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ABSTRACT
AUTOMATIC GENERATION OF
TEST CASES AND ANTICIPATED TEST OUTCOME
BASED ON A TABULAR DESIGN SPECIFICATION
Thatipamala Ramakrishnaiah

At the present time, even for safety-critical applications, it is very difficult, if not
impossible, to produce a software that is “completely error-free”. One of the important
issues associated with this realistic situation is how to minimise the number of errors in a
given software. Effective testing of software using trusted CASE tools is one possible

strategy.

This thesis discusses the development of a prototype CASE tool, called Apollo, that
automates some of the “tedious, complex and error-prone” manual activities that are
associated with the unit testing of software modules. The input to Apollo is a design
specification document where the design is specified using a tabular notation. This
specification is sufficiently detailed to enable execution by a machine. The tool generates
a set of test cases and the anticipated test outcome for each test case by executing the
tabular specification. Tabular specification is considered as a "practical" formal method,
since it is a method that software developers can easily learn and apply without much

mathematical background.

The tabular design specification is parsed and test cases are generated based on the
boundary value analysis. The anticipated test outcome for each test case is generated by
executing the parsed design specification. The proposed methodology is applied to a
hypothetical case study for unit testing of software related to nuclear industry. This
application replaces some of the manual generation of test cases and anticipated test

outcome thereby reduces the cost of software testing.
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1. INTRODUCTION

The use of software in safety-critical applications is increasing. Some of the well-known
examples of safety-critical applications include: power plant shutdown systems in the
nuclear industry, avionics systems in the aerospace industry, and critical components of
strategic weapons systems in the defense industry [Leveson, 1995]. Reasons for using
software in safety-critical systems are many: software allows many more complex
situations to be handled when compared to hardware alone, and it allows changes to be
made casily to accommodate new and changing requirements. However, the
development of safety-critical software is a relatively new and not a fully mature subject.
New techniques and methodologies for safety-critical software are a popular research
topics both at universities and in the industry [Bowen and Stavridou, 1992]. The
development of safety-critical software should meet the following two important

requirements:
e It should achieve a high-degree of reliability, and

e It should demonstrate a high-degree of reliability to the satisfaction of
regulatory authorities.

It is accepted by software industry that even for safety-critical applications, it is very
difficult, if not impossible, at the present time to produce a software that is
guaranteed to be “completely error-free”. One of the important issues associated with
this realistic situation is how to reduce the number of errors in a particular piece of

software.

A problem faced by software development teams in the development of safety-critical
software is the amount of manual effort required during the testing of the software.
However, the current industrial experience indicates software testing is time consuming
and costly, and as much as 50% of the development costs for a project can be attributed to
testing [Daich et.al., 1994]. In addition, software testing is error prone as many of the
testing activities are manual, tedious and time-consuming [Daich et.al., 1994]. The

generation of a set of test cases to satisfy various coverage criteria in order to meet the



stringent criteria imposed by various standards is a difficult process. There are many
CASE too0ls available that tell a tester whether he has satisfied a given coverage, but none
is available to provide a tester with a set of test cases that will satisfy a given coverage
[Voas etal., 1993]. In addition, the current industrial experience suggests that often the
testing is deferred until the final stages of the development life-cycle. A major challenge
to the software engineering community, both in research and industry, remains how to
reduce the cost and improve the quality of software testing [Kung et. al., 1998]. Any
scheme that can automate at least some of the phases of software testing (such as “unit
testing”, “sub-system testing”, “integration testing”, etc.,) could decrease the cost and
improve the quality of the software testing process, significantly. The scope of this thesis
is limited to unit testing.

The “phase of unit testing™ is essentially a manual process consisting of the following
activities:

Step 1: Identification of the list of input variables and their ranges (along with the

relevant information such as: data type, valid range, list of enumerations, etc.).
Step 2: Identification of the list of output variables that need to be observed.

Step 3: Generation of a set of test values for each input variable based on certain criteria

(such as: boundary value analysis etc.).

Step 4: Generation of a set of test cases to satisfy various important coverages in order to

meet the stringent criteria imposed by relevant standards and regulatory bodies.

Step 5: Generation of “anticipated test outcome” (i.e. the anticipated value of output

variables) for each test case;
Step 6: Preparation of a test driver to test the source code;
Step 7: “Execution of source code” using the test driver;

Step 8: Checking the “actual test results” with the “anticipated test outcome” to decide a

“pass or fail” for each test case; and



Step 9: Modification of source code, if any implementation errors are detected during

Step (8) [This activity includes raising a software change request (SCR), approval of

SCR, Change of source code, etc.].

Step 10: Repetition of steps (3) to (8) after Step (9), if any implementation errors are

detected during Step(8).

Many of these activities are time-consuming, tedious, complex and error-prone [Myers,

1979; Pressman, 1992). The perceived level of difficulty associated with automation of

each of these steps of unit testing are presented in the Table 1.

Table 1: “Unit Testing Phase” : Important Activities and Level of Difficulty

Associated with Automation

Testing | Level of Explanation

Activity | Difficulty

Step(1) Moderate Syntax directed analysis could be used.

Step(2) Moderate Syntax directed analysis could be used.

Step(3) Difficult Criteria for test value generation is complex and the criteria may
change.

Step(4) Easy to Difficult Degree of difficulty of automation depends on the algorithm required
for generation of a set of test cases to satisfy a given criteria

Step(5) Complex Generation of the “anticipated test outcome from source code that is
being tested™ can be considered as the most difficult activity in terms
of automation.

Step(6) Manual (preferred) Preparation of a test driver need to be considered as a manual
activity. Associated difficulty with automation of this step is yet to
be analyzed.

Step(7) Easy Automation of “execution of source code using test driver” is
straight-forward.

Step(8) Easy Automation of “comparison of two ASCII text files” is relatively
simple.

Step(9) Manual (automation is | Modification of source code, if any implementation errors are

not feasible) detected during step (8) need o be considered as a manual activity,
since it involves a number of sub-steps, such as code inspection;
raising of a “software change request”, etc.. Automation of this
activity is not feasible.

Step(10) Easy Repetition of already automated steps is relatively simple.




1.1 Motivation
During early 1980s, Atomic Energy of Canada Limited (AECL) and Ontario Hydro (OH)
have decided to introduce “a first of its kind software-controlied shutdown systems” in

one of their nuclear generating stations [Storey, 1996). This new approach had presented
the Atomic Energy Control Board of Canada (AECB), the regulatory authority, with
some novel problems during the certification process. AECB was uncertain of the
adequacy of such software during its first release, despite considerable amounts of testing
[Storey, 1996]. As a result, AECL and Ontario Hydro have decided to rewrite the safety-
critical software using a “practical” formal method known as tabular notation that was
developed at Naval Research Laboratory, USA [Britton and Parnas, 1981] and improved
by Parnas at McMaster University [Pamnas, 1992]. Tabular notation is considered as a
"practical" formal method, since it is a method that software developers can easily learn
and apply without theorem proving skills, knowledge of temporal and higher order logic,
or consultation with formal methods experts. Moreover, the tabular notation approach
supports formal verification of the design against the requirements as well as the source

code against the design.

A series of CASE tools were developed at Atomic Energy of Canada Limited (AECL), in
order to support the development of safety-critical software, specified using tabular
notation, covering the entire life-cycle. This research activity was a part of an ambitious
research program that was jointly initiated by AECL and Ontario Hydro. The following

important points need to be noted in this connection;
® These CASE tools are currently being used in Canadian nuclear industry;

e These CASE tools represent an advanced industrial research activity to

produce tools that are of “industrial quality™;

e These CASE tools support the development of safety-critical software

specified using tabular notation approach only;

¢ These CASE tools are developed using conventional techniques (e.g.,

requirements are listed using natural language).



The details of these CASE tools are documented by Matias [1998). The Table 2
summarizes some of the important research work that is being carried out at AECL, in

this connection.

Table 2 - CASE Tool Development Work at AECL

CASE Tool | Brief Description

SRS Tool. Requirements Analysis tool: Analyzes the completeness and correctness of a
Requirements Specification using static analysis techniques.

SDD Tool Design Analysis tool: Analyzes the completeness and correctness of a Design
Specification using static analysis techniques.

UT Tool Test Value generation tool: generates a set of test values for each input parameter of a
given access-program from design document. (UT: Unit Testing)

SDV Tool Design Verification tool: Generates a number of files (one PVS specification file for
each verification block containing proof obligations that can be analyzed by PVS) to
verify the functional mapping between the requirements and the design.

SCV Tool Code Verification tool ( *** being developed ***): Generates a number of files (one
PVS specification file for each verification block containing proof obligations that can
be analyzed by PVS) to verify the functional mapping between design and the source
code.

The author of this thesis [Thatipamala, 1996] is the primary software developer
(responsible for requirements; design and implementation) of UT tool; and is serving as a

member of the software development team for the other CASE tools in Table 2.

It is noted that the UT tool generates only a set of test values for each input parameter. In
other words, it automates only the Steps (1), (2), and (3), that are discussed in Table 1.
The other steps were excluded at that time since “automation of Step (4) and Step (5)”
were considered too complex to be implemented within the limited time period that was
available. However, it was perceived that the usefulness and value of the UT tool could
be increased multi-fold if its functionality can be extended to include the generation of a
set of test cases along with the anticipated test outcome. As a result, it was decided to
develop a prototype tool, called Apollo, to demonstrate the “proof-of-concept” of the

automation of Step (4) and Step (5) (i.e., generation of a set of test cases along with the



anticipated test outcome by execution of design specification). This has become the

focus of the current thesis.

1.2 Main Objective and Scope of the Thesis

1.2.1 Objective of the Thesis
The main objective of this thesis is to develop a prototype, named Apollo, to demonstrate
the “proof-of-concept” of the generation of a set of test cases along with the anticipated

test outcome, that could be useful in the Canadian nuclear industry.
The input and output to Apollo are as follows:

The input to Apollo: is a “ Design Specification Document” where the design of
a safety-critical software is specified using the tabular notation. This specification
is sufficiently detailed to enable execution by a machine.
The output from Apollo: is a series of text files consisting of information
associated with activities of Step (1) to Step (5) that are part of the unit testing
phase. An output file contains the following information:

a) list of input parameters along with associated information;

b) list of output parameters along with associated information;

¢) a set of test values for each input parameter;

d) a set of test cases; and

¢) anticipated test outcome for each test case.
It should be noted that one separate text file is created for each access-program

(see section 2.1) which is an independent “unit” for unit testing purposes.



1.2.2 Scope of the Thesis
The overall scope of the thesis work has been divided into the following four stages:

Stage I: Identification of Important Functional Requirements
The identification of important functional requirements is a prerequisite for the
successful development of any CASE tool. As a result, it was decided to
document the functional requirements as precisely as possible, at the very early

stages of the thesis work.
Stage II: Development of Design Details and Implementation

It was planned to develop a set of modules (along with header files), each of
which will encapsulate a set of distinct responsibilities and implementation
details. The advantages of this approach are: the design is easier to understand;
and the code is easier to implement. C-language was chosen as the language for

implementation.

Stage ITI: Preparation of Two Sample Input Design Specification Documents
It was decided to prepare a “sample design specification document” during the
third phase of the thesis work. The input document, where the design will be
specified using tabular notation, are small and concise to be presented in a thesis.
Two input documents were identified: a clean design specification document (i.e.,
without errors); and a draft design specification document (i.e., with typical
errors) in order to reflect a practical situation faced in the Canadian nuclear

industry.

Stage IV: Testing of Apollo Using Sample Input Document
It was planned to test Apollo using the clean design specification document as
well as draft design specification document, during the final phase of the thesis
work, and refine the Apollo tool if required. Both input documents were
expected to be updated such that the capabilities of the Apollo tool can be
illustrated clearly using the test results.



1.3 Thesis Qutline

The Thesis comprises the following chapters:

Chapter 2 gives a brief description of some of the important related research work that is
carried out at various universities and international research institutes. In addition, a brief

description of the tabular notation and related concepts are also presented in Chapter 2.
Chapter 3 outlines some of the important functional requirements.
Chapter 4 outlines the design details of the CASE tool, Apollo.

Results and Discussion from an industrial case study are presented in Chapter 5 to

demonstrate the “proof-of-concept” of the approach that is proposed in this thesis.

Important advantages of the approach that is proposed in this thesis are briefly discussed
in Chapter 6.

Conclusions and future work are presented in Chapter 6.



2. RELATED WORK AND RELEVANT CONCEPTS

Some of the important related research work that is carried out at various universities and
international research institutes are briefly presented in this chapter. In addition, a brief

introduction to relevant concepts is also presented in this chapter.

The section 2.1 describes the important terminology used in this thesis, and the section

2.2 describes the important research work that is related to this thesis.

The section 2.3 describes the relevant concepts and terminology used in this research

work.

The section 2.4 describes the tabular notation used in the thesis.

2.1 Terminology

The IEEE standard glossary of software engineering terminology [IEEE 1990], as well as
the British standard for software testing vocabulary [BS7925, 1998] define many
software-testing related terms. These definitions often clarify the meaning of the
technical terms that are otherwise used inconsistently in the field of software engineering.
However, it should be noted that, sometimes, these standards are not consistent with one
another. As a result, some of the important terminology that are used in this thesis is

described in this section.

access-program - The terms subroutine, function, procedure, access-program are usually
interchangeable. The special term “access-program’ is used in tabular notation to avoid
this confusion, since the other terms (subroutine, function, and procedure) are defined and
used differently in different programming languages.

anticipated test outcome - For a given test case, anticipated test outcome represents the
anticipated value of each output variable during unit testing. This anticipated test
outcome is calculated by Apollo by execution of design specification from the Design

Specification document.



deterministic specification - A design specification is considered deterministic if, for
every combination of input values, the specification defines one and only one value for
each output. In other words, for every combination of input values, there should be no
ambiguity about the value of each output. The value of the output is completely

independent of sequence of execution or implementation strategy.

incomplete specification - A design specification is considered incomplete if, the
specification is under-specified. In other words, for certain combination of input values,
the specification has failed to specify a value for every output. The value of output (or

set of outputs) is unknown for certain combination of input values.

non-deterministic specification - A design specification is considered non-deterministic
if, for certain combination of input values, the specification fails to define one and only
one value for each output. In other words. for certain combination of input values, there
is ambiguity about the value of each output and the value of output depends on sequence
of execution or implementation strategy. More than one value can be assigned to a given

output (or set of outputs) for certain combination input values.

unit: Every access-program (from input design specification document) is considered as

a separate unit, for the purpose of unit testing.

2.2 Related Work

The tabular specification method used by AECL and Ontario Hydro is closely related to
the Software Cost Reduction (SCR) Method [Britton and Parnas, 1981]) developed at
Naval Research Laboratory, United States, and Table Tool System (TTS) developed by
Parnas and co-workers [Pamas et al., 1994] at McMaster University, Canada. Another
CASE tool, called Tablewise, developed by Hoover and co-workers [Hoover and Chen,
1995] for NASA Langley Research Centre is also closely related to the tabular specification
method used by AECL and Ontario Hydro. The details of these works are briefly

presented in the following sub-sections.
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The CASE tools that are discussed in the following sections deal with errors in
requirement specifications or design specifications. Generally, incomplete, non-
deterministic or ambiguous specifications are analyzed based on static analysis. In
contrast, the approach that is proposed in this thesis and implemented in Apollo software
attempts to verify the accuracy of design specification using dynamic testing and
execution of design specification.

2.2.1 SCR Toolset: Related Work at Naval Research Laboratory, USA

Formulated in the late 1970s to specify the requirements of the Operational Flight
Program (OFP) of the A-7 aircraft, the SCR (Software Cost Reduction) requirements
method is based on tables for specifying the requirements of a software system [Britton
and Parnas 1981). Heitmeyer and co-workers have developed the following set of CASE
tools, called SCR Toolset, in order to provide customized CASE tool support for the
SCR method:

e Specification Editor

® Dependency Graph Browser
e Consistency Checker

e Simulator

e Model Checker

Specification Editor [Heitmeyer et al., 1995]: This CASE tool helps the user to create,
modify, or display a requirements specification. Each SCR specification is organized
into dictionaries and tables. The dictionaries define the static information in the
specification, such as the names and values of variables and constants, the user-defined

types, etc. The tables specify how the variables change in response to input events.

Dependency Graph Browser (DGB) [Heitmeyer et al., 1997): This DGB tool captures
the dependencies among the variables in a given requirements specification as a directed

graph. The user can detect errors such as undefined variables and circular definitions by
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examining this directed graph. This tool can help the user in understanding the
relationship between different parts of a large specification.

Consistency Checker [Heitmeyer et al., 1996, 1997]: This CASE tool analyzes the
tabular specification for consistency. Some of the important checks are: syntax errors,
type errors, variable name discrepancies, missing cases, unwanted nondeterminism, and

circular definitions.

Simulator [Heitmeyer et al., 1997]: This CASE tool helps the user in validating a given
tabular specification. The user enters a sequence of input events associated with a typical
tesi scenario and checks the observed output against the expected output. In other words,
the user can run the simulator and analyze the results to ensure that the tabular

specification captures the intended behavior.

Model Checker [Heitmeyer et al., 1998a, 1998b]: Currently, the model checker analyzes
only the invariant properties of the tabular specification. Heitmeyer and coworkers are

planning to extend this tool to check various other properties of the specification.

2.2.2 Table Tool System: Related Work at McMaster University, Canada

Parnas and co-workers [1994] have adapted and refined the SCR method (developed at
Naval Research Laboratory, USA) through on-going academic research program at
McMaster University, Canada. They have developed the following set of CASE tools
called, Table Tool System (TTS), to provide customized CASE tool support for tabular
specification method during various phases of software development [Janicki et.al., 1995;
Li, 1996, Abraham, 1997; Rastogi, 1998; Shen et.al., 1996]:
e Table Construction Tool: This tool helps the user during the preparation of
specification document (to construct and edit tabular expressions).
e Table Formatting / Printing Tool: This tool helps the user in formatting and
printing the tabular specification (by generating a PostScript file).
e Symbol Editor Tool: This tool helps the user in creating new symbols and/or
modifying their associated information.
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Inversion / Normalization Tool: This tool helps the user in transforming
normal tables to inverted tables, and vice versa. This feature will be useful in
choosing an appropriate table type to present complex design specification.
Specialization and Simplification Tool: This tool helps the user to simplify
expressions based on user-defined constraints.

Carving and Slicing Tool: This tool helps the user to extract rows, columns,
or slices of tabular expressions.

Evaluation Code Generator Tool: This tool helps the user by generating
C++ code from tabular specification. This code can be used for specification
checking or for testing software against its specification.

Composition Tool: This tool helps the user to compute the composition of

two function tables.

The following tools are currently under development.

Table Checking Tool: This tool helps the user to perform completeness and
disjointness verification of tabular specification.

Transformation Tools: This tool helps the user in transforming “generalized
decision tables” to “structured decision tables”, and vice versa. This feature
will be useful in choosing an appropriate table type to present complex design
specification.

LaTeX Output Generation Tool: This tool generates LaTeX Output from a

WordProcessor document.

The TTS supports the production of software documentation through an integrated set of

tools which manipulate multi-dimensional tabular expressions. This tabular

representation of mathematical expressions improves the readability of complex design

documentation. The table cells may contain conventional logic expressions, or even other

tables. The TTS project aims to automate checking of software specification and design

documents, and to assist in software testing and maintenance.

Test Oracle Generator (TOG) Tool (prototype):
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One of the prototype CASE tools, Test Oracle Generator (TOG) that was developed by
Pamnas and co-workers [Peters and Parnas, 1994; Peters, 1995] is discussed in detail in

this section, since it is relevant to the research work reported in this thesis:

Peters [1995] have described an algorithm that can be used to generate a test oracle from
design documentation, and have developed a prototype CASE tool that generates a test
oracle based on that algorithm. The results from a case study of a commercial network
management application demonstrate that these methods can be effective at detecting
errors and increase the speed and accuracy of test evaluation when compared with manual
evaluation. Peters [1995] has concluded that such oracles can be used for unit testing,
and for ensuring consistency between code and documentation. Their work attempts to
automate Step (5) from Table 1, only partially. In other words, the following steps

associated with unit testing were not automated and has to be done manually :

Step(1): identification of the list of input variables (along with the relevant information

such as: data type, valid range, list of enumerations, etc.) that will be manipulated;

Step (2): identification of the list of output variables (along with the relevant information

such as: data type, valid range, list of enumerations, etc.) that need to be observed;

Step(3): generation of a set of test values for each input parameter based on certain

criteria (such as: boundary value analysis, etc.) ;

Step(4): generation of a set of test cases to satisfy various important coverages in order to

meet the stringent criteria that is imposed by relevant standards and procedures;

Step(5): generate the test oracle using the approach suggested by the Peters and Parnas
[1999] and run the test oracle using the set of test cases that are generated in Step(4) in
order to generate the “anticipated test outcome” (i.e. the anticipated value of output

variables) for each test case.

The above analysis clearly indicates that Step(5) can be automated only partially, using

the approach suggested by Peters [1995].
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2.2.3 Tablewise Tool: Work at NASA Langley Research Centre/Odyssey
Research Associates, USA

Hoover and co-workers [Hoover etal., 1996; Hoover and Chen, 1994, 1995] have
developed a CASE tool, called Tablewise, based on decision tables. Some of the
important goals of this research program are:

¢ to advance the state-of-the-art in formal methods, making it practical for use
on life-critical systems developed by the aerospace industry in the United
States, and

* to transfer such technology to industry through use of carefully designed

demonstration projects.

Hoover and co-workers have concentrated on bringing decision tables up-to-date and
closer to “formal methodology”. The following are some of the important objectives of

their research work:
1. Condensing a decision table.

2. Adding precondition annotations to indicate the cases that are not expected to

occur.

3. Checking a decision table by making assertions about what a decision table

specifies.
4. Generating a decision table by using assertions about what it should specify.

5. Structural analysis to locate errors in decision tables.

2.3 Relevant Concepts

2.3.1 Boundary Value Analysis

Software testing becomes effective if test values are generated based on the analysis of
the conditions at the change-over values called boundaries. Myers [1979] calls this
approach to test selection boundary value analysis. The basic idea behind boundary value
analysis is that test cases which explore boundary conditions give a higher payoff than

those which do not. Specifically, tests just above, at, and just below a boundary are all
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important [Myers, 1979]. The following two examples illustrate the test values that are
generated based on the boundary value analysis:

Example-1:

input variable: x

data type:

integer

valid range: -10to 100

condition:

Example-2:

if( x >= Set_Point)

[NOTE: assume that Set_Point is equal to 70]
Test values generated as per boundary value analysis:

at the condition

just above the condition
Jjust below the condition
maximum range

minimum range

input variable: x

data type:

integer

valid range: -10to 100

condition;

if( x >= Set_Point)

70
71
69
100
-10

[NOTE: assume that Set_Point is a variable set-point with a valid

range from 60 to 80]

Test values generated:

Assuming that Set_Point is equal to 60 (the lowest value).

at the condition

just above the condition
just below the condition
maximum range

minimum range

60
61
59
100
-10

Assuming that Set_Point is equal to 80 (the highest value).

at the condition
Jjust above the condition

Jjust below the condition
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maximum range : 100

minimum range : -10

NOTE: From the above examples it is clear that test value generation becomes
even more laborious and error-prone when Set_Point is a function of several

variables.

2.3.2 Partition Test Values and Partition Testing

Software testing becomes more effective if the test values are partitioned, or subdivided
in some way [BS7925-2, 1998]. In general, partition test values are selected by
subdividing the range into half. For example, the following partition test values will be
generated for the above example discussed in boundary-value analysis:

Test values from boundary value analysis: -10, 69, 70, 71, and 100
Partition test values: 30 (i.e., test value in the middle of -10 and 69)
85 (i.e., test value in the middle of 71 and 100)

Partition testing ensures that the program is tested thoroughly.

2.3.3 Zero Value Inclusion

If the valid range of input variable includes “Zero’ value, it should be included as one of
the test values. It will test for a range of possible errors including “divide by zero”
possibility, which may not be tested otherwise. This testing ensures that the program is
tested thoroughly.

2.3.4 Static analysis

Traditionally, static analysis consists of investigation of the source code of software,
looking for errors without actually executing the source code. In general, activities such
as code review and code walk-through are considered as static analysis activities.
However, in the context of development of safety-critical software, activities such as

investigation of the requirements specification and design specification, looking for errors
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without actually executing the specification can also be considered as a part of static
analysis. In general, activities such as requirements review, and design review are also
considered as part of static analysis. Even design verification activity (i.e., verification of
design against a mathematical requirements specification), code verification activity (i.e.,
verification of code against a mathematical design specification) can also be considered
as a part of static analysis, since execution of either the specification or the source code is
not involved in such an activity. In addition more complex static analysis techniques
such as control flow analysis, data flow analysis are applied during the development of
safety-critical software. Sophisticated tools such as PVS, Malpas [Owre et.al, 1993] can
be used to verify the functional mapping between requirements and the design; as well as
design and the source code. These sophisticated tools use the concept of symbolic
software testing to locate generic problems such as ambiguity, inconsistency, and/or
incompleteness of the specification. Various phases of static analysis and their
importance has been discussed in detail by [Daich et.al., 1994].

2.3.5 Dynamic Analysis/Testing

Traditionally, dynamic analysis consists of investigation of the source code of software,
looking for errors while it is being executed. In general, activities such as white-box
testing, black-box testing, gray-box testing, unit testing, sub-system testing, integration
testing, etc., are considered as part of the dynamic analysis. However, in the context of
development of safety-critical software, activities such as investigation of the
requirements-specification and design-specification, looking for errors while the formal
specification (either requirements specification or design specification) is being executed
also form part of dynamic analysis. In other words, dynamic analysis of a given
specification attempts to verify the characteristics of the software by critical analysis of
the information that occurs internally during execution as various states of the program
are created and executed (starting from a given initial state to a final state, under different

execution scenarios).

Advantages of Dynamic Verification
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In general, dynamic analysis captures more semantic errors compared to static analysis,
since dynamic analysis can capture the critical information during internal state
transitions (which represents the true characteristics of the software). Dynamic analysis
can detect errors due to misrepresentation of requirements, incorrect specification of
requirements, and erroneous translation from specification into implementation language.
Dynamic analysis also supports the development and systematic evaluation of test suites,
thereby potentially exposing flaws and oversights in a test regime, as well as in the

corresponding specification.

However, it should be noted that both static and dynamic analysis activities complement
each other. Comparison of static and dynamic analysis activities and their importance
have been discussed in detail by [Daich et.al., 1994].

2.3.6 Unit Testing

The unit test is the lowest level of testing performed during software development, where
individual units of software are tested in isolation from other parts of a program. In
general, Unit Testing can be considered as “testing against Detailed Design
Specification”, where each unit (basic component) of the software is tested to verify that
the detailed design specification for that unit has been correctly implemented. In other
words, unit testing is the process of executing software in a controlled manner, in order to
answer the question "Does the unit behave as specified in the Detailed Design
Specification of that Unit ?"'.

In general, unit testing activity is classified into the following four types based on test

case selection process [Morell and Deimel, 1992]:

® requirement-specification-oriented testing;

® design-specification-oriented testing;

¢ implementation-oriented testing; and

¢ Error-oriented testing.
Various types of unit testing and their importance has been discussed in detail by Morell
and Deimel [1992]. It should be noted that none of the unit testing techniques is superior
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to others so that its exclusive use can be justified. Various types of unit testing are best

seen as complementary rather than competing with each other [Morell and Deimel, 1992].

2.3.6.1 Test Coverage Criteria

The following are a number of unit test coverage criteria (metrics) that are associated

with unit testing activity:
e Statement Coverage
¢ Branch Coverage
e Path Coverage
¢ Condition/Decision Coverage
e Multiple Condition/Decision Coverage

It should be noted that various international standards have different test coverage
criteria, depending on the application. “Multiple Condition/ Decision Coverage” criteria
is discussed below, in order to illustrate the complexity (and practical difficulties)

associated with meeting a specified test coverage criteria from a relevant standard.

“Multiple Condition/ Decision Coverage” is defined as follows in FAA standard DO-
178B [RTCA/FAA DO-178B, 1985; Voas et.al., 1993]:

Every point of entry and exit in the program has been invoked at least once, and every
condition in a decision in the program has taken on all possible outcomes at least once,
every decision in the program has taken on all possible outcomes at least once, and each

condition in a decision has been shown to independently affect that decision's outcome.

In other words, a condition should be shown to independently affect a decision's outcome

by varying just that condition while holding all other possible conditions fixed.

For example, there are 2° possible combinations of condition outcomes for every given

complex decision consisting of the following form:

if ((c1) or (c2) or .... or (cn)).
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As a result, the number of test cases will increase in the same order (in order to satisfy the

“Multiple Condition/ Decision Coverage™ criteria).

This analysis indicates that the activity of test value generation as well as the activity of
the generation of a set of test cases become complex in order to meet a given test

coverage criteria.

Different types of coverages and their importance have been discussed in detail by Morell
and Deimel [1992].

Unit testing is an opportunity to “catch” software bugs early, before the cost of
correction escalates too far. Unit tests are simpler to create, easier to maintain and more
convenient to repeat than later stages of testing. When all costs are considered, unit tests
are cheap compared to the alternative of complex integration testing, or unreliable

software.

2.4 Introduction to Tabular Notation

2.4.1 Hypothetical Example

Table based specification has been discussed in a number of publications [Parnas 1992,
Parnas et.al. 1994, McDougall et.al. 1994, Hoover et.al. 1994, Hoover 1995, and Matias
1998]. A brief introduction to tabular notation is given in this section using an
hypothetical example associated with “Inlet Coolant Temperature in a Critical Cooling
Loop for a Nuclear Reactor” and its Display Status on the Control Panel. The status of

the light on the control panel is decided based on the following general conditions:

e if the temperature is with-in the range which is calculated based on the
set-point, then green light shall be turned-on;

e if the temperature is below the set-point then red light shall be turmed-
on;

e if the temperature is above the set-point then red light shall flash on the
control panel;

® use areasonable dead-band for a steady display on the control panel.
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2.4.1.1 Declaration of Constants

Based on the analysis of the problem, the following five constants are found to be

necessary:

1.

valid lowest range of the temperature signal : C_Lower_Range (assumed as 0° C for
illustrative purposes);

valid highest range of the temperature signal : C_Upper_Range (assumed as 100° C
for illustrative purposes);

valid lowest range of the set-point : C_Lowest_SP (assumed as 15° C for illustrative
purposes);

valid highest range of the set-point : C_Highest_SP (assumed as 25° C for illustrative
purposes);

a reasonable dead band : C_Deadband (assumed as 4° C for illustrative purposes).

In the tabular notation such constants are declared using a Constants Table (see Table 3):

Table 3 - Constants Table

Name Value Type
Constants: | C_Lower_Range 0 INTEGER
C_Upper_Range 100 INTEGER
C_Lowest_SP 15 INTEGER
C_Highest_SP 25 INTEGER
C_DeadBand 4 INTEGER

2.4.1.2 Declaration of Data Types
The analysis reveals the need for three data types:

1.

an abstract data type to deal with the coolant temperature which can be called as

T_Coolant_Temp;
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2. an abstract data type to deal with set-point variable which can be called as
T_Temp_Set_Point;

3. an enumeration data type to deal with variable “display status on the control panel”
which can be called as T_Display_Status; This data type contains three elements to
deal with green, red and flashing red display which can be called as e_Green, ¢_Red
and e_Flashing_Red;

These data types are specified using the Types Definition Table (see Table 4):

Table 4 - Types Definition Table
Name Definition
Types: T_Coolant_Temp C_Lower_Range
TO
C_Upper_Range
T_Temp_Set_Point C_Lowest_SP
TO
C_Highest_SP
T_Display_Status {e_Green,
e_Red,
¢_Flashing Red }

2.4.1.3 Declaration of Inputs
Input parameters are declared using the Inputs Table (see Table 5):
® an input parameter to deal with the coolant temperature named V_Temp,
whose data type is T_Coolant_Temp;
® an input parameter to deal with the set-point named V_Set_Point, whose data

type is T_Temp_Set_Point.
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Table S - Inputs Table

Name Type
Inputs: V_Temp T_Coolant_Temp
V_Set_Point T_Temp_Set_Point

2.4.1.4 Declaration of Outputs
Output parameters are declared using the Outputs Table (see Table 6):
® an output parameter to deal with the display status of the light named
V_Display_Status, whose data type is T_Display_Status.

Table 6 - Outputs Table

Name Type
Outputs: V_DisElax_Status T_Disglax_Status |

2.4.1.5 Declaration of the Logic

The analysis of the problem yields the three rules given below:
R1: if the temperature is with in the desired range (i.e. set-point plus or minus
half-of-the dead-band) then assign e_Green;
R2: if the temperature is less than the desired range then assign e_Red;
R3: if the temperature is more than the desired range then assign
e_Flashing_Red;

Such rules are specified using a Function Table (see Table 7). In this table each rule has

one row and there are two columns.
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Table 7 - Function Table

Table disglav Status

Result
Condition V_Display_Status
V_Temp < (V_Set_Point - (0.5 * C_DeadBand ) ) e_Red
(V_Temp >= (V_Set_Point - (0.5 * C_DeadBand ) ) e_Green

AND
(V_Temp <= (V_Set_Point + (0.5 * C_DeadBand ))
(V_Temp > (V_Set_Point + (0.5 * Cj DeadBand ) ) &Flashing Red

The following observations can be made from the above table specification:
e The value of the output variable given in the second column, is decided based
on the condition that is satisfied in the first column.
¢ The conditions given in the first column are expected to be mutuaily exclusive
and the specification is non-deterministic otherwise.
e The conditions given in the first column are expected to cover the complete
range of input variables. The specification is wrong if they do not cover the

complete range, which is called as incomplete specification.

A brief introduction to various function tables that are supported by the Apollo tool are
presented in section 2.4.2.

2.4.2 Function Tables

Function tables are the main part of the tabular notation. The Apollo tool developed as a
part of this thesis supports several different types of function tables. The user can choose
the most appropriate type of function table depending on the complexity of the
specification. Apollo translates these function tables into a set of Conditions and
Associated Actions, called a set of CAA. This generic internal representation used is
logically equivalent to the original function table specified by the user. This
transformation is truth-preserving and simplifies the dynamic analysis of the design
specification. Some of the important function tables that are supported by the Apollo tool

are given below:
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a. Simple Vertical Condition Tables,

b. Complex Vertical Complex Condition Tables,

c. Simple Horizontal Condition Tables,

d. Complex Horizontal Condition Tables,

e. Simple Labelled Horizontal Condition Tables, and

f. Complex Labelled Horizontal Condition Tables.

Predicate calculus notation [Kahane 1990] is used, in combination with standard set
theory operators and symbols, to provide formal definitions for the various tables that are
supported by the Apollo tool. The Extended BNF (EBNF) grammar, predefined
functions, symbols and operators that are supported by Apollo are presented in Appendix
E.

2.4.2.1 Simple Vertical Condition Table
A sample Simple Vertical Condition Table is shown in Table 8. The .conditional
relationship between a measured or input variable, V_Reactor_Power and a state or

output variable, V_Status is specified in this table.

Table 8 - Simple Vertical Condition Table (Sample)

V_Reactor_Power | V_Reactor_Power
> <=
C_Danger_ Power | C_Danger_Power
V_Status e_Tripped 3_be otTripped

Interpretation of Table 8 (using pseudo-code):

if(V_Reactor_Power > C_Danger_Power )
then V_Status = e_Tripped

if(V_Reactor_Power <= C_Danger_Power )
then V_Status = e_NotTripped

26



NOTE: Each column is vertically read to create a rule. The order of sequence of
execution of such rules is not implied in the tabular specification. The value of output is

expected to be independent of implementation order of these rules.

2.4.2.2 Complex Vertical Condition Table

A sample Complex Vertical Condition Table is shown in Table 9. The conditional
relationship between two measured or input variables: V_Reactor_Power and

V_Coolant_Flow, and one state or output variable, V_Status is specified in this table.

Table 9 - Complex Vertical Condition Table (Sample)

V_Reactor_Power
>
C_Critical_Power

V_Reactor_Power
<
C_Critical_Power

V_Coolant_Flow V_Coolant_Flow
< -
¢_High e_Hig
X__.Status c;Trippcd ciNotTﬁpped c_NotTriEEd

Interpretation (using pseudo-code):

if((V_Reactor_Power > C_Critical_Power) AND (V_Coolant_Flow < e_High))
then V_Status = e_Tripped
if((V_Reactor_Power > C_Critical_Power) AND (V_Coolant_Flow = e_High))
then V_Status = e_NotTripped
if(V_Reactor_Power <= C_Critical_Power)
then V_Status = e_NotTripped
2.4.2.3 Simple Horizontal Condition Table
A sample Simple Horizontal Condition Table with two outputs (V_Status and V_Alarm)
is shown in Table 10. The conditional relationship between one measured or input
variable: V_Reactor_Power, and two state or output variables: V_Status, and V_Alam is

specified in this table.
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Table 10 - Simple Horizontal Condition Table (with two outputs) (sample)

V_Status V_Alam
V_Reactor_Power e_Tripped e_On
>
C_Danger_Power
V_Reactor_Power e_NotTripped e _Off
<

‘ C_Danger_Power

Interpretation (using pseudo-code):

if(V_Reactor_Power > C_Danger_Power )

then

{
V_Status = e_Tripped
V_Alarm = e_On

}

if(V_Reactor_Power <= C_Danger_Power )

then

{
V_Status = e_NotTripped
V_Alarm = e_Off

}

NOTE: “the order of sequence of execution” is not implied in the tabular
specification, even for the assignment of output variables. In other words, if there
is any dependency on the order of execution, that should be specified explicitly
(using a previous value notation). The value of output is expected to be
independent of implementation of details.

2.4.2.4 Complex Horizontal Condition Table

The format of a sample Complex Horizontal Condition Table is shown in Table 11.

The conditional relationship between two measured or input variables: V_Reactor_Power
and V_Coolant_Flow, and two state or output variables: V_Status, and V_Alam is
specified in this table.
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Table 11 - Complex Horizontal Condition Table (Sample)

V_Status V_Alarm
V_Reactor_Power V_Coolant_Flow e_Tripped e_On
> <

C_Danger_Power e_High

V_Coolant_Flow e_NotTripped e_Off

e_High
V_Reactor_Power ¢_NotTripped e_Off
<=
‘ C_Dangsr_Powcr

Interpretation (using pseudo-code):

if((V_Reactor_Power > C_Critical_Power) AND (V_Coolant_Flow < e_High))

then
{
V_Status = e_Tripped
V_Alarm =e_On
}
if((V_Reactor_Power > C_Critical_Power) AND (V_Coolant_Flow = e_High))
then
{
V_Status = e_NotTripped
V_Alarm = e_Off
}
if(V_Reactor_Power <= C_Danger_Power )
then
{
V_Status = e_NotTripped
V_Alarm = e_Off
}

2.4.2.5 Simple Labelled Horizontal Condition Table

A sample Simple Labelled Horizontal Condition Table with the output V_Status is shown
in Table 12. The conditional relationship between one measured or input variable,

V_Reactor_Power and one state or output variable, V_Status is specified in this table.
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Table 12 - Simple Labelled Horizontal Condition Table (Sampie)

Resul:
Condition V_Status
V_Reactor_Power e_Tripped

>
C_Danger_Power
V_Reactor_Power e_NotTripped
<wm

C_DanEcr_Power

Interpretation (using pseudo-code):

if(V_Reactor_Power > C_Danger_Power )
then V_Status = e_Tripped

if(V_Reactor_Power <= C_Danger_Power )
then V_Status = e_NotTripped

2.4.2.6 Complex Labelled Horizontal Condition Table

The format of a sample Complex Labelled Horizontal Condition Table is shown in Table
13.  The conditional relationship between two measured or input variables:
V_Reactor_Power and V_Coolant_Flow, and two state or output variables: V_Status, and
V_Alarm is specified in this table.

Table 13 - Complex Labelled Horizontal Condition Table (Sample)

| Result
Condition V_Status V_Alarm
V_Reactor_Power V_Coolant_Flow e_Tripped e_On
> <
C_Critical_Power e_High
V_Coolant_Flow ¢_NotTripped e_Off
e_High
V_Reactor_Power ¢_NotTripped e_Off
<o
|L_C_Critical J_fPower
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Interpretation (using pseudo-code):
if((V_Reactor_Power > C_Critical_Power) AND (V_Coolant_Flow < e_High))
then
V_Status = e_Tripped
V_Alarm =e_On

b
if((V_Reactor_Power > C_Critical_Power) AND (V_Coolant_Flow = e_High))
then {
V_Status = e_NotTripped
V_Alarm = e_Off
}
if(V_Reactor_Power <= C_Danger_Power )
then {
V_Status = e_NotTripped
V_Alarm = e_Off
)

The following is a summary of the tables presented in this section:
Constants Table (Table 3) defines constants

Types Definition Table ( Table 4) defines data types

Inputs Table ( Table 5) defines inputs

Outputs Table ( Table 6) defines outputs

Function Table ( Table 7) defines rules : condition - action

Simple Vertical Condition Table ( Table 8) where each column is read as one rule

A I o

multiple rules

Simple Horizontal Condition Table ( Table 10) where each row is read as one rule

9. Complex Horizontal Condition Table ( Table 11) where a single row can give rise to

multiple rules

10. Simple Labelled Horizontal Condition Table ( Table 10) where condition and action

columns are labelled for clarity

11. Complex Labelled Horizontal Condition Table ( Table 11) where ‘condition and action

columns are labelled for clarity
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2.5 Software Standards

Table 14 summarizes some of the important standards that are applicable to safety-critical

software development. In general, formal mathematical methods are “highly

recommended” by most standards for the development of the safety-critical software. All
these standards have been discussed in detail by Place and Kang [1993] and Bowen and

Stavridou [1992] and IPL [1996].

Table 14 - Safety-Critical Software Development Standards

Standard

Description

IECS880
Software for Computers in the Safety Systems of
Nuclear Powers Stations.

A standard for the nuclear industry [[ECS880,
1986].

RTCA/FAA DO-178B
Software Considerations in Airbome Systems and
Equipment Certification.

A standard for avionics and airborne systems
[RTCA/FAA DO-178B, 1985].

Defense Standard MOD 00-55
The Procurement of Safety-critical Software in
Defense Equipment.

Detailed software standard for safety-critical
defense equipment [MOD 00-55, 1991].

Defense Standard MOD 00-56
Safety Management Considerations for Defense
Systems Containing Programmable Electronics.

A standard for the defense industry {MOD 00-56,
1991].
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3. PROTOTYPE: FUNCTIONAL REQUIREMENTS

This chapter outlines some of the important functional requirements of the prototype
Apollo tool.

3.1 High-Level Requirements

The high-level functional requirements of the Apollo tool are as follows:

(2) Input Document: The “input document” to the Apollo tool shall be the
“Software Design Specification Document” of the software to be tested. It
can be produced using one of the commercial word-processing packages.

A sample input document is given in Appendix-A.

(b) Generation of Test Values: Based on the boundary-value analysis for
each condition, the Apollo tool shall generate a set of test values for each
input parameter of every access-program. The specific rules to be used

for generation of test values are given in Section 3.2.7.1.

(c) Generation of a Set of Test Cases: The Apollo tool shall generate a set
of test cases based on the possible combinations of the test values that are

generated in step (b) above.

(d) Generation of Anticipated Test Outcome: For each test case, Apollo
shall generate the anticipated test outcome, by executing the program'’s

design specification.

(e) Output File: The “output file”, a set of test cases along with the
anticipated test outcome, that is generated by the Apollo tool shall be
presented as a simple ASCII text file. A sample output file generated by
the Apollo tool should be as shown in Appendix-B.
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The typical input and output files for the Apollo tool are illustrated in Figure 1.

Tool Context

Test Cases
Design Spec File(s)

Apollo
Tool

Report Log

O Tool
E:] Document

Figure 1 - Apollo Tool Context

3.1.1 Important Assumption

It is assumed that the user will verify the correctness (syntax and other static analysis checks) of
the input document using the Design Analysis tool (see Table 2 for details) before using the

Apollo tool.

34




3.2 Detailed Reguirements )
The detailed functional requirements of some of the high-level requirements (which

require further elaboration) are presented in this section.

3.2.1 Identification of the List of Input Parameters of an Access-Program

The Apollo tool shall identify all the input parameters for every access-program, based
on the information provided at the global-scope, module-scope, and the scope of the

access-program.

3.2.2 Identification of the List of Output Parameters of an Access-Program

The Apollo tool shall identify all the output parameters for every access-program, based
on the information provided at the global-scope, module-scope, and the scope of the

access-program.

3.2.3 Supported Data Types
The Apollo tool shall support the following four base data types of variables:

(a) INTEGER;

(b) REAL;

(c) ENUMERATED; and
(d) BOOLEAN.

3.2.4 Supported Relational Operators
The Apollo tool shall support the following six relational operators:
(a) greater than: “>";
(b) greater than or equal to: “>=";
(c) less than: “<™;
(d) less than or equal to: “<=";

(e) equal to: “=";
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(f) notequal to: “<>"

3.2.5 Supported Arithmetic Operators
The Apollo tool shall support the following four arithmetic operators:
(a) addition: “+™;
(b) subtraction: “-;
(c) multiplication: “*”; and
(d) division: “/™.
3.2.6 Supported Math Functions
The Apollo tool shall support the following five math functions:
() ceiling;
(b) floor;
(c) round;
(d) modulus;

(e) absolute.

3.2.7 Test Value Generation Rules for INTEGER and REAL inputs

The Apollo tool shall generate a set of test values for each input parameter (whose data
type is either INTEGER or REAL) based on the boundary value analysis using each
condition. The specific rules for generation of test values using various forms of simple

conditions are given section 3.2.7.1.

3.2.7.1 Boundary Value Analysis of Simple Conditions

(a) The Apollo tool shall isolate the given input parameter to the left-hand-
side of a given simple condition before generating the test values using the

relevant rules that are specified in this section.
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Note:

The terms used in this section are described below:

1.

LowerRange and UpperRange : These terms indicate the valid range (lower and upper range)

of the input parameter (for which the test values are being generated).

MiddleValue: This term represents middle value with in the valid range of the input
parameter (for which the test values are being generated). [In general, middle value is equal
to (lower range + upper range) divided by 2].

ExpMin and ExpMax : These terms indicate the minimum and maximum value of the

expression (which is part of the condition that is being analyzed).

MIN (a, b) : This term indicates that compare the value of “a” and “b” and choose the lower

value.

MAX (a, b) : This term indicates that compare the value of “a” and “b” and choose the

higher value.

DeltaVlaue : This term represents the desired resolution that need to be tested for a given
variable. [ For REALs, a default delta value of “0.00001” will be assigned by the Apollo tool.
For INTEGERY, a default delta value of “1” will be assigned by the Apollo tool]

3.2.7.1.1 Conditions of the form: (input parameter > expression)
The Apollo tool shall generate the following six test values for each input parameter that

is present in a condition of the form (input parameter > expression):

(a) MAX[(ExpMin + DeltaValue), LowerRange]

(b) UpperRange
(c) UpperRange - DeltaValue

(d) ExpMax + DeltaValue
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(e) ExpMax

(f) ExpMax - DeltaValue

3.2.7.1.2 Conditions of the form: (input parameter >= expression)

The Apollo tool shall generate the following seven test values for each input parameter

that is present in a condition of the form (input parameter >= expression):
(a) MAX[ExpMin, LowerRange]
(b) MAX[ExpMin, LowerRange] + Delta value
(c) UpperRange
(d) UpperRange - DeltaValue
(e) ExpMax + DeltaValue
(f) ExpMax

(g) ExpMax - DeltaValue

3.2.7.1.3 Conditions of the form: (input parameter < expression)

The Apollo tool shall generate the following six test values for each input parameter that

is present in a condition of the form (input parameter < expression):
(a) MIN[(ExpMax - DeltaValue); UpperRange]
(b) LowerRange
(c) LowerRange + DeltaValue
(d) ExpMin - DeltaValue
(e) ExpMin

(f) ExpMin + DeltaValue

3.2.7.1.4 Conditions of the form: (input parameter <= expression)
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The Apollo tool shall generate the following seven test values for each input parameter

that is present in a condition of the form (input parameter <= expression):
(a) MIN[ExpMax; UpperRange]
(b) MIN[ExpMax; UpperRange] - Delta Value
(c) LowerRange
(d) LowerRange + DeltaValue
(e) ExpMin - DeltaValue
() ExpMin
(g) ExpMin + DeltaValue

3.2.7.1.5 Conditions of the form: (input parameter = expression)

The Apollo tool shall generate the following four test values for each input parameter that

is present in a condition of the form (input parameter = expression):
(a) MIN[ExpMax; UpperRange]
(b) MIN[ExpMax; UpperRange] - Delta Value
(¢) MAX[ExpMin, LowerRange]

(d) MAX[ExpMin, LowerRange] + Delta Value

3.2.7.1.6 Conditions of the form: (input parameter <> expression)

The Apollo tool shall generate the following eight test values for each input parameter

that is present in a condition of the form (input parameter <> expression):
(a) MIN[ExpMax; UpperRange]
(b) MIN[ExpMax; UpperRange] - Delta Value
(¢) MAX[ExpMin, LowerRange]
(d) MAX[ExpMin, LowerRange] + Delta Value

(e) UpperRange
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(f) UpperRange - Delta Value
(g) LowerRange

(h) LowerRange + Delta Value

3.2.7.2 Boundary Value Analysis of Compound Conditions

(2) A given Compound Expression shall be broken down into corresponding
simple conditions (e.g., input parameter > exp_l; input parameter <
exp_2; exp_l < exp_2), and test values shall be generated (for each simple
condition) using the rules that are specified in section 3.2.7.1. This
approach ensures that test values are generated using all the conditions that

are associated with the given access-program.

3.2.7.3 Test Value Generation Rules, for inputs that do not appear in a given

condition

The Apollo tool shall generate the following three test values for each input parameter

that does not appear in a given condition:
(a) UpperRange;
(b) LowerRange; and

(c) MiddleValue.

3.2.7.4 Partition Range Test Value Generation Rules

(a) The rules that are specified in section 3.2.7.1 provide a set of values for
each input parameter. These sets of values partition the range of the inputs
into one or more partitions of the range. For each partition the mid-value

shall be generated as a test value.



3.2.7.5 Zero inclusion Rule

" (@) The Apollo tool shall generate an additional test value of “zero” for all

input parameters whose valid range extends from negative to positive.

3.2.8 Test Value Generation Rules for ENUMERATED inputs

(a) The Apollo tool shall generate all enumerations as test values for each

enumerated input parameter.

3.2.9 Test Value Generation Rules for BOOLEAN inputs

(a) The Apollo tool shall generate both TRUE and FALSE as test values for
each BOOLEAN input parameter.

3.2.10 Design Specification Errors

3.2.10.1 Incomplete design specification
(2) The Apollo tool shall report “Incomplete Spec” as the anticipated outcome

for every test case that detects incomplete design specification;

(b) The Apollo tool shall report the following warning message, when

appropriate, into the output file:

WARNING: Tool encountered incomplete design specification;
~------—------ please review design document.

3.2.10.2 Non-deterministic design specification

(a) The Apollo tool shall report “NonDeterministic” as the anticipated
outcome for every test case that detects non-deterministic design

specification;

(b) The Apollo tool shall report the following warning message, when

appropriate, into the output file:

WARNING: Tool encountered non-deterministic design specification;
-------------- please review design document.
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4. PROTOTYPE: DESIGN DETAILS

This chapter outlines some of the important design details of the prototype Apollo tool.
A set of twelve modules have been designed, each of which encapsulates a set of distinct
responsibilities and the corresponding implementation details. Each of the modules is
further sub-divided into a group of procedures which fulfill specific responsibilities of
that module. The advantages of this approach are: the design is easier to document as well
as easier to understand; the code is easier to implement; and the software is easier to

maintain. In addition, the application gets developed in a well-defined way.

4.1 High-Level Design
The high-level design details of the Apollo tool comprises of the following three sections:

Section 4.1.1 describes the important stages in data and control flow of the Apollo tool.

Section 4.1.2 describes the algorithm followed by the Apollo tool during the generation

of test cases along with the anticipated test outcome.

Section 4.1.3 summarizes responsibilities and encapsulation of individual modules that

are specific to the Apollo tool.
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4.1.1 Data and Control Flow

Figure 2 illustrates the important stages in data and control flow of the Apollo tool.

Output-
Log File Files i
Test Case
Generation

Test Value
Generation

Expected
Output
Generation

Design Design Spec
Data Structures Design Spec
Symbol
Legend DataBase

————— Data Flow

sy CONLrol Flow

Figure 2 - Apollo Tool: Data and Control Flow Diagram
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The four important stages in data and control flow are briefly described below:

Access-program Sequencing

The Apollo tool parses the input design specification document and builds the
data structures that represent the input document. The Apolio tool subdivides the
task to the access-program level by loading all the symbols that are with in the

scope of the access-program that is being analyzed.
Test Value Generation

The Apollo tool generates the test values for each input parameter by applying

boundary-value analysis and the associated rules.
Test Case Generation

The Apollo tool generates a set of test cases, for unit testing of the given access-

program, using all possible combinations of the test values.
Anticipated Output Generation

For each test case, the Apollo tool executes the design specification and generates
the anticipated value(s) of the output parameter(s). After executing all the test

cases, the output file is written to the specified directory.

4.1.2 Algorithm

The algorithm followed by the Apollo tool during the test case generation along with the
anticipated test outcome, is presented in two parts. Figure 3 illustrates the algorithm
followed by the Apollo tool during the generation of a set of test cases; whereas Figure 4
illustrates the Look Before You Execute (L-Bye) algorithm followed by the Apollo tool,
during the execution of the design specification, for generating the anticipated test

outcome, for each test case.



4.1.2.1 Algorithm for Generation of Test Cases

For Each
Function Table | Eor Each
A

Figure 3 - Algorithm for Generation of a Set of Test Cases

The important steps in test case generation algorithm (Figure 3) are briefly described

below:

® After parsing the design specification document, the Apollo tool sub-divides
the task to access-program level, and loads global-scope, module-scope, and

access-program-scope symbols.

* After loading the symbols, the Apollo tool creates a new output file, identifies
the list of input parameters to the access-program, identifies the list of output
parameters to the access-program, and sub-divides the task to function table

level.

® The Apollo tool generates test values for each input parameter based on
boundary-value analysis and associated rules, using all the conditions that are

specified in the given access-program.
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® The Apollo tool generates more test values for each input parameter using

partition and zero inclusion rules.

e After completing the test value generation (for each input parameter), the tool
generates a set of test cases using all possible combination of the input

parameters.

This algorithm is presented in Table 15 using pseudo-code.

Table 15: Algorithm for Generation of a Set of Test Cases

Input: parsed design specification
Output: a set of test cases
aAlgorithm:

begin

create and open a new output file;
write version control information to output file;
identify the list of input parameters;
identify the list of output parameters;
write input and ocutput parameter information to output file;
load global-scope symbols;
load module-scope symbols;
load access-program-scope symbols;
for each function table begin

for each condition begin

for each input parameter begin
generate test values from boundary value analysis:
end;

end;
end;
for each input parameter begin

generate partition test values;

apply zero-inclusion rule;
end;
for each input parameter begin

write test value summary to output file;
end;
generate a set of test cases using all possible combinations of test
values of all input parameters;

end (generation of a set of test cases};




4.1.2.2 Look Before You Execute (L-Bye) Algorithm : Execution of Design
Specification

Generate
— a Set of
Test Cases \ /4
For Each Test Case
kN
Store
S
ymbols Test Results

State
Transition Step-1: Evaluate

¢ Conditions

Figure 4 - Execution of Design Specification : L-Bye Algorithm

The primary steps in Look Before You Execute algorithm ( Figure 4 ) are briefly
described below:

For each test case:

e Symbol database: The Apollo tool loads global-scope, module-scope, and access-

program-scope symbols; and initializes all the variables with their default values.

¢ Initial State: all the input parameters of the access-program are initialized based on

the current test case information, “before entering into the access-program”.
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e State Transition: The Apollo tool follows a two-step strategy given below at every

state transition:

Step-One: The Apollo tool evaluates all of the conditions (that are relevant at a
given state) from design specification (and reports exceptions) in order to

determine that one and only one condition is valid for state transition.

Step-Two: The Apollo tool executes all the actions that are associated with that
“one and only one condition”, and updates the symbol database appropriately after

execution of “each action”’.

* Final State: After reaching the final state, the Apollo tool collects the anticipated
values of the output parameters of the access-program from symbol database and
reports a summary (along with the input parameter information) “prior to exiting the

access-program’”.
Exception Handling:

If an exception is encountered during the execution of design specification, for a given
test case, Apollo aborts the execution with respect to that specific test case alone and
reports the details of the test case along with an appropriate error message. For example,
(a) incomplete specification is reported if the execution reaches a dead-end state, i.c.,
none of the relevant conditions at the given point of the execution are satisfied; (b) non-
determinism is reported if the execution reaches an ambiguous state, i.e., if more than

one path is valid for state transition.

It should be noted that Apollo continues execution of remaining test cases even after

reporting an exception.

This algorithm is presented in Table 16 using pseudo-code.



Table 16: Execution of Design Specification : L-Bye Algorithm

Input: a set of test cases

Output: anticipated test outcome for each test case
Algorithm:

begin

for each test case begin

end;

{load symbol database]
load global-scope symbols:
load module-scope symbols:
load access-program-scope symbols;
{Initial State}
for each symbol begin
initialize the symbol with default value;
end;
for each input parameter begin
initialize input parameter based on current test case
information;
end;

{State Transition}
for each function table begin
{Step-1: Check for Exceptions}]
ValidConditionCount = zero:
for each condition begin
evaluate the condition;
if condition is valid then begin
increment ValidConditionCount;
end;
end;
if ValidConditionCount > 1 then begin
report nondeterminism;
and continue with the next test case;
else if ValidConditionCount is equal to zero then begin
report incomplete specification;
and continue with the next test case;
end;
{Step-2: Execute associated actions)}
for each condition begin
evaluate the condition;
if condition is valid then begin
execute associated actions;
update symbol database;
continue with execution of next function
table;
end;
end;
end;
{Final State}
for each output parameter begin
collect the value of output parameter from symbol database;
end;
;rite test case and anticipated test outcome information to output
ile;

end {generation of anticipated test outcome};
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4.1.3 Module Responsibilities and Encapsulation

Table 17 summarizes the responsibilities and encapsulation of twelve modules that are

specific to the Apollo tool. Section O gives a detailed design description of the individual

modules.
Table 17 - Module Responsibilities and Encapsulation
Module Responsibilities Encapsulation
UMN e load Delta Values document command line options
e load SDD document overall data and control flow
e user interface
e subdivide the task to access-
program level
UGA e manage generation of anticipated logic for identification of input
test outcome for a given access- and output parameters
program structure of an access-program in
e identify the list of input and output a design specxﬁc?.non docfument
parameters for a given access- test case generation algorithm
program strategy for execution of a given
test case
* generate all valid test values, for algorithm for checking non-
each input parameter determinism and  incomplete
o generate a set of test cases along specification
with anticipated test outcome
e check for non-determinism and
incomplete specification
UEX e execute condition strategy for execution of different

execute a set of actions

check for overflow, underflow,

divide-by-zero, etc.

types of conditions and a set of
actions.

algorithm for checking overflow,
underflow, divide-by-zero, etc.
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Table 17 - Module Responsibilities and Encapsulation (Continued)

Module | Responsibilities Encapsulation
UGC e generate valid test values for a list structure of various conditions
of input parameters using a given | o logic for classification of
condition conditions
e data and control flow that is
specific to each condition
UGR e generate valid test values for a|e logic for generation of test values
given input parameter using a given for a range expression.
range-expression
UGS ® generate test values for a given | e test value generation algorithm
input parameter using a given
Simple Condition
UGG ® generate test values using partition | ® partition and other general rules
and other general rules
UCA e library of utility functions e algorithms that are specific to
each utility function
UVH e hold and provide access to values e holder data structure
e associate a set of values with a
given symbol
UOR ¢ module initialization and clean-up | ® correct sequence of initialization
and termination of all modules.
UOF ¢ generate output file for a given | e format and contents of an output

access-program

file

In addition to these modules, the Apollo tool makes use of several generic libraries that
are developed or obtained by AECL for the development of CASE tools.
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4.2 Detailed Design
4.2.1 UMN (Mainline) Module
Responsibilities

The UMN module implements the mainline functionality for the Apollo tool. Its

important responsibilities are to
e read the input design specification document;

¢ analyze the user’s request and subdivide the task to the access-program level;

and

e invoke the MGT module to generate a set of test cases along with the

anticipated test outcome for an access-program that is under consideration.
Encapsulation
The UMN module encapsulates

e the command line options,
e the overall control flow of the Apollo tool,
o the logic to subdivide the task to the access-program level, and
e the correct sequence of loading the symbol database.
4.2.2 UGA (Generate Test Cases for Access-program) Module
Responsibilities
The UGA module implements the data and control flow that is associated with the

generation of test cases along with anticipated test outcome for a given access-program.

Its important responsibilities are to

* manage the generation of anticipated test outcome for a given access-

program;

¢ identify the list of input parameters for a given access-program;
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* identify the list of output parameters for a given access-program; and
® generate all the valid test values, for each input parameter;
e generate a set of test cases;
e generate the anticipated test result for each test case;
e check for non-determinism; and
¢ check for incomplete specification.
Encapsulation

The UGA module knows about the formal contents of various sections and tables in an

access-program in a given design specification document. This module encapsulates
¢ the structure of an access-program in a design specification document;

¢ the data and control flow that is specific to each part of a given access-

program;

e the logic for identification of input and output parameters, along with

the relevant symbol information;
e test case generation algorithm;
e strategy for execution of a given test case; and

e algorithm for checking non-determinism and incomplete specification.

4.2.3 UEX (Execution) Module
Responsibilities

The UEX module manages the execution of conditions and actions. Its important
responsibilities are to

® execute a given condition,
e execute a set of actions, and

® check for overflow, underflow, divide-by-zero, etc.
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Encapsulation
The UEX module encapsulates

 the strategy for execution of different types of conditions and actions, and

e the algorithm for checking overflow, underflow, divide-by-zero, etc.

4.2.4 UGC (Generate Test Values for a Condition) Module
Responsibilities
The UGC module implements the data and control flow that is associated with the test

value generation for a given condition. Its important responsibilities are to

e identify the type of the condition (Compound Condition (CC); Range
Condition (RC), Simple Condition (SC), etc.), and

¢ generate valid test values for each input parameter using a given condition

(by applying the rules that are associated with the type of the given condition).
Encapsulation

The UGC module knows about the format of various conditions that are expected in input

design specification document. This module encapsulates
e the structure of various conditions in input design specification document,
e the data and control flow that is specific to each type of a given condition, and
e the logic for classification of conditions.

4.2.5 UGR (Generate Test Values for a Range Condition) Module

Responsibilities

The UGR module implements the data and control flow that is associated with the test

value generation for a given Range Condition. Its important responsibilities are to
® identify a valid Range Condition, and

©® generate valid test values for a given input parameter by analyzing the given

Range Condition.
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Encapsulation
The UGR module encapsulates

e the logic for identification of a valid Range Condition,
e the data and control flow that is specific to a given Range Condition, and
e the algorithm(s) for generation of valid test values using a given Range
Condition
4.2.6 UGS (Generate Test Values for a Simple Condition) Module
Responsibilities
The UGS module implements the data and control flow that is associated with the test

value generation for a given Simple Condition. Its important responsibility is to generate

valid test values for a given input parameter by analyzing the given Simple Condition.
Encapsulation
The UGS module encapsulates
e data and control flow that is specific to various Simple Conditions, and
e algorithms and rules that are specified in section 3.2.7.1 for generation of test
values using a given Simple Condition.
4.2.7 UGG (Generate Test Values using General Rules) Module
Responsibilities

The UGG module’s important responsibility is to generate valid test values for a given

input parameter by applying partition and zero-inclusion rules.
Encapsulation
The UGS module encapsulates

e algorithm for partition rule(s), and

e algorithm for zero-inclusion rule.
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4.2.8 UCA (Common Access-Programs) Module
Responsibilities

The UCA module consists of general utility functions which are called by a number of
modules that are specific to the Apollo tool.

Encapsulation
The UCA module encapsulates

® the logic for getting and checking the lower and upper range of a given symbol,

and

e the logic for getting and checking the lower and upper bounds of a given

expression.

4.2.9 UVH (Value Holder) Module
Responsibilities

The UVH module holds and provides access to test values associated with an input

parameter. Its important responsibilities are to

e hold and provide access to values, and
® associate a set of values with a given symbol.

Encapsulation

The type of data structure of the holder is internal to the module.

4.2.10 UOR (Initialization and Clean-up) Module
Responsibilities

The UOR module implements a part of the mainline functionality for the UT tool. Its
important responsibilities are to initialize and terminate all modules that are specific to

the Apollo tool.

56



Encapsulation

The UOR module encapsulates the correct sequence of initialization and termination of

all the modules that are specific to the Apollo tool.

4.2.11 UOF (Ouput-File) Module
Responsibilities

The UOF module manages the generation of an output-file. The format of a typical
output file(s) is given in Appendix-B. Its important responsibilities are to

* generate a unique name for each output-file for a every access-program, and

o present the summary of a set of test cases along with the anticipated test

outcome along with all pertinent information, using a specific output format.

Encapsulation
The UOF module encapsulates
e the location of the output-files,
e the logic for generation of unique names for each output-file,

e the format for presentation of the summary of a set of test cases along

with the anticipated test outcome.
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S. CASE STUDY AND DISCUSSION
The following two sample “Design Specification” documents are prepared, based on an

industrial example, in order to test the feasibility of the approach proposed in this thesis.

* A sample clean design specification document (i.e., without any errors) was

prepared describing the design details of a hypothetical industrial example.

® A sample draft design specification document was prepared by introducing
certain typical/subtle errors (into clean document), in order to reflect a

practical situation.

This chapter gives a brief description of both the sample documents which are used as

separate “input document” for Apollo and discusses the results from this case study.

5.1 Sample Design Specification (clean)

The sample design specification (clean) using tabular notation (along with a brief
explanation using natural language) is presented in Appendix_A. This design
specification describes a small part of the design details of one of the modules (which can
be considered as a representative sample) associated with a safety system of a nuclear
reactor. It should be noted that a hypothetical POWER module was created to illustrate
the capabilities of the tool. The design details of POWER module are described in the

following section.

5.1.1 POWER Module

Some of the important responsibilities of the POWER module are:

¢ check the set-point value associated with the reactor power, and give
appropriate feedback (OK or warning message) to the operator;
* determine the status of the reactor by comparing the measured power with the

set-point and give appropriate feedback to the operator;
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¢ determine the “indicator-status of the reactor on the control panel” by
comparing the measured power with the set-point and tumn-on the appropriate
indicator-light (green, blue, red, flashing-red etc.); and

¢ determine the “alarm-status of the reactor on the control panel” by comparing
the measured power with the set-point and turn-on the wamning alarm as and

when required.

The following four access-programs fulfill the specific responsibilities of the POWER
module:

e PWRS$Check_Set_Point

e PWRSPower_Status

e PWRSDisplay_Status

e PWRSAlarm_Status
Only these four access-programs from POWER module have been discussed in this
thesis, since the primary purpose is only to illustrate the capabilities of the Apollo tool.

5.1.2 Access-Program: PWRS$Check_Set_Point

The responsibilities (i.e., high-level functional requirements), design description and

tabular specification of this access-program are presented in this section.

Responsibilities
This access-program verifies that the user-supplied set-point (of reactor power) is with in
the valid range and gives an appropriate feed-back to the operator. If the value of set-

point is outside valid-range, a default value is used.

Design Description (Natural-Language):
High-Level Design:
e check the value of the power-set-point using the valid range of the
expected-power-output from the reactor and the dead-band associated

with the power-set-point;
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e if the value of the power-set-point is valid (i.e., with in the valid range

of power-set-point), then do not change the value; and

e if the value of the power-set-point is invalid (i.e., outside of the valid

range of power-set-point), then give an appropriate waming message
to the operator, and assign a valid value to the power-set-point.
Detailed Design:
The value of the output variable, V_Power_Set_point, is decided based on the
following logic:

e if the value is less than the Ilower-valid-range (i.e.
valid_lower_range_of_power plus half-of-the dead-band) then assign
Ceiling(valid_lower_range_of_power plus half-of-the dead-band) to the
output variable, V_Power_Set_point;

e if the wvalue is greater than the upper-valid-range (i.e.
valid_upper_range_of_power minus half-of-the dead-band) then assign
Floor(valid_lower_range_of_power minus half-of-the dead-band) to the
output variable, V_Power_Set_point;

o if the value is with in the valid range then do not change the value of

the output variable, V_Power_Set_point.

The state of the output variable, V_Check_Result, is decided based on the
following logic:
e if the value of the power-set-point is with in the valid range then give a
valid-set-point message.
e if the value of the power-set-point is out-of- range (i.e., invalid) then

give a warning message.
Tabular Specification:

The design details of this access-program are specified in the following vertical condition

table [Please refer to Appendix-A, for more design details].
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Table Check_Set Point
Pt ———

V_Power_Set_Point
<
(C_P_Lower_Range +
0s*
C_Power_Dead_Band))

(V_Power_Set_Point >=
(C_P_Lower_Range + (0.5
* C_Power_Dead_Band)))

AND
(V_Power_Set_Point <=
(C_Danger_Power - (0.5 *
C_Power_Dead_Band)))

V_Power_Set_Point >
(C_Danger_Power - (0.5 *
C_Power_Dead_Band))

V_Power_Set_Point

CEILING(C_P_Lower R
ange + (0.5 *
C_Power_Dead_Band))

V_Power_Set_Point

FLOOR(C_Danger_Power
-(05*
C_Power_Dead_Band))

V_Check_Result

¢_P_SP_Waming

e_Valid_P_SP

e¢_P_SP_Warmning

5.1.3 Access-Program: PWRSPower_Status

The responsibilities (i.e., high-level functional requirements), design description and

tabular specification of this access-program are presented in this section.

Responsibilities

This access-program determines the status of the reactor by comparing the measured

power (from the reactor) with the set-point (for the power).

Design Description (Natural-Language):

High-Level Design:

¢ determine the status of the reactor by comparing the measured power

with the set-point

Detailed Design:

The status of the output variable, V_Power_Status, is decided based on the

following logic:

e if the value is less than the desired range (i.e. power-set-point minus

half-of-the dead-band)

e_Sub_Normal;
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¢ if the value is with in the desired range and outside the danger zone
then assign e_Normal;

e if the value is more than the desired range (i.e. power-set-point plus
half-of-the dead-band) and outside danger zone then assign
e¢_Above_Normal;

e if the value inside danger zone but outside critical zone then assign
e_Init_P_SetBack (i.e., initialize the process of decreasing the Power);

e if the value inside critical zone then assign e_Emergency_Shut_Down

(i.e., initialize the process of emergency shut-down of the reactor).

Tabular Specification:
The design details of this access-program are specified in following vertical condition

table [Please refer to Appendix-A, for more design details].

Table Power Status
———raarauteii—

Resulr

Condition V_Power_Status

V_Reactor_Power < (V_Power_Set_Point - (0.5 * e_Sub_Normal
C_Power_Dead_Band ) )
AND
(V_Reactor_Power < C_Danger_Power )

(V_Reactor_Power >= (V_Power_Set_Point - (0.5 * e_Normal
C_Power_Dead_Band ) ))
AND
(V_Reactor_Power <= (V_Power_Set_Point + (0.5 *
C_Power_Dead_Band )))
AND
(V_Reactor_Power < C_Danger_Power )

(V_Reactor_Power > (V_Power_Set_Point + (0.5 * e_Above_Normal
C_Power_Dead_Band ) ))
AND
(V_Reactor_Power < C_Danger_Power )

(V_Reactor_Power >= C_Danger_Power ) e_Init_P_SetBack
AND
(V_Reactor_Power < C_Critical_Power )

(V_Reactor_Power >= C_Critical_Power ) e_Emergency_Shut_Do
wn
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5.1.4 Access-Program: PWRS$Display_Status

The responsibilities (i.e., high-level functional requirements), design description and

tabular specification of this access-program are presented in this section.

Responsibilities
This access-program determines the visual display status of the reactor (i.e.,
blue/green/amber etc.) on the control panel by comparing the measured power (from the

reactor) with the set-point (for the power).

Design Description (Natural-Language):
High-Level Design:
e determine the visual display status of the reactor (i.e., blue/green/amber
etc.) on the control panel by comparing the measured power with the

set-point

Detailed Design:
The status of the output variable, V_Display_Status, is decided based on the
following logic:
e if the value is less than the desired range (i.e. power-set-point minus
half-of-the dead-band) and outside the danger zone then assign e_Blue;
e if the value is with in the desired range and outside the danger zone
then assign e_Green;
e if the value is more than the desired range (i.e. power-set-point plus
half-of-the dead-band) and outside danger zone then assign e_Amber;
e if the value inside danger zone but outside critical zone then assign
e_Red;
e if the value inside critical zone then assign e_Flashing_Red.
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Tabular Specification:
The design details of this access-program are specified in following vertical condition
table [Please refer to Appendix-A, for more design details].

Table disglav Status
Result

Condition V_Display Status

V_Reactor_Power < (V_Power_Set_Point - (0.5 * e_Blue
C_Power_Dead_Band ) )
AND
(V_Reactor Power < (1.05 * C_Danger_Power) )

(V_Reactor_Power >= (V_Power_Set_Point - (0.5 * e_Green
C_Power_Dead_Band ) ))
AND
(V_Reactor_Power <= (V_Power_Set_Point + (0.5 *
C_Power_Dead_Band )))
AND :
{V_Reactor_Power < (1.05 * C_Danger_Power) )

(V_Reactor_Power > (V_Power_Set_Point + (0.5 * e_Amber
C_Power_Dead_Band ) ))
AND
(V_Reactor_Power < (1.05 * C_Danger_Power) )

(V_Reactor_Power >= (1.05 * C_Danger_Power )) ¢_Red
AND
(V_Reactor_Power < (1.05 * C_Critical_Power) )

(V_Reactor_Power >= (1.05 * CiCn'tica]iPowcr) ) e Flashin&Rcd

5.1.5 Access-Program: PWRS$Alarm_Status

The responsibilities (i.e., high-level functional requirements), design description and

tabular specification of this access-program are presented in this section.

Responsibilities

This access-program determines the audible alarm status of the reactor (i.e.,
off/intermittent/continuous ) on the control panel by comparing the measured power
(from the reactor) with the set-point (for the power).

[NOTE: A slight time-delay between visual display and audible alarm is preferred].
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Design Description (Natural-Language):
High-Level Specification:
o determine the audible alarm status of the reactor (..,
off/intermittent/continuous) on the control panel by comparing the

measured power with the set-point

Detailed Specification:
The status of the output variable, V_Alarm_Status, is decided based on the
following logic:
e if the value is outside the danger zone then assign e_Off (i.e. do not
turn-on the alarm);
e if the value inside danger zone but outside critical zone then assign
e_Intermittent (i.e., turn-on intermittent audible alarm);
¢ if the value inside critical zone then assign e_Continuous (i.e., turn-on
continuous audible alarm);.
[NOTE: A slight time-delay between visual display and audible alarm is
introduced by using a factor of 1.1, while deciding the status of the alarm]

Tabular Specification:
The design details of this access-program are specified in following vertical condition

table [Please refer to Appendix-A, for more design details]).

Table Alarm Status
EEE———————

Result
Condition V_Alarm_Status
(V_Reactor_Power < (1.1 * C_Danger_Power) ) e_Off
(V_Reactor_Power >= (1.1 * C_Danger_Power )) e_Intermittent
AND
(V_Reactor_Power < (1.1 * C_Critical_Power) )
Qi Rcactogri Power >= (1.1 * C_Critical_Power) ) eiContinuous
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5.2_Results from Apollo

The results, four output-files (one for each access program), that are generated by the
Apollo tool are presented in Appendix-B.

5.2.1 Access-Program: PWRSCheck_Set_Point

The set of test values and the set of test cases that are generated by Apollo, for access-
program PWRS$Check_Set_Point are presented in Table 18 (This section is taken directly
from the output file: “B.1 pwr_ch.etr (version 1.0)”, in Appendix-B. For complete
results, see Appendix-B).

Table 18 - Results from Apollo
Section 3: Test Values from Boundary Value Analysis
V_Power_Set_Point : 10, 11, 12, 14, 15, 16, 65, 114, 115, 116, 117,
119, 120

Section 5: Test Cases along with Expected Test Results

Test Cases¢ Input Expected Output Expected Output
V_Power_sSet_Point V_Check_Result V_Power_Set_Point

1 10 e_P_SP_Warning 15

2 11 e_P_SP_wWarning 15

3 12 e_P_SP_Warning 15

4 14 e_P_SP_Warning 15

5 15 e_valid_p_SP 1s

6 16 e_valid_P_SP 16

7 65 e_Valid_P_SP 65

8 114 e_valid_p_Sp 114

9 115 e_valid_PpP_SP 115

io0 116 e_P_SP_Warning 115

11 117 e_P_SP_Warning 115

12 119 e_P_SP_Warning 115

i3 120 e_P_SP_Warning 115




Verification:
A sample verification activity is presented, only for this access-program.

[To avoid the repetition, verification is not presented for the remaining three access-

programs].

Part-1: Test Val_uos:
The following set of test values are expected from each condition:
Step-A:

Condition: V_Power_Set_Point < (C_P_Lower_Range + 0.5 *
C_Power_Dead_Band)

Test values (from rules in section 3.2.7.1.3): 10, 11, and 14
Step-B:

Condition: V_Power_Set_Point >= (C_P_Lower_Range + 0.5 *
C_Power_Dead_Band)

Test values (from rules in section 3.2.7.1.2): 185, 16, 119, and 120
Step-C:

Condition: V_Power_Set_Point <= (C_Danger_Power - (0.5 *
C_Power_Dead_Band)

Test values (from rules in section 3.2.7.1.4): 10, 11,114and 115
Step-D:

Condition: V_Power_Set_Point > (C_Danger_Power - (0.5 *
C_Power_Dead_Band)

Test values (from rules in section 3.2.7.1.1): 116, 119, and 120
Step-E:

Set of Test Values: 10, 11, 14, 15, 16, 114, 115, 116, 119, and 120
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Step-F: Partition range test values (from rules in section 3.2.7.4): 12, 65, and 117
Step-G:
Final test value set (thirteen test values):
10, 11, 12, 14,
15, 16, 65,114, 115,
116,117, 119, and 120
Part-2: Test Cases

A set of thirteen test cases are expected since this access-program has only one

input .
Part-3: Anticipated Qutcome:

1. For first four test cases 2 warning message and Set-Point of 15 are expected,

since the input is below the valid range,

2. For next five test cases a valid message and Set-Point same as the input value

are expected, since the input is within the valid range, and

3. For last four test cases a warning message and Set-Point of 115 are expected,

since the input is above the valid range.

Actual Results from Apollo:

Part-1: Test Values: The thirteen test values that are presented in section 3, in Table 18

match the expected test values.

Part-2: Test Cases: The thirteen test cases that are presented in section 5, in Table 18

match the set of expected test cases.

Part-3: Anticipated Outcome: The thirteen test cases along with the anticipated test

outcome that are presented in section 5, in Table 18 match the set of anticipated outcome.
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General Observations:

The following general observations can be made from a through analysis of the results
that are presented in the Table 18:

the Apollo tool identifies and reports the relevant input and output parameters
(i.e. one input parameter: V_Power_Set_Point; and two output parameters:

V_Power_Set_Point, and V_Check_Result);

the Apollo tool generates a total of thirteen test values for the input parameter,
V_Power_Set_Point, based on the boundary-value analysis and other specific

rules;
the Apollo tool generates a set of thirteen test cases; and

for each test case, the Apollo tool calculates and reports appropriate
anticipated test outcome (the status of both output parameters:

V_Power_Set_Point, and V_Check_Result) as expected.

5.2.2 Access-Program: PWRS$Power_Status

The set of test values and a small sample of test cases that are generated by Apollo are

presented in Table 19 [This section is taken directly from the output file: “B.2 pwr_po.etr

(version 1.0)”, in Appendix-B. For complete results, see Appendix-B.].
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Table 19 - Results from Apollo

Section 3: Test Values from Boundary Value Analysis
V_Reactor_Power : 0, 1, 12, 13, 24, 25, 26, 52, 65, 77, 104, 105,
106, 1i6, 117, 129, 130, 131, 132, 134, 125,
136, 145, 159, 160, 161, 192, 205, 249, 250

V_Power_Set_Point : 10, 11, 12, 14, 15, 16, 65, 67, 119, 120

Section 5: Test Cases aloang with Expected Test Results

Test Case# Input Input Expected Output
V_Reactor_Power V_Power_Set_Point V_Power_Status

1 o T w0 e_Normal

;é 5; ié ;;Nomal

; '-l ;; ;; ;:Sub_Normal

'-/; ;; ;'; ;;Nomal

é; ; ; J..:.LB ;LSub_Nomal

;.;6 1..59 ]-.; ;:Above_nomal

3..;7 ;:;o ;; ;:Init_P_SetBack

i; 9 ;..';2 J-.J-.9 ;;Init_P_SetBack

;80 J-..‘;A ;.50 ;.;Init_P_SetBack

;; 4 J-.;S J..; ;:Init_P__SetBack

2—’; S J..;O i; ;;E:mergency_s}xut_nown

267 192 65 e_tmergency_shut_pown

5; 9 ;; 9 ;.J-.Q ;_mergency_Shut_Dovn

; (.)0 ;;o 1-.50 ;;mergency_shut_nown

The following general observations can be made from a through analysis of the results
that are presented in Table 19 (and the output file: “B.2 pwr_po.etr (version 1.0)”, in
Appendix-B):

e the Apollo tool identifies and reports the relevant input and out parameters (i.e.
two input parameters: V_Reactor_Power, and V_Power_Set_Point; and one

output parameter: V_Power_Status);

e the Apollo tool generates a total of ten test values for the input parameter,
V_Power_Set_Point; and thirty test values for the input parameter,
V_Reactor_Power based on the boundary-value analysis and other specific rules;
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e the Apollo tool generates a set of three hundred test cases, using all possible

combinations of the test values of the input parameters; and

o for each test case, the Apollo tool determines and reports an appropriate

anticipated test outcome (the status of V_Power_Status) as expected.

5.2.3 Access-Program: PWRS$Display_Status

The set of test values and a small sample of test cases that are generated by Apollo are
presented in Table 20 [This section is taken directly from the output file: “B.3 pwr_di.etr
(version 1.0)”, in Appendix-B. For complete results see Appendix-B.].

Table 20 - Results from Apollo

Section 3: Test Values from Boundary Value Analysis
V_Reactor_Power : 0, 1, 12, 13, 24, 25, 26, 52, 65, 68, 80, 104,
105, 106, 119, 120, 134, 135, 136, 137, 138,
152, 167, 168, 169, 193, 209, 249, 250

V_Power_Set_Point : 10, 11, 12, 14, 15, 16, 65, 67, 119, 120

Section 5: Test Cases along with Expected Test Results

Test Case® Input Input Expected Output
V_Reactor_Power V_Power_Set_Point V_Display_Status

1 o 7 o e_Green

20 1 120 e_Blue

;£ ;; 56 ;;Green

gi ;; lé ;.Amber

éé ;; ;i ;:Amber

;é ;; é; ;:Green

i%o iad ;;O ;:Blue

i;o ias ;;O ;;Green

161 134 10 e_Amber

180 135 120 e_Green

101 137 10 e_Red

210 138 120 e_Red

230 167 120 e_Red

231 168 10 e_Flashing_Red

;;0 ;;9 iio ;;Plashing_xed

;;0 ;69 i;O ;;Flashing_Red

;;0 ;;0 iio ;;Flashing_ned
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The following general observations can be made from a through analysis of the results

that are presented in Table 20 (and the output file: “B.3 pwr_di.etr (version 1.0)”, in

Appendix-B):

the Apollo tool identifies and reports the relevant input and out parameters
(i.e. two input parameters: V_Reactor_Power, and V_Power_Set_Point; and

one output parameter: V_Display_Status);

the Apollo tool generates a total of ten test values for the input parameter:
V_Power_Set_Point; and twenty nine test values for the input parameter:
V_Reactor_Power based on the boundary-value analysis and other specific

rules;

the Apollo tool generates a set of two hundred and ninety test cases, using all

possible combinations of the test values of the input parameters; and

for each test case, the Apollo tool determines and reports an appropriate
anticipated test outcome (the status of the output parameter,

V_Display_Status) as expected.

5.2.4 Access-Program: PWRS$Alarm_Status

The set of test values and set of test cases that are generated by Apollo are presented in
Table 21 [This section is taken directly from the output file: “B.4 pwr_al.etr (version

1.0)", in Appendix-B. For complete results see Appendix-B.].
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Table 21 - Results from Apollo

Section 3: Test Values from Boundary Value Analysis
V_Reactor_Power = 0, 1, 71, 142, 143, 144, 159, 175, 176, 177, 213,
249, 250

Section 5: Test Cases along with Expected Test Results

Test Caset Input Expected Output
V_Reactor_Power V_Alarm_Status

1 0 e_Off

2 1 e_Off

3 71 e_Off

4 142 e_Off

5 143 e_Intermittent

6 144 e_Intermittent

7 159 e_Intermittent

8 175 e_Intermittent

S 176 e_Continuous

10 177 e_Continuous

11 213 e_Continuous

12 249 e_Continuous

i3 250 e_Continuous

The following general observations can be made from a through analysis of the results
that are presented in Table 21 (and the output file: “B.4 pwr_al.etr (version 1.0)”, in
Appendix-B):
e the Apollo tool identifies and reports the relevant input and out parameters
(i.e. one input parameter: V_Reactor_Power; and one output parameter:
V_Alarm_Status);
e the Apollo tool generates a total of thirteen test values for the input parameter:
V_Reactor_Power based on the boundary-value analysis and other specific

rules;
e the Apollo tool generates a set of thirteen test cases; and

o for each test case, the Apollo tool determines and reports an appropriate
anticipated test outcome (the status of the output parameter, V_Alarm_Status)

as expected.
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5.2.5 General Discussion
From the results presented in these four output files it can be observed that:

e The Apollo tool can evaluate both simple and complex conditions and also

complex mathematical expressions;

* The Apollo tool can generate appropriate test values for each input parameter
based on boundary-value analysis (using the conditions) and other specific

rules;

e The Apollo tool can generate a set of test cases using all the possible

combinations of the test values of the input parameters; and

o For each test case, the Apollo tool can determine appropriate expected

value(s) of the output parameter(s), by executing the design specification.

3.3 Sample Design Specification (draft)

In general, any draft design specification is expected to contain some implicit errors
(typographic, logical, human errors). As a result, in order to reflect a practical situation, a
sample draft design specification is prepared by introducing certain typical/subtle errors
(into the clean design specification) and presented in Appendix-C. The results that are
generated by the Apollo tool, using this draft design specification document, are
presented in Appendix-D, and are briefly discussed in the following sections.

5.4_Results from Apollo

S.4.1 Access-Program: PWRSCheck_Set_Point (draft)

The preliminary design details of this access-program are specified in following vertical

condition table [Please refer to Appendix-C, for more design details].
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Draft Design Specification:

Table Check_Set Point

V_Power_Set_Point <
(C_P_Lower_Range +
05+
C_Power_Dead_Band))

(V_Power_Set_Point >=
(C_P_Lower_Range + (0.5
* C_Power_Dead_Band)))

AND

(V_Power_Set_Point <=
(C_Danger_Power - (0.5 *

C_Power_Dead_Band)))

V_Power_Set_Point >=
(C_Danger_Power - (0.5 *
C_Power_Dead_Band))

V_Power_Set_Point

CEILING(C_P_Lower_R
ange + (0.5 *
C_Power_Dead_Band))

V_Power_Set_Point

FLOOR(C_Danger_Power
-(05*
C_Power_Dead_Band))

V_Check_Result

e_P_SP_Waming

e_Valid_P_SP

¢_P_SP_Warning

Description of Error introduced:

The error that was introduced into the design specification (clean), and its consequences

are as follows:

Error:

A subtle error was introduced by modifying the condition in the last column as

given below:

“V_Power_Set_Point > (C_Danger_Power - (0.5 * C_Power_Dead_Band))”

is changed to

“V_Power_Set_Point >= (C_Danger_Power - (0.5 * C_Power_Dead_Band))”

Consequences:

This design specification is non-deterministic.

In other words, the following two conditions will be satisfied, when input

parameter, V_Power_Set_Point has a value of

C_Power_Dead_Band))™:

*“(C_Danger_Power - (0.5 *




Conditon-1:
“V_Power_Set_Point >= (C_Danger_Power - (0.5 *
C_Power_Dead_Band))”; and
Condition-2:
(V_Power_Set_Point >= (C_P_Lower_Range + (0.5 *
C_Power_Dead_Band))) AND
(V_Power_Set_Point <=
(C_Danger_Power - (0.5 * C_Power_Dead_Band)))
Results:
The set of test values and set of test cases that are generated by Apollo, for access-
program PWRS$Check_Set_Point, are presented in Table 22 [This section is taken
directly from the output file: “D.1 pwr_ch.etr (version 0.0)”, in Appendix-D. For

complete results see Appendix-D.].

Table 22 - Results from Apollo
Section 3: Test Values from Boundary Value Analysis
V_Power_Set_Point : 10, 11, 12, 14, 15, 16, 65, 114, 115, 116, 117,
119, 120

Section 5: Test Cases along with Expected Test Results

WARNING: Tool encountered non-deterministic test case(s);
------- please review design document.

Test Case¢ Input Expected Output Expected Output
V_Power_Set_Point V_Check_Result V_Power_Set_Point

1 10 e_P_SP_Warning 15

2 11 e_P_SP_Warning 15

3 12 e_P_SP_Warning 15

4 14 e_P_SP_Warning 15

S 15 e_Valid_P_SP 15

6 16 e_Valid_P_SP 16

7 65 e_valid_P_sSpP 65

8 114 e_Valid_P_SP 114

9 115 NonDeterministic

10 116 e_P_SP_Warning 115

13 117 e_P_SP_Warning 115

12 119 e_P_SP_Warning 115

13 120 e_P_SP_Warning 115

WARNING: Tool encountered non-deterministic test case(s):;
------- please review design document.
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Verification:
Expected Output:

The non-deterministic nature of the draft design specification is expected
to be detected by a test case when input parameter, V_Power_Set_Point
has a value of “(C_Danger_Power - (0.5 * C_Power_Dead_Band))”

(i.e., when V_Power_Set_Point is equal to 115).
Actual Output from Apollo:

Test case # 9 (i.e., when V_Power_Set_Point is equal to 115) reports non-

deterministic nature of the draft design specification, as expected.

General Observations:

The following general observations can be made from the results that are presented in

Table 22 :

e the Apollo tool generates a total of thirteen test values for the input parameter;

and a set of thirteen test cases; and

e the Apollo tool detects the specification error while executing one of the test

cases and reports an appropriate warning message.

5.4.2 Access-Program: PWR$Power_Status (draft)

The preliminary design details of this access-program are specified in following vertical

condition table [Please refer to Appendix-C, for more design details].
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Draft Design Specification:

Table Power Status
o ae el

Result

Condition V_Power_Status

V_Reactor_Power < (V_Power_Set_Point - (0.5 * &_Sub_Normal
C_Power_Dead_Band ) )
AND
(V_Reactor_Power < C_Danger_Power )

(V_Reactor_Power >= (V_Power_Set_Point - (0.5 * e_Normal
C_Power_Dead_Band ) ))
AND

(V_Reactor_Power <= (V_Power_Set_Point + (0.5 *
C_Power_Dead_Band )))
AND
(V_Reactor_Power < C_Danger_Power )

(V_Reactor_Power > (V_Power_Set_Point + (0.5 * e_Above_Normal
C_Power_Dead_Band ) ))
AND
(V_Reactor_Power < C_Danger Power )

(V_Reactor_Power >= C_Danger_Power ) e_Init_ P SetBack
AND
(V_Reactor_Power < C_Critical_Power )

(V_Reactor_Power > C_Critical_Power ) e_Emergency_Shut_Do
wn

Description of Error introduced:
The error that was introduced into the design specification (clean), and its consequences

are as follows:
Error:
A subtle error was introduced by modifying the condition in the last row as given below:
(V_Reactor_Power >= C_Critical_Power )
is changed to
(V_Reactor_Power > C_Critical_Power )
Consequences:
This design specification is an incomplete specification.

In other words, neither of the following two conditions will be satisfied, when one

of the input parameters, V_Reactor_Power, has a value of “C_Critical_Power”:
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Conditon-1:

(V_Reactor_Power >= C_Danger_Power ) AND (V_Reactor_Power <
C_Critical_Power)

Condition-2:
(V_Reactor_Power > C_Critical_Power )
Results:

The set of test values and a small sample of test cases that are generated by Apollo, for
access-program PWRSPower_Status, are presented in Table 23 [This section is taken
directly from the output file: “D.2 pwr_po.etr (version 0.0)”, in Appendix-D. For
complete results see Appendix-D.].

Table 23 - Results from Apollo
Section 3: Test Values from Boundary Value Analysis
V_Reactor_Power - 0, 1, 12, 13, 24, 25, 26, 52, €5, 77, 104, 105,

106, 116, 117, 129, 130, 131, 132, 134, 135,
136, 145, 159, 160, 161, 192, 205, 249, 250

V_Power_Set_Point : 10, 11, 12, 14, 15, 16, 65, 67, 115, 120

Section 5: Test Cases along with Expected Test Results

WARNING: Tool encountered incomplete design specification:
------- please review design document.

Test Case$¢ Input Input Expected Output
V_Reactor_Power V_Power_Set_Point V_Power_Status

1 0 10 e_Normal

241 160 10 Incomplete Spec
242 160 11 Incomplete Spec
243 160 12 Incomplete Spec
244 160 14 Incomplete Spec
245 160 15 Incomplete Spec
246 160 16 Incomplete Spec
247 160 65 Incomplete Spec
248 160 67 Incomplete Spec
249 160 119 Incomplete Spec
250 160 120 Incomplete Spec
300 250 120 e_Emergency_Shut_Down

WARNING: Tool encountered incomplete design specification;

------- please review desiaon document.
- —
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Verification:

Anticipated Output:

The “incomplete” draft design specification is expected to be detected by a
test case when one of the input parameters, V_Reactor_Power, has a value
of “C_Critical_Power”.

(i.e., when V_Reactor_Power is equal to 160).
Actual Output from Apollo:

A set of test cases (from #241 to #250) (i.e., when V_Reactor_Power is

equal to 160) report “incomplete design specification” error as expected.

General Observations:

The following general observations can be made from the results that are presented in
Table 23:

* the Apollo tool generates a total of ten test values for the input parameter,
V_Power_Set_Point; and thirty test values for the input parameter,
V_Reactor_Power based on the boundary-value analysis and other specific

rules;

* the Apollo tool generates a set of three hundred test cases, using all possible

combinations of the test values of the input parameters; and

* the Apollo tool detects the specification error while executing ten test cases

and reports an appropriate warning message.

5.4.3 Access-Program: PWRSDisplay_Status (draft)

The preliminary design details of this access-program are specified in following vertical
condition table [Please refer to Appendix-C, for more design details].
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Draft Design Specification:
Table Disglav Status

Result
Condition V_Display_Status
V_Reactor_Power < (V_Power_Set_Point + (0.5 * e_Blue
C_Power_Dead_Band ) )
AND
(V_Reactor_Power <=(1.05 * C_Danger_Power) )
(V_Reactor_Power >= (V_Power_Set_Point - (0.5 * e_Green
C_Power_Dead_Band ) ))
AND
(V_Reactor_Power <= (V_Power_Set_Point + (0.5 *
C_Power_Dead_Band )))
AND
(V_Reactor_Power < (1.05 * C_Danger_Power) )
(V_Reactor_Power > (V_Power_Set_Point + (0.5 * e_Amber
C_Power_Dead_Band ) ))
AND
(V_Reactor_Power < (1.05 * C_Danger_Power) )
_Reactor_Power >= (1.05 * C_Danger_Power )) ¢ _Red
AND
(V_Reactor_Power < (1.05 * C_Critical_Power) )
(4% iR;c:ac:gr= Power >= (1.05 * C_Ciritical J_rPower) ) e_FlashinE Red ‘

Description of Error introduced:

The typographical error that was introduced into the design specification (clean), and its

consequences are as follows:

Error:

A subtle error was introduced by modifying the condition in the first row as given

below:

V_Reactor_Power < (V_Power_Set_Point - (0.5 * C_Power_Dead_Band ) )

AND (V_Reactor_Power <=(1.05 * C_Danger_Power) )

is changed to

V_Reactor_Power < (V_Power_Set_Point + (0.5 * C_Power_Dead_Band ) )

AND (V_Reactor_Power <= (1.05 * C_Danger_Power) )

Consequences:

This design specification is non-deterministic specification.
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Results:

The set of test values and a small sample of test cases that are generated by Apollo, for
access-program PWRSDisplay_Status, are presented in Table 24 [This section is taken
directly from the output file: “D.3 pwr_di.etr (version 0.0)”, in Appendix-D. For

complete results see Appendix-D.].

Table 24 - Results from Apeollo

Section 3: Test Values from Boundary Value Analysis
V_Reactor_Power : 0,1, 12, 13, 24, 25, 26, 65, 68, 80, 104, 105,
106, 120, 134, 135, 136, 137, 138, 152, 167,
168, 169, 193, 209, 249, 250

V_Power_Set_Point : 10, 11, 12, 14, 15, 16, 64, 65, 67, 119, 120

Section 5: Test Cases along with Expected Test Results

WARNING: Tool encountered non-deterministic test case(s):
------- please review design document.

Test Case#¢ Input Input Expected Output
V_Reactor_Power V_Power_Set_Point V_Display_Status

132 105 120 NonDeterministic
;;3 ;66 550 ;;nneterministic
;;4 iio ;;0 ;;noeterministic
165 13¢ 120 NonDeterministic
;;7 5;0 ;50 ;;Flashing_Red

WARNING: Tool encountered non-deterministic test case(s);
------- please review design document.
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Verification:
Anticipated Output:

The non-deterministic nature of draft design specification is expected to be
detected by a test case when one of the input parameters,
V_Reactor_Power, has a value between (V_Power_Set_Point - (0.5 *
C_Power_Dead_Band ) ) and (V_Power_Set_Point + (0.5 *
C_Power_Dead_Band ) ).

(i.e., a set of test cases will detect this error. For example, when
V_Reactor_Power is greater than or equal to105 and less than 135 (when
V_Power_Set_Point is 120) will detect this error.

Actual Output from Apolio:

The following sub-set of test cases: #132, #143, #154, and #165 have the

following input values:
V_Power_Set_Point: 120
V_Reactor_Power: 105, 106, 120, and 134

All the above test cases report “non-deterministic specification™ error as

expected.

(In all, fifty-two test cases report “non-deterministic specification” error,

since a number of input combinations can detect this error].
General Observations:

The following general observations can be made from the results that are presented in

Table 24 (and the output file: “D.3 pwr_di.etr (version 0.0)”, in Appendix-D):

* the Apollo tool generates a total of eleven test values for the input parameter,
V_Power_Set_Point; and twenty-seven test values for the input parameter,
V_Reactor_Power based on the boundary-value analysis and other specific

rules;
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e the Apollo tool generates a set of two hundred and ninety seven test cases,

using all possible combinations of the test values of the input parameters; and

e the Apollo tool detects the specification error while executing fifty-two test

cases and reports an appropriate warning message.

5.4.4 Access-Program: PWR$Alarm_Status (draft)

The preliminary design details of this access-program are specified in following vertical
condition table [Please refer to Appendix-B, for more design details).

Draft Design Specification:
Table Alarm_Status
Resulr
Condition V_Alarm_Status
(V_Reactor_Power < (1.1 * C_Danger_Power) ) e_Off
(V_Reactor_Power >= (1.1 * C_Danger_Power )) e_Intermittent
AND
(V_Reactor_Power <= (1.1 * C_Critical_Power) )
(V_Reactor_Power > (1.11 * C_Critical_Power) ) e_Continuous

Description of Error introduced:

The typographical error that was introduced into the design specification, and its

consequences are as follows:
Error:

A subtle error was introduced by modifying the condition in the last row as given
below:

(V_Reactor_Power > (1.1 * C_Critical_Power) )
is changed to
(V_Reactor_Power > (1.11 * C_Critical_Power) )

Consequences:
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This design specification is an incomplete specification.
Results:

The set of test values and set of test cases that are generated by Apollo, for access-
. program PWRS Alarm_Status, are presented in Table 25 [This section is taken directly
from the output file: “D.4 pwr_aletr (version 0.0)", in Appendix-D. For complete

results see Appendix-D.].
Table 25 - Results from Apollo
Section 3: Test Values from Boundary Value Analysis
V_Reactor_Power < 0, 1, 71, 142, 143, 144, 159, 175, 176, 177, 178,
179, 213, 214, 248, 250

Section 5: Test Cases along with Expected Test Results

WARNING: Tool encountered incomplete design specification:
------- please review design document.

Test Case¢ Input Expected Output
V_Reactor_Power V_Alarm Status

1 0 e_of

2 1 e _Off

3 71 e_Off

4 142 e_Off

5 143 e_Intermittent

6 144 e_Intermittent

7 159 e_Intermittent

8 175 e_Intermittent

S 176 e_Intermittent

10 177 Incomplete Spec

11 178 e_Continuous

12 17¢ e_Continuous

i3 213 e_Continuous

14 214 e_Continuous

15 249 e_Continuous

16 250 e_Continuous

WARNING: Tool encountered incomplete design specification;
------- please review design document.




Verification:
Anticipated Output:

The “incomplete” draft design specification is expected to be detected by a
test case when the input parameter, V_Reactor_Power, has a value of
between “1.1 * C_Critical_Power” and “1.11 * C_Critical_Power”.

(i.e., when V_Reactor_Power is greater than 176 and less than or equal to
177.6).

Actual Output from Apollo:

Test case # 10 (i.e., when V_Reactor_Power is equal to 177) reports

“incomplete design specification” error as expected.
General Observations:

The following general observations can be made from the results that are presented in
Table 25 :

e the Apollo tool generates a total of sixteen test values for the input parameter;

and a set of sixteen test cases; and

e the Apollo tool detects the specification error while executing one of the test

cases and reports an appropriate warning message.

5.4.5 General Discussion
From the results presented in these four output files it can be observed that:

® The Apollo tool detects all the typical/subtle design specification errors that

were introduced and reports an appropriate/meaningful message;

* the user can easily locate the error and correct the design specification by
examining the “execution path” for a given failed test case in conjunction with

the error message generated by Apollo.

86



6. IMPORATNT ADVANTAGES AND LIMITATIONS
6.1 Important Advantages

The advantages and benefits of the partial automation of the “design-specification-
oriented unit testing™ are briefly discussed in this section. It should be noted that these
advantages are relevant for safety-critical applications, because for other applications,

tabular design specification is not being used in software industry.

6.1.1 ‘“Design-vs-Implementation” Consistency

It can be observed that any functional mismatch between the “implementation” and the
“design specification” will be detected in the form of failed test cases during unit testing
phase by the current approach. Thus, the current approach will be useful in
demonstrating that the “implementation” matches the “design specification” at the unit
level. However, one should not underestimate the importance and necessity of

integration testing and subsystem level testing.

6.1.2 Significant Reduction in Cost of Unit Testing

As of now, generation of test cases along with the anticipated test outcome during unit
testing phase is mostly manual, tedious and error-prone. Automation of this manual
process is expected to reduce the over-all cost of unit testing. Apollo illustrates that it is
feasible to automatically generate a set of test cases along with the anticipated test
outcome from design specification. The failed test cases, if any, will help to pin-point the

mismatch between the design specification and the implementation.
The manual generation of test cases account for about 50 percent of the total time spent

during unit testing. The use of Apollo like tool is expected to result in a saving of 30 to
40% of this time.
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6.1.3 L-Bye Algorithm: Design Specification Errors

In general, most tools attempt to identify design specification errors such as incomplete,
non-deterministic or ambiguous specification based on static analysis. In contrast, the
current approach attempts to verify the accuracy of design specification using a dynamic
testing strategy. The following typical inconsistencies, errors, and anomalies can be

detected using the L-Bye algorithm used in the current approach:
e incomplete specification;
* non-deterministic specification;
e potential “divide-by-zero” error conditions during execution;
¢ potential non-executable statements in design specification; or

® potential unreachable and dead regions in design specification.

6.1.4 L-Bye Algorithm: Potential Problems Associated with Target
Environment

For safety-critical software, dynamic test results are only valid in the target environment.
However, testing on target environment is quite slow and time-consuming. In addition,
target environment facilities (for testing purposes) are scarce. As a result, test-case input-
files and test-drivers are prepared and debugged in a software development environment
during the initial stage, whereas the target environment is used only during the final
stage. The current approach can complement such testing efforts since the following
typical inconsistencies, errors, and anomalies can be detected using the L-Bye algorithm

used the current approach:
¢ potential over-flow error conditions during execution (on target environment);

* potential under-flow error conditions during execution (on target

environment); and

® potential “divide-by-zero” error conditions during execution (on target

environment)
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6.1.5 Regression Testing and Software Maintenance

Industrial experience indicates that software constantly changes, over a period of time, for
a number of reasons (e.g., corrective, perfective, adaptive, etc.[Pressman, 1992]). The
impact of any software change that is associated with a change in the design specification
can be easily tested and verified at the unit level, using the current approach. In turn, it

will improve the regression testing.

6.1.6 Design Documentation

The current industrial experience indicates that most documentation associated with
software development becomes out-of-date very easily, due to number of reasons:
frequent releases of software; time and cost associated with updating documentation; and
it is a lot easier to modify the code when compared to updating of documentation (in
order to be consistent with the code). However, it can be observed that a number of test
cases will fail whenever a unit testing (based on the current approach) is repeated, if there
is a mismatch between design specification and implementation (since the set of test
cases along with anticipated test outcome are derived from “design specification” rather
than implementation). As a result, the software development group is forced to keep the
design documentation up to date.

Peters [1995] had also arrived at a similar conclusion and reported that “generation of a
test oracle from a design document” enforces consistency between design and code; and

enhances the value and usefulness of design documentation.

6.2 Limitations _
Important limitations of the current approach are presented in this section.

6.2.1 Valid Only For Safety-Critical Applications
The approach discussed in the thesis is valid only for safety-critical applications.

Resolution: The approach discussed in this thesis requires a very detailed design
specification. Such detailed specifications are common in the development of software
for safety-critical applications. It is not practical to expect such a detailed design

specification for general software applications.
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6.2.2 Too Many Test Cases
Apollo may generate thousands of test cases if there are three or more inputs for a given

access-program because all possible combinations of test values are used while

generating a set of test cases.

Resolution: A suitable test case generation algorithm needs to be developed and

implemented to avoid the explosion of the number of test cases.

Automation of Step(7) and Step(8) in Table 1 may reduce the impact of this limitation

significantly.

6.2.3 Test Coverage Analysis
Apollo does not report any information regarding the test coverage and the set of test

cascs.

Resolution: In this thesis, test coverage analysis is not addressed. A suitable test
coverage analysis algorithm can be developed and implemented to provide information
about test coverage analysis. This additional feature can be added to Apollo and its

modular design will be of use in this case.

6.2.4 Detection of Semantic Errors
Apollo detects only certain types of semantic errors. It may fail to detect certain other

types of semantic errors (e.g., errors associated with basic design decisions).

6.2.5 Complex Functional Requirements

Apollo may fail to meet some of its complex functional requirements in an industrial
application. For example, it may generate either more or less number of test values than
expected from boundary value anmalysis. In that case, testing at different stages is

expected to detect the errors that are missed at the unit testing stage.

6.2.6 Validation
The current version of Apollo was not validated since it is only a prototype CASE tool.

Resolution: In general, the validation activity of CASE tools is carried out by the user
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champions (who are independent of CASE tool software development group). Both pros
and cons of a given CASE tool need to be evaluated for the specific industrial

application.
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7. CONCLUSIONS AND FUTURE WORK

Systematic testing is important for all software systems and it becomes more important
for safety-critical systems. Effective testing of software using trust-worthy CASE tools is
one of the several strategies, which can minimise the number of errors in given software

and keep the testing costs under control.

Testing a large software system involves several stages: unit testing, sub-system testing,
integration testing, acceptance testing, and regression testing. The scope of this thesis is
restricted only to unit testing. Further, we require as input a very detailed design
specification written in a tabular notation. Such detailed specifications are commonly
found in the development of software for safety-critical applications. One such
application area is in Canadian nuclear industry. Hypothetical examples are drawn from
this application throughout this thesis. A case study has been used to justify the *“proof of
concept” of the proposed software-testing tool named “Apollo”.

7.1 Conclusion

The major contribution of this thesis is the conception, design, development and use of
the testing tool Apollo. It is based on the well-known tabular method of specification. In
this method, specification can be made detailed enough to facilitate their execution. This
thesis is an application of an existing technology (tabular method) to a new problem. The
analysis of results from the case study has demonstrated the “proof-of-concept” of the
automation of the generation of a set of test cases and the anticipated test outcome for

each test case.

The design of Apollo tool discussed in this thesis consists of the following three major

steps:

Step 1: The input design specification document is parsed and stored in an

intermediate form.
Step 2: Test values based on the boundary value analysis are generated.

Step 3: The parsed design specification is executed in order to generate the

anticipated test outcome for each test case.
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This thesis serves as one humble step towards increased automation of effective testing

strategy to minimise the number of errors in safety-critical software.

7.2 Future Work

The current version of Apollo is only a prototype CASE tool. It has been tested with
simple programs, since the intention was to demonstrate the “proof-of-concept”. Itis
planned to extend this prototype tool into a full-fledged tool for future safety-critical

applications in Canadian nuclear industry.

The Apollo tool could generate a very large set of test cases for complex applications.
One problem to solve in future would be to minimize the number of test cases without

affecting a specified coverage criterion.
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Appendix A - Sample Design Specification Document (Clean)

Design Specification Document
(Clean)
Revision: 1.0

Issue Date:  98/10/20

Disclaimer
This Sample Design Specification is purely fictitious.
It is used ONLY to test Apollo and to illustrate its capabilities.
The logic in the access-programs does NOT reflect the current practice in Industry.
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INTRODUCTION
Purpose
Organization

DESIGN OVERVIEW

DEVIATIONS FROM SDD PROCEDURE

NOTATION
MODULE GUIDE
Anticipated Changes
ITEM ANTICIPATED CHANGE REF.
Module Hierarchy Diagram

Module Responsibilities and Secrets

ALTERNATIVE VIEWS OF THE SOFTWARE DESIGN

Processing Unit Diagrams

Call Hierarchy Diagrams

100




DETAILED DESIGN

Global Definitions

Include-file: file l.inc

Name Value Type

Constants: C_Critical Power 160 INTEGER
C_Power_Dead_Band 30 INTEGER
C_Danger_Power 130 INTEGER
C_P_Lower_Range 0 INTEGER
C_P_Higher_Range 250 INTEGER
C_Lowest_P_SP 10 INTEGER
C_Hiﬂest_P_SP 120 INTEGER
Name Definition

Types: T_Power_Set_Point C_Lowest P_SP TO C_Highest P_SP
T_Reactor_Power C_P_Lower_Range TO C_P_Higher Range
T_Power_Stats {e_Sub_Normal, e_Normal, e_Above_Normal,e_Init_P_SetBack,

¢_Emergency_Shut_Down}

T_P_Display_Status {e_Blue. e_Green. ¢_Amber, e_Red. ¢_Flashing Red }
T_P_Alarm_Status {e_Off, ¢_Intermittent. ¢_Continuous }
T_Check_Power_SP {e P SP_WarmnE, e_Valid_P_SP}
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Leaf Modules

MODULE PWR
Name Definition
Types: (None)
Natural Language Description:

Some of the important responsibilities of the POWER module are:

check the set-point value associated with the reactor power, and give feedback 1o the operator;
determine the status of the reactor by comparing the measured power with the set-point and
announce the message to the operator;

® determine the “indicator-status of the reactor on the control panel” by comparing the
measured power with the set-point and turn-on the appropriate light (green, blue, red, flashing-
red etc.); and

® determine the “alarm-status of the reactor on the control panel” by comparing the measured
power with the set-point and turn-on the alarm as and when required.

The following four access-programs fulfill the specific responsibilities of the POWER module:

PWRS$Check_Set_Point
PWR3Power_Status
PWRS3Display_Status
PWRSAlarm_Status

Access Programs:

PWRSCheck_Set_Point
V_Power_Set_Point: T_Power_Set_Point - in/out
V_Check_Result: T_Check_Power_SP - out

PWRSPower_Status

V_Reactor_Power: T_Reactor_Power - in
V_Power_Set_Point: T_Power_Set_Point - in
V_Power_Status: T_Power_Status - out

PWRSDisplay_Status

V_Reactor_Power: T_Reactor_Power - in
V_Power_Set_Point: T_Power_Set_Point - in
V_Display_Status: T_P_Display_Status - out

PWRSAlarm_Status
V_Reactor_Power: T_Reactor_Power - in
V_Alarm_Status: T_P_Alarm_Status - out

MODULE PWR Internal Declarations

Name Type

State Data: (None)
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ACCESS PROGRAM PWRSCheck_Set_Point

V_Power_Set_Point:

T_Power_Set_Point - in/out

V_Check_Result: T_Check_Power_SP - out

Natural Language Description:
High-Level Specification:

check the value of the power-set-point using the valid range of the expected-power-
output from the reactor and the dead-band associated with the power-set-point;

if the value of the power-set-point is valid (i.e., with in the valid range of power-set-
point), then do not change the value; and

if the value of the value of the power-set-point is invalid (i.e., outside of the valid
range of power-set-point), then give an appropriate warning message 1o the operator,
and assign a valid value 1o the power-set-point.

Detailed Specification:
The value of the output variable, V_Power_Set_point, is decided based on the following logic:

if the value is less than the lower-valid-range (i.e. valid_lower_range _of f power plus
half-of-the dead-band) then assign Ceiling(valid_lower_range_of power plus half-of-
the dead-band);

if the value is greater than the upper-valid-range (i.e. valid_upper_range of f power
minus half-of-the dead-band) then assign Floor(valid_lower_range_of power minus
half-of-the dead-band);

if the value is with in the valid range then do not change the value.

The state of the output variable, V_Check_Result, is decided based on the following logic:

if the value of the power-set-point is with in the valid range then give a valid-set-point
message.

if the value of the power-set-point is out-of- rangelinvalid then give a warning
message.

Name Ext_value Type Origin
Updates: ViPower_Sct_Poim - T_Power_Set_Point | Param
Name Ext_value Type Origin ‘
Outputs: V_Check_Result - T_Check_Power_S Param
P

Table Check Set Point

V_Power_Set_Point (V_Power_Set_Point V_Power_Set_Point
< Se >
(C_P_Lower_Range + | (C_P_Lower_Range + (0.5 (C_Danger_Power - (0.5 *
5= * C_Power_Dead_Band))) | C_Power_Dead_Band))
C_Power_Dead_Band)) AND
(V_Power_Set_Point
<=

(C_Danger_Power - (0.5 *
C _rPowcr_Dead_Band)))

V_Power_Set_Point CEILING(C_P_Lower_R|V_Power_Set_Point FLOOR(C_Danger_Power
ange + (0.5 * -(05*
C_Power_Dead_Band)) C_Power_Dead_Band))

V_Check_Result e_P_SP_Warmning e_Valid_P_SP e_P_SP_Waming
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ACCESS PROGRAM PWRSPower_Status
V_Reactor_Power: T_Reactor_Power - in
V_Power_Set_Point: T_Power_Set_Point - in
V_Power_Status: T_Power_Status - out

Natural Language Description:
High-Level Specification:
o determine the status of the reactor by comparing the measured power with the set-
poins

Detailed Specification:
The status of the output variable, V_Power_Status, is decided based on the following logic:
® if the value is less than the desired range (i.e. power-set-point minus half-of-the dead-
band) and outside the danger zone then assign e_Sub_Normal;
e if the value is with in the desired range and outside the danger zone then assign
e_Normal;
o if the value is more than the desired range (i.e. power-set-point plus half-of-the dead-
band) and outside danger zone then assign e_Above_Normal;
® if the value inside danger zone but outside critical zone then assign e_Init_P_SetBack
(i.e., initialize the process of decreasing the Power);
® ifthe value inside critical zone then assign e_Emergency_Shut_Down (i.e., initialize
the process of emergency shut-down of the reactor).

Name Ext_value Type Origin
Inputs: V_Reactor_Power - T_Reactor_Power Param
ViPowcr_Set_Point - TLPowcr__Set_Point Param
Name Ext_value Type Origin
Outputs: Vil’oweréatus - TiPower__Status Param

Table Power Status
e -

Result
Condition V_Power_Status
V_Reactor_Power < (V_Power_Set_Point - (0.5 * e_Sub_Nommal

C_Power_Dead_Band ) ) AND (V_Reactor_Power <
C_Danger_Power )

_Reactor_Power >= (V_Power_Set_Point - (0.5 * e_Normal
C_Power_Dead_Band ) )) AND (V_Reactor_Power <=
(V_Power_Set_Point + (0.5 * C_Power_Dead_Band )))
AND (V_Reactor_Power < C_Danger_Power )

_Reactor_Power > (V_Power_Set_Point + (0.5 * e_Above_Normal
C_Power_Dead_Band ) )) AND (V_Reactor_Power <
C_Danger Power )

_Dang
(V_Reactor_Power >= C_Danger_Power ) AND e_Init_P_SetBack
(V_Reactor_Power < C_Critical_Power )
(V_Reactor_Power >= C_Critical_Power ) e_Emergency_Shut_Do
wn
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ACCESS PROGRAM PWRSDisplay_Status
V_Reactor_Power: T_Reactor_Power - in

V_Power_Set_Point: T_Power_Set_Point - in
V_Display_Status: T_P_Display_Status - out

Natural Language Description:
High-Level Specification:
® determine the visual display status of the reactor (i.e., blue/green/amber etc.) on the
control panel by comparing the measured power with the set-point

Detailed Specification:
The status of the output variable, V_Display_Status, is decided based on the following logic:
® if the value is less than the desired range (i.e. power-set-point minus half-of-the dead-
band) and outside the danger zone then assign e_Blue;
® ifthe value is with in the desired range and outside the danger zone then assign
e_Green;
® if the value is more than the desired range (i.e. power-set-point plus half-of-the dead-
band) and outside danger zone then assign e_Amber;
if the value inside danger zone but outside critical zone then assign e_Red;
if the value inside critical zone then assign e_Flashing_Red.

Name Ext_value Type Origin |}
Inputs: V_Reactor_Power - T_Reactor_Power Param

\;Power_Sct_Poim - ’I‘EPowcr_Sct_Poim Param

Name Ext_value Tvpe Origin
Outputs: V_Digplgvis tatus - T_P_Disglax_Status Param

_Table displav_Status

Resulr
Condirtion V_Display_Status
V_Reactor_Power < (V_Power_Set_Point - (0.5 * e_Blue

C_Power_Dead_Band ) ) AND (V_Reactor_Power <
(1.05 * C_Danger_Power) )

(V_Reactor_Power >~ (V_Power_Set_Point - (0.5 * e_Green

C_Power_Dead_Band ) )) AND (V_Reactor_Power <=
_Power_Set_Point + (0.5 * C_Power_Dead_Band )))

AND (V_Reactor_Power < (1.05 * C_Danger_Power) )

(V_Reactor_Power > (V_Power_Set_Point + (0.5 * ¢_Amber
C_Power_Dead_Band ) )) AND (V_Reactor_Power <
(1.05 * C_Danger_Power) )

(V_Reactor_Power >= (1.05 * C_Danger_Power )) e¢_Red
AND (V_Reactor_Power < (1.05 * C_Critical_Power) )
(V_Reactor_Power >= (1.05 * C_Critical_Power) ) eiFlashin&_.Rcd
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ACCESS PROGRAM PWRSAlarm_Status
V_Reactor_Power: T_Reactor_Power - in
V_Alarm_Status: T_P_Alarm_Status - out

Natural Language Description:
High-Level Specification:

determine the audible alarm status of the reactor (i.e., offlintermittent/continuous Jon
the control panel by comparing the measured power with the set-point

Detailed Specification:
The status of the output variable, V_Alarm_Status, is decided based on the following logic:

if the value is outside the danger zone the assign e_Off (i.e. do not turn-on the alarm);
if the value inside danger zone but outside critical zone then assign e_Intermittent
(i.e., turn-on intermittent audible alarm);

if the value inside critical zone then assign e_Continuous (i.e., turn-on continuous
audible alarm);.

Name Ext_value Type Origin
Inputs: V_Reactor_Power - T_Reactor_Power Param
Name Ext_value Type Origin
Outputs: V_Alarm_Status - T_P_Alarm_Status Param

Table Zlarm Status
——

Resulr
Condition V_Alarm_Status
(V_Reactor_Power < (1.1 * C_Danger_Power) ) c_Off

(V_Reactor_Power >= (1.1 * C_Danger_Power )) AND | e_Intermittent
(V_Reactor_Power < (1.1 * C_Critical_Power) )

(V_Reactor_Power >= (1.1 * C i@ical_?owcr) ) eéontinuous
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Appendix B - Results from Apollo

B.1 File pwr_ch.etr(V1.0)

Section 1l: Configquration Information

Access Program: PWRSCheck_Set_Point
Design Document Rev: 1.0

Design Document Date: 9$8/10/20

AGTR Tool Version: 2.1 Exp

Run Date: Thu Oct 22 18:14:32 1998

Section 2.1: Inputs Table

Name Type Low High Delta

V_Power_Set_Point T_Power_Set_Point 10 120 1

Section 2.2: Outputs Table T
Name Type Low Eigh

;;égeck_Result ;:é;eck_Power_SP T

V_Power_Set_Point T_Power_Set_Point 10 120

Section 2.3: Eaumerationts) T
T_Check_Power_SP = (e_p_SP_Warning,e_valid_p_s)

Section 3: Test Values from Boundary Value Analysis
V_Power_Set_Point . 10, 11, 12, 14, 15, 16, 65, 114, 115, 116, 117,
119, 120

o A A
Section 4: Summary of each Condition along with Associated Actions
R -

Table Check_Set_Point : Condition 1

C : V_Power_Set_Point < (C_P_Lower_Range + (0.5 * C_Power_Dead_Band))
AQ0l: V_Power_Set_Point = CEILING(C_P_Lower_Range + (0.5 * C_Power_Dead_Band))
A02: V_Check_Result = e_P_SP_Warning

Table Check_Set_Point : Condition 2

C : (V_Power_Set_Point >= (C_P_Lower_Range + (0.5 * C_Power_Dead_Band))) AND ¢(
V_Power_Set_?Point <= (C_Danger_Power - (0.5 * C_Power_Dead_Band)))

AQl: V_pPower_Set_Point = V_Power_Set_Point

A02: V_Check_Result = e_valid_P_SP

Table Check_Set_Point : Condition 3

C : V_Power_Set_Point > (C_Danger_Power - (0.5 * C_Power_Dead_Band))
AQ0l: V_Power_Set_Point = FLOOR(C_Danger_Power - (0.5 v C_Power_Dead_Band))
A02: V_Check_Result = e_P_SP_wWarning
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o T TR TR WA

Section 5: Test Cases along with Anticipated Test Results

Test Case$ Input Anticipated Output Anticipated Output
V_Power_Set_Point V_Check_Result V_Power_ Set_Point
1 10 e_P_SP_Warning 15
2 11 e_P_SP_Warning 15
3 12 e_P_SP_Warning 15
4 14 e_P_SP_Warning 15
5 15 e_valid_Pp_SP 15
6 16 e_valid_P_SP 16
7 €5 e_valid_P_SP 65
8 114 e_valid_°P_SF 114
9 115 e_valid_p_SP 115
10 116 e_P_SP_Warning 115
11 117 e_P_SP_Warning 115
12 119 e_P_SP_Warning 115
13 120 e_P_SP_wWarning 115
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B.2 __ File pwr_po.etr(V1.0)

Section 1l: Configuration Information

Access Program: PWRSPower_Status

Design Document Rev: 1.0

Design Document Date: 98,/10/20

Apollo Version: 2.1 Exp

Run Date: Thu Oct 22 18:14:34 1998

Section 2.1: Inputs Table

Name Type Low High Delta
V_Reactor_Power T_Reactor_Power o] 250 1
V_Power_Set_Point T_Power_Set_Point 10 120 1

Section 2.2: Outputs Table

Name Type Low High

V_Power_Status T_Power_Status

T_Power_Status = {e_Sub_Normal,e_Normal,e_Above_Normal,e_Init_P_SetBack,
e_Emergency_Shut_Down}

Section 3: Test Values from Boundary Value Analysis
V_Reactor_Power : 0, 1, 12, 13, 24, 25, 26, 52, 65, 77, 104, 105,
106, 116, 117, 129, 130, 131, 132, 134, 135,
136, 145, 158, 160, 161, 192, 205, 249, 250

V_Power_Set_Point : 10, 11, 12, 14, 15, 16, 65, 67, 119, 120

Section 4: Summary of each Condition along with Associated Actions

Table Power_Status : Condition 1

C : V_Reactor_Power < (V_Power_Set_Point - (0.5 = C_Power_Dead_Band ) ) AND (V

—Reactor_Power < C_Danger_Power )
A01l: V_Power_Status = e_Sub_Normal

Table Power_Status : Condition 2

C : (V_Reactor_Power >= (V_Power_Set_Point - (0.5 = C_Power_Dead_Band ) )) AND
(V_Reactor_Power <= (V_Power_Set_Point - (0.5 * C_Power_Dead_Band ))) AND (V_

Reactor_Power < C_Danger_Power )
AQl: V_Power_Status = e_Normal

Table Power_Status : Condition 3

C : (V_Reactor_Power > (V_Power_Set_Point + (0.5 = C_Power_Dead_Band ) )) AND

(V_Reactor_Power < C_Danger_Power )
AQ0l: V_Power_Status = e_Above_Normal
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Table Power_Status : Condition 4

C : (V_Reactor_Power >= C_Danger_Power ) AND (V_Reactor_Power < C_Critical_Pow
er )
AQl: V_Power_Status = e_Init_P_SetBack

Table Power_Status : Condition 5

C : (V_Reactor_Power >= C_Critical_Power )
A01l: V_Power_Status = e_Emergency_Shut_Down

Section 5: Test Cases along with Anticipated Test Results

Test Case¢ Input Input Anticipated Output
V_Reactor_Power V_Power_Set_Pcint V_Power_Status

1 0 10 e_Normal

2 0 11 e_Normal

3 0 12 e_Normal

4 0 14 e_Normal

5 0 15 e_Normal

6 0 16 e_Sub_Normal
7 0 65 e_Sub_Normal
8 0 67 e_Sub_Normal
9 0 118 e_Sub_Normal
10 0 120 e_Sub_Normal
11 1 10 e_Normal

12 1 11 e_Normal

13 1 12 e_Normal

14 1 14 e_Normal

15 1 15 e_Normal

16 1 16 e_Normal

17 1 65 e_Sub_Normal
18 1 67 e_Sub_Normal
19 1 119 e_Sub_Normal
20 1 120 e_Sub_Normal
21 12 10 e_Normal

22 12 11 e_Normal

23 12 12 e_Normal

24 12 14 e_Normal

25 12 15 e_Normal

26 12 16 e_Normal

27 12 65 e_Sub_Normal
28 12 67 e_Sub_Normal
29 12 118 e_Sub_Normal
30 12 120 e_Sub_Normal
31 i3 10 e_Normal

32 13 11 e_Normal

33 13 12 e_Normal

34 13 14 e_Normal

35 13 15 e_Normal

36 13 16 e_Normal

37 13 65 e_Sub_Normal
38 13 67 e_Sub_Normal
39 13 119 e_Sub_Normal
40 13 120 e_Sub_Normal
41 24 10 e_Normal

42 24 11 e_Normal

43 24 12 e_Normal

44 24 14 e_Normal

45 24 15 e_Normal

46 24 16 e_Normal

47 24 65 e_Sub_Normal
48 24 67 e_Sub_Normal
49 24 119 e_Sub_Normal
50 24 120 e_Sub_Normal
S1 25 10 e_Normal

52 25 11 e_Normal

53 25 12 e_Normal

54 25 14 e_Normal

ss 25 15 e_Normal
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56
57
58
59
60
61
62
63
64

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

86
87
88
89
g0
S1i
92
g3
94
85
96

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
128
130
131
132
133
134
135

25
25
25
25
25
26
26
26
26
26

26
26
26
26
52
52
52
52
52
52
52
52
52
52

65
65
65
65

65

65

65

65

77

77

77

77

77

77

77

77

77

77

104
104
104
104
104
104
104
104
104
104
105
105
105
105
105
105
105
105
105
105
106
106
106
106
106
106
106
106
106
106
116
116
1le
116
116

119
120
10
11
12
14
15
16

67
119
120
10
11
12
14
15
16
65
67
119
120
10
11
12
14
15
16

67
119
120

1

e_Normal
e_Sub_Normal
e_Sub_Normal
e_Sub_Normal
e_Sub_Normal
e_Above_Normal
e_Normal
e_Normal
e_Normal
e_Normal
e_Normal
e_Sub_Normal
e_Sub_Normal
e_Sub_Normal
e_Sub_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Sub_Normal
e_Sub_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Sub_Normal
e_Sub_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Sub_Normal
e_Sub_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Sub_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Ahbove_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
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136
137
138
138
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
19¢
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

116
116
116
116
116
117
117
117
117
117
117
117
117
117
117
129
1298
128
129
129
129
128
129
129
129
130
130
130
130
130
130
130
130
130
130
131
131
131
131
131
131
131
131
131
131
132
132
132
132
132
132
132
132
132
132
134
134
134
134
134
134
134
134
134
134
135
135
135
135
135
135
135
135
135
135
136
136
136
136
136

119
120
10
11
12
14
15

65
67
119
120

11
12
14
15
16

67
118
120
10
11
12

15
16
65
67
119
120
10
11
12
14
15

e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Init_P_SetBack
e_Init_ P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_ P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
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216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
27¢
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

136
136
136
136
136
145
145
145
145
145
145
145
145
145
145
159
159
159
159
159
159
159
159
159
159
160
160
160
160
160
160
160
160
160
160
161
161
161
161
161
161
161
161
161
161
192
192
182
182
182
192
192
192
192
192
205
205
205
205
205
205
205
205
205
205
249
249
248
249
249
249
249
249
249
249
250
250
250
250
250

e_Init_P_SetBack
e_Init P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init P_SetBack
e_Init P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_ P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e__Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency._Shut_Down
e_Emergency_Shut_Dhown
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency._Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Dbown
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
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296
287
298
299
300

250
250
250
250
250

16
65
67
119
120

e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
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B.3 Kile pwr_di.etr(V1.0)

Section 1: Configuration Information

Access Program: PWRSDisplay_sStatus
Design Document Rev: 1.0

Design Document Date: 98/10/20

Apollo Version: 2.1 Exp

Run Date: Thu Oct 22 1B8:15:44 1998

Section 2.1: Inputs Table

Name Type Low High Delta

V_Reactor_Power T_Reactor_Power 0 250 1
V_Power_Set_Point T_Power_Set_Point 10 120 1

Section 2.2: Qutputs Table
Name Type Low EHEigh
V_Display_sStatus T_P_Display_Status

T_P_Display_Status = {e_Blue,e_Green,e_Amber,e_Red,e_Flashing_Red}

Section 3: Test Values from Boundary Value Analysis
V_Reactor_Power : 0, 1, 12, 13, 24, 25, 26, 52, 65, 68, 80, 104,

105, 106, 119, 120, 134, 135, 136, 137, 138,
152, 167, 168, 169, 193, 209, 249, 250

V_Power_Set_Point < 10, 11, 12, 14, 15, 16, 65, &7, 119, 120

Section 4: Summary of each Condition along with Associated Actions

Table Power_Status : Condition 1

C : V_Reactor_power < (V_Power_Set_Point - (0.5 * C_Power_Dead_Band ) ) AND (V
_Reactor_Power < (1.05 * C_Danger_Power) )
AQ0l: V_Display_sStatus = e_Blue

Table Power_Status : Condition 2

C : (V_Reactor_Power >= (V_Power_Set_Point - (0.5 * C_Power_Dead_Band ) )) AND
(V_Reactor_Power <= (V_Power_Set_Point + (0.5 * C_Power_Dead_Band ))) AND (V_

Reactor_Power < (1.05 = C_Danger_Power) )

A01: V_Display_Status = e_Green

Table Power_Status : Condition 3

C : (V_Reactor_Power > (V_Power_Set_Point + (0.5 = C_Power_bDead_Band ) )) AND
(V_Reactor_Power < (1.05 * C_Danger_Power) )
A01l: V_Display_Status = e_Amber
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Table Power_Status : Condition 4

C : (V_Reactor_Power >= (1.05 * C_Danger_Power )) AND (V_Reactor_Power < (1.05
* C_Critical Power) )
AO0l: V_Display_Status = e_Red

Table Power_Status : Condition S

C : (V_Reactor_Power >= (1.05 * C_Critical_Power) )
A01: V_Display_Status = e_Flashing_Red

Section 5: Test Cases along with Anticipated Test Results

Test Case# Input Input Anticipated Output
V_Reactor_Power V_Power_Set_Point V_Display_Status
1 0 10 e_Green
2 0 11 e_Green
3 o] 12 e_Green
4 0 14 e_Green
5 0 15 e_Green
6 0 16 e_Blue
7 0 65 e_Blue
8 0 67 e_Blue
9 0 119 e_Blue
10 [0} 120 e_Blue
11 1 10 e_Green
12 1 11 e_Green
13 1 12 e_Green
14 1 14 e_Green
is5 1 15 e_Green
16 1 16 e_Green
17 1 65 e_Blue
18 1 67 e_Blue
19 1 119 e_Blue
20 1 120 e_Blue
21 12 10 e_Green
22 12 11 e_Green
23 12 12 e_Green
24 12 14 e_Green
25 12 15 e_Green
26 12 16 e_Green
27 12 65 e_Blue
28 12 67 e_Blue
28 12 119 e_Blue
30 12 120 e_Blue
31 13 10 e_Green
32 13 11 e_Green
33 13 12 e_Green
34 13 14 e_Green
35 13 15 e_Green
36 13 16 e_Green
37 13 65 e_Blue
38 13 67 e_Blue
39 13 119 e_Blue
40 13 120 e_Blue
41 24 10 e_Green
42 24 11 e_Green
43 24 12 e_Green
] 24 14 e_Green
45 24 15 e_Green
46 24 16 e_Green
{7 24 65 e_Blue
48 24 67 e_Blue
49 24 1198 e_Blue
50 24 120 e_Blue
51 25 10 e_Green
52 25 11 e_Green
53 25 12 e_Green
S4 25 14 e_Green
85 25 15 e_Green
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105
105
105
105
105
105
105
106
106
106
106
106

118

119
120

e_Green
e_Blue
e_Blue
e_Blue
e_Blue
e_Amber
e_Green
e_Green
e_Green
e_Green
e_Green
e_Blue
e_Blue
e_Blue
e_Blue
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Green
e_Green



136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
ig8
189
130
191
192
1¢3
194
195
196
1s7
igs
i9g
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

106
106
106
106
106
119
118
119
119
119
118
119
119
119
11s
120
120
120
120
120
120
120
120
120
120
134
134
134
134
134
134
134
134
134
134
i3s
135
135
135
135
135
135
135
135
135
136
i36
136
136
136
136
136
136
136
136
137
137
137
137
137
137
137
137
137
137
138
138
138
138



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

152
152
152
152
152
167
167
167
167
167
167
167
167
167
167
168
168
168
168
168
168
168
168
168
168
169
169
169
169
169
169
169
169
169
169
1383
193
193
193
183
183
183
193
193
183
209
209
209
209
208
209
209
209
209
209
249
249
249
248
249
249
249
249
249
249
250
250
250
250
250
250
250
250
250
250
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119
120
10
11
12

15
16
65
67
119
120

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Reqd
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
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B.4 File pwr_al.etr(V1.0)

Section 1: Configuration Information

Access Program: PWRSAlarm_Status
Design Document Rev: 1.0

Design Document Date: 98,/10/20
Apollo Version: 2.1 Exp

Run Date: Thu Oct 22 18:16:49 1968

Section 2.1: Inputs Table

Name Type Low High Delta
V_Reactor_pPower T_Reactor_ Power 0 250 1
it L L P L P 2 1 3 2 T P T P P T Tt Lt 17 3 3 bt it 2 2 2 2 2t 2 2 1 2 3 32 1 20 Y Yy

Section 2.2: Outputs Table
Name Type Low High
V_Alarm_Status T_P_Alarm_Status

T_P_Alarm_Status = {e_0Off,e_Intermittent,e_Continuous}

-I---3‘-----------------------------— - Lt 3 £ £ 3 Lt 1 £ 3
Section 3: Test Values from Boundary Value Analysis
V_Reactor_Power : 0, 1, 71, 142, 143, 144, 159, 175, 176, 177, 213,
249, 250
----l:.-----—--------------------- - R SR NG NN SN S SR mS SR SR Am A Sx SN AR S
Section 4: Summary of each Condition along with Associated Actions
Table Power_Status : Condition 1
C : (V_Reactor_Power < (1.1 * C_Danger_Power) )

AQ0l: V_alarm_Status = e_Off

Table Power_Status : Condition 2

C : (V_Reactor_Power >= (1.1 * C_Danger_Power )) AND (V_Reactor_Power < (1.1 =«
C_Critical_Power) )
A01: V_alarm_Status = e_Intermittent

Table Power_sStatus : Condition 3

C : (V_Reactor_Power >= (1.1 ¢ C_Critical_power) )
A01: V_aAlarm_Status = e_Continuous
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Section S: Test Cases along with Anticipated Test Results

Test Caset Input Anticipated Output
V_Reactor_Power V_Alarm_Status

1 0 e_Off

2 1 e_Off

3 71 e_Off

4 142 e_Off

5 143 e_Intermittent

[ 144 e_Intermittent

7 159 e_Intermittent

8 175 e_Intermittent

S 176 e_Continuous

10 177 e_Continuous

11 213 e_Continuous

12 249 e_Continuous

13 250 e_Continuous
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Appendix C - Sample Design Specification Document (draft)

Design Specification Document
(Draft)
Revision: 0.0

Issue Date: 98/10/20

Disclaimer
This Sample Design Specification is purely fictitious.
It is used ONLY to test Apollo and to illustrate its capabilities.
The logic in the access-programs does NOT reflect the current practice in Industry.
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INTRODUCTION
Purpose
Organization

DESIGN OVERVIEW

DEVIATIONS FROM SDD PROCEDURE

NOTATION

MODULE GUIDE

Anticipated Changes

ITEM

ANTICIPATED CHANGE

Module Hierarchy Diagram

Module Responsibilities and Secrets

ALTERNATIVE VIEWS OF THE SOFTWARE DESIGN

Processing Unit Diagrams

Call Hierarchy Diagrams
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DETAILED DESIGN

Global Definitions

Include-file: file l.inc

Name Value Type

Constants: C_Critical_Power 160 INTEGER
C_Power_Dead_Band 30 INTEGER
C_Danger_Power 130 INTEGER
C_P_Lower_Range 0 INTEGER
C_P_Higher_Range 250 INTEGER
C_Lowest_P_SP 10 INTEGER
C_Hi _P_SP 120 INTEGER
Name Definition

Types: T _Power_Set_Point C_Lowest P_SP TO C_Highest P_SP

T_Reactor Power

C_P_Lower_Range TO C_P_Higher_Range

T_Power_Status

{e_Sub_Normal, e_Normal, e_Above_Normal.e_Init_P_SetBack,
e_Emergency_Shut_Down}

T_P_Display Status

{e_Blue, ¢_Green, ¢_Amber, ¢_Red, e_Flashing Red }

T_P_Alarm_Status

{e_Off. e_Intermittent, e_Continuous }

T_Check_Power=SP

{c_P_SP_Warning, ¢_Valid_P_SP}
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Leaf Mcdules

MODULE PWR

Manage the software / hardware interface for analog inputs and outputs.

Name Definition

Types: (None)

Access Programs:

PWRSCheck_Set_Point
V_Power_Set_Point: T_Power_Set_Point - in/out
V_Check_Result: T_Check_Power_SP - out

PWRS$Power_Status

V_Reactor_Power: T_Reactor_Power - in
V_Power_Set_Point: T_Power_Set_Point - in
V_Power_Stats: T_Power_Status - out

PWRS$Display_Startus

V_Reactor_Power: T_Reactor_Power - in
V_Power_Set_Point: T_Power_Set_Point - in
V_Display_Staws: T_P_Display_Status - out

PWRSAlarm_Status
V_Reactor_Power: T_Reactor_Power - in
V_Alarm_Status: T_P_Alarm_Status - out

MODULE PWR Internal Declarations

Name Type

State Data: (None)
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ACCESS PROGRAM PWRSCheck_Set_Point
V_Power_Set_Point: T_Power_Set_Point - in/out
V_Check_Result: T_Check_Power_SP - out

Name Ext_value Type Origin

Updates: Viower_Set_Point - 'l'iPower_Set_Point Param

Name Ext_value Type Origin

Outputs: V_Check_Resul: - T_Check_Power_S | Param
P

Table Check_Set_Point

V_Power_Set_Point <
(C_P_Lower_Range +
0S5+
C_Power_Dead_Band))

(V_Power_Sest_Point >=
(C_P_Lower_Range + (0.5
* C_Power_Dead_Band)))
AND
(V_Power_Set_Point <=

(C_Danger_Power - (0.5 *
C_Power_Dead_Band)))

V_Power_Set_Point >=
(C_Danger_Power - (0.5 *
C_Power_Dead_Band))

V_Power_Set_Point

CEILING(C_P_Lower_R
ange + (0.5 *
C_Power_Dead_Band))

V_Power_Set_Point

FLOOR(C_Danger_Power
-(05*
C_Power_Dead_Band))

V_Check_Result

¢_P_SP_Waming

e_Valid_P_SP

e_P_SP_Warming

Description of Error introduced:

The error that was introduced into the design specification, and its consequences are as Jollows:

“V_Power_Set_Point > (C_Danger_Power - (0.5 * C_Power_Dead_Band))”

“V_Power_Set_Point >= (C_Danger_Power - (0.5 * C_Power_Dead_Band))”

Error:
The condition:
is changed to
Consequences:

The specification becomes non-deterministic.

In other words, the following rwo conditions will be satisfied, when input parameter,
V_Power_Set_Point has a value of “(C_Danger_Power - (0.5 * C_Power_Dead_Band))" :

Conditon-1:

“V_Power_Set_Point >= (C_Danger_Power - (0.5 * C_Power_Dead_Band))"; and

Condirtion-2:

(V_Power_Set_Point >= (C_P_Lower_Range + (0.5 * C_Power_Dead_Band))) AND
(V_Power_Set_Point <=
(C_Danger_Power - (0.5 * C_Power_Dead_Band)))
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ACCESS PROGRAM PWRSPower_Status
V_Reactor_Power: T_Reactor_Power - in
V_Power_Set_Point: T_Power_Set_Point - in
V_Power_Status: T_Power_Status - out

Name Ext_value Type Origin
Inputs: V_Reactor_Power - T_Reactor_Power Param
V_Power_Set_Point - Lﬁower_Set_Point Param
Name Ext_value Type Origin
Outputs: \QoweriStatus - T_Powcg__rStams Param

Table Power Status
At —

Result
Condition V_Power_Status
V_Reactor_Power < (V_Power_Set_Point - (0.5 * ¢_Sub_Normal

C_Power_Dead_Band ) ) AND (V_Reactor_Power <
C_Danger_Power )

(V_Reactor_Power >= (V_Power_Set_Point - (0.5 * e_Normal
C_Power_Dead_Band ) )) AND (V_Reactor_Power <=
(V_Power_Set_Point + (0.5 * C_Power_Dead_Band )))
AND (V_Reactor_Power < C_Danger_Power )

(V_Reactor_Power > (V_Power_Set_Point + (0.5 * e_Above_Normal
C_Power_Dead_Band ) )) AND (V_Reactor_Power <
C_Danger_Power )

(V_Reactor_Power >= C_Danger_Power ) AND e_Init P_SetBack

(V_Reactor_Power < C_Critical_Power )

(V_Reactor_Power > C_Critical_Power ) ¢_Emergency_Shut_Do
wn

Description of Error introduced:
The error that was introduced into the design specification, and its consequences are as follows:

Error:
The condition: ( V_Reactor_Power >= C _Critical_Power )
is changed to:  (V_Reactor_Power > C_Critical_Power )
Consequences:

The specification becomes incomplete specificarion.

In other words, neither of the following two conditions will be satisfied, when input parameter,
V_Reactor_Power, has a value of “C_Critical_Power”

Conditon-1:

(V_Reactor_Power >= C_Danger_Power ) AND (V_Reactor_Power <
C_Critical_Power )

and
Condition-2:

(V_Reactor_Power > C_Crirical_Power )
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ACCESS PROGRAM PWRSDisplay_Status
V_Reactor_Power: T_Reactor_Power - in

V_Power_Set_Point: T_Power_Set_Point - in
V_Display_Status: T_P_Display_Status - out

Name Ext_value Type Origin
Inputs: V_Reactor_Power - T_Reactor_Power Param
ViPower_Set_Point - T_Power_Set_Point | Param
Name Ext_value Type Origin
Outputs: V_Display_Status - T_P_Disg]az_Status Param

Table Power Status
e —

Result

Condition

V_Display_Status

V_Reactor_Power < (V_Power_Set_Point + (0.5 *
C_Power_Dead_Band ) ) AND (V_Reactor_Power
<=(1.05 * C_Danger_Power) )

e_Blue

(V_Reactor_Power >= (V_Power_Set_Point - (0.5 *

C_Power_Dead_Band ) )) AND (V_Reactor_Power <=
_Power_Set_Point + (0.5 * C_Power_Dead_Band )))

AND (V_Reactor_Power < (1.05 * C_Danger_Power) )

e_Green

(V_Reactor_Power > (V_Power_Set_Point + 0.5*
C_Power_Dead_Band ) )) AND (V_Reactor_Power <
(1.05 * C_Danger_Power) )

e_Amber

(V_Reactor_Power >= (1.05 * C_Danger Power ))
AND (V_Reactor_Power < (1.05 * C_Critical Power) )

¢_Red

(V_ReactoriPower >=(1.05* C_Cn'@wer) )

c_Flashjng Red

Description of Error introduced:

The error(rypographical) that was introduced into the design specification, and its consequences are as

Sfollows:
Error:
The condition:

V_Reactor_Power < (V_Power_Set_Point - (0.5 * C_Power Dead Band ) } AND
(V_Reactor_Power <=(1.05 * C_Danger_Power) )

is changed to

V_Reactor_Power < (V_Power_Set_Point + (0.5 * C_Power_Dead_Band ) ) AND
(V_Reactor_Power <= (1.05 * C_Danger_Power) )

Consequences:

The specification becomes non-deterministic specification.
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ACCESS PROGRAM PWRSAlarm_Status
V_Reactor_Power: T_Reactor_Power - in
V_Alarm_Status: T_P_Alarm_Status - out

Name Ext_value Type Origin
Inputs: V_Reactor_Power - T_Reactor_Power Param
Name Ext_value Type Origin
Outputs: V_Alarm_Status - T_P_Alarm_Status Param

Table Power Status
e ii—"

Result
Condition V_Alarm_Status
(V_Reactor_Power < (1.1 * C_Danger_Power) ) e _Off

(V_Reactor_Power >= (1.1 * C_Danger_Power )) AND | e_Intermittent
(V_Reactor_Power <= (1.1 * C_Critical_Power) )

(V_Rcactgi Power > (1.11 * C_Crin'@;ower) ) L Continuous
Description of Error introduced:

The error(typographical) that was introduced into the design specification, and its consequences are as
Sfollows:

Error:
The condition:
(V_Reactor_Power > (1.1 * C_Critical_Power) )
is changed to
(V_Reactor_Power > (1.11 * C_Critical_Power) )
Consequences:

The specification becomes incomplete specification.
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Appendix D - Results from Apollo

D.1 File pwr_ch.etr(V0.0)

Section 1: Configuration Information

Access Program: PWRSCheck_Set_Point
Design Document Rev: 0.0

Design Document Date: 98/10/20

Apollo Version: 2.1 Exp

Run Date: Thu Oct 22 18:00:50 1998

Section 2.1: Inputs Table

Name Type Low High Delta

V_Power_Set_Point T_Power_Set_Point 10 120 1

Section 2.2: Outputs Table

Name Type Low High
V_Check_Result T_Check_Power_SP

V_Power_Set_Point T_Power_Set_Point 10 120

T_Check_Power_SP = [e_P_SP_Warning.e_Valid_P_s5SP}

Section 3: Test Values from Boundary Value Analysis -
V_Power_Set_Point : 10, 11, 12, 14, 15, 16, 65, 114, 115, 116, 117,
119, 120

Section 4: Summary of each Condition along with Associated Actions

Table Check_Set_Point : Condition 1

C : V_Power_Set_Point < (C_P_Lower_Range + (0.5 = C_Power_Dead_Band))
AQl: V_Power_Set_Point = CEILING(C_P_Lower_Range + (0.5 = C_Power_Dead_Band))
AQ2: V_Check_Result = e_P_SP_Warning

Table Check_Set_Point : Condition 2

C : (V_Power_Set_Point >= (C_P_Lower_Range + (0.5 = C_Power_Dead_Band))) AND (
V_Power_Set_Point <= (C_Danger_Power -~ (0.5 « C_Power_Dead_Band)))

A0l: V_Power_Set_Point = V_Power_Set_Point

A02: V_Check_Result = e_valid_P_SP

Table Check_Set_Point : Condition 3

C : V_pPower_Set_Point >= (C_Danger_Power - (0.5 = C_Power_Dead_Band))
AOl: V_Power_Set_Point = FLOOR(C_Danger_Power - (0.5 * C_Power_Dead_Band))
A02: V_Check_Result = e_P_SP_Wwarning
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Section 5: Test Cases along with Anticipated Test Results

WARNING: Tool encountered non-deterministic test case(s):;

------- please review design document.

Test Case# Input Anticipated Qutput Anticipated Output
V_Power_Set_Point V_Check_Result V_Power_Set_°Point

1 10 e_P_SP_Warning 15

2 11 e_P_SP_Warning 15

3 12 e_P_SP_Wwarning 15

4 14 e_P_SP_Warning 15

5 15 e_Vvalid_°P_SP 15

6 16 e_valid_P_SP 16

7 65 e_Valid_P_SP 65

8 114 e_Vvalid_P_s?P 114

9 115 NonDeterministic

10 116 e_P_SP_Warning 115

11 117 e_P_SP_Warning 115

i2 119 e_P_SP_Warning 115

13 120 e_P_SP_Warning 115

WARNING: Tool encountered non-deterministic test case(s):
------- please review design document.
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D.2 File pwr_po.etr(V0.0)

Section 1l: Configuration Information

AcCcess Program: PWRSPower_sStatus

Design Document Rev: 0.0

Design Document Date: 98/10/20

Apollo Version: 2.1 Exp

Run Date: Thu Oct 22 18:00:51 1998

Section 2.1: Inputs Table

Name Type Low High Delta

V_Reactor_Power T_Reactor_Power 0 250 1
V_Power_Set_Point T_Power_Set_Point 10 120 1

Section 2.2: Outputs Table
Name Type Low High

V_Power_Status T_Power_Status

T_Power_status = {e_Sub_Normal,e_Normal,e_above_Normal,e_Init_pP_SetBack,
e_Emergency_Shut_bown}

Section 3: Test Values from Boundary Value Analysis
V_Reactor_Power : 0, 1, 12, 13, 24, 25, 26, 52, 65, 77, 104, 105,

106, 116, 117. 129, 130, 131, 132, 134, 135,
136, 145, 159, 160, 161, 182, 205, 24%, 250

V_Power_Set_Point : 10, 11, 12, 14, 15, 16, 65, 67, 119, 120

Section 4: Summary of each Condition along with Associated Actions

Table Power_Status : Condition 1

€ : V_Reactor_Power < (V_Power_Set_Point - (0.5 * C_Power_Dead_Band ) ) AND (V
-Reactor_Power < C_Danger_Power )
A0l: V_Power_Status = e_Sub_Normal

Table Power_Status : Condition 2

€ : (V_Reactor_Power >= (V_Power_Set_Point - (0.5 * C_Power_Dead_Band ) )) AND
(V_Reactor_Power <= (V_Power_Set_Point + (0.5 * C_Power_Dead_Band ))) AND (V_

Reactor_Power < C_Danger_pPower )

A01l: V_Power_Status = e_Normal

Table Power_Status : Condition 3
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C : (V_Reactor_Power > (V_Power_Set_Point + (0.5 = C_Power_Dead_Band )} )) AND
(V_Reactor_Power < C_Danger_Power )
AQl: V_Power_Status = e_Above_Normal

Table Power_Status : Condition 4

C : (V_Reactor_Power >= C_Danger_Power ) AND (V_Reactor_Power < C_Critical_pPow
er )
A0l: V_Power_Status = e_Init_P_SetBack

Table Power_Status : Condition 5

C : (V_Reactor_Power > C_Critical_Power )
A01l: V_Power_sStatus = e_Emergency_Shut_Down

Section 5: Test Cases along with Anticipated Test Results

WARNING: Tool encountered incomplete design specification:

------- please review design document.

Test Case$ Input Input Anticipated Output
V_Reactor_Power V_Power_Set_Point V_Power_Status

1 0 10 e_Normal

2 0 11 e_Normal

3 0 12 e_Normal

4 0 14 e_Normal

5 0 15 e_Normal

6 o} 16 e_Sub_Normal

7 0 65 e_Sub_Normal

8 [} 67 e_Sub_Normal

] 0 119 e_Sub_Normal

10 0 120 e_Sub_Normal

11 1 10 e_Normal

12 1 11 e_Normal

i3 1 12 e_Normal

14 1 14 e_Normal

135 1 15 e_Normal

16 1 16 e_Normal

17 1 65 e_Sub_Normal

18 1 67 e_Sub_Normal

i9 1 119 e_Sub_Normal

20 1 120 e_Sub_Normal

21 12 10 e_Normal

22 12 11 e_Normal

23 12 12 e_Normal

24 12 14 e_Normal

25 12 15 e_Normal

26 12 16 e_Normal

27 12 65 e_Sub_Normal

28 12 67 e_Sub_Normal

29 12 119 e_Sub_Normal

30 12 120 e_Sub_Normal

31 13 10 e_Normal

32 13 11 e_Normal

33 13 12 e_Normal

34 13 14 e_Normal

35 13 15 e_Normal

36 13 16 e_Normal

37 13 65 e_Sub_Normal

38 13 €7 e_Sub_Normal

39 13 119 e_Sub_Normal

40 13 120 e_Sub_Normal

41 24 10 e_Normal

42 24 11 e_Normal

4 24 12 e_Normal

44 24 14 e_Normal

45 24 15 e_Normal

4 24 16 e_Normal

47 24 65 e_Sub_Normal

48 24 67 e_Sub_Normal
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49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
es
89
90
91
82
93
94
95
96
97
98
100
101
102
103
104
105
106
107
108
108
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

105
105
105
105
105
105
105
106
106
106
106
106
106
106
106

e_Sub_Normal
e_Sub_Normal
e_Normal
e_Normal
e_Normal
e_Normal
e_Normal
e_Normal
e_Sub_Normal
e_Sub_Normal
e_Sub_Normal
e_Sub_Normal
e_Above_Normal
e_Normal
e_Normal
e_Normal
e_Normal
e_Normal
e_Sub_Normal
e_Sub_Normal
e_Sub_Normal
e_Sub_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Sub_Normal
e_Sub_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Sub_Normal
e_Sub_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Sub_Normal
e_Sub_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Sub_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Above_Normal
e_Above_Normal
e_hbove_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
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129
130
131
132
133
134
135
136
137
138
138
140
142
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
iss
189
190
191
192
163
194
1985
196
187
198
199
200
201
202
203
204
205
206
207
208

106
106
116
116
116
116
116
116
116
116
116
116
117
117
117
117
117
117
117
117
117
117
129
129
129
129
129
129
129
129
129
129
130
130
130
130
130
130
130
130
130
130
131
131
131
131
131
131
131
131
131
131
132
132
132
132
132
132
132
132
132
132
134
134
134
134
134
134
134
134
134
134
135
135
135
135
135
135
135
135

118

119
120

e_Normal
e_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Above_Normal
e_Normal
e_Normal
e_Init_P_SetBack
e_Init_pP_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_sSetBack
e_Irit_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
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209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
2€8
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

135
135
136
136
136
136
136
136
136
136
136
136
145
145
145
145
145
145
145
145
145
145
159
159
159
159
159
159
158
159
159
158
160
160
160
160
160
160
160
160
160
160
161
16l
161
161
16l
161
i61
161
161
161
182
182
192
192
182
182
192
192
192
192
205
205
205
205
205
205
205
205
205
205
249
249
249
249
249
249
249
249

119
120

118

e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init P_SetBack
e_Init_P_SetBack
e_Init_ P_SetBack
e_Init_P_SetBack
e_Injit_P_SetBack
e_Init P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_ P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
e_Init_P_SetBack
Incomplete Spec
Incomplete Spec
Incomplete Spec
Incomplete Spec
Incomplete Spec
Incomplete Spec
Incomplete Spec
Incomplete Spec
Incomplete Spec
Incomplete Spec
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency._Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_bown
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_bown
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
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289
290
291
292
283
294
295
296
287
298
299
3200

249
249
250
250
250
250
250
250
250
250
250
250

119
120
10

12
14
15
16
65
67
119
120

e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_PFmergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down
e_Emergency_Shut_Down

WARNING: Tool encountered incomplete design specification;

please review design document.
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D.3__ File pwr_di.etr(V0.0)

Section 1: Configuration Information

Access Program: PWRSDisplay_Status
Design Document Rev: 0.0

Design Document Date: $8/10/20

Apollo Version: 2.1 Exp

Run Date: Thu Oct 22 18:02:01 1898

Section 2.1: Inputs Table

Name Type Low Eigh Delta
V_Reactor_Power T_Reactor_Power (] 250 1
V_Power_Set_Point T_Power_Set_Point 10 120 1

Section 2.2: Outputs Table
Name Type Low EHigh
V_Display_Status T_P_Display_Status

T_P_Display_Status = {e_Blue,e_Green,e_Amber,e_Red,e_Flashing_Red}

Section 3: Test Values from Boundary Value Analysis
V_Reactor_Power : 0, 1, 12, 13, 24, 25, 26, 65, 68, 80, 104, 105,

106, 120, 134, 135, 136, 137, 138, 152, 167,
168, 169, 193, 209, 249, 250

V_Power_Set_Point : 10, 11, 12, 14, 15, 16, 64, 65, 67, 119, 120
Section 4: Summary of each Condition along with Associated Actions

Table Power_Status : Condition 1

C : V_Reactor_Power < (V_°Power_Set_Point =+ (0.5 * C_Power_Dead_Band ) ) AND (Vv
_Reactor_Power <=(1.05 * C_Danger_Power) )
A01l: V_Display_Status = e_Blue

Table Power_Status : Condition 2

C : (V_Reactor_Power >= (V_Power_Set_Point - (0.5 * C_Power_Dead_Band ) )) AND
(V_Reactor_Power <= (V_Power_Set_Point + (0.5 « C_Power_bead_Band ))) AND (V_

Peactor_Power < (1.05 + C_Danger_Power) )

A01: V_Display_sStatus = e_Green

—— - J—— T P —— -
Table Power_Status : Condition 3
adadn b b L U L L 2 T 7 YT e e b2 2 2 2 £ 1 3 3 3

C : (V_Reactor_power > (V_Power_Set_°Point + (0.5 « C_Power_Dead_Band ) )) AND
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(V_Reactor_Power < (1.G5 * C_Danger_Power) )
A01: V_Display_Status = e_Amber

Table Power_Status : Condition 4

C : (V_Reactor_Power >= (1.05 « C_Danger_Power )) AND (V_Reactor_Power < (1.05
* C_Critical_Power) )
A01: V_Display_Status = e_Red

Table Power_Status : Condition 5
C : (V_Reactor_Power >= (1.05 C_Critical_Power) )

A01: V_Display_Status = e_fFlashing_Red

Section 5: Test Cases along with Anticipated Test Results

WARNING: Tool encountered non-deterministic test case(s);
------- please review design document.

Test Case# Input Input ticipated Output
V_Reactor_Power V_Power_Set_Point V_Display_Status
1 0 10 NonDeterministic
2 0 11 NonDeterministic
3 o] 12 NonDeterministic
4 0 14 NonDeterministic
5 0 15 NonDeterministic
6 0 16 e_Blue
7 0 64 e_Blue
8 0 65 e_Blue
] 0 67 e_Blue
10 0 119 e_Blue
11 0 120 e_Blue
12 1 10 NonDeterministic
13 1 11 NonDeterministic
14 1 12 NonDeterministic
15 1 14 NonDeterministic
16 1 15 NonDeterministic
17 1 16 NonDeterministic
18 1 64 e_Blue
pN:] 1 65 e_Blue
20 1 67 e_Blue
21 1 119 e_Blue
22 1 120 e_Blue
23 12 10 NonDeterministic
24 12 11 NonDeterministic
25 12 12 NonDeterministic
26 12 14 NonDeterministic
27 12 1S NonDeterministic
28 . 12 16 NonDeterministic
29 12 64 e_Blue
30 12 65 e_Blue
31 12 67 e_Blue
32 12 119 e_Blue
33 12 120 e_Blue
4 13 10 NonDeterministic
35 13 11 NonDeterministic
36 13 12 NonDeterministic
37 13 14 NonDeterministic
38 13 15 NonDeterministic
39 13 16 NonDeterministic
4 13 64 e_Blue
41 13 65 e_Blue
42 13 67 e_Blue
43 13 119 e_Blue
44 13 120 e_Blue
45 24 10 NonDeterministic
46 24 11 NonDeterministic
47 24 12 NonDeterministic
48 24 14 NonDetermiristic
49 24 15 NonDeterministic
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24
24
24
24
24
24
25
25
25
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
26
26
26
65
65
65
65
65
55
65
65
65
65
65
68
68
68

68
68
68
68
68
68
68
80
B8O
80
80
80

80

80

80

80

80

104
104
104
104
104
104
104
104
104
104
104
105
105
105
105
105
105
105
105

16
64
65
67
119
120
10
11
12
14
15
16
64

67
119
120

119

119

119

NonDeterministic
e_Blue

e_Blue

e_Blue

e_Blue

e_Blue

e_Green
NonDeterministic
NonDeterministic
NonDeterministic
NonDeterministic
NonDeterministic
e_Blue

e_Blue

e_Blue

e_Blue

e_Blue

e_Amber

e_Green
NonDeterministic
NonDeterministic
NonDeterministic
NonDeterministic
e_Blue

e_Blue

e_Blue

e_Blue

e_Blue

e_Amber

e_Amber

e_Amber

e_Amber

e_Amber

e_Amber
NonDeterministic
NonDeterministic
NonDeterministic
e_Blue

e_Blue

e_Amber

e_Amber

e_Amber

e_hmber

e_amber

e_Amber
NonDeterministic
NonDeterministic
NonDeterministic
e_Blue

e_Blue

e_Amber

e_Amber

e_Amber

e_Amber

e_Amber

e_Amber

e_Amber

e_Green
NonDeterministic
e_Blue

e_Blue

e_Amber

e_Amber

e_Amber

e_hmber

e_amber

e_Amber

e_hmber

e_Amber

e_Amber
NonDeterministic
e_Blue

e_Amber

e_Amber

e_hmber

e_Amber

e_amber

e_Amber

e_Amber

e_Amber
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130
132
132
133
134
135
136
137
138
138
140
141
142
143
144
145
146
147
148
149
150
151
152
1s3
154
155
156
157
158
159
160
l61
162
163
164
165
166
167
168
169
170
171
172
173
174
i75
176
177
178
179
ig0
181
182
183
184
185
186
187
188
188
190
151
182
193
154
195
196
187
198
199
200
201
202
203
204
205
206
207
208
209

105
10S
105
106
106
106
106
106
106
106
106
106
106
106
120
120
120
120
120
120
120
120
120
120
120
134
134
134
134
134
134
134
134
134
134
134
135
135
135
135
135
135
135
133
135
135
i35
136
136
136
136
136
136
136
136
136
136
136
137
137
137
137
137
137
137
137
137
137
137
138
138
138
138
138
138
138
138
138
138
138

119

119
120

11
12
14
15
16
64
65
67
119
120

e_Amber
NonDeterministic
NonDeterministic
e_Amber

e_Amber
e_Amber
NonDeterministic
NonDeterministic
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
NonDeterministic
NonDeterministic
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber

e_Green
NonDeterministic
e__Amber
e_aAmber
e_Amber
e_Amber
e_Amber
e_Ambexr
e_Amber
e_Amber
e_Amber
e_Amber
e_Green
e_hmber
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Amber
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
e_Red
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210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
233
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
278
280
281
282
283
284
285
286
287
288
2889

152
152
152
152
152
152
152
152
152
152
152
167
167
167
167
167
167
167
167
167
167
167
168
168
168
168
168
168
168
168
168
168
168
169
169
169
169
169
169
168
169
169
169
169
193
193
1s3
193
1e3
193
1e3
1683
193
1683
193
209
209
209
209
209
209
208
208
2089
209
209
249
249
248
249
249
2489
249
248
248
249
249
250
250
250

119
120
10
11
12
14
15
16
64
65
67
118
120
10
11
12

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Red

e_Flashing_Red
e_rFlashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_rlashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_ Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
e_Flashing_Red
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290 250 14 e_Flashing_Red

291 250 15 e_Flashing_Red
282 250 16 e_Flashing_Red
293 250 64 e_Flashing_Red
294 250 65 e_Flashing_Red
285 250 67 e_Flashing_Red
296 250 119 e_Flashing_Red
297 250 120 e_Flashing_Red

WARNING: Tool encountered non-deterministic test case(s);
------- please review design document.
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D.4___ File pwr_al.etr(V0.0)

Section 1: Configuration Information

Access Program: PWRSAlarm_Status

Design Document Rev: 0.0

Design Document Date: 98/10/20

aApollo Version: 2.1

Run Date: Thu Oct 22 18:03:09 1998

Section 2.1: Inputs Table

Name Type Low High Delta
V_Reactor_Power T_Reactor_Power 0 250 1

Section 2.2: Outputs Table
Name Type Low High
V_Alarm_Status T_P_Alarm_Status

T_P_Alarm_Status = {e_Off,e_Intermittent,e_Continuous}

Section 3: Test Values from Boundary Value Analysis

V_Reactor_Power < 0, 1, 71, 142, 143, 144, 159, 175, 176, 177, 178,
179, 213, 214, 248, 250
Section 4: Summary of each Condition along with Associated Actions

Table Power_Status : Condition 1

C : (V_Reactor_Power < (1.1 * C_Danger_Power) )
AQl: V_Alarm_Status = e_0Off

Table Power_Status : Condition 2
- - [ ame

C : (V_Reactor_ Power >= (1.1 * C_Danger_Power )) AND (V_Reactor_Power <= (1.1

* C_Critical_Power) )
AQ1l: V_Alarm Status = e_Intermittent

L R ——— - [ ————
Table Power_sStatus : Condition 3
R, - [Rp——

C : (V_Reactor_Power > (1.11 * C_Critical_Power) )

AQ0l: V_alarm_Status = e_Continuous
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Sectior 5: Test Cases along with Anticipated Test Results

WARNING: Tool encountered incomplete design specification;
------- please review design document.

Test Case¢ Input Anticipated Output
V_Reactor_Power V_Alarm_Status

1 [o] e_Off

2 1 e_of

3 71 e_Off

4 142 e_Off

5 143 e_Intermittent

6 144 e_Intermittent

7 159 e_Intermittent

8 175 e_Intermittent

9 176 e_Intermittent

10 177 Incomplete Spec

11 178 e_Continuous

12 179 e_Continuous

13 213 e_Continuous

14 214 e_Continuous

15 249 e_Continuous

16 250 e_Continuous

WARNING: Tool encountered incomplete design specification;
------- please review design document.
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Appendix E - EBNF Grammar

This appendix is a partial adaptation (with a number of modifications) of EBNF grammar
presented in an overview document associated with CASE tools research work carried out at
AECL [Matias 1998). The following three topics are presented in this appendix:

o EBNF grammar
¢ mathematical functions, and

e predicate calculus symbols

EBNF grammar

The syntax of the Apollo tool is described using Extended Backus-Naur Form (EBNF) Notation.
The extensions to standard BNF used in this document are described below.

[] Bracketing
I Or
{ 1,. OneorMore

}

},. Zero or More

> Token defined within the BNF Grammar

v The item in quotes should be literally found within the sequence

Condition

Condition statements appear in Function Tables. Each of the specified operators, and math
functions has their standard mathematical interpretation.

<condition> ::= ‘(' condition ‘)’ |

N ‘NOT’ ‘(’ conditiom ‘')’ |
<condition> [ ‘AND’ | ‘&’ ] <condition> |
<condition> ‘OR’ <condition> |
<expression> <logic_comp> <expression> |
<range_expr> |
<logical_egqu_compare> |
<logical_value>

<logical_equ_compare> ::= <expression> ‘=’ <logical_value> |
<expression> [ ‘<>’ | ‘!=’' ] <logical_value>

<logical_value> ::= ‘TRUE’ | ‘FALSE’

<range_expr> ::= <expression> <l_comp> <expression> <l_comp> <expression> |
<expression> <g_comp> <expression> <g_comp> <expression>

<expression> ::= <symbol> |

<number> |
<expression> ‘+’ <expression>
<expression> ‘-’ <expression>

|
[
<expression> ‘*’ <expression> |
<expression> '/’ <expression> |
<math_function> ‘(’ <expression> ‘)’ |
‘(' <expression> ‘')’
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<math_function> ::= ‘ABS’ | ‘FLOOR’ | ‘CEILING’ | ‘ROUND’

<logic_comp> ::= <l_comp> | ‘=’ | ‘<’ | ‘I!=’ | <g_comp>
<g_comp> ::= > o=t

<l_comp> ::= <] =t

Action

The following production rules define the grammar for action statements occurring within the
document. Action statements occur in the condition tables generated by joining the output name
with the expression defining the result using an equal operator ‘=" .

<action> ::= <assign_statement>

<assign_statement> ::= <symbol> ‘=’ <expression> |
<symbol> ‘=’ <logical_value>

Basic Definitions
The following EBNF productions define basic constructs in the tabular specification language.

<number> ::= <real> | <integer>

<real> ::= <digits> ‘.’ <digits>

<integer> ::= <digits> | ‘-’ <digits>

<chars> ::= {<char>},.

<char> ::= <digit> | <letter> | ‘_* | ‘.’
<letter> ::= <lowercase> | <uppercase> | ‘S’
<lowercase> ::= al|lblctdl ... 1 ¥l 2
<uppercase> ::= A|lBJ]CIDI ... 1l Y| 2

<digits> ::= {<digit>]}.,

<digit> ::= 112131 415}6] 7181910
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Data Type Definition

The Apollo tool has support for the INTEGER, REAL predefined data types. Support is also
available for building more complex data types, such as enumerations, and sub-intervals. Table
26 provides a summary of the data types supported by the Apolio tool.

Table 26 - SDD Predefined Data Types and Modifiers

Predefined Data Type/Modifier Explanation
INTEGER An integer for which no specific internal representation is defined.
REAL An external real value, such as an analogue input.
xTOy Subranges of INTEGERs are defined with “TO™. Using this, an 8-bit byte

can be defined as “0 TO 2557, and a 16-bit word or unsigned integer can
be defined as “0 TO 65535™.

{a.b,c} Curly brackets such as “{” are used to define a list of enumerated values.

When defining a data type in the Design Specification document, the syntax defined by the
<datatype> production should be used.

<data_type> ::= <base_type> | <enum_type>
<base_type> ::= ‘REAL’ | ‘INTEGER’ |<subrange>
<subrange> ::= <subrange_index> ‘TO’ <subrange_index>

<subrange_index> ::= <number> | <constant>

<constant> ::= <symbol>

<enum_tvpe> ::= ‘{’ <enum_def> { ‘,’ <enum_def> }, ‘}’
<enum_def> ::= <enum> | <enum> = <number>

<enum> ::= <svmbol>

<symbol> ::= <symbol_name>

<symbol_name> ::= <letter> {<char> 1},
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Mathematical Functions
ABS(a) - Absolute value of a, | al

These mathematical functions take on their standard interpretation. The result from the
evaluation of one of the predefined functions that yields an error, or when the output is not a
natural number, is undefined.

Type Casting

CEILLING (o) - Smallest integer not less than a, [a’]
FLOOR(q) - Smallest integer not less than a, | a |

ROUND (a)
The ROUND function returns the closest whole number to , as defined by Equation ( 1 ).

lea] ,a< I_a_l+% ()

ROUND(a) = I
[@] .a2lal+ )

Predicate Calculus Symbols

Table 27 lists the predicate calculus symbols along with their equivalent in tabular
notation that is supported by Apollo.

Table 27 - Symbols
Predicate Calculus Interpretation Equivalent in Apollo
Svmbol

A Conjunction AND or &

v Disjunction OR

- _Logical Negation NOT

- Equality -!

# Not Equal < Or l=

& Assignment -

! The equal sign “=" when used in a condition is interpreted as equality; otherwise, it is interpreted as an assignment.
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