virtual ULONG __stdcall AddRef():
virtual ULONG __stdcall Release():

. IX interface implementation
virtual void __stdcall Fx(void) { displayMessage("Fx function is called!"): }

* 1Y interface implementation
virtual void __stdcall Fy(void) { displayMessage("Fy function is called!"): }

public:
CAQ : m_cRef(0) {}
~CA() { displayMessage("CA component destroys itself™); }

private:
long m_cRef: 'the reference count used for all interfaces

- Implementation of QueryInterface for the example component
HRESULT __stdcall CA::Queryinterface
(const lID &iid. ‘which interface to get?
void **ppv) the returned interface or NULL
{
if (1id == [ID_IUnknown)
{
displayMessage("'Queryinterface returns pointer to IUnknown!");
ppv= static_cast<IX>(this):
}
else if (nd == ID_IX)
{
displayMessage("Query Interface returns pointer to IX!"):
ppv= static_cast<IX>(this):
}
else if (nd == [ID_IY)
{
displavMessage("QueryInterface returns pointer to IY!"):
*ppv= static_cast<Y *>(this):
b
else
{
displayMessage(""This component does not support the interface!"):
*ppv= NULL:
return E_NOINTERFACE:
b

static_cast<IUnknown=>(*ppv)->AddRef():
return S_OK:
}

The implementation of AddRef
ULONG __stdcall CA::AddRef()
{

cout << "CA: AddRef=" << m_cRef+! << endl:
return InterlockedIncrement(&m_cRef):

}

“"The implementation of Release
ULONG __stdcall CA::Release()

{
cout << "CA: Release="" << m_cRef-1 << endl:
if (InterlockedDecrement(&m_cRef) == Q)
{
delete this:
return O:
H
return m_cRef:
}

-+ Creation function
[Unknown *Createlnstance()

{

116

}

IUnknown *pl= static_cast<IX*>(new CA):
pl->AddRef():
return pl:

[IDs

{32bb8320-b41b-1 Icf-a6bb-0080c7b2d682 }

static const [ID HD_IX =

{0x32bb8320. Oxb41b. Ox1 Icf.
{0xa6. 0xbb. 0x0. 0x80. Oxc7. Oxb2. 0xd6. 0x82}) ;

"{32bb8321-b4ib-1 |cf-a6bb-0080c7b2d682)
static const [ID lID_1Y =

{0x32bb&32]1.0xb41b. Ox! Icf.
{0xa6. Oxbb. 0x0. 0x80. Oxc7. 0xb2. Oxd6. 0x82}} :

An example for the client of the component

int main()

{

HRESULT hr:

creates and get the returned IUnknown pointer
displayMessage("Client creates an instance of the component!"):
[Unknown *plUnknown= Createlnstance():

get IX interface from IUnknown interface

IX *pIX= NULL:

hr= plUnknown->Querylnterface(IID_IX. (void**)&plX):

if (SUCCEEDED(hr))

{
displayMessage("Succeed to get IX from [Unknown!"):
pIX->Fx(): "use interface [X
pIX->Release():

}

. get I'Y interface from [Unknown interface

IY *plY= NULL.:

hr= plUnknown->QueryInterface(1ID_IY. (void**)&plY):
if (SUCCEEDED(hr))

{

displayMessage("'Succeed to get 1Y from [Unknown!"):
plY->Fy(): /7use interface 1Y
plY->Release():

¥

displayMessage("'Client: Release IUnknown interface"):
plUnknown->Release():

MessageBox(NULL.
"When finish viewing the execution result. click OK to terminate!".
"Message". MB_SYSTEMMODAL):

return 0O:

117

Appendix 8 Use A Component Implemented in a DLL

ComponentExport.h
“Declaration of the exported function in the DLL
so that the client of the DLL can use it

#ifndef COMPONENTEXPORT_H
#define COMPONENTEXPORT_H

extern "'C"

{

#define DLLENTRY __declspec(dllexport)
DLLENTRY [Unknown* Createlnstance(void):

}

#endif COMPONENTEXPORT_H

. lintertace.h
Declaration of interfaces

interface IX : [Unknown

{

virtual void __stdcall Fx() =0 :
}:
interface IY : IUnknown
{

virtwal void __stdcall Fy() =0 :
}
interface IZ : IUnknown
{

virtual void __stdcall Fz() =0 :
)
+ Forwuard declarations for GUIDs
extern "C"
{

extern const [ID IID_IX :
extern const [ID [ID_IY :
extern const [ID [ID_IZ ;

. GUIDs.cpp
Interface IDs

#include "objbase.h"

118

extern "C"
{
-~ {32bb&320-b41b-11cf-a6bb-0080c7b2d682}
extern const [ID IID_IX =
{0x32bb8320. Oxb4d1b. Ox! Icf.
{0xa6. Oxbb. 0x0. 0x80. Oxc7. Oxb2. Oxd6. 0x82}} :

{32bb8321-b41b-11cf-a6bb-0080c7b2d682}
extern const [ID [ID_IY =
{0x32bb8321, 0xbd1b. Ox1icf.
{Oxa6. Oxbb. 0x0. 0x80. Oxc7. 0xb2. Oxd6. 0x8B2}} :

- {32bb8322-b41b-11cf-a6bb-0080c7b2d682 }
extern const HID [ID_IZ =
{0x32bb8322.0xb41b. Ox11cf.
{Oxa6. Oxbb. 0x0. 0x80. 0xc7. Oxb2. 0xd6. Ox82}} :

The extern is required to allocate memory for C++ constants.

- Component.cpp
" Implementation file of an example component packaged
in a4 DLL as an in-proc COM server.

#define COMPONENT_CPP

#include "tostream.h”
#include "objbase.h"

#include "lInterface.h”
#include "ComponentExport.h"

void trace(const char* msg) { cout << "Component CA:t" << msg << end! : }

Example Component that supports interface IX and 1Y
class CA : public IX.
public IY

{
. IlUnknown implementation
virtual HRESULT __stdcall Querylnterface(const [ID& iid. void** ppv):
virtual ULONG __stdcall AddRef():
virtual ULONG __stdcall Release():

/+ Interface IX implementation
virtual void __stdcall Fx() { trace("Fx is called!"): }

. Interface I'Y implementation
virtual void __stdcall Fy() { trace("Fy is called!"): }

public:

- Constructor
CAQ : m_cReft0) { }

119

Destructor
~CAQ { trace("Destroy self."): }

private:
long m_cRef:

)

HRESULT __stdcall CA::Quervinterface
(const I[ID &iid.
void **ppv)
{
if (iid == IID_lUnknown)
{
trace(''Return pointer to I{Unknown."):
ppv = static_cast<IX>(this}):

¥

else if (1id == [ID_IX)

{
trace(""Return pointer to [X."):
ppv = static_cast<IX>(this):

3

else if (iid == [ID_IY)

{
trace("Return pointer to IY."):
*ppv = static_cast<lY *>(this):

A~ 0w
4
~

trace("Interface not supported.”):
*ppv = NULL:
return E_NOINTERFACE:

y

reinterpret_cast<lUnknown=>(*ppv)->AddRef():
return S_OK:
}

ULONG __stdcall CA::AddRef()
{

}

ULONG __stdcall CA::Release()
{

return InterlockedIncrement(&m_cRef):

if (InterlockedDecrement(&m_cRef) == 0)
{

delete this;

return O;
}

return m_cRef:

}

/. Creation function
extern ""C" DLLENTRY IUnknown* Createlnstance(void)
{
IUnknown* pl= static_casi<IX*>(new CA):
pl->AddRef():

return pl:

. Create.h

#ifndef CREATE_H
#define CREATE_H

IUnknown* CallCreatelnstance(char* name):

#endif 'CREATE_H

Create.cpp
- Example client implementation file for a function to
load the given DLL. create the component and return
" the [Unknown interface pointer of the component.

#define CREATE_CPP

#include "iostream.h"
#include "unknwn.h" /. Declare [Unknown.

#include "Create.h"
typedef [Unknown* (*CREATEFUNCPTR)():

IUnknown* CallCreatelnstance(char* name)
{
Load dynamic link library into process.
cout << "Loading DLL" << name << "..." << endl:
HINSTANCE hModule= ::LoadLibrary(name) :
if (hModule == NULL)
{
cout << "Error: Cannot load " << name << endl;
return NULL :
}

> Get address for Createlnstance function in the DLL
CREATEFUNCPTR Createlnstance

= (CREATEFUNCPTR)::GetProcAddress(hModule. "CreatelInstance™):
if (Createlnstance == NULL)

{
cout << ""CaliCreatelnstance:tError: "
<< "Cannot find Createlnstance function.”
<< endl :
return NULL ;
}

return Createlnstance() :

|

" Client.cpp
#define CLIENT_CPP

#include "tostream.h”
#include "objbase.h"
#include "windows.h"

#include "linterface.h”
#include "Create.h"

void trace(const char™ msg) { cout << "Client :'1" << msg << endl: }

int main()

{
HRESULT hr:

- Create component by calling the Createlnstance function in the DLL.
trace("'Get an IUnknown pointer."'):
[Unknown* plUnknown = CallCreateInstance("ComponentDLL.dII"):
if (pIlUnknown == NULL)
{

trace("CallCreatelnstance Failed."):

return [:

}

trace("'Get interface IX."):

IX* pIX:

hr= pIUnknown->Querylnterface(IID_IX. (void**)&pIX):
it (SUCCEEDED¢hr))

{
trace("'Succeeded getting [X."):
pIX->Fx(): © Use interface IX.
pIX->Release():

}

else

trace("'Could not get interface [X."):
trace("'Get interface IY."):

IY* plY:
hr= plUnknown->QueryInterface(iD_IY. (void**)&plY):
if (SUCCEEDED(hr))
{
trace(''Succeeded getting [Y."):
plY->Fy(): /" Use interface 1Y.
plY->Release():
b
else
trace(''Could not get interface 1Y."):

trace(''Release IUnknown interfuce.'):
plUnknown->Release():

MessageBox(NULL.

"When finish viewing the execution result. click OK to terminate!".
"Message". MB_SYSTEMMODAL):

return (:

Appendix 9 An In-proc Server Component Example

. Iface.h
-~ Declarations of interfaces. [IDs. and CLSID
/" shared by the client and the component.

gifndef [IFACE_H
#define IFACE_H

interface IX : [Unknown

{
virtual HRESULT __stdcall Fx() =0:

»
interface 1Y : IUnknown

{
virtual HRESULT __stdcall Fy() =0 :

b

interface I1Z : [lUnknown

{
virtual HRESULT __stdcall Fz() =0 :
»

- Declaration of GUIDs for interfaces and component.
These constants are defined in GUIDs.cpp.

extern "C" const 11D [ID_IX :
extern "C" const [ID [ID_1Y :
extern "C" const [ID {ID_IZ :
extern "C" const CLSID CLSID_Componentl :

#endif . IFACE_H

7 GUIDs.cpp
i Defines all [IDs and CLSIDs for the client and the component.
- The declaration of these GUIDs is in Iface.h

#define GUIDS_CPP
#include "objbase.h”
+ {32bb8320-b41b-11cf-a6bb-0080c7b2d682}
extern "C" const [ID IID_IX =
{0x32bb&320. Oxb41b. Ox1Icf.
{Oxa6. Oxbb. 0x0. 0x80. 0xc7. 0xb2. Oxd6. 0x82}} :

7 {32bb&321-b41b-11cf-a6bb-0080c7b2d682 }
extern "C" const [ID IID_IY =

{Ox32bb8321.0xb41b. Ox11cf.
{Oxa6. Oxbb. 0x0. 0x80. Oxc7. Oxb2. Oxd6. 0x82}} :

- {32bb8322-b41b-1 Icf-a6bb-0080c7b2d682 }
extern "C" const l[ID [ID_IZ =
{0x32bb8322. Oxb41b. Ox!icf.
{Ox26. Oxbb. 0x0. 0x80. Oxc7. Oxb2. O0xd6. 0x82}} :

{0c092c21-882c¢-1 I cf-a6bb-0080c7b2d682}
extern "C" const CLSID CLSID_Componentl =
{0x0c092¢c21. 0x882c. Ox1 Icf.
{Oxa6. Oxbb. 0x0. 0x80. Oxc7. Oxb2. 0xd6. 0x82}} :

Registryv.h
Helper functions registering and unregistering a component.

#itndef REGISTRY _H
#define REGISTRY _H

- This function will register a component in the Registry.
The component calls this function from its DliRegisterServer function.
HRESULT RegisterServertHMODULE hModule.
const CLSID &clsid.
const char *szFriendlyName.
const char *szVerindProgID.
const char *szProgID) :

This function will unregister a component. Components
call this function from their DHUnregisterServer function.
HRESULT UnregisterServer(const CLSID &clsid.
const char *szVerlndProgID.
const char *szProgID) :

#endif REGISTRY_H

Registry.cpp

#include "objbase.h™
#include "assert.h"
#include "iostream.h”

#include "Registry.h"

"‘,./ o i ',"’:" ’/"'A‘/ R /,', “' ’ /v/",v‘i’,‘(‘//,'l/’.'/’ ,"[’,"}’,"‘l","("/‘ ’/,(//v,"l' ,’,’,’

¢/ Internal helper functions prototypes

/" Set the given key and its value.

BOOL setKeyAndValue(const char* pszPath.,
const char* szSubkey.
const char* szValue):

: Convert a CLSID into a char string.

void CLSIDtochar(const CLSID& clsid.
char* szCLSID.
int length):

"« Delete szKeyChild and all of its descendents.
LONG recursiveDeleteKey(HKEY hKeyParent. const char* szKeyvChild):

Size of a CLSID as a string
const int CLSID_STRING_SIZE = 39:

B S S Y B R R S]
e e T T s

;" Public function implementation

/- Register the component in the registry.
HRESULT RegisterServertHMODULE hModule. :; DLL module handie
const CLSID& clsid. Class ID
const char* szFriendlyName. /' Friendly Name
const char* szVerlndProgID. // Programmatic
const char* szProgID) © IDs

"~ Get server location.
char szModule[512]:
DWORD dwResult =
::GetModuleFileName(hModule.
szModule.
sizeof(szModule) sizeof(char)):
assert(dwResult '=0):

Convert the CLSID into a char.
char szCLSID[{CLSID_STRING_SIZE]:
CLSIDtochartclsid. szCLSID. sizeof(szCLSID)):

Build the key CLSID{...}
char szKey[64]:
strepy(szKey. "CLSIDY ")
strcat(szKey. szCLSID):

Add the CLSID to the registry.
setKeyAndValue(szKey. NULL. szFriendlyName):

{7 Add the server filename subkey under the CLSID key.
setKeyAndValue(szKey. "InprocServer32". szModule):

/7 Add the ProgID subkey under the CLSID key.
setKeyAndValue(szKey. "ProgID". szProgID):

/: Add the version-independent ProgID subkey under CLSID key.
setKevAndValue(szKey. "VersionIndependentProgiD".
szVerlndProgID):

;. Add the version-independent ProgID subkey under HKEY_CLASSES_ROOT.
setKeyAndValue(szVerlndProgID. NULL. szFriendlyName):
setKevAndValue(szVerlndProgID. "CLSID". szCLSID):
setheyAndValue(szVerindProgID. "CurVer". szProgID):

126

Add the versioned ProgID subkey under HKEY_CLASSES_ROOT.
setKeyAndValue(szProgIlD. NULL. szFriendlyName):
setKevAndValue(szProglID. "CLSID". szCLSID):

return S_OK:

Remove the component from the registry.

LONG UnregisterServer(const CLSID& cisid. // Class ID
const char* szVerindProgID. - Programmatic
const char* szProgID) " IDs

{

Convert the CLSID into a char.
char szCLSID[{CLSID_STRING_SIZE]:
CLSIDtochar(clsid. szCLSID. sizeof(szCLSID)):

- Build the key CLSID{...}
char szKev([64]:
strepy(szKey. "CLSID-"'):
strcat(szKey. szCLSID):

- Delete the CLSID Key - CLSID {...}
LONG IResult = recursiveDeleteKeyv(HKEY_CLASSES_ROOT. szKey):
assert((IResult == ERROR_SUCCESS) !

(IResult == ERROR_FILE_NOT_FOUND)):" Subkey may not exist.

Delete the version-independent ProglD Key.
IResult = recursiveDeleteKey(HKEY_CLASSES_ROOT. szVerlndProgID):
assert((IResult == ERROR_SUCCESS) Ii
(IResult == ERROR_FILE_NOT_FOUND)):/* Subkey may not exist.

Delete the ProglD key.
IResult = recursiveDeleteKey(HKEY_CLASSES_ROOT. szProgID):
assert((IResult == ERROR_SUCCESS) 1!
(IResult == ERROR_FILE_NOT_FOUND))... Subkey may not exist.

return S_OK:

ISR PR TS O SNy VT A

" Internal helper functions

.. Convert a CLSID to a char string.
void CLSIDtochar(const CLSIDé& clsid.
char* szCLSID.
int length)

assert(length >= CLSID_STRING_SIZE) :

/*Get CLSID

LPOLESTR wszCLSID = NULL.:

HRESULT hr = StringFromCLSID(clsid. &wszCLSID):
assert(SUCCEEDED(hr)):

- Covert from wide characters to non-wide.
westombs(szCLSID. wszCLSID. length):

127

'/ Free memory.
CoTaskMemFree(wszCLSID) :

Delete a key and all of its descendents.
LONG recursiveDeleteKev(HKEY hKeyParent. ‘> Parent of key to delete
const char* [pszKeyChild) * Key to delete
{
Open the child.
HKEY hKeyChild:
LONG IRes = RegOpenKeyvEx(hKeyParent. IpszKeyChild. 0.
KEY_ALL_ACCESS. &hKevChild):
if (IRes '= ERROR_SUCCESS)
{

return [Res:

}

" Enumerate all of the decendents of this child.
FILETIME ume:
char szBuffer[256]:
DWORD dwSize = 256:
while (RegEnumKeyEx(hKeyChild. 0. szBuffer. &dwSize. NULL.
NULL. NULL. &time) == S_OK)
{
" Delete the decendents of this child.
IRes = recursiveDeleteKev(hKeyChild. szBuffer):
if (IRes '= ERROR_SUCCESS)
{
. Cleanup before exiting.
RegCloseKey(hKevChild):
return [Res:
H

dwSize = 256:

Close the child.
RegCloseKeyv(hKeyChild):

- Delete this child.
return RegDeleteKeyv(hKeyParent. IpszKeyChild):

s

. Create a key and set its value.

BOOL setKeyAndValue(const char* szKey.
const char* szSubkey.
const char* szValue)

HKEY hKey:
char szKevBuf[1024]:

/¢ Copy keyname into buffer.
strepyv(szKeyBuf, szKey):

. Add subkey name to buffer.
if (szSubkey = NULL)

strcat(szKeyBuf. '"):
strcat(szKeyBuf, szSubkey):

}

:» Create and open key and subkey.

long IResult = RegCreateKeyEx(HKEY _CLASSES_ROOT .
szKeyBuf.
0. NULL. REG_OPTION_NON_VOLATILE.
KEY_ALL_ACCESS.NULL.
&hKey. NULL):

if {IResult '= ERROR_SUCCESS)

{
return FALSE:

b

Set the Value.
if (szValue '= NULL)

{
RegSetValueExthKey. NULL. 0, REG_SZ.
(BYTE *)szValue.
strlen(szValue)+1):
H

RegCloseKey(hKev):
return TRUE:

InProcServerExample001 .def
LIBRARY InProcServerExample001.dIl
DESCRIPTION an in-proc server example

EXPORTS
DIllGetClassObject @2 PRIVATE
DllCanUnloadNow @3 PRIVATE

DIIRegisterServer @4 PRIVATE
DllUnregisterServer @5 PRIVATE

.- InProcServerComponent.cpp
/ Implementation of a in-proc server component

#define INPROCSERVERCOMPONENT_CPP

#include "iostream.h”
#include "objbase.h"

#include "Iface.h™ // Interface declarations
#include "Registry.h" // Registry helper functions

void trace(const char* msg) { cout << msg << endl :}

Global variables
static HMODULE g_hModule = NULL: .'DLL module handle
static long g_cComponents = 0: -‘Count of active components
static fong g_cServerLocks = 0. "'Count of locks

Friendly name of component
const char g_szFriendlyName(] = "First In-Proc Server Example™:

- Version-independent ProglD
const char g_szVerindProgID[] = "InProcServer.InProcServerExample001" ;

* ProglD
const char g_szProgID[] = "InProcServer.InProcServerExample001.1" :

Component
class CA : public IX.
public IY
{
public:
interface [Unknown
virtwal HRESULT __stdcall QueryiInterface(const [ID& iid. void** ppv):
virtual ULONG __stdcall AddRef():
virtual ULONG __stdcall Release():

Interface IX
virtual HRESULT __stdcall Fx() { cout << "Component: 1Fx is called!" << end!: return NOERROR:

Interface 1Y

virtual HRESULT __stdcall Fy() { cout << "Component: iFy is called'" << endl: return NOERROR: }

CAO):
~CAQ):

private:
long m_cRef: ~"Reference count

)5

CA:CA() : m_cRef(])
{

Interlockedincrement(& g_cComponents):
trace(''Component: tCreating...");

y
CA::~CAJ)
{

InterlockedDecrement(&g_cComponents):
trace(""Component:'tDestroy self.”):

}

* IUnknown implementation

HRESULT __stdcall CA::Queryinterface

130

(const [ID& iid. void** ppv)
{
if (iid == [ID_IUnknown)
ppv = static_cast<IX>(this):
else if (itd == lID_IX)
{
ppv = static_cast<IX>(this):
trace(""Component:tReturn pointer to IX."}):
b
else if (itd == [ID_IY)
{
*ppv = static_cast<l Y *>(this):
trace("Component:‘tReturn pointer to IY."):
)
else
{
*ppv = NULL:
return E_NOINTERFACE:
}
reinterpret_cast<IUnknown*>(*ppv)->AddRef():
return S_OK:
}

ULONG __stdcall CA::AddRef()
{

return InterlockedIncremeny(&m_cRef):

}

ULONG __stdcall CA::Release()
{
it (InterlockedDecrement(&m_cRef) == 0)
{
delete this:
return ():
}
return m_cRef’

}

Class factory

class CFactory : public IClassFactory
{
public:
" interface IUnknown
virtual HRESULT __stdcall Querylnterface(const IID& iid. void** ppv):
virtual ULONG __stdcall AddRef():
virtual ULONG __stdcall Release():

.- Interface IClassFactory

virtual HRESULT __stdcall Createlnstance(IUnknown* pUnknownOuter.
const [ID& iid.
void** ppv):

virtual HRESULT __stdcall LockServer(BOOL bLock):

131

o T T T T e e

CFactory() : m_cRef(1) { trace("'Class factory:tCreating..."): }
~CFactory() { trace("'Class factory:'tDestroy self."): }

private:
long m_cRef:

»
Class factory IUnknown implementation

HRESULT __stdcall CFactory::QuerylInterface(const IID& iid. void** ppv)
{
if ((iid == [ID_IUnknown) Il (iid == [ID_IClassFactory))
{
ppv = static_cast<IClassFactory>(this):
trace("'Class factory:‘freturning interface...”}:

Ise

PN ¢ PR

*ppv = NULL:
return E_NOINTERFACE:
}
reinterpret_cast<IUnknown*>(*ppv)->AddRef():
return S_OK:
b

ULONG __stdcall CFactory::AddRef()
{

return InterlockedIncrement(&m_cRef):

}

ULONG __stdcall CFactory::Release()
{
if (InterlockedDecrement(&m_cRef) == 0)
{
delete this:
return (:

)

return m_cRef;
¥

~ IClassFactory implementation

HRESULT __stdcall CFactory::Createlnstance
(IUnknown* pUnknownQuter.
const [ID& iid.
void** ppv)

{

trace("'Class factory:\tCreate component.'');

/ Cannot aggregate.
if (pUnknownQuter != NULL)
return CLASS_E_NOAGGREGATION:

- Create component.
CA* pA =new CA:
if (pA == NULL)

return E_OUTOFMEMORY':

. Get the requested interface.
HRESULT hr = pA->Queryinterfacediid. ppv):

.~ Release the IlUnknown pointer.

. If Querylnterface failed. component will delete itself.
pA->Release():

return hr :

}

-~ LockServer
HRESULT __stdcall CFactory::LockServer(BOOL bLock)
{
if (bLock)
InterlockedIncrement(&g_cServerLocks):
else
InterlockedDecrement(&g_cServerLocks):
trace("'Class factory:'tLock Server'):

return S_OK :
¥

SR R

Exported functions

Can DLL unltoad now?
STDAPI DiICanUnloadNow()
{
trace("DIICanUnioadNow: 1Dl can unload now?");
it ((g_cComponents == 0) && (g_cServerLocks == 0))
return S_OK:
else
return S_FALSE:

Get class factory
STDAPI DlIGetClassObject(const CLSID& clsid.
const {ID& 1id.
void** ppv)
{

trace("DIlGetClassObject: tCreate class factory."):

/- Can we create this component?
if (clsid !'= CLSID_Componentl)
return CLASS_E_CLASSNOTAVAILABLE :

- Create class factory.
CFactory* pFactory = new CFactory:- No AddRef in constructor
if (pFactory == NULL)

return E_OUTOFMEMORY :

~ Get requested interface.
HRESULT hr = pFactory->QueryInterface(iid. ppv) :
pFactory->Release():

return hr:

)

- Server registration
STDAPI DiIRegisterServer()
{
trace("DlIRegisterServer: tRegistering Server..."):
return RegisterServer(g_hModule.
CLSID_Componentl.
_szFriendlyName.
_szVerlndProgID.
_szProgID}):

e e 9

}

" Server unregistration
STDAPI DllUnregisterServer()
{
trace("DllUnregisterServer: tUnregistering server..."):
return UnregisterServer(CLSID_Componenti.
g_szVerlndProgID.
a_szProglD):

DLL module information

BOOL APIENTRY DilMaintHANDLE hModule.
DWORD dwReason.
void* IpReserved)
{
if (dwReason == DLL_PROCESS_ATTACH)
{
g_hModule = hModule:
trace("DLLMain is called for process attachment!"):
y
else if (dwReason == DLL_PROCESS_DETACH)
trace("DLLMain is called for process detachment!");

return TRUE;
b

134

Appendix 10 An In-proc Server Component Client Example

- Client.cpp
Implementation file of a client which uses an in-proc
server component.

#include "iostream.h”
#include "objbase.h*
#include "windows.h"

#include "Iface.h”
void trace(const char* msg) { cout << "Client: 1" << msg << endl: }

nt main()

{
. Initialize COM Library
Colnitalize(NULL):

trace("'Call CoCreatelnstance to create component and get interface [X."):

IX* pIX = NULL:

HRESULT hr = ::CoCreateinstance(CLSID_Component|.
NULL.
CLSCTX_INPROC_SERVER.
HD_IX.

(void**)&plX):
it (SUCCEEDEDchr))

{

trace("Succeeded getting [X."):
pIX->Fx(): Use interface [X.

trace("Ask for interface IY."):
IY* plY = NULL
hr = pIX->QueryInterface(IID_IY . (void**)&plY):
if (SUCCEEDED(hr))
{
trace("'Succeeded getting IY."):
plY->Fy():. Use interface Y.
plY->Release():
trace("'Release IY interface."):
}
else
trace("'Could not get interface 1Y.") :

trace("Ask for interface 1Z2.");

[Z* plZ = NULL.
hr = pIX->Querylnterface(IID_IZ. (void**)&plZ):

if (SUCCEEDED(hr))

{
trace(''Succeeded in getting interface [Z."):
plZ->Fz().

plZ->Release():

135

trace(""Release IZ interface.”):

}

else
trace("'Could not get interface 1Z."):

trace("'Release IX interface."):
pIX->Release():

else

{

cout << "Client: tCould not create component. hr ="'
<< hex << hr << endl:

t

Uninitialize COM Library
CoUniniualize():
MessageBox(NULL.
"When finish viewing the execution result. click OK to terminate!".
"Message”. MB_SYSTEMMODAL):

return O:

136

Appendix 11 An ActiveX Control Example

‘First.h

#it !defined(AFX_FIRST_H_E660D26D_4115_i ID3_B5B1_8876DCED2447__INCLUDED_)
#define AFX_FIRST_H__E660D26D_4115_11D3_B5B!_8876DCED2447__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif _MSC_VER > 1000
- First.h : main header file for FIRST.DLL
#if ldefined(_ AFXCTL_H__)
#error include ‘afxctl.h”before including this file
fendif

#include "resource.h" - main symbols

B RO S R

" CFirstApp : See First.cpp for implementation.

class CFirstApp : public COleControlModule

{

public:
BOOL Initlnstance():
int ExitInstance():

)3

extern const GUID CDECL _tlid:
extern const WORD _wVerMajor:
extern const WORD _wVerMinor:

“{{AFX_INSERT_LOCATION}}
Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif !defined(AFX_FIRST_H__E660D26D_4115_11D3_B35B1_8876DCED2447__INCLUDED)

/ First.cpp : Implementation of CFirstApp and DLL registration.

#include "stdafx.h"
#include "First.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__:
#endif

CFirstApp NEAR the App:

137

const GUID CDECL BASED_CODE _tlid =

{ 0xe660d264. 0x4115.0x11d3. { Oxb5.0xbl. 0x88. 0x76. Oxdc. Oxed. 0x24. 0x47 })

const WORD _wVerMajor = I:
const WORD _wVerMinor = 0:

TRy TR PN SR i S

CFlrslApp lmllnxtance DLL mmahzanon

BOOL CFirstApp::InitInstance()

{
BOOL binit = COleControlModule::InitInstance():
if (blnit)
{
" TODO: Add your own module initialization code here.
}
return blnit:
b

CFlrxlApp E\ullnstance DLL termination
int CFirstApp::Exitlnstance()
{

- TODO: Add your own module termination code here.

return COleControlModule::Exitlnstance():

DlIRwlslerSer\ er - Adds entries to the system registry
STDAPI DIIRegisterServer(void)
{
AFX_MANAGE_STATE(_afxModule AddrThis):

if (!AfxOleRegisterTypeLib(AfxGetlnstanceHandle(). _tlid))
return ResultFromScode(SELFREG_E_TYPELIB):

if (!COleObjectFactoryEx::UpdateRegistryAll(TRUE))
return ResultFromScode(SELFREG_E_CLASS):

return NOERROR:

P S N NNy N R R NIy VAR N SO FU N RN I e
DllL nreulstchcr\ er - Removes entries from lhe system registry

STDAPI DllUnregisterServer(void)
{

138

AFX_MANAGE_STATE(_afxModule AddrThis):

if (!AfxOleUnregisterTypeLib(_tlid. _wVerMajor. _wVerMinor))
return ResultFromScode(SELFREG_E_TYPELIB):

if (!COleObjectFactoryEx::UpdateRegistryAll(FALSE))
return ResultFromScode(SELFREG_E_CLASS):

return NOERROR:

~FirstCTL.h
#if !defined(AFX_FIRSTCTL_H__E660D275_4115_11D3_B35B1_8876DCED2447__INCLUDED_)
#define AFX_FIRSTCTL_H__E660D275_4115_11D3_BSBI_8876DCED2447__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif _MSC_VER > 1000

- FirstCtl.h : Declaration of the CFirstCurl ActiveX Control class.

v /'l L £ '.‘ i V. / "l"."/,”//:// ///’l‘/f’r’/r, ’ ,/l ’ ‘///.'.‘ ///‘.'l/r/,(/','./v

- CFirstCurl : See FirstCtl.cpp for implementation.

class CFirstCtrl : public COleControl

{
DECLARE_DYNCREATE(CFirstCtrl)

Constructor
public:
CFirstCrrl():

Overrides
ClassWizard generated virtual function overrides
SA{{AFX_VIRTUAL(CFirstCrrl)
public:
virtual void OnDraw(CDC* pdc. const CRect& rcBounds. const CRect& relnvalid):
virtual void DoPropExchange(CPropExchange* pPX):
virtual void OnResetState():
7 }YAFX_VIRTUAL

+ Implementation
protected:
~CFirstCtrl():

DECLARE_OLECREATE_EX(CFirstCtrl) // Class factory and guid
DECLARE_OLETYPELIB(CFirstCtrl) /# GetTypelnfo
DECLARE_PROPPAGEIDS(CFirstCtrl) i/ Property page IDs
DECLARE_OLECTLTYPE(CFirstCtrl) /7 Type name and misc status

- Message maps
“{{AFX_MSG(CFirstCurl)
i/ NOTE - ClassWizard will add and remove member functions here.
DO NOT EDIT what you see in these blocks of generated code !

139

}IAFX_MSG
DECLARE_MESSAGE_MAP()

Dispatch maps
{{AFX_DISPATCH(CFirstCtrl)
" NOTE - ClassWizard will add and remove member functions here.
. DO NOT EDIT what you see in these blocks of generated code !
- }YAFX_DISPATCH
DECLARE_DISPATCH_MAP()

afx_msg void AboutBox():

Event maps
{{AFX_EVENT(CFirstCtrl)
: NOTE - ClassWizard will add and remove member functions herc.
DO NOT EDIT what you see in these blocks of generated code !
}YAFX_EVENT
DECLARE_EVENT_MAP()

Dispatch and event IDs

public:

enum {

{{AFX_DISP_ID(CFirstCtrl)
- NOTE: ClassWizard will add and remove enumeration elements here.
DO NOT EDIT what you see in these blocks of generated code !

}IAFX_DISP_ID

»
¥

{{AFX_INSERT_LOCATION}}
Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif !defined(AFX_FIRSTCTL_H__E660D275_4115_11D3_B35B1_8876DCED2447__INCLUDED)

- FirstCu.cpp : Implementation of the CFirstCtrl ActiveX Control class.

#include "stdafx.h"
#include "First.h”
#include "FirstCtl.h"
#include "FirstPpg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[} = __FILE_
#endif

IMPLEMENT_DYNCREATE(CFirstCtrl. COleControl)

" Message map

BEGIN_MESSAGE_MAP(CFirstCrtrl. COieControl)
{{AFX_MSG_MAP(CFirstCtrl)
NOTE - ClassWizard will add and remove message map entries
DO NOT EDIT what you see in these blocks of generated code !
“IIAFX_MSG_MAP
ON_OLEVERB(AFX_IDS_VERB_PROPERTIES. OnProperties)
END_MESSAGE_MAP()

Dispatch map

BEGIN_DISPATCH_MAP(CFirstCtrl. COleControl)

{{AFX_DISPATCH_MAP(CFirsiCirl)

NOTE - ClassWizard will add and remove dispatch map entries
DO NOT EDIT what you see in these blocks of generated code !

~ }}YAFX_DISPATCH_MAP

DISP_FUNCTION_ID(CFirstCtri. "AboutBox". DISPID_ABOUTBOX. AboutBox. VT_EMPTY.
VTS_NONE)
END_DISPATCH_MAP()

"""""" A R N T

Pl

" Event map

BEGIN_EVENT_MAP(CFirstCtrl. COleControl)
{{AFX_EVENT_MAP(CFirstCtrl)
- NOTE - ClassWizard will add and remove event map entries
DO NOT EDIT what you see in these blocks of generated code !
S }YAFX_EVENT_MAP
END_EVENT_MAP()

Property pages

- TODO: Add more property pages as needed. Remember to increase the count!
BEGIN_PROPPAGEIDS(CFirstCtrl. 1)

PROPPAGEID(CFirstPropPage::guid)
END_PROPPAGEIDS(CFirstCrrl)

P T T
‘ lnmallze class factor\ and guid
IMPLEMENT_OLECREATE _EX(CFirstCtrl. "FIRST.FirstCtrl.1".
0xe660d267. 0x4115. 0x11d3. Oxb5. Oxbl, 0x88. 0x76, Oxdc. Oxed. 0x24, 0x47)
R R NS RO R N TS RS NN N N R Y R A I N N e
: T\ pe hbrar\ ID and version

IMPLEMENT_OLETYPELIB(CFirstCtrl. _tlid. _wVerMajor. _wVerMinor)

141

Interface [Ds

const [ID BASED_CODE IID_DFirst =

{ 0xe660d265. Ox4115. 0x11d3. { Oxb5. Oxbl. 0x83. 0x76. Oxdc. Oxed. Ox24.0x47 } ¥
const [ID BASED_CODE [ID_DFirstEvents =

{0xe660d266. Ox4115.0x11d3. { Oxb5. Oxbl. 0x88. 0x76. Oxdc. Oxed. 0x24. 0x47 } }:

- "‘ S A o ’,' .", /"’./, ." N ! 'l.',‘."lv. o) “/ iy.// ,f,, v"’ .'vv'//;.” ‘l.’l "’ﬁ"/"/"/,"«/ .‘,‘

Control type lnformauon

static const DWORD BASED_CODE _dwFirstOleMisc =
OLEMISC_ACTIVATEWHENVISIBLE |
OLEMISC_SETCLIENTSITEFIRST |
OLEMISC_INSIDEOUT |
OLEMISC_CANTLINKINSIDE |
OLEMISC_RECOMPOSEONRESIZE:

IMPLEMENT_OLECTLTYPE(CFirstCul. IDS_FIRST. _dwFirstOleMisc)
Yo A I TNy S N
CFirstCrrl: CFlrletrlFacxon UpdateRemslr\ -

Adds or removes system registry entries for CFirstCtrl

BOOL CFirstCrl::CFirstCurlFactory::UpdateRegistry(BOOL bRegister)

{
TODO: Verify that your control follows apartment-model threading rules.
. Refer to MFC TechNote 64 for more information.
If vour control does not conform to the apartment-model rules. then
you must modify the code below. changing the 6th parameter from
afxRegApartmentThreading to 0.
if (bRegister)
return AfxOleRegisterControlClass(
AfxGetlnstanceHandle().
m_clsid.
m_IlpszProglD.
IDS_FIRST.
IDB_FIRST.
afxRegApartmentThreading.
_dwFirstOleMisc.
_tlid.
_wVerMajor,
_wVerMinor):
else
return AfxOleUnregisterClass(m_clsid. m_lpszProglID):
}

[IR I
CF:mCtrl CFxrstCtrl - Conslructor

CFirstCrrl::CFirstCrrl()
{

InitializelIDs(&IID_DFirst. &IID_DFirstEvents):

TODO: Initialize vour control’s instance data here.

C FINC lrl ~C FlrstC lrl - Destruc(or

CFirstCtrl::~CFirstCrrl()
{

TODO: Cleanup your control’s instance data here.

’
CFlrstClrl OnDra\\ - Dra\unc funcuon

void CFirstCrrl::OnDraw(
CDC* pdc. const CRect& rcBounds. const CRect& rclnvalid)

{
TODO: Replace the following code with your own drawing code.
pdc->FillRect(rcBounds. CBrush::FromHandle((HBRUSH)GetStockObject WHITE_BRUSH))):
pdc->Ellipse(rcBounds):
}

T R T R L Ry R PSP R PSR

.. CFirstCirl::DoPropExchange - Persistence support

void CFirstCrrl::DoPropExchange(CPropExchange* pPX)

{
ExchangeVersion(pPX. MAKELONG(_wVerMinor. _wVerMajor)):
COleControl::DoPropExchange(pPX):
TODO: Call PX_ functions for each persistent custom property.
}

o ' / R Py VY T T A e I N v
CFlrs(C.rl OnResetState Reset control to default state

void CFirstCurl::OnResetState()

{
COleControl::OnResetState(): // Resets defauits found in DoPropExchange
/- TODO: Reset any other control state here.

}

ZEFTY SRR SR R T S R S IR .///////// T

‘ CFlrlelrl AboutBO\ Display an "About" box to the user

void CFirstCrrl:: AboutBox()
{

CDialog dlgAbout(IDD_ABOUTBOX_FIRST):
dlgAbout.DoModal():

B R R P R SN 0T S UV RN
* CFirstCtrl message handlers

< FirstPpg.h
#if 'defined(AFX_FIRSTPPG_H__E660D277_41i5_11D3_B5B1_8876 DCED2447__INCLUDED_)
#define AFX_FIRSTPPG_H__E660D277_4115_11D3_B35B1_8876DCED2447__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif _MSC_VER > 1000

FirstPpg.h : Declaration of the CFirstPropPage property page class.

R R N Ny PN PO S S SV ISV PO

.- CFirstPropPage : See FirstPpg.cpp.cpp for implementation.

class CFirstPropPage : public COlePropertyPage

{
DECLARE_DYNCREATE(CFirstPropPage)
DECLARE_OLECREATE_EX(CFirstPropPage)

Constructor
public:
CFirstPropPage():

- Dhalog Data
{{AFX_DATA(CFirstPropPage)
enum { IDD = IDD_PROPPAGE_FIRST }:
' NOTE - ClassWizard will add data members here.
DO NOT EDIT what vou see in these blocks of generated code !

}IAFX_DATA

- Implementation

protected:
virtual void DoDataExchange(CDataExchange* pDX): /' DDX/DDV support

i» Message maps
protected:
1 {{AFX_MSG(CFirstPropPage)
7 NOTE - ClassWizard will add and remove member functions here.
‘DO NOT EDIT what you see in these blocks of generated code !
J1IAFX_MSG
DECLARE_MESSAGE_MAP()

¥

S {{AFX_INSERT_LOCATION}}
:+ Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif - !defined(AFX_FIRSTPPG_H__E660D277_4115_11D3_B5B1_8876DCED2447__

- FirstPpg.cpp : Implementation of the CFirstPropPage property page class.

#include "stdafx.h”
#include "First.h"
#include "FirstPpg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE___
Fendif

IMPLEMENT_DYNCREATE(CFirstPropPage. COlePropertyPage)

Message map

BEGIN_MESSAGE_MAP(CFirstPropPage. COlePropertyPage)
“{{AFX_MSG_MAP(CFirstPropPage)
" NOTE - ClassWizard will add and remove message map entries
DO NOT EDIT what you see in these blocks of generated code !
PIAFX_MSG_MAP
END_MESSAGE_MAP()

Iniualize class factory and guid

IMPLEMENT_OLECREATE_EX(CFirstPropPage. "FIRST.FirstPropPage.l"".
Uxe660d268. Ox4115. 0x11d3. OxbS. Oxbl. 0x88. 0x76. Oxdc. Oxed. 0x24. 0x47)

R TR e T
CFlrstProdene CFlrstPropPaoeFactor\ Upda(eRemstrv -
* Adds or removes system registry entries for CFirstPropPage

BOOL CFirstPropPage::CFirstPropPageFactory::UpdateRegistry(BOOL bRegister)
{
if (bRegister)
return AfxOleRegisterPropertyPageClass(AfxGetinstanceHandle().
m_clsid. IDS_FIRST_PPG):

else
return AfxOleUnregisterClass(m_clsid. NULL);

Oy R YRy B e S TV NN S R Ry e TR R r e i
-+ CFirstPropPage::CFirstPropPage - Constructor

CFirstPropPage::CFirstPropPage() :
COlePropertyPage(IDD. IDS_FIRST_PPG_CAPTION)

{

INCLUDED)

{{AFX_DATA_INIT(CFirstPropPage)
NOTE: ClassWizard will add member initialization here

DO NOT EDIT what you see in these blocks of generated code !
YAFX_DATA_INIT

Lo R IRy R

CFirstPropPage::DoDataExchange - Moves data between page and properties

void CFirstPropPage::DoDataExchange(CDataExchange* pDX)
{
{{AFX_DATA_MAP(CFirstPropPage)
NOTE: ClassWizard will add DDP. DDX. and DDV calls here
DO NOT EDIT what vou see in these blocks of generated code !
PAFX_DATA_MAP
DDP_PostProcessing(pDX):

.o ey ' I saro
R P ST S A

CFirstPropPage message handlers

146

