INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are availabie for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






REASONING SYSTEM FOR REAL TIME REACTIVE
SYSTEMS

GHAYATH HAIDAR

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

DECEMBER 1999
© GHAYATH HAIDAR, 2000



vl

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Waellington
Ottawa ON K1A ON4

Your file Votre réference

Our fig Notre refrence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L auteur conserve la propnété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-47844-0

Canada



Abstract

Reasoning system for real time reactive systems

Ghayath Haidar

Real time reactive systems are complex systems that react with their environment
through stimulus response behaviour. TROMLAB development environment is a for-
mal system being developed at Concordia University. It is the basis of the real time
reactive system that will be described in this thesis.

One of the main uses of the simulation tool is debugging. The Reasoning System is a
very good complement of the simulation tool.

The scope of this thesis is the study of a Reasoning System that can be used along
with the simulation tool to help debug the design and verify system properties during

the development phase in TROMLAB environment.
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Chapter 1
Introduction

Research in real-time reactive systems revolve around languages and methods for
specification and design, methodologies for verification and validation, and develop-
ment of tools and user interfaces for hiding the complexity of rigorous formalisms.
This thesis addresses the issue of simulated debugging and reasoning, an important
part of a validation technique for real-time reactive systems. The Reasoning System
is integrated with the Simulator of TROMLAB, a rigorous real-time reactive systems
development environment being built in the Department of Computer Science. Con-

cordia University.

1.1 Real Time Reactive Systems

Reactive systems maintain a continuous ongoing interaction with their environment.
Such systems are largely event driven, interact intensively with the environment
through stimulus-response behaviour, and are regulated by strict timing constraints.
Further these systems might also consist of both physical components and software
components controlling the physical devices in a continuous manner. Although reac-
tive systems are interactive systems, there is a fundamental difference between these
two systems. Whereas both environment and processes have synchronisation abil-
ities in interactive systems, a process in a reactive system is solely responsible for
the synchronisation with its environment. That is, a process in a reactive system is
fast enough to react to stimulus from the environment, and the time between stim-

ulus and response is acceptable enough for the dynamics of the environment to be



receptive to the response. For example, a human-computer interface is an interactive
system, whereas a controller for a collision-free coordinated motion of autonomous
robots is clearly reactive. In the case of real-time reactive systems, stimulus-response
behaviour is also regulated by timing constraints and the major design issue is one
performance. Examples of real-time reactive systems include telephony, air traffic
control systems, nuclear power reactors, and avionics.

Several factors contribute to the complexity of real time reactive systems. They

are .

e largeness: telephony and air traffic control systems are made up of a large

number of components;

e time constraints: telephony imposes soft time constraints, a violation of which
may not cause any catastrophe; however, avionics and nuclear power reactor
control systems impose hard (strict) time constraints, which if violated will

cause damage and injury to human safety;
e criticality: nuclear power reactor controller is a safety-critical system;

e heterogeneity: sensors, actuators, and system processes have different functional

and time sensitive capabilities.

The reactive behaviour of the system is a combination of its functional behaviour,
causal dependencies of actions, and real-time durations governing them. Due to these
three layers of interaction, understanding or reasoning about the behaviour of real-
time reactive systems becomes difficult. In TROMLAB, these are resolved through

the introduction of the following steps:
e appropriate formalisms for specification and design refinement,

e process model support for iterative design, animated analysis, and design-time

debugging,

browser support for active reuse of design and specification artifacts, and

an integrated GUI supporting all the above features.



1.2 Scope of the Thesis

In designing TROMLAB environment we have been motivated by the need for rigor-
ous development methods for real-time reactive systems. The class diagrams, state
machine representations, and the subsystem configuration have formal syntax and
semantics. Before committing a system design to its implementation, the process
model in TROMLAB requires the modelled system to be validated and verified for
the satisfaction of system properties. The central piece of the Animator is a simula-
tor which simulates the specified system strictly according to the specification. The
current thesis is an important contribution to the simulated debugging and reasoning
within the animator.

The thesis briefly reviews the architecture and design components of TROMLAB
environment in Chapter 2. The planning stage of theReasoning System identified
the twin needs: the ability to integrate with the Simulator and the GUI. Since the
design of GUI forced a complete re-engineering of the Interpreter, and the Animator,
we discuss the design of these components in Chapters 3, and 4. Having defined the
context in which the Reasoning System is to function, we discuss a set of requirements
of the Reasoning System in Chapter 5. In Chapter 6, we give descriptions of the algo-
rithms for processing different queries, and comment on their complexities. Chapter 7
gives a dialogue of the Reasoning System, implemented in Java, for Robotics Assembly
case study. Chapter 8 concludes the thesis with a summary of the contributions and

possible extensions to the reasoning system.



Chapter 2

TROMLAB Environment - a brief

review of initial design

The TROMLAB environment is an integrated facility based on TROM formalism
[Ach95] and built around a process model that incorporates iterative development,
incremental design, and application of formalism through the different stages of de-
sign. The process model incorporates an iterative development approach. the benefits

of which are well-known for:

e reducing risks by exposing them early in the development process,
e giving importance to the architecture of the software unit, and

e designing modules for large scale software reuse.

The TROMLAB environment provides facilities for modular design of TROMI
classes, modular composition of objects to build subsystems and analyse system ca-
pabilities through simulation and verification [Mut96]. An Interpreter and Animator
were the first components to be built. Recently, a Browser has been added. In

conjunction with the current effort, the following components have been built:

1. Reasoning system:- to aid simulated debugging and reasoning of systems during

development;

2. PVS ariom generator:- a tool based on the verification methodology given in
[Pom99] to generate axiomatic descriptions of specified classes and subsystems
in PVS;



3. Mechanised verifier:- a verification assistant which can be used to prove safety

properties of the system stated as lemmas in PVS theories.

4. Graphical User Interface:- to provide a comprehensive interface to all the above

stages of reactive systems development.

2.1 TROMLAB Formalism

The three tier structure of the object oriented methodology introduced by [Ach95],
as shown in Figure 1, is the basis of TROMLAB environment for developing reactive
systems. The benefits derived from the object oriented techniques include modularity
and reuse, encapsulation, and hierarchical decomposition using inheritance. In this
methodology, the system requirement is specified in temporal logic. The system is
modelled using a three tier design language.

The three tiers independently specify the system configuration, reactive classes,
and the abstract data types included in reactive class definitions. Lower-tier speci-
fications are imported into upper tiers. TROM is a hierarchical finite state machine
augmented with ports, attributes, logical assertions on the attributes, and time con-
straints. The middle-tier formalism specifies TROM classes. Abstract data types are
specified as LSL(Larch Shared Language) traits in the lowest tier, and can be used
by objects modelled by TROM. The upper-most tier specifies object collaboration
where each object is an instance of a TROM.

The three tiers are briefly described in the following three subsections.
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2.1.1 Data Abstraction Tier

This level specifies the abstract data types included in the class definition of the
middle tier. An abstract data type is defined as Larch Shared Language (LSL) trait.

Larch provides a two tier approach to specification:

e First tier, called Larch Interface Language (LIL), is used to describe the seman-

tics of a program module.

e Second tier, called Larch Shared Language (LSL), is used to specifv mathemat-

ical abstractions which can be referred to in any LIL specification.

In the present implementation of TROMLAB, only LSL traits are included. An LSL

trait for set data type is shown in Figure 2.

Trait: Set(e, S)

Includes: Integer, Boolean

Introduce:
creat : > 8§;
insert :e,S->8S;
delete :e,S > S;
size :S ->Int
member :e, S -> Bool;
isEmpty : § -> Bool;
belongto: e, S -> Bool;

end

Figure 2: Set trait

2.1.2 TROM Tier
A TROM models a Generic Reactive Class (GRC). A GRC is an augmented finite

state machine with port types. attributes, hierarchical states, events triggering tran-
sitions and future events constrained by strict time bounds. A state is an abstraction
denoting an environment information or a system information during a certain in-
terval of time. An event denotes an instantaneous signal. The events are classified
into three types: input, output, and internal. Input (output) events occur at the
ports of a TROM, synchronising with the output (input) events of another TROM in

7



its environment. The ports are abstraction of synchronous communication between
TROMs. TROM objects can only interact through the port linking them as defined
SCS. Only compatible ports can be linked, such that event sent at one port is accept-
able as an input event at the other port at the same time [Ach95]. The specification
of a transition states the conditions under which an event may occur, and the conse-
quences of such an occurrence. The time constraints enumerate the events triggered
by a transition and the time bounds within which such events should occur. Thus,
a GRC is a class parameterised with port types, and encapsulates the behaviour of
all TROM objects that can be instantiated from it. A formal definition of TROM is
given in [Ach95].

The occurrence of an event e at a port p at time ¢ triggers an activity which
may take a finite amount of time to complete. These events may lead the TROM(s)
affected by the event to undergo a state change and may further lead to the occurrence

of new events as specified by the timing constraints.

2.1.3 Subsystem Specification Tier

This level is the top most tier which constitutes subsystem configuration specifications
(SCS). We define the number of ports for each port type parameter in a GRC to
create an object of that GRC. As in OO paradigm, several objects can be created
from one GRC. These objects may have different number of ports for each port
type, and consequently have the ability to communicate and interact differently with
their environment. We can also include other subsystem configurations in defining a

subsystem.

2.2 Syntax and Semantics

The structure and behaviour of TROM can be described either textually or visually.
The templates for textual descriptions of TROMSs and subsystems are shown in Figure
3, Figure 4, Figure 5, and Figure 6.

The visual representation of a reactive system includes the class diagrams, state
machine diagrams, and the collaboration diagrams. These are discussed in Chapter .



Class Train [@C]
Events: Near'@C, Out, Exit!@C, In
States: *idle, cross, leave{*11,12}, toCross
Attributes: cr:@C
Traits:
Attribute-Function: idle -> {};cross -> {};leave -> {};toCross -> {cr};
Transition-Specifications:
R1: «idle,toCross>; Near(true); true => !cr'=pid;
R2: <cross,leave>; Out; true => true;
R3: <leave,idle>; Exit(!pid=cr); true => true;
R4: <toCross,cross>; In; true => true;
Time-Constraints:
TCvar2: R1, Exit, [0, 6), {};
TCvarl: Rl1, In, (2, 4), {};
end

Figure 3: Train class specifications

Class Gate [ @S]
Events: Lower?@S, Down, Up, Raise?@$
States: *opened, toClose, toOpen, closed
Attributes:
Traits:
Attribute-Function:
Transition-Specifications:
R1: <opened,toClose>; Lower(true); true => true;
R2: <toClose closed>; Down; true => true;
R3: <toOpen,opened>; Up; true => true;
R4: <closed,toOpen>; Raise(true); true => true;
Time-Constraints:
TCvarl: R1, Down, {0, 1], {closed }
TCvar2: R4, Up, [1, 2], {}:
end

Figure 4: Gate class specifications



Class Controller [ @P, @G])

Events: Lower!@G, Near?@P, Raise!@G, Exit?@P
States: *idle, activate, deactivate, monitor
Arributes: inSet:PSet
Traits: Set[@P,PSet]
Attribute-Function: activate -> {inSet };deactivate -> {inSet};monitor -> {inSet};idle -> {};
Transition-Specifications:
R1: <activate,monitor>; Lower(true); true => true;
R2: <activate,activate>; Near(!(member(pid,inSet))); true => inSet’=insertpid,inSet);
R3: <deactivate,idle>; Raise(true); true => true;
R4: <monitor,deactivate>; Exit(member(pid,inSet)); size(inSet)=1 => inSet’delete(pid,inSet);
RS5: <monitor,monitor>; Near(!(member(pid.inSet))); true => inSet’=insert(pd.inSet):
R6: <monitor,monitor>; Exit(member(pid,inSet)); size(inSet)>1 => inSet’=deete(pid,inSet);
R7: <idle,activate>; Near(true); true => inSet’=insert(pid,delete(pid, inSt));
Time-Constraints:
TCvarl: R7, Lower, [0, 1], {}:
TCvar2: R4, Raise, [0, 1], {};
end

Figure 5: Controller class specifications

SCS TCG

Includes:

Instantiate:
tl::Train[@C:2];
t2::Train[@C:2];
t3::Train[@C:2];
cl::Controller[@P:3,@G:1];
c2::Controller[@P:3,@G:1];
gl::Gate[@S:1];
g2::Gate[@S:1];

Configure:
tl.@Cl:@C <-> cl.@Pl:@P;
tl.@C2:@C <-> c2.@P1:@P;
2.@Cl:@C <->cl.@P2:@P;
2.@C2:@C <-> c2.@P2:@P;
B3.@Cl:@C <->cl.@P3:@P;
3.@C2:@C <> c2.@P3:@P;
cl.@Gl:@G <-> gl.@S1:.@S;
c2.@Gl:@G <> g2.@S1:@S;

end

Figure 6: SCS

10



The TROM model incorporates the essential features for describing reactive en-
tities. A TROM object has a single thread control and communicates with its envi-
ronment through ports by synchronous message passing. The ports represent access
points for by directional communication between the objects. A port type determines
the messages that are allowed at a port of that type. A TROM can have several port
types associated with it and several ports of the same port type. An event represents
an instantaneous activity, while an action represents an activity taking a non-atomic
time interval of finite duration. At any instant, a TROM exhibits a signal represent-
ing a message, an internal activity, or idleness. The signal describes the occurrence
of an event at the specific time instant, at a specific port.

Informally, the templates in Figure 3. Figure 4, and Figure 53 have the following

elements:
e A set of events partitioned in three sets: input, output. and internal events.
o A set of states: A state can have sub-states.

o A set of typed attributes: The attributes can be one of the following:

— abstract data types,

— port reference type.
e An attribute function defining the association of attributes to states.

e A set of transition specification: Each specification describes the computational
step associated with the occurrence of an event. The transition specification
has three assertions: a pre- and post-condition as in Hoare logic. and the port

-condition specifying the port at which the event can occur.

e A set of time-constraints: Each time constraint specifies the reaction associated
with a transition. A reaction can fire an output or an internal event within a
defined time period. Associated with a reaction is a set of disabling states. An
enabled reaction is disabled when an object enters any of the disabling states

of the reaction.

The status of a TROM captures the state in which the TROM is at that instant,

the value of the attributes at the instant as reflected in the assignment vector, and the

11



timing behaviour of TROM as specified in the reaction vector. The reaction vector
associates the set of reaction windows with each time constraint, where a reaction
window represents a outstanding timing requirement to be satisfied by the output
event or the internal event associated with the time constraint. When the reaction
vector is null the TROM is in a stable status.

The occurrence of an activity stipulated by an interaction with the environment,
or by an internal transition leads to a change in the status of a TROM. The current
state of a TROM, its assignment vector, and its reaction vector can only be modified
by an incoming message, by an outgoing message, or an internal signal. The status
of a TROM is thus encapsulated, and cannot be modified in any other way-

A computational step [Ach93] of a TROM is an atomic step which takes the TROM
from one status to its succeeding status as defined by the transition specifications.
Every computational step of a TROM is associated with the transition of the TROM
and every transition with either an interaction signal or an internal signal or a silent
signal. The computational step occurs when the TROM receives a signal and there
exists a transition specification such that the following conditions are satisfied: the
triggering event for the transition is the event causing the signal; the TROM is in the
source state or in a sub-state of a source state of transition specification; the port
condition is satisfied if the signal is in the interaction and the enabling condition is
satisfied by the assignment vector. The effects of the computational step are: the
TROM enters the destination state; the assignment vector is modified to satisfyv the
post condition; and the reaction vector is modified to reflect the firing, disabling, and
enabling of reactions. Each computational step is associated with the transition in
the state machine of the TROM. After the transition is taken the current state will be
the destination state of the transition. The port at which the interaction must satisfy
the port condition associated with the transition, thereby constraining the objects
with which the TROM can interact at that instance.

A computational step causes time-constrained responses to be activated or deacti-
vated. If the constraint event of the outstanding reaction is the event associated with
the transition, and the time of occurrence of the event associated with the transition
is within the reaction window of the outstanding reaction, then the reaction is fired.
If the destination state of the transition associated with the computational step is
a disabling state for an outstanding reaction then the reaction is disabled. When-
ever a reaction is time-constraint by the transition associated with the computational

12



step, the reaction is enabled. The operational semantics ensures that the time can-
not advance past reaction window without either firing or disabling the associated
outstanding reaction.

The factors determining whether a TROMI is well formed are:

e There is at least one transition leaving every state, thus forbidding a final ter-

minating state.

e If there is more than one transition leaving a state, then the enabling conditions

of transitions should be mutually exclusive.

e Before a TROM starts executing, the value of only the active attributes in the
initial state are specified. An attribute will acquire a value only when it reaches

the first state in which it is active.

e Every computational step in a TROM results in some computation of the
TROM.

A subsystem is composed by instantiating TROM objects from GRCs and con-
figuring them through port links. Only compatible ports are linked between TROM
objects. An already composed subsystem may also be included in composing a new
subsystem: one or more of the unused ports in the objects of the included subsys-
tem are configured with some ports of the instantiated objects in the new subsystem
being composed. The objects communicate and synchronise through the configured
links. The computational step of a subsystem is a vector of computational steps of
the TROMs included in it.

2.3 TROMLAB Components

In this section we briefly review the functionality of the Interpreter [Tao96|, and the
Animator{Mut96].

2.3.1 The Interpreter

The interpreter is the first tool to be implemented in TROMLAB. The tool, as designed

by Tao [Tao96], checks the textual specification for syntactic correctness and builds
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an internal representation of the formal specification of a reactive system. In order

to build the internal representation it performs the following tasks:

Syntactic analyses: It makes sure that the files are syntactically correct; that

is, consistent with TROM grammar.
Semantic analysis: It does simple semantic analysis such as

— states of a TROM have different names.

— an LSL trait is used after being declared,

— every transition has an outgoing and incoming state, and
— transition specifications are well-formed logical formulas

Internal structure: Based on a syntactically and semantically correct text file
it generates all the internal data structures that would be used by all the other

tools in TROMLAB.

The components of interpreter are the following:

Scanner
A single text file containing LSL traits, TROM class specifications. subsystem

specification, and an initial event list is taken as input to the scanner. Using
Flex the scanner performs lexical analysis and identifies the tokens to be used

by the parser.

Parser
This uses Bison to certify the syntactic correctness of the tokens received from

the scanner.

Syntaz analyser
Using predefined grammars for TROM and subsystem this module evaluates

the syntactic correctness of tokens received by Bison. Any error at this stage

will be communicated by Bison to the user and will terminate the execution of

the interpreter.

Abstract syntaz tree generator
An abstract syntax tree is generated for each TROM and subsystem input to

the interpreter.
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e Semantic analyser
This is a C++ program that uses the well-formedness rules of the formalism to

perform simple semantic analysis.

o Error message handler
This is part of semantic analyser functionality. Every semantic error detected

will be saved in a file until the end of semantic analysis.

!
| User Input
; File

Validate syntax Validate semantics on fly

Generate

Syntax analyser L Semantic analyser 1——-‘ Error messages '

. o uses
Generate Semantic Validation

Abstract Syntax Tree (AST) 7 ----- HSES el Ce+

Figure 7: Architecture of interpreter

The interpreter uses YACC and LEX for syntactic analysis and is implemented
in C++. This tool had some limitations: all the information had to be in a single
file, which makes it difficult to incrementally design a complex system. The data
structure generated by this tool also has several limitations. This will be discussed

in Chapter 3.

2.3.2 The simulator

The simulator tool was designed and implemented by Muthiayen [Mut96]. This work
was started in parallel with the work on the interpreter. The simulator interfaces

with the abstract syntax tree built by the interpreter to extract the information for
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simulation. It builds a simulation event list to keep track of all outstanding events in

the system. The simulator can work in one of two modes:

o Debugger mode: In this mode the developer can, at the end of every handled
event, invoke the debugger and use it to query the system. The system can be

rolled back and new events can be injected.

e Normal mode: In this mode the simulation will go on uninterrupted until the
system goes into a stabie state. The result of a the simulation is one scenario

of what could happen, given the initial set of events.
The simulation tool consists of the following components:

e Simulator: It consists of an event handler, a reaction window manager, and an

event scheduler.

— Event handler is responsible for handling the events which are due to occur
and detects the transition which the event will trigger.

— The reaction window manager is responsible in activating the computa-
tional step to handle the transition causing events to be fired. disabled or
enabled.

— The event scheduler causes an enabled event to occur at a random time
within the corresponding reaction window. It schedules output events

through the least recently used port using a round robin algorithm.

e Consistency checker: It ensures the continuous flow of interactions by detecting

deadlock configurations.
o Validation tool: It consists of a debugger, a trace analyser, and a query handler.

— The debugger supports system experimentation by allowing the user to
examine the evolution of the status of the system throughout the simula-
tion process. It also supports interactive injection of simulation event, and

simulation rollback to a specific point in time.

~ The trace analyser includes facilities for the analysis of the simulation
scenario. It gives feedback on the evolution of the status of the objects in

the system, and the outcome of the simulation event.
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— The query handler allows examining the data in the AST for the TROM
class to which the object belongs, and supporting analysis of the static

components during simulation.

o Object model support: It supports the specification of the TROM classes and
the evaluation of the logical assertions included in the transition specifications.

e Subsystem model support: It creates subsystems by instantiating included sub-

svstems from object and port links.

e Time manager: It maintains the simulation clock updating it regularly. It
allows setting the pace of the clock to suit the needs of analysis of simulation
scenarios. It also allows freezing the clock while analysing the consequences of

a computation.
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Figure 8: Architecture of simulation tool
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Chapter 3

Modification to the Initial Design

Evolving systems need to have a flexible design with abilities to absorb changing
requirements with minimal changes to the design. In the absence of a flexible design,
it may be necessary to re-engineer and rebuild several of the system components. The
initial TROMLAB design is an example of a design which can not be adapted to a
graphical user interface front-end. However, GUI has been recognised as an important
requirement for the usability of the entire system. Moreover reasoning with partial
subsystems was not possible. This is a severe limitation of a large system for which
different components may become available at different times. One of the goals of
reasoning is to be able to reason modularly and compose the consequences. This is

the major reason that a re-engineering of the initial design was undertaken.

3.1 Necessity for re-engineering

The three important criteria for TROMLAB design have been identified as scalability,
portability, and flexibility. The TROM methodology provides the support to design
systems in a compositional and incremental fashion. This can be translated to the
implementation layer only if the language of implementation allows composition and
specialisation of class instances. The current implementation in C++ does not meet

the above criteria:

1. The Interpreter program required one input file containing the textual specifi-
cations of all TROMs, subsystems, and LSL descriptions. Moreover, it required
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4.

that the data be organised in a certain order. This requirement is quite strin-
gent, acts against the principles of modular and incremental development of
the system. Separate compilation of each specification was not possible. Hence,
GUI facilities such as individual composition and compilation of TROMSs could

not be handled by the Interpreter.

The AST constructed by the interpreter had a complex data structure, and
its interface to the simulator was poorly designed. Consequently, it became
necessary to write interface functions whenever a need arose. This posed severe

problems in the maintenance of the Interpreter.

. The language of implementation was C++, which can not be integrated with

some of the currently available graphical libraries for Unix platform. In partic-
ular, graphical libraries for Unix are written in Java. and do not interface with
C++.

The current programs run under Unix and are not portable to other platforms.

The revised model of TROMLAB environment is shown in Figure S. It consists of

the following components, each designed and implemented to meet the three criteria

stated above:

1.

[\]

Interpreter: It should be possible to type check and compile one specification at
a time. The order of input is irrelevant. [t should be possible to interface with
GUI, the simulator, and the verifier. The capabilities of the modified interpreter

are discussed in the next section.

Simulator: It should be possible to simulate any subsyvstem that has been type
checked by the Interpreter. It should be possible to view the simulated scenar-
ios and histories through GUI. The capabilities of the modified simulator are

discussed in the next section.

Browser: This tool has been implemented in Java [Nag99]. It can be invoked
from within the GUI or it can be invoked as a stand-alone tool. The user can
view LSL traits, TROMSs, and subsystems from the reuse library database, and

query the system for their versions and dependencies.
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UMLRT support: This tool is the front-end for visually composing reactive
svstem specifications using UMLRT support. Class diagrams, state charts, se-
quence diagrams, and collaboration diagrams can be constructed using Rose.
Using stereotypes, an extensional facility in UML, a minimal set of extensions
has been provided in to model real-time reactive systems in Rose. The UMLRT
support [Oan99] extracts the information from these models and generates for-
mal specifications in the syntax defined in TROM methodology.

Reasoning system: This tool is the subject of this thesis. It will be described
in more details in the following chapters. It gives the user the ability to query
the simulated scenario and reason about changes to the past and understand

the future consequences due to such changes.

GUI: The graphical user interface provides a comprehensive interaction facility:
it interfaces with Rose/UML tool for composing specifications graphically, which
is interfaced with interpreter for syntactic and semantic analysis; simulation
scenarios can be viewed, and queries of the Reasoning System can be composed,

verification steps can be viewed.

Verification Assistant: The Simulator with Reasoning System constitute the
validation tool. A tool to automatically generate axiomatic descriptions of
specifications from the abstract syntax tree is being built now [Pom99]. The
results produced by this tool will serve as an input to a mechanised verifier that

is being designed.

Integrating all these components in TROMLAB to meet the three design principles

cited earlier demand the following:

1

2.

3.

An Object oriented development environment:
A good graphics library which supports GUI development:

Need for compatibility between different components: UML RT support has
been developed under Windows platform; the browser has been implemented in

Java.

Based on these constraints we have chosen Java as the language of implementation

for the re-engineered components as well as the yvet to be implemented components

of the verifier.
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Figure 9: Future TROMLAB environment

3.2 Improvements

It is the Interpreter that required a totally new design and implementation. The major

changes in the Animator include its interfacing to the new Interpreter, additional

query handling facilities. and enhancements to simulation event list.

3.2.1 Interpreter

1. Scanners: Having a single scanner makes the design process harder for the user.

The user has to create all the formal specifications at the same time before it
can be checked for syntactic correctness. It is quite hard for a single scanner
to generate easy-to-understand error messages for a large system consisting of
numerous specifications. Whenever a new specification is added to an existing
set of specifications it would require re-compilation of the whole set of specifi-
cations. A more efficient technique is to have separate scanners, one for each
type of component. In the new design we have constructed separate scanners,
one for LSI trait, one for TROM class specification, one for SCS, and one for
simulation event list. This makes it easier for the user to design, debug and
validate different components independently before doing the actual semantic
analysis. As a result, the user can reuse the compiled components of any one

tvpe without having to wait for the compilation of other specifications. Thus,
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the new design conforms to the principle of separation of concerns ingrained in

OO methodology and is faithful to the three-tier methodology stated in Chapter
()

.

Error messages: In the old design the error messages were generated by Flex
and Bison. Hence, the messages were neither specific to any one specification
nor sufficiently explanatory for the user to understand and correct the errors.
In the new design, although JavaCC tool is used to parse and compile the
specifications, the error messages are not handled by JavaCC: instead, the error
messages generated by the new Interpreter module are quite specific to the

source of errors.

Changes to the Grammar: According to the previous grammar in the configure
section of the SCS the user could not specify the name of the ports, and in turn
it was generated by the Interpreter itself based on the cardinality of the specific
port type. In the new grammar the user has to specify the port name for each
TROM object in the configure section. The other changes to the grammar were
made in the initial simulation event list. The name of SCS was added, along
with the port type name added to the initial events. This change triggered
changes to the semantic analyser. The description of the Grammar is in the

Appendix A.

Semantic analysis: In the previous design the semantic analysis was conducted
in two stages: on the fly analysis and AST validation. In the new design,
semantic analysis also conforms to the principle of encapsulation in OO tech-
nology: semantic analysis internal to a class specification, and semantic analysis
relating objects in a subsystem configuration. When a class is syntax checked,
it is also semantically validated independently for its encapsulated properties.
Once a class is semantically checked and a subsystem of objects is created, the
user can initiate the second phase of semantic analysis which does the semantic

validation related to the different objects in the subsystem.

AST Structure: The structure of AST has been simplified. The Figure 10 below

describes the new AST structure.
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3.2.2 Simulator

1.

(V]

wn

Object Model Support: Due to the changes in the AST structure the existing
Object model support needed several modifications. Consequently the way
in which the assertions(port, enabling, and post) were evaluated had to be
modified.

. Simulation Event: The existing simulation event structure was augmented to

have an attribute pointing to the causing event facilitating the tracing of his-
tory. This is helpful for later additions, especially in the Reasoning System.
Consequently, various data structures had to be modified to manipulate the

new attribute.

. Query Handler: The simulation tool provides the user with a rollback option. In

the previous design the rollback would remove all the events that were scheduled
after the time of rollback including the output unconstrained events. Since these
events are external to the system, the new design does not remove these events
even if they are scheduled after the rollback time. Consequently, these events

had to rescheduled.

Fvent Scheduler: The simulation tool is capable of handling only deterministic
transitions, i.e. only one unconstrained transition going out from a single state.
In the case study of Robotics Assembly given the later chapter, we encountered a
scenario where we had more than one unconstrained transition going out from a
single state. In order to solve this non-determinism we had to make few changes

to the FventScheduler in order that it can handle the non-determinism.

LSL Library Support: The Simulation tool supports only the Set trait. In order
to facilitate the design process, we added a few commonly used LSL traits like

Stack, and Queue according to their definitions as part of the Browser
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Chapter 4

Design and Implementation of the
Modified Interpreter and

Simulator

In this chapter we compare the new design of Interpreter, and the Simulator with
their old designs to emphasise the significant improvements made according to the
description given in the previous chapter. We also discuss the tools which were used
to implement the Interpreter. The Reasoning System is built to work synchronously

with the new system.

4.1 Class diagrams

The class diagrams of the old and new design of Interpreter, and the Simulator are
drawn using OMT notation. There are major design changes to the Interpreter with
regard to the design of the classes, and relationship between the classes. The old
design of the Interpreter was more rigid, and complex with no scope for further
improvements, which motivated us towards doing a more flexible design. We took
this opportunity to implement the improvements of the Interpreter that are described
in the previous chapter. There are only minor design changes for the Simulator, i.e.
the designs differ in the way the classes are structured, and the relationship between

them.
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4.1.1 Interpreter

The class diagram for the old Interpreter consists of one class Slink which is inherited
by the classes Btree node, Configure, Name-t, Att-func, and State pair. The class
Btree node encapsulates the structure of logical expressions arising in transition spec-
ifications. A high-level class diagram of the old Interpreter is shown in Figure 11. A
detailed class diagram of the old Interpreter is shown in Figure 12 and Figure 13.
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Figure 12: Interpreter Class diagram - Detailed (Old)
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The high-level class diagrams of the new Interpreter are shown in Figure 14. A de-

tailed class diagram of the new Interpreter is shown in Figure 15 and Figure 16.They

reflect the true OO features inherent in the problem domain: an abstract syntax tree
is an aggregation of LSL trait, TROMclass, SCS, and SCSSimEv. These are precisely

the classes required to model the entities in the three tires, and the simulation events;

the detailed class diagram for each class shows the internal structures and the inter-

face. These diagrams explicitly convey the modularity in the design and the coupling

between classes - modifying any one class will not affect any other class.
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Figure 14: Interpreter Class diagram (New)
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Figure 15: Interpreter Class diagram - SCS (New)
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4.1.2 Simulator

Class diagram: Since there were no major changes in the design of Simulator, we only
show the modified class diagrams. The modifications are based on the improvements
suggested in the previous chapter. The detailed class diagrams are shown in Figure

17, Figure 18, and Figure 19.
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Figure 17: Simulator Class diagram - TROM class diagram(New)
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4.2 Language of choice

We have chosen Java as the language of implementation due to the reasons mentioned

in the previous chapter namely

e An Object oriented development environment,
e The need to support portability,

e Good graphical library support.

This choice smoothly integrates the different components of TROMLAB with GUIL We
use JavaCC and JJTree, which are preprocessors for Java, to generate the parser(s)

as part of the Interpreter.

4.2.1 JavaCC

Java Compiler Compiler (JavaCC) is currently the most popular parser generator
for use with Java applications. A parser generator is a tool that reads a grammar
specification and converts it to a Java program that can recognise matches to the
grammar. In addition to the parser generator itself, JavaCC provides other standard
capabilities related to parser generation such as tree building, actions, and debugging.

JavaCC is a Java parser generator written in Java. It produces pure Java code.
Both JavaCC and the parsers generated by JavaCC can be run on a variety of Java
platforms. JavaCC generates top-down (recursive descent) parsers as opposed to
bottom-up parsers generated by other tools, such as YACC. This allows the use of
more general grammars (although left-recursion is disallowed). Top-down parsers

have other advantages (besides allowing more general grammars):
e it is easier to debug,
e the ability to parse to any non-terminal in the grammar, and
e and the ability to pass values (attributes) both up and down the parse tree
during parsing.

The lexical specifications such as regular expressions, strings, etc. and the grammar
specifications (the BNF) are written together in the same file. It makes the grammars
easier to read (since it is possible to use regular expressions inline in the grammar

specification) and also easier to maintain.
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4.2.2 JJTree

JJTree is a preprocessor for JavaCC that inserts parse tree building actions at various
places in the JavaCC source. The output of JJTree is run through JavaCC to create
the parser. By default, JJTree generates code to construct parse tree nodes for
each nonterminal in the language. This behaviour can be modified so that some
nonterminals do not have nodes generated, or so that a node is generated for a part of
a production’s expansion. Although JavaCC is a top-down parser, JJTree constructs
the parse tree bottom up. To achieve this it uses a stack where it pushes nodes after
they have been created. When it finds a parent for them, it pops the children from

the stack and adds them to the parent, and finally pushes the new parent node

4.3 Implementation

We discuss the implementation of the parsers, the syntax for the specifications, and

the interfaces to the other components of TROMLAB system.

4.3.1 Interpreter

The parsers, implemented in JavaCC and JJ Tree, are used to build the assertion trees.
The other classes are implemented in Java. The input to the Interpreter is a textual
formal specification file(s). The Interpreter parses the file and creates the internal
representation of the AST (see Figure 10) as a result of syntax checking and on the fly
semantic analysis. If the input specification is not syntactically correct, error messages
are given, and AST is not created. Once the user has correctly composed the class
specifications, and subsystem specification (which may be compiled independently)
the overall semantic analysis for the fully specified system is done. Semantic errors at
this stage indicate an incorrect or incomplete system specification. When an object
which is not a correct instantiation of a correctly compiled class is referred to in the
specification of a subsystem, the user might be referring to a class which was not
specified (incompleteness) or the user might be incorrectly referring to an existing
object (error). When the specifications are syntactically and semantically correct,
the user may use the sirnulator to analyse its behaviour.
A brief description of the implementation of the four parsers is given below:
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1.

[S]

LSL trait parser: The LSL trait parser takes a LSL trait file as input and
generates the corresponding objects for that file and adds them to the AST. In
the same LSL trait file more than one LSL trait can be defined. and these LSL
traits will be represented by different nodes in the LSL trait’s list. If the user
submits more than one LSL trait file for the same system, the resulting objects

will be in the same list. An example LSL trait file is shown in the Figure 2 in
the Chapter 2.

On the fly semantic checks performed on this file is as follows:

(a) Trait names should not be duplicated in the Includes section.

(b) A Trait cannot include itself.

(c) No duplicate functions are allowed in the Introduce section (Note: two

functions can have same name provided their signatures are different).

(d) The return type and the parameter types of a function defined in Introduce
should be defined either in the Includes section or in the signature part
of the trait. (Note: Integer and Boolean type are assumed to be defined.

Int or Integer refers to an integer type, and Bool or Boolean refers to a

Boolean type.)

All these semantic checks are done independently of the other sections in the

AST and are performed at parse time itself.

TROM class specification parser: The TROM class specification parser takes a
TROM class specification file and generates the corresponding objects for that
file, and adds them to the AST. In the same TROM class specification file there
can be more than one TROM class specification defined, and these classes will
be represented by different nodes in the TROM class list. If more than one
TROM class specification file for the same system is submitted, the resulting
objects will be in the same list. An example of TROM class specification is

shown in the Figure 3, Figure 4, and Figure 5 in the Chapter 2.

The following semantic checks are performed while checking the syntactic cor-
rectness of TROM files:

(a) The port types cannot be duplicated.
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(b)
(c)

(d)

(e)
(f)
(g)

(h)
(1)

(p)
(q)

The event names cannot be duplicated.

The port types used in the event section should be defined in the port

section.

Only the input and output events defined in the event section can have

ports associated with them.
There is only one initial state.
The state names cannot be duplicated.

A complex state can have only one entry state which is the initial state for

that complex state.
The attribute names cannot be duplicated in the attribute section.

If the attribute is of port type then the port type has to be defined in the

port section.
The trait names can not be duplicated in the Trait section.

The port types listed in the signature of the Traits have to be defined in

the ports section.

The attributes listed in the signature of the Traits have to be defined in

the attribute section.

The state names listed in the attribute-function section should be defined

in the state section.

The attribute names listed in the attribute-function section should be de-

fined in the attribute section.

The state names listed in the transition specification section should be

defined in the state section.
The transition names cannot be duplicated.

The attribute names listed in the transition specification should be defined

in the attribute section.

The event names listed in the transition specification should be defined in

the event section.

The time constraint names cannot be duplicated.
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(t) The transition names listed in the time constraint should be defined in the

transition specification section.

(u) The event names listed in the time constraint should be defined in the

event section.

(v) The time interval defined in the time constraint should be valid, i.e. the

upper bound should be greater than the lower bound.

(w) The set of states listed in the time constraint should contain only the states

that are defined in the states section.

3. SCS parser: The SCS parser takes an SCS file as input and generatcs the
corresponding objects for that file, and adds them to the AST. In the same SCS
file there can be more than one SCS defined, and these SCS will be represented
by different nodes in the SCS list. If more than one SCS file for the same system
is submitted, the resulting objects will be in the same list. An example of SCS

is shown in the Figure 6 in the Chapter 2.

The following semantic checks are performed while syntax checking an SCS file:

(a) SCS names listed in the Includes section cannot be duplicated.
(b) TROM objects defined in the instantiate list cannot be duplicated.

(c) All the port types listed in the configure section should be instantiated in

the instantiate section of this or any of the included subsystem.

4. Initial Simulation event list Parser: The simulation event list parser accepts a
simulation event list file as input and generates the corresponding objects for
that file, and adds them to the AST. An example of simulation event list is as

follows:
SEL: TCG
Near, t1, @C1, 3;
Near, 2, @C2, 5;
Near, 3, @C1, 7;
end

Figure 20: Simulation event list
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Since the objects added to the AST have been generated independently, and are

however dependent on each other, an overall semantic analysis has to be performed

once the user is finished with the design. The overall semantic analysis checks for the

following properties:

e Between LSL traits and TROM class specification the following dependencies

must hold:

1.
2.

Every LSL trait used in a TROM class has to be defined.

The signature of every LSL trait function used in the assertion expressions
of the transition specification section of a TROM class should match the

signature defined in the corresponding LSL trait.

The return type of the LSL trait function used in the assertion expression
of the transition specification of a TROM class should match the operands

used in the expression.

e Between TROM class specification and SCS the following properties should

hold:

1.

[AV]

Every TROM object defined in the Instantiate section of a SCS must be
an instance of a TROM class in the AST.

Every TROM object defined in the Instantiate section of a SCS should
have its ports associated to the port type defined in the TROM class.

Links can exist between two instantiated TROM objects, or between an
instantiated TROM object and an open port of a subsystem included in
SCS.

Every subsystem listed in the Includes section must have been compiled

earlier.

e Between SCS and SCS the following properties hold:

1.

The number of ports of a port type used for a TROM object should be less
than or equal to the cardinality of that port type defined in the instantiate
section. This has to be checked taking into consideration all the included

subsystems in the Include section of SCS.
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2. All the TROM objects listed in the configure section should be defined in
the instantiate section. This has to be checked taking into consideration

all the included subsystems in the Include section of SCS.

3. Port names of the same port type defined in the configure section cannot
be duplicated. This has to be checked taking into consideration all the

included subsystems in the Include section of SCS.

4. All the TROM objects defined in all the included SCS’s cannot have du-

plicate names.

-

5. Only compatible ports can be linked.

e Between Simulation event list, SCS, and TROM class specification the following

properties hold:

1. Every TROM object listed in the simulation event list should be defined
in the SCS or in any one of the included SCS’s of that SCS. (The name of
the SCS appears in the Simulation event list)

2. For every TROM object listed in the simulation event list, the correspond-
ing event name should be defined in the corresponding TROM class in
the event section and this event should be of the type output and uncon-

strained.

3. For every TROM object listed in the simulation event list, the port name
listed should be defined in the SCS or in any of the included SCS’s of that
SCS for that corresponding TROM object.

4.3.2 Simulator

The simulator was implemented based on the existing design using Java. Simulator
makes use of the AST generated by the Interpreter and generates one of the possible
scenarios for the given system and the initial simulation event list.

The simulation steps are as follows [Mut96]:

1. Instantiate TROM objects: Adds the dynamic information(assignment vector,
and reaction vector) for each TROM object instantiated in the SCS to be sim-
ulated.
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Instantiate simulation event list: Schedules unconstrained internal events from
initial states. Schedules the initial simulation event and their corresponding

rendezvous.

3. Handle the events: Traverses the simulation event list with respect to time and
handles the events by evaluating the port, pre and post conditions and taking
an action accordingly of firing or disabling the corresponding transition, and

scheduling the resulting events.

4. Handle the history: Saves the state, assignment, and reaction vector prior to

the transition.

5. If the system is in debugger mode, it asks the user after handling of each event

if he wants to invoke the debugger.

6. Debugger: The debugger allows the user to perform different kind of queries

and also allows to invoke the trace analyser.

. Trace analyser: Trace analyser allows the user to query the static information

of the different TROM objects in the subsystem and of the subsystem itself.

~1

4.3.3 Interfacing with the simulator

Since the design of Interpreter was changed drastically from the previous version,
there was a major change in the way Simulator interfaced with the Interpreter. We
had to make sure that the Simulator could interface with the Interpreter to perform
its task. Thus in the Interpreter we had to implement all the methods used to by the

Stmulator. We had to modify the simulator in certain aspects:

1. In the previous implementation of the Simulator the port names were generated
automatically, but in the new version the port names are taken from the user in
the Configure section. Thus the Simulator has to interface with the Interpreter

in order to get this port name list.

2. Since the structure of assertion tree was changed in the Interpreter, the evalu-
ation of these assertion tree in the Simulator had to be modified. Thus it lead

to major modification in the Object Model support.
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Chapter 5
Reasoning System: Requirements

Real time reactive systems are very complex. Any error in the design would lead to
catastrophic consequences. We need to be able to debug and verify the design before
the implementation. The Simulator is a very powerful tool, that helps the user to
simulate his design. However this tool has some limitation. In simulating complex
systems the history of the simulation becomes very big and very hard to manage and
understand. The history of the simulation is seen only from one point of view, that
is the Simulation Fvent List point of view. It does not allow the user to look at the
history of particular events and particular TROM objects. The tool doesn’t allow the
user to modify the timing of events. This modification of the timing of the events
may help the user in seeing different scenarios in a more controlled environment, not
relying on the randomness of the simulation. It offers no tools to study the routing
of static data structure and the study of possible timing conflicts.

The Reasoning System is a good compliment to the simulation tool. The simulation
goes forward in time whereas a debugging tool that reasons about the behaviour of
the system needs to go backward in time. The Simulator that we have described in
the previous chapters goes forward in time while keeping a trace of the history. Our

Reasoning System has three main roles:

e Debugging tool: This role is served by answering questions that give different
points of views on the results of the simulation. These questions will allow the
user to view the results of the simulation from the TROM object point of view,
from the event point of view and from the Simulation Event List point of view.

They will also allow the user to have a better understanding of what caused
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certain events and transition to occur. The queries that will permit this are

described the following sections of this chapter.

e Hypothetical queries: This set of queries will allow the user to have more control
on the timing of the events. A detailed description of the hypothetical queries

is given in the following sections of this chapter.

e Validity of the Specifications: The Reasoning System has to give the user a
way to see the reachability of the states, and the correctness of the timing
constraints. To do that the Reasoning Systern will provide a set of queries that

will be described later in this chapter.

5.1 Reasoning System as a Debugging Tool

By answering the following set of queries we will give a clearer image of the history,
from different points of views. These queries will help the user in his debugging

process. These queries are :

e Why: This will tell the user why the system went from one state to another.
This query will be invoked when the simulation is stopped in debugging mode.
It will tell the user what are the events that caused the system to go from one
state to the other. It will also give the reason behind the occurrence of these
events. This query gives the user a perspective or the history from the point of

view of states.

e When: This will give the user an easy way to check for the timing of certain
events. It will also allow the user to see when a set of TROM objects were in a
certain state, which would be almost impossible if we relied only on the Simu-
lation Event List, given the large number of TROM objects and the complexity
of the reactive systems. This set of queries will give the user a perspective on
the simulation from the timing point of view. This query will be divided into

six different sub-queries:

1. When was the system or the specified TROM object in a specific state?:
This query will be invoked when the simulation is stopped in debugging
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mode. The user will be able to get a list of time intervals during which

the system or the TROM object was in a specific state.

2. When did the system or a specified TROM object go out of a specific state?:
This query will be invoked when the simulation is stopped in debugging
mode. This will allow the user to know at what times did his system or

the TROM object gets out of a critical state.

3. When an event was fired?: This query will be invoked when the simulation
is stopped in debugging mode. It will provide the user with a set of times

when a particular event was fired.

4. When an event was disabled?: This query will be invoked when the sim-
ulation is stopped in debugging mode. It will provide the user with a set
of times when a particular event was disabled. That is when the system

went into a disabling state.

5. When an event was enabled?: This query will be invoked when the simu-
lation is stopped in debugging mode. It will provide the user with a set
of times when a particular event was enabled. That is the time when the

event that caused this event to be enabled was fired.

6. When an event was scheduled?: This query will be invoked when the simu-
lation is stopped in debugging mode. It will provide the user with a set of

times when a particular event was scheduled to be fired or disabled later.

e Show the assignment vector at a particular time: This query will allow the
user to see the values of the different attributes at specific times. Since the
assignment vector changes dynamically the Simulator does not keep an image of
this vector at all times. It would be almost impossible for the user to reconstruct
an image of this vector relying on the Simulation Event List. This query allows
the user to understand better the values of the attributes at certain critical

times in the simulation.

e Show the reaction vector at a particular time: This query will allow the user
to view the outstanding reactions of the reaction vector at a particular time.
Since this vector could grow to be a very big data structure as time progresses,
the simulator only keeps the necessary information, and the user would not be

able to reconstruct this vector relying only on the Simulation Event List. This
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query allows the user to understand better the outstanding reactions at certain

critical times in the simulation.

Does the system go into a specific state?: This will give the user the possibility
to see if the system, or a set of objects in the system went into a state during a
time interval. This would be very hard without this tool given the large number
of TROM objects in a complex reactive system. This query allows the user to
debug his design by showing that some objects were in some states when they

were not supposed to.

Does the system go into a specific state more than once?: If the user wants to
see if there is a pattern in the behaviour of the system this query would allow

him to see that behaviour on the system or on a set of objects in the System.

Show the TROM status during a time interval: This query will allow the user
to see the variation in a TROM object without taking into consideration other
TROM objects in the system It allows the user to isolate and have a better

understanding of the behaviour of a particular TROM object.

Show the simulation event list of a particular TROM object: This query will
allow the user to isolate the simulation event list of a particular TROM object

from the very complex Simulation Event List of the system.

5.2 Reasoning Based on Hypothetical Queries

By answering the following set of queries we will give the user possible scenarios to see

when the timing of certain events are modified. We will give the user the possibility

to insert new events and see the effect they will have on the behaviour of the system.

We will also allow the user to remove certain events and understand the effect that

it has on the results of the simulation. Theses queries have to respect certain criteria

that would prevent them from violating the requirement of the simulation. Theses

criteria will be described in more details in Chapter 6.

o What if we insert an event?: This query will allow the user to interactively
insert new events, thus allowing the study of new scenarios without having to

modify the Original Stmulation Event List, compiling it again and running the
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Simulator again from the beginning. Since the user represents the environ-
ment, the user is only allowed to insert environmental events, that is output

unconstrained events.

o What if we remove an event?: This query will allow the user to interactively
remove events without having to do this modification on the Original Event List,
compiling it again and running the Simulator from the beginning. Since the user
represents the environment the user is only allowed to remove environmental

events that is output unconstrained events.

e What if we reschedule an event?: This query will give the user more control
over the timing of the events and thus modifyving the simulation results. This is
impossible in the Simulator since it schedules the events at random times within
the allowable timing interval. The user can reschedule constrained events within
the allowable timing intervals. The user can reschedule output unconstrained
events to any time since the user represents the environment. The user is not
allowed to reschedule input events: in order to do that the user has to reschedule

the corresponding output events.

5.3 Using the Reasoning System for Validation of
the Specifications
There are four types of errors that we attempt to detect in this section namely:

e Is a state reachable inside a TROM object?

e Are there any undesirable routes from one state to the other within a TROM

object?
e Is a state reachable inside the SCS?
e Is the route to reach the state in the SCS consistent with timing constraints?

By answering the following queries we will allow the user to detect the above men-

tioned errors, if any, in the design.
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o Find all the routes between any two states of a TROM object: Analysing the
response the user can determine whether undesirable routes exist in the design.
If applied to every state in the TROM object it will allow the user to make
sure that all the states in the TROM object are reachable. This is very useful
since every state in the TROM object should be reachable. A state may not be
reached only if there is an error in the design of the TROM object. Figure 21

shows this kind of error.

o ,

Otviously C will ncver be reached This will be aetected by the Reasoning Syssem.

Figure 21: Unreachable state within a TROM

e Find a route to a specific state of a TROM: This will allow the user to find a
set of events that will lead the object to go from its initial state to the specified
state, taking into consideration its interaction with all the related TROM objects
in the system. Every state in every TROM object should be reachable. It may
be the case where a state can only be reached if an input event occurs. If this
input event is supposed to come from a TROM object that is nct connected via
the SCS, we will never reach this state. Figure 22 shows how this kind of errors
may occur. If TROM object A and TROM object B are the only two objects
in the SCS, since the output event in TROM object B is not equivalent to the
input event I in TROM object A, the state B of TROM object A will never
be reached. The needed input event will not occur at any time. This will be

detected by the Reasoning System.
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Figure 22: Unreachable state in SCS

This query will also check if the route it found does not have any timing incon-

sistencies due to timing constraints.
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Chapter 6

Reasoning System : Design and

Implementation

When designing the Reasoning System we had a choice between designing it as an
independent module, or as a module that is attached to the existing components,
namely the Simulator and the Interpreter.

The Reasoning System has to work with the Simulator and with the AST in a very
tightly coupled manner. This Reasoning System is designed to work in the TROMLAB
environment. It needs the static data generated by the Interpreter and the dynamic
data generated by the Simulator. It is not designed to work in any other environment.
Due to this continuous need of interaction with the existing components of the
TTROMLAB environment we decided to design the Reasoning System as a module
that is attached to the existing components.

When we started with the re-engineering process described in the previous chapter,
we decided to use this opportunity to modify the Simulator and the Interpreter by
adding new methods and data members in different classes, so that we will use these
methods later on by the Reasoning System.

The class diagram of the Reasoning System is shown in Figure 23.
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Figure 23: Class Diagram Of the Reasoning Systemm
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We divide the types of queries in the Reasoning System into three categories:
e Debugging tool.

e Hypothetical queries.

e Validation of the Specifications.

We discuss each query type in each section below. In each section we will have a
Use Case Analysis, and we will describe the precondition and the post condition of
every query. \We will also describe some of the algorithms used to implement these

queries.

6.1 Debugging tool

All the queries in this section do not affect the results of the simulation. They are
related to the history and help the user have a better understanding of the results
of the simulation by giving the user different points of views on the results obtained.
All these queries will be invoked when the simulation is stopped in debugging mode.
The Reasoning System, acting as a debugger, will scan the history of the simulation

in different ways allowing the user to get a clear image of this history.

Use Case Analysis

The Use Case Diagram illustrated in Figure 24 contains three actors: the user, the
Reasoning System and the Simulator. Once the simulation is stopped in debugging
mode the user invokes a query in the Reasoning System. The Reasoning System then
uses the methods that we created to scan the history an returns the result to the

user. The user then invokes the Simulator to either continue with the simnulation or

stop it.
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Figure 24: Use Case Diagram For Debugging Tool

Debugging Queries

We describe each query by showing the required input, the precondition and the
expected output. In some cases we will describe the algorithm used to achieve the

required results. The queries are the following:

e Why query: This query will tell the user why did the system or a part of the
system go from state S1 to state S2.
Input from the user
The user will enter a list of TROM cbjects. for each TROM object the user
will provide the initial state and the destination state.
Precondition:
The entered TROM objects have to be valid TROM objects instantiated in the
SCS. The corresponding States have to be valid states.
Ezpected output
For each TROM object entered by the user the query will provide the list of
events that led the TROM object to go from state S1 to state S2. The query
will also provide the reason behind the occurrence of these events. There are

five possible reasons:

1. The event is an output unconstrained event; that means, it is an environ-
mental event. Theses events are out of the control of the system, they are
the stimulus of the environment to the system. The only way that these
events can occur is if they are entered by the user in the original simulation

event list or entered later by the user using the Hypothetical Queries of the
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Reasoning System. The reason for these events to occur is that they were

entered by the user.

N

The event is an output constrained event. The cause would be the event

that caused the transition constraining this event.

3. The event is an internal unconstrained event. The cause is the event that

led the system to the state where this event was bound to happen.

4. The event is an internal constrained event. The cause would be the event

that caused the transition constraining this event.

The event is an input event. The cause would be the corresponding output

[$1]

event that synchronised this event and led to it being scheduled.

Algorithm
For Each TROM object entered by the user
Repeat until the end of the Simulation Event List
Scan the Simulation Event List to determine when was the TROM
in the initial state entered by the user.
From that point scan the Simulation event List to determine when
the TROM is in the destination state.
display the Simulation Events related to this TROM between

the two times.
e When Query: this query is divided into six sub-queries namely:

— When was the system in a given state? This query will show the user
time intervals during which the system or a part of the system was in a
particular state.

Input from the user

The user will enter a list of TROM objects. For each TROM object the
user will provide a state.

Precondition:

The entered TROM objects have to be valid TROM objects instantiated

in the SCS. The corresponding States have to be valid states.

Ezpected output
For each TROM object entered by the user the query will provide the
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list of time intervals during which the corresponding TROM object was
in the required state, and the query will provide the intersection of these
timing intervals, representing the time interval when the system was in the
required state.
Algorithm
For Fach TROM object entered by the user
Repeat until the end of the Simulation Event List

Scan the Simulation Event List to determine when was the

TROM in the state entered by the user.

display the timing intervals.

Display the intersection of the timing intervals obtained.

When did the system go out of a given state? This query will show the
user the times at which the system or a part of the system went out of
particular state.

Input from the user

The user will enter a list of TROM objects. for each TROM object the
user will provide a state.

Precondition:

The entered TROM objects have to be valid TROM objects instantiated
in the SCS. The corresponding States have to be valid states.

FEzpected output

For each TROM object entered by the user the query will provide the list
of time intervals during which the corresponding TROM object was in the
required state, and the query will provide the intersection of these timing
intervals, representing the times when the system went out of the required

state.

When was an event fired? This query will tell the user the times at which
a particular event was fired.

Input from the user

The user will enter an event. The user can also provide a list of TROM
objects. If the user does not enter this list of TROMs then the query will
answer for the entire system.

Precondition:



The entered event has to be a valid event in the TROMSs entered.
Ezpected output
The query will provide a list of times when the specified event was fired.

When was an event disabled? This query will tell the user the times at
which a particular event was disabled.(that is the time at which did the
system go into a disabling state)

Input from the user

The user will enter an event. The user can also provide a list of TROM
objects. If the user does not enter this list of TROMs then the query will
answer for the entire system.

Precondition:

The entered event has to be a valid event in the TROMs entered.
Ezpected output

The query will provide a list of times when the specified event was disabled.

When was an event enabled? This query will tell the user the times at
which a particular event was enabled.(That is when did transition causing
this event to be enabled was fired.)

Input from the user

The user will enter an event. The user can also provide a list of TROM
objects. If the user does not enter this list of TROMs then the query will
answer for the entire system.

Precondition:

The entered event has to be a valid event in the TROMs entered.
Ezpected output

The query will provide a list of times when the specified event was enabled.

When was an event scheduled? This query will tell the user the times at
which a particular event was scheduled.(That is at which time was this
event scheduled to be fired or disabled)

Input from the user

The user will enter an event. The user can also provide a list of TROM
objects. If the user does not enter this list of TROMs then the query will
answer for the entire system.

Precondition:
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The entered event has to be a valid event in the TROMSs entered.
Ezpected output

The query wili provide a list of times when the specified event was sched-
uled.

o Show Assignment Vector at Given Time: This query will give the user the status
of the assignment vector at a particular time.
Input from the user
The user will enter a time.
Precondition:
The entered time has to be less then the current simulation time.
Ezpected output
For each TROM object the query will provide the value of the attributes at

that given time.

o Show Reaction Vector at Given Time: This query will give the user the out-
standing reactions of the reaction vector at a particular time.
Input from the user
The user will enter a time.
Precondition:
The entered time has to be less then the current simulation time.
Ezpected output
For each TROM object the query will provide the value of reaction vector at
that given time.(That is the outstanding transitions at that time.)

e Reachability: This query will tell the user if the system went into a specific state
during the simulation. This query is a different way of asking the query *When
was the system in a specific state?’ . If the time interval intersection has at least

one element the answer will be yes.

o Multiple Entry: This query will tell the user if the system went into a specific
state more then once during the simulation. This query is a different way of
asking the query “When was the system in a specific state?’ . If the time interval

intersection has at least two element the answer will be yes.
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e Show TROM Status During Time Interval:
This query will give the user an image of status of a TROM at every time during
the entered time interval. That is at which state is the TROM object and what
are the values of the attributes at that time.
Input from the user
The user will enter a TROM object and a timing interval.
Precondition:
The entered upper bound of the timing interval has to be less then the current
simulation time. The TROM object has to be a valid TROM object.
Ezpected output
For discrete time the query will provide the state of the TROM object, and the

attribute values.

o Show Simulation Event List of a particular TROM object:
This query will give the user the Simulation Event List of a particular TROM
object from the beginning of the simulation until the current time.
Input from the user
The user will enter a TROM object.
Precondition:
The TROM object has to be a valid TROM object.
Ezpected output
A Simulation Event List for that particular TROM object.

6.2 Hypothetical Queries.

All the queries in this section change the results of the simulation by changing the
timing of certain events. All these queries will be invoked when the simulation is
stopped in debugging mode, they will permit the user to modify the timing of events,

and then run the simulation.

Use Case Analysis

This Use Case Diagram illustrated in Figure 25 contains three actors: the user, the
Reasoning System and the Simmulator. Once the simulation is stopped in debugging

mode the user invokes a query in the Reasoning System. The Reasoning System then
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uses the methods that we created modify the timing of events. The Reasoning System

then invokes the Simulator to continue with the simulation from an appropriate time.

Figure 25: Use Case Diagram For Hypothetical Queries

What If Queries

In this section we will describe each query by showing the required input, the precon-
dition and the expected output. In will describe the algorithm of the Rollback which

is used by the three queries. The queries are the following:

o What if we remove an event?:
This query is posed when the user want to analyse the consequences of removing
an event.
Input from the user
The user will enter an event, the TROM object on which this event occurred,
the port on which this event occurred and the time this event occurred. We
need the time because the same event can occur more then once.
Precondition:
The entered event has to be an environmental event i.e. an output unconstrained
event. The event time, TROM object and port have to be valid.
Ezpected output
The query will remove the event from the Simulation Event List. It will roll back

the simulation to the time prior to the occurrence of the event (The Rollback
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algorithm will be described at the end of this section), start the simulation from

that point on and display the history.

What if we insert an event?:

This query is posed when the user wants to analyse the consequences of insert-
ing an event.

Input from the user

The user will enter an event, the TROM object on which this event occurs, the
port on which this event will occur and the time this event will oceur.
Precondition:

The entered event has to be an environmental event i.e. an output uncon-
strained event. TROM object and port have to be valid.

Ezpected output

The query will insert the new event in the Simulation Event List at the appro-
priate time. It will roll back the simulation to the time prior to the occurrence

of the event. Start the simulation from that point on.

What if we reschedule an event?:

This query is posed when the user wants to analyse the consequences of reschedul-
ing and event.

Input from the user

The user will enter an event. the TROM object on which this event occurs. the
port on which this event will occur, the time this event occurred and the time
this event is to occur.

Precondition:

The entered event cannot be an input event. The event cannot be an internal
unconstrained event. If the event is output unconstrained there is no precon-
dition on the timing. If the event is a constrained event the event’s new time
has to be within the timing interval allowed by the timing constraint. TROM
object and port(in the case of an output event) have to be valid.

Ezpected output

The query will check if the new time is allowed. If allowed the event is resched-
uled and the simulation is rolled back to the time prior to the min(old time,
new time). Start the simulation from that point on. if not allowed the user is

informed as to why it is not allowed.
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Rollback Algorithm

If rollback time < 0 then error

else

for each TROM object
Set the current state to its state at Rollback time
Set the Assignment Vector to its image at Rollback time
Set the Reaction Vector to its image at Rollback time
Remowve all the events whose occur time is > Rollback time
Reschedule all the output unconstrained events
whose occur time > Rollback time
Reschedule all the corresponding Rendezvous
Reschedule all the outstanding reaction
Schedule all unconstrained events from current state

set the stimulation time to the Rollback time

6.3 Validation of the Specifications.

All the queries in this section are independent of the Simulator. They access the
AST structure and analyse two different routing schemes. Every TROM object is
represented by an augmented state machine diagram. All the TROM objects in the

system are related to each other in the SCS. There are two types of routes:
1. Routes within a TROM object.

2. Routes within an SCS.

We define a route as the sequence of transitions that would lead a TROM object to
go from one state to the other. All these routes have to be acyclic, i.e. they do not
contain any cycles, otherwise we will have an infinite number of routes. We define the
length of the route as the time interval representing the minimum and the maximum
times needed to go from one state to the other. To calculate these timing intervals
we will rely on the Timing Constraints. When we refer to time in this section we are
referring to the Simulation Time, since in this section we do not consider the dvnamic
information of the Simulator; We are referring to absolute time. All these queries can

be invoked at any time with or without running the simulation.

58



Use Case Analysis

This Use Case Diagram illustrated in Figure 26 contains three actors: the user, the
Reasoning System and the AST. At any time after the AST is built, the user invokes
a query in the Reasoning System. The Reasoning System then uses the methods that
we created in the AST to find the routes. The Reasoning System then gives those

Routes
TROM
= . A

1
R include'l

results to the user.

include - '
.

(e

>0

c
&
&

Q

Reasoning System ;4 E
AST

Figure 26: Use Case Diagram For Verification Tool

Validation of the Specifications Queries

In this section we will describe each query by showing the required input, the precon-
dition and the expected output. We will describe the algorithm used to achieve the

required results. The queries are the following:

e Find all the routes between two states of a TROM object. This query is posed
when the user wants to see all the possible routes between any two states of any
TROM object. The length of the route does not refer to other objects in the
system, it is deduced from the Timing Constraints of the TROM object itself.
Input from the user
The user will enter the TROM objects, the initial state and the destination
state.

Precondition:
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The entered TROM object has to be a valid TROM objects instantiated in the
SCS. The corresponding states have to be valid states.

Ezpected output

The query will provide a list of all the acyclic routes that connect these two
states in this TROM object. If there are no routes the query will tell the user
the State is not reachable. By looking at all the routes the user can determine
if there are any routes which are not desired. If there are any undesired routes
or if a state is no reachable then the user will modify the design accordingly.

Algorithm
We used a depth first algorithm.[Shin92]
For Each transition going out of the initial state
Insert transition into dynamic route
Repeat until dynamic route = null
if destination state of transition = desired state
save route in outputted route list
remove last transition in route
else if transition causes a cycle
remove last transition from the dynamic route
else get the next transition going out of the destination
state of the last transition in the dynamic route
if no more transitions and route not empty
remove the last transition from the route
go back to the repeat
end of For
if the outputted route list is empty then display: no routes between S1 and S2.

Find one route to a specific state of a TROM object.

This is a reachability query. This query is posed when the user wants to see one
route from the initial state to the destination state entered by the user. This
route will take into consideration all the related TROM objects in the SCS
and all the transitions within these TROM objects that are needed so that the
TROM in question can reach the required State. The length of the route will
depend on the Timing Constraints of all the TROM objects that are involved

in this route.
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Input from the user

The user will enter the TROM objects and the destination state.
Precondition:

We assume that there are no cycles in the SCS, otherwise the route we find
may be infinite in length. The entered TROM object has to be a valid TROM
objects instantiated in the SCS.The corresponding state has to be a valid state.
Ezpected output

The query will provide an acyclic route that connect the initial state to the
state entered by the user. It will also show the routes needed in other related
TROM objects to achieve this route. It is worth noting that the routes in re-
lated TROM objects may contain cycles. This may be needed. To have a better
understanding of why this may be needed please refer to Figure 27. To go from
state A to State D in TROM object A The input event I has to occur twice.
This means that the route in TROM object be has to be I.B1,C1.I and this
route contains a cycle. The TROM object may need two input events from a
related TROM object and the corresponding output events may lead the related

TROM object to have a cyclic route.

{ input event | autput

¢ Internal ) ¢t
{ tnput
[2}3

TROM object B

TROM Object A

Figure 27: Need for cyclic routes in related TROM objects.

This query will also check if all the input events will occur. It may be the case
that one of the events may not occur due to conflicting timing constraints. This
is very helpful since this will detect timing inconsistencies in the design. An
example of this type of query is illustrated in the Robotics Assembly example
described in the next chapter. This query detected a timing inconsistency within
the design of the Robotics Assembly example described in detail in the next

section. The user by looking at the length of the route can deduce if this route
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is feasible within a timing constraint. If there is a required input event that
cannot occur du to the absence of the corresponding TROM object from the
SCS then this query will tell the user that this state is not reachable. The user
can modify the design accordingly.
Algorithm for finding a route to a state in a TROM object
find all the routes going from initial state to destination state save listl
take the first route from listland insert it into a route list.
For each input event in the route
find the related TROM object.
if related TROM object is null then
move cursor on listl
if cursor = null
output state not reachable
return
find the cumulative route needed so that the corresponding output
event would be fired.
insert this new route into the list
repeat what you did for the first node in the route list recursively
for the other node in the route list until you find a node with
no tnput events.
calculate the times for each route going from the last node in the route list to
the first node.
check for timing inconsistencies.
Algorithm for findind cumulative route
if only one output event needed
find a route between the initial state and the state succeeding the
necessary transttion.
else
set statel to initial state
for each event needed find the route between statel and the state
succeeding the necessary transition
set statel to the state succeeding the last transition in the rout e
concatenate the route with the previous one.

return the concatenated route.
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Chapter 7

Case Study : Robotics Assembly

example

7.1 Introduction

This Chapter demonstrates the applications of the Reasoning System for a Robotics
Assembly problem. The model of assembly will be described, first informally and

then formally, and then the tool's application will be shown.

7.2 Problem Description

7.2.1 Informal Problem Description

We abstract robots from mechanical objects to functional units. The assembly envi-
ronment consists of a robot with two arms, a conveyer belt, a vision system, and a
user. A user places two kinds of parts, cup and dish, on the belt. The vision system
senses a part on the belt and recognises its type. The belt stops whenever a part is
sensed. so that the robot can pick the part from the belt. After the part is picked by
the robot, the belt moves again. An assembly is performed when the robot matches a
cup in one arm with a dish in the other arm. It is required to design the assembly
system with real-time constraints, so that when n cups and n dishes are placed in an

arbitrary ordering on the belt, n assemblies are made by the robot.

63



Constraints and Assembly Algorithm
The following assumptions are made:

e Both arms of the robot manipulator have the same physical characteristics (pre-

cision, speed, degrees of freedom) and functional capabilities.

e Algorithms for part recognition, collision-free motion of robot arms. gripping,

holding, and placement work in real-time.

e The conveyor belt runs at a constant speed. No two parts can sit on the belt

side by side nor can they collide while moving.
The following timing constraints must be specified:

1. There is a maximum delay of 2 time units from the instant a part enters the

sensor zone on the belt to the instant it is sensed.

There is a maximum delay of 5 time units from the instant a part is sensed to

o

the instant the vision system completes part recognition and informs the robot.

3. From the instant of receiving the signal from the vision system, the robot ma-

nipulator picks up the part from the belt within 2 time units.

1. To complete an assembly, the right arm should place the part it holds on the

assembly pad, within a window of 2 to 4 time units of picking that part.

Our algorithm uses a stack to assemble the parts. Initially the left arm of the
manipulator is free, the stack is empty, and no part has been sensed. Whenever both
arms of the robot are free and the stack is empty, and a signal is received by the robot
from the vision system, indicating the recognition of a part, the left arm picks up the
part from the belt. If the left arm holds a part and the right arm is free at the instant
the part recognition signal is received from the vision system, the right arm picks up
the part from the belt. If both arms hold parts of the same kind the part in the right
arm is pushed onto the stack; otherwise the parts are assembled as follows. The left
arm places the part on the assembly tray and frees itself; next, the right arm places
the part on the assembly tray. If the left arm is free and the right arm is not free, but

the stack is not empty, the left arm picks up a part from the stack.
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State Left arm Right arm

sl free free

s2 moving free

s3 holding free

s4 holding moving

s3 holding holding

s6 placing holding

ST holding assembling

s8 holding pushing on stack

s9 popping stack holding

Table 1: States of Robot Manipulator.

Visual Models of a Design

We abstract the following components of the assembly unit: User, belt, Vision System,
and Robot. The port types and messages among these components can be derived from
the informal design description. Figure 28 shows the TROM classes, with respective
port types in the Robotics Assembly system. We model each component as a GRC
with port types and attributes. The User has one port tyvpe @V'S to communicate
with the VisionSystem when parts are placed on the belt. The belt has two port
types: port type @V to receive a message from the VisionSystem when a part has
been sensed; and port type @R to receive messages from the Robot when a part
has been picked. The VisionSystem has three port tvpes: port type @U to receive
messages from the User; port type @S to inform the Robot that a part has been
recognised; and port type @@ to inform the belt that a part has been sensed. The
Robot has two port types: port tvpe @C to receive messages from the VisionSystem
when a part has been recognised; and port type @D to inform the belt that a part has
been picked.

The dynamic behaviour of the reactive objects are captured in the state-chart
diagrams shown in Figure 30, Figure 36, Figure 33, and Figure 39. The assembly
system, consisting of two users, one vision system, one belt, and one robot, is described
in the collaboration diagram in Figure 42. The formal specifications are shown in
Figures 29, 35, 32, and 38. The LSL trait PartType[Part] is an abstract enumerated
type for defining cup and dish parts. Table 7.2.1 describes the situations captured by
the states for the robot manipulator in Figure 39.
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The users place parts on the belt in an arbitrary order; however, the parts arrive
in the sensor zone according to a first-in-first-out scheme. We capture this feature
by introducing the attribute inQueue of type PQueue, where Queue[Part,PQueue]
is an LSL trait defining a queue of parts. The attribute inStack of type PStack,
where Stack[Part,PStack] is an LSL trait, models the operations of a stack. By
including these traits in the GRCs, we have imported their operations into the formal
specifications, thus abstracting the data computations. For instance, whenever the
message PutC or PutD is received by the vision system. the corresponding part is
enqueued. The parts are sensed and recognised in the order they are placed on the
belt, subject to the timing constraints. This design ensures that every part placed on

the belt is eventually recognised and assembled.

7.2.2 Class Diagram for Robotics Assembly

1. Vision system TROM class is an aggregate of port types @U, @S, @Q.

(&)

User TROM class is an aggregate of a port type @VS.
3. Belt TROM class is an aggregate of port types @R, @V.
4. Robot TROM class is an aggregate of port types @C, @D.

There is an association between the port type @Q of Vision systemm and @V of
the Belt, meaning that the Vision system uses the port type @Q to communicate with
the Belt through port type @V.

There is an association between the port tvpe QU of Vision system and @VS of the
User, meaning that the Vision system uses the port type @U to communicate with
the User through port type @VS.

There is an association between the port type @S of Vision system and QC of the
Robot, meaning that the Vision system uses the port type @S to communicate with
the Robot through port type @C.

There is an association between the port type @D of Robot and @R of the Belt,
meaning that the Robot uses the port type @D to communicate with the Belt through
port type @R.

Vision system has two attributes, P of trait type Part, and inQueue of trait type
Queue. The two types are abstract data types defined in the LSL traits Part and
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Queue, where the Queue is parameterised by Part.

Robot has two attributes, P of trait type Part, and inStack of trait type Stack. The

two tyvpes are abstract data types defined in the LSL traits Part and Stack, where the

Stack is parameterised by Part.

Robotics assembly system.

The following figure shows the TROM classes, with respective port types in the
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Figure 28: Robotics System Class diagram

7.2.3 Formal Problem Description

i eveatsiset = (PutC?, PutD?}

!
|
!

<<PontType>> [
@vs '

i

! eventsiset @ {PwiC!. PutD!} j

In this section we are going to describe each class in the Robotics assembly using three

different notations namely, a textual representation which is used by the Interpreter

to the build the internal structure i.e. the AST, the state machine representation. and
the UML model developed using Rose tool. Following the description of the TROM
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classes, we will be describing the LSL traits used in the Robotics assembly system.

and the Subsystem configuration specification(SCS).

The User Class

The User is the only environmental class in the system, which controls the whole
system by placing parts for assembly on the belt. Since the User is an environmental

class, all its output events cannot be constrained by any other transitions.

Class User [@VS]
Events: Next,PutC!@ VS, PutD!@VS, Resume
States: *idle, ready, place
Attributes:
Traits:

Attribute-Function: idle -> {}; ready -> {}; place -> {};

Transition-Specifications:
R1: <idle,ready> ; Next(true); true => true;
R2: <ready.place>; PutD(true); true => true;
R3: <ready,place>; PutC(true); true => true;
R4: <place.idle> ; Resume(true); true => true:

Time-Constraints:

end

Figure 29: User TROM class - Textual representation

Resume

Figure 30: User TROM class - State machine representation

The Vision system Class

The Vision system communicates with the User, to know when a part is placed on

the Belt. It inserts this part into the Queue and within certain time it will sense this
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Figure 31: User TROM class - UML model

part and signals the Belt to stop moving. After a certain time it will signal the Robot
to remove the part from the Belt. If during this time it receives another signal from
the User and it has inserted the part into the Queue it will signal again the Belt to

stop and Robot to pick that part, otherwise it will go into a monztor state.

Class Visionsystem (@U,@S, @Q]

Events: PutD?@U, PwiC?@U,SensedD!@Q, SensedC!@Q.RecC!@S. RecD!'@S
States: *monitor,active,identify

Attributes: inQueue:PQueue; P:PART

Traits: Part{[PART], Queue[PART PQueue]

Attribute-Function: monitor -> {inQueue }; active -> {inQueue }; identify -> {inQueue};
Transition-Specifications:
R1: <monitor,active> ; PutD(true) ; true => inQueue’ = append(dish(P). inQueue);
R2: <monitor,active> ; PutC(true) ; true => inQueue’ = append(cup(P), inQueue);
R3: <active.identify> ; SensedD(true): head(inQueue)=dish(P) => true;
R4: <active,identify> ; SensedC(true); head(inQueue)=cup(P) => true;
RS: <active,active> ; PutD(true) ; true => inQueue’ = append(dish(P).inQueue);
R6: <active,active> ; PutC(true) : true => inQueue’ = append(cup(P),inQueue);
R7: <identify,monitor> ; RecC(true) ; len(inQueue) = 1 => inQueue’ = tail(inQueue);
R8: <identify.identify>; PutD(true) ; true => inQueue’ = append(dish(P).inQueue):
R9: <identify.monitor> ; RecD(true) ; len(inQueue) = I => inQueue’ = taii(inQueue);
R10:<identify,active> ; RecD(true) ; len(inQueue) > 1 => inQueue” = tail(inQueue);
R1l:<identify,active> ; RecC(true) ; len(inQueue) > | => inQueue” = tail(inQueue);
R12:<identify,identify>; PutC(irue) ; true => inQueue’ = append(cup(P),inQueue);
Time-Constraints:
TCl1: R2, SensedC, [0.2].{};
TC2: R1, SensedD, [0,2],{};
TC3: R4, RecC, [0.51.{}:
TC4: R3,RecD, [0.S5L{}:
TCS: R10,SensedC, (0,2],{}:
TC6: R10,SensedD, [0,2].{);
TC7: R11,SensedC, {0.2].{};
TC8: R11.SensedD, [0.2],{};
end

Figure 32: Vision system TROM class - Textual representation
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Figure 33: Vision system TROM class - State machine representation
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Figure 34: Vision system TROM class - UML model



The Belt Class

The Belt is controlled by both the Vision system and the Robot. It will stop whenever

the Vision system senses a part, and starts moving again whenever the Robot picks

the part up.
Class Belt [@R,@V]
Events: SensedC?@V, SensedD?@V, LeftPick?@R. RightPick?@R
States: *active,stop
Autributes:
Traits:

Auribute-Function: active -> {}; stop -> {}:
Transition-Specifications:
R1: <active,stop> ; SensedC(true) ; true => true;
R2: <active,stop> ; SensedD(true) ; true => true;
R3: <stop,active> ; LeftPick(true) ; true => true;
R4: <stop,active> ; RightPick(true); true => true;

Time-Constraints:

end
Figure 35: Belt TROM class - Textual representation
RightPick
Figure 36: Belt TROM class - State machine representation
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Figure 37: Belt TROM class - UML model



The Robot Class

The Robot has two manipulators namely the left and the right arm. Whenever an
arm picks up a part it signals the Belt to start moving again. The left arm will pick
up the first part followed by the right arm. If there are of the same type, the right
arm will insert the part it has into a Stack and wait to pick up another part. If they
are not the same, the left arm will start the assembly by placing the part it has on
the tray. It will then check to see whether there are any parts in the stack, if there is
a part then it picks it from the stack and the right arm will then finish the assembly

by placing the part on the tray. If there are no parts in the stack, the right arm will

finish the assembly, and both arms will be free.

Class Robot {@D,@C]

end

Events:

States:
Attributes:

Traits:
Attribute-Function: S1 -> {}; §2 -> {IPrt}: S6 -> {}; S7 -> {IPrt,inStack }; S5 -> {inStack}: S3 ->{rPrt}. S5 -> {}:

RecC?@C, RecD?@C. LeftPick!@D, RightPlace, Remove,
RightPick!@D, LeftPlace, Insert, FreeRight, LeftPickFromStack

*S1, 82, 83, S4, S5, S6. 7. S8, 59

IPrtPART; rPri:PART:; inStack:PStack

Pant{PART], Stack[PART, PStack]

Transition-Specifications:

RI:
R2:
R3:
R4:
R3S:
R6:
R7:
RE:
R9:

<S51,82>;
<S1.82>;
<S2.83>;
<S6,S1>;
<S6,59> ;
; RightPlace(true); true => rPrt = nullpart(rPrt);
<83,54>;
<S3.S4>;
<S4.S5>;

<S§7.83>

RecC(true) ; true => [Prt’ = cup(lPrt);

RecD(true) ; true => [Prt’ = dish(IPrt);

LeftPick(true) ; true => true;

RightPlace(true) ; isEmpty(inStack) => rPrt’ = nullpan(rPrt);

LeftPickFromStack(true); '(isEmpty(inStack)) => IPrt" = top(inStack);

RecC(true) ; true => rPrt’ = cup(rPrt);
RecD(true); true => rPrt” = dish(rPrt);
RightPick(true); true => true;

R10:<85.56>; LeftPlace(true) ; !(IPrt = rPrt) => IPrt’ = nullpart(IPrt);

R11:<85,58> ; Insert(true); rPrt = [Prt => inStack” = push(rPrt, inStack);

R12:<88,53>; FreeRight(true); true => rPrt’ = nullpart(rPrt);

R13:<59,87>; Remove(true) ; true => inStack’ = pop(inStack);
Time-Constraints:

TCI: RI1, LeftPick, [0.2]. {};
TC2: R2, LeftPick, [0,2], {}:
TC3: R8, RightPick, [0.2], {};
TC4: R9, RightPlace. [2,4], {};
TCS: R7. RightPick, [0,2], {}

Figure 38: Robot TROM class - Textual representation



\ RecC /TCl =0 LeftPick /TCl <=2 & TC2 <=2

§3 !

/

| RecD
{/TC3=0

RecC /TCS=0

\

\
RightPick ' TC3 <= 2 & TCS5 <= 2 & TC4=0

\.
\\
\rﬁ LeftPickFromstack /_4
| S6 :
—_

Leftplace

S1 - Both Am are Free

S2 - Left Arm ready to pick. Right Arm free

S3 - Left Arm not free, Right Arm free

S4 - Right Arm ready to pick. Left Arm not free

S5 - Right Arm not free, Left Arm not free

$6 - Left Arm is free. Right Arm is not free

§7 - Right Am ready to place, Left Arm not free

S8 - Right Arm inserting into Stack, Left Arm not free

S9 - Left Arm removing from stack, Right Arm is not free

Figure 39: Robot TROM class - State machine representation

<<GRC>>
<<PonType>> Robot <<Po:ta'!g'pc>>
@c <<DataType>> Pt : Pant{P] - =
events:set = {RecC?, RecD?) ¢ <<DataType>> Sk : Stack{P] cvents:set = {LeftPick!, RightPick!}

Figure 40: Robot TROM class - UML model



The Subsystem Configuration Specification(SCS)

The system we are going to simulate is composed of one Robot. oneBelt, one User, and
one Vision system. Figure 41 shows the textual representation, and Figure 42 shows
the UML model of the SCS.

SCS Robot

Includes:

Instantiate:
rl::Robot[@D:1, @C:1];
bl::Beltf@R:1, @V:1];
ul::Userf@VS:1];
vi::Visionsystem{@U:1, @S:1, @Q:1]:

Configure:
ul.@VSl:@VSs <->vl.@Ul:@U;
bl.@Vi:@V <-> vl1.@Ql1:@Q;
vli.@S1:@S <> r1.@Cl:@C;
rl.@Dl:@D <-> bl.@R1:@R;

end

Figure 41: SCS - Textual representation

H i .
————————— @VSL:@Vs . @U@l b———————
i s — [ —
! .'
: useri:User i ! v]:Vision system
H '
@Ql:@Q
! | estes |
@vi@v i '
!
@CrL@C
beltl:Belt —_— ’
I @ri@Rr
I roboti:Robot
@bL1:@D J

Figure 42: SCS - UML model
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Sample Simulation Event List

In the sample simulation event list we will schedule four events namely PutC,PutC,PutD,
and PutD of the User object which will be instantiated in the SCS. This is due the
fact that only output unconstrained events i.e. environmental events are allowed in
the initial simulation event list. All subsequent events will be scheduled by the Sim-
ulator as the simulation proceeds. Figure 43 shows the textual representation of the

sample Simulation Event List.

SEL: Robot
PutD, ul, @VS1, 3;
PutD, ul, @VS1, 5;
PutC, ul, @VSl1, 7;

PutC. ul, @VSl1, 9;
end

Figure 43: Sample Simulation Event List

LSL Traits

The system uses the three LSL traits: Part, Queue, and Stack. The Part trait is used
by the Vision system and the Robot. The Queue trait as mentioned earlier will be
used by the Vision system to store the parts placed on the Belt. The Stack trait is
used by the Robot to push and pop the parts as mentioned in the previous section.
Figures 44, 45 and 46 show the textual representation of three traits namely Part,
Queuve and Stack respectively.
Trait: Part(P)
Includes: Boolean
Introduce:
cup : P->P;
dish : P->P;

free : P->P;
end

Figure 44: Part LSL Trait

=]
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Trait: Queue(e, Q)
Includes: Integer
Introduce:

insert :e, Q -> Q;

delete : Q ->Q;

head :Q ->e;

size :Q ->Int;
end

Figure 45: Queue LSL Trait

Trait: Stack(e, S)
Includes: Boolean
Introduce:

isEmpty: S -> bool:

push: e, S > 8§;

pop : S$->8§;

top : S->e;
end

Figure 46: Stack LSL Trait

7.3 Reasoning on the Robotics Assembly

In this section we give the results of the diffrent tvpes of queries that were discussed
in the previous chapter. This section is divided into three subsections, one for each

tvpe of reasoning:
e The Reasoning System as a Debugging tool;
e The Reasoning System for Hypothetical Queries;
e Using the Reasoning System for Validation of the Specifications:

We will show in these subsections the syntax to pose the queries and the results

vielded by the Reasoning System.

7.3.1 The Reasoning System as a Debugging tool

In this section we will show all the queries that will be used to help the user in the
debugging process. These queries will help the user to have a better understanding

of the results of the simulation. They will offer the user different perspectives on the
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historv. The input to these queries and the results they give are described in detail

in this section.

Why did the system go from state S1 to state S2 - an Example

When the simulation is stopped in debugging mode the user invokes the Reasoning
System. The user then selects the Query.

This is a sample dialogue with the user:

Please enter trom label: ul

Please enter the initial state: idle

Please enter the final state: idle

Are there any more trom objects: n

This means the user wants to know why the TROM object uI(the user in the
Robotics Assembly Erample) went from the idle state to the idle state during the
simulation.

If this query is asked at time 4 we get the following output:
Simulation FEvents between state idle and state idle:
Sim-FEvent 1:

Stmulation Fvent : Next Trom : ul

Time : 0

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : idle

Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : internal unconstrained event

Sim-Event 2:

Simulation Event : PutD Trom : ul

Port : VS1 Time : &

History:

Event Outcome : TRIGGERED TRANSITION

State prior to transition : ready

-~
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Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : event entered by the user

Sim-FEvent 3:

Simulation Event : Resume Trom : ul

Time : 3

History:

Event QOutcome : TRIGGERED TRANSITION
State prior to transition : place

Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : internal unconstrained event

Sim-FEvent 4:

Stmulation Event : Next Trom : ul

Time : 3

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : idle

Assignment Vector prior to transition :
AssignmentVector :

Event Consequence :

cause : internal unconstrained event

Result:

This tells the user that the TROM object ul went from state idle to state idle at

time 3 because of the following dynamics:

e The simulation event nezt occurred at time 0, the cause of this event is: this

event is an internal unconstrained event.

e The simulation event PutD occurred at time 3, the cause of this event is: this

event is an output unconstrained event that was entered by the user.

e The simulation event nezt occurred at time 3, the cause of this event is: this



event is an internal unconstrained event

This query gives the user a better understanding of the behaviour of particular

TRONMI objects. It isolates that particular object from the complex system and gives

all the events and their reasons.

Display the simulation event list of a TROM Object - an Example

When the simulation is stopped in debugging mode the user invokes the Reasoning

System. The user then selects the Query.

This is a sample dialogue:

Please enter trom label: vl

This means the user wants to know all the simulation events that are related to

the TROM object v! until the current time of the simulation.

If this query is asked at time 4 we get the following output we get:

Simulation Fvents between 0 and 4:

Sim-Event 1:

Simulation Event : PutD Trom : vl

Port : Ul Time : 8

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : monitor

Assignment Vector prior to transition :
Assignment Vector :

Attribute Name : inQueue

Trait Type

Trait : Trait type : PQueue Trait name : Queue
Trait value:

Queue : Size -> 0

Attribute Name : P

Trait Type

Trait : Trait type : PART Trait name : Part

Trait value:
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Event Consequence :

Time Constraint:

Time Constraint: TC2 Event: SensedD
Reaction Window:

3.5

Outcome: ENABLED

cause : PutD Trom ul time 3§
Sim-Event 2:

Simulation Event : SensedD Trom : vl
Port : Q1 Time : 4

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : active
Assignment Vector prior to transition :
Assignment Vector :

Attribute Name : inQueue

Trait Type

Trait : Trait type : PQueue Trait name : Queue
Trait value:

Queue : Size -> 1

dish

Attribute Name : P

Trait Type

Trait : Trait type : PART Trait name : Part
Trait value:

dish

Event Consequence :

Time Constraint:

Time Constraint: TC2 Event: SensedD
Reaction Window:

3.5

Outcome: FIRED

Time Constraint:

Time Constraint: TC4 Event: RecD
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Reaction Window:

4.9

Qutcome: ENABLED

cause : PutD Trom vl time 3

Sim-Event 3:

Simulation Event : RecD Trom : vl

Port : §1 Time : 4

History:

Event Outcome : NOTYET HANDLED

cause : SensedD Trom vl time 4

End of Simulation Event List.

Result:

This is a list of all the events the assignment vector and the reaction vector that are
related to TROM v from time 0 to time 4, time 4 being the current simulation time.
This query gives the user a better understanding of the behaviour of particular TROM
objects. It isolates that particular object from the complex system and gives all the

events and the reasons for their occurrence.

When Query - an Example

When the simulation is stopped in debugging mode the user invokes the Reasoning
System. The user then selects the Query When. This query in turn leads to a selection

among six possible queries.

1. When was the system in state 1?
This is a sample dialogue for the first sub-query:

Please enter trom label: ul

Please enter the state: idle

are there any more trom objects: y
Please enter trom label: vl

Please enter the state: active

are there any more trom objects: n

This means that the user wants to know during which time intervals the Trom

object ul was in state idle and at the same time the TROM object vI was in
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state active.
If this query is asked at simulation time 9 then depending on the

simulation, one of the outputs is shown below:

ul

time interval : 0 to 0

time interval : 3 to 3

time interval : 5to 5

time interval : 5to 7

time interval : 7to 9

vl

time interval : 3 to 4

time interval : 5 to 6

time interval : 9 to 9

The system is in that state at the following time interval(s)

time interval : 3to 3

time interval : 5to 5

time interval : 9to 9

Result:

The TROM object ul was in the required state from time O to time 0, from
time 3 to time 3 .from time 5 to time 5.from time 7 to time 7 and from time 9
to time 9. The TROM object v was in that state from time 3 to time 4, from
time 5 to time 6 and from time 9 to time 9. The intersection of these timing
intervals being 3 to 3 and 5 to 5 and 9 to 9.

This analyses can be very tough if the system is composed of many TROM
objects. It is very helpful, the user can determine if any two or more objects
were in states during a time interval and they were not supposed to be in those

states.

When did the system go out of state 17

This is a sample dialogue for the second sub-query:

Please enter trom label: ul

Please enter the initial state: idle
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are there any more trom objects: y
Please enter trom label: vl
Please enter the initial state: active

are there any more trom objects: n

We are asking this querv with the same data as we did for the previous query.

If this query is asked at simulation time 9 we get the following output:

ul

time tnterval : 0 to 0

time interval : 8 to 8

time tnterval : 5 to 5

time interval : 7Tto 7

time interval : 9 to 9

vl

time interval : 8 to 4

time interval : 5 to 6

The system goes out of this state at the following time(s)

time : &
time : 5
Result:

Since the TROM object vI at time 9 is still in the state active the last time
interval that we had in the previous query i.e. 9 to 9 is not here and the result
is that the system went out of the state at times 3, and 3

This query allows the user to see if the TROM objects went out of the states

before or after they were supposed to.

When the event was fired?
This is a sample dialogue for the third sub-query:

Please enter event name: PutC
Do you want to enter a trom object (default is the entire system)(y/n): n

Attempting to see when event PutC was fired for all the system

That is the user wants to know when the event PutC was fired for the entire
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system until the current time.
If this query is asked at time 9 the result is the following.

For trom ul the event PutC was fired at time 7
For trom vl the event PutC was fired at time 7
For trom ul the event PutC was fired at time 9

For trom vl the event PutC was fired at time 9

Result:

Event PutC was fired 4 times. Two output unconstrained events at TROM
object ul and two corresponding rendezvous at TROM object v1.

This query will give the user a view of all the occurrences of a specific event. It

gives a different point of view from the simulation results.

When the event was disabled?

This is a sample dialogue for the fourth sub-query.

Please enter event name: SensedC
Do you want to enter a trom object (default is the entire system)(y/n): y
Please enter trom label: vi

are there any more trom objects: n

This means the user wants to see if the event SencedC in the TTROM object
vl was disabled at any time during the simulation until the current time.

We get the following output if we ask this query at time 10:

For trom vl The event SensedC was disabled at time 6

Result:

If you analyse the Robotics Assembly Example carefully, you see that after re-
ceiving the first event PutD the event SencedC will be scheduled due to the
timing constraint TC$5, but this event will not be fired because the precondition
is false; that is the first element in the queue is a dish and hence the event is

disabled at time 6 when we attempt to fire it.
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This query will tell the user if an event that was not supposed to be disabled
was disabled. He can then use the Why Query to understand what happened.

and may modify the design so that this will not happen again.

. When the event was enabled?
This is a sample dialogue for the fifth sub-query (when the event that

caused this event to be scheduled was fired)

Please enter event name: SensedD

Do you want to enter a trom object (default is the entire system)(y/n):
Attempting to see when event SensedD was enabled for all the system

The user wants to know when the event SensedD was enabled for the entire
svstem.

The following output is obtained if we ask this query at time 10.

For trom vl The event SensedD was enabled at time 3

For trom b1 The event SensedD was enabled at time 3

For trom vl The event SensedD was enabled at time 5

For trom b1 The event SensedD was enabled at time 6

For trom vl The event SensedD was enabled at time 9

For trom b1 The event SensedD was enabled at time 10

Result:

The time of the enabling of the event SensedD for the TROM object b1 and
the TROM object vI are not the same , SensedD was enabled for the em Vi-
sion System at time five but it only fired at time 6 thus enabling the event em
SensedD on the belt at that time.

This query will tell the user when an event was enabled. If we combine this
query with the Why Query we can know when it was enabled and why it was
enabled. This gives the user a better understanding of what is happening in

the simulation.

. When the event was scheduled?
This is a sample dialogue for the sixth sub-query( at what time the
event was scheduled to be fired)
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Please enter event name: SensedD

Do you want to enter a trom object (default is the entire system){y/n):

Attempting to see when event SensedD was scheduled for all the system

The user wants to know when the event SensedD was scheduled to be fired for

the entire system.

The following output is obtained when we ask this query at time 10.

For trom vl The event SensedD was scheduled at time 3
For trom b1 The event SensedD was scheduled at time 3§
For trom vl The event SensedD was scheduled at time 6
For trom b1 The event SensedD was scheduled at time 6

For trom v1 The event SensedD was scheduled at time 10

Result:

This response confirms the results we had in the previous query.

Show the assignment vector at a specific time

When the simulation is stopped in debugging mode the user invokes the Reasoning

System. The user then selects the Query.

This is a sample dialogue for this query:

Enter the time for which you want to see the assignment vector 5

That is we want to see the assignment vector for the entire system at time 3.

The following output is obtained when we invoke this query at simulation

time 10.

for trom : rl
Assignment Vector :
Attribute Name : [Prt
Trait Type

Trait : Trait type : PART Trait name :

Trait value:

dish

Attribute Name : rPrt
Trait Type

Trait : Trait type : PART Trait name :

Trait value:

Part

Part
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Attribute Name : inStack

Trait Type

Trait : Trait type : PStack Trait name : Stack

Trait value:

Stack : Size -> 0

for trom : b1

Assignment Vector :

for trom : ul

Assignment Vector :

for trom : vl

Assignment Vector :

Attribute Name : inQueue

Trait Type

Trait : Trait type : PQueue Trait name : Queue

Trait value:

Queue : Size -> 1

dish

Attribute Name : P

Trait Type

Trait : Trait type : PART Trait name : Part

Trait value:

dish

Result:

The result we have is the status of the assignment vector for each TROM object of
the system at time 3.

Without the Reasoning System the reconstruction of the Assignment Vector is not
possible. By having an image of the assignment vector at a particular time we can
determine the reason behind the disabling of an event, or the firing of an event. If
this query is combined with one of the When queries, the user can have a better

understanding of the results of the simulation.
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Show the reaction vector at a specific time.

When the simulation is stopped in debugging mode the user invokes the Reasoning
System. The user then selects the Query.
This is a sample dialogue for this query:

Enter the time for which you want to see the reaction vector 7

The user wants to see the reaction vector at time 7 for the entire svstem
The following output is obtained when we invoke this query at simulation
time 10.
for trom : rl
Reaction Vector :
Reaction Sub Vector :
Time - Constraint : TCI
Reaction SubVector :
Time - Constraint : TC2
Reaction SubVector :
Time - Constraint : TC3
Reaction SubVector :
Time - Constraint : TC4
Reaction Sub Vector :
Time - Constraint : TC5
for trom : b1
Reaction Vector :
for trom : ul
Reaction Vector :
for trom : vl
Reaction Vector :
Reaction Sub Vector :
Time - Constraint : TC1
Reaction SubVector :
Time - Constraint : TC2
Reaction SubVector :
Time - Constraint : TC3
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Reaction SubVector :

Time - Constraint : TC4

6,11

Reaction SubVector :

Time - Constraint : TCS5

Reaction SubVector :

Time - Constraint : TC6

Reaction SubVector :

Time - Constraint : TC7

Reaction SubVector :

Time - Constraint : TC8

Result:

The result is an image of the Reaction Vector for each TROM object of the system
at time 7.

Since the simulation tool does not keep the entire Reaction Vector, to reconstruct an

image of this vector at a specific time would be very hard.

Does the system go into a specific state

When the simulation is stopped in debugging mode the user invokes the Reasoning
System. The user then selects the Query.

This is a sample dialogue for this query:

Please enter trom label: ul

Please enter the initial state: ready

are there any more trom cbjects: n

The user wants to know if the TROM object ul went into the state ready at any time
during the simulation.

If this query is asked at simulation time 3 we get the following output:
ul

time interval : 0 to §

Yes The system is in that state at the following time interval(s)

time interval : 0 to 8

Result:

The TROM object u! is in state ready from time O to time 3
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This query is similar to the query “When the systemn was in state 17. It is essentially

a different way of asking the same question.

Does the system go into a specific state more then once

When the simulation is stopped in debugging mode the user invokes the Reasoning
Systermn. The user then selects the Query.

This is a sample dialogue:

Please enter trom label: ul
Please enter the initial state: ready

are there any more trom objects: n

The user wants to know if the TROM object ul went into the state ready at any
time during the simulation more than once.
We get the following output if we ask this query at simulation time 3:
ul
time interval : 0 to 3
No The system was not in that state more then once
Result:
TROM object ul is not in that state more than once during the simulation.

Show TROM status in a given time interval.

When the simulation is stopped in debugging mode the user invokes the Reasoning
System. The user then selects the Query.

This is a sample dialogue:

Please enter trom label: vl

Please enter the lower time bound: 4

Please enter the upper time bound: 6

The user wants to know the status of the TROM object v! at every time between
time 4 and time 6.
We get the following output if we ask this query at simulation time 10:
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for time: 4

State name : identify

Initial state : false

Assignment Vector :

Attribute Name : inQueue

Trait Type

Trait : Trait type : PQueue Trait name : Queue
Trait value:

Queue : Size -> 1

dish

Attribute Name : P

Trait Type

Trait : Trait type : PART Trait name : Part
Trait value:

dish

for time: 5

State name : identify

Initial state : false

Assignment Vector :

Attribute Name : inQueue

Trait Type

Trait : Trait type : PQueue Trait name : Queue
Trait value:

Queue : Size -> 2

dish

dish

Attribute Name : P

Trait Type

Trait : Trait type : PART Trait name : Part
Trait value:

dish

for time: 6

State name : identify

Initial state : false
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AssignmentVector :

Attribute Name : inQueue

Trait Type

Trait : Trait type : PQueue Trait name : Queue
Trait value:

Queue : Size -> 2

dish

dish

Attribute Name : P

Trait Type

Trait : Trait type : PART Trait name : Part
Trait value:

dish

Result:

The status of the TROM object at each discreet time in the given time interval.

7.3.2 Hypothetical Queries

In this section we will describe the hvpothetical queries that will allow the user to
have more control on the simulation scenario. These queries will give the user more
control on the events and their timing. We will give first the type of input required,
then we will show the Simulation Event List before and after the execution of the
query, and we will show the simulation time, before and after the query.

When the simulation is stopped in debugging mode the user can invoke the What
if? query. This set of hypothetical queries helps the user in testing new scenarios.
The user can either insert a new event, remove an existing event or reschedule an
existing event. This set of queries will modify the simulation results by changing the
Simulation Event List. Once the changes are done the query will start running the

Simulator.

What if we remove an event 7

Since the user represents the environment the user is only allowed to remove envi-
ronmental events. All the other events are reactions to stimulus and the user is not

allowed to remove them.
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This is a sample dialogue with the user:
Enter event label: PutD

Enter trom label: ul

Enter port label: VS1

Enter occur time: 8

If this query is invoked at time 5 the Simulation Event List prior to this query
is the following:

Sitmulation Event List:

Sim-Event 1:

Simulation Event : Next Trom : ul

Time : 0

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : idle

Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : internal unconstrained event

Sim-FEvent 2:

Simulation Event : PutD Trom : ul

Port : VS1 Time : 8

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : ready

Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : event entered by the user

Sim-Event 3:

Simulation Fvent : Resume Trom : ul

Time : &

History:

Event Outcome : TRIGGERED TRANSITION

State prior to transition : place
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Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : internal unconstrained event
Sim-Event 4:

Simulation Event : Next Trom : ul

Time : 3

History:

Event Qutcome : TRIGGERED TRANSITION
State prior to transition : idle

Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : internal unconstrained event
Sim-Event 3:

Simulation Event : PutD Trom : vl

Port : Ul Time : 8

History:

Event Qutcome : TRIGGERED TRANSITION
State prior to transition : monitor
Assignment Vector prior to transition :
Assignment Vector :

Attribute Name : inQueue

Trait Type

Trait : Trait type : PQueue Trait name : Queue
Trait value:

Queue : Size -> 0

Attribute Name : P

Trait Type

Trait : Trait type : PART Trait name : Part
Trait value:

Event Consequence :

Time Constraint:

Time Constraint: TC2 Event: SensedD
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Reaction Window:

3.5

QOutcome: ENABLED

cause : PutD Trom ul time 8
Sim-Event 6:

Simulation Event : SensedD Trom : vl
Port : Q1 Time : 4

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : active
Assignment Vector prior to transition -
Assignment Vector :

Attribute Name : inQueue

Trait Type

Trait : Trait type : PQueue Trait name : Queue
Trait value:

Queue : Size -> 1

dish

Attribute Name : P

Trait Type

Trait : Trait type : PART Trait name : Part
Trait value:

dish

Fvent Consequence :

Time Constraint:

Time Constraint: TC2 Event: SensedD
Reaction Window:

3.5

Outcome: FIRED

Time Constraint:

Time Constraint: TC4 Fvent: RecD
Reaction Window:

4,9
Outcome: ENABLED



cause : PutD Trom vl time 3
Sim-Event 7:

Stmulation Event : SensedD Trom : bl
Port : VI Time : 4

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : active
Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : SensedD Trom vl time 4
Sim-Event &8:

Simulation Event : PutD Trom : ul
Port : VSI Time : 5

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : ready
Asstgnment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : event entered by the user
Sim-Event 9:

Simulation Event : Resume Trom : ul
Time : 5

History:

Event Qutcome : TRIGGERED TRANSITION
State prior to transition : place
Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : internal unconstrained event
Sim-Event 10:

Stmulation Event : Next Trom : ul
Time : 5
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History:

Event Outcome : NOTYET HANDLED
cause : internal unconstrained event
Sim-Event 11:

Simulation Fvent : PutD Trom : vl
Port : Ul Time : 5

History:

Event Outcome : NOTYET HANDLED
cause : PutD Trom ul time 5
Sim-FEvent 12:

Simulation Event : PutC Trom : ul
Port : VS§1 Time : 7

History:

Event Qutcome : NOTYET HANDLED
cause : event entered by the user
Sim-Event 13:

Simulation Event : PutC Trom : vl
Port : Ul Time : 7

H:story:

Event Outcome : NOTYET HANDLED
cause : PutC Trom ul time 7
Sim-FEvent 14:

Simulation Event : RecD Trom : vl
Port : S1 Time : 8

History:

Event Qutcome : NOTYET HANDLED
cause : SensedD Trom vl time 4
Sim-FEvent 15:

Simulation Fvent : RecD Trom : rl
Port : C1 Time : 8

History:

Event Outcome : NOTYET HANDLED
cause : RecD Trom vl time 8
Sim-Event 16:



Simulation Event : PutC Trom : ul
Port : VS1 Time : 9

History:

Event Outcome : NOTYET HANDLED
cause : event entered by the user
Sim-Event 17:

Simulation Event : PutC Trom : vl
Port : Ul Time : 9

History:

Event Outcome : NOTYET HANDLED
cause : PutC Trom ul time 9

End of Simulation Event List.

The Simulation Event List after the query is invoked is the following.
Simulation Event List:

Sim-FEvent 1:

Simulation Event : Next Trom : ul
Time : 0

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : idle
Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : tnternal unconstrained event
Stm-FEvent 2:

Simulation Event : PutD Trom : ul
Port : V§1 Time : 5

History:

Lvent Outcome : NOTYET HANDLED
cause : event entered by the user
Sim-Event 3:

Simulation Event : PutD Trom : vl
Port : Ul Time : 5
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History:

Event Outcome : NOTYET HANDLED
cause : PutD Trom ul time 5
Sim-Event 4:

Sitmulation Fvent : PutC Trom : ul
Port : VS1 Time : 7

History:

Event Outcome : NOTYET HANDLED
cause : event entered by the user
Sim-Event 5:

Simulation Fvent : PutC Trom : vl
Port : Ul Time : 7

History:

Event Outcome : NOTYET HANDLED
cause : PutC Trom ul time 7
Sim-FEvent 6:

Stmulation Event : PutC Trom : ul
Port : V81 Time : 9

History:

Event Qutcome : NOTYET HANDLED
cause : event entered by the user
Sim-Event 7:

Simulation Event : PutC Trom : vl
Port : Ul Time : 9

History:

Event Qutcome : NOTYET HANDLED
cause : PutC Trom ul time 9

End of Simulation Event List.

Result:

The current simulation time after this query is 2. The effect of this query is to start
the simulation at the time slot prior to the modification in this case at time two , with
a new set of events that does not contain the deleted event and all its consequences.

This will help the user in getting a different scenario of the simulation.
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What if we insert an event ?

Since the user represents the environment the user is only allowed to insert environ-
mental events. All the other events are reactions to stimulus and the user cannot
insert them into the Simulation Event List them.

This is a sample dialogue with the user:

Enter event label: PutC

Enter trom label: ul

Enter port label: VS1

Enter occur time: 2

That is, the user wants to insert the simulation event PutC at time 2. If the user
invokes this query after removing the event PutD which was scheduled at time 3 in
the TROM object ul on port VSI the effect is as follows.

Since the Simulation Event List prior to the execution of this query is the same as
the Simulation Event List after the previous query we will not show it again. We will
only show the resulting Simulation Event List.

Simulation Event List after the execution of the query.

Simulation Event List:

Sim-FEvent 1:

Stmulation Event : Nezt Trom : ul

Time : 0

History:

Event QOutcome : TRIGGERED TRANSITION

State prior to transition : idle

Assignment Vector prior to transition :

Assignment Vector :

Event Consequence :

cause : itnternal unconstrained event

Sim-FEvent 2:

Simulation Event : PutC Trom : ul

Port : VS1 Time : 2

History:

Event Outcome : NOTYET HANDLED

cause : event entered by the user
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Sim-Event 3:

Simulation Event : PutC Trom : vl
Port : Ul Time : 2

History:

Event Outcome : NOTYET HANDLED
cause : PutC Trom ul time 2
Sim-Event 4:

Simulation Event : PutD Trom : ul
Port : VS1 Time : 5

History:

Event Qutcome : NOTYET HANDLED
cause : event entered by the user
Sim-Event 35:

Simulation Event : PutD Trom : vl
Port : Ul Time : 5

History:

Event Outcome : NOTYET HANDLED
cause : PutD Trom ul time 5
Sim-Event 6:

Simulation Fvent : PutC Trom : ul
Port : VS1 Time : 7

History:

FEvent Qutcome : NOTYET HANDLED
cause : event entered by the user
Sim-Event 7:

Simulation Event : PutC Trom : vl
Port : Ul Time : 7

History:

Event QOutcome : NOTYET HANDLED
cause : PutC Trom ul time 7
Sim-FEvent 8:

Simulation Event : PutC Trom :@ ul
Port : VS1 Time : 9

History:
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Event Qutcome : NOTYET HANDLED

cause : event entered by the user

Sim-Event 9:

Simulation Event : PutC Trom : vl

Port : Ul Time : 9

History:

Event Qutcome : NOTYET HANDLED

cause : PutC Trom ul time 9

End of Simulation Event List.

Result:

The simulation time after the execution of this query is 1. As vou can see the new
Simulation Event List contains the simulation event at the correct time. and in the
correct sequence. The effect of this query is like the previous one, it helps the user
to see different simulation scenarios by allowing him to modify the simulation event

list.

What if we reschedule an event ?

The user can reschedule all constrained events only within the allowable timing in-
terval. The user can reschedule unconstrained output events (environmental events).
The user is not allowed to reschedule an input event; In order to do that the user
has to reschedule the corresponding output event. As we have mentioned in the sim-
ulation algorithm,(appendix B), the Simulator will choose a random time within the
allowable timing interval to schedule a constrained event. However we may want to
simulate in a more controlled environment, allowing the user to test a specific scenario
where the time of a simulation event is dictated by the user. The advantage of this
approach is that the user will be able to test the system for a specific set of times
without relying on the randomness of the simulator. We cannot allow the user to
enter times that are not within the allowable timing intervals otherwise we would be
violating the requirements of the simulation. By changing the time of a simulation
event we may change the entire simulation. The event may be disabled, or it may
enable another, thus changing completely the results of the simulation. Whenever we
reschedule an event we have to rollback to the minimum of the two times: the time

when it was scheduled originally and the time when it is going to be scheduled.
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This is a sample dialogue:

Enter event label: SensedD

Enter trom label: vl

Enter the old occur time of the simulation event: 4
Enter the new occur time of the stmulation event: 5

Enter port label: Q1

That is the user wants to modify the timing of the event SencedD on the TROM
object v! from time 4 to time 3. The user can use one of the When queries to
determine when the event was scheduled previously.

If this query is asked at time 3, with the original simulation event list
shown in the previous section, a sample Simulation Event List prior to the

query is:

Simulation Event List:

Sim-FEvent 1:

Simulation Event : Next Trom : ul

Time : 0

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : idle

Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : internal unconstrained event

Sim-Event 2:

Simulation Event : PutD Trom : ul

Port : VS1 Time : 8

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : ready

Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :
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cause : event entered by the user

Sim-FEvent 3:

Simulation Event : Resume Trom : ul

Time : 3

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : place

Assignment Vector prior to transition :
AssignmentVector :

Fvent Consequence :

cause : internal unconstrained event

Sim-Event 4:

Simulation Event : Next Trom : ul

Time : &

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : idle

Assignment Vector prior to transition :
Asstgnment Vector :

Event Consequence :

cause : internal unconstrained event

Sim-Event 5:

Simulation Event : PutD Trom : vl

Port : Ul Time : 3

History:

Event QOutcome : TRIGGERED TRANSITION
State prior to transition : monitor

Assignment Vector prior to transition :
AssignmentVector :

Attribute Name : inQueue

Trait Type

Trait : Trait type : PQueue Trait name : Queue
Trait value:

Queue : Size -> 0
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Attribute Name : P

Trait Type

Trait : Trait type : PART Trait name : Part
Trait value:

Event Consequence :

Time Constraint:

Time Constraint: TC2 Event: SensedD
Reaction Window:

3.5

Outcome: ENABLED

cause : PutD Trom ul time 8
Sim-Event 6:

Simulation Event : SensedD Trom : vl
Port : Q1 Time : 4

History:

Event Outcome : NOTYET HANDLED
cause : PutD Trom vl time 8
Sim-FEvent 7:

Simulation Event : SensedD Trom : bl
Port : V1 Time : 4

History:

Event Outcome : NOTYET HANDLED
cause : SensedD Trom vl time 4
Sim-Event 8:

Simulation Event : PutD Trom : ul
Port : VS1 Time : 5

History:

Event Outcome : NOTYET HANDLED
cause : event entered by the user
Sim-Event 9:

Simulation Event : PutD Trom : vl
Port : Ul Time: §

History:

Event Outcome : NOTYET HANDLED
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cause : PutD Trom ul time 5
Sim-FEvent 10:

Simulation Event : PutC Trom : ul
Port : VS1 Time : 7

History:

Event Qutcome : NOTYET HANDLED
cause : event entered by the user
Stm-Event 11:

Simulation FEvent : PutC Trom : vl
Port : Ul Time : 7

History:

Event Outcome : NOTYET HANDLED
cause : PutC Trom ul time 7
Sim-FEvent 12:

Simulation Event : PutC Trom : ul
Port : VS1 Time : 9

History:

Event Qutcome : NOTYET HANDLED
cause : event entered by the user
Sim-Fvent 13:

Simulation Event : PutC Trom : vl
Port : Ul Time : 9

History:

Event Qutcome : NOTYET HANDLED
cause : PutC Trom ul time 9

End of Sitmulation Event List.

The simulation event list after the query is the following:
Simulation FEvent List:

Sim-Fvent 1:

Simulation Event : Next Trom : ul
Time : 0

History:

Event Outcome : TRIGGERED TRANSITION

State prior to transition : idle
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Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : internal unconstrained event
Sim-Event 2:

Simulation Event : PutD Trom : ul
Port : VS1 Time : &

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : ready
Assignment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : event entered by the user
Sim-FEvent 3:

Simulation Event : Resume Trom : ul
Time : 8

History:

FEvent Outcome : TRIGGERED TRANSITION
State prior to transition : place
Assignment Vector prior to transition :
Assignment Vector :

FEvent Consequence :

cause : internal unconstrained event
Sim-FEvent 4:

Simulation Event : Nezxt Trom : ul
Time : 8

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : idle
Asstgnment Vector prior to transition :
Assignment Vector :

Event Consequence :

cause : internal unconstrained event



Sim-FEvent 5:

Simulation Event : PutD Trom : vl
Port : Ul Time : 8

History:

Event Outcome : TRIGGERED TRANSITION
State prior to transition : monitor
Assignment Vector prior to transition :
Assignment Vector :

Attribute Name : inQueue

Trait Type

Trait : Trait type : PQueue Trait name : Queue Trait value:
Queue : Size -> 0

Attribute Name : P

Trait Type

Trait : Trait type : PART Trait name : Part
Trait value:

Event Consequence :

Time Constraint:

Time Constraint: TC2 Event: SensedD
Reaction Window:

3.5

Outcome: ENABLED

cause : PutD Trom ul time 3
Sim-Event 6:

Simulation Fvent : PutD Trom : ul
Port : V§1 Time : 5

History:

Event Outcome : NOTYET HANDLED
cause : event entered by the user
Sim-FEvent 7:

Simulation Event : PutD Trom : vl
Port : Ul Time : 5

History:

Event Outcome : NOTYET HANDLED
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cause : PutD Trom ul time 5
Sim-FEvent 8:

Simulation Event : SensedD Trom : vl
Port : Q1 Time : 5

History:

Event Outcome : NOTYET HANDLED
cause : PutD Trom vl time 3
Sim-Event 9:

Simulation Event : SensedD Trom : bl
Port : VI Time : 5

History:

Event Qutcome : NOTYET HANDLED
cause : SensedD Trom vl time §
Sim-Event 10:

Simulation Event : PutC Trom : ul
Port : VS1 Time : 7

History:

Event Qutcome : NOTYET HANDLED
cause : event entered by the user
Sim-Event 11:

Simulation Event : PutC Trom : vl
Port : Ul Time : 7

History:

Event Outcome : NOTYET HANDLED
cause : PutC Trom ul time 7
Sim-Event 12:

Simulation Event : PutC Trom : ul
Port : VS1 Time : 9

History:

Event Outcome : NOTYET HANDLED
cause : event entered by the user
Sim-FEvent 13:

Simulation Event : PutC Trom : vl
Port : Ul Time : 9
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History:

Event Outcome : NOTYET HANDLED

cause : PutC Trom ul time 9

End of Simulation Event List.

Result:

In this case the only two events that were modified are the event SensedD in the
TROM object v! and its corresponding rendezvous, the event SensedD in the TROM
object bl. The simulation time is not modified because we are modifying the timing
of an event that is in the future and has not yet been handled. If the event we were
rescheduling was in the past, the rollback would have changed the time of the simu-
lation. as mentioned earlier, to the minimum of the two times, the old time and the
new time.

This query is very helpful in the sense that it gives the user more control over the
scenarios of the simulation without violating the requirements. If we had asked to
reschedule the event to time 7 this would violate the timing constraints. This event
can only occur at in the time interval 3 to five.

This is the result we get if we attempt reschedule the event to time 7:
Enter event label: SensedD

Enter trom label: vl

Enter the old occur time of the simulation event: 5

Enter the new occur time of the simulation event: 7

Enter port label: Q1

The new occur time is invalid it should be between 3 and 5

7.3.3 Using the Reasoning System for Validation of the Spec-

ifications

This section offers a description of the queries that are related to the static informa-
tion. These queries are not related to the simulation. They can be invoked at any
time.

Show all the routes between two states of a TROM object.

This is a sample dialog with the user:
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Please enter trom label: r1
Please enter the initial state: S3
Please enter the final state: S8

The user wants to know all the routes between the state S8 and the state S& of
TROM object ri(the robot).
The output from the Reasoning System is shown below:
Route 1:
Transitions:R8;R9:R10:R4{:R1:R3
Lower bound : 2
Upper bound : 8
Source state : S3
Destination state: S3
Route 2:
Transitions:R8;R9;R10;R4{;R2;:R3
Lower bound : 2
Upper bound : 8
Source state : S8
Destination state: S8
Route 3:
Transitions:R8; R9;R10;R5;R13;R6
Lower bound : 2
Upper bound : 6
Source state : S3
Destination state: S3
Route 4:
Transitions:R8;R9;R11;R12
Lower bound : 0
Upper bound : 2
Source state : S8
Destination state: S3
Route 5:
Transitions:R7;R9;R10;R{;R1;R3
Lower bound : 2
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Upper bound : 8

Source state : S3
Destination state: S8

Route 6:
Transitions:R7:R9;R10;R4{:R2:R8
Lower bound : 2

Upper bound : 8

Source state : S3
Destination state: S3

Route 7:
Transitions:R7;R9;R10;R5:R13;R6
Lower bound : 2

Upper bound : 6

Source state : §3
Destination state: S3

Route 8:
Transitions:R7;R9;R11;R12
Lower bound : 0

Upper bound : 2

Source state : S3
Destination state: S3
Result:

This is a list of all the routes, the lower and upper bound are the minimum and
maximum time needed for this route not taking into consideration other TROM

objects.

This a very helpful query. It allows the user to see if there are any undesirable routes.
If this query is applied on all the states, this query will show the user if any state
cannot be reached. This will help the user to modify his design to eliminate these
errors. This query will also show the user the minimum time and the maximum time

it takes to go from one state to another, using this route; This query may also help

the user to modify the timing constraints.
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Show a route to get to a specific state in a TROM object

This is a sample dialogue with the user:
Please enter trom label: r1

Please enter the destination state: S6

That means that we want to know a sequence of events and transitions that would
lead r1 to state S6. The route will show the transitions in all the related trom objects.
assuming that the assertions are true.

You will note that this query checks to see if there are any possible problems in the
timing constraints, and if it is the case it will show it, by saying this event may not
occur due to timing constraints. In our case study the event RecC in the robot object
may not occur. This is because the robot may still be in state S2 when it receives
this event and hence it will not be able to handle it. This flaw in the design of the
Robotics System was detected by the Reasoning System and confirmed by the sim-
ulator. After a long series of runs we observed that sometimes tue events RecC or
RecD in the robot were handled but sometimes these events were not handled.

If the TROM object vI was not in the system the query would have detected that
and the answer would have been that this state is no reachable.

The following result is given by the system:

Event RecC may not occur due to timing constraints conflicts

Route list:

transition : R1 lower : 0 upper :
transition : R2 lower : 0 upper :
transition : R4 lower : 0 upper :

transition : R1 lower : 0 upper :

QO O O

transition : R2 lower : 0 upper :
Trom Object Label: ul

Lower bound : 0

Upper bound : 0

Source state : idle

Destination state: place
transition : R1 lower : 0 upper : 0

transition : R4 lower : 0 upper : 2
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transition : R9 lower : 0 upper : 5
transition - R1 lower : 0 upper : 0
transition : R4 lower : 0 upper : 2
transition : R7 lower : 0 upper : 5
Trom Object Label: vi

Lower bound : 0

Upper bound : 14

Source state : monitor
Destination state: monitor
transition : R2 lower : 0 upper : 7
transition - R3 lower : 0 upper : 2
transition : R7 lower : 0 upper : 7
transition : R9 lower : 0 upper : 2

transition : R10 lower : 0 upper : 0
Trom Object Label: r1

Lower bound : 0

Upper bound : 18

Source state : S1

Destination state: S6

Result:

The state is reachable, however there may be a timing conflict in the route that may
cause event RecC to be discarded. As you can see the timing in this query is relevant
to the other TROM objects.
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Chapter 8

Conclusion and Future Work

8.1 Work synthesis

This thesis is a contribution to simulated debugging and reasoning of real-time re-
active systems built in TROMLAB environment. The thesis discusses the following

topics:

e Chapter 2 briefly reviewed the architecture and design components of TROM-

LAB environment.

e In Chapters 3 and 4 we discussed the re-engineering process that we did on the

Interpreter and the Simulator. We explained the need for re-engineering.
e Chapter 5 discussed a set of requirements for the Reasoning System.

e Chapter 6 gave a description of the design and implementation of the Reasoning

Systemn

e Chapter 7 gave a case study showing the results from the Reasoning System,

which is implemented in Java, for a Robotics Assembly Ezample.

8.2 Future Work

The following are some suggested future improvements:



8.2.1 Interpreter

Parser of LSL traits should be modified to handle the complete LSL trait file, instead
of the partial one which was used i.e., it should include the axioms section to the

existing one. These axioms could be represented by assertion trees using J.JTree.
Parameterised events should be allowed to enhance the expressive power of the spec-
ifications. This will require research into the representational and behavioral aspects

for parameterised events, before making changes to the parser and the Interpreter.

8.2.2 Simulator

1.

o

A library consisting of the implementation of a large number of LSL trait func-
tions could be added to the Simulator. This would allow the user to make use
of different LSL traits. In the current version of the simulator only one LSL

trait (Set) is implemented.

In current version of the Object Model support only boolean operators can be

evaluated; in future, arithmetic operators should be implemented.

8.2.3 Reasoning System

1.

o

The routes found in the last part of the Reasoning System do not take into
consideration the truth values of the assertions. In order to do that we have to
dynamically keep a trace of the values of the attributes and have to evaluate
the predicates in the specifications. Some of the reasoning left to the user can

be mechanised.

In the last query of the reasoning system we find one route to a specific state
of a TROM object. This is a good reachability study. This query could be
improved to find all the routes. This will give the user more scenarios to work
with. However, in the presence of periodic or cyclic event structure, the number

of paths (when the time is included) may be exponential.
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Appendix A

GRC, and SCS Grammar

GRC | ::= | <class> <events> <states> <attributes> <traits> <att_funcs>
<tran.specs> <time_constraints> end

Table 2: Grammar for generic reactive class specification

In the grammar, a class (see Table 3) is described by the keyword Class, followed by
a string denoting the class name, followed by a list of port types in square brackets .
The list of port types is composed of one or several port type names, represented as

strings starting with the symbol @ and separated by a comma.

class = | Class <class_name> [<port_types>] NL
port_types = | <port_type_.name> | <port_type_name>, <port_types>
class_name := | String

| port_type_name | = | @String

Table 3: Grammar for generic reactive class title

Events (see Table 4) are introduced by the keyword Events, followed by the list of
events. The list of events can contain one or several events, separated by comma.
Each event can be an internal event, an input event or an output event. Internal
events are represented by a string for the event name. Input events are represented
by a string as event name, followed by the character ? and the string for the port
tvpe at which the event occurs. Output events are represented by a string as event
name, followed by the character ! and the string for the port type at which the event

occurs.

States (see Table 3) are introduced by the keyword States, followed by the state set.
The state set is comprised of the initial state, followed by a list of one or several
states, separated by comma. A state is represented by a string for the name. If the
state is complex, the name is followed by its substates, represented as a state set,

within curly braces.
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events ::= | Events: <event_list> NL

event_list = | <event> | <event>, <event_list>

event ::= | <inputevent> | <outputevent> | <interevent>
inputevent ::= | <event_name> 7 <port_type_name>
outputevent ::= | <event_name> ! <port_type_name>
interevent = | <event_name>

event_name ::= | String

port_type_name | ::= | @String

Table 4: Grammar for events

| states = | States: <state.set> NL

state_set = | *<state>, <state.list>

state_list = | <state> | <state>, <state_list>

state := | <state_name> | <state_name><state_set>
state_.name | ::= | String

Table 5: Grammar for states

Attributes (see Table 6) are introduced by the keyword Attributes, followed by the
list of attributes. The list of attributes is comprised of one or several attributes,
separated by a semi-colon. Attributes of type port type are represented by a string
for the attribute name, followed by colon and by the port type name, which starts
with the character @. Attributes of type data type are represented by a string for

the attribute name, followed by a colon and by the LSL trait type name.

LSL traits (see Table 7) are introduced by the keyword Traits, followed by a list of
traits. The list of traits is comprised of one or several traits. A trait is represented

as a string for the trait name, followed in square brackets by the argument list and

attributes ::= | Attributes: <attlist>NL
att list = | <attribute> | <attribute>;<att_list>
attribute ::== | <att_name> : <port_type_name> |

<att_name> : <trait_type_name> |
<att_name> : Integer | <att_name> : Boolean

att_name := | String
trait_type_name | ::= | String
port_type_name | ::= | @String

Table 6: Grammar for attributes
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traits = | Traits: <traitJdist> NL
trait_list = | <trait> | <trait>, <traitlist>
trait = | <trait_name>[<arglist>,<trait_type_name>] |
<trait_name>[<trait_type_name>|
arg_list = | <arg> | <arg>, <arg list>
arg = | <trait_type_name> | <port_type_name>
trait_name = | String
trait_type_name | ::= | String
| port_type_name | ::= | @String

Table 7: Grammar for LSL traits

| att_funcs ::= | Attribute—Function: <att_func_list>

. att_func.ist | := | <attfunc>; | <att_func>;<att_func_list>
att_func = | <statename> — <att.list> NL
att list := | <att_name> | <att_name>.<attlist> | empty
att_name = | String

, State_name = | String

Table 8 Grammar for attribute functions

the trait tvpe name. The argument list is comprised of one or several arguments. An

argument is either a trait type name or a port type name starting with the character

©

The attribute function (see Table 8) is introduced by the keyword Attribute-Function,
followed by a list of attribute function applications. The list of attribute function
applications has one or several attribute function applications, separated by a semi-
colon. Each attribute function application is comprised of the state name as a string,
followed by the keyword —, followed by an attribute list, between curly braces. An

attribute list is comprised of zero or several attribute names, separated by a comma.

Transition specifications (see Table 9) are introduced by the keyword Transition-
Specifications, followed by the list of transition specifications, separated by semi-colons
and new lines. The list of transition specifications is composed of one or several tran-
sition specifications, separated by new lines. A transition specification consists of a
name, followed by a colon, one or several state pairs, separated by semi-colons, a trig-
gering event, an assertion, the implication operator — and another assertion. A state
pair consists of two state names, in brackets, separated by a comma. The triggering

event is an event name followed in brackets by an assertion. An assertion is either a
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tran_specs := | Transition—Specifications: NL <tran_spec_list>

tran_spec_list := | <tran_spec> NL | <tran_spec> NL <tran_spec_list>

tran_spec := | <tran._spec_name>: <state_pairs> <trig_event>
<assertion> — <assertion>;

state_pairs ;= | <state_pair>; | <state_pair>; <state_pairs>;

state_pair := | (<state_name>,<state_name>)

trig_event := | <event_name>(<assertion>)

assertion := | <simple_exp> | <simple_exp> <b_op> <simple_exp>

b.op = |=1Z[>]21<[<

simple_exp = | <term> | <term> <OR> <term>

term := | <factor> | <factor> <AND> <factor>

factor = | <NOT> <factor> | pid | <att.names > | <att_name>
| true | false | <LSL_term> | (<assertion>)

LSL term := | <LSL_func_name>(<arglist>)

arg list = | <arg>|<arg>,<arglist>

arg := | pid | <att_name> | <LSL_term>

att_name/ := | String

att_name := | String

state.name := | String

event_name := | String

LSL func_name | ::= | String

OR = ||

AND = &

NOT = !

Table 9: Grammar for transition specifications

simple expression or two simple expressions with a binary operator between them. A
binary operator is one of: =, #, <, <, >, >. A simple expression is either a term or
two terms with the | logical operator. A term is either a factor, or two factors with
the & logical operator. A factor can be the logical operator ! followed by a factor,
or the reserved variable pid, or a primed attribute, an attribute, logical expressions
true or false, an LSL term or an assertion in brackets. An LSL term consists of a
LSL function name, followed by an argument list in brackets. An argument list is
composed of one or several arguments. An argument is either the reserved variable
pid, or an attribute name or an LSL term. A primed attribute is an attribute (from

the attribute function) followed by the character /.

Time constraints (see Table 10) are introduced by the keyword Time-Constraints,

followed by one or several constraints, separated by semi-colons and new lines. A
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time_constraints | ::= | Time—Constraints: NL <constraints>
constraints := | <constraint>; NL | <constraint> ; NL <constraints>
constraint := | <time_cons_name>: <tran_spec.name>, <event_name>,
<min_type><min>,<max><max_type>,<states>
states := | <state_name>|<state_name>, <states> | empty
state_name = | String
| time_cons_name = | String
tran_spec_name | ::= | String
event_name = | String
min = | NAT
| max = | NAT
| min_type =1 (]|
max_type =) |
Table 10: Grammar for time constraints
i SCS ::= | SCS <scs_name> NL <include> <instantiates> <configure>
! end
| scsname | ::= | String

Table 11: Grammar for subsystem configuration

constraint has a name followed by colon and the name of the constraining transition
specification. the name of the constrained event, the lower and upper bounds, and
a list of disabling states. The lower and upper bounds are preceded and followed,
respectively, by the open or closed interval indicators. The list of disabling states is
comprised of zero, one or several state names, separated by a comma.

The configuration specification should respect the following grammar, introduced
in [Tao96).

A subsystem configuration specification (see Table 11) is introduced by the keyword
SCS, followed by its name as a string, a new line and the following sections: Includes,

Instantiates, Configure, all followed by the keyword end.

The include section (see Table 12) is introduced by the keyword Includes, followed by
a list of subsystem names and a new line. The list of subsystem names is composed

of one or several subsystem names, separated by a semi-colon.

The instantiates section (see Table 13) is introduced by the keyword Instantiate, fol-
lowed by an instance list and a new line. An instance list is composed of one or several

instances. An instance consists of an object name, followed by two colons, a generic
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include = | Includes: <scs_name_list> NL
scs_name_list | ::= | <scs_name>; | <scs_name_list>
scs_name | ::= | String

Table 12: Grammar for include section
instantiates := | Instantiate: <inst_list> NL
inst_list = | <instantiate>; NL | <instantiate>:; NL <instlist>
instantiate :== | <obj_name>::<grc_name>[<port_card._list>]
port_card_list = | <port_card>|<port_card>,<port_card_list>
port_card = | <port._type_name>:<cardinality>
objname := | String
port_type_name | ::= | @String
grc_name := | String
cardinality := | NAT

Tabile 13: Grammar for instantiate section

class name and, in square brackets, by a port cardinality list. The port cardinality
list is composed of one or several port cardinalities. A port cardinality is represented

by a port type name, followed by a colon and a natural number for the cardinality.

The configure section (see Table 14) is introduced by the keyword Configure, followed
by the object port list. The object port list is composed by one or several object
port links, separated by a semi-colon. An object port link is composed of an object
name, followed by a period, a port name starting with character @ and its port type,
the composition operator +>, another object name, followed by a period, and a port

name starting with character @ and its port type.

Configure: <obj_port.list>
<obj_portlink>; NL | <obj_portlink>; NL
<obj_portlist>;

configure
obj.port._list

obj-portlink = | <obj_name>.<port_name>:<port_type_name> ¢
<obj.name>.<port_name>:<port_type_name>

objname = | String

port_name = | @String

port_type_name @String

Table 14: Grammar for configure section
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Appendix B

Simulation Algorithm

begin /+simulation algorithm %/
process TROM classes to be used in simulation
instantiate Subsystem s
instantiate subsystems included in Subsystem s
instantiate TROM cbjects included in Subsytem s
instantiate TROM objects for each Subsytem
initialize CurrentState and Assignement vector for each TROM object
configure port links for each Subsytem
initialize simulation clock
schedule unconstrained internal events from initial state for each TROM
object
for all SimulationEvents se in SimulationEventList sel
begin /* at this stage simulation clock can be frozen and debugger can be
activated */
while simulation clock < occur time of se
begin
increment SimulationClock /* using machine clock */
end
while exists SimulationEvent se and
SimulationClock == Occur time of se
begin /+ handel simulation event se =/
get TROM object trom accepting SimulationEvent se from
Subsystem s
get TransitionSpec ts triggered by SimulationEvent se
/* update history of SimulationEvent se %/
save CurrentState of TROM object trom in EventHistory of se
save Assignment Vector of TROM object trom in
EventHistory of se
/+ update status of TROM object trom =/
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change CurrentState of TROM object trom to DestinationState
of TransitionSpec ts
change AssignmentVector of TROM object trom according to
post condition of ts
/* handel transition specified by transition ts %/
for all TimeConstraint tc in list of TimeConstraints for
TROM object trom
begin

if constrained event of TimeConstraint tc == label

of SimulationEvent se

begin

for each ReactionWindow rw in

reaction subvector associated with tc

begin
if SimulationEvent se occurs
within ReactionWindow rw
begin /= fire reaction according to
TimeConstraint tc */
Remove ReactionWindow rw from
reaction subvector associated
with tc
insert ReactionHistory rh in
EventHistory of se
according to rw
end
end

end
if current state of TROM object trom is in
set of disabling states tc
begin /* disable reaction according to
TimeConstraint tc */
for all Reaction Windows rw in
reaction subvector associated with tc

begin
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remove ReactionWindow rw from
reaction subvector ass.whith tc
insert ReactionHistory rh in
EventHistory of se according to rw
unschedule disabled SimulationEvent
in SimulationEventList sel
if constrained event of
TimeConstraint tc is an output event
begin
remove disabled SimulationEvent
scheduled for syncronization
end
end
end
if label of TransitionSpec ts == transition label of
TimeConstraint tc
begin /+ enable reaction according to
TimeConstraint tc */
insert new ReactionWindow rw in
reaction subvector associated whith tc
insert ReactionHistory of se according to rw
/* shedule new SimulationEvent %/
insert new SimulationEvent se2
in SimulationEventList sel
using lru port of port tvpe of
constrained event tc and
random time within
ReactionWindow rw
end
end
schedule unconstrained internal event from current state for
TROM object trom
if constrained event of TimeConstraint tc is an output event
begin /* identify linked TROM object for syncronization =/
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get PortLink pl from subsytem s linking the two
TROM objects
/* shedule new SimulationEvent =/
insert new SimulationEvent se3 in
SimulationEventList sel
using port pl for sycronization

end

get next SimulationEvent se from simulationEventList sel

end
end

end /= simulation algorithm =/
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