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ABSTRACT

Minimization of Weighted Tardiness in Job Shops Using Shifting Bottleneck and

Tabu Search Procedures

Srinivasa Rao Bongarala

Scheduling to meet set due dates is one of the most critical issues in modern
production systems. One measure of schedule effectiveness in the presence of due
dates is weighted tardiness since it can capture the cost of contractual penalties and
other losses to an organization. This research work concentrates on the problem of
minimizing the total weighted tardiness in classical job shops.

Job shop scheduling problems are among the hardest known combinatorial
optimization problems. In particular the problem of minimizing tardiness in job
shops is strongly NP-hard, which makes finding optimal solutions to it impractical in
most realistic situations. We approach this problem using two well known heuristics,
namely the shifting bottleneck procedure and tabu search. Both heuristics are known
to perform very well for minimizing makespan in job shops. Here we adapt them
for the objective of minimizing weighted tardiness and test both under different
parameter settings in order to select implementations that give the best results for
a given computational effort.

We test our algorithms with problem instances taken from the literature and
with randomly generated instances. We present our observations and conclusions
regarding the relative performance of these heuristics and their performance in com-
parison with dispatching rules. In particular, we find that the shifting bottleneck

procedure outperforms tabu search for this problem.
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Chapter 1

Introduction

Scheduling consists of planning and prioritizing activities that need to be performed
in an orderly sequence of operations. It is a tool that optimizes the use of available
resources. Scheduling leads to increased efficiency and capacity utilization, reducing
the time required to complete jobs and consequently increasing the profitability of
an organization [63).

Typical scheduling problems are railway time-tabling, project scheduling,
production scheduling, hydro-power scheduling, scheduling nurse shifts in a hospital,
etc. Emerging application examples of scheduling are in flexible manufacturing
systems, multiprocessor scheduling, robot activity scheduling, scheduling in very
large scale networks and real-time scheduling. Furthermore, there are a number of
related problems belonging to the larger class of planning problems, e.g., the early
stage of project management. Even this small sample shows the wide range and
diversity of scheduling problems, and their importance in almost every sphere of
human life stems from the need to utilize limited resources as efficiently as possible,
simultaneously satisfying several domain-specific constraints [41].

In this thesis we deal with short range scheduling in a machine shop envi-
ronment. Scheduling plays an important role in shop floor planning. A schedule

shows the planned time when processing of a specific job will start on each machine



that the job requires. It also indicates when the job will be completed on every ma-
chine. Thus it is a timetable for both the jobs and machines. Most of the scheduling
problems in production planning are very complex and far from being completely

solved, because of their combinatorial nature [1].

1.1 Scheduling models

In production planning terminology, scheduling models may be classified in terms of
a three field classification a | B | v introduced by Graham et al. {19] where o field
specifies the machine environment and contains a single entry; the 3 field specifies
the job characteristics, constraints and may contain no entries, a single entry or
multiple entries; and the v field denotes the optimality criterion. The classification

given below is adapted from Pinedo [50].

1.1.1 Machine environment

The following are some of the possible machine environments specified in the « field

e Single machine (1]|): There is only one machine (server) available and arriving
jobs (work) require services from this machine. Jobs are processed by the
machine one at a time. Each job has a processing time and a due date or
an ideal completion time and may have other characteristics such as priority.

There may also be a penalty function for deviating from the due date [65].

e Identical machines in parallel (P.,.||): There are m identical machines in par-
allel. Job j requires a single operation and may be processed on any one of
the m machines or on any one belonging to a given subset. If job 7 is not
allowed to be processed on just any one, but rather some one belonging to a

given subset, say subset M;, then the entry M; appears in the 3 field.



e Flow shop (F,||): Jobs are processed on multiple machines in an identical
sequence. However the processing times of the jobs on each machine may be

different.

e Job shop (Jx||): This is one of the widely used generalized production systems.
There are different machines in the shop, and a job may require some or all
of these machines in some specific sequence, the only restriction being that a

job can not use the same machine more than once.

e Open shop (O||): An open shop is similar to job shop except that a job may
be processed on the machines in any sequence the job needs. In other words,

there is no operationally dependent sequence that a job must follow.

1.1.2 Job characteristics

The processing restrictions and constraints specified in the 3 field may include mul-
tiple entries. Here are some of the most common job characteristics that can be

observed on the shop floor.

e Release dates (|r;|): If this symbol is present in the 3 field, job j may not
start its processing before its release date r;. If r; does not appear in the 8
field, the processing of job j may start at any time. In contrast to the release
dates, due dates are not specified in this field. The type of objective function

gives sufficient indication whether there are due dates or not.

e Sequence dependent setup times (|s;;|): The S;x represents the sequence de-
pendent setup time between jobs j and k; S, denotes the setup time for job k
if job k is first in the sequence and S, the clean-up time after job 7 ifjob jis
the last in the sequence (of course, S, and S;, may be zero). If the setup time
between jobs j and k depends on the machine, then the subscript i is included,

that is, S;;x. If no Sj; appears in the § field, all setup times are assumed to



be zero or sequence independent, in which case they can simply be added to

the processing time.

e Preemption (|Jprmp|): This characteristic indicates whether preemption (or
job splitting) is allowed. Preemption of a job or an operation means that
processing may be interrupted and resumed at a later time, even on another
machine. A job or operation may be interrupted several times. If preemption

is allowed, the g3 field shows prmp.

o Precedence constraints (|prec|): Precedence constraints may appear in single
machine or in parallel machines environments, requiring that one or more jobs
may have to be completed before another is allowed to start its processing.
There are several special forms of precedence constraints. If each job has at
most one predecessor and one successor, the constraints are referred to as
chains. If each job has at most one successor, the constraints are referred to

as intree. If each job has at most one predecessor, the constraints are referred

to as outtree.

e Blocking (|block|): Blocking is a phenomenon that occur in flow shops. If a
flow shop has a limited buffer between two successive machines, it may happen
that when a buffer is full the upstream machine is not allowed to release a
completed job. The completed job has to remain on the upstream machine

preventing or blocking that machine from working on another job.

1.1.3 Optimality criteria

Generally the performance of any schedule can be evaluated with respect to some
objective function to be optimized. Below are some of the most common objectives
used to evaluate the performance of any schedule as given by Pentico and Thompson

[24].



Makespan (]||Cmax): This is the most widely used performance measuring pa-
rameter of schedules. It is the total time required to complete all the jobs in

a schedule.

Maximum weighted flow time (|| F,:): Weighted flow time is the sum over all
jobs of the weighted amount of time between a job arrival into and departure
from the system. Minimizing maximum weighted flow time can be accom-
plished by setting the due dates equal to the arrival times and minimizing

maximum lateness.

Total weighted tardiness (|| 3 w;T;): Weighted tardiness is the sum over all
jobs of the weighted length of time taken to complete job after its due-date.
Weighted tardiness takes into account only the positive difference between

completion time and due date.

Maximum weighted lateness (||Lmax): Minimizing maximum lateness also has
significant importance because it can be used as a tool for solving many other

complex shop floor problems.

In some cases more than one objective are relevant to a particular problem. The

importance of multiple objective functions arises from the fact that a single objec-

tive can be optimized at the expense of others. A widely used technique of defining

multiple objective functions is by expressing single objectives into penalty and min-

imizing the total penalty [77]. The researchers who studied these types of multiple

objectives include Yano and Kim [76], Davis and Kanet [37], Herrman and Kim

[74]. The weighted early/tardy and weighted early/tardy flow time fall under this

category.

All the above mentioned scheduling models could fall under the following

categories:

e Static: A static problem is one where the number of all jobs, their release times

and all their characteristics are known and fixed before scheduling decisions

5



are taken [70].

e Dynamic: A dynamic environment is one in which the jobs arrive randomly

over a period of time.

e Deterministic: In deterministic models, all the parameters of the problem,
such as arrival times, due dates, processing times and machine availability

times are known before starting scheduling [53].

o Stochastic: In stochastic models, at least one of the above mentioned problem

parameters includes stochastic factors [55].

1.2 Solution strategies

Generally production scheduling problems are difficult to solve. Most of the prob-
lems are NP-hard and only a few problems were solved to optimality. Various
optimization and approximation algorithms were developed for these problems.

The optimization algorithms were mainly based on the branch and bound
scheme as developed by Lagewey et al. [40], Carlier and Pinson [35], Applegate and
Cook [9]. While considerable progress has been made in this approach, practitioners
still find such algorithms unattractive. They are time consuming, and the size of
the problems which can be solved with in a reasonable time limit is small (up to 100
operations). Moreover their implementation demands a high level of programmer
sophistication.

On the other hand approximation algorithms typically require only a frac-
tion of the time needed for optimization procedures, but do not guarantee optimal

solutions. The most common approximation algorithms for scheduling problems are:

Dispatching or priority rules These are rules used for choosing the next job

to be dispatched (scheduled) on a machine according to some fixed priority



rules. These procedures are very fast, but the quality of the solution that they

produce usually leaves plenty of room for improvement [14].

Local search procedure Local search is an iterative procedure which moves from
one solution in search space to another as long as necessary. In order to
systematically search through the solution space, the possible moves from a
solution to the next solution are restricted in some way. To describe such
restrictions neighborhood structure is used, which holds the subset of solutions
that can be reached in one step by moving from the original solution. The
search is continued until it finds the best move in the neighborhood, which is

only a local optima with respect to the neighborhood [56].

Tabu search Tabu search is a meta-heuristic search procedure designed to explore
the solution space beyond local optimality, it was initially proposed by Fred
Glover [28]. This search algorithm keeps a “tabu” list of recently made moves
and selects in each iteration the best solution that is the neighborhood of the
current solution but not in the tabu list, even if that sequence results in an
increase in the objective function. This allows for diversification in the search

and may prevent it from being trapped at a local optima [77].

Simulated Annealing This is a procedure to solve large combinatorial problems
that works in a way similar to the physical annealing process of solids. So-
lutions in a combinatorial problem are equivalent to the states of a physical
system, and the cost of a solution is equivalent to the energy of a state. In
the searching process, simulated annealing accepts not only better but also
worse neighboring solutions with a certain probability. At the beginning, the
probability of accepting a worse solution is larger at higher temperatures and

decreases gradually as the search progresses [79].

Genetic algorithms This can refer to any search process simulating the natural

evolutionary process. There will be a current population of possible solutions
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to the problem. In each generation, the best solutions (most fit individuals)
are allowed to produce new solutions (children) by mixing the features of the
parents (or by mutation); the worst children die off to keep the population
stable. This process is repeated iteratively until some stopping criterion is

reached [24].

Shifting bottleneck procedure This method is used in a multiple machine envi-
ronment and works by repeatedly optimizing the sequence on each individual
machine, while keeping the sequences on all other machines fixed. If pursued
until no more improvement can be obtained, this procedures yields a local
optimum over the neighborhood schedules obtainable from a given one by

changing on any single machine [14].

1.3 Scope of research

This thesis concentrates on static, deterministic job shop scheduling problems where
the objective is to minimize the total weighted tardiness. In particular we deal with
problems where jobs have possibly non-zero release times and possibly different due
dates. This problem can be represented by the notation Jn|r;} 3 w;T;. Tardiness
problems are of great importance in manufacturing systems. Whenever a job is not
completed by its due date, certain costs are incurred. These costs include: penalty
clauses in the contract, if there are any; loss of goodwill resulting in an increased
probability of losing customers for some or all future jobs, and a damaged reputation
which will turn other customers away [8].

Some of the practical problems that fall into general job shop structure are:
scheduling of different programs on a computer; the processing of different batches
of crude oil at a refinery; the repair of cars in a garage; the manufacture of paints
of different colours {70].

The job shop tardiness problem is the generalization of the single machine



tardiness problem 1|| - w;T;, which is known to be strongly NP-hard [45]. Hence we
approach the problem with approximate heuristics instead of exact algorithms. We
adapt and implement two well known heuristic procedures for the above job shop

tardiness problem. We present our computational experience using these heuristics.



Chapter 2

Literature Review

The problem of completing a job as close as possible to a promised delivery date is
of primary importance to operations managers. As a result, research into schedul-
ing jobs for processing, under a wide variety of shop conditions has long occupied a
prominent place in production planning literature. Some of the various objectives
on which extensive work was reported include minimizing the makespan or total
completion time [3] [25], maximum lateness [32], earliness and tardiness penalties
[72], mean flow time [39] etc. A vast research was reported towards the single ma-
chine tardiness problems, but little work was done for solving the tardiness problem
in job shops. Here we review the literature on both single machine and job shop

tardiness problems and recent extensions to them.

2.1 Single machine tardiness problems

Single machine problems are important for various reasons. A single machine en-
vironment is simple and a special case of all other environments. The results that
can be obtained for single machine models not only provide insights into the single
machine environment, but also provide a good basis for heuristics for more com-

plicated machine environments. In practice, scheduling problems of more complex

10



machine environments are often decomposed into sub problems that deal with single

machines [50].

2.1.1 Distinct due date

The single machine tardiness problem with distinct due dates and identical release
time was first studied by Wilkerson and Irwin [44]. They proposed one of the
first heuristic procedures to solve problem using an adjacent pairwise comparison
strategy. Later Baker [61] suggested a dynamic programming based algorithm for
jobs having precedence constraints.

Lawler [47] proposed a pseudo-polynomial dynamic algorithm to this prob-
lem, but it requires O(n) steps and O(n*p) space although for most of the problems
only a small portion of this storage requirement is needed. In 1978, he gave a
fully polynomial approximation scheme for the total tardiness problem. Baker and
Schrage [62] presented a chain algorithm in terms of solution tiﬁle for both weighted
and unweighted tardiness problems. Later in the year they devised a labeling pro-
cedure that can uniquely address each of the sequences that are generated while
avoiding the necessity for decoding. This labeling procedure assigns a unique code
to a sequence, identifies its location within an array and enables the sequence to be
directly retrieved from the storage.

Potts and Van Wassenhowe [58] introduced a decomposition based algo-
rithm for the problem. Three years later, they introduced a branch and bound
algorithm using lagrangian relaxation and a multiplier adjustment method to com-
pute and update a lower bound. Their method uses a heuristic to form an initial
sequence and then chooses the multipliers so that the heuristic solution also solves
the lagrangian problem.

In the same year Morton and Rachamudugu [22] identified a new property
for optimally sequencing adjacent jobs. This property, which they called proposition

1 states that for any two adjacent jobs J; and Ji, J; must precede Ji in an optimal

11



sequence.

Fry et al. [10] developed a very simple but effective algorithm based on
adjacent pairwise interchange (API) methodology to solve the problem. The idea
behind their algorithm was to explore a solution space by creating a new sequence
with the hope that it may result in a local, although not necessarily global optimum.
Du and Leung [38] proved that single machine tardiness problems are NP-hard.

Potts and Van Wassenhowe [59] proposed a simulated annealing based algo-
rithm for the problem. They generated the neighborhood using all pair interchanges
which makes their neighborhood size n(n — 1)/2. Chambers et al. [36] proposed a
heuristic which uses the dominance properties and problem decomposition to quickly
solve single machine problems with up to 50 jobs.

Holsenbeck and Russel [21] developed a heuristic based on emmons corollary.
Their principle stated that in EDD (Earliest Due Date) sequence, a job should be
assigned to the last position if it possesses a tardiness less than or equal to its
processing time.

Adams et al. [2] proposed an extremely simple construction heuristic which
was based on recursive identification of the most promising job, which is then sched-
uled in the last open position. They claimed that their heuristic performs signifi-
cantly better than the one proposed by Wilkerson and Irwin [44] which is increasingly
better as the problem size increases. Later in the same year Suan et al. [46] de-
veloped an efficient algorithm based on the branch and bound technique respecting
the precedence relations between the jobs. They designed an experiment to test
the efficiency of their algorithm and the branch and bound procedure. But their
computational experience was reported to be limited to problems with only 35 jobs.

As an improvement of the famous Lawler [47] decomposition theorem for
the one-machine total tardiness problem, some conditions on decompositions were
obtained by Potts and Wassenhowe [58] and were used by them to make the decom-
position algorithm more efficient. More conditions on the left-most decomposition

12
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position were proved and tested by Chang et al. [68].

Islam and Eksioglu [4] presented a tabu search approach for solving the
problem. They showed that their tabu search heuristic out performs the heuristics
given by Fry et al. [10], Potts and Van Larhooven [58], and Holsenbeck and Russel
[20].

Holsenbeck et al. [20] proposed a method of modifying due dates that ease
the construction of optimal schedules. They employed due date modification in a
new heuristic which was very fast and capable of solving a 50 job problem in a very
short computational time. Their heuristic was shown to be superior to previously

known heuristics in minimizing total weighted tardiness.

2.1.2 Common due date

The single machine common due date problem is a scenario where all the jobs have
a common due date d. Lawler and Moore [48] have presented a pseudo-polynomial
dynamic programming algorithm for determining the optimal solution whose com-
putation time is bounded by a polynomial of order n?d. Arthnari [66] gave a branch
and bound algorithm for the problem. Lenstra et al. [45] proved even if the jobs
have equal processing times and different penalties, the problem still remains NP-
hard. Rachamadugu et al. [23] presented myopic heuristic for the problem when all
the jobs have equal processing times.

Bector et al. [16] proposed a linear programming algorithm. Starting with
an arbitrary sequence they related the problem to a generalized linear program from
which some basic results are proved using elementary properties of linear equations
and a linear programming problem. Using those results and the idea of sensitivity
analysis in linear programming, an algorithm was developed that determines the
optimal due date and the corresponding optimal sequence.

Fathi et al. [75] reported three simple heuristics and shown to have ar-

bitrarily bad worst case performance. A fourth heuristic was then proposed and
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shown to have a worst-case performance bound of 2. Cheng [17] proposed a partial
search algorithm which was not polynomial bound, which represented a significant
improvement in computational efficiency of the order O(n*) over that presented in
Cheng [17] which was of order O(O*2") time complexity. He provided a system-
atic method of solution for the single machine common due date assignment and
sequencing problem.

Liman et al. [11] considered the problem in which all jobs have a common
due time window. Jobs that are completed within the window incur no penalty.
They proposed an O(nlog n) algorithm to solve the problem. They also considered
two special cases for which simple solutions can be obtained. Alidaee et al. [3]
studied the problem and assumed that the weights of the jobs are proportional to
their processing times . The longest processing time (LPT) order was shown to be

optimal and an efficient algorithm for generating an optimal schedule was proposed.

2.1.3 Release dates

. The single machine tardiness problem with release dates for each job was proved
to be strongly NP-hard by RinnoyKan [30], since the release times are unequal
and idle time may be inserted in optimal schedule. Chu and Portmann [7] proved
a sufficient condition for local optimality in solving the problem. They defined a
dominant subset of schedules on the basis of this condition and proposed several
new approximate algorithms to construct schedules belonging to this subset. They
tested their heuristics against the modified due date (MDD) heuristic of Baker and
Bertrand [64] and concluded that their heuristics offered an improvement of 10%
over the MDD heuristic.

Chu [6] developed a branch and bound algorithm for solving 1/r;/T; op-
timally. Lower bounds were obtained by scheduling the jobs according to shortest
processing time under the assumption that the jobs are preemptive. Upper bounds

for both partial and complete schedules were obtained by applying the heuristics
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of Chu and Portmann [7] to the appropriate subset of jobs. Their algorithms were
successful in easy problems with up to 230 jobs and in hard problems with up to 30
jobs. Problem hardness was defined by the tightness of due dates and by the range

of release times.

2.2 Job shop problems

The classical general job-shop scheduling problem is defined as follows: There are n
jobs to be processed through m machines. Each job must pass through each machine
exactly once. The processing of a job on a machineis called an operation and requires
a duration called the processing time. Technological constraints demand that each
job should be processed through machines in a specific order. Each job has a release
time and a deadline. The general problem is to find a sequence in which jobs pass
between the machines which is compatible with the technological constraints and
optimal with respect to some performance criterion [41]. Various objectives such as
minimizing makespan, minimizing total tardiness etc., [9] can be considered.

Although single machine tardiness problems are well studied, little was re-
ported on tardiness in job shop scheduling. The dominance conditions and bounding
mechanisms developed for single machines can not be easily extended to job shops
[54]. We present here some of the work done by various researchers towards the
tardiness problems in job shops.

Baker and Kanet [63] extended the idea of modified due date rule to the
general job shop problem. They used the operation version of the modified opera-
tion due date (MOD) rule which employs operation due dates to pace the jobs in
the shop. Again Baker [60] examined the interaction between sequencing priorities
and the method of assigning due dates, primarily focusing on the average tardiness
as a measure of scheduling effectiveness. He performed certain simulation experi-

ments which illuminates how these factors interact with dispatching rules and his
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experimental results suggest which combinations are most effective in a scheduling
system.

Vepsalainen and Morton [43] studied a number of dispatching rules, which
were heuristics that assign priorities to those operations that have not been processed
yet, and then schedule them in decreasing order of priority. They have tested a
number of rules such as Earliest Due Date (EDD), Weighted Shortest Processing
Time (WSPT), Cost Over Time (COVERT) and Apparent Tardiness Cost (ATC)
and concluded that apparent tardiness rule achieves the best results.

Anderson and Nyirendra [34] presented two new dispatching rules to mini-
mize tardiness in the job shops. Both rules are closely related to the modified opera-
tion due date (MOD) rule. The first is a combination of the shortest processing time
(SPT) rule and critical ratio (CR) rule, And the second is a combination of SPT
and slack per remaining work (S/RPT) rules. They reported that the performance
of these two new rules were better than that of other rules that were developed till
date, in order to minimize the total weighted and unweighted tardiness. Further
more, these two rules were effective in minimizing the number of tardy jobs.

Raman and Talbot [54], proposed a new heuristic approach that decomposes
the dynamic problem into a series of static problems. These static problems were
solved to optimality and then implemented dynamically on a rolling horizon basis.
They presented a specific heuristic that constructs the schedule for the entire system
by focusing on the bottleneck machine. Their computational results indicate that
significant due date performance improvement over traditional dispatching rules can
be obtained by using the proposed approach.

Deal et al. [80] proposed a multi-pass heuristic algorithm considering the
due dates, where the objective was to minimize the total job tardiness. Their al-
gorithms operation was carried out into two phases. In phase 1, a dispatching rule

is employed to generate an active or non delay initial schedule. In phase 2, tasks
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selected from a predetermined set of promising target operations in the initial sched-
ule are tested to ascertain whether by left shifting their start times and re arranging
some subset of the remaining operations one can reduce tardiness in the job shop.
Later Tang, He, and Cho developed an efficient heuristic algorithm and named it
as revised exchange heuristic algorithm (REHA). They have also shown that the
algorithm can be completed in polynomial time. Results, generated over a range
of shop sizes with different due date tightness levels, indicated that the proposed
algorithm was capable of yielding notable reductions in total tardiness for practical
size problems [78].

Singer and Pinedo {51] presented and compared a number of branch and
bound algorithms for minimizing the total weighted tardiness in job shops. Basi-
cally their branching schemes were of two types. The first one inserts the operations
in a partial schedule, while the second one fixes the arcs in the disjunctive graph
formulation of the problem. Their bounding schemes were based on the analy-
sis of precedence constraints, and on the solution of nonpremtive single machine
subproblems that are subjected to so-called delayed precedence constraints. They
obtained optimal solutions for all the instances with ten jobs and ten machines that
they considered, including three tardiness versions of a well-known 10 x 10 instance
introduced by Muth and Thompson [29].

Byeon, Wu and Storer [67] proposed a heuristic based on a graph theoretic
decomposition for job shop total weighted tardiness problem. Their heuristic assigns
the operations of a job scheduling problem into a series of subsets by solving the
variant of the generalized assignment problem. The assignment problem imposes
additional precedence constraints on the scheduling graph, defining partial sched-
ule. This partial schedule preserves global perspective of system objectives over
the planning horizon while retaining local flexibility. Later, they developed another

decomposition scheme. The only difference is the variant assignment problem was
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solved using a branch and bound algorithm. Although their algorithm shows su-
perior results compared to various traditional methods, it was limited to smaller
problems.

Pinedo and Singer [52] presented a shifting bottleneck heuristic for the tar-
diness problem in job shops. This method decomposes the job shop into a number
of single machine sub problems that are solved one after the other. Each machine
is scheduled according to the solution of its corresponding sub problem. The order
in which the single machine sub problems are solved has significant impact on the
quality of the overall solution and on the time required to obtain the solution. They

claim that their heuristic yields solutions that are close to optimal.

2.3 Purpose and outline of research

The above research survey indicates that little work was reported on tardiness prob-
lems in general job shops. Job shop scheduling is among the hardest combinatorial
optimization problems. The difficulty of this problem may be illustrated by the fact
that the optimal solution of an instance with 10 jobs and 10 machines, proposed
by Fisher and Thompson [29] was not found until 20 years after the problem was
introduced. Most of the heuristic job shop scheduling procedures described in the
literature are based on the priority dispatching rules. These are one pass procedures
of the greedy type, in that they construct a solution through a sequence of decisions
based on what seems locally best, and decisions once made are final.

In many situations this is all that is needed, and so their need is justified.
However, with the rapid increase in the speed of computing and growing need for
efficiency in scheduling, it becomes increasingly important to explore the ways of
obtaining better schedules at some extra computational cost. It was observed that
the most successful heuristics of the job shops with makespan objective are shifting

bottleneck and tabu search heuristics. Hence we focus on adapting these heuristics
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to job shop problems with total weighted tardiness minimization, as objective and
we compare their performance in computational testing.

We start with the shifting bottleneck heuristic, where we decompose the
job shop problem into a sequence of single machine problems. These single machine
problems are solved separately using the tabu search heuristic. We implement and
test various bottleneck selection schemes and re-optimization procedures. In chapter
3 we present a brief overview of shifting bottleneck heuristic, its components and
the way we adapted it to our job shop problem.

The second procedure we adapt is tabu search for the overall job shop. In
chapter 4, we first introduce the various concepts of the tabu search methodology.
As we solved the overall job shop problem and the single machine optimization of
shifting bottleneck using this tabu search technique, we felt it appropriate to present
the tabu structural parameters of both in the same chapter. To our knowledge this
is the first time that the tabu search is being applied to job shop problems with
total weighted tardiness as objective and having possibly different due dates for the
jobs.

Later we perform a preliminary testing on our algorithms with a few prob-
lems instances taken from the literature. Various structural parameters of both the
procedures are tuned with different settings. We carry out our final testing with
randomly generated test instances with the best settings obtained in our initial test-
ing. The experimental set up, computational results and comparisons are tabulated

in chapter 5. Finally we present our observations and conclusions.
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Chapter 3

Shifting Bottleneck Procedure

In this chapter, we apply the well known shifting bottleneck procedure of Adams
et al. [33] to our job shop weighted tardiness problem. This approach decomposes
the job shop problem into a sequence of single machine problems and solves each
machine one at a time. At each iteration, a critical subproblem is identified and
solved. We demonstrate various bottleneck or critical subproblem selection schemes

and re-optimization procedures.

3.1 Overview of shifting bottleneck procedure

Modern engineering workstations and the implementation of shop-floor information
systems which track job and machine status in real time have made scheduling
systems which consider the status of the entire shop, or at least majority of it ,
a practical possibility. Hence there is a need to focus on heuristics which exploit
this type of global shop information to develop improved schedules at the cost of
increased computation times [18]. One such approach used to accomplish the above

goal is the Shifting Bottleneck (SB) heuristic.
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The Shifting Bottleneck (SB) procedure is a heuristic decomposition ap-
proach which decomposes the job shop scheduling problem into single machine sub-
problems. At each iteration, a critical subproblem is identified and solved, and the
subproblems solved up to that point are re-optimized based on this new informa-
tion. Interactions between the subproblems are captured using the disjunctive graph
representation of the job shop problem, which forms the core of shifting bottleneck
heuristic for the job shop problems. Hence we describe this representation before
proceeding with the method itself. Several authors extended the basic disjunctive
graph representation to other implementations to model sequence-dependent setup
times, assembly-type routings, parallel machine workcenters, batch processing ma-

chines and different production and transfer batch sizes [49] [13] [42] [57].

3.2 Disjunctive graph representation

It is convenient for the analysis to represent job shop problem using a graph. For
disjunctive representation and formulation of the problem, we adopt the idea given
by Singer and Pinedo [51]. Initially the basic disjunctive graph was designed for
the problems with makespan objective. The problem of minimizing the makespan
Cmax = max(C}...,Cy) in a job shop is represented by a disjunctive graph G =
(N, A, B) by Balas [12]. With slight modifications, this representation was adapted
by Singer and Pinedo [51] to the problem J,,|r;| 3 w;T;. The set of nodes N contains
one element for each operation (i, j), one source node U representing the start of the
schedule and n sink nodes V; representing the end of each job. The set of conjunctive
arcs A = (i,7) = (k, 7) consists of the arcs connecting the nodes that represent each
pair of successive operations (i, ) and (k,j) of job j. Each arc (i,7) = (k,J) of
length |(i,7)(k,j)| = pi; specifies that any operation (k,j) can be started at the
earliest p;; time units after the start of operation (7,j). The node that represents
the final operation of job j, say (h,j), has an arc of length ps; going to V;. The
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source node U has n outgoing arcs going to the first operations of the n jobs.

Job | w; | r; | d; | Machine sequence | Processing times

1 3 0 251,234 pu=10,p = 3,p31 =6,py =4
2 2 |7 125]213 P2=7,pr2=8,ps2 =3

3 1 8 |21]4l1,2 Pz =9 ,pia=1,paz= 7

4 1 5 26 | 1,4,2,3 Pia = 2,puu=4,pu= 5, p3g =6

Table 3.1: 4 x 4 problem instance

Let N; denote the set of nodes that correspond to the operations that have
to be processed on machine i. The set of disjunctive arcs B = (t,j) ¢ (z,k) has
for every pair of nodes (i,7) and (i,k) in N;, a pair of arcs (i,7) < (2,k) going
in opposite directions with |(z,7) = (¢,k)] = pi;; and [(Z,k) — (i,7)] = pik- The
following disjunctive graph shows the above instance of Jn|r;| 2_ w;T; problem with
four jobs and four machines (4 x 4) as shown in Table 3.1. Only the disjunctive arcs
that correspond to machine 2 were depicted for clarity. Let o(B) denote a selection
of disjunctive arcs from B. Any solution for the job shop problem is equivalent to
a selection o(B), as long as the selection o(B) has one and only one arc from every
pair (i, 7)(¢, k), and the resulting graph G(N, A, o(B)) is not cyclic. Conversely, any
selection o(B) satisfying the above properties corresponds to a feasible schedule.
Let L(v,v') denote the length of the critical path (longest path) from node v to
node v’ in graph G(N, A,0(B)) (if there is no path, then L(v,v’) is not defined).
The completion time Cj; of job j is equal to L(U, V;) where values L(U,v),v are any
nodes.

The shifting bottleneck heuristic, which solves the job shop problem one

machine at a time, involves the following steps:
e Subproblem formulation and optimization.
¢ Bottleneck selection.

¢ Re-optimization.
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: Machine i. job j.

1 ®

: Conjunctive arc.

- : Pair of disjunctive arcs.

Figure 3.1: Disjunctive graph representation, the disjunctive arcs correspond to
machine 2. Other disjunctive arcs not shown.
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A solution for subproblem i corresponds to a sequence of operations for machine
i, and the value of this solution reflects the total weighted tardiness cost for the
overall job shop problem. The subproblem optimization step finds a sequence to this
single machine problem which minimizes the objective function value when mapped
onto the job shop problem. The bottleneck selection step selects the next machine
to be scheduled from the unscheduled machines with respect to some measure of
performance. Re-optimization step re-schedules some or all previously scheduled
machines in order to adapt the schedule to the constraints imposed by the last
scheduled machines. The above SB heuristic can be represented by the following

flow chart in figure 3.2. The following sections discuss these steps in detail.

. P— Subproblem -
g Dujunc:::m & | formulation —e Bonleacck - | Re

Figure 3.2: Flow chart of shifting bottleneck procedure

3.3 Subproblem formulation and optimization

The idea of formulating the single machine is similar to the idea of Singer and Pinedo
[52]. The subproblem optimization step involves scheduling a single machine. How-
ever at intermediate iterations of the algorithm some machines have been scheduled
and others not. This creates a need to consider the effects of scheduling decisions
already made when scheduling as yet unscheduled machines. These effects can be
seen in two ways: jobs become available for scheduling at the current machine at
a certain time, and take a certain amount of time to complete their processing in

the shop after leaving the current machine. For subproblem formulation, consider
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an operation (z,7) to be scheduled on machine i. Its earliest starting time is given
by r;; = L(U,(,7)). A delay in the completion time of operation (i, j) may impact
the tardiness of all n jobs, so we define dfj, with df-‘j > 0, as the local due date of

operation (i, j) relative to job k:

max(Cr, de) — L((i,5), V&) + pi;  if L((2,7), V&) exists,

o) otherwise

k
di; = (3.3.1)
If operation (i,j) is completed after its local due date df;, i.e. Ci; > d¥;, then the
tardiness of job k in the job shop increases by at least C;; — df] Let
T,§ = max(Ci; — dfj,O) (3.3.2)
denotes the tardiness of operation of (z,7) with respect to the due date of job k.
Since all operations (7, j) assigned to machine 7 have to be scheduled, the tardiness

of job k increases by at least

k
am (333

and the overall increase in the job shop objective function will be at least

Y we(max T5) i jen, (3.3.4)
k=1

Our aim is to find the sequence of operations on machine ¢ that minimizes the above
expression. This problem can be isolated from rest of the job shop by obtaining the
release dates r;;, processing times p;; and due dates df;, k = 1...n, for each operation
(Z,7) in N;. However the subproblem formulation to schedule the machines one at
a time does not guarantee feasible solutions at intermediate iterations since cycles
may introduced in the disjunctive digraph.

Other researchers [69] [15] showed that in addition to the release times and

due dates given above, precedence constraints between the operations of jobs have
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to be followed to preserve feasibility. In order to avoid cycles, we follow the idea of
delayed precedence constraints (DPC). These constraints capture precedence rela-
tionships among operations on machine 7 implied by the schedules of other machines
that have already been scheduled.

The resulting single machine problem to be solved can be denoted by
Ljr;, precl 3 wi(max TF) (3.3.5)
k J

The experience of others in applying shifting bottleneck to makespan problems is
the most critical part of the procedure. The problem in our case is NP-hard because
optimal solutions can be found through enumeration techniques, these methods de-
mand a tremendous amount of computational time and powerful computers. Instead
we use tabu search, a meta-heuristic that is well known for these problems for finding
the near optimal solutions, if not the optimal. Accordingly, approached subproblem
optimization step with tabu search methodology. All the tabu structural elements

considered for the single machine optimization are explained in the next chapter.

3.4 Bottleneck selection methods

The bottleneck selection procedure serves to specify which unscheduled machine will
be scheduled next. There is more than one way in which a machine can be viewed
as a bottleneck. Several authors considered different bottleneck selection methods
according to their problem parameters. The most common approaches found in the
literature are random machine selection and total workload measure.

In the first method, machines are selected in random order, with all the
machines having equal probability of selection [31]. Some authors reported success
using this method. Because of this fact, we considered testing this method during
the early stages of our experimentation. However, our experience revealed quickly
that the order of the machine is critical in the shifting bottleneck methodology.

Hence we did not consider this method for our final testings. The other method
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to select the next machine to schedule relies on finding a relevant measure of total
work load.

During the bottleneck selection process, we need a concept that expresses
the bottleneck quality as a matter of degree rather than yes or no property. This
quality could be measured, for instance, by the marginal utility of the machine in
problems with makespan as objéctive [33]. As a measure of quality of machine k
the value of an optimal solution to a certain one-machine scheduling problem on
machine k, which requires more computational time. On the other hand selection
of bottleneck machine quickly, allows us to perform intensive search on the single
machine being selected.

We intend to test both the concepts of performing intensive search on all
the unscheduled machines to select the bottleneck and quickly selecting the machine
using the earliest available due date rule. In the first approach, we use tabu search
on each unscheduled machine in order to determine a schedule that minimizes the
weighted tardiness as defined in the problem formulation section. The machine
with the highest objective value is selected as the next machine to schedule, since
it has the largest effect on the overall schedule. If some machines result in the
same weighted tardiness, we break ties using maximum weighted lateness. This is
specially important at the start when all or most machines are unscheduled and,
therefore, weighted tardiness of 0 is easy to achieve. Breaking ties by weighted
lateness promises to reduce weighted tardiness later on in successive scheduling of
the remaining machines.

In the second approach of bottleneck selection we use the same idea of
evaluating machines based on weighted tardiness and breaking ties with maximum
weighted lateness. But before doing this we schedule each machine using earliest
available due date (EADD). According to earliest available due date dispatch rule
every time as the machine becomes idle, the next selected operation is the one

with earliest due date among the operations waiting. The performance variations
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in opting the two bottleneck selection methods will be discussed in next chapter.

3.5 Re-optimization procedures

An important component of the SB procedure is the re-optimization procedure. For
each scheduled machine, the optimal sequence is found while keeping the sequences
on all machines that are already scheduled fixed. If an improvement is found after
this step, the process is repeated. We intend to test various re-optimization pro-
cedures taken from the literature and identify which ones perform better with our

implementations.

e Re-optimizing the machines, once all the machines are scheduled.
e Re-optimizing by random selection after all the machines are scheduled.

e Re-optimizing all the previously scheduled machines, immediately after a ma-

chine is scheduled.

¢ Re-optimizing only those machines, whose operations lie on the critical paths

immediately after scheduling a machine.

Our initial testing indicated that the re-optimizing after all machines sched-
uled and random machine re-optimization selection criteria were inferior to the other
two re-optimization methods. These two choices, unlike the other two methods do
not re-optimize the partial schedule in the light of the schedule on the most recently
added machine. This could be the possible reason why they were found weaker than
the later methods. The above contradictory argument can be extended to justify our
selection of the third re-optimization procedure i.e., re-optimizing all the machines
immediately after a machine is scheduled. The last procedure of re-optimizing the
critical machines, certainly makes sense in view of the known fact that any schedule

better than the one associated with S uses a selection in which at least one arc of
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every longest path in D, is reversed. To conform this we performed extensive test-
ing on randomly generated problems and found the former methods were not giving
satisfactory results compared to the last two methods.

We carried out our final testing with the ones which were performing well in
the initial testing. The description of experimental setup and computational results

were tabulated in chapter 3.
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Chapter 4

Concepts and Application of Tabu

Search

In this chapter we introduce several parameters of the tabu search heuristic which
govern the performance of the heuristic itself. First we present a brief description of
the various elements of this global optimization technique. Then we describe in detail
how we adapted these structural entities to solve the single machine optimization of
shifting bottleneck procedure and to solve directly the overall job shop problem. Our
implementations investigates some new features of tabu search including reversing

the critical arcs in blocks and random tabu list length.

4.1 Introduction

With its roots going back to the late 1960’s and early 1970’s, tabu search was pro-
posed in its present form a few years ago by Glover [28]. Since that time, tabu
search has proved to be a remarkably effective approach to a wide spectrum of prob-
lems. Nowhere has this success been more marked than in production scheduling

[73]. Tabu search procedures that incorporate basic elements and hybrids of these

30



procedures with other heuristic and algorithmic methods, have succeeded in find-
ing improved solutions to problems in scheduling, sequencing, resource allocation,
investment planning, telecommunication and many other areas [28].

Tabu search is a meta-heuristic that guides a local heuristic search procedure
to explore the solution space beyond local optimality. The local search procedure
is a search that uses an operation called “move” to define the neighborhood of any
given solution. One of the main components of the tabu search is its use of memory,
which creates a more flexible search behavior. Memory based strategies are therefore
the hallmark of tabu search [26].

Tabu search is based on the premise that problem solving, in order to qualify
as intelligent, must incorporate adaptive rnem-ory and responsive exploration. The
use of adaptive memory contrasts with memoryless designs, such as those inspired
by metaphors of physics and biology, and with rigid memory designs, such as those
exemplified by branch and bound and its Al-related cousins. The emphasis on
responsive exploration in tabu search, whether in a deterministic or probabilistic
implementation, derives from the supposition that a bad strategic choice can yield

more information than a good random choice [28].

4.2 Main concepts and strategies of tabu search

The idea of tabu search may be explained as follows. Given a function f(z) to
be optimized over a set X, tabu search begins in the same way as ordinary local
search, proceeding iteratively from one point (solution) to another until a chosen
termination criterion is attained. Each z € X has an associated neighborhood
N(z) € X, and each solution ' C N(z) is reached from z by an operation called a
move [26).

Tabu search has the ability to go beyond the local search for finding the
search space by efficiently modifying N(z), thereby effectively replacing it by another
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neighborhood N*(z). An impressive feature of tabu search is its special memory
structure which helps to determine N*(z) and organize the way in which the space
is explored.

The solutions admitted to N*(z) by these memory structures are determined
in several ways. One of these which gives tabu search its name identifies solutions
encountered over a specified horizon, and forbids them to belong to N*(z) by naming
them tabu [28]. This forces the search to go beyond previously visited solutions. The

most generic view of the tabu search is as follows:

1. Choose an initial solution z in solution space X

Set: current best solution z° < z; Iteration counter A « 1

2. While the termination criterion is not satisfied do
Set KN« A +1
calculate f(z') for all z’ € N*(z)
select the best neighbor z" from N*(z)
set £« 1
if f(z) < f(z") then z~ <
update tabu list

end do

3. Return z*

4.3 Initial solution

As it was stated earlier, tabu search is an iterative technique which moves from one
point to another, given a feasible solution. Sometimes the performance of the search

depends on the initial solution which is the starting point of the search.
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For our adaptation to the single machine problem of shifting bottleneck
procedure, we use earliest due date (EDD) dispatching rule. EDD was known to be
optimal for maximum lateness problem under certain conditions of single machine
[56]. Each operation could have several due dates with respect to various jobs.
According to EDD, priority is given to those operations belonging to jobs which has
earliest due date. It can be proved that EDD does not introduce cycles in the graph.

Theorem 4.1 Earliest due date (EDD) dispatch does not introduce cycles in the
disjunctive graph.

Proof: If there exists a directed path from ¢ to j in the conjunctive graph then the
due date of operation ¢ with respect to any job will be at least due date of operation
j with respect to that job minus the length of the path from 1 to j.

EDD will schedule i before j, since the due date of 7 is less than that of j.

Hence no cycle is created.

This condition may not hold for weighted shortest processing time dispatch.
So although that dispatching rule is known to be optimal for the single machine
weighted tardiness problem, we do not consider at the start point to avoid cycles in
the graph.

For our implementation of the tabu search directly to overall job shop, we
try two starting points based on two dispatching rules : weighted shortest processing
time rule (WSPT) and earliest available due date rule (EADD). Earliest available
due date rule is similar to EDD rule, except every time as the machine becomes idle,
the next selected operation is the one which belongs to the job that has earliest due

date and among the operations waiting.

4.4 Neighborhood

Tabu search is a global iterative optimization method: The search moves from one

solution to another, in order to improve the quality of the solutions visited. This
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supposes a neighborhood structure. The most common neighborhood schemes used

for single machine problems are

e Adjacent pairwise interchange, where an operation may be swapped with op-

erations directly before it or after it in the schedule.

e Swap (or all pairwise interchange), where any two operations in the schedule

can exchange the positions in the sequence.

e Insertion, where any operation can be inserted in front of any other operation

in the schedule.

Comparative studies of these three neighborhood schemes have shown that
the insert neighborhood scheme produces consistently better results than the swap
neighborhood scheme [27] and that the swap neighborhood scheme produces consis-
tently better results than the adjacent pairwise interchange neighborhood scheme
[71]. Accordingly, we select the insertion neighborhood for our single machine prob-
lem. However because of the potential of introducing cycles, we check each solution
in the neighborhood with respect to the delayed precedence constraints and we
eliminate all those sequences that violate any of the constraints.

One of the most common neighborhood generation methods found in the
literature for job shop makespan problem was given by Nowicki and Smutnicki [25],
which was successful for the problems with the objective of minimizing the makespan
in the job shop. According to them “A move is defined by the interchange of two
successive tasks T; and T, where either T; or T is the first or last task in a block
that belongs to a critical path.”

Note: A block is 2 maximal sub sequence of operations that contain oper-
ations processed on the same machine.

For our tabu implementations on the overall job shop, neighborhood consists
of reversing an arc from the disjunctive arcs. This corresponds to exchanging the

position of 2 adjacent operations on one of the machines. For the problems with
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makespan objective only such arcs that are on critical path from source node to the

common target node are considered for two reasons:
e They are the only arcs that can potentially improve the objective function.

e As Van Laarhooven [53] showed, this reversal on the critical path does not

introduce cycles in the disjunctive graph.

This is one of the neighborhood structure (N;) we test for the problems with total
weighted tardiness as objective.

We also test a second neighborhood structure (/N;) based on the fact that
for weighted tardiness objective, each job has its own target node and therefore its
own critical path from the origin. Accordingly we consider all arcs on any of these
critical paths. To overcome cycles in the disjunctive graph, we extend the idea of
Van Laarhoven [53] that any critical arc of an acyclic digraph will not be cyclic when

it is reversed.

Theorem 4.2 Suppose that e = (v,w) € E; is a critical arc of an acyclic digraph
D;. Let D; be the digraph obtained from D; by reversing the arc e in E;. Then D;
s also acyclic.

Proof: Suppose that D; is cyclic. Because D; is acyclic, the arc (w,v) is part of
the cycle in D;. Consequently, there is path (v,z,y,...,w) in D;. But this path
can also be found in D; and is clearly a longer path from v to w than the arc (v, w).
This contradicts the assumption that (v, w) is on the longest path in D;. Hence D;

is acyclic.

For both cases, if there are multiple critical paths for a given job in the

disjunctive graph, we select one arbitarily.
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4.5 Short term memory

An important distinction in the tabu search arises by differentiating between short
term memory and longer term memory. Each type of memory is accompanied by its
own special strategies. The most commonly used short term memory keeps track of
solution attributes that have changed during the recent past, and is called recency-
based memory. Recency based memory is exploited by assigning a tabu-active des-
ignation to selected attributes that occur in solutions recently visited. Solutions
that contain tabu-active elements, or particular combinations of these attributes are
those that become tabu. This prevents certain elements from belonging to N*(z)
and hence from being revisited [28].

The above process is managed by maintaining a list called tabu list, which
keeps track of tabu-active elements and implicitly or explicitly identifies their current
status. The duration that the attributes remain tabu-active (usually measured in
terms of number of iterations) is called tabu-tenure. Tabu tenure may vary for
different types or combinations of attributes and can also vary over different stages
of the search [28].

Tabu list can be maintained in two ways: dynamic and static. In the
dynamic tabu list, the length of the tabu list varies with respect to the search
history. Whenever an improvement is observed in the search then the attributes
are added to the tabu list, if not the attributes are ignored. In other words, the
length of the tabu list remains same. And in the static tabu list, as the name itself
indicates the length of the list will be fixed. Tabu list is considered to be one of
the tuning parameter of the tabu search. Variations in the length of the list will
effect the performance of the algorithm. For our implementations of both job shop
and single machine problem we maintain static tabu list. Many researchers reported
that static tabu lists would be successful for machine scheduling problems.

Along with the length of the tabu list, tabu condition i.e., content of the

tabu list also plays an important role in tabu search. For our implementations, we
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handled the tabu list in three different ways for the single machine problem:

1. The tabu list contains a list of operations and the original positions of those
operations in the sequence during an improving move. A move is considered
to be tabu if it returns any operations to its original position as stored in the

tabu list.

o

The tabu list contains the list of operations and the resulting positions of those
operations in the sequence during an improving move. A move is considered
to be tabu, if it moves any operations from its current position as stored in

the tabu list.

3. The list contains a list of operations, whose insertion resulted in the selected
move. A move is considered tabu, if it involves inserting an operation that is

in the tabu list.

For our overall job shop problem we considered only one tabu condition.
A tabu list contains a list of reveresed arcs. A move is considered to be tabu if it

reversed back an arc in the tabu list.

4.6 Aspiration criteria

Another important element of flexibility in tabu search is the aspiration criterion.
The tabu status of a solution is not an absolute, but can be overruled if certain con-
ditions are met, expressed in the form of aspiration levels. In effect these aspiration
levels provide thresholds of attractiveness that govern whether the solutions may be
considered admissible in spite of being classified tabu. Clearly a solution better than
any previously seen deserves to be considered admissible. Similar aspiration criteria
can be defined over subsets of solutions that belong to common regions or that share

specified features (such as particular functional value or level of unfeasibility) [26].
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The aggressive aspect of the tabu search is reinforced by seeking the best
available move that can be determined with an appropriate amount of effort. The
meaning of best in the tabu search applications is customarily not limited to an
objective function value. The aspiration criteria which we have selected for both
the job shop and the single machine problems is any tabu move is accepted, if it
improves the overall best objective function found so far. The aspiration criteria
can also be used as the tuning parameter of the search. We intend to test the

performance of the algorithm with and with out incorporating aspiration criteria.

4.7 Long term memory

In some problems, the short term memory components are sufficient to produce very
high quality solutions. However, in general, the tabu search becomes significantly
stronger by including longer term memory concepts and its associated strategies.

The most common long term memory components of the tabu search are
intensification and diversification strategies. Intensification strategies are based on
modifying the choice rules to encourage move combinations and solution features.
They may also initiate a return to attractive regions to search them thoroughly.
Another type of intensification approach is intensification by decomposition, where
restrictions may be imposed on parts of the problem or solution structure in order
to generate a form of decomposition that allows a more concentrated focus on other
parts of the structure .

Tabu search diversification strategies, as their name suggests, are designed
to drive the search into the unexplored regions of the search. Some of these strategies
are designed with the chief purpose of preventing the search processes from cycling,
i.e., from endlessly executing the same sequence of moves (or more generally, from
endlessly executing and exclusively revisiting the same set of solutions). Often they

are based on modifying choice rules to bring attributes into the solution that are
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infrequently used .

Regarding the long term memory implementations in our algorithms, we
implement simple diversification approaches which were proven to be successful in
machine scheduling problems [26]. After a certain number of non-improving moves
over the overall cost, we diversify the search by jumping to the best found local
optima in the search history and start the search in different direction, thereby
guiding the search to unexplored regions of the solution space. In returning to a
previously visited locally best solution, there will be a good chance that we are

returning to a good search neighborhood [73].

4.8 Termination criteria

Tabu search is an iterative technique which has no end. It is in a sense similar to an
infinite loop. Termination criteria are points where the search stops and are given
as an input parameter to the search. The most commonly used stopping criteria

are:
o A solution which is close enough to a given lower bound of goal function value.

e A limit on the number of iterations without improvement in the objective

function value is reached.

e A limit on the computational time is reached.

In our implementations, we considered three termination conditions. The
first one is specifying a maximum number of iterations for the search. Minimizing
the objective function value to zero was kept as the second condition of termination
for our job shop problems. We do not implement the same condition for our single
machine problems. During the bottleneck selection of shifting bottleneck method,

we select the machine with maximum total weighted tardiness and we break the ties
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with maximum weighted lateness. Initially as most of the machines are unscheduled,
the total weighted tardiness may be zero most of the time. In that case, we select
the machine with total weighted lateness as the bottleneck machine. So, as single
machine problems are solved using the tabu search, we may not select the critical
machine with the above termination condition. Since the tabu search application to
the overall job shop does not involve any bottleneck selection methods, the above
condition can be set as one of the termination conditions.

Third condition being neighborhood of 2 move becoming empty. The search
terminates immediately, if any one of the conditions is true. Again this termination
criterion acts as a tuning parameter of the search, which has the direct impact on

the performance of the algorithm.

4.8.1 Tabu search algorithm

Now that we explained all the tabu characteristics and their implementations in
our heuristic, we present an algorithmic view of our tabu search heuristic. Before

presenting the algorithm, we define the parameters used in our procedure as follows:

x Initial solution.

x Best neighbor
N(z) Neighborhood of a move

K Iteration counter

NI Non-improving moves counter

TL Tabu list length
Lain Minimum tabu list length
Laax Maximum tabu list length
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F Improvement indicator in the search
LOL Local-optimal-list which stores all the local optima

E Element in local-optimal-list

1. K0, TL«< 0, NI «0, LOL « empty, z « initial schedule

2. While termination criterion is not satisfied find N(z), select best

neighbor z .

if [f(z) < f(z)]
e if TL > Layax, Delete the oldest move and update tabu list
e set LOL « LOL
e Set F=1,NI=0

e set r « r and goto step 2

3. else [f(z)> f(z')]
e if TL > Lajax, Delete the oldest move and update tabu list i.e.,
TL+ A
o set LOL « LOL + (', f(z')andTL)
® Reset F «1

e NI« NI+1
check if NI < Nlpax, set ¢« z and goto step 1
else set r « E, Remove E from LOL
If LOL « 0 STOP

else STOP

4. Return z*
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Chapter 5

Computational Study and

Comparison of Heuristics

Both shifting bottleneck and tabu search procedures have many structural elements
and parameters, the selection of which can greatly affect the performance of the
heuristics. In this chapter we start with some preliminary testing using problem
instances taken from the literature in order to narrow down the number of struc-
tural elements and parameter settings. We focus our attention on varying the tabu
parameters, in particular the neighborhood structure, the tabu conditions, the max-
imum number of iterations and the maximum number of non-improving moves, for
both the single machine and the job shop problems. We also test various bottleneck
selection methods and re-optimization procedures. Then we present more exten-
sive results from running the procedures with the selected parameters on randomly
generated problems.

All our heuristics presented in this chapter were coded in the programming
language DrScheme. The code uses a library of functions in scheduling and disjunc-

tive graph manipulations previously developed at concordia university.



5.1 Preliminary testing

For our primary testing, we considered various problem instances from the literature.
In particular we carried out these testings on problem instances ORBI1-10, which
were generated by Applegate and Cook [9]. Since these instances were formulated
for minimizing the makespan in job shops, we have to add a weight and a due date
to each job. We followed the design pattern given by Pinedo and Singer [52] for
transforming problem instances with a makespan objective to problems with a total
weighted tardiness objective. The first 20% of jobs are given a weight of 4, the next
60% of jobs are given a weight of 2, and last 20% of jobs are given a weight of 1.
As Singer and Pinedo [52] note, in practice 20% of customers are considered very
important, 60% of them are of average importance and the remaining 20% are of
less importance. In this way the distribution of the weights can be justified.

The due date of a job j is set equal to the release date of the job plus the
sum of the processing times of all the operations of job j and multiplied by a due
date tightness factor f i.e.,

10
d;=r;+ \.f*gpijj
The structural elements of both procedures varied in preliminary tests are

explained in the following subsections:

5.1.1 Neighborhood structure

We considered only insertion as the neighborhood generation method for single
machine problems and we choose this method for our final testings as well.

For the job shop problem, we tested the adapted neighborhood structures
by keeping all other parameters fixed. Table 5.1 shows the results for adapted
neighborhood structures N, and N for the overall job shop problem. Although N,

was slightly better than N, the difference was not so significant that we eliminate
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Problem N, 1 N. 2

Instances | (200, 10) | (200,20) | (200,50) | (200,10) | (200, 20) | (200, 50)
ORB 1 2313 2376 2457 2639 2639 2639
ORB 2 1153 1153 1153 1387 1344 1394
ORB 3 2252 2248 2233 2193 2193 2193

ORB 5 1572 1554 1820 921 1053 764
ORB 6 1241 1203 1203 908 907 1148
ORB 8 1670 1670 1670 1588 1588 1588
ORB 9 757 757 757 665 665 665
ORB 10 734 734 834 773 963 893

Average 1461 1515 1515 1424 1410 1410

Table 5.1: Total weighted tardiness for neighborhood structures N, and N;. The
numbers in parenthises represent in order the total number of iterations performed
and the maximum number of non-improving moves allowed in the search.

N, for our final testings. Hence we decided to carry both methods for our final

testings on randomly generated problem instances.

5.1.2 Tabu condition

One of the important parameters of the tabu search for single machines was the tabu
condition. As discussed in the preceeding chapter, we designated moves to be tabu
in 3 different ways. We tested these tabu conditions with problem instances ORB1-
10. For convenience we name them to be as insert-From, insert-To and insert-op.
Among these insert-To was found best 80% of the times compared to insert-From
and 20% of times with insert-op. And insert-op was observed to outperform 80%
of times when compared to insert-From and 20% of times with insert-To. Based on
these results, we decided to perform our final testing with the two tabu conditions
i.e.. insert-To and insert-op. The results of these problems are tabulated in Table
5.2.

Since we framed only one tabu condition to job shop problem, we intend
to test our algorithms with the same condition. The tabu condition which was

considered for the job shop was “any reversal of arc on the critical path which has
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Problem-Instances | Insert-From | Insert- To | Inseri-op
ORB 1 2237 1853 1981
ORB 2 1135 879 879
ORB 3 1583 2665 2671
ORB 4 2615 1991 1991
ORB 5 1730 860 915
ORB 6 2716 1363 1056
ORB 7 809 518 388
ORB 8 1611 2720 2766
ORB 9 1737 1034 1034
ORB 10 1079 1491 1768
Average 1725 1537 1544

Table 5.2: Performance of shifting bottleneck procedure with different tabu condi-
tions in solving the single machine problem.

been already reversed is considered tabu till the tabu tenure expires”.

5.1.3 Maximum number of Iterations and maximum num-

ber of non-improving moves

In an attempt to find the best iteration number and maximum number of non-
improving moves for the single machine problems, we ran few cases of single machine
problems by varying the non-improving moves counter for a fixed number of iteration
count. Here varying the non-improving moves counter means that exploring the
search space for finding better solutions. We tested by fixing the maximum iteration
counter to 50 and varied the non-improving moves counter to 20, 10, and 5. Although
the results did not show a significant difference, still we can bank on the lower side
of the non-improving moves counter. For our final implementations, relatively we
reduced total number of iterations to 20 and non-improving moves counter to be
between 4 and 10. Some of the results obtained are presented in Table 5.3.

On the way of testing the performance of neighborhood structures of job
shop, we could figure out other tabu parameter settings for those neighborhoods.

We tested these neighborhoods keeping the iteration counter to be fixed with 200
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Problem | MaxCounter = 20 | MaxCounter = 10 | MaxCounter = 5
Instances | Insert-To | Insert-op | Insert-To | Insert-op | Insert-To | Insert-op
ORB 1 1853 1981 1853 1981 1853 1981
ORB 2 879 879 879 879 879 879
ORB 3 2665 2671 3079 2671 2157 2671
ORB 4 1991 1991 1991 1991 1991 1991

ORB 5 860 915 860 915 869 915
ORB 6 1391 1056 1391 1056 1391 1056
ORB 7 518 388 518 388 518 388
ORB 8§ 2205 2766 2205 2766 2720 2766
ORB 9 1037 1034 1034 1034 1034 942

ORB 10 1491 1768 1491 1768 1491 1768
Average 1489 1544 1530 1545 1581 1535

Table 5.3: Performance of the shifting bottleneck procedure with varying number of
non-improving moves and tabu conditions in solving the single machine problems.
In all cases, the total number of iterations per problem was 30.

and with variations in non-improving moves. We could observe improvements in the
solutions only in the first 50 iterations and in some cases to 100 iterations. With
these observations on the behavior of algorithm with the total number of iterations
and non-improving moves, we reduced them relatively for our final implementations
on the random problem instances.

We decided to perform our testing with 80 iterations for neighborhood N{
and 50 for N,. We computed seperatly the total amount of time for each iteration for
both the neighborhoods and the computation time of N, was found approximately
1.5 times of N,. In order to be consistent with the computational effort given to
both these neighborhoods, we set for N, the iteration counter of 1.5 times less than
N,. In 70% of the tested problems, best improvements were observed by allowing
20 non-improving moves before the search takes the diversification. And in 30% of
the problems tested, setting non-improving moves counter to 10 was found useful,
but never higher than 20. As a compromise between these two settings, we vary
the non-improving moves in between 8 and 20 for final implementations as shown

in Table 5.1 .
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5.1.4 Tabu list length

For the both single machine and job shop tabu implementations, we follow the idea
of various researchers of keeping the length of the tabu list to be in the range 7 and

2 [4] [79].

5.1.5 Bottleneck selection and re-optimization methods

Bottleneck selection methods were also tested with ORBI1-10, we observed that our
second bottleneck selection method i.e., machine with total weighted tardiness after
applying the tabu search on each single machine was found superior to the latter
one. In most cases this method outperformed our first method. Hence we chose this
bottleneck selection method for our final testing with randomly generated problem
instances. Another important aspect which was tested in our initial testing was the
re-optimization procedures.

We tested both of the re-optimization procedures. In almost all the cases
both the procedures performed equally well. Re-optimizing the critical machines on
the critical path after each iteration is similar to re-optimizing all the machines after
each iteration, if all the machines are on critical path. It is always possible for at
least one operation of each machine to be on the critical path. In very rare situa-
tions, it can happen such that no operation of any machine is on critical path. Due
to the above mentioned reasons, we proceed with first method of re-optimization i.e.,
re-optimizing all machines immediately after a machine is scheduled. The results of
proposed bottleneck machine selections including the re-optimization procedures for
ORBI-10 are given in Table 5.4. For easy understanding we introduced notation for
these procedures which are of the form SBP-EADD-Every-To, where SBP represents
the shifting bottleneck procedure, EADD indicates the bottleneck selection condi-
tion, Every represents the re-optimization procedure used and finally To stands for

the tabu condition used in the procedure.
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Problem | EADD-Every | EADD-CM | Tabu-Every | Tabu-CM
Instances | To op To op To op To op
ORB 1 1853 | 1981 1853 | 1981 | 1917 | 1917 | 1917 | 1917
ORB 2 879 879 (1172|1130 | 532 | 532 | 532 | 532
ORB3 [2665| 2671 | 2515|1174 | 1889 | 2187 | 1889 | 2187
ORB 4 1991 1991 | 2337 | 2337 | 1106 | 1449 | 1106 | 1449
ORB 5 869 915 744 | 744 | 1033 | 1033 | 1033 | 1033
ORB 6 1391 1056 | 2031 | 1146 | 1199 | 1681 | 1199 | 1681
ORB 7 518 388 444 | 444 | 440 275 440 | 275
ORB 8 [2205 | 2766 | 2778 | 1744 | 1663 | 2000 | 1663 | 2000
ORB 9 | 1034 942 | 1383 | 547 | 438 | 438 | 438 | 438
ORB 10 [ 1207 | 1768 [ 2203 {1700 | 924 | 924 | 924 | 924
Average | 1470 1535 | 1746 | 1294 | 1114 | 1243 | 1114 | 1243

Table 5.4: Performance of the shifting bottleneck procedure with adapted bottleneck
conditions, re-optimization procedures and tabu conditions in solving the single
machine problem.

The reason for selecting these particular problem instances from the litera-
ture was the fact that optimal solutions for these problems were known. As a result
we could compare the performance of our implementations with the optimal ones. In
most cases, our solutions were found 30-35% closer to the optimal solutions. As we
used approximation algorithms instead of optimization methods for our implemen-
tations, finding optimal solutions was difficult within a given computational effort.
This could be the possible reason for the performance variations of our implemen-
tations with the optimal solutions. However 45-50% of improvement was observed

from the initial solution of the tabu search.

5.2 Random problem instances

Our preliminary testing results produced some reliable parameters settings of the
tabu search for both job shop and single machine problems for our final testing. In
order to test the performance of our algorithms with randomly generated problems,

we designed an experimental set up which takes into account:
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e The due date tightness factor f which is a measure of tightness of due dates.
e Neighborhood procedures adapted for job shop problem.

We randomly generated the processing times of the jobs from a discrete uniform
[1,30] distribution and weights from a discrete uniform (1,10]. In order to be con-
sistent with the results reported else where, we assumed that the release dates are

0 for all jobs and that the due dates are given by
10
dj=r;+ [f * ZPijJ
=1

In contrast with testing reported elsewhere, where the same due date tight-
ness factor is used for all jobs, we generate a different factor for each job from a
discrete uniform [1,1 4 2(f — 1)] distribution. This results in an average due date

tightness factor equal to f.

5.2.1 Experimental results and discussion

In the first phase, we test all the tabu parameters which were selected during pre-
liminary testing and we discuss the variations of the performance of heuristics with
the random problem instances. Later we present the the performance variations
by varying the due date tightness factor f. We also present a brief discussion on
neighborhood behavior of the overall job shop. First we start with the neighbor-
hood structures of job shop problem, as we do not deal with any other neighborhood

methods for single machine problems except insertion method.

Neighborhood methods

To test the average performance of our heuristics with different tabu parameters,
we consider EADD as the initial solution for the tabu search and due date tightness

factor of 1.5 as a compromise between the tight and loose due dates.
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We can see that neighborhood N, on average is improving by 9% over N,
as can be computed from Table 5.5. This is comparable to the improvement of
7% resulting from the preliminary testing in Table 5.1. Of course, several other
parameters like total number of iterations and maximum non-improving moves may
be influencing the quality of the solution, which we explain later. We also compute
the average improvement of N; and N; on the initial solution as shown in Table 5.6.
From that table we observe that N, consistently results in better improvements than

Ny.

Problem N1 N2

Size | (80,8) | (8¢,20) | (50,6) | (50,12)
10 x 10 | 1466 | 1437 | 1213 | 1206
10 x 15 | 1210 | 1188 [ 1074 | 1041
15 x 10 | 5676 | 5600 | 5143 | 5190
Average | 2784 | 2741 | 2476 | 2479

Table 5.5: Average total weighted tardiness of the overall job shop with two neigh-
borhood structures N; and N,. The numbers in parenthises represent in order the
total number of iterations performed and maximum number of non-improving moves
allowed in the search.

Problem | % Improvement % Improvement
Size of N; over EADD | of N; over EADD
(80,8) | (80,20) | (50,6) | (50,12)
10 x 10 | 24.31 25.80 37.38 37.73
10 x 15 | 34.76 35.95 42.11 43.85
15x10 | 7.39 8.63 16.08 15.31

Table 5.6: Percent improvement of N; and N, over initial solution (EADD) with
different number of iterations and non-improving moves in the search.

Tabu Condition

We test the two tabu conditions which were selected from our earlier testings insert-
To and insert-op with our random instances. The average results are displayed in

Table 5.7. Here we see that the Insert-To condition is slightly better, but there is
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no clearly superior method. The difference between Insert-To and Insert-op varies
from an improvement of the first over the second of about 19% to an improvement

of the second over the first of about 4%.

Procedure (Maxlter, Average
MaxCounter) | 10 x 10 | 10 x 15 | 15 x 10
Insert-To (20,4) 522 348 2648
(20,10) 436 348 2577
Insert-op (20,4) 426 361 2841
(20,10) 538 361 2841

Table 5.7: Performance of shifting bottleneck procedure with two tabu conditions
insert-To and insert-op in solving the single machine problem.

Maximum number of iterations and maximum number of
non-improving moves

We ran our random instances with the best found settings in the preliminary tests.
It can be noted from the Table 5.8 that the insert-To, with 20 iterations and 10 non-
improving moves performing well with different sized instances. We can also observe
that as the problem size increases, the quality of insert-To with 10 non-improving

moves is improving.

Procedure (MaxlIter, Average
MaxCounter) | 10 x 10 | 10 x 15| 15 x 10
Insert-to (20,4) 522 348 2648
(20, 10) 436 348 2577
Insert-op (20,4) 426 361 2841
(20,10) 538 361 2841

Table 5.8: Performance of shifting bottleneck procedure with varying number of non-
improving moves in solving the single machine problems for random instances. The
numbers in parenthises represent in order the total number of iterations performed
and the maximum number of non-improving moves allowed in the search.

For our job shop problem, as it is evident from Table 5.5 that N, performs

better in all the cases irrespective of the size of the problem. The maximum iteration
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count 50 with non-improving moves of 12 was observed to be feasible.

Now that we have seen the effects of varying the tabu structural elements, we
intend to test the performance of our heuristics by changing the due date tightness
factor f. In the first phase we ran 60 instances of 10 x 10 problem to check the
variations. We varied three different values of f = 1.3,1.5 and 1.7 and tested
with two neighborhood structures (N,, N2) of overall job shop and single machine
shifting bottleneck procedure (SBP). For our implementations with various due date
tightness factors, we have to set accurate tabu parameters.

From conclusions of Table 5.8, we consider total iteration and non-improving
moves count to be 20 and 10 respectively for single machines. Regarding the tabu
conditions of single machine problem, we test with both the tabu conditions. And
based on the results of Table 5.5, we take (80,20) and (50,12) as the total number

of iterations and number non-improving number for both N, and N, respectively.

As mentioned earlier the initial solution is still going to be earliest available due

date dispatch.

Total Weighted Tardiness
S B Procedure Overall Job Shop
f | insert-To | insert-op M N, EADD
(20,10) (20,10) | (80,20) | (50,12)
1.3 1321 1196 2515 2292 3000
1.5 436 485 1466 1206 1937
1.7 497 426 1194 1063 1579

Table 5.9: Resulting total weighted tardiness of different procedures for 10 x 10

problems with different values of f

Table 5.10: Percent improvement of the heuristics over EADD

f % improvement over EADD
insert-To | insert-op | N, N,
1.3 55.9 60.1 16.6 | 23.6
1.5 77.4 78.0 24.3 | 37.7
1.7 68.5 69.2 24.3 | 37.7
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It can be observed from Table 5.9 that the variation of the due date tightness
factor can greatly vary the performance of the heuristic. Under tight due date
conditions, the change in tardiness cost is almost becoming triple in comparison
with the other two. In Table 5.10 we also computed the percentage of improvement
from the initial solution i.e. EADD. Insert-op was found superior with 78% decrease
from the initial solution. It can be observed almost every where that N, was found
superior than N,;. Since the objective function value is rapidly increasing due to very
tight due dates. We considered to perform rest of runs with f = 1.5 and f = 1.7

We ran various randomly generated problem instances on our algorithms
with the selected values of f. More than 120 problem instances were generated to
test different problem sizes. The results obtained are presented in Table 5.11 and

Table 5.12 . Some of the observations of our study are listed below:

Heuristic | Problem | Number Average Standard | % Improvement
Size Of Runs | Wt.Tardiness | Deviation | Over EADD
10 x< 10 20 1437 732 25.8
N 10 x 15 15 1188 619 35.9
15 x 10 10 5600 1905 8.6
10 x 10 20 1206 717 37.4
N, 10 x 15 15 1041 599 43.8
15 x 10 10 5143 1783 32.8
10 x 10 20 426 538 78.0
SBP 10 x 15 15 348 484 81.2
15 x 10 10 2577 1190 57.9

Table 5.11: Average performance of different heuristics with f = 1.5

5.2.2 Summary of test results

Here we summarize the interesting observations of our study:

o There was a significant difference in the average performance of heuristics with
the variation in due date tightness factor. Neighborhood type N; of the overall

job shop has performed better than N, as shown by Table 5.9.
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Heuristic | Problem | Number Average Standard | % Improvement
Size Of Runs | Wt.Tardiness | Deviation | Over EADD
10 x 10 20 1170 770 25.8
M 10 x 15 15 840 793 31.1
15 x 10 10 4197 1471 11.1
10 x 10 20 1122 828 28.9
N, 10 x 15 15 641 654 47.5
15 x 10 10 3926 1555 16.8
10 x 10 20 485 423 69.2
SBP 10 x 15 15 141 170 88.4
15 x 10 10 1085 634 77.0

Table 5.12: Average performance of different heuristics with f = 1.7

The performance of SBP is significantly better than the tabu search witk both

neighborhood structures as given by Table 5.9.

Percentage of improvement from the starting solution i.e, earliest available due
date dispatch (EADD) for SBP was remarkable good between 60% and 80%,
where as the other neighborhood structures of the tabu search applied to over

all graph, could bring only about 50% of improvement as shown in Table 5.10.

Percentage of improvement from starting solution was observed to be between

70 - 80 % in case of loose due dates as given by Table 5.10

The performance of both the tabu and SBP heuristics are better for loose due

dates than that of tight due dates as shown in Table 5.9 and Table 5.10.

Performance of the heuristics is greatly varied depending on initial solution of

the tabu search.

Varying the number of non-improving moves in the tabu search, effected the

performance of the algorithms as shown by Table 5.8.

For the tabu search implementation on overall job shop problem
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— Performance of N; was found better by setting the maximum number of

iteration to 80 and maximum non-improving moves to 20.
— N, was observed to be efficient with 50 maximum number of iterations

and 12 maximum number of non-improving moves before diversification.

e For tabu search implementation on single machines, maximum iteration count

of 20 with 10 non-improving moves was found better most of the time.

e The tabu condition Insert-To, set for the single machine problems has outper-

formed the other condition insert-op.

e For SBP, bottleneck selection criterion played an important role for its perfor-

mance, as the tabu search is performed on every single unscheduled machine

to select the best.
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Chapter 6

Conclusion and Future Work

This thesis provides insight into the total weighted tardiness problem in the job
shops with all jobs having possibly different due dates. It gives a comparative
study of well known heuristics shifting bottleneck procedure and tabu search. In
the way of implementing shifting bottleneck procedure, this research demonstrated
efficient methods of selecting the bottleneck machine. The application of the tabu
search to the single machine optimization of shifting bottleneck procedure was well
demonstrated.

In general, it is not easy to solve the job shop problem with jobs having
different due dates, because a delay in any operation of any machine will effect the
due date of every job. On the other hand, these problems are known to be difficult
to solve optimally. Hence approximation algorithms are the intelligent choice to
these problems.

Although all our discussion and results are for linear tardiness costs, the
generalization of the procedures we give to the case of nonlinear costs is straightfor-
ward. In fact all the heuristic implementations we give only need an evaluation of
the cost function for a given tardiness, and do not depend on that function being
linear.

Some of the important results are:
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e The due date tightness factor f has a significant effect on the performance of
the heuristics both in absolute terms and in relative terms. In other words
f affected the total weighted tardiness resulting from the heuristics as well
as on heuristics performed in comparison with one another. The potential
improvement over dispatching rules given by the heuristics is largest for an

intermediate value of the tightness factor.

e The tabu structural parameters have a significant influence on the performance

of heuristics.

e The shifting bottleneck procedure was comparatively yielding better results
than applying the tabu search to the overall job problem with weighted tar-
diness as objective. This is in apparent contradiction to the observation of
other researchers who noted that the reverse is true when the objective is to

minimize makespan.

Finally we give some avenues for improvement in our work and for future

research on this problem.

e For tabu search as applied to overall job shop scheduling problems, the most
common method of generating neighborhood is by reversing arcs on the critical
path in the disjunctive graph. Whenever an arc is reversed, the graph need
to be updated with the new release times and due dates of the operations. In
our implementation, the whole graph is updated at every iteration. However
there might be some operations in the same disjunctive graph which do not
need updating if they are not affected by the reversed arc. During this process
of updating the graph by updating all the operations, more amount of compu-
tational time is being wasted. More efficient methods should be developed to
filter the operations which need updating. This time saved can be utilized for

the search itself, thereby increasing the chances of finding improved solutions.
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e The ‘Backtracking mechanism’ is also one of the important mechanism in
shifting bottleneck procedure that we did not implement. Instead of selecting
a single machine to schedule next in the machine selection step, a list of the
most critical 3 machines is selected and a tree of possible machine sequences
is formed. According to this at each node of the branching tree, all machines
already scheduled are re-optimized. Each node of the tree represents a partial
order in which machines have been scheduled. Testing is needed to determine
the optimal value of 3 for a given computational time as compared to the

other parameters we have tested.
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