INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UM directly to order.

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0800

®

UMI






GRAPHICAL USER INTERFACE FOR TROMLAB

ENVIRONMENT

VANGALURSRINIVASAN VAGuLA BHASKARAN

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

DECEMBER 1999
(© VANGALURSRINIVASAN VAGULA BHASKARAN, 2000



vl

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Bibliotheque nationale
du Canada

Acquisitions et )
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your e Votre reference
Our fiie Notre refdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distnibuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadia

0-612-47855-6



Abstract

Graphical User Interface for TROMLAB environment

VangalurSrinivasan Vagula Bhaskaran

Real-time reactive systems are characterized by their continuous interaction with
their environment through stimulus-response behaviour. The safety-critical nature of
their domain and their inherent complexity advocate the use of formal methods in
the software developement process. An effective user interface for real-time reactive
systems developement environment would hide the complexity of the formalism in

the design, and promote ease of use.

This thesis addresses the design and implementation of a Graphical User Interface
(GUI) which provides precise interaction points for the user-centered tasks of TROM-
LAB, a rigorous real-time reactive systems development environment being built in

the Department of Computer Science, Concordia University.

The scope of this thesis is two-fold. We first reengineer the initial TROMLAB de-
sign, which is a prerequisite to GUI developement. Reengineering was necessary due
to the need for a flexible design with abilities to absorb changing requirements with
minimal changes to the design, and usability of the entire TROMLAB environment.
We then build an integrated GUI to interact with TROMLAB environment.

iii



Acknowledgments

I would like to take this opportunity to extend my gratitude to Dr.Alagar, my thesis
supervisor and mentor, for the motivation, technical support and financial support
he has given through my studies. This work would not have been possible without

his consistent guidance and encouragement.

I gratefully acknowledge the graduate awards office for providing me international

student fee remission award for the years 1997-98, and 1998-99.

I wish to thank my parents for encouraging me to pursue graduate education and
for their moral and financial support. Their love, and support sustained my spirits

during the long hours I spent working on this thesis.

I wish to thank Stan Swiercz for his valuable suggestions, and technical support

during the developement process.

I would like to thank Darma for the useful discussions, and suggestions. Many
thanks goes to my colleague Haidar for his support during the developement pro-

cess, and for providing a lively work place.

iv



Contents

List of Figures viii
List of Tables X
1 Introduction 1
1.1 Real Time Reactive Systems . . . . . . . . . . ... ... ... .... 1
1.2 Scopeofthe Thesis . . . . . . . . . . . . ... ... ... ... 3

2 TROMLAB Environment - a brief review of initial design 5
2.1 TROMLAB Formalism . . . ... . ... .. ... ... ....... 6
2.1.1 Data Abstraction Tier . . . . . . . . ... ... ... ... .. 8

2.1.2 TROM Tier . . . . . . . . . . . . oo 8

2.1.3 Subsystem Specification Tier . . . . . . . . . ... .. .. ... 9

2.2 Syntax and Semantics . . . . .. . . . ..o 9
2.3 TROMLAB Components . . . . . . . . . .. . ... 14
2.3.1 The Interpreter . . . . . . . . . . . ... o 15

2.3.2 The Simulator . . . . . . . . . . . . 17

3 Reengineering TROMLAB 19
3.1 Usability Analysisof TROMLAB . . . . . . . . .. ... ... ... .. 19
3.1.1 Need for improving the usability of TROMLAB . . . . . . . .. 20

3.1.2 Need for reengineering TROMLAB . . . . . . ... ... .. .. 20

3.1.3 Therevised TROMLAB . . . . . . .. ... .. ... . ... 21

3.2 Improvements . . . . . . . . . . . . . . e e 23
3.2.1 Interpreter . . . . . . . . . . . . i i e e e e 24

3.2.2 Simulator . . . . .. . ... e 27



3.3 Revised User Requirements . . . ... ... ... ...........
3.3.1 Requirements of the Interpreter GUI . . . . . . . .. .. ...
3.3.2 Requirements of Simulator GUI . . . . . . ... ... .....
3.3.3 Requirements of Reasoning system GUI. . . . . . .. ... ..

3.3.4 Requirements of the G UI for other components of TROMLAB

31

Design and Implementation of the Modified Interpreter and Simulator 35

41 Classdiagrams . . . . . . . . .. . ...
4.1.1 Interpreter . . . . . . . . .. ... e e e e e
4.1.2 Simulator . . . . . . .. ...

4.2 Languageofchcice . . . . . .. . .. ...,
4.2.1 JavaCC . . . . . . . e
4.22 JJTree . . . . . . ..o

4.3 Implementation . . . . . . . . . . ...
4.3.1 Interpreter . . . . . . . . . .. .o e e e e e e e
4.3.2 Simulator . . . . . . . ..o
4.3.3 Interfacing with the Stmulator . . . . . . . . . . ... ... ..

Graphical User Interface : Design and Implementation

5.1 GUIdesignissues . . . . . . . .. . . ...
5.2 Detailed Designof GUI . . . . . . . ... . ... ... ... . .....
5.2.1 Interpreter GUI . . . . . . . . . . . ... ... ... ...
5.2.2 Simulator GUI . . . . . . . . .. ... oo
5.3 GUIImplementation . . . . . ... .. ... .. ... ...
5.3.1 Snapshot of Interpreter GUI . . . . . . ... .. ... ... ..
5.3.2 Snapshot of Simulator GUI . . . . . . ... ... ... ....

Case Study : Robotics Assembly example

6.1 Introduction . . . . . . . . . . . . .. ..
6.2 Problem Description . . . . . . ... . ... ... 0oL
6.2.1 Informal Problem Description . . .. .. .. ... ... ...
6.2.2 Class Diagram for Robotics Assembly . . . . . . ... .. ...
6.2.3 Formal Problem Description . . . . ... ... .........
6.3 GUI for Robotic Assembly . . . . . . . . ... ... ... ...
6.3.1 Interpreter GUI . . . . . . . . .. .. . ... ... ...,

vi

35



6.3.2 Simulator GUI . . . . . . . . . . . e 79

7 Conclusion and Future Work 89
7.1 Future work . . . . . . . . e e e e e e 89
Bibliography 91
Appendix A 94
Appendix B 100
Appendix C 104
1 Interpreter GUI . . . . . . . . . . L 104
.2 Simulator GUI . . . . . . . e e e e e e e 107



List of Figures

1 Three tier . . . . . . . . L e
2 Set trait . . . . . . . . . L e e e e e e
3 Train class specifications . . . . . . . .. ... ... ... ..
4 Gate class specifications . . . . . . . . ... ... ..o oL
b) Controller class specifications . . . . . .. ... ... .. ... ....
6 SCS . . e
7 Architecture of interpreter . . . . . . . . . .. ... .o oL
8 Architecture of simulationtool . . . . . . .. ... ... ... oL,
9 Future TROMLAB environment . . . . . . .. .. ... .. .. ....
10 AST Structure . . . . . . . . . . . e e e
11  Interpreter Class diagram (Old) . . . . ... ... .. ... .. ....
12 Interpreter Class diagram - Detailed (Old) . . . . . ... ... .. ..
13  Interpreter Class diagram - Detailed (Old) . . . . .. . ... . .. ..
14  Interpreter Class diagram (New) . . . . . . . . . . .. .. ... ...
13 Interpreter Class diagram - SCS (New) . . . . . . .. .. ... .. ..
16  Interpreter Class diagram - TROMclass (New) . . . . . . .. . .. ..
17 Simulator Class diagram - TROM class diagram(New) . . .. .. ..
18  Simulator Class diagram - Simulation Event Object model (New)

19  Simulator Class diagram - Subsystem Object model (New) . . . . ..
20 Simulationevent list . . . . . .. . ... ... oo

21 Use Case diagram for Interpreter GUI . . . . . . . ... ... ....
22 Object diagram for Interpreter GUI . . . . . . . . . . .. ... . ...
23  Use Case diagram for Simulator GUI . . . . . . . . ... ... ....
24 Object diagram for Simulator GUI . . . . .. .. .. .. ... ....
25 Window of Interpreter GUI . . . . . . . .. ... . ... ... ...,
26 Window of Simulator GUI . . . . . . .. ... .. .. ... . ....

viil



Window of Simulator - Debugger GUIT . . . . . . . . . . ... ... ..
Window of Simulator - Query Handler GUI . . . . . . . .. ... ..
Window of Simulator - Trace Analyser GUI . . . . . . . .. .. ...
Window of Simulator - Reasoning System GUI . . . . . . . . .. ...
Robotics System Class diagram . . . . . ... ... ... .......
User TROM class - Textual representation . . . . . .. ... ... ..
User TROM class - State machine representation . . . ... ... ..
User TROM class- UML model . . . . . . . ... ... ... ... ..

Belt TROM class - Textual representation . . . . ... ... ... ..
Belt TROM class - State machine representation . . . . . . . . . . ..
Belt TROM class - UML model . . . . . .. ... ... ........
Robot TROM class - Textual representation . . . . ... .. ... ..
Robot TROM class - State machine representation . . . .. ... ..
Robot TROM class- UML model . . . . . . ... ... ... ... ..
SCS - Textual representation . . . . . . . . . ... .. .. .. .....
SCS-UMLmodel .. ... ... ... ... .. ... ... ...
Sample Simulation Event List . . . . . . . . .. ... ... ... ..
Part LSL Trait . . . . . .. . . . . . .. .. ...
Queue LSL Trait . . . . . . . . . . . . . ... e
Stack LSL Trait . . . . . .. . . . . . .. ... e
Window of Interpreter GUI . . . . . .. . ... ... .. .......
Window of Simulator GUI . . . . . . .. ... . ... ... ......
Window of Simulator - Debugger GUI . . . . . . .. . . ... ... ..
Window of Simulator - Query Handler GUI . . . . . . . . . ... ..
Window of Simulator - Trace Analyser GUI . . . . . . ... ... ..
Window of Simulator - Reasoning System GUI . . . . . . . ... ...



List of Tables

LSS VL R ]

[«2 31}

~1

10
11
12
13
14

States of Robot Manipulator.

Grammar for generic reactive class specification . . . . . .. .. ...

Grammar for generic reactive class title . . . . . . . .. . ... .

Grammar for events . . . . . .
Grammar for states . . . . . .
Grammar for attributes . . . .

Grammar for LSL traits . . .

Grammar for attribute functions . . . . . . . . . . . .. .. ... ...

Grammar for transition specifications . . . . . . . . ... ... ...

Grammar for time constraints

Grammar for subsystem configuration . . . . . . .. ... ... ...

Grammar for include section .

Grammar for instantiate section . . . . . . . . . . . . ...

Grammar for configure section

94
94
95
95
95
96
96
97
98
98
99
99
99



Chapter 1
Introduction

Research in real-time reactive systems revolve around four important topics:
e languages and methods for specification and design,
e formal techniques for verification and validation,
e development of tools for applying formalism with sufficient rigor, and
e effective user interface for hiding complexity and promoting ease of use.

This thesis addresses the design and implementation of a Graphical User Inter-
face(GUI) which provides precise interaction points for the user-centered tasks of
TROMLAB, a rigorous real-time reactive systems development environment being

built in the Department of Computer Science, Concordia University.

1.1 Real Time Reactive Systems

Reactive systems maintain a continuous ongoing interaction with their environment.
Such systems are largely event driven, interact intensively with the environment
through stimulus-response behaviour, and are regulated by strict timing constraints.
Further, these systems might also consist of both physical components and software
components controlling the physical devices in a continuous manner. Although reac-
tive systems are interactive systems, there is a fundamental difference between these
two systems. Whereas both environment and processes have synchronisation abil-

ities in interactive systems, a process in a reactive system is solely responsible for



the synchronisation with its environment. That is, a process in a reactive system is
fast enough to react to stimulus from the environment, and the time between stim-
ulus and response is acceptable enough for the dynamics of the environment to be
receptive to the response. For example, a human-computer interface is an interactive
system, whereas a controller for a collision-free coordinated motion of autonomous
robots is clearly reactive. In the case of real-time reactive systems, stimulus-response
behaviour is also regulated by timing constraints and the major design issue is one
of performaxfce. Examples of real-time reactive systems include telephony, air traffic

control systems, nuclear power reactors, and avionics.

Several factors contribute to the complexity of real time reactive systems. They

are :

e size: telephony and air traffic control systems are made up of a large number

of components;

e time constraints: telephony imposes soft time constraints, a violation of which
may not cause any catastrophe; however, avionics and nuclear power reactor
control systems impose hard (strict) time constraints. which if violated will

cause damage and injury to human safety;
e criticality: nuclear power reactor controller is a safety-critical system;

e heterogeneity: sensors, actuators, and system processes have different functional

and time sensitive capabilities.

The reactive behaviour of the system is a combination of its functional behaviour,
causal dependencies of actions, and real-time durations governing them. Due to these
three layers of interaction, understanding or reasoning about the behaviour of real-
time reactive systems becomes difficult. In TROMLAB, these are resolved through

the introduction of the following steps:
e appropriate visual languages for architectural descriptions,
e mechanical generation of formal specification from visual models,

e design theories for refinement,



e process model support for iterative design, animated analysis, and design-time

debugging,

validation and reasoning based on an animation of the design,

e formal verification assistant based on PVS,

browser support for active reuse of design and specification artifacts, and

e an integrated GUI supporting all the above features.

1.2 Scope of the Thesis

The primary goal of TROMLAB environment is to provide a framework for a rigorous
development and analysis of real-time reactive systems. The application developer,
who is normally an expert in the application domain, is facilitated to focus on the
modeling and analysis of the problem without being burdened by formal notations.
This should enhance the quality of the software as well as human productivity. An-
other goal is to reduce the complexity of understanding the results and behaviour of
the system through the introduction of easy to use and easy to learn task-oriented de-
scriptions in GUI Strongly motivated by these two goals, TROMLAB designers have
included visual representations and tools integrating the formalism and rigorous anal-
vses to their pictorial counterparts. Class diagrams, state machine models of reactive
objects, and system configuration diagrams can be constructed through the GUI For
composing large system configuration specifications, GUI is quite helpful in breaking
the complexity barrier - concrete graphical representations are useful to communicate
complex system architecture, interactions of its components, as well as the intuitive
understanding of the system under development. There is some support to this claim
as evidenced by the popularity of Statemate, and ObjecTime tools [Obj97]. The look
and feel of GUI is influenced by these tools.

The user interface has been conceived and planned to provide interaction points
to Interpreter, Simulator, Reasoning System, Verifier, and Browser components of
TROMLAB environment. A major goal in GUI design is to ensure that application

developer needs to know only these interaction points; it is not necessary to know



the formalism underlying the pictorial counterparts. The Interpreter [Tao96] and the
Simulator [Mut96] were both simultaneously designed and implemented in C++. The
next stage of TROMLAB evolution included the planning and design of the Browser
[Nag99], the Reasoning System [Hai99], and the GUI During this stage, the short-
comings and the inadequacies in the design and implementation of the Interpreter
were brought to light. The need to remedy these defects and the lack of tools to de-
sign GUI for C++ software lead to a complete reengineering of both the Interpreter,

and the Simulator.

Reengineering was directed by user feedback, and predicting the involvement of future
users. Test team, verification team, and implementation team are the three important
categories of future users. During the last three years the initial designers, current and
future users held several brainstorming sessions, group discussions, and walkthroughs
to determine the usability goals of TROMLAB. They have influenced the current GUI
design. Interacting through GUI, it is easy to learn TROMLAB features and is easy
to use TROMLAB features. The two contribution of this thesis are:

1. reengineering TROMLAB, which was a prerequisitive to GUI development. and

2. GUI, an integrated graphical user interface to interact with TROMLAB envi-

ronment.

After a brief review of TROMLAB environment in Chapter 2, we discuss a rationale
for reengineering the initial design of TROMLAB, and come up with a revised set of
user requirements in Chapter 3. A complete discussion of the new design and Java
implementations of the Interpreter and the Simulator appear in Chapter 4. Having
thus set the stage for the proper context in which a GUI can be implemented, we
give a set of VDM specification for describing the tasks of GUI, class diagrams and
a detailed design of the GUI in Chapter 5. In Chapter 6 we illustrate GUI features
and GUTinteraction points with other TROMLAB components for a Robotic Assembly
example. Chapter 7 concludes the thesis with a summary of the contributions and a

list of future enhancements.



Chapter 2

TROMLAB Environment - a brief

review of initial design

The TROMLAB environment is an integrated facility based on TROM formalism
[Ach93] and built around a process model that incorporates iterative development,
incremental design, and application of formalism through the different stages of de-
sign. The process model incorporates an iterative development approach, the benefits

of which are well-known for:

e reducing risks by exposing them early in the development process,
e giving importance to the architecture of the software unit, and

e designing modules for large scale software reuse.

The TROMLAB environment provides facilities for modular design of TROM
classes, modular composition of objects to build subsystems and analyse system ca-
pabilities through simulation and verification [Mut96]. An Interpreter [Tao96] and
Animator [Mut96] were the first components to be built. Recently, a Browser [Nag99]
has been added. In conjunction with the current effort, the following components have

been built:

1. Reasoning system:- to aid simulated debugging and reasoning of systems during

development.

2. PVS aziom generator:- a tool based on the verification methodology to generate

axiomatic descriptions of specified classes and subsystems in PVS.

5



3. Mechanised verifier:- a verification assistant which can be used to prove safety

properties of the system stated as lemmas in PVS theories.

4. Graphical User Interface:- to provide a comprehensive interface to all the above

stages of reactive systems development.

2.1 TROMLAB Formalism

The three tier structure of the object oriented methodology introduced by [Ach95],
as shown in Figure 1, is the basis of TROMLAB environment for developing reactive
systems. The benefits derived from the object oriented techniques include modularity
and reuse, encapsulation, and hierarchical decomposition using inheritance. In this
methodology, the system requirement is specified in temporal logic. The system is

modelled using a three tier design language.

The three tiers independently specify the system configuration, reactive classes, and
the abstract data types included in reactive class definitions. Lower-tier specifications
are imported into upper tiers. Timed Reactive Object Model(TROM) is a hierarchi-
cal finite state machine augmented with ports, attributes, logical assertions on the
attributes, and time constraints. The middle-tier formalism specifies TROM classes.
Abstract data types are specified as LSL(Larch Shared Language) traits in the lowest
tier, and can be used by objects modelled by TROM. The upper-most tier specifies
object collaboration where each object is an instance of a TROM.

The three tiers are briefly described in the following three subsections.



Animation
Tool

Validation

Requirements specification in
Allen’s Temporal Logic(ATL)

Larch
Prover

Subsystem
Computations

Formal Verification

System Conﬁguratiorl

System Theory:

TROM
Computations

Specification

Data Model

Synch. Axioms in ATL

TROM theory:

Object Model

Larch Shared

Axioms in ATL

First order

Operational Semantics

Language (LSL)

Timed Reactive ‘

3- Tiered Design
Specification

Figure 1: Three tier

=]

Logic

Logical Semantics



2.1.1 Data Abstraction Tier

This level specifies the abstract data types included in the class definition of the
middle tier. An abstract data type is defined as Larch Shared Language (LSL) trait.

Larch provides a two tier approach to specification:

e First tier, called Larch Interface Language (LIL), is used to describe the seman-

tics of a program module.

e Second tier, called Larch Shared Language (LSL), is used to specify mathemat-

ical abstractions which can be referred to in any LIL specification.

In the present implementation of TROMLAB, only LSL traits are included. The
following LSL trait for set data type is shown in the Figure 2.

Trait: Set(e, S)

Includes: Integer, Boolean

Introduce:
creat : ->8;
insert : e, S > S;
delete : e, S -> S;
size :S ->Int
member : e, S -> Bool;
isEmpty : S -> Bool;
belongto: e, S -> Bool;

end

Figure 2: Set trait

2.1.2 TROM Tier
A TROM models a Generic Reactive Class (GRC). A GRC is an augmented finite

state machine with port types, attributes, hierarchical states, events triggering tran-
sitions and future events constrained by strict time bounds. A state is an abstraction
denoting an environment information or a system information during a certain in-
terval of time. An event denotes an instantaneous signal. The events are classified
into three types: Input, Output, and Internal. Input (Output) events occur at the
ports of a TROM, synchronising with the OQutput (Input) events of another TROM in

8



its environment. The ports are abstraction of synchronous communication between
TROMs. TROM objects can interact only through the port linking them as defined
in SCS. Only compatible ports can be linked, such that an event sent at one port
is acceptable as an input event at the other port at the same time [Ach95]. The
specification of a transition states the conditions under which an event may occur,
and the consequences of such an occurrence. The time constraints enumerate the
events triggered by a transition and the time bounds within which such events should
occur. Thus, a GRC is a class parameterised with port types, and encapsulates the
behaviour of all TROM objects that can be instantiated from it. A formal definition
of TROM is given in [Ach95].

The occurrence of an event e at a port p at time ¢ triggers an activity which may take
a finite amount of time to complete. These events may lead the TROM(s) affected by
the event to undergo a state change and may further lead to the occurrence of new

events as specified by the timing constraints.

2.1.3 Subsystem Specification Tier

This level is the top most tier which constitutes subsystem configuration specifications
(SCS). We define the number of ports for each port type parameter in a GRC to
create an object of that GRC. As in OO paradigm, several objects can be created
from one GRC. These objects may have different number of ports for each port
type, and consequently have the ability to communicate and interact differently with
their environment. We can also include other subsystem configurations in defining a

subsystem.

2.2 Syntax and Semantics

The structure and behaviour of TROM can be described either textually or visually.
The templates for textual descriptions of TROMs and subsystems are shown in Figure
3, Figure 4, Figure 5, and Figure 6.

The visual representation of a reactive system includes the class diagrams, state
machine diagrams, and the collaboration diagrams. These are discussed in this Chap-

ter .



Class Train [@C]
Events: Near!@C, Out, Exit'/@C, In
States: *idle, cross, leave {*11,12}, toCross
Attributes: cr:@C
Traits:
Attribute-Function: idle -> {};cross -> {}:;leave -> {};toCross -> {cr};
Transition-Specifications:
R1: <idle,toCross>; Near(true); true => !cr’=pid;
R2: <cross,leave>; Out; true => true;
R3: <leave,idle>; Exit(!pid=cr); true => true;
R4: <toCross,cross>; In; true => true;
Time-Constraints:
TCvar2: R1, Exit, [0, 6), {};
TCvarl: R1, In, (2, 4), {};
end

Figure 3: Train class specifications

Class Gate [ @S]
Events: Lower?@S§S, Down, Up, Raise?@$S
States: *opened, toClose, toOpen, closed
Attributes:
Traits:
Attribute-Function:
Transition-Specifications:
R1: <opened,toClose>; Lower(true); true => true;
R2: <toClose,closed>; Down; true => true;
R3: <toOpen,opened>; Up; true => true;
R4: <closed,toOpen>; Raise(true); true => true;
Time-Constraints:
TCvarl: R1, Down, [0, 1], {closed}
TCvar2: R4, Up, [1,2], {}:
end

Figure 4: Gate class specifications

10



Class Controller [ @P, @G]

Events: Lower!@G, Near?@P, Raise!@G, Exit?@P
States: *idle, activate, deactivate, monitor

end

Attributes: inSet:PSet
Traits: Set[@P,PSet]

Attribute-Function: activate -> {inSet};deactivate -> {inSet};monitor -> {inSet }:idle -> {};
Transition-Specifications:

R 1: <activate,monitor>; Lower(true); true => true;

R2: <activate,activate>; Near(!(member(pid,inSet))); true => inSet’=insertpid,inSet);

R3: <deactivate,idle>; Raise(true); true => true;

R4: <monitor,deactivate>; Exit(member(pid,inSet)); size(inSet)=1 => inSet’delete(pid,inSet)

R5: <monitor,monitor>; Near(!(member(pid,inSet))); true => inSet’=insert(pd,inSet);

R6: <monitor,monitor>; Exit(member(pid,inSet)); size(inSet)>1 => inSet’=deete(pid,inSet);

R7: <idle,activate>; Near(true); true => inSet’=insert(pid,delete(pid, inSt));
Time-Constraints:

TCvarl: R7, Lower, [0, 1], {};
TCvar2: R4, Raise, [0, 1], {};

Figure 5: Controller class specifications

SCS TCG
Includes:
Instantiate:

tl::Train[@C:2];
t2::Train[@C:2];
t3::Train[@C:2];
cl::Controller[@P:3,@G:1];
c2::Controller{@P:3,@G:1];
gl::Gate[@S:1];
g2::Gate[@S:1];

Configure:

end

tl.@Cl:@C <->cl.@P1:@P;
t1.@C2:@C <-> c2.@Pl.@P;
R.@Cl.@C<->cl.@P2:@P;
R.@C2:@C <->c2.@P2:@P;
13.@Cl:@C <->cl.@P3:@P;
3.@C22:@C <-> c2.@P3:@P;
cl.@Gl:@G <-> gl.@S1:@S;
c2.@Gl1:@G <-> g2.@S1:@S;

Figure 6: SCS

11

v



The TROM model incorporates the essential features for describing reactive en-
tities. A TROM object has a single thread of control and communicates with its
environment through ports by synchronous message passing. The ports represent
access points for by directional communication between the objects. A port type
determines the messages that are allowed at a port of that type. A TROM can
have several port types associated with it and several ports of the same port type.
An event represents an instantaneous activity, while an action represents an activ-
ity taking a non-atomic time interval of finite duration. At any instant, a TROM
exhibits a signal representing a message, an internal activity, or idleness. The sig-

nal describes the occurrence of an event at the specific time instant, at a specific port.

Informally, the templates in Figure 3, Figure 4, and Figure 5 have the following

elements:

e A set of events partitioned in three sets: input, output, and internal events.

A set of states: A state can have sub states.

A set of typed attributes: The attributes can be one of the following:

— abstract data types,

— port reference type.
e An attribute function defining the association of attributes to states.

e A set of transition specification: Each specification describes the computational
step associated with the occurrence of an event. The transition specification has
three assertions: a pre-condition and post-condition as in Hoare logic, and the

port-condition specifying the port at which the event can occur.

e A set of time-constraints: Each time constraint specifies the reaction associated
with a transition. A reaction can fire an output or an internal event within a
defined time period. Associated with a reaction is a set of disabling states. An
enabled reaction is disabled when an object enters any of the disabling states

of the reaction.

The status of a TROM captures the state in which the TROM is at that instant,

the value of the attributes at the instant as reflected in the assignment vector, and the

12



timing behaviour of TROM as specified in the reaction vector. The reaction vecter
associates the set of reaction windows with each time constraint, where a reaction
window represents a outstanding timing requirement to be satisfied by the output
event or the internal event associated with the time constraint. When the reaction

vector is null the TROM is in a stable status.

The occurrence of an activity stipulated by an interaction with the environment,
or by an internal transition leads to a change in the status of a TROM. The current
state of a TROM, its assignment vector, and its reaction vector can only be modified
by an incoming message, by an outgoing message, or an internal signal. The status
of a TROM is thus encapsulated, and cannot be modified in any other way.

A computational step [Ach95] of a TROM is an atomic step which takes the TROM
from one status to its succeeding status as defined by the transition specifications.
Every computational step of a TROM is associated with the transition of the TROM
and every transition with either an interaction signal or an internal signal or a silent
signal. The computational step occurs when the TROM receives a signal and there
exists a transition specification such that the following conditions are satisfied: the
triggering event for the transition is the event causing the signal; the TROM is in the
source state or in a sub state of a source state of transition specification; the port
condition is satisfied if the signal is in the interaction and the enabling condition is
satisfied by the assignment vector. The effects of the computational step are: the
TROM enters the destination state; the assignment vector is modified to satisfy the
post condition; and the reaction vector is modified to reflect the firing, disabling, and
enabling of reactions. Each computational step is associated with the transition in
the state machine of the TROM. After the transition is taken the current state will be
the destination state of the transition. The port at which the interaction must satisfy
the port condition associated with the transition, thereby constraining the objects
with which the TROM can interact at that instance.

A computational step causes time-constrained responses to be activated or deacti-

vated. If the constraint event of the outstanding reaction is the event associated with

the transition, and the time of occurrence of the event associated with the transition

13



is within the reaction window of the outstanding reaction, then the reaction is fired.
If the destination state of the transition associated with the computational step is a
disabling state for an outstanding reaction then the reaction is disabled. Whenever
a reaction is time-constrained by the transition associated with the computational
step, the reaction is enabled. The operational semantics ensures that the time cannot
advance past reaction window without either firing or disabling the associated out-

standing reaction.

The factors determining whether a TROM is well formed are:

e There is at least one transition leaving every state, thus forbidding a final ter-

minating state.

o If there is more than one transition leaving a state, then the enabling conditions

of transitions should be mutually exclusive.

e Before a TROM starts executing, the values of only the active attributes in the
initial state are specified. An attribute will acquire a value only when it reaches

the first state in which it is active.

e Every computational step in a TROM results in some computation of the
TROM.

A subsystem is composed by instantiating TROM objects from GRCs and con-
figuring them through port links. Only compatible ports are linked between TROM
objects. An already composed subsystem may also be included in composing a new
subsystem: one or more of the unused ports in the objects of the included subsys-
tem are configured with some ports of the instantiated objects in the new subsystem
being composed. The objects communicate and synchronise through the configured
links. The computational step of a subsystem is a vector of computational steps of
the TROMs included in it.

2.3 TROMLAB Components

In this section we briefly review the functionalities of the Interpreter [Tao96], and the
Animator{Mut96).

14



2.3.1 The Interpreter

The Interpreter is the first tool to be implemented in TROMLAB. The tool, as designed
by Tao [Ta096], checks the textual specification for syntactic correctness and builds

an internal representation of the formal specification of a reactive system. In order

to build the internal representation it performs the following tasks:

Syntactic analysis: It makes sure that the files are syntactically correct; that is,

consistent with TROM grammar.
Semantic analysis: It does simple semantic analysis such as

— states of a TROM have different names,
— an LSL trait is used after being declared,
— every transition has an outgoing and incoming state, and
— transition specifications are well-formed logical formulas
Internal structure: Based on a syntactically and semantically correct text file

it generates all the internal data structures that would be used by all the other
tools in TROMLAB.

The components of Interpreter are the following:

Scanner

A single text file containing LSL traits, TROM class specifications, subsystem
specification, and an initial event list is taken as input to the scanner. Using
Flex the scanner performs lexical analysis and identifies the tckens to be used

by the parser.

Parser
This uses Bison to certify the syntactic correctness of the tokens received from

the scanner.

Syntaz analyser

Using predefined grammars for TROM and subsystem this module evaluates
the syntactic correctness of tokens received by Bison. Any error at this stage
will be communicated by Bison to the user and will terminate the execution of

the interpreter.



o Abstract syntaz tree generator
An abstract syntax tree is generated for each TROM and subsystem input to

the interpreter.

e Semantic analyser
This is a C++ program that uses the well-formedness rules of the formalism to

perform simple semantic analysis.

e FError message handler
This is part of semantic analyser functionality. Every semantic error detected

will be saved in a file until the end of semantic analysis.

User Input
File
Scanper | L------_._.
(__—‘:_JL dees ~{_Flex |
Token

Validate syntax Validate semantics on fly

Generate

Syntax analyser Semantic analyser J——{ Error messages ]

Generate Semantic Validation

[ Abstract Syntax Tree (AST) J»“s“.-: Ce+ [

Figure 7: Architecture of interpreter

The interpreter uses YACC and LEX for syntactic analysis and is implemented
in C++. This tool had some limitations: all the information had to be in a single
file, which makes it difficult to incrementally design a complex system. The data
structure generated by this tool also has several limitations. This will be discussed

in the next Chapter.

16



2.3.2 The Simulator

The Simulator tool was designed and implemented by Muthiayen [Mut96]. This work
was started in parallel with the work on the Interpreter. The Simulator interfaces
with the abstract syntax tree built by the Interpreter to extract the information for
simulation. It builds a simulation event list to keep track of all outstanding events in

the system. The Simulator can work in one of two modes:

o Debugger mode: In this mode the developer can, at the end of every handled
event, invoke the debugger and use it to query the system. The system can be

rolled back and new events can be injected.

e Normal mode: In this mode the simulation will go on uninterrupted until the
system goes into a stable state. The result of a simulation is one scenario of

what could happen, given the initial set of events.
The Simulation tool consists of the following components:

e Simulator

It consists of an Fvent handler, a Reaction window manager, and an Event

scheduler.
— FEvent handler is responsible for handling the events which are due to occur
and detects the transition which the event will trigger.

— The Reaction window manager is responsible in activating the computa-
tional step to handle the transition causing events to be fired, disabled or
enabled.

— The FEvent scheduler causes an enabled event to occur at a random time
within the corresponding reaction window. It schedules output events

through the least recently used port using a round robin algorithm.

e Consistency checker It ensures the continuous flow of interactions by detecting

deadlock configurations.

e Validation tool It consists of a Debugger, a Trace analyser, and a Query handler.

17



— The Debugger supports system experimentation by allowing the user to

examine the evolution of the status of the system throughout the simula-
tion process. It also supports interactive injection of simulation event, and

simulation rollback to a specific point in time.

The Trace analyser includes facilities for the analysis of the simulation
scenario. It gives feedback on the evolution of the status of the objects in

the system, and the outcome of the simulation event.

The Query handler allows examining the data in the AST for the TROM
class to which the object belongs, and supporting analysis of the static

components during simulation.

e Object model support It supports the specification of the TROM classes and the

evaluation of the logical assertions included in the transition specifications.

o Subsystem model support It creates subsystems by instantiating included sub-

svstems from object and port links.

e Time manager It maintains the simulation clock updating it regularly. It al-
lows setting the pace of the clock to suit the needs of analysis of simulation

scenarios. It also allows freezing the clock while analysing the consequences of

a computation.

SIMULATION TOOL
OBJECT MODEL
! SUPPORT —_—
i 7 : : -
i ' ' SIMULATOR | VALDATION
i | Pomore | Class headers| | TOOLSET
i Definition & : Interactive / Bach
; Definitions Mode
' H H .
— Event Handler ] i Debugger ' |
Consistency ! L ; Time , i
:‘——. H pa Manager : Trace analyser
l suss;rs;;.gi MODEL i ‘ !
UPPORT —
| | Event scheduler ! Query handler
| | Instntiae Confi I A
t ! TROM ; ontigure |
| Obiecs | | Porlinks ‘

H {
j L
1 —_—

Figure 8: Architecture of simulation tool

18



Chapter 3

Reengineering TROMLAB

Evolving systems need to have a flexible design with abilities to absorb changing
requirements with minimal changes to the design. In the absence of a flexible design,
it may be necessary to reengineer and rebuild several of the system components.
Reengineering is part of the system maintenance process that helps to improve the
performance, adapt to the changing environment.

The initial TROMLAB design is an example of a design which cannot be adapted
to a graphical user interface front-end. However, a GUI has been recognised as an
important requirement for the usability of the entire system. This is the major reason

that a reengineering of the initial design was undertaken.

3.1 Usability Analysis of TROMLAB

In this section we identify the rationale for improving the usability of the TROMLAB
environment, and thus state the needs for reengineering. Many of the inadequacies of
TROMLAB surfaced when new components such as Reasoning System to work with
the already existing components, such as Interpreter and Simulator were investigated
for their design. Clearly, maintenance, enhancement, and support replacements of
TROMLAB required a deeper understanding of the initial designs. The initial de-
signers were not the next set of users of the system. So, the new users and software
developers of TROMLAB needed to expend many resources to examine and learn
about the system. Due to the lack of any reverse- engineering tools, the team had to
develop their own techniques to understand the system so that appropriate changes

19



and extensions could be made.

3.1.1 Need for improving the usability of TROMLAB

The three important goals of usability are learnability, throughput, and flezibility.
Based on the above goals of usability we would like to list the reasons for improvement

of the usability of the initial TROMLAB environment. The reasons are as follows:

e Users did not have a mechanism to design formal specification files, in the

process of designing a system.

e Absence of interactive mechanisms, such as choosing an existing formal specifi-

cation file to design a system, and debugging when the simulation is running.

e Absence of flexible mechanisms which will allow user to explore, and expand
the TROMLAB environment.

e Absence of different screen layouts for injecting different set of tasks.
e Absence of multiple sources on the screen to carry out a task at the same time.

e Absence of visual models to aid user in understanding the simulation of the

system.

Due to the above reasons the time and effort required by an user to learn, and
use the TROMLAB environment remained high. This motivated us to provide the
user’s of TROMLAB a more effective, interactive, flexible, visual environment. Thus,
the overriding objective was to provide a user-centered design of GUI for TROMLAB,
which is easy to learn and use, and remain safe and effective while facilitating the

activities of users.

3.1.2 Need for reengineering TROMLAB

Having established that the usability has to be improved, in order to achieve it we
should alter, and restructure the TROMLAB with respect to new requirements not
met by the original system. Reengineering generally includes some form of reverse
engineering followed by some form of forward engineering or restructuring. Reverse
engineering stage of TROMLAB required the identification of the system’s components

20



and their interrelationships, and creating representations for them in another form
at a slightly higher level of abstraction. During this phase, no change to TROMLAB
were made - it was only a process of critical examination. It revealed that the design

of the Interpreter was severly restrictive:

e incremental specification and design development was not possible;

e internal representations were consistent with OO themes such as modularity,

and encapsulation;

e it cannot be integrated with GUI

We established the goals of reengineering as follows:

1. Modify the internal mechanisms, such as data structures and programs without

changing the functionality (system capabilities perceived by the user).

o

. Modify the language of implementation so as to link GUI with all the compo-
nents of TROMLAB.

3. Provide visual modeling and analysis capabilities.
4. Cope with complexity of evolution.

5. Integrate graphical and textual views through GUI
6. Provide sufficient documentation and help facility.
7. Facilitate reuse.

Based on these decisions, the reengineering phase was started in which both Inter-
preter and Simulator were modified, Reasoning System, GUI, Browser, UML Rose

Interface and Verifier were built.

3.1.3 The revised TROMLAB

The revised model of TROMLAB environment is shown in Figure 9. It consists of the
following components, each designed and implemented to meet the three important
criteria for the design of TROMLAB namely scalability, portability, and flezibility.

21



(2]

=1

Interpreter: It should be possible to type check and compile one specification at
a time. The order of input is irrelevant. It should be possible to interface with
GUI, the simulator, and the verifier. The capabilities of the modified interpreter

are discussed in the next section.

Simulator: It should be possible to simulate any subsystem that has been type
checked by the Interpreter. It should be possible to view the simulated scenar-
ios and histories through GUI The capabilities of the modified simulator are

discussed in the next section.

Browser: This tool has been implemented in Java [Nag99]. It can be invoked
from within the GUI or it can be invoked as a stand-alone tool. The user can
view LSL traits, TROMs, and subsystems from the reuse library database, and

query the system for their versions and dependencies.

UML-RT support: This tool is the front-end for visually composing reactive
system specifications using UML-RT support. Class diagrams, state charts,
sequence diagrams, and collaboration diagrams can be constructed using Rose.
Using stereotypes, an extensional facility in UML, a minimal set of extensions
has been provided to model real-time reactive systems in Rose. The UML-
RT support [Oan99], extracts the information from these models and generates

formal specifications in the syntax defined in TROM methodology.

Reasoning system: This tool, being built now [Hai99], gives the user the ability
to query the simulated scenario and reason about changes to the past and

understand the future consequences due to such changes.

GUI: The Graphical user interface, whose design is given in later chapters,
provides a comprehensive interaction facility: it interfaces with Rose/UML tool
for composing specifications graphically, which is interfaced with interpreter for
syntactic and semantic analysis; simulation scenarios can be viewed, and queries

to reasoning system can be composed, verification steps can be viewed.

Verification Assistant: The Simulator with reasoning system constitute the val-
idation tool. A tool to automatically generate axiomatic descriptions of speci-
fications from the abstract syntax tree is being built now [Pom99]. The results

22



produced by this tool will serve as an input to a mechanised verifier that is

being designed.

mp GERAPHICAL LSER INTERFACE

SIMULATION TOOL

1 T 1

r s
}

VALIDATION TOOL

:
I CRABCT WD
o —— sywer — —_—
] ' ‘—'—‘ r—_ OMLLATSR | VALZATION
| e ﬂ l,,...,,.I Cons rwwters ' ToasEY
' = ! w——} T s | |
CMLAOSE TOOL Oxfingers Moss
L d 1
= }l—t Ay . — | Evare e | | —_— | o !
- ] ' | — D
! b pergan evasw l T i
! (o ! SR Sied
—_— . | I—— [ !
|:-¢n--‘ . U] Query varte |
|
-

Figure 9: Future TROMLAB environment

Integrating all these components in TROMLAB to meet the three design principles

cited earlier demand the following:
1. An object oriented development environment:
2. A good graphics library which supports GUI development:

3. Need for compatibility between different components: UML-RT support has
been developed under Windows platform; the browser has been implemented in

Java.

Based on these constraints we have chosen Java as the language of implementation
for the reengineered components as well as the yet to be implemented components of

the verifier.

3.2 Improvements

It is the Interpreter that required a totally new design and implementation as a result
of reengineering of TROMLAB environment. The major changes in the Animator

23



include its interfacing to the new Interpreter, additional query handling facilities,

and enhancements to simulation event list.

3.2.1 Interpreter

1.

(]

Scanners: Having a single scanner makes the design process harder for the user.
The user has to create all the formal specifications at the same time before it
can be checked for syntactic correctness. It is quite hard for a single scanner
to generate easy-to-understand error messages for a large system consisting of
numerous specifications. Whenever a new specification is added to an existing
set of specifications it would require recompilation of the whole set of specifi-
cations. A more efficient technique is to have separate scanners, one for each
type of component. In the new design we have constructed separate scanners,
one for LSL trait, one for TROM class specification, one for SCS, and one for
simulation event list. This makes it easier for the user to design, debug and
validate different components independently before doing the actual semantic
analysis. As a result, the user can reuse the compiled components of any one
type without having to wait for the compilation of other specifications. Thus,
the new design conforms to the principle of separation of concerns ingrained
in object oriented methodology and is faithful to the three-tier methodology
stated in Chapter 2.

Error messages: In the old design the error messages were generated by Flez
and Bison. Hence, the messages were neither specific to any one specification
nor sufficiently explanatory for the user to understand and correct the errors.
In the new design, although JavaCC tool is used to parse and compile the
specifications, the error messages are not handled by JavaCC, instead, the error
messages generated by the new Interpreter module are quite specific to the

source of errors.

Changes to the Grammar: According to the previous grammar in the configure
section of the SCS the user could not specify the name of the ports, and in turn
it was generated by the Interpreter itself based on the cardinality of the specific
port type. In the new grammar the user has to specify the port name for each
TROM object in the configure section. The other changes to the grammar were

24



made in the initial simulation event list. The name of SCS was added, along with
the port type name added to the initial events. This change triggered changes

to the semantic analyser. The description of the Grammar is in Appendix A.

4. Semantic analysis: In the previous design the semantic analysis was conducted

in two stages: on the fly analysis and AST validation. In the new design,
semantic analysis also conforms to the principle of encapsulation in OO tech-
nology: semantic analysis internal to a class specification, and semantic analysis
relating objects in a subsystem configuration. When a class is syntax checked,
it is also semantically validated independently for its encapsulated properties.
Once a class is semantically checked and a subsystem of objects is created, the
user can initiate the second phase of semantic analysis which does the semantic

validation related to the different objects in the subsystem.

. AST Structure: The structure of AST has been simplified. The Figure 10 below

describes the new AST structure.

25



TROM

L Class-name

L Port-typel

Port-type2

-

L Eventl

}——J Event2

—

Statel

MY

L Attributel

L Traitl

TTTTI

j-—————-[ Attribute2

Attribute-functioﬂ—{ Attribute-function2 }——’

Fransition-SpeclJ'——(Transition.Speczj—_’

[ Time-Constraimj——{ Time-Constraint2 J———>

Port-type-list

0 0 ©

Event-list
oo o

State-list

o o ©

Attribute-list

©c o ©

Trait-list
e 0o o

Attribute-function-list

o O o

Transition-Spec-list
0 o

Time-Constraint-list
o 0 o

Figure 10: AST Structure

26




3.2.2 Simulator

1.

[A]

Object Model Support: Due to the changes in the AST structure the existing
Object model support needed several modifications. Consequently the way
in which the assertions(port, enabling, and post) were evaluated had to be
modified.

Simulation Event: The existing simulation event structure was augmented to
have an attribute pointing to the causing event facilitating the tracing of history.
This is helpful for later additions, especially in the reasoning system [Hai99j.
Consequently, various data structures had to be modified to manipulate the

new attribute.

Query Handler: The simulation tool provides the user with a rollback option. In
the previous design the rollback would remove all the events that were scheduled
after the time of rollback including the output unconstrained events. Since these
events are external to the system, the new design does not remove these events
even if they are scheduled after the rollback time. Consequently, these events

had to rescheduled.

Event Scheduler: The simulation tool is capable of handling only deterministic
transitions, i.e. only one unconstrained transition going out from a single state.
In the case study of Robotics Assembly given the later chapter. we encountered a
scenario where we had more than one unconstrained transition going out from a
single state. In order to solve this non-determinism we had to make few changes

to the Event Scheduler in order that it can handle the non-determinism.

LSL Library Support: The Simulation tool supports only the Set trait. In order
to facilitate the simulation of a variety of reactive system models, we added

several other commonly used LSL traits, such as Stack, and Queue.

27



3.3 Revised User Requirements

In this section we identify the revised user requirements for the GUI This section
is divided into three subsections namely, requirements of the Interpreter GUI, re-
quirements of the Simulator GUI, requirements of the Reasoning system GUI, and

requirements of the GUTI for other components of TROMLAB.

3.3.1 Requirements of the Interpreter GUI

The GUI should provide the following mechanisms to the user in order to use the

Interpreter.

e A mechanism to design new TROM class specifications, open an existing TROM

class specifications, and save them.

e A mechanism to design new Subsystem Configuration Specifications, open an

existing Subsystem Configuration Specifications, and save them.

e A mechanism to design the Initial Simulation Event List, open an existing Initial

Simulation Event List, and save them.

e A mechanism to invoke the corresponding parsers for the formal specification
files.

e A mechanism to display appropriate messages at end of syntax checking.

e A mechanism to invoke semantic analysis once the user had successively parsed

the formal specification files.

3.3.2 Requirements of Simulator GUI

The GUI should provide the following mechanisms to the user in order to use the

Simulator.

e A mechanism to select the mode, namely the debugger mode or default mode

in which the simulation can run.

e A mechanism to initialise the clock and set the pace of the clock to one of the

available speeds.

28



e A mechanism to set the timeout for the simulation events.
e A mechanism to start the simulation process.
e A mechanism to graphically view the progress of simulation.

e A graphical representation of Time Sequence Chart through which the user can
view the status of each object in the system whenever a simulation event is
handled.

e A mechanism to invoke the debugger when the simulation is paused.
e A mechanism to invoke the query handler when the simulation is paused.
e A mechanism to invoke the trace analyser when the simulation is paused.

e A mechanism to invoke the reasoning system when the simulation is paused.

The GUI should provide the following mechanisms to the user to facilitate query

handling.

e A mechanism to view the different types of questions which can be answered

by the query handler.

e A mechanism to choose the type of question which can be answered by the

query handler.
e A mechanism to view the transition specifications.

e A mechanism to view the transition specifications with its current state as

source.
e A mechanism to view the transition specifications with a given state as source.
e A mechanism to view the transition specifications triggered by a given event.
e A mechanism to view the timing constraints.
e A mechanism to view the timing constraints for a given triggering event.

e A mechanism to view the timing constraints for a given constrained event.

29



The GUI should provide the following mechanisms to the user to facilitate trace

analysis.

e A mechanism to view the different types of questions which can be answered

by the trace analyser.

e A mechanism to choose the type of question which can be answered by the trace

analyser.
¢ A mechanism to view the simulation events which have triggered a transition.

e A mechanism to view the simulation events which have not triggered a transi-

tion.
e A mechanism to view the simulation events which have not yet been handled.

e A mechanism to view the simulation events which have occurred during a certain

period.

e A mechanism to view the simulation events which have triggered a transition
for a given TROM.

e A mechanism to view the simulation events which have triggered a transition

for a given TROM during a certain period.

¢ A mechanism to view the status of the system, subsystem, and TROM simulated

at a given point in time.

3.3.3 Requirements of Reasoning system GUI

The GUI should provide the following mechanisms to the user in order to use the

Reasoning system.

e A mechanism to view the different types of questions which can be answered

by the reasoning system.

e A mechanism to choose the type of question which can be answered by the

reasoning system.

30



e A mechanism to list time intervals during which the system or the TROM object

was in a specific state.

e A mechanism to view the times at which the system or the TROM object could

get out of a critical state.
e A mechanism to view the set of times at which a particular event was fired.
e A mechanism to view the set of times when a particular event was disabled.
e A mechanism to view the set of times when a particular event was enabled.

e A mechanism to view the set of times when a particular event was scheduled to
be fired or disabled later.

e A mechanism to view the assignment vector at a particular time.
e A mechanism to view the reaction vector at a particular time.

e A mechanism to view the set of objects in the system which went into a state

during a time interval.

e A mechanism to view the behaviour of the system or of a set of objects in the

System.
e A mechanism to view the TROM status during a time interval.
¢ A mechanism to view the simulation event list of a particular TROM object.
e A mechanism to view all the routes between any two states of a TROM object.

e A mechanism to view a route to a specific state of a TROM.

3.3.4 Requirements of the GUI for other components of TROM-
LAB

This section will give the requirements for the GUT to interact with the other com-
ponents of TROMLAB namely Browser [Nag99], Rose-GRC Translator [Oan99], and
the Verification Assistant [Pom99].

31



Interaction with Browser

Through GUI the Browser can be invoked to perform the following tasks:

1.

o

read and view LSL traits and Larch/C++ specifications from the library;
composing new Larch traits with or without reuse of LSL traits from the library;

check the syntactic correctness of composed LSL traits as well as analyze some

of their properties;

run all versions of LSL library traits as well as versions of composed traits against
LSL syntax checker;

the following basic queries and suitable combinations of them can be posed:

(a) Retrieve a trait based on name.

(b) Retrieve a trait based on includes (assumes) relationship.

(c) Retrieve a trait based on version number.

(d) Retrieve a Larch/C++ specification based on name.

(e) Retrieve a Larch/C++ specification based on uses relation.

(f) Retrieve a Larch/C++ specification based on inheritance information.
(g) Retrieve traits included in a given TROM specification.

(h) Retrieve TROMs included in a given subsystem specification.

(i) Retrieve ports and port links in a given subsystem configuration.

(3) Retrieve all traits transitively related by includes (assumes).

(k) Retrieve all Larch/C++ specifications transitively related through uses

relation.

Interaction with Rose-GRC Translator

The Rose-GRC Translator shall run in the Rose environment and shall take input
from an open Rose model. The Rose environment can be invoked from the GUI, thus

promoting the ease of use for the user, to perform the following tasks:

32



e Generic reactive class specifications The user shall be allowed to select the
appropriate class diagrams from a list of all the class diagrams in the model,
one at a time. A main class diagram shall be selected if all the classes from
the subsystem and their port types are shown in that diagram. Separate class
diagrams shall be selected if each class and its port types are shown in a separate

class diagram.

e Subsystem Configuration Specification Given that the model may contain
several subsystems, the user shall be allowed to select the appropriate collab-
oration diagrams, from a list of all collaboration diagrams in the model. The
user shall be allowed to enter a name for each subsystem corresponding to the
selected diagram. The user shall be allowed to skip translation of a subsystem

configuration.

e Message Sequencing The user shall be allowed to select the appropriate se-
quence diagram from a list of all sequence diagrams in the model, one at a time.
The user shall be allowed to skip translation of a sequence diagram. The user
shall be allowed to enter a time of occurrence for each message in the sequence

diagram.

e Reactive class specifications GUTI will receive from the Rose-GRC Translator
an output a text file containing class specifications for all the generic reactive
classes (GRC) that are found in the selected class diagram.

e Subsystem Configuration Specification GUI will receive from the Rose-
GRC Translator an output a text file containing the configuration specification

of the subsystem modeled in the selected collaboration diagram.

e Message Sequencing GUI will receive from the Rose-GRC Translator an out-
put text file containing an ordered list of messages together with the sending and

receiving objects and the time of occurrence, from a selected sequence diagram.

Interaction with Verification Assistant

Verification Assistant [Pom99] is a tool within TROMLAB environment for an auto-
mated axiom generation based on the methodology described in [MA99]. This tool

33



can be used to generate various axioms, after creating the model using the Interpreter.
The following are the requirements of the GUI for Verification Assistant:

e GUI should provide facility for the user to generate the transition and time

constraint axioms.

e GUI should provide facilty for the user to generate the synchrony axioms tha

correspond to the subsystem of the model.
e GUI should provide a mechanism to view the generated axioms.

The following chapters discuss in detail GUI design for Interpreter, Simulator,
and the Reasoning System. GUI design for interaction with the other components is

rather simple and thus is not discussed.

34



Chapter 4

Design and Implementation of the

Modified Interpreter and Simulator

In this chapter we compare the new designs of the Interpreter, and the Simulator with
this old designs to emphasize the significant improvements that were made according
to the requirements given in the previous chapter. We also discuss the tools which

were used to implement the Interpreter.

4.1 Class diagrams

The Class diagrams of the old and new design of Interpreter, and the Simulator
are drawn using OMT notation. There are major design changes to the Interpreter
with regard to the design of the classes, and relationships between the classes. The
old design of the Interpreter was more rigid and complex with no scope for further
improvements, which motivated us towards doing a more flexible design. We took
this opportunity to implement the improvements of the Interpreter that are described
in the previous chapter. There are only minor design changes for the Simulator, i.e.
the designs differ in the way the classes are structured, and the relationship between

them.

4.1.1 Interpreter

The class diagram for the old Interpreter consists of one class Slink which is inherited
by the classes Btree node, Configure, Name-t, Att-func, and State pair. The class

35



Btree node encapsulates the structure of logical expressions arising in transition spec-
ifications. A high-level class diagram of the old Interpreter is shown in Figure 11. A
detailed class diagram of the old Interpreter is shown in Figure 12 and Figure 13.

I’ . 3 :
Bree_node | Configure | Name_t ™ Ar_func : H Snx:_purJ
& A
| Bmamet ' ; ' i ' i : ‘ | i [
& TROM J{[ Tran_spec || [ Tait il Pon ] Insance | 'Sxml.wcnev:nx: Suxe ] :
L Exerem | Time_ int | [ Tnggerevax| |  LSL func LSL ] ;CS Event | | Ammbue

Bree _base i Slist_base
& &
| Bumee List |

i SO v S
Name_t *state_name{2]:] :
State *source; int type; a Name_t *pormmame{2]
State *destin: ) ° )
- | -]
-] [ ] ]
o -] A Q
° o °

int value:

Name_t *value_r;
List<Expr_elmt> *func_arg:
LSL_func *isl_fo:

-}
o
o

Figure 12: Interpreter Class diagram - Detailed (Old)

36



{Luxc\'me_'b *mncludes:
‘ListeName_p> *instances;

List<Name_T> ®argc:
Name_t *ret_type: Name_t *pormame:

ic: ime:

List<Configure> *configures.

i
L °

e e

ListeName_o *args:
ListcName_t> *includes;
List<LSL_func> *lsl_funcs

coo

o000

Name_t *trans_name:
Name_t ®ev_name:
List<Name_t> *stare_name: ,
Trans_spec *trans: :
Event *const_event:

Name_t "port_t;
Name_t pert_t_ast:

Bool iniz

List<State> *substaies:

00000

o0O©OO

— e

Name_t ®portname(2]:

LastcAnnbotes armbaes;
LisicTrio *wuts;
ListcAn_func> *az_funcs:
List<LSL_func> *isl_funcs:
Lint<Trans_spec> *trans_specs:

List<Time_constraint> *tirme_coastraints.

-]
Q

coo0o®o00

Figure 13: Interpreter Class diagram - Detailed (Old)

37



The high-level class diagrams of the new Interpreter are shown in Figure 14. A
detailed class diagram of the new Interpreter is shown in Figure 15 and Figure 16.
They reflect the true OO features inherent in the problem domain: an abstract syntax
tree is an aggregation of LSL trait, TROMclass, SCS, and SCSSimFEwv. These are pre-
cisely the classes required to model the entities in the three tiers, and the simulation
events; the detailed class diagram for each class shows the internal structures and
the interface. These diagrams explicitly convey the modularity in the design and the

coupling between classes modifying any one class will not affect any other class.

LSL _traitlist IsI_traitlist:
Tromclasslist womctass_list
SCSlist seslist:

SCSSimEv simev_list:

Litraie B ey RS
. String trait_name; String class_name:; String SCSname : : String SCSname: ‘

List element_list; portlist port_type_list: includelist include_list: i SimEvlist simev_list: i
List includes_list; eventlist event_list; instantiatelist instannaze _list X
Func_Des_list func_list: statelist state_list; configurelist configure_list:

Py atributelist m_list: card_validatelist cardinality validate lisz

o LSLrraitlist Is|_trait_list: .

° ar_funclist atr_func_list; o

wans_speclist rans_spec_list:
time_ccasraintlist time_constraing_list

String event_names
String rom_obj_name;
String port_name;

int occur_time

00O

coo

Figure 14: Interpreter Class diagram (New)

38



e TR S A A
A A TaSe B, e PEES

AL B AAELH,

String SCSname ;
includelist include_list;

configurelist configure_list:

instantiatelist instantiate_list;

card_validarelisc cardinality_validate_list:

String obj_label;
TROMclass trom_classrame:
portcardlist port_cardinality;

o000

String obj_labell:

String port_labell;

String port_typel:

String obj_labeil;

String port_labei2:

String port_typel:
-}

o
[}

String obj:
String porttype:
int card:

List port_list

<
c
c

Figure 15: Interpreter Class diagram - SCS (New)

String class_name;

portlist port_type_list:
eventlist event_list;

statelist state_list:
attributelist ate_list;
LSLtraitlist Is!_trait_list;
art_funclist att_func_list:
trans_speclist trans_spec_list:
ume_coaszaintlist tine_constraiet_list;

String event_name:
String event_type:

String state_name;
boolean if_initial_state;

String att_name;
int att_type;

String trait_name;
String trait_type_name;
Listarg _list;

String port_type_name; statelist substate_list; String att_type_name:
o ° ° °
o ° ° °
° o ° o

atributelist art

state state_name;

_list:

Q
-]
(]

String transition_label;
boolean if_initial_transition:
state source_state;

state destination_state;

event triggering_event;
ASTStart port_condition;
ASTStart enabling condition;
ASTStart post_condition;

trans_spec trans_spec_label;
event constrained_event;
int lower_bound;

String lower_type:

int upper_bound;

String upper_type:

statelist disable_state_list;

00O

00O

Figure 16: Interpreter Class diagram - TROMclass (New)

39



4.1.2 Simulator

Class diagram (old Version): Since there were no major changes in the design of
Simulator, we only show the modified class diagrams. The modifications are based
on the improvements suggested in the previous chapter. The detailed class diagrams

are shown in the Figure 17, Figure 19, and Figure 18.

label : String

trom_class : String
current_state: State

asgn_vector : AssignemntVector
reaction_vector: ReactionVector
port_list_list : PortsList

statics : TROM_AST

history : SimulationEventList

Pomypc PonTvpc i
cardinality : int i
port_list : PortList !
Iru_port : Port !
{ __num_ports_tried : int |

o]
o
!
|
1; o {?_‘)
;EZ ‘\\t 11:1. ( B‘Jg

atribute_name : String
arribute_ast : Attribute_AST

i attnbute type int
L

POﬂ_m)e Smng
port_id : String
o
[¢]

lower_time_ bound
upper_time_bound : int

reaction : SimulationEvent
o
o

Figure 17: Simulator Class diagram - TROM class diagram(New)

40



history: EventHistory
rendez_vous: SimulationEvent
cxuse SimulaticaEvent

4
inciuce_list : subsystemlist
rom_list : TromList
portlink_list : PortLink! ist

5

com_class:Saing wompor tTromPortTuple
asgn_vector AssignmentVector tomport2: TromPortTuple
reac_vector:Reaction Vector a
porz_list_listPortsList o
stancx TROM_AST
Ristory:SimulationE: ist <

Q i

° {

Figure 19: Simulator Class diagram - Subsystem Object model (New)

41



4.2 Language of choice

We have chosen Java as the language of implementation for the reasons mentioned in

the previous chapter; namely

e An object-oriented development environment,
e The need to support portability,

e Good graphical library support.

This choice smoothly integrates the different components of TROMLAB with GUI We
use JavaCC and JJTree, which are preprocessors for Java, to generate the parser(s)

as part of the Interpreter.

4.2.1 JavaCC

Java Compiler Compiler (JavaCC) is currently the most popular parser generator
for use with Java applications. A parser generator is a tool that reads a grammar
specification and converts it to a Java program that can recognize matches to the
grammar. In addition to the parser generator itself, JavaCC provides other standard

capabilities related to parser generation such as tree building, actions, and debugging.

JavaCC is a Java parser generator written in Java. It produces pure Java code.
Both JavaCC and the parsers generated by JavaCC can be run on a variety of Java
platforms. JavaCC generates top-down (recursive descent) parsers as opposed to
bottom-up parsers generated by other tools, such as YACC. This allows the use of
more general grammars (although left-recursion is disallowed). Top-down parsers

have other advantages (besides allowing more general grammars):
e it is easier to debug,
e the ability to parse to any non-terminal in the grammar, and

e and the ability to pass values (attributes) both up and down the parse tree

during parsing.

The lexical specifications such as regular expressions, strings, etc. and the gram-
mar specifications (the BNF) are written together in the same file. It makes the

42



grammars easier to read (since it is possible to use regular expressions inline in the

grammar specification) and also easier to maintain.

4.2.2 JJTree

JJTree is a preprocessor for JavaCC that inserts parse tree building actions at various
places in the JavaCC source. The output of JJTree is run through JavaCC to create
the parser. By default, JJTree generates code to construct parse tree nodes for
each nonterminal in the language. This behaviour can be modified so that some
nonterminals do not have nodes generated, or so that a node is generated for a part of
a production’s expansion. Although JevaCC is a top-down parser, JJTree constructs
the parse tree bottom up. To achieve this it uses a stack where it pushes nodes after
they have been created. When it finds a parent for them, it pops the children from
the stack and adds them to the parent, and finally pushes the new parent node itself.

4.3 Implementation

We discuss the implementation of the parsers, the syntax for the specifications, and

the interfaces to the other components of TROMLAB system.

4.3.1 Interpreter

The parsers, implemented in JavaCC and JJTree, are used to build the assertion trees.
The other classes are implemented in Java. The input to the Interpreter is a textual
formal specification file(s). The Interpreter parses the file and creates the internal
representation of the AST (see Figure 10) as a result of syntax checking and on the fly
semantic analysis. If the input specification is not syntactically correct, error messages
are given, and AST is not created. Once the user has correctly composed the class
specifications, and subsystem specification (which may be compiled independently)
the overall semantic analysis for the fully specified system is done. Semantic errors at
this stage indicate an incorrect or incomplete system specification. When an object
which is not a correct instantiation of a correctly compiled class is referred to in the
specification of a subsystem, the user might be referring to a class which was not

specified (incompleteness) or the user might be incorrectly referring to an existing

43



object (error). When the specifications are syntactically and semantically correct,

the user may use the Simulator to analyze its behavior.
A brief description of the implementation of the four parsers is given below:

1.

o

LSL trait parser: The LSL trait parser takes a LSL trait file as input and
generates the corresponding objects for that file and adds them to the AST. In
the same LSL trait file more than one LSL trait can be defined, and these LSL
traits will be represented by different nodes in the LSL trait’s list. If the user
submits more than one LSL trait file for the same system, the resulting objects
will be in the same list. An example LSL trait file is shown in the Figure 2 in

the Chapter 2.

On the fly semantic checks performed on this file is as follows:

(a) Trait names should not be duplicated in the Includes section.

(b) A Trait cannot include itself.

(c) No duplicate functions are allowed in the Introduce section (Note: two

functions can have same name provided their signatures are different).

(d) The return type and the parameter types of a function defined in Introduce
should be defined either in the Includes section or in the signature part
of the trait. (Note: Integer and Boolean type are assumed to be defined.
Int or Integer refers to an integer type, and Bool or Boolean refers to a

Boolean type.)

All these semantic checks are done independently of the other sections in the

AST and are performed at parse time itself.

TROM class specification parser: The TROM class specification parser takes a
TROM class specification file and generates the corresponding objects for that
file, and adds them to the AST. In the same TROM class specification file there
can be more than one TROM class specification defined, and these classes will
be represented by different nodes in the the TROM class list. If more than one
TROM class specification file for the same system is submitted, the resulting
objects will be in the same list. An example of TROM class specification is

shown in the Figure 3, Figure 4, and Figure 5 in the Chapter 2.

44



The following semantic checks are performed while checking the symtactic cor-
rectness of TROM files:

(a)
(b)
(c)

(d)

(f)
(g)

(h)
(1)

§)
(k)

)

(p)
(q)

The port types cannot be duplicated.
The event names cannot be duplicated.

The port types used in the event section should be defined in the port

section.

Only the input and output events defined in the event section can have

ports associated with them.
There is only one initial state.
The state names cannot be duplicated.

A complex state can have only one entry state which is the initial state for

that complex state.
The attribute names cannot be duplicated in the attribute section.

If the attribute is of port type then the port type has to be defined in the

port section.
The trait names can not be duplicated in the Trait section.

The port types listed in the signature of the Traits have to be defined in

the ports section.

The attributes listed in the signature of the Traits have to be defined in

the attribute section.

The state names listed in the attribute-function section should be defined

in the state section.

The attribute names listed in the attribute-function section should be de-

fined in the attribute section.

The state names listed in the transition specification section should be

defined in the state section.
The transition names cannot be duplicated.

The attribute names listed in the transition specification should be defined

in the attribute section.

45



(r) The event names listed in the transition specification should be defined in

the event section.
(s) The time constraint names cannot be duplicated.

(t) The transition names listed in the time constraint should be defined in the

transition specification section.

(u) The event names listed in the time constraint should be defined in the

event section.

(v) The time interval defined in the time constraint should be valid, i.e the

upper bound should be greater than the lower bound.

(w) The set of states listed in the time constraint should contain only the states

that are defined in the states section.

3. §CS parser: The SCS parser takes an SCS file as input and generates the
corresponding objects for that file, and adds them to the AST. In the same SCS
file there can be more than one SCS defined, and these SCS will be represented
by different nodes in the the SCS list. If more than one SCS file for the same
system is submitted, the resulting objects will be in the same list. An example
of SCS is is shown in the Figure 6 in the Chapter 2.

The following semantic checks are performed while syntax checking an SCS file:

(a) SCS names listed in the Includes section cannot be duplicated.
(b) TROM objects defined in the instantiate list cannot be duplicated.

(c) All the port types listed in the configure section should be instantiated in

the instantiate section of this or any of the included subsystem.

4. Initial Stmulation event list Parser: The simulation event list parser accepts a
simulation event list file as input and generates the corresponding objects for
that file, and adds them to the AST. An example of simulation event list is as

follows:

Since the objects added to the AST have been generated independently, and are
however dependent on each other, an overall semantic analysis has to be performed
once the user is finished with the design. The overall semantic analysis checks for the

following properties:

46



SEL: TCG
Near, t1, @Cl, 3:
Near, 2, @C2, 5;
Near, 3, @Cl1, 7;
end

Figure 20: Simulation event list

e Between LSL traits and TROM class specification the following dependencies

must hold:

1.

2.

Every LSL trait used in a TROM class has to be defined.

The signature of every LSL trait function used in the assertion expressions
of the transition specification section of a TROM class should match the

signature defined in the corresponding LSL trait.

The return type of the LSL trait function used in the assertion expression
of the transition specification of a TROM class should match the operands

used in the expression.

e Between TROM class specification and SCS the following properties should

hold:

1.

[R)

Every TROM object defined in the Instantiate section of a SCS must be
an instance of a TROM class in the AST.

Every TROM object defined in the Instantiate section of a SCS should
have its ports associated to the port type defined in the TROM class.

Links can exist between two instantiated TROM objects, or between an
instantiated TROM object and an open port of a subsystem included in
SCS.

Every subsystem listed in the Includes section must have been compiled

earlier.

e Between SCS and SCS the following properties hold:

1.

The number of ports of a port type used for a TROM object should be less
than or equal to the cardinality of that port type defined in the instantiate

47



9.

section. This has to be checked taking into consideration all the inciuded

subsystems in the Include section of SCS.

All the TROM objects listed in the configure section should be defined in
the instantiate section. This has to be checked taking into consideration

all the included subsystems in the Include section of SCS.

Port names of the same port type defined in the configure section cannot
be duplicated. This has to be checked taking into consideration all the

included subsystems in the Include section of SCS.

All the TROM objects defined in all the included SCS’s cannot have du-

plicate names.

Only compatible ports can be linked.

¢ Between Simulation event list, SCS, and TROM class specification the following

properties hold:

1.

N

Every TROM object listed in the simulation event list should be defined
in the SCS or in any one of the included SCS’s of that SCS. (The name of
the SCS appears in the Simulation event list)

For every TROM object listed in the simulation event list, the correspond-
ing event name should be defined in the corresponding TROM class in
the event section and this event should be of the type output and uncon-

strained.

. For every TROM object listed in the simulation event list, the port name

listed should be defined in the SCS or in any of the included SCS’s of that
SCS for that corresponding TROM object.

4.3.2 Simulator

The Simulator was implemented based on the existing design using Java. Simulator
makes use of the AST generated by the Interpreter and generates one of the possible

scenarios for the given system and the initial simulation event list.

The simulation steps are as follows [Mut96]:

48



1. Instantiate TROM objects: Adds the dynamic information(assignment vector,
and reaction vector) for each TROM object instantiated in the SCS to be sim-

ulated.

Instantiate simulation event list: Schedules unconstrained internal events from

o

initial states. Schedules the initial simulation event and their corresponding

rendezvous.

3. Handle the events: Traverses the simulation event list with respect to time and
handles the events by evaluating the port, pre and post conditions and taking
an action accordingly of firing or disabling the corresponding transition, and

scheduling the resulting events.

4. Handle the history: Saves the state, assignment, and reaction vector prior to

the transition.

5. If the system is in debugger mode, it asks the user after handling of each event

if he wants to invoke the debugger.

6. Debugger: The debugger allows the user to perform different kind of queries

and also allows to invoke the trace analyzer.

. Trace analyzer: Trace analyzer allows the user to query the static information
of the different TROM objects in the subsystem and of the subsystem itself.

-~

4.3.3 Interfacing with the Simulator

Since the design of Interpreter was changed drastically from the previous version,
there was a major change in the way Simulator interfaced with the Interpreter. We
had to make sure that the Simulator could interface with the Interpreter to perform
its task. Thus in the Interpreter we had to implement all the methods used to by the

Simulator. We had to modify the Simulator in certain aspects:

1. In the previous implementation of the Simulator the port names were generated
automatically, but in the new version the port names are taken from the user in
the Configure section. Thus the Simulator has to interface with the Interpreter

in order to get this port name list.

49



2. Since the structure of assertion tree was changed in the Interpreter, the evalu-
ation of these assertion tree in the Simulator had to be modified. Thus it lead

to major modification in the Object Model support.

50



Chapter 5

Graphical User Interface : Design

and Implementation

A graphical user interface GUI has been recognised as an important requirement for
the usability of the TROMLAB system. The overriding objective was to provide a
user-centered design of GUI of TROMLAB, which makes the svstem easy to learn and
use, and provides safe and effective ways for the user to interact with TROMLAB in a
task-oriented manner. A window-based interactive user interface is built to support
user interaction. We first present the significant aspects of GUI design issues, and
then focus on the detailed design of different GUI components. This design has been
fully implemented using Java programming language. All design diagrams presented
in this chapter are drawn according tec the UML standard notation.

5.1 GUI design issues

The fundamental principle in user interface design is that the interface must be de-
signed to suit the needs and abilities of the individual users of the system. The users
of our TROMLAB system are software designers with some familiarity with formal
specification languages, OOD, and TROM semantics. The important features in the

design of user interface are as follows:

e Users can use multiple sources on screen at once to carry out a task.

e Users may be able to interact with any one of several multiple views of one item

of interest on screen at the same time, for example can use Rose-GRC Translator

51



to create visual models and generate respectively the formal specifications and

check them for syntactical and semantic correctness using Interpreter GUL

e Users are allowed to specify objects in the screen by pointing, selecting, drag-

ging. and dropping them.
Our design and implementation efforts were focussed on the following aspects:

e Learnability and Throughput The menu buttons. directory tree structure,
and dialog boxes help users to reach a specified level of use performance within
a short time. The drag and drop feature provided in the directory tree structure

facilitates the speed of task execution, at the same time making it easy to use.

e Consistency The GUI design of windows are consistent, for example the win-

dow titles, menu bars, scroll bars, and colours are used in a consistent way.

e Familiarity Concepts and terminology that the user is already familiar with a
re-incorporated into the interface, such as in menu button names, labels, and

window messages.

e Control All the messages are positive, polite, and concise to make user feel

control over the system.

e Scalability The GUI was designed and implemented to work well for a small

process or collection of data, as well as large sized collections of data.

e Modifiability The GUI design supports future expansions of other TROMLAB

components without requiring major design changes to it.

5.2 Detailed Design of GUI

In this section we present the detailed design of various G'UI components namely
Interpreter GUI, and Simulator GUI Reasoning system GUI can run in conjunction
with Simulator, forming part of the Simulator GUI. We provide use case diagrams,

and object diagrams for the different GUI components.



5.2.1 Interpreter GUI

A use case diagram was created as part of the analysis of the user requirements for
the Interpreter GUI, and is illustrated in Figure 21.

Y

+
i

>

Devdoper\

\
\

\
\

, LT Eater TROM ciass specification
.- .- Zcuses>>
Design model from scratch z
LT use>>
IO e Enter Subsystem configurstion specification

T~ <<uses>>

<cuses>> . . ) Enter Simulaton event list

SR
- esauses>>
B T e

- Parse Simulation event list
LSl L Check the model for semantic correctedness

Semantic verify the model

‘
'

0
- A

TROMLAB

Figure 21: Use Case diagram for Interpreter GUI

This use case diagram contains two actors: Developer, and TROMLAB. The diagram

shows the main use cases(Design model from scratch, Modify model, Parse model,
and Semantic verify the model). The Developer designs the model, and finally the
internal structure of the model i.e. AST is created which is sent to TROMLAB system.



During the Object modelling phase we have designed object classes, object repre-
sentations, designed associations, organised object classes using aggregation and in-
heritance, and grouped classes into modules based on the closed coupling and related

functions.

In particular, the key classes where Mainwindow, InterpreterPane, DirectoryTreeP-
ane, DraggableTree, DroppableTextArea, and MyTreeModel. Figure 22 illustrates

the object diagram for the Interpreter GUL

JPane! EditorPane;
JPane! MessagePane;
MyActionListener meauaction;

DirectoryTreePane dtPane; '

DroppableTextArea textarea;

DirectoryTreePane dtPane;

DropTarget dropTarget;

MyTreeModel model;

Figure 22: Object diagram for Interpreter GUI

In Appendix C, we give a set of VDM specification for describing the tasks of Inter-
preter GUI interface.

54



5.2.2 Simulator GUI

A use case diagram was created as part of the analysis of the user requirements for

the Stmulator GUI, and is illustrated in Figure 23.

This use case diagram contains six actors: Developer, Simulator, Debugger, Query
Handler, Trace Analyser, and Reasoning system. The diagram shows the main use

cases(Start simulation, Start debugging, Start query handler, Start trace analyser,

e

Simulator

"

Start Debugger Debugger
L —
Start Query Handler %

Developer Query Handler

Start Trace Analyser — %
Start Reasonmg system {ace A%nalyser

Reasoning system

and Start reasoning system).

Figure 23: Use Case diagram for Simulator GUI



During the Object modelling phase we have designed object classes, object rep-
resentations, designed associations, organised object classes using aggregation and
inheritance, and grouped classes into modules based on the closed coupling and re-

lated functions.

In particular the key classes where Mainwindow, SimulatorPane, DebuggerPane,

QuervHandlerPane, TraceAnalyserPane, ReasoningSystemPane, and MyTableModel.

Figure 24 illustrates the object diagram for the Simulator GUI In Appendix C, we

DebwggerPase dPeme;
QueryHandierPane qopane:
TraceAnslywrPane aPuse;

Figure 24: Object diagram for Simulator GUI

give a set of VDM specification for describing the tasks of Simulator GUI interface.

5.3 GUI Implementation

The GUI for TROMLAB was implemented using Java programming language(JDK
1.2.1), with the work done under Sun workstation running Solaris 7. JDK 1.2.1 kit
provides Swing library which provides a complete set of graphical widgets designed

to implement user interfaces.

The most remarkable feature of Java Swing components is that they are written in
100 percent Java and do not depend on peer components, as most AWT components
do. This means that a Swing button or text area will look and function identically on
Macintosh, Solaris, Linux, and Windows platforms. This design eliminates the need

to test and debug applications on each target platform.

56



All the operations specified in the user requirements are implemented with all pre- and
post conditions checked. The GUI was implemented according to the design efforts
described in the previous section. The windows snapshots of the Interpreter GUI,
and Simulator GUI are given in Figure 25 and Figure 26, followed by an explanation.

5.3.1 Snapshot of Interpreter GUI

There are three panels in the window(Figure 25); The panel on the left has a direc-
tory tree structure which displays the valid formal specification files available in the
disk; The panel on the right is the text editor which allows the user to design the
formal specifications of the system; The bottom panel displays the messages when

user checks for syntax and semantics of the formal specification file.

User can drag the existing formal specification file from the directory tree panel
and drop it on the text editor panel. As soon as the user drops the dragged formal
specification file on the text editor panel, it is displayed in the editor. User is also
provided with another option to open the formal specification file by choosing the
menu item under the File menu, or by clicking the right mouse button anywhere in
the window. User is allowed to create a new formal specification by using the editor

provided, and can save the composed formal specification file.

The Parse button can be used to activate the syntactic analysis of the formal speci-
fication file. When the syntax analysis is completed, the message is displayed in the
message panel. The error messages are meaningful, and guide the user to correct the
error(s) in the formal specification file. Once the user has syntactically checked all
the four formal specification files, namely TROM class specification(s), Subsystem
Configuration Specification, LSL trait, and Initial simulation event list, semantic ver-
ification can be done by clicking the semantic verify menu item. The semantic verify
menu item becomes active only when the user has successfully parsed all the above
mentioned formal specification files. This menu item is part of the Semantic Analysis

menu.



% 0 bkup
B © (3 interpreter
0 Tca se

D Ropotcs.trom
B Rototics.scs
: D) Lertam.Roboties trom
a © :j vista

| Cfma Rt

e in:-Sm

g cu

ass Train(d<)

vents: Near!@C, Out, Exiti@C, In

tates: *idle, croas, leave{*.l,12}, toCross
ter:bures: exr:@cC

raites

ttribute-function: idle ~> {}scroas
rarsition-Specifications:
Rl:1 <idle,toCross>; Near(true); true =>
R2: <cxoss, leave>; Ouz; true => true:
R3: <leave, idle>; Exit (!pidwex) s
R4: <toCross.croes>: In; true =>
fame-Constraints:
TCwarxr2: Rl,
TCvazxl: RI,

true:

€, (s
{}s

Exit, (C,
In, (2, 41,
b o

[Class Gate [ @S]
Lowexr?4sS,
tates: °*operad,
ttributes:
raits:
ttribute-Function:
ramgition-Specificationet

Rl: <opered,toClose>; Lower(true):; true

Down, Up, Raise?qsS
toClose, tolpernr, clcsed

=> {l;leave ->

cxr'=pady

trie s> true:’

=> true;

tromspec.trom ...
amsing TROM - Train ...
Parsing TROM : Gate ...
FParsing TROM : Controlier ..

Figure 25: Window of Interpreter GUI

{};toCzoes




5.3.2 Snapshot of Simulator GUI

Figure 26 shows the snapshot of the Simulator’s GUI. Figure 27, Figure 28, Figure
29, and Figure 30 show the snapshots of Debugger GUI, Query Handler GUI, Trace
Analyser GUI, and Reasoning System GUI respectively. Before the user can start
the simulation of the designed system, simulation parameters which include Debug
option, Pace option, and Timeout value should be provided. In order to do that, the
user can make use of the radio buttons to set the debug option and pace option, and
the textbox is used to provide the simulation time out value. Only after providing

these values the Start button will be enabled to start the simulation.

The simulation can be viewed graphically by the user in a tabular form which is
in the Simulator GUI The columns in the table represent the objects instantiated in
the system. Before the simulation is started the columns are constructed from the
object names provided in the subsystem configuration specification. The rows in the
table represent simulation events handled at that particular simulation time. So. a
table cell represents the state of the object in the system for a handled simulation
event. The table entries projects the change in the states of the objects in the system
as time progresses. As soon as the simulation starts the table entries start to appear

and a row is added to it whenever a new simulation event is handled.

If the simulation is started in a debug mode, the user will be allowed to invoke De-
bugger GUI, Query Handler GUI, Trace Analyser GUI, and Reasoning System GUI
by clicking the respective menu items. In debug mode the user is allowed to query
the system, find the state of the system to analyse the cause for its current state,
view history of the simulation, and inject a simulation event etc. This allows the user
to debug the design and verify whether the system is behaving according to the design.

Debugger provides a set of queries which allow the user to get information about
the current status of the simulation. For example, the query Display system status
displays the current status of the simulated system. It displays the current state of
every TROM object, the assignment vector, and the reaction vector of the system.
Query handler provides a set of queries which allow the user to get static information

of the system. For example, the query Display transitions for given Trom displays all

59



the transitions of the TROM object given by the user. Trace analyser provides a set
of queries which allow the user to get information about the history of the simulation.
For example, the query Display simulation events causing no transition displays the
simulation events which were disabled. Reasoning system provides a set of queries

which allow the user to get the following types of information:

e History queries: The query why does the system goes from one state to another
state is an example of a history query. The response to the query allows the user
to understand the reasons which caused the transitions that lead the system to

go from one state to another state.

e Hypothetical queries: The query what if we insert an event is an example of a
hypothetical query. The response to the query allows the user to analyse the

consequences of inserting a new simulation event.

e Reachability queries: The query show all the routes between any two states of
a TROM is an example of a reachability query. The response to this query is a
display of all possible acyclic routes between any two given states of a TROM

object.

Figure 26: Window of Simulator GUI

60



D_TRANSITION

TRIGGERE

Event Outcome

SR o

AL

Debugger GUI

indow of Simulator

w

igure 27:

F

61



ion State

Destinat

Query Handler GUI

imulator

indow of S

w

28

Figure

62



Figure 29: Window of Simulator - Trace Analyser GUI

63



;2:»&
IR o,
" R Y

% A
between state idie and state toCross:

Figure 30: Window of Simulator - Reasoning System GUI

64



Chapter 6

Case Study : Robotics Assembly

example

6.1 Introduction

This chapter demonstrates the GUI application for a Robotics Assembly problem.
The problem and its model will be described informally and formally and then the

tool’s application will be shown.

6.2 Problem Description

6.2.1 Informal Problem Description

We abstract robots from mechanical objects to functional units. The assembly envi-
ronment consists of a robot with two arms, a conveyor belt, a vision system, and a
user. A user places two kinds of parts, cup and dish, on the belt. The vision system
senses a part on the belt and recognises its type. The belt stops whenever a part is
sensed, so that the robot can pick the part from the belt. After the part is picked by
the robot, the belt moves again. An assembly is performed when the robot matches a
cup in one arm with a dish in the other arm. It is required to design the assembly
system with real-time constraints, so that when n cups and n dishes are placed in an

arbitrary ordering on the belt, n assemblies are made by the robot.

65



Constraints and Assembly Algorithm

The following assumptions are made:

e Both arms of the robot manipulator have the same physical characteristics (pre-

cision, speed, degrees of freedom) and functional capabilities.

e Algorithms for part recognition, collision-free motion of robot arms, gripping,

holding, and placement work in real-time.

e The conveyor belt runs at a constant speed. No two parts can sit on the belt

side by side nor can they collide while moving.
The following timing constraints must be specified:

1. There is a maximum delay of 2 time units from the instant a part enters the

sensor zone on the belt to the instant it is sensed.

(A

There is a maximum delay of 5 time units from the instant a part is sensed to

the instant the vision system completes part recognition and informs the robot.

3. From the instant of receiving the signal from the vision system, the robot ma-

nipulator picks up the part from the belt within 2 time units.

4. To complete an assembly, the right arm should place the part it holds on the

assembly pad, within a window of 2 to 4 time units of picking that part.

Our algorithm uses a stack to assemble the parts. Initially the left arm of the
manipulator is free, the stack is empty, and no part has been sensed. Whenever both
arms of the robot are free and the stack is empty, and a signal is received by the robot
from the vision system, indicating the recognition of a part, the left arm picks up the
part from the belt. If the left arm holds a part and the right arm is free at the instant
the part recognition signal is received from the vision system, the right arm picks up
the part from the belt. If both arms hold parts of the same kind the part in the right
arm is pushed onto the stack; otherwise the parts are assembled as follows. The left
arm places the part on the assembly tray and frees itself; next, the right arm places
the part on the assembly tray. If the left arm is free and the right arm is not free, but

the stack is not empty, the left arm picks up a part from the stack.

66



State Left arm Right arm

sl free free

s2 moving free

s3 holding free

s4 holding moving

s3 holding holding

s6 placing holding

s7 holding assembling

s8 holding pushing on stack

s9 popping stack holding

Table 1: States of Robot Manipulator.

Visual Models of a Design

We abstract the following components of the assembly unit: User, belt, Vision System,
and Robot. The port types and messages among these components can be derived
from the informal design description. We model each component as a GRC with
port types and attributes. The User has one port type @VS to communicate with
the Vision System when parts are placed on the belt. The belt has two port types:
port type @V to receive a message from the Vision System when a part has been
sensed; and port type @R to receive messages from the Robot when a part has been
picked. The Vision System has three port types: port type @U to receive messages
from the User; port type @S to inform the Robot that a part has been recognised:
and port type @@ to inform the belt that a part has been sensed. The Robot has
two port types: port type @C to receive messages from the Vision System when a
part has been recognised; and port type @D to inform the beit that a part has been
picked. Figure 31 shows the TROM classes, with respective port types in the Robotics
Assembly system.

The dynamic behaviour of the reactive objects are captured in the statechart
diagrams shown in Figure 33, Figure 39, Figure 36, and Figure 42. The assembly
system, consisting of two users, one vision system, one belt, and one robot, is described
in the collaboration diagram in Figure 45. The formal specifications are shown in
Figures 32, 38, 35, and 41. The LSL trait PartType/Part/is an abstract enumerated
type for defining cup and dish parts. Table 6.2.1 describes the situations captured by
the states for the robot manipulator in Figure 42.

67



!

The users place parts on the belt in an arbitrary order; however, the parts arrive
in the sensor zone according to a first-in-first-out scheme. We capture this feature
by introducing the attribute inQueue of type PQueue, where Queue[/Part,PQueue]
is an LSL trait defining a queue of parts. The attribute inStack of type PStack,
where Stack[Part,PStack] is an LSL trait, models the operations of a stack. By
including these traits in the GRCs, we have imported their operations into the formal
specifications, thus abstracting the data computations. For instance, whenever the
message PutC or PutD is received by the vision system. the corresponding part is
enqueued. The parts are sensed and recognised in the order they are placed on the
belt, subject to the timing constraints. This design ensures that every part placed on

the belt is eventually recognised and assembled.

6.2.2 Class Diagram for Robotics Assembly

1. Vision system TROM class is an aggregate of port types QU, @S, @Q.

o

User TROM class is an aggregate of a port type @VS.

3. Belt TROM class is an aggregate of port types @R, @V.

e

. Robot TROM class is an aggregate of port types @C, @D.

There is an association between the port type @Q of Vision system and @V of
the Belt, meaning that the Vision system uses the port type @Q to communicate with
the Belt through port type @V.

There is an association between the port type QU of Vision system and @VS of the
User, meaning that the Vision system uses the port type @U to communicate with
the User through port type @VS.

There is an association between the port type @S of Vision system and @C of the
Robot, meaning that the Vision system uses the port type @S to communicate with
the Robot through port type QC.

There is an association between the port type @D of Robot and @R of the Belt,
meaning that the Robot uses the port type @D to communicate with the Belt through
port type @R.

Vision system has two attributes, P of trait type Part, and inQueue of trait type
Queue. The two types are abstract data types defined in the LSL traits Part and

68



Queue, where the Queue is parameterised by Part.

Robot has two attributes, P of trait type Part, and inStack of trait type Stack. The

two types are abstract data types defined in the LSL traits Part and Stack, where the

Stack is parameterised by Part.

Figure 31 shows the TROM classes, with respective port types in the Robotics

assembly system.

<<PortType>>
@5

events:set = {RecC!, RecD!}

<<GRC>>
Vision system

<<PortType>>
@cC

<<DataType>> Pt: Part(P}]
c<DataType>> Qe : Queue(P]

{ S—

*®

:Levem.s:scx = {RecC?, RecD?} ]

<<PertType>>
@Q

: ]

events:set = {SensedC!. SensedD!}

<<PontType>>
@v

<<GRCo>>
Robot

events:set = {SensedC?, SensedD?}

<<DataType>> Pt : Pant[P)
<<DataType>> Sk : Stack(P]

*

<<PortType>>
@D

<<GRC>>
Belt

<<PontType>>
@R

events:set = {LeftPick!, RightPick!)

events:set » {LeftPick?, RightPick?}

Figure 31: Robotics System Class diagram

6.2.3 Formal Problem Description

<<PortType>> |
@U !

L events:set = (PutC?, PutD?) i

<<PortType>>
@Vs

events:set = {(PutC!, PutD!} J

<<GRC>> !
User

In this section we describe each class in the Robotics assembly using three different

notations namely, a textual representation which is used by the Interpreter to the

build the internal structure i.e the AST, the state machine representation, and the
UML model developed using Rose tool. Following the description of the TROM

69



classes, we will be describing the LSL traits used in the Robotics assembly system,

and the Subsystem configuration specification(SCS).

The User Class

The User is the only environmental class in the system, which controls the whole

system by placing parts for assembly on the belt. Since the User is an environmental

class, all its output events cannot be constrained by any other transitions. Figure 32,

Figure 33, and Figure 34 show the textual representation, state machine representa-
tion, and the UML model of the User class.

Class User [@VS]
Events: Next,PutC!@VSs, PutD!@VS, Resume
States: *idle, ready, place
Attributes:
Traits:

end

Attribute-Function: idle -> {}; ready -> {}: place -> {};
Transition-Specifications:

R1: <idle,ready> ; Next(true); true => true;

R2: <ready,place>; PutD(true); true => true;

R3: <ready.place>; PutC(true); true => true;

R4: <place,idle> ; Resume(true): true => true;
Time-Constraints:

Figure 32: User TROM class - Textual representation

Figure 33: User TROM class - State machine representation

70



<<GRC>>
Cser

<<PorType>>
[ AH]

eveats:set = (PutC?, PutD!}

Figure 34: User TROM class - UML model

The Vision system Class

The Vision system communicates witk the User, to know when a part is placed on
the Belt. It inserts this part into the Queue and within certain time it will sense
this part and signals the Belt to stop moving. After a certain time it will signal the
Robot to remove the part from the Belt. If during this time it receives another signal
from the User and it has inserted the part into the Queue it will signal again the
Belt to stop and Robot to pick that part, otherwise it will go into a monitor state.
Figure 35, Figure 36, and Figure 37 show the textual representation, state machine

representation, and the UML model of the Vision System class.

Class Visionsystem [@U,@S, @Q}

Events: PutD?@U, PutC?@U.SensedD!'@Q, SensedC'@Q,RecC!@S. RecD!@S
States: *monitor.active,identify

Attributes: inQueue:PQueuce; P:PART

Traits: Part[PART], Queue[PART.PQucuc]

Attribute-Function: monitor -> {inQueue}; active -> {inQueue }: identify -> {inQueue};
Transition-S pecifications:
R1: <monitor.active> ; PutD{(true) ; true => inQueue’ = append(dish(P). inQueue);
R2: <monitor.active> ; PutC(true) ; ttue => inQueue’ = append(cup(P), inQueue);
R3: <active,identify> ; SensedD(true); head(inQueue)=dish(P) => true:
R4: <active.identify> ; SensedC(true); head(inQueue)=cup(P) => true;
RS: <active,active> ; PutD(true) ; true => inQueue’ = append(dish(P),inQueue);
R6: <active.active> ; PutC(true) ; true => inQueue’ = append(cup(P).inQueue);
R7: <identify,monitor> ; RecC(true) ; len(inQueue) = | => inQueue’ = til(inQueue);
RS: <identify.identify>; PutD(true) ; true => inQueue’ = append(dish(P).inQueue);
R9: <identify,monitor> ; RecD(true) : len(inQueue) = | => inQueue’ = tail(inQueue);
R10:<identify.active> ; RecD(true) : len(inQueue) > | => inQueue’ = tail(inQueue);
R11:<identifyactive> ; RecC(true) ; len(inQueue) > | => inQueue’ = tail(inQueue);
R12:<identify.identify>; PutC(true) ; true => inQueue’ = append(cup(P),inQueue);
Time-Constraints:
TCl: R2, SensedC, [0.2].{):
TC2: R1, SensedD, {0.2].{}:
TC3: R4, RecC, [0.51.{}:
TC4: R3, RecD, [0.51.{}:
TCS: R10.SensedC, [0.2].{}
TC6: R10.SensedD, [0.2].{}:
TC7: R11.SensedC, [0.2].{}:
TCS8: Ri1.SensedD, {0.2].(}
end

Figure 35: Vision system TROM class - Textual representation

71



PutC/TCl =0

RecD
/I TCl<= §
& TC5=0
&TC6=0

RecD |
/TCl<m §

RecC
/TC3 <=5

SensedC

Identify

Figure 36: Vision system TROM class - State machine representation

<<PontType>> <<GRC>> <<PortType>>
@S Vision system @u
i
| eventsiset = {RecC!, RecD!) " <<DataType>> Pt : Pant[P] g i eventsiset = (PutC?, PutD?}
<DataType>> Qe : Queue(P]

<

<<PortType>>
@Q

events:set = {SensedC!, SensedD!}

Figure 37: Vision system TROM class - UML model

The Belt Class

The Belt is controlled by both the Vision system and the Robot. It will stop whenever
the Vision system senses a part, and starts moving again whenever the Robot picks
the part up. Figure 38, Figure 39, and Figure 40 show the textual representation,

state machine representation, and the UML model of the Belt class.

72



Class Belt [@R,@V]

Events: SensedC?@V, SensedD?@V, LeftPick?@R, RightPick?@R
States: *active,stop

Attributes:

Traits:

Attribute-Function: active -> {}; stop -> {}:
Transition-Specifications:
R1: <active,stop> ; SensedC(true) ; true => true;
R2: <active,stop> ; SensedD(true) ; true => true;
R3: <stop,active> ; LeftPick(true) ; true => true;
R4: <stop,active> ; RightPick(true); true => true;

Time-Constraints:

end

Figure 38: Belt TROM class - Textual representation

SensedD

“

N

RightPick

Figure 39: Belt TROM class - State machine representation

<<GRC>>

<<PortType>> Belt <<PortType>>
L.A4 &R

events:tet = {SentedC?, SensedD?} ' events:set = {LeftPick?, RightPick?}

Figure 40: Belt TROM class - UML model

73



The Robot Class

The Robot has two manipulators, namely the Left and the Right Arm. Whenever an
Arm picks up a part it signals the Belt to start moving again. The Left Arm will pick
up the first part followed by the Right Arm. If there are of the same type, the Right
Arm will insert the part it has into a Stack and wait to pick up another part. If they
are not the same, the Left Arm will start the assembly by placing the part it has on
the tray. It will then check to see whether there are any parts in the stack. if there is
a part then it picks it from the stack and the Right Arm will then finish the assembly
by placing the part on the tray. If there are no parts in the stack, the Right Arm will
finish the assembly, and both arms will be free. Figure 41, Figure 42, and Figure 43
show the textual representation, state machine representation, and the UML model
of the Robot class.

Class Robot [@D,@C]
Events: RecC?@C, RecD?@C, LeftPick!@D, RightPlace, Remove,
RightPick!@D, LeftPlace, Insert, FreeRight, LeftPickFromStack
States: *S1, S2, 83, S4, S5, §6, 87, S8, 89
Attributes: IPri:PART; rPr:PART; inStack:PStack
Traits: Part{PART], Stack[PART, PStack]

end

Attribute-Function: St -> {}; S2 -> {IPrt}; $6 -> {}; S7 -> {IPrt.inStack }; S3 -> {inStack }; $4 ->{rPrt}: S5 > {};
Transition-Specifications:

R1: <S1.S2>; RecC(true) ; true => [Prt’ = cup(IPrt);

R2: <S1,S2> ; RecD(true) ; true => [Prt’ = dish(IPrt);

R3: <§2.83> ; LeftPick(true) ; true => true;

R4: <$6,S1> ; RightPlace(true) ; isEmpty(inStack) => rPrt’ = nulilpart(rPrt);

RS5: <S6,59> ; LeftPickFromStack(true); {(isEmpty(inStack)) => IPrt’ = top(inStack);

R6: <§7,83> ; RightPlace(true); true => rPrt = nullpart(rPrt);

R7: <§3,54> ; RecC(true) ; true => rPrt’ = cup(rPr);

R8: <S3,S4> ; RecD(true); true => rPrt’ = dish(rPrt);

R9: <54,85>; RightPick(true); true => true;

R10:<S5.56>; LeftPlace(true) ; !(IPrt = rPrt) => [Prt’ = nullpant(IPrt);

R11:<S5.58> ; Insert(true); rPrt = IPrt => inStack’ = push(rPrt, inStack);

R12:<S8,S3>; FreeRight(true); true => rPrt’ = nullpart(rPrt);

R13:<59,S7>; Remove(true) ; true => inStack’ = pop(inStack);
Time-Constraints:

TCIl: R1, LeftPick, [0.2], {}

TC2: R2, LeftPick, [0,2], {}

TC3: R8, RightPick, [0,2], {}

TC4: R9, RightPlace, [2,4], {}

TCS: R7, RightPick, [0.2], {}

Figure 41: Robot TROM class - Textual representation



AN RecC /TCl =0 LeftPick /TCl <a2 & TC2 <=2

RecC /TC5 =0

RightPick / TC3 <= 2 & TCS <= 2 & TC< =0

LeftPickFromstack
SS

Leftplace

S1 - Both Arm are Free

S2 - Left Arm ready to pick. Right Arm free

S3 - Left Arm not free, Right Arm free

S4 - Right Arm ready to pick, Left Amm not free

S5 - Right Arm not free, Left Arm not free

S6 - Left Arm is free, Right Arm is not free

S7 - Right Arm ready to place, Left Arm not free

S8 - Right Am insenting into Stack. Left Arm not free

S9 - Left Arm removing from stack. Right Arm is not free

Figure 42: Robot TROM class - State machine representation

<<GRG>>
<<PontType>> Robot <<PontType>>
@c _d <<DataType>>Pr: PanfP] | @p
eventsiset = (RecC?, RecD?} <<DataType>> Sk : Stack{P} events:set = {LeftPick!, RightPick!}

Figure 43: Robot TROM class - UML model

75



The Subsystem Configuration Specification(SCS)

The system we are going to simulate is composed of one Robot, oneBelt, oneUser, and
one Vision system. Figure 44, and Figure 45 show the textual representation, and the
UML model of the SCS.

SCS Robot

Includes:

Instantiate:
rl::Robot[@D: 1, @C:1];
bl:Belt{@R:1, @V:1];
ul::Userf[@VS:1];
v1::Visionsystem[@U:1, @S:1. @Q:1];

Configure:
ul.@vsS1:@Vvs <->vi.@UL:@U;
bl.@V1i:@V <> vl.@Ql:@Q;
v1.@S1:@S <->rl.@Cl:@C;
rl.@D1:@D <-> bl.@R1:@R;

end

Figure 44: SCS - Textual representation

@VS!:@Vvs @ui.@uU
ERAALLES ~AL) =
I3

— f——

@QL@Q
I | @st@s
@vi@v .
@Cl:@C
belt!:Belt
@R1:@R
roboel:Robat
@DL:@D

Figure 45: SCS - UML model

76



Sample Simulation Event List

In the sample simulation event list we will schedule four events namely PutC, PutC,
PutD, and PutD of the User object which will be instantiated in the SCS. This is due
the fact that only output unconstrained events i.e environmental events are allowed
in the initial simulation event list. All subsequent events will be scheduled by the
Simulator as the simulation proceeds. Figure 46 shows the textual representation of

the Sample simulation Event List.

SEL: Robot
PutD, ul, @VSI, 3;
PutD, ul, @VS], §;
PutC, ul, @VSl1, 7;

PutC, ul, @VSl1, 9;
end

Figure 46: Sample Simulation Event List

LSL Traits

The system uses three LSL traits namely Part, Queue, and Stack. The Part is used
by the Vision system and the Robot. The Queue trait as mentioned earlier would be
used by the Vision system to store the parts placed on the Belt. The Stack is used
by the Robot to push and pop the parts as mentioned in the previous section. The
following figures shows the textual representation of three traits namely Part, Queue
and Stack respectively. The Figure 47, Figure 48, and Figure 49 show the three LSL
traits namely Part, Queue, and Stack.
Trait: Part(P)
Includes: Boolean
Introduce:
cup : P->P;
dish : P->P;

free : P->P;
end

Figure 47: Part LSL Trait

7



Trait: Queue(e, Q)
Includes: Integer
Introduce:

insert :e, Q -> Q;

delete : Q ->Q;

head :Q ->e;

size :Q ->Int
end

Figure 48: Queue LSL Trait

Trait: Stack(e, S)
Includes: Boolean
Introduce:

isEmpty: S -> bool;

push: e, S > §;

pop: S->8;

top: S->e;
end

Figure 49: Stack LSL Trait

6.3 GUI for Robotic Assembly

In this section, we give the window snapshots of Graphical User Interface in the
process of designing the Robotics Assembly system. As mentioned in the previous
chapter, the GUI has a main window through which separate windows for Interpreter,
Simulator, Debugger, Query Handler, Trace Analyser, and Reasoning System can be
opened. Through the main window the user can access the Rose-GRC Translator to
compose the visual models of Robotics assembly. This interface is operational if both
the GUI and the Rose-GRC Translator operate in the same platform (either UNIX or
Windows). The Rose-GRC Translator produces the textual specifications(see Section
6.2). The files containing the textual specification then become available to the GUL

The user can invoke the Interpreter GUI at this stage.

6.3.1 Interpreter GUI

Figure 50 shows the Interpreter GUI window for type checking Robot class specifica-
tion. The left panel in the window shows the directory tree structure for the different
files in the Robotics Assembly system. When the user clicks the Parse button, the file
in the text editor panel is passed to the parser. Error messages if any appear at the

78



bottom panel of the window. If there are errors the user can switch to the Rose-GRC
Translator to make corrections on the visual models. The window shows the TROM
class specifications for Robotics Assembly system in the text editor panel, and the

parse messages are displayed in the bottom panel.

e S emmpntie- A

IMAYKSs2TRONG/snniva/i2 vl -ve:
© oo
© 9 interpreter : f & :
O vista Class Robot (@D, Q<] P
O'Cj:mp Events: RecC?24C, RecD?7¢C, lLeftP:ck! @D, RightPlace, Ramove, RightPa
States: *Sl, S2., S3, S4., S3, S6, S7, S8, S3
¢ COintsm Attributes: 1PXt:PART; rPrt:PART; inStack:PStack
© 7 temz Trazzet Paxc{PART], Stack[PART, PStack]
Dnet.:ran Atzribute-Function: Sl => (l: S2 -> {1Prz}; S6 -> (}l:; $7 -> {(i1Px:, anStackl: S3
Trarmition-Specificatiora
'Dp'“'"“: Rl: <S1,82> 3 RecCltrue) s true => 1Pxe’ z
DQU.U._,,M R2: <S1,S52> ; RecD(tzue} : true «> 1Prz® b
R3: <S2,53> ;3 LaftP:ck{true) 7 true -> txues
DR"”"“' R4:1 <S€,S1> s RightPlace (true) s isImpty(inStack) e> rPr="* 'y
D Rotot.scs R3: <S6,S> 3 LeftPickfracStack(true); ' (isExpty(anStack)) => lPxet* 3
Dsuck!mst RE:1 <S7,8S3> 3 RightPlace (true) s true => rPre
g e R7s <S3,S54> $ RecC(zrue) ¢ true «> rPre° :
) Rovotepec.tom R8: <S3,S54> ; RecD(true) ; true > rPyres [
oM e R9: <S4,SS> ; RightPick (true) 3 true > trues
R1C:1<SS,S6> s LeftPlace({true) 3 V1 (LPxt = rPre) => 1Pxc* :
R11:<S3, 568> 5 Irsert(true) ;5 rPrt = lPrt > anStack|™
R12:<¢Se,S53> s TreeRighnt (txue) 3 true > rPre” .
R13:<E9, 87> 7 Reamove (true) 1 true => inStack|-
Time-Constraintst:
TCl: M1, LeftPick, 9,21, (1}
TC2: R2, LeftP:ick, (0,2), {ts
TC3: RO, RaghtPack, (c. 21, (1
TC4: R9, RagntPlace, (2,41, (1, >
"¢ - ‘
Paming TROM File : Robotspec.trom ..
Parsing TROM : Rodat . .
Farsing TROM . Visonsystem ...
Paming TROM : Belt ...
Parsing TROM : User ...

Figure 50: Window of Interpreter GUI

6.3.2 Simulator GUI

Before the user can start the simulation of the designed system, simulation parame-
ters like Debug option, Pace option and Timeout value should be provided. In order
to do that, the user can make use of the radio buttons to set the debug option and
pace option, and the textbox is used to provide the simulation time out value. In the
Robotics Assembly example, the Debug option is set to a value “yes”, Pace option is
set to a value “Normal”, and the Time out is set to a value “20”. Only after providing

these values the Start button will be enabled to start the simulation.

79



Once the user clicks the Start button, the simulator first schedules all the uncon-
strained internal events from the initial state of respective TROM objects in the
system followed by scheduling of all the simulation events in the initial simulation
event list given by the user, and the corresponding rendezvous. Then the simulation
checks whether there are any events to be handled at that current simulation. The
simulation clock is incremented after handling any simulation events. The simulation
can be viewed graphically by the user in a tabular form which is in the Simulator
GUI The table cell represents the state of the object in the system for a handled sim-
ulation event. A row is added to the table whenever a simulation event is handled.

The simulation algorithm is given in Appendix B.

There are four objects in the Robotics Assembly system; in Figure 51 the first column
in the table represents a Robot object, the second column in the table represents a
Belt object, the third column in the table represents a User object, and the fourth col-
umn in the table represents a Vision system object. When the simulation is started,
the unconstrained internal event Next of TROM class User is scheduled, followed by
the simulation events in the initial Simulation Event List provided by the user. The
first event to be handled by the simulator is the output unconstrained event PutC of
TROM class User at simulation time 3. As soon as the simulation event is handled
a row is added to the table displaying the state of each objects in the system. Then
the clock is incremented, and the simulation continues until there are no simulation
events in the simulation event list. Figure 51 shows the progress of simulation until

time 6.

If the simulation is started in debug mode, the user will be able to invoke Debug-
ger GUI, Query Handler GUI, Trace Analyser GUI, and Reasoning System GUI by
clicking the respective menu item under the Show Window menu. In debug mode,
the simulation clock is freezed automatically after an event is handled and the user
is allowed to query the system. The simulation can be resumed by clicking the Start
button. Figure 52, Figure 53, Figure 54, and Figure 35 show the snapshots of De-
bugger GUI, Query Handler GUI, Trace Analyser GUI, and Reasoning System GUI

respectively.

80



Debugger provides a set of queries which allow the user to get information about
the current status of the simulation. Following are the some of the queries in the

Debugger.
e Display system status,
e Display subsystem status,
e Display TROM status, and
e Display simulation event list.

For example, the query Display system status displays the current status of Robotics
Assembly system. The status of Robotics Assembly system includes the display of the
current state of every TROM object, the assignment vector, and the reaction vector.
Debugger GUI provides the set of queries in the Debugger to user and allows the user
to select a particular query by clicking the corresponding radio button. After choosing
a particular query the user can compose the query by giving its parameters through
the text boxes provided for that query. For example, the query show subsystem status
requires the user to provide a subsystem name through the text box provided for this
query. Once user finishes with composing the query, the response to the query can

be viewed in the bottom panel by clicking the Show button.
Query handler provides a set of queries which allow the user to get static information
of the system. Following are the some of the queries in the Query handler.

e Display Trom AST,

e Display transitions for given Trom,

e Display transitions to given state, and

e Display time constraints for given Trom.

For example, the query Display Trom AST for a given Trom object displays the AST
of the given TROM object. Query handler GUI provides the set of queries in the
Query handler to user and allows the user to select a particular query by clicking the
corresponding radio button. After choosing a particular query the user can compose

the query by giving its parameters through the text boxes provided for that query.

81



For example, the query Display transitions for given Trom requires the user to pro-
vide a TROM object name through the text box provided for the query. Once user
finishes with composing the query, the response to the query can be viewed in the

bottom panel by clicking the Show button.

Trace analyser provides a set of queries which allow the user to get information
about the history of the simulation. Following are the some of the queries in the

Trace analyser.

e Display simulation events causing transition,
e Display simulation events causing no transition,
e Display simulation events not yet handled, and

e Display simulation events for given period.

For example the query Display simulation events causing transition, displays the sim-
ulation events which were enabled. Trace analyser GUI provides the set of queries in
the Trace analyser to user and allows the user to select a particular query by click-
ing the corresponding radio button. After choosing a particular query the user can
compose the query by giving its parameters through the text boxes provided for that
query. For example, the query Display simulation events for given period requires the
user to provide a time period through the text boxes provided for the query. Once
user finishes with composing the query, the response to the query can be viewed in

the bottom panel by clicking the Show button.

Reasoning system provides a set of queries which allow the user to get the follow-

ing types of information:

e History queries: The query Why the system goes from one state to another state
is an example of a history query. The response to the query allows the user to
understand the reasons which caused the transitions that lead the system go

from one state to another state.

e Hypothetical queries: The query What if we insert an event is an example of
a hypothetical query. The response to the query allows the user to analyse the

consequences of inserting a new simulation event.

82



e Reachability queries: The query Show all the routes between any two states of
a TROM is an example of a reachability query. The response to this query is a

display of all possible acyclic routes between any two given states of a TROM

object.

Reasoning system GUI provides the set of queries in the Reasoning system to user
and allows the user to select a particular query by clicking the corresponding radio
button. After choosing a particular query the user can compose the query by giving its
parameters through the text boxes provided for that query. For example, the query
Why the system goes from one state to another state requires the user to provide
the TROM object name, and a set of states through the text boxes provided for the
query. Once user finishes with composing the query, the response to the query can

be viewed in the bottom panel by clicking the Show button.

83



)

R
A A A

S Rookgyich

monitor
2 active ready monitor
% PUtC active ready active
Sa8nesdc.|S 1 active ready identity
stop ready identify
stop place identity
stop idle identity
stop ready identify
stop ready identity
stop ready active

Figure 51: Window of Simulator GUI

84




Robot

Subsystem label
Trom Status

S2

8
b ]
b
€
g
5
(3]

Robdot

Trom-class

2}

Trom-label

Debugger GUI

lator -

Simu

Window of

52

igure

F



i
!
!
i
i

Query Handler GUI

lator -

Simu

indow of

W

33

igure

F

86



Figure 54: Window of Simulator - Trace Analyser GUI

87



o i
n-:ﬁ_:: o

el

1 and state SS:
he trom otject -> r1 did not ge into state -> S§ ye
< [8 T TR LT R

Figure 55: Window of Simulator - Reasoning System GUI

88



Chapter 7
Conclusion and Future Work

The thesis has contributed two significant results to TROMLAB:
e reengineered components which are adaptable, scalable, and reusable;
e GUI, which provides task-oriented interface to access all TROMLAB components

This thesis fills an important void that existed in TROMLAB. The current implemen-
tation of GUI can be easily extended to accomodate interfaces to any new future
TROMLAB component. The users of TROMLAB have the grounds for a completely
mechanically assisted prototype development cycle for a rigorous development of real-

time reactive systems.

7.1 Future work

The following are some suggested future improvements to the TROMLAB environ-

ment:

1. Interpreter Parser of LSL traits should be modified to handle the complete
LSL trait file, instead of the partial one which was used i.e, it should include
the axioms section to the existing one. These axioms could be represented by
assertion trees using JJTree. Parameterised events should be allowed to enhance
the expressive power of the specifications. This will require research into the
representational and behavioral aspects for parameterised events, before making

changes to the parser and the Interpreter.

89



2. Simulator

(a) A library consisting of the implementation of a large number of LSL trait
functions could be added to Simulator. This would allow the user to make
use of different LSL traits. In the current version of the simulator only one
LSL trait (Set) is implemented.

(b) In current version of the Object Model support only boolean operators can

be evaluated. in future arithmetic operators should be implemented.

3. GUI
As we saw through the previous chapter explaining the design of GUI and
through the case study, one of the current challenges is to provide the user
a more complete TROM system designing tool which allows user to draw the
state machines of TROM class, increasing the usability in designing a TROM

system.

90



Bibliography

[AAMO6]

[AAR95]

[Ach93]

[AMO8]

[E1190]

[GH93]

[Hai99]

[Har]

V. S. Alagar, R. Achuthan, and D. Muthiaven. TROMLAB: A software
development environment for real-time reactive systems. Submitted for
publication in ACM Transactions on Software Engineering and Method-
ology (First vérsion}, October 1996, October 1999 (Revised version).

R. Achuthan, V. S. Alagar, and T. Radhakrishnan. TROM - an object
model for reactive system development. In The 1995 Asian Computing
Science Conference, ASIAN’95, Thailand, December 1995.

R. Achuthan. A Formal Model for Object-Oriented Development of Real-
Time Reactive Systems. PhD thesis, Department of Computer Science.
Concordia University, Montréal, Canada, October 1995.

V. S. Alagar and D. Muthiayen. Specification and verification of complex
real-time reactive systems modeled in UML. Submitted for publication in

IEEE Transactions on Software Engineering (Being revised), July 1998.

Elliot J. Chikofsky and James H. Cross II Reverse Engineering and Design
Recovery: A Taxonomy in IEEFE Software Engineering, January 1990.

J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal
Specifications. Springer Verlag, 1993.

G. Haidar. Simulated reasoning and debugging of TROMLAB environ-
ment. Master’s thesis, Department of Computer Science, Concordia Uni-

versity, Montréal, Canada, December 1999.

D. Harel, H. Lachover, A, Naamad, A. Pnueli, M. Politi, R. Sherman, A.
HtullTrauring, M. Trakhtenbrot, STATEMATE: A Working Environment

91



[HL94]

[JKSSS90]

(Mut96]

[Mut9s]

[MA99]

[Nag99]

[Oan99]

for the Development of Complex Reactive Systems. IEFE Transactions

on Software Engineering.

C. Heitmeyer and N. Lynch. The generalized railroad crossing: A case
study in formal verification of real-time systems. In Proceedings of the
15th IEEE Real-Time Systems Symposium, RTSS’94, pages 120-131, San
Juan, Puerto Rico, December 1994.

Jenny Preece, Yvonne Rogers, Helen Sharp, David Benyon, Simon Hol-
land, and Tom Carey. Human-Computer Interaction Addison-Wesley,
1995.

H. Jarniven, R. Kurki-Suonio, M. Sakkinen, and K. Systa. Object-oriented
specifications of reactive systems. In Proceedings of 12th IEEE Conference

on Software Engineering, 1990.

D. Muthiayen. Animation and formal verification of real-time reactive
systems in an object-oriented environment. Master’s thesis, Department
of Computer Science, Concordia University, Montréal, Canada, October
1996.

D. Muthiayen. Real-time reactive system development - a formal ap-
proach based on UML and PVS. In Proceedings of Doctoral Symposium
held at Thirteenth IEEE International Conference on Automated Software
Engineering, ASE98, Honolulu, Hawaii, October 1998.

Muthiayen, D. and Alagar, V.S. Mechanized Verification of Real-Time
Reactive Systems in an Object-Oriented Framework, Submitted to IEEE

Software Transactions on Software Engineering, 1999.

R. Nagarajan. Vista - a visual interface for software reuse in TROMLAB
environment. Master’s thesis, Department of Computer Science, Concor-
dia University, Montréal, Canada, April 1999.

Oana, P. Rose-GRC translator:Mapping UML visual models onto formal
specifications. Master’s thesis, Department of Computer Science, Concor-

dia University, Montréal, Canada, September 1999.

92



[Obj97]

[ORS92]

{Pom99]

[Rat97]

[Rat98a]

[Rat98b]

[RS98]

[SGW94]

[T2096]

Overcoming the crisis in real-time software development. Technical report,
ObjecTime Limited, 1997.

S. Owre, J. M. Rushby, and N. Shankar. PVS: a prototype verification
system. In Proceedings of 11th International Conference on Automated
Deduction, CADFE, volume 607 of Lecture Notes in Artificial Intelligence,
pages 748-752, Saratoga, New York, 1992. Springer Verlag.

F. Pompeo. A formal verification assistant for TROMLAB environment.
Master’s thesis, Department of Computer Science. Concordia University,
Montréal, Canada, September 1999.

Rational Software Corporation. UML Notation Guide, Version 1.1,
September 1997.

Rational Software Corporation. Rational Rose 98 Enterprise Edition Rose
Eztensibility Interface, February 1998.

Rational Software Corporation. Rational Rose 98 Using Rose, February
1998.

J. Rumbaugh and B. Selic. Using uml for modeling complex real-time

svstems. Technical report, March 1998.

B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Mod-
eling. Wiley, 1994.

H. Tao. Static analyzer: A design tool for TROM. Master’s thesis, De-
partment of Computer Science, Concordia University, Montréal, Canada,
August 1996.

93



Appendix A

GRC, and SCS Grammar

GRC | := | <class> <events> <states> <attributes> <traits> <att_funcs>
<tran_specs> <time_constraints> end

Table 2: Grammar for generic reactive class specification

In the grammar, a class (see Table 3) is described by the keyword Class, followed by
a string denoting the class name, followed by a list of port types in square brackets .
The list of port types is composed of one or several port type names, represented as

strings starting with the symbol @ and separated by a comma.

class = | Class <class_name> [<port_types>] NL

port_types = | <port_type_name> | <port_type_name>, <port_types>
class_name = | String

port_type_name | ::= | @String

Table 3: Grammar for generic reactive class title

Events (see Table 4) are introduced by the keyword Events, followed by the list of
events. The list of events can contain one or several events, separated by comma.
Each event can be an internal event, an input event or an output event. Internal
events are represented by a string for the event name. Input events are represented
by a string as event name, followed by the character ? and the string for the port
tvpe at which the event occurs. Output events are represented by a string as event
name, followed by the character ! and the string for the port type at which the event

occurs.

States (see Table 5) are introduced by the keyword States, followed by the state set.
The state set is comprised of the initial state, followed by a list of one or several
states, separated by comma. A state is represented by a string for the name. If the
state is complex, the name is followed by its substates, represented as a state set,

within curly braces.

94



events := | Events: <event_list> NL

event_list = | <event> | <event>, <event_list>

event := | <inputevent> | <outputevent> | <interevent>
inputevent := | <event_name> ? <port_type_name>
outputevent := | <event_name> ! <port_type_name>

interevent := | <event_name>

event_name := | String

port_type_name | ::= | @String

Table 4: Grammar for events

states ::= | States: <state_set> NL

state_set = | *<state>, <state_list>

state_list = | <state> | <state>, <state_list>

state = | <state_name> | <state_name><state_set>
state_name | ::= | String

Table 5: Grammar for states

Atutributes (see Table 6) are introduced by the keyword Attributes, followed by the
list of attributes. The list of attributes is comprised of one or several attributes,
separated by a semi-colon. Attributes of type port type are represented by a string
for the attribute name, followed by colon and by the port type name, which starts
with the character @. Attributes of type data type are represented by a string for

the attribute name, followed by a colon and by the LSL trait type name.

LSL traits (see Table 7) are introduced by the keyword Traits, followed by a list of
traits. The list of traits is comprised of one or several traits. A trait is represented

as a string for the trait name, followed in square brackets by the argument list and

attributes ;= | Attributes: <att list>NL

att_list = | <attribute> | <attribute>;<att list>

attribute = | <att_name> : <port_type_name> |
<att.name> : <trait_type_name> |
<att_name> : Integer | <att_name> : Boolean

att_name = | String

trait_type_name | ::= | String

port_type_name | ::= | @String

Table 6: Grammar for attributes

95



traits = | Traits: <trait_list> NL

trait_list = | <trait> | <trait>, <traitlist>

trait = | <trait_name>[<arg list>,<trait_type_name>] |
<trait_-name>[<trait_type_name>]

arg_list = | <arg> | <arg>, <arg.list>

arg := | <trait_type_.name> | <port_type_name>

trait_name = | String

trait_type_.name | ::= | String

port_type_name | ::= | @String

Table 7: Grammar for LSL traits

i att_funcs := | Attribute-Function: <att_func_list>
att_func list | := | <att_func>; | <att_func>;<att_func_list>
att_func := | <state_name> — <attlist> NL
att_list := | <att_name> | <att_name>,<att.list> | empty
att_name := | String
state_name = | String

Table 8: Grammar for attribute functions

the trait type name. The argument list is comprised of one or several arguments. An
argument is either a trait type name or a port type name starting with the character

~
.

The attribute function (see Table 8) is introduced by the keyword Attribute-Function,
followed by a list of attribute function applications. The list of attribute function
applications has one or several attribute function applications, separated by a semi-
colon. Each attribute function application is comprised of the state name as a string,
followed by the keyword —, followed by an attribute list, between curly braces. An

attribute list is comprised of zero or several attribute names, separated by a comma.

Transition specifications (see Table 9) are introduced by the keyword Transition-
Specifications, followed by the list of transition specifications, separated by semi-colons
and new lines. The list of transition specifications is composed of one or several tran-
sition specifications, separated by new lines. A transition specification consists of a
name, followed by a colon, one or several state pairs, separated by semi-colons, a trig-
gering event, an assertion, the implication operator — and another assertion. A state
pair consists of two state names, in brackets, separated by a comma. The triggering

event is an event name followed in brackets by an assertion. An assertion is either a

96



tran._specs := | Transition-Specifications: NL <tran_spec_list>

tran_spec_list = | <tran_spec> NL | <tran_spec> NL <tran_spec_list>

tran_spec = | <tran_spec_name>: <state_pairs> <trig_event>
<assertion> — <assertion>;

state_pairs 1= | <state_pair>; | <state_pair>; <state_pairs>;

state_pair = | (<state_name>,<state_name>)

trig_event := | <event_name>(<assertion>)

assertion := | <simple_exp> | <simple_exp> <b_op> <simple_exp>

b_op =l=1#[>121<{<

simple_exp := | <term> | <term> <OR> <term>

term := | <factor> | <factor> <AND> <factor>

factor := | <NOT> <factor> | pid | <att_.name’ > | <att_name>
| true | false | <LSL_term> | (<assertion>)

LSL_term = | <LSL_func_name>(<arg_list>)

arg list = | <arg>|<arg>,<arglist>

arg := | pid | <att_name> | <LSL_term>

att.name/ := | String

att_name := | String

state_name := | String

event_name := | String

LSL func_name | ::= | String

OR =]

AND = | &

NOT =|!

Table 9: Grammar for transition specifications

simple expression or two simple expressions with a binary operator between them. A
binary operator is one of: =, #, <, <, >, >. A simple expression is either a term or
two terms with the | logical operator. A term is either a factor, or two factors with
the & logical operator. A factor can be the logical operator ! followed by a factor,
or the reserved variable pid, or a primed attribute, an attribute, logical expressions
true or false, an LSL term or an assertion in brackets. An LSL term consists of a
LSL function name, followed by an argument list in brackets. An argument list is
composed of one or several arguments. An argument is either the reserved variable
pid, or an attribute name or an LSL term. A primed attribute is an attribute (from

the attribute function) followed by the character /.

Time constraints (see Table 10) are introduced by the keyword Time-Constraints,
followed by one or several constraints, separated by semi-colons and new lines. A

97



time_constraints | ::= | Time-Constraints: NL <constraints>
constraints = | <constraint>; NL | <constraint> ; NL <constraints>
constraint = | <time_cons_name>: <tran_spec_.name>, <event_name>,
<min_type><min>,<max><max_type>,<states>
states = | <state_name>|<state_name>,<states> | empty
state.name = | String
time_cons_name = | String
tran_spec_name = | String
event_name = | String
min = | NAT
max = | NAT
min_type = (1
max_type =1])|
Table 10: Grammar for time constraints
SCS ::= | SCS <scs-name> NL <include> <instantiates> <configure>
end
scs.name | ::= | String

Table 11: Grammar for subsystem configuration

constraint has a name followed by colon and the name of the constraining transition
specification, the name of the constrained event, the lower and upper bounds, and
a list of disabling states. The lower and upper bounds are preceded and followed,
respectively, by the open or closed interval indicators. The list of disabling states is
comprised of zero, one or several state names, separated by a comma.

The configuration specification should respect the following grammar, introduced
in {Tao96].

A subsystem configuration specification (see Table 11) is introduced by the keyword
SCS, followed by its name as a string, a new line and the following sections: Includes,

Instantiates, Configure, all followed by the keyword end.

The include section (see Table 12) is introduced by the keyword Includes, followed by
a list of subsystem names and a new line. The list of subsystem names is composed

of one or several subsystem names, separated by a semi-colon.

The instantiates section (see Table 13) is introduced by the keyword Instantiate, fol-
lowed by an instance list and a new line. An instance list is composed of one or several

instances. An instance consists of an object name, followed by two colons, a generic

98



include := | Includes: <scs.name_list> NL
scs_name.list | ::= | <scs_name>; | <scs_name_list>
scs_name := | String
Table 12: Grammar for include section
| instantiates = | Instantiate: <instlist> NL
inst_list = | <instantiate>; NL | <instantiate>; NL <inst_ list>
instantiate = | <obj_name>::<grc_name>{<port_card_list>]
port_card_list := | <port_card>|<port_card>,<port_card_list>
port_card = | <port_type_.name>:<cardinality>
obj_name ::= | String
port_tvpe_name | ::= | @String
grc_name = | String
cardinality = | NAT

Table 13: Grammar for instantiate section

class name and, in square brackets, by a port cardinality list. The port cardinality
list is composed of one or several port cardinalities. A port cardinality is represented

by a port type name, followed by a colon and a natural number for the cardinality.

The configure section (see Table 14) is introduced by the keyword Configure, followed
by the object port list. The object port list is composed by one or several object
port links, separated by a semi-colon. An object port link is composed of an object
name, followed by a period, a port name starting with character @ and its port type,
the composition operator <, another object name, followed by a period, and a port

name starting with character @ and its port type.

Configure: <obj_port_ list>
<obj_portlink>; NL | <obj_portlink>; NL
<obj_portlist>;

.

configure
obj_port_list

obj_port_link ::= | <obj_name>.<port_name>:<port_type.name> <>
<obj-name>.<port_name>:<port_type_name>

obj_name = | String

port_name = | @String

@String

port_type_name

Table 14: Grammar for configure section

99



Appendix B

Simulation Algorithm

begin /*simulation algorithm =/

process TROM classes to be used in simulation
instantiate Subsystem s
instantiate subsystems included in Subsystem s
instantiate TROM objects included in Subsytem s
instantiate TROM objects for each Subsytem
initialize CurrentState and Assignement vector for each TROM object
configure port links for each Subsytem
initialize simulation clock
schedule unconstrained internal events from initial state for each TROM
object
for all SimulationEvents se in SimulationEventList sel
begin /* at this stage simulation clock can be frozen and debugger can be
activated */
while simulation clock < occur time of se
begin
increment SimulationClock /* using machine clock */
end
while exists SimulationEvent se and
SimulationClock == Occur time of se
begin /* handel simulation event se */
get TROM object trom accepting SimulationEvent se from
Subsystem s
get TransitionSpec ts triggered by SimulationEvent se
/* update history of SimulationEvent se =/
save CurrentState of TROM object trom in EventHistory of se
save Assignment Vector of TROM object trom in
EventHistory of se
/* update status of TROM object trom */

100



change CurrentState of TROM object trom to DestinationState
of TransitionSpec ts
change AssignmentVector of TROM object trom according to
post condition of ts
/# handel transition specified by transition ts =/
for all TimeConstraint tc in list of TimeConstraints for
TROM object trom
begin
if constrained event of TimeConstraint tc == label
of SimulationEvent se
begin
for each ReactionWindow rw in
reaction subvector associated with tc
begin
if SimulationEvent se occurs
within ReactionWindow rw
begin /* fire reaction according to
TimeConstraint tc */
Remove ReactionWindow rw from
reaction subvector associated
with tc
insert ReactionHistory rh in
EventHistory of se
according to rw
end
end
end
if current state of TROM object trom is in
set of disabling states tc
begin /* disable reaction according to
TimeConstraint tc */
for all Reaction Windows rw in

reaction subvector associated with tc

101



begin
remove ReactionWindow rw from
reaction subvector ass.whith tc
insert ReactionHistory rh in
EventHistory of se according to rw
unschedule disabled SimulationEvent
in SimulationEventList sel
if constrained event of
TimeConstraint tc is an output event
begin
remove disabled SimulationEvent
scheduled for syncronization
end
end
end
if label of TransitionSpec ts == transition label of
TimeConstraint tc
begin /* enable reaction according to
TimeConstraint tc */
insert new ReactionWindow rw in
reaction subvector associated whith tc
insert ReactionHistory of se according to rw
/* shedule new SimulationEvent */
insert new SimulationEvent se2
in SimulationEventList sel
using Iru port of port type of
constrained event tc and
random time within
ReactionWindow rw
end
end
schedule unconstrained internal event from current state for
TROM object trom

102



if constrained event of TimeConstraint tc is an output event

begin /* identify linked TROM object for syncronization */
get PortLink pl from subsytem s linking the two
TROM objects
/* shedule new SimulationEvent */
insert new SimulationEvent se3 in
SimulationEventList sel
using port pl for sycronization

end

get next SimulationEvent se from simulationEventList sel

end
end

end /* simulation algorithm */

103



Appendix C

Interface Specification in VDM

.1 Interpreter GUI

1. Parse Button
module PARSE-BUTTON

exports all

definitions

types

1.0 SUCCESS = token;
2.0 FRROR = token;

3.0 Message = SUCCESS | ERROR;

4.0 String = char®
functions

5.0 1isValidSpec: String — B;

6.0 ParseLSL: String® — B;

70 ParseTROM : String® — B,;

8.0 ParseSCS : String® — B;

104



9.0 ParseSEL: String® — B;

operations

10.0
1

2
3
4

.6

parse-button-action (Specfile : String™, Spectype : String) Report : Message
ext wr isParsedLSL: B

wr tsParsedTROM :B

wr isParsedSCS : B

wr isParsedSEL : B

pre Parse-button € dom RadioButtonsASimulatorwindow € dom WindowsA

(Spectype = "LSL" V Spectype = "TROM" Vv Spectype = "SCS" Vv

Spectype = "SEL")

o

.7
.8

9

.10
11
.12
.13

post if (Spectype = “LSL")

then isParsedLSL = ParseLSL (Specfile) A
if (isParsedLSL)
then Report = SUCCESS
else Report = ERROR
elseif (Specfile = "TROM™")
then isParsedTROM = ParseTROM (Specfile) A
if (isParsedTROM)
then Report = SUCCESS
else Report = ERROR
elseif (Specfile = "SCS")
then isParsedSCS = ParseSCS (Specfile) A
if (isParsedSCS)
then Report = SUCCESS
else Report = ERROR
else isParsedSEL = ParseSEL (Specfile) A
if (isParsedSEL)
then Report = SUCCESS
else Report = ERROR

105



[ RV)

.26 errs INVALID-SPEC-TYPE : - (Spectype = "LSL" v Spectype = "TROM" v
Spectype = "SCS" Vv Spectype = "SEL") — Report = ERROR

end PARSE-BUTTON

Semantic Verify Menu Item
module SEMANTIC-VERIFY-MENU

exports all

definitions

types

11.0 SUCCESS = token;
120 FRROR = token;
13.0 Message = SUCCESS | ERROR;

14.0 String = char®;

15.0 Specs = compose Spec of
1 LSLSpec : String*
2 TROMSpec : String™
3 SCSSpec : String*
4 SELSpec : String”

end;

o

16.0 Result =B
functions

17.0 Semanticverify : Specs — B;

operations

106



18.0 sematic-verify-menu-action () Report : Message
.1 ext rd specs: Specs
2 rd isParsedLSL:B
3 rd isParsedTROM : B
4 rd isParsedSCS : B
rd isParsedSEL: B

6 pre Semantic-verify-menu-item € dom Menus A Simulatorwindow €

O

dom Windows A
7 1sParsedLSL A isParsedTROM A isParsedSCS A isParsedSEL

8 post Result = Semanticverify (specs) A

.9 if (Result = true)
.10 then Report = SUCCESS
11 else Report = ERROR

end SEMANTIC-VERIFY-MENU

.2  Simulator GUI

1. Debug Radio Button
module DEBUG-R-BUTTON

exports all

definitions

types

19.0 String = char®;

20.0 YesLabel = token;

21.0 NoLabel = token;

22.0 Label = YesLabel | NoLabel;

23.0 DebugRbutton = Label-set;

107



(8]

240 Yes = String;

25.0 No = String;

26.0 choice = Yes | No;

27.0 Debugoption = choice-set;

280 RButtonMap = DebugRbutton < Debugoption
operations

29.0 debug-button-action ()
.1 ext wr Debugvalue : String

2 pre Debug-radio-button € dom RadioButtons

3 post Debugvalue = rng ({ YesLabel}<1RButtonMap) V rng ({NoLabel}<
RButtonMap)

end DEBUG-R-BUTTON

Pace Radio Button
module PACE-R-BUTTON

exports all

definitions
types

300 String = char”;

31.0 NormalLabel = token;
32.0 DecreasedLabel = token;
33.0 IncreasedLabel = token;

340 Label = NormalLabel | DecreasedLabel | IncreasedLabel;

108



35.0 PaceRbutton = Label-set;

36.0 Normal = String;

37.0 Decreased = String;

38.0 [Increased = String;

39.0 Choice = Normal | Decreased | Increased;
40.0 Paceoption = Choice-set;

41.0 RButtonMap = PaceRbutton — Paceoption
operations

42.0 pace-button-action ()

.1 ext wr Pacevalue : String
.2 pre Pace-radio-button € dom RadioButtons

.3 post Pacevalue = rng ({NormalLabel} << RButtonMap) V rng ({ DecreasedLabel} <
RButtonMap) V rng ({IncreasedLaebl} < RButtonMap)

end PACE-R-BUTTON

. Time QOut text field
modute TIMEQUT-TEXTFIELD

exports all

definitions
types

43.0 SUCCESS = token;
440 FRROR = token;

45.0 Message = SUCCESS | ERROR

109



operations

46.0 timeout-teztfield-action (Timeout : Z) Report : Message

.1 ext wr Timeoutvalue : N

2 pre Timeout >0
.3 post Timeoutvalue = Timeout A Report = SUCCESS
4 errs INVALID-VALUE : (Timeout < 0) — (Report = ERROR)

end TIMEQUT-TEXTFIELD

4. Start Button

module START-BUTTON
exports all
definitions

types

47.0 Realclock = N;

480 Simclock = N
functions

149.0 Clock : Realclock — Simclock;

operations

50.0 start-button-action (t: N)
1 ext rd Debuguvalue : String

.2 rd Pacevalue : String

3 rd Timeoutvalue : N

4 pre StartButton € dom Buttons A len (Debugvalue) # 0 A

3 len (Pacevalue) # 0 A Timeoutvalue > 0 A (Clock (t) = Clock (t + 1))
post Clock (t) < Clock (t +1)

o

end START-BUTTON

110



5. Simulation Table
module SIMULATION-TABLFE

exports all

definitions

types

51.0 String = char”;

52.0 Objectname = String”;
53.0 Objectstatus = String”;
54.0 Row = Cell";

55.0 Table = Row™
functions

56.0 Cell: Objectname — Objectstatus;

57.0 TableMap : Simclock — Table;

operations

58.0 sitmulation-table-action ()
1 ext rd Simclock: N

2 pre len (Objectname) # 0
.3 post len (TableMap (Simclock)) > len ( TebleMap (Simclock — 1))

end SIMULATION-TABLE

6. Show Histoy Menu Item
module SHOW-HISTORY

111



=~

exports all

definitions

types

59.0 String = char®;

60.0 Realclock = N;

61.0 Simclock = N;

62.0 HistoryMenuLabel = token;

63.0 HistoryMenultem = HistoryMenuLabel-set
functions

64.0 Showhistory : HistoryMenultem — String;

65.0 Clock : Realclock — Simclock;

operations

66.0 show-history-menu-action (¢ : N)

.1 ext wr Teztareavalue : String
2 pre Clock(t) = Clock (t +1)
.3 post Tertareavalue = Showhistory ( HistoryMenuLabel)

end SHOW-HISTORY

. Show debugger Menu item
module SHOW-DEBUGGER

exports all
definitions

types

112



67.0 Realclock = N;

68.0 Simclock =N
functions

69.0 Clock : Realclock — Simclock;

operations

70.0 show-debugger-window (t : N)
1 pre Show-debug-menu € dom Menus A Clock (t) = Clock (t + 1)

.2 post Debuggerwindow € dom Windows
end SHOW-DEBUGGER

. Show system status Button
module SHOW-SYSTEM-STATUS

exports all

definitions

types

71.0 String = char’,

72.0 Systemstatuslabel = token
functions

73.0 Showstatus : String — String;

operations

74.0 show-system-status-button ()
.1 ext wr Status-bar-value : String
2 rd Currentsystem : String

113



.3 pre Show-system-status-button € dom Buttons A Debuggerwindow €
dom Windows

4 post Status-bar-value = Showstatus (Currentsystem)
end SHOW-SYSTEM-STATUS

. Show subsystem status Button
module SHOW-SUBSYSTEM-STATUS
exports all

definitions

types

75.0 String = char®;
76.0 SUCCESS = token;
77.0 ERROR = token;

78.0 Message = SUCCESS | ERROR
functions

79.0 ShowSubsystemStatus : String x N — String;

operations

80.0 show-subsystem-status-action (Subsystemname: String, Time:N) Report :

Message

.1 ext wr Statusbar-value : String

2 pre len (Subsystemname) > 0 A Subsystemname € dom Subsystem A

3 Show-subsystem-status-button € dom Buttons A

4 Debuggerwindow € dom Windows

.5 post Statusbar-value = ShowSubsystemStatus (Subsystemname, Time) A
Report = SUCCESS

[<4]]

114



10.

6 errs INVALIDSUBSYTEM : (Subsystemname & dom Subsystems) — Report =
ERROR

end SHOW-SUBSYSTEM-STATUS

Show TROM status Button
module SHOW-TROM-STATUS

exports all

definitions

types

81.0 String = char”;
82.0 SUCCESS = token:;
83.0 ERROR = token;

84.0 Message = SUCCESS | ERROR
functions

85.0 ShowTROMstatus : String x N — String;

operations

86.0 show-TROM-staus-action (TROMname:String, Time:N) Report:Message
.1 ext wr Statusbarvalue : String
2 pre len (TROMname) >0A TROMname € dom TROMS A
3 Show-TROM-status-button € dom Buttons A Debuggerwindow €
dom Windows
4 post Statusbar = ShowTROMstatus (TROMname, Time)AReport = SUCCESS

5 errs INVALID-TROM : (TROMname ¢ dom TROMS) — Report =
ERROR

end SHOW-TROM-STATUS

115



11.

Show Simulation Event List Button
module SHOW-SEL

exports all

definitions
types

87.0 String = char®
functions

88.0 ShowSEL : String — String;

operations

89.0 show-SEL-button-action (SELLabel : String)
.1 ext wr Teztareavalue : string

.2 pre show-SEL-Button € dom ButtonsADebuggerwindow € dom Windows
.3 post Tertareavalue = ShowSEL (SEL Label)

end SHOW-SFEL

. Inject a Simulation Event Button

module INJECT-SIM-EV
exports all

definitions

types

90.0 ERROR = token;
91.0 SUCCESS = token;
920 Message = SUCCESS | ERROR;

93.0 String = char”®;

116



13.

94.0 SimFEv = compose SimFEvent of
1 TROMname : String

2 FEventname : String
.3 Portname : String
4 Occurtime : N
3 end

operations

95.0 inject-sim-eve-action (Tname:String, eventname:String, portname: String, occurtime:
N) Report : Message
.1 ext wr SEList : StmFEvent®
2 rd Simclock : N
-3 pre Inject-sime-ev-button € dom ButtonsADebuggerwindow € dom WindowsA

Tname € dom TROMS A
4 eventname € dom FEvents A portname € dom Ports A occurtime >

Simclock
.5 post SEList = SEList™ [mk-SimFEvent (Tname, eventname, portname, occurtime)|A
Report = SUCCESS
6 errs INVALID-SIM-EVENT : ((Tname € dom TROMS)A(eventname ¢
dom FEvents) A (portname € dom Ports) A (occurtime < Simclock)) — Report =
ERROR

end INJECT-SIM-EV

Rollback the Simulation to a given time Button
module ROLLBACK

exports all

definitions

types

96.0 SUCCESS = token;
97.0 ERROR = token;

98.0 Message = SUCCESS | ERROR

117



14.

operations

99.0 roll-back-action (Rollbacktime : N) Report : Message
.1 ext rd Simclock : N
.2 pre Rollback-button € dom ButtonsADebuggerwindow € dom WindowsA

3 Rollbacktime < Simclock

4 post Simclock = RollbacktimeA (¥ z € SEList - £.0Occurtime < Rollbacktime)A
Report = SUCCESS

.5 errs INVALID-ROLLBACK-TIME : (Rollbacktime > Simclock) — Report =
ERROR

end ROLLBACK

Show Query Handler Menu item
module SHOW-QUERY -HANDLER

exports all

definitions
types

100.0 Realclock = N;

101.0 Simclock = N

functions

102.0 Clock : Realclock — Simclock;

operations

103.0 show-queryhandler-window-action (¢t : N)
.1 ext rd Realclock : N
2 rd Simclock : N

.3 pre Show-guery-handler-menu-item € dom MenusAClock (t) = Clock (t+

1)

118



4 post Query-handler-window € dom Windows

end SHOW-QUERY-HANDLER

. Show TROM transitions Button

module SHOW-TROM-TRANSITIONS
exports all

definitions

types

104.0 SUCCESS = token;

105.0 ERROR = token:

106.0 Message = SUCCESS | ERROR;
107.0 String = char”;

108.0 Transitions = String"®
functions

109.0 showtransitions : String — Transitions;

operations

110.0 show-TROM-transitions (TROMname : String) Report : Message
.1 ext wr Teztareavalue : String®
2 pre Show-TROM-transitions-button € dom ButtonsAQuery-handler-window €

dom Windows A
3 TROMname € dom TROMS

4 post Tertareavalue = showtransitions (TROMname)A Result = SUCCESS

.5 errs INVALID-TROM : (TROMname ¢ dom TROMS) — (Report =
ERROR)

end SHOW-TROM-TRANSITIONS

119



16. Show Transitions for current state of a given TROM Button
module SHOW-TROM-CURRENT-STATE-TRANSITIONS

exports all

definitions

types

111.0 SUCCESS = token;

112.0 ERROR = token;

113.0 Message = SUCCESS | ERROR;
114.0 String = char”;

115.0 Transitions = String*
functions

116.0 showcurrentstatetransition : String x String — Transitions;

operations

117.0 show- TROM-current-state-transition (TROMname:String) Report: Message
.1 ext rd TROMcurrentstate : String
2 wr Teztareavalue : String®

.3 pre Show- TROM-current-state-transition-button € dom ButtonsA Query-handler-winc

dom Windows A
4 TROMname € dom TROMS

.5 post Tertareavalue = showcurrentstatetransition (TROMname, TROMcurrentstate) A\
Result = SUCCESS

6 errs INVALID-TROM : (TROMname € dom TROMS) — (Report =
FERROR)

end SHOW-TROM-CURRENT-STATE-TRANSITIONS

120



17. Show transitions for a given trom for a given state Button
module SHOW-TROM-GIVEN-STATE-TRANSITIONS

exports all

definitions

types

118.0 SUCCESS = token;

119.0 ERROR = token;

120.0 AMessage = SUCCESS | ERROR,;
121.0 String = char”;

122.0 Transitions = String”
functions

123.0 showgivenstatetransition : String x String — Transition;

operations

124.0 show- TROM-given-state-transition (TROMname:String, Statename:String) Report:
Message

.1 ext wr Teztareavalue : String"

2 pre Show-TROM-given-state-transition-button € dom ButtonsA Query-handler-windo:
dom Windows A

.3 TROMname € dom TROMSAStatename € elems (TROMSstates (TROMname))

4 post Teztareavalue = showgivenstatetransition (TROMname, Statename)A
Result = SUCCESS

.5 errs INVALID-TROM : (TROMname ¢ dom TROMS) — (Report =
ERROR)

end SHOW-TROM-GIVEN-STATE-TRANSITIONS

121



18. Show transitions for a given trom to a given state Button
module SHOW-TROM-TO-GIVEN-STATE-TRANSITIONS

exports all

definitions

types

125.0 SUCCESS = token;

126.0 FRROR = token;

127.0 Message = SUCCESS | ERROR;
128.0 String = char”;

120.0 Transitions = String”
functions

130.0 showtogivenstatetransition : String x String — Transition;

operations

131.0 show- TROM-to-given-state-transition (TROMname : String, Statename :
String) Report : Message
1 ext wr Teztareavalue : String®
2 pre Show-TROM-to-given-state-transition-button € dom ButtonsAQuery-handler-win
dom Windows A
3 TROMname € dom TROMSAStatename € elems (TROMSstates (TROMname))
4 post Teztareavalue = showtogivenstatetransition (TROMname, Statename)A
Result = SUCCESS
5 errs INVALID-TROM : (TROMname ¢ dom TROMS) — (Report =
ERROR)

end SHOW-TROM-TO-GIVEN-STATE-TRANSITIONS

122



19. Show transitions for a trom for a given event Button
module SHOW-TROM-GIVEN-EVENT-TRANSITIONS

exports all

definitions

types

132.0 SUCCESS = token;

133.0 FERROR = token;

134.0 Message = SUCCESS | ERROR;
135.0 String = char”;

136.0 Transitions = String”
functions

137.0 showgiveneventtransition : String x String — Transitions;

operations

138.0 show- TROM-given-event-transition (TROMnarme:String, Eventname:String) Report:
Message
.1 ext wr Teztareavalue : String
2 pre Show-TROM-given-event-transition-button € dom ButtonsA Query-handler-windc
dom Windows A
3 TROMname € dom TROMSAEventname € elems (TROMevents (TROMname))
4 post Tertareavalue = showgiveneventtransition (TROMname, Eventname)A
Result = SUCCESS
5 errs INVALID-TROM : (TROMname € dom TROMS) — (Report =
ERROR)

end SHOW-TROM-GIVEN-EVENT-TRANSITIONS

123



20.

21.

Show time constraints of a given TROM Button
module SHOW-TROM-TIMECONSTRAINTS

exports all

definitions
types

139.0 SUCCESS = token:

140.0 ERROR = token;

141.0 Message = SUCCESS | ERROR;
142.0 String = char”;

143.0 Timeconstraints = String”
functions

144.0  showtimeconstraints : String — Timeconstraints:;

operations

145.0 show- TROM-timeconstraints (TROMname : String) Report : Message
.1 ext wr Teztareavalue : String”
2 pre Show-TROM-timeconstraints-button € dom ButtonsA Query-handler-window

dom Windows A
.3 TROMname € dom TROMS

4 post Teztareavalue = showtimeconstraints (TROMname)AResult = SUCCESS

-3 errs INVALID-TROM : (TROMname ¢ dom TROMS) — (Report =
ERROR)

end SHOW-TROM-TIMECONSTRAINTS

Show time constraints for a triggering event of a given TROM Button
module SHOW-TROM-GIVEN-TRIGGERING-EVENT-TIMECONSTRAINTS

124



exports all

definitions
types

146.0 SUCCESS = token:

147.0 ERROR = token;

148.0 Message = SUCCESS | ERROR;

149.0 String = char”;

150.0 TROMevents = String”;

151.0 Timeconstraints = String®
functions

152.0 showgiventrigevtimeconstraints : String x String — Timeconstraint;

operations

153.0 show- TROM-timeconstraints- given-triggering-event (TROMname:String, Eventname:
String) Report : Message

.1 ext wr Teztareavalue : String*

.2 pre Show-TROM-given-triggering-event-timeconstraints-button € dom ButtonsA
Query-handler-window € dom Windows A

3 TROMname € dom TROMSAEventname € elems (TROMevents (TROMname))

-4 post Teztareavalue = showgiventrigevtimeconstraints (TROMname, Eventname)A
Result = SUCCESS

.5 errs INVALID-TROM : (TROMname ¢ dom TROMS) — (Report =
ERROR)

end SHOW-TROM-GIVEN-TRIGGERING-EVENT-TIMECONSTRAINTS

125



22. Show timeconstraints for a constrained event of a given TROM Button
module SHOW -TROM-GIVEN-CONSTRAINED-EVENT-TIMECONSTRAINTS

exports all

definitions
types

154.0 SUCCESS = token;

155.0 ERROR = token;

156.0 Message = SUCCESS | ERROR;
157.0 String = char”;

158.0 TROMevents = String™;

159.0 Timeconstraints = String*
functions

160.0 showgivenconstevtimeconstraints : String x String — Timeconstraints:

operations

161.0 show- TROM-timeconstraints- given-constrained-event (TROMname:S. tring, Eventname:
String) Report : Message

.1 ext wr Teztareavalue : String*

2 pre Show-TROM-given-constrained-event-timeconstraints-button € dom ButtonsA
Query-handler-window € dom Windows A

3 TROMname € dom TROMSAEventname € elems (TROMevents ( TROMname))

4 post Teztareavalue = showgivenconstevtimeconstraints (TROMname, Eventname)A
Result = SUCCESS

.5 errs INVALID-TROM : (TROMname ¢ dom TROMS) — (Report =
ERROR)

126



end SHOW-TROM-GIVEN-CONSTRAINED-EVENT-TIMECONSTRAINTS

. Show Trace Analyser Menu item

module SHOW-TRACE-ANALYSER
exports all

definitions
types

162.0 Realclock = N;

163.0 Simclock = N
functions

164.0 Clock : Realclock — Simclock;

operations

165.0 show-traceanalyser-window-action (t : N)
.1 ext rd Realclock: N
2 rd Simclock: N

3 pre Show-trace-analyser-menu-item € dom MenusA Clock (t) = Clock (t+
1)

4+ post Trace-analyser-window € dom Windows

end SHOW-TRACE-ANALYSER

. Show Simulation events causing the Transitions Button

module SHOW-SIM-EVENTS-CAUSING-TRANSITIONS
exports all

definitions
types

166.0 String = char®;

167.0 SimFEv = String"®

127



[\]
(V]

functions

168.0 ShowSE : String — SimEv;

operations

169.0 show-simulation-events-causing-transitions-button-action 0

1 ext rd Currenttransition : String

2 wr Tertareavalue : String”

.3 pre Show-simulation-events-button € dom Buttons A Trace-analyser €
dom Windows

4 post Teztareavalue = ShowSE (Currenttransition)

end SHOW-SIM-EVENTS-CAUSING-TRANSITIONS

Show not yet handled Simulation events Button
module SHOW-NOT-YET-HANDLED-SIM-EVENTS

exports all

definitions

types

170.0 String = char”;

171.0 SimEv = String”

values

172.0 t: String = "NotYetHandled"
functions

173.0 ShownotyethandledSE : String — SimFEuv;

operations

174.0  show-not-yet-handled-simulation-events-button-action ()

.1 ext wr Teztareavalue : String®

128



2 pre Show-simulation-events-button € dom Buttons A Trace-analyser €
dom Windows

3 post Teztareavalue = ShownotyethandledSE (t)
end SHOW-NOT-YET-HANDLED-SIM-EVENTS

26. Show Simulation events for a given time period Button
module SHOW-SIM-EVENTS-GIVEN-TIME-PERIOD

exports all

definitions

types

175.0 SUCCESS = token;

176.0 FRROR = token;

177.0 Message = SUCCESS | ERROR;
1780 String = char”®;

179.0 Timep = compose Timeperiod of

1 Low: N
2 Up:N
3 end;

180.0 SimFEv = String”
functions

181.0 ShowgiventpSE : Timep — SimEv;

operations

182.0 show-simulation-events-given-timeperiod-button-action (tp: Timep) Report:
Message

1 ext wr Tertareavalue : String®

129



-2 pre Show-simulation-events-button € dom Buttons A Trace-analyser €
dom Windows A

3 tp.Low > OA tp.Up > tp.Low

4 post Tertareavalue = ShowgiventpSE (tp) A Report = SUCCESS
-5 errs INVALID-TIME-PERIOD : (tp.Low < 0 V tp.Up < tp.Low) —
Report = ERROR

(V]

end SHOW-SIM-EVENTS-GIVEN-TIME-PERIOD

v
=l

". Show simulation events for a given TROM Button
module SHOW-SIM-EVENTS-GIVEN-TROM

exports all

definitions
types

183.0 SUCCESS = token;

184.0 ERROR = token;

185.0 Message = SUCCESS | ERROR;
186.0 String = char®;

187.0 SimFEv = String®
functions

188.0 ShowgivenTROMSE : String — SimFEv;

operations

189.0  show-simulation-events-given-trom-button-action ( TROMname:String) Report:
Message
-1 ext wr Teztareavalue : String*

130



2 pre Show-simulation-events-button € dom Buttons A Trace-analyser €
dom Windows A
.3 TROMname € dom TROMS

4 post Tertareavalue = ShowgiveTROMSE (TROMname)AReport = SUCCESS

.5 errs INVALID-TROM : (TROMname ¢ dom TROMS) — Report =
ERROR

end SHOW-SIM-EVENTS-GIVEN-TROM

131





