INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quaiity of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the uniikely event that the author did not send UM! a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

®

800-521-0600

DESIGN OF A USER INTERFACE TO FACILITATE SEARCHING
IN A DIGITAL LIBRARY

KaviTHA PATHY

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

DECEMBER 1999

© KaviTHA PATHY, 2000

ivi

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votra reference

Our file Notre raférenca

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-48304-5

Canada

Abstract

Design of a User Interface to facilitate searching in a Digital Library

Kavitha PATHY

The widespread acceptance of digital library will depend, to a large extent, on the ease-of-
use and appeal of the user interface. Hence, the development of a versatile and friendly user
interface for digital library becomes indispensable and this has been the objective of this
thesis. A pilot project on digital library was undertaken jointly by the four universities in
Montreal. At Concordia University we undertook the responsibility for developing a User
Interface. The sample digital library consists of 9000 photographs of architectural images
and associated texts. The user interface design deals with providing a uniform interface for
texts and images. It makes use of a simple conceptual model that is well suited for digital
libraries, and provides a direct manipulation interface with affordances that are appropriate
to a “distributed digital library”. The biggest challenge in a distributed digital library will
be to balance between recall and precision to a level satisfactory to the user. Most searches
on digital library often provide a large number of hits and thus overloading the user with
information. To overcome the problem of information overloading, in this thesis, we have
investigated collaboration in information retrieval. Collaboration among multiple users
stem from reusing and sharing information gathered by one with others. Software agents
called user interface agents are expected to assist users in collaboration and filtering. A
protocol is proposed for cooperation and inter-operation between multiple user interface
agents. The analysis shows that conflicts can arise during collaboration and they can be

resolved using negotiation.

A prototype of the user interface has been developed in Java and has been integrated into
the joint project from other universities. Usability testing and gathering user feedback

remains to be done in the future.

iii

Acknowledgments

My deepest gratitude goes to my supervisors, Dr. T. Radhakrishnan and Dr. R. Shinghal.
Dr. T. Radhakrishnan has been and will continue for many years to be a role model for

me, on both professional and personal levels.

I would like to acknowledge the advice and feedback received from the members of the Digital

Library research group. [world also like to thank Newbridge for funding this project.

[would like to thank Venkatachalam, Bhasker and the members of multimedia lab for
friendship, good advice and moral support. I would also like to thank people outside of the

multimedia lab in whose company I found many diversions.

Thanks to administrative staff of the department of computer science, to Pauline Dubois
and Halina Monkiewicz. I own special thanks to the technical staffs Michael Spanner, Stan

Swiercz and Caroline Hakim for there timely help through out my thesis.

Special thanks to my parents for making me what I am today, and to my brother and
husband for believing in me and supporting me. Finally, thank you Vignesh for making me

feel so special.

iv

Contents

List of Figures ix
List of Tables xii
1 Introduction 1
1.1 Problem Statement e e 1
1.2 Context: Digital Library oo 3
1.3 Need Analysis o 5
1.3.1 Motivation e e e 5

1.3.2 Goals o e e e 6

1.4 Contributionof thisthesis 7

2 Literature Survey 9
21 Whatisan Agent 9
9.2 Classificationofagents oo 10
2.2.1 Collaborativeagents 11

2.2.2 Interface Agentso 11

223 MobileAgents 13

2.2.4 Information Agents 14

2.3 Agent Modelingo 15

2.3.1 Agent Theory Approaches oo 15
2.3.2 Architectures o v v v v i v e e e e e e e 16
2.3.3 Communication « « v o oo e e 17
2.4 Application of agent Technology in Digital libraries 17
2.4.1 University of Michigan Digital Library (UMDL) 18
2.4.2 University of Sunderland Digital Library 22
2.5 SUIMMATY . . . o o o o e v e i e e e e e e e e 27
User Interface for Digital Library 29
3.1 Architecture« o o L e e e 30
3.1.1 Registry subsystemo 30
3.1.2 Querysubsystem 31
3.1.3 Filter Subsystem 32
3.2 Visual Design oo 35
3.2.1 Requirementso 35
3.2.2 Visual Design of the Prototype 37
3.3 User Interactions o o v o o o b 37
3.3.1 Afordances i e et e e e e e e e 38
3.3.2 Feedback mechanisms« 41
34 ClassDiagrams 0o 42
3.5 Object Interaction Diagramo 47

vi

4 Cooperative navigation in digital library 50

4.1

4.2

Systerm Design 51
411 Agent 52
4.1.2 The Agent Language 54
4.1.3 System Architecture 57
Functions of the system 59
4.2.1 Navigation in the site-document graph 59
422 Casestudy 61

4.2.3 Algorithm for cooperative navigation (Case - 1: two ageuits situation.) 63

4.2.4 Detecting conflict and resolving conflicts by negotiation 65

4.3 SUMMMATY o ot e e e e e e e e e e e e 68

5 Implementation Overview 69
5.1 Implementation of the User interface 69
5.1.1 Registeringtheuser 70

5.1.2 Queries formulation oo 71

5.1.3 Retrieving the searchresults 72

5.1.4 Filtering and displaying the search results 74

5.2 Descriptionof the GUL 76
5.2.1 Response-set presentation, 77

6 Conclusion 83
6.1 Goalsrevisited e 83
6.1.1 Supportuser'stasks 84

6.1.2 Sharing and reusing information gathered 84

6.2 DiSCUSSION v i i e e e e e e e e e e e e e e e e e e 85

vii

REFERENCES

viii

87

List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

System Architecture (TCP/IP: Transmission Control Protocol/Internet Pro-

tocol; API: Application programming intecface) 4
Functioning of Interface Agents. 12
UMDL agent types o v v v i vt e e 19
Hypermedia Agent Architecture 23
ATransducer e e e e e 23
A Model for distributed information retrieval 26
Federated System e 27
System architecture with two alternative data flow sequences 30
RPN query represented by tree L 33
Main Class Diagramo 43
Class Diagram for Attribute Panel 44
Class Diagram for panell, 44
Class Diagram for Similarity panel 45
Class Diagram for Result panel 46
Initial object interaction diagram 48
Detailed object interaction diagram (when Total number of documents is less

then Theta) o e 49

ix

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

System framework for cooperative navigation. The dotted line shows the

communication between agents. All agents communicate with the registry.

which is shown by a solid line. oo 51
System architecturet 52
BDI architecture v v v v v v e o e e e e e e e e 33
Site-Document graph 60
Site-Document(Marked) graph 61

Site-Document graph G, for query Q. Circles represents the different sites

and the arch represents the link between them, and the number within the

bracket represents number of documents in the site which match the query. . 62
Protocol diagram for two agent situation 64
Communication between agentso 66

Protocol for three agents situation. In this A, gets a proposal from Ay and

As. It then compares the proposal. Since it is not equal, it uses compromzise

act once with Ay to find the best proposal. 67
Directed graph showing the confidence function. The weightage is between

1-10. The number in the graph represents the weight of confidence. 67
Functional model for registration 70
Functional model for verifying the password 70
Functional model for retrieving the search results 73
Functional model for filtering 74
Functional model for displaying the URLs sequentially without filtering . . 75
Functional model for displaying the URLs sequentially 75
Opening window of the Digital Library 78
Interface for attribute based search 79

5.9 Interface for similarity based search 80
5.10 Search menu 81
511 Option menu o oo e e e e e e 81
5.12 OPLiON MeNU o ot o it i e e e e e e 81
5.13 Interface for displaying the search result 82

List of Tables

3.1 Summary of Affordances and Feedback Mechanisms

4.1 Possible response for a speech act

Chapter 1

Introduction

A user’s networked computer is a portal to the digital library of the future. An important
component of this is access to distributed heterogeneous services, which mainly include
search services and presentation services. Advances in computer power and network con-
nectivity have currently enabled user access to many more distributed services than in
the past. This thesis addresses the problem of providing users with access to the above

mentioned services of a digital library.

The ideas in this thesis formed a basis for a prototype system. This prototype system has
been used to explore issues in interface design, including interaction and architectural issues.
This chapter describes the problem and current approaches to it, the context in which this
work was carried out, and the groundwork for analysis of user needs that motivates the

thesis work. It concludes by summarising the contents of the thesis.

1.1 Problem Statement

There is a wide and ever-growing gulf between the distributed information that is available
over the Internet and the users who access them. The gulf is wide enough that novice

users have trouble crossing it, and the gap is growing wider as more information becomes

available. As more novice users begin to use the internet. two major problems arise: one is

specifying all the requirements of the user, and second is finding the relevant information.

Users often have trouble in figuring out how to specify the requirements for a search. This
situation is analogous to that of carly PC applications wherein; each designer used her own
judgement about how controls should look and where they should be placed. The Xerox
Star was the first system to provide a uniform Graphical user interface (GUI) environment
for multiple applications [Joh89]. The heavily-promoted Macintosh user interface guidelines
caused the same sort of standardisation across multiple suppliers of application [Inc87}, and
this approach is now prevalent with its adoption in Windows95 and Windows98. The work
presented here is a first step towards a uniform user interface for varieties of document types

such as text and image.

It is likely that the growth of available online information will continue and that a growing
proportion of existing information in traditional libraries will become available electron-
ically. This leads to the second problem of finding relevant information, because most
searches on World-Wide Web (WWW) often provide a large number of hits and thus over-
loading the user with information. So the biggest challenge on the web will be to find
something that meets the user’s specific needs. One solution to overcome this problem
is using relevance feedback. Relevance feedback is a mechanism developed in information
retrieval area whereby the user can modify an existing query based on available relevant
judgements for previously retrieved documents. The goal of relevance feedback is to retrieve
and rank highly those documents that are similar to the document(s) the user found to be

relevant.

In this thesis, we have proposed one more approach to the above problem of information
overloading using agent technology. In this approach we suggest using techniques of co-
operation among a team of users or their agents. Besides, the proposed system supports

learning and working in a team. By learning and working we mean:

learning techniques and activities specific to a particular system

learning issues related to the domain being searched

sharing hints and tips

asking for advice on a particular problem

1.2 Context: Digital Library

This thesis work was carried out as part of a joint Digital Library project. The database used
in this work is the Traquair photographic archive in the Canadian Architecture Collection at
McGill University, Montreal. It consists of 7,922 images of architectural buildings and 640
images of silver artifacts. In addition to photographs taken by Ramsay Traquair himseif, the
archive also includes photographs taken by Edgar Garipy, Livernois Ltd., M.E. Massicotte,
Gordon Antoine Neilson, and the Notman Company. Historic architecture in Canada,
particularly in the province of Quebec, is documented and so is Quebecs’ silver artifacts

used for religious and domestic purposes.

As a result of this thesis the collection of data mentioned above is made available to end
users for querying and retrieval. The architecture of the prototype is show in Figure I.1.
It has independently developed Z39.50 [Moe95] servers and a separate Z39.50 client, which
is a HTTP/Z39.50 gateway client. It provides the users with a uniform interface to the

databases and holds detailed information about available servers.

The goal of the prototype is to support search and retrieval between multiple servers and
clients. The implementation used Z39.50 to search and retrieve textual data from servers,
and HTTP to transfer images between the servers and clients. This process involves han-
dling multiple images associated with the architectural buildings and silver artifacts. An
architectural image is described by an object record. One or more digitised images are

associated with this object.

GUI

ll APL/Client (Z39.50 Client)
d ~N
Response Query (Text, Image)
TCP/1
(TCP/IP, HTTP) (TCP/P)
(HTTP Server) Lls)gor“:,“'r“em Query Server (Z39.50 Server)

N Search
| Brei
ngine (Text, Image)

7\

Text Image

Figure 1.1: System Architecture (TCP/IP: Transmission Control Protocol/Internet Pro-
tocol; API: Application programming interface)

1.3 Need Analysis

Much of the motivation for this work comes from the library world. Since our vision of the
digital library is broad, the prototype described in the previous section is appropriate for

tasks beyond the scope of the traditional library.

Digital libraries are more than on-line version of traditional libraries. As Huser put it [HS95]
“One of the main goals in developing digital libraries is to provide users with opportunities
for accessing and using information in highly flexible and user-oriented ways not available

in current information repositories”.

1.3.1 Motivation

There is substantial literature related to information retrieval from libraries and on the
question of how people access such information. A typical user of a library engages in one

or more of the following:

e Build information based on search results: People use libraries as tools to
accomplish other tasks. These tasks often involve producing “information compounds”
such as memos or reports as the end results. Hence, library search tasks can be viewed

as producing intermediate results towards this larger goal.

e Utilise different types of search: People in library use different types of search.
For example they can do Author search, Journal title search, subject search or call
number search. In this, the users knows what they are looking for, specify it, and find
it.

e Learn from search results and refine search parameters: Search in libraries is

an iterative process. Reference librarians are trained in library science and they assist

in the formation of queries using subject headings, citation, keywords etc. When

computers are used for on-line search, the process can be made interactive. This
kind of progressive scarch is different from the refinement of a query in a search
session, which is intended to gradually bring the result set closer to match the user’s

information needs [Bat89].

e Save intermediate result sets: Reference librarians are trained to formulate queries,
which are used to find subject headings, which then lead to shelves full of related mate-
rials. Subsequently, these materials can be used to find new subject headings, leading

to next areas of the shelves.

e Utilise many information-processing services: Digital library services range
from search and retrieval, to that which help us understand what we have found, to

mechanisms that helps manage our results and share then with others.

e Collaboration: The use of library resources is often stereotyped as a solitary activity.
In addition, there is hardly any mention in the library science and information retrieval
literature about the social aspects of information systems. Other than the traditional
reference interview, which has been extensively studied, there seems to have been
very little consideration of issues of collaboration with other users of the library. We
believe that introducing support for collaboration into the process of information

retrieval could possibly benefit the user more.

1.3.2 Goals
A digital library interface should support the following:

e User tasks: The use of library is part of a larger task context. Library users have
goals they want to achieve, and individual library activities are important as a means
of achieving those goals. The results of an individual search are combined with other

searches and the use of other services to achieve the final goal.

e Sharing and reusing information gathered: The interface needs to support shar-
ing and reusing information processing knowledge. In a computerised environment.
the searches of users can be easily recorded and re-used. The following are the mech-

anisms for using this information to improve future searching efficiency:

— collaborative filtering [GT94]

— social filtering/recommending [HF95]

The common feature of the above approaches is that one user’s activity can benefit
another users’ search. Hence, it is important to have a well designed interface, so

those individuals in a group could share expertise in a simple and effective manner.

1.4 Contribution of this thesis

The wide acceptance of digital library services will depend, to a large extent, on the ease-

of-use and ease-of-learning of the user interface. Hence, our goal is to facilitate:
e development of a versatile and user friendly interface for individually performed search,
and

e enabling cooperation for sharing and reusing information in a group.
The rest of the thesis is organised as follows:

e Chapter 2 gives a detailed account of agent’s classification providing two examples of
agents in a digital library.

e Chapter 3 deals with the design of the User Interface for individually performed search.

e Chapter 4 explains in detail a system for cooperative navigation to share and to reuse

information gathered from a digital library.

e Chapter 5 describes the implementation of a prototype.

e Chapter 6 provides a conclusion and suggestion for future research.

Chapter 2

Literature Survey

In this chapter, we introduce agents and provide a broad overview of various agent-based

systems. In particular, the core of this chapter is focussed on the application of agent

technology in Digital Libraries.

2.1 What is an Agent

By “agent”, we mean a software entity that acts on behalf of a human user. The list of

characteristics that have been proposed as desirable qualities an agent should process are

as follows [WJ98]:

e Autonomous: an agent is able to take the initiative and exercise a non-trivial degree

of control over its own actions:

— Goal-oriented: an agent accepts high-level requests indicating what a human

wants. Subsequently, it is responsible for deciding how and where to satisfy the
requests.

— Collaborative: an agent does not blindly obey commands, but has the ability

to modify requests, ask clarification questions, or even refuse to satisfy certain

9

requests when nccessary.

— Flexible: the agent's actions are not “scripted”. Further. it can dynamically
choose which actions to invoke, and in what sequence, in response to the state
of its external environment.

— Self-starting: unlike standard programs which are directly invoked by the user,

an agent can sense changes to its environment and decide when to act.

Temporal continuity: an agent is a continuously running process and not a “one-shot”

computation that maps the given input to an output and then terminates.
Character: an agent has a well-defined, believable “personality” and an internal state.

Communicative: the agent is able to engage in a complex communication with other
agents, including people, in order to obtain information or enlist their help in accom-

plishing its goals.

Adaptive: the agent automatically customises itself to the preferences of its user
based on previous experience. The agent also automatically adapts to changes in its

environment.

Mobile: an agent is able to transport itself from one machine to another and across

different system architectures and platforms.

2.2 Classification of agents

A broad classification of agents appears in Nwana [Hya96], where agents are categorised

into the following types: collaborative, interface, mobile, information, reactive, hybrid,

heterogeneous, and smart.

This section reviews different types of agents with examples which can be used in informa-

tion retrieval process.

10

2.2.1 Collaborative agents

Collaborative agents emphasise autonomy and cooperation with other agents in order to
perform task for their owners. Additionally to have a coordinated set, the agents negotiate
to reach mutually acceptable agreements on some matters. The general characteristics of

these agents include autonomy, social ability, responsiveness and pro-activeness.
The goal of having a set collaborative agents is to enhance the functionality of the set.

The motivation for collaborative agent systems may include the following:

e To solve problems that are too large for a centralised single agent to accomplish due

to resource limitations or the risk of having one centralised system.
e To provide solutions where the expertise is distributed.

e To enhance modularity (which reduces complexity), speed (due to parallelism), re-
liability (due to redundancy), flexibility (i.e. new tasks are composed more easily
from the more modular organisation) and reusability at the knowledge level (hence

share-ability of resources).

Examples: The Pleiades project at Camegie Mellon University(CMU) investigate methods
for automated negotiation among collaborative agents, in order to improve their robustness,
effectiveness, scalability and maintainability [urla]. The project applies collaborative agents

in the domain of Organisational Decision Making over the “InfoSphere”.

2.2.2 Interface Agents

Interface agents like collaborative agents also emphasise autonomy and learning in order to
perform tasks for their owners. Pattie Maes [Mae], a key proponent of this class of agents,

points out that the key metaphor underlying interface agents is that of a personal assistant

11

) User
interacts

with A
Communication
.. Observes
Application & imitat
tmitates User’s feedback/
\ programming with examples
interacts User’s Neeoooiooomooiiiii User A’s
with gen Asking Agent

Figure 2.1: Functioning of Interface Agents.

who is collaborating with the user in the same work environment. Note the subtle emphasis
and distinction between collaborating with the user and collaborating with other agents as
is the case with collaborative agents. Collaborating with a user may not require an explicit

agent communication language as is required when collaborating with other agents.

Figure 2.1 depicts the functioning of interface agents. Essentially, interface agents support
and provide assistance, typically to a user learning to use a particular application such as
a spreadsheet or an operating system. The user’s agent observes and monitors the actions
taken by the user in the interface (i.e. ‘watches over the shoulder of its user’), learns new
‘short-cuts’, and suggests better ways of doing the task. Thus, the user’s agent acts as
an autonomous personal assistant which cooperates with the user in accomplishing a given

task in the application.

The goal is to migrate from the direct manipulation metaphor to one that delegates some
of the tasks to (proactive and helpful) a software interface agents in order to accommodate

novice users.

The motivation for using interface agents is to eliminate the tedium of humans perform in

repetitive action environments, thereby improving productivity and reducing user workload.

12

Examples:

o Kozierok and Maes [KM93] describe an interface agent called Calendar Agent. This
is used for scheduling meetings which is attachable to any application provided it
is scriptable and recordable, e.g. scheduling software package. The Calendar Agent
assists (i.e. its role is in assisting) its user in scheduling meetings which involves

accepting, rejecting, scheduling, negotiating and rescheduling meeting times.

e Liebermann [Lie95] describes an agent called Letizia, whose role is that of a guide
assisting web browsing (a keyword and heuristic-based search agent). When users
operate their browser, e.g. Netscape, they must state their interests explicitly when
using traditional search engines such as Webcrawler or Lycos. The user remains
idle while the search is in progress, and likewise, the search engine is idle while the
user is browsing the interface. Contrary to the above, Letizia essentially provides a

cooperative search between itself and the user.

2.2.3 Mobile Agents

Mobile agents are computational software processes capable of roaming wide area networks
(WANSs) such as the world wide web (WWW). Besides they can interact with foreign hosts,
gathering information on behalf of its owner and coming ‘back home’ having performed
the duties set by its user. These duties may range from a flight reservation to managing a
telecommunications network. These agents can move from one machine to another for task

execution, as opposed to static agents, that require information be sent to the machine they

reside on.

The motivation for using mobile agents include the following anticipated benefits.

e Reduced communication costs: It obviates the need for costly network connections

between remote computers, a requirement in remote procedure calls (RPC), thereby

13

providing a much cheaper alternative.

e Easier coordination: By using mobile agents it is simpler to coordinate a number of

remote and independent requests and only collate all the results locally.

e Asynchronous computing: Users can ‘set off’ their mobile agents and do something
else and the results will be back in their mailbox, say, at a later time. The agent can

operate when the users are not even connected.

Example: The first commercial application was Sony’s Magic Link PDA or personal intel-
ligent communicator (PIC) [urlb]. Essentially, it assists in managing a user’s e-mail, fax,
phone and pager as well as linking the user to Telescript-enabled messaging and communi-

cation services such as America Online.

2.2.4 Information Agents

Information Agents also known as Internet agents have been developed because of the
demand for tools to manage the rapid growth of information currently being experienced.
Information agents perform the role of managing, manipulating or collating information
from many distributed sources. Interface or collaborative agents started out quite distinct,
but with the spread of the WWW and because of their applicability to this vast WAN,

there is now a significant degree of overlap among information, interface and collaborative
agents.

The motivation for developing information/internet agents is twofold. Firstly, there is the
need for tools to manage the rapid growth of information. Secondly, there are vast financial

benefits to be gained. Whoever builds a proactive, dynamic, adaptive and cooperative

agent-based WWW information manager is certain to reap enormous financial rewards.

Example: Etzioni and Weld [Eic94] describe a agent called the internet softbot (software

robot). It is a fully implemented agent which allows a user to make a high-level request,

14

and the softbot is able to use search and inference knowledge to determine how to satisfy
the request in the internet. In doing so. it is able to tolerate ambiguity, omissions and any

errors in the user’s request.

2.3 Agent Modeling

This section summarises three approaches to agent modeling namely, theory, architectures,

and languages.

2.3.1 Agent Theory Approaches

Theory: An agent is viewed as an entity with knowledge, beliefs, desires and intentions.
More generally, they are viewed as intentional systems. Two commonly used attitudes for
representing agents are information attitude such as belief and knowledge and proactive-
attitude such as desire, intention, commitment and choice. Currently is unclear which
combination of attitudes is appropriate to represent agents. Different researcher’s take

different approaches to circumvent the above problem.

Possible Worlds Model by Hintikka: The possible worlds model for logics of knowledge
and belief was originally proposed by Hintikka {Hin62], and subsequently formulated in a
normal modal logic using techniques developed by Kripke {Kri63]. Hintikka's insight was
to see that an agent's beliefs could be characterized as a set of possible worlds. In this

approach, temporal logic was used extensively to model the action.

Belief and Awareness by Levesque: Levesque [Lev84] proposed a solution to the prob-
lem of making distinction between explicit and implicit belief. An agent has a set of explicit
beliefs, and much larger set of implicit beliefs, which are logical consequences of explicit

beliefs. A drawback to this solution is that it lacks quantification, and makes incorrect

15

reasoning at times [Lev84]. To rectify this, Fagin and Halpern{FH85] developed a logic of

general awareness.

Intention by Cohen and Levesque: A logic developed by Cohen and Levesque (1990)
analyses conflict and cooperation in a multi-agent dialogue. A rational balance must be
achieved between goals and belicfs of agents. The authors first identified seven properties
for agent systerns to be satisfied by a theory of intention. Based on this they developed a
logic of rational agency. They also introduced several operators in addition to the standard

modal operations, and show which of the seven criteria could be satisfied by their theory.

Rao and Georgeff: In the work of Cohen & Levesque [CL90], mentioned above, two basic
attributes namely, beliefs and goals were used. Further attributes, such as intention, were
defined in terms of these. In a related work, Roa and Georgeff [RG91] have developed a logic
framework based on Belief, Desire, and Intention (called BDI). Their formalism is based
on branching temporal logic which examines how an agent’s belief about future affects its

desires and intentions.

2.3.2 Architectures

Intelligent Resource Bounded Machine Architecture (IRMA) was developed as
an agent architecture based on the attributes belief, desires, and intentions [BP88]. This
architecture has four key symbolic data structures namely, a plan library,and an explicit
representations of beliefs, desires, and intentions. Additionally, the architecture has a rea-
soner, for reasoning about the world; a means-ends analyser, for determining which plans
might be used to achieve the agent’s intentions; an opportunity analyser, which monitors
the environment in order to determine further options for the agent; a filtering process;
and a deliberation process. The IRMA architecture has been evaluated in an experimental

scenario known as the Tileworld [PR90].

16

HOMER An experiment in the design of intelligent agents was conducted by Vere and
Bickmore [VB90]. They argued that the enabling technologies for intelligent agents were
sufficiently developed to be able to construct a prototype autonomous agent. with linguistic
ability, planning and acting capabilities. They developed such an agent, and named it
HOMER. This agent was a simulated robot submarine, which could plan to achieve its

instructions. and execute them with appropriate modifications at run time as required.

2.3.3 Communication

Formalisms for representing'communication in agent theory have tended to be based on
speech act theory, as originated by Austin [Aus62], and further developed by Searle [Sea69]
and others ([CL90]). Most of the work in speech act theory has been devoted to classifying
the various types of speech acts. The two most widely recognised categories of speech acts

are representatives and directives.

Agent communication languages [GK94] are based on work in speech act. The best
known work on agent communication languages is that by ARPA knowledge sharing ef-
fort [Pa92]. This work has been largely devoted to developing two related languages, the
knowledge query and the manipulation language (KQML) and the knowledge interchange
format(KIF). KQML provides the agent designer with a stranded syntax for messages, and
a number of performatives, which described the purpose of the communication, that define
the force of a message. On the other-hand KIF provides a syntax for message content. KIF

is essentially the first-order predicate calculus, recast in LISP-like syntax.

2.4 Application of agent Technology in Digital libraries

Present libraries have the capability to automate tasks such as cataloguing, searching and

circulation. These libraries can be seen as the concatenation of an on-line public access

17

catalogue plus the collection of printed books. On the other hand, it can be argued that
digital libraries should be more than simple digital repositories and computerised search en-
gines. Digital libraries should be regarded as dynamic and active providers of what is likely
to be rapidly changing information. Therefore, the conventional metaphor for information
retrieval is inadequate. Hence, it should be supplemented with an information retrieval
technique for dynamically changing information stored in digital libraries. Other important
technical challenges which would affect the traditional information retrieval process arise

from the need for distributed storage, distributed retricval and multimedia retrieval.

The following sections give an overview of the various rescarch components of University
of Michigan Digital Library (UMDL)[DM96] and on-going research at the University of

Sunderland [SB96).

2.4.1 University of Michigan Digital Library (UMDL)

UMDL is organized as a distributed system where the tasks are distributed to numerous
specialized, fine-grained modules called agents. This promotes modularity, flexibility and
incrementality. These agents have local knowledge about specific tasks and their autonomy.
Limiting the complexity of an individual agent simplifies control, promotes reusablity, and
provides a framework for tackling interoperablity problems. Each agent performs a highly

specialized library task and has a generic communication interface.

2.4.1.1 Different type of agents in UMDL

User interface agents, mediator agents and collection interface agents are the three classes
of agents that populate UMDL (Figure 2.2).

User interface agents (UIAs) The UIA manages the interface that connects human
users to UMDL resources. UIA performs the following functions, with assistance from

other agents:

18

Figure 2.2: UMDL agent types
e express user queries in a form that a secarch agent can interpret.

maintain user profiles based on specified, default, and inferred user characteristics.

e customize presentation of query results.

manages the user’s resources available for fee-for service activities.

Mediator agents Mediator agents provide intermediate information services. There are
different types of mediating agents for finding, processing and delivering information. These
agents are distinguished by their specific knowledge and relevant expertise. In UMDL,
mediators deal exclusively with other software agents, rather than end users or collections,

where collections are bodies of library content. They perform functions such as:

directing a query from a UIA to a collection.

monitoring query progress.

transmitting formats, and

bookkeeping.

Collection-interface agents(CIA) CIA manages the UMDL interface for collections.
The collections can comprise of images, structured documents, image collections, and audio
and video. In UMDL, queries are submitted to local information repositories to execute the

elementary requests on the actual information sources. Each information source is assigned

19

a dedicated collection of interface agents, which is responsible for maintaining a link between
the repository and the rest of the system. These agents are capable of translating query

requests, mapping between data types and formats. and resolving schema inconsistencies.

There are two main capabilities of CIA in UMDL. The first capability is to use knowledge
supplied by domain specialists about the structure of the documents or other information
sources. The second capability is a more dynamic structured activity, based on usage

patterns.

The CIA also publishes the contents and capabilities of a collection in the registry.

2.4.1.2 Agent communication in UMDL

The UMDL tasks require the coordination of multiple specialized agents working together
on behalf of users and collection providers. In order to form teams, agent must be able to

describe their capabilities to each other in a way that all can understand.

UMDL agents communicate at three distinct levels of abstraction. At the lowest level,
agents employ network protocols such as TCP/IP to transmit messages among themselves.

Task-specific protocols dictate how the agents interpret and process these messages.

Agents are more likely to be used frequently if they communicate in widely adopted lan-
guages. This represents the second level of abstraction. Standards like Z39.50 can be used
to provide broader interoperability. This increases the scope of an accessible collection to

an agent posing a given query.

A specialized agent’s capabilities will remain untapped unless it makes its abilities and
location known and participates in team formation. For this propose, special protocols for
team formation and negotiation tasks have been defined. These UMDL protocols represent

the third level of abstraction in agent communication.

20

2.4.1.3 The Conspectus and the conspectus language

The information in UMDL is enormous. Hence, to limit queries to potentially applicable

CIAs, the information space is partitioned into the following two levels [BW94].

e Collection: the set of actual documents.

e Conspectus: includes the content of the collection, search capabilities of the search

engine associated with the collection and the structure of the material in the collection.

Thus conspectus is an abstracted description of the aggregate of collections populating
the UMDL. The conspectus is written in a language called conspectus language (CL). CL
provides a structure for developing compatible representations of collection. Thus, the
conspectus provides interoperability for various search and retrieval methods through a
common representation over collections. Since conspectus is large in both scope and size,

it is distributed and hierarchically organized.

In UMDL, agents are defined by the information content they can deliver, the information
services they can render, or both. Agents describe what they can contribute to an agent
team and what their limitations are in a conspectus language. Facilitators can also use the
C language to describe capabilities required for participation in a team. CL thus serves as

a language for both disclosing and querying about language.

Agents communicate using patterns of messages, where the content of the message is spec-
ified by CL and sets of “performatives” describing the purpose of the communication. The
messages transmitted between the agents describe capabilities, services, and other primi-
tives. For example, all agents use the ASK performative to make requests to the registry
for notification about classes of agents with certain capabilities. The registry agent (which
is described latter in this section) continues to send information about these agents, as they

come on-line, until the UNASK performative is received.

21

Another example of performative set is TELL. which is typically used in response to an ASK
performative. The registry agent uses TELL to send the names of agents that correspond to
some capability specification. The registry agent uses the UNTELL performative to express

that an agent is no longer available. or that its capabilitics have changed.

2.4.2 University of Sunderland Digital Library

University of Sunderland Digital Library [SB96] is based on Hypermedia architecture. This
architecture introduce hypermedia agent, i.e. an active atomic data containing component,
or more complex hypermedia component which can participate and co-operatively operate

in a logically and physically distributed hyper-information environment.

2.4.2.1 Agent architecture

An modular approach is used to define the architecture of hypermedia agents. The hyper-
media agent is divided into two parts, an agent head and an agent body (Figure 2.3). The
agent head contains all the required information, to enable the hypermedia agents to oper-
ate in a co-operative hyper-information environment. The architecture of the agent head is
independent of the information source and content. The agent body represents the actual
contents of a hypermedia agent, but the contents are always accessed through the agent
head. New information can be added to participate in the hyper-information environment
and inter-operate with other agents. An agent head is used as a Transducer to mediate

between the information source and other agents in the hyper-information environment
(Figure 2.4).

Atom hypermedia agents are the actual data containers. Primitive hypermedia agents
aggregate related atoms to build a large logical entity. For example, a document can be
represented by a primitive agent, which aggregates all atomic agents that constitute it. The

hypermedia composite agents supports higher organizational units. The library agent is the

22

Agent head-It has the knowledge required to
operate in a hypermedia information

]

Agent body-t stores meta-information about
the actual content

Figure 2.3: Hypermedia Agent Architecture

Transduce

Information
Source

Figure 2.4: A Transducer

23

highest organizational unit and can be seen as the hypermedia agent representation of a

physical library.

2.4.2.2 Agent Communication Language (ACL)

ACL is the language used in the above model. ACL consists of three parts: its vocabulary,
an inner language called KIF (Knowledge Interchange Format), and an outer language
called KQML (Knowledge Query and Manipulation Language). KQML can communicate
attitudes about information, such as querying, requiring, achieving and offering. KQML
is indifferent to the format of the information itself. Thus, KQML messages will contain
sub-expressions in other so-called “content Languages”. The vocabulary of ACL is an open-
ended dictionary of words which describes a specific application area. Examples of messages

expressed in ACL language are listed in the following:

A to B: (ask-if (text, Acropolis)); i.e. Ask B if it is a text agent with information about

Acropolis.

A to B: (announce (search, Picaso)); i.e. announce to B the task to “search” for the word

Picaso.

B to A: (bid (text, Picaso)); i.e. B offer a bid (e.g. B found documents with the word

“Picaso”).

2.4.2.3 Information Retrieval based on Co-operative links

In digital libraries distribution of the information sources, the heterogeneity of these sources
and also the rapidly changing information makes the conventional information retrieval to
be reconsidered within the context of digital libraries. A possible solution to the problem
of rapidly changing information is the central maintenance of the global index. Distributed

information sources can communicate document changes in contents or structure and update

24

the global index. Unfortunately, in a large distributed information environment this is not
cost effective. Another approach to tackle the problem of dynamically changing information
is to use dynamic links in order to avoid the need for immediate update. A dynamic link
specifies a destination agent in terms of agent specifications. Providing a search based
information retrieval mechanism within a hypermedia framework is also a function attached

to dynamic link.

Agent-based hypermedia model for digital libraries support co-operative retrieval links as
the basic means for search-based distributed information retrieval. Co-operative retrieval
links are dynamic links, which when activated, provoke different library agents to be engaged
in a co-operative information retrieval process wherein they cooperate, based on negotiation.
Co-operative retrieval links, as opposed to static links, are not anchored to a specific location
within a document. They are implemented as separate files attached with one or more
hypermedia agents. These files should be seen as a set of specifications, in the form of

KQML, for searching documents in co-operative library agents.

When a user activates a co-operative link, the search specifications are communicated to
the library agents. Here, filters can be used to optimize the selection of library agents
from which it is more likely to retrieve the required information. Library agents which
receive specifications for searching documents, can apply conventional IR techniques for
retrieving documents matching these specifications, or they can alternatively communicate
the search specification to their co-operative library agents. Successful hits for documents
during this process, are communicated back to the original agent which initiated the co-

operative process. Figure 2.5 is a schematic representation of this co-operative information

retrieval.

Negotiation between agents is based on the contract-net protocol. Contract-net is a protocol
for co-ordinating agents which are able and willing to cooperate. In hypermedia based

architecture, the tasks requiring co-operation are information retrieval tasks. Different

25

' .
problem

|

(Representation j I

Representation, Index '

KQML messages
A Eprcsemmion Index l

L N

=

Retrieved
Document

Figure 2.5: A Model for distributed information retrieval

primitive agents may exist which include information with the required specifications. The
library agent should announce its intention to allocate the information retrieval task to other
primitive agents which are included in its acquaintance list. The primitive agents which
receive announcements about the information retrieval task, decide if they can undertake
the previously announced responsibility. These agents return bids in order to undertake
the responsibility. The departure agent can now decide to which agent it should allocate
the responsibility to satisfy the information retrieval task. This decision can be based on

previous experience, efficiency, or based directly on the choice of the user.

Co-operative retrieval links in conjunction with the browsing mechanism could provide a
rich environment for information retrieval. Information retrieval using co-operative links
can be seen as a mechanism which is used to initially locate specific information in large
library systems. The user can also refine the specifications of the co-operative links, in order

to narrow the number of bids returned by library agents.

The contract-net protocol, like any direct communication protocol could be inefficient in
terms of communication cost. Hypermedia model eliminates this problem, since hypermedia

agents can be organized as a federation. A federation system (Figure 2.6) is an architecture

26

CAgcmj CAgch l CAgcm) (Agent] (Agcnl)
[Facilitator j J C Facilitator JJ

AN 7
([Facilitator Jw

L(o) (ham gj

Figure 2.6: Federated System

for indirect communication. Agents do not communicate directly with the other agents, but
they communicate through communication facilitators. In hypermedia model, the library
agents act as communication facilitators for their “local” hypermedia agents. Using this
approach, local documents communicate their document specifications to their local facilita-
tors. Facilitators using this meta-information provided by these local agents, can efficiently

communicate with other distributed libraries, for information retrieval.

2.5 Summary

This chapter has introduced two sample digital library systems that differ in their respective
architectures and designs. The approach followed in our project consists of models, whose

origins can be traced back to these systems.

From the two digital libraries described in this chapter, UMDL user interface is closest
to our design. Similar to UMDL, our system maintains user profiles based on specified,
default, and inferred user characteristics. It uses user profile to customize presentation of
query results. In contrast to UMDL, which uses a thesaurus to help the user reformulate his
query, our system uses cooperative navigation to help the user in narrowing down the search

results. UMDL also supports negotiation and economic transaction by defining protocols for

27

reaching agreements and specifying the terms of deals between agents. for managing these
commitments, and for enforcing and executing the agreements when possible. In contrast.
our system uses negotiation by defining protocols for information exchange between agents

and for reaching agrecments for a proposal.

The digital library from University of Sunderland also uses negotiation for cooperative
information retrieval. This negotiation between agents is based on the contract-net protocol.
This system is similar to UMDL in terms of functionality, and its most prominent feature

is the information retrieval based on cooperative links.

28

Chapter 3

User Interface for Digital Library

The main goal of this thesis is to develop a versatile and user friendly interface for searching
a digital library. The proposed user interface system is aimed at “naive” users, wherein it

is casy to learn and use the system.

The main functions of the user interface are:

1. expressing user queries in a form that a search agent can interpret (GUI based input

is converted to suit the needs of the search agent).
2. filtering the retrieved response set based on the user profile, when necessary.

3. interactive presentation of the retrieved response returned by the search engine in

response to the input query.

This chapter focuses on the architecture and visual aspects of the interface. Section 3.1
describes an architecture. Section 3.2 lists a set of requirements for the visual design,
Section 3.3 describes the affordances, and shows how they map onto the operational and
visual aspects. The final sections provides object class diagram and object interactive
diagram of the interface implementation. The design notation used here is UML (Unified

Modelling Language).

29

I input 2 [Query 3023950 typel query

subsystem |

subsystem | | . Jreh qent
—_— « search age

o
@
(23
-

Registry
| subsystemn

Filter —
ubsyst <1 User
SUDsys em roﬁl

Presentation
subsystem

sedrch result

'
P
i
)

Data flow

1
|

1
oy W
'

-3-4
-3-4-

19

Figure 3.1: System architecture with two alternative data flow sequences

3.1 Architecture

The system architecture is composed of five closely integrated subsystems (Figure 3.1). Input
subsystem gets input from the user. Registry subsystem gets user information. The Query
subsystem processes the user input and generates Reverse Polish Notation(RPN) query, that
forms an input for the search agent. Filter subsystem filters the search result depending on
the user profile. The user profile permanently stores the profiles of cach user known to
the system. Finally, the Presentation subsystem displays the search results from the search
agent. The subsystems interact with each other as show in the architecture diagram (Figure

3.1). The following sections describes each of the subsystem in detail.

3.1.1 Registry subsystem

To use this application, the user has to register once first. While registering, the system gets

information from the user about his preferences, which is subsequently stored in the user

30

profile. The user can also nupdate the user-profile if his personal information and/or prefer-
ences has changed over time. Upon registration the user gets a user name and password.

aceess the digital library.

3.1.2 Query subsystem

[n the architecture proposed. the Query subsystem receives the query from the Input sub-
system. This query consists of two parts. The first part is used by a global search server
to determine the sites concerned for querying. [t consists of domain name such as art.
science or architecture. type of database to search such as text. image or multimedia and
database name. The second part of the query contains more specific information namcly,
phrase(keywords), title, location, photographer’s name, image attribute, and type of index

used.

Query processing is performed by the Query module, which generate Z39.50 typel query
[Moe95]. Z39.50 is a standard that defines a protocol, which enables remote searching of
database and retrieval of the search results. Further, this can search any kind or structure

of database.

The Type-1 query is an integral part of Z39.50. This is based on a descriptive technique
known as Reverse Polish Notation(RPN), which defines expressions consisting of operators

and operands. The structure of type-1 query is as follows:

RPN-Query ::= Argument|Argument+Argument+Operator
where
Argument ::= Operand | RPN-Query

Operand ::= Attributelist + Term | ResultSetId | Restriction

Restriction ::= ResultSetId + AttributeList,

ResultSetId ::= Identification of or pointers to subset of records formed
by applying a query.,

31

Term ::= A word, or a phrase, or a set of words, or a number,or anything
that may be searched for in the target database.

Operator ::= AND | OR | AND-NOT | Prox

The notation above is used as follows:

= means ‘is defined as’
| means ‘or’

+ means ‘followed by'. where + has precedence over |.

Consider an example query, "Give me all records in which a title contains any word starting
with ‘educ’.’ . The RPN form of the query is
RPN-Query := AttributeList = (use. title), (relation. equal). (structure. word), (truncation,

right), (completeness, incomplete subfield).(position, any). Term = educ

The type-1 query is represented by a tree (Figure 3.2). Each leaf node represents a sim-
ple operand. Each non-leaf node represents an operator. For example, consider the query
(((PHOTOGRAPHER/Notman or PHOTOGRAPHER/Traquair) and IMAGE/10000) and
INDEX/z). The query means that we arc looking for a document that contains “Notman”
or *Traquair” in the author attribute and the image reference is “10000” and the index
method used is “Z”. RPN form of the query is : ({(PHOTOGRAPHER/Notman PHO-

TOGRAPHER/Trquair OR) IMAGE/10000 AND)INDEX/z AND).

The query subsystem traverses the tree according to a left post order traversal, to produce

a sequence of operands and operators, which is transmitted to the search agent.

3.1.3 Filter Subsystem

The presentation subsystem uses filter and User Model to remove less important information
from the response sct. Filtering is done when the response set is too large to browse

sequentially. It is based on the user model and content of the response sct.

32

AND

|
AND 1 INDEX. z

' OR I IMAGE: 10000
PHOTOGRAPHER/Notman PHOTOGRAPHER, Trquair

Figure 3.2: RPN query represented by tree
3.1.3.1 User Model

The user model is necessary to maodel the current state of the user and his system preferences.
As a result, the user model consists of static entities and is represented by means of a

collection of data structures.

The user model consists of two sub-models, namely the task model and a user profile. The
task model is a set of tasks and a task may be further be divided into subtasks, recursively.
It allows the agent to infer the user’s goals at the current level of interaction. This resolves
some types of ambiguitics without initiating a new dialog with the user. For the digital
library application, the tasks and subtasks are represented as follows:
(T1, T2(T21), T3, T4(T41), TS)

where

T1: Receive search results.

T2: Display a random set of search results.

T21: From the displays result select attribute based on which filtering

can be done.

T3: Display the search results (after filtering).

T4: Select a search result to follow.

33

T41: specify the mode (text and/or image).

T5: Store the search result in a file.

The User Profile is organized as a table that can be modified by the user. The table is
consulted by the agent whenever filtering of the scarch results is required. [t consists of
values for attributes such as photographer. province. building classification and modalities
(Text ounly. image only and text and image). Each of these attributes can consist of single

or multiple values.

3.1.3.2 Filter

The search agent locates a set of URLs that matches the user’s query and returns the search
result (set of URLSs) to the presentation agent. The presentation agent in turn displays the
URL. The user may select a subset of URLs to view. Whenever the number of URLs
exceed a fixed threshold (THETA), the user is queried if he/she would like to retrieve the

documents indeed.

The user sets a value for the constant THETA at the beginning of the search. Whenever
the number of documents found excced this threshold value, the user is asked for further
action such as cancel, go ahead and retrieve more response or filter the output at current

stage and display before proceeding further.

If the user prefers to filter the response before viewing, the system displays a random number
of URLSs for inspection. By viewing random number of URLs from the response set, the
user can get a general idea about using various attrib::te values to further filter the response
set. Once the user selects the attribute by which filtering has to he done, the agent will

use the value from the User profile of the user for the corresponding attribute to filter the

response set.

34

3.2 Visual Design

The previous section defined an architecture for the prototype without specifyiug an interac-
tion style. Based on this architecture. it would be possible to build a commandline interface.
an audio interface. or a visual interface. Each of these approaches requires additional design

decisions. such as identifying the commands or icons.

The actual implementation of the prototype is a visual interface. and this section explores
the requirements of the visual design. and then describes the visual design that is imple-

mented in the prototype.

3.2.1 Requirements

A large part of visual design is what Liddle [Lid96] calls information display:

*...information display deals literally with what appears on the screen. It encompasses all
those relatively minor aspects, like what window borders and buttons should look like, what
fonts are used and where, what icon shapes are used. and so on. This component is impor-

tant, but is not the crucial concern from the standpoint of usability.”

Although, information display is a significant component of what we are calling visual
design, part of what will be described here is also the control mechanism. In the gap
between abstractions and information display are decisions about whether or not to use
menus, buttons, dialog boxes, drag and drop, or any of the myriad of other possible

graphical user interface techniques.

Many aspects of the visual design of a system are constrained by implementation decisions.
If the system is to run on multiple platforms, it may be difficult to get a uniform font. If
a standard widget set is used for programming convenience, the designer may not be able
to affect the way buttons, text boxes, or menus look. Furthermore, a standard widget set

will set up user expectations about how things work, e.g. if the system has a “File” is the

first memi. the user expects “Open”™ and “Close™ to appear on the menmu. IF the system is
to be built with an application builder. the set of interaction mechanisms will be limited to

those supported by the tool.

The visual design strongly affects the ease of use of the system. If it clearly communicates
the metaphors, and affordances of the system. where affordances is a set of actions suggested
to the user by visual representation. new users may be able to begin using the system right
away and occasional users will be reminded of what the graphical elements afford. The visual
design has its own ontology that interacts with the ontology of the underlying system. A

carcfully designed visual ontology is part of the design language of a system [Rhe96].

As an example of how implementation decisions, in particular widget set constraints and
visual design affect user behaviour, consider this example from the prototype result set

component. The example came up in the design of the result set object.

The result set is a composite object that consists of both a collection and a process. [t is
created by a search service at the time of scarch, to hold the future resuits of the scarch.
In addition to inspection. it is possible to ask the result set to get ‘more’ results from the
agent. The result set component requires some way to convey to the user the number of
results received so far, the number that matched the query of the user. and it needed an

affordance with which the user could ask for more results.

The result set has a label on it that conveys the status of the result set. The label is initially
set to “searching...” and once the search service finds out the total number of items matched
by the query, the label changes to a string indicating the total number of results that match
the query. The result set also has a “more” button on it that implements the affordance
of asking for more results. The result set has another affordance for inspection and double

clicking on the URL set causes the URL to be displayed in detail in the web browser.

3.2.2 Visual Design of the Prototype

The visual design is an important part of any graphical user interface. This work could
benefit from the expertise of a professional graphic designer, as much more work in this
area is possible. The detailed visual design with figures and screen capture is explained in

Chapter 5.

3.3 User Interactions

The set of actions suggested to the user by the visual representation. such as clicking on
menu buttons, are the affordances of a system. The means that the system has for informing

the user of changes to its internal state are the system’s feedback mechanisms.

This prototype implements a unique set of affordances, some of which are similar to affor-
dances in other systems, and some of which make novel variations. The top half of Table 3.1
summarizes the basic affordances, and the bottom half shows various feedback mechanisms.
The word ‘supports’ in the Table 3.1 means, the particular affordance or feedback mech-
anism is included as a convenience for users who are familiar with other window system,,

but not the only way of achieving the function corresponding to that column.

An integral part of the prototype is its use of a web browser as a document viewer and
a place to interact with HTML forms. HTML, with its rich text, hypertext links, and
forms, is used to give more details of the result than can be expressed in the limited screen
space of the user interface. More traditional text manipulations such as selecting words and

following hypertext links can be used in the web browser.

The next two sections describe the affordances and feedback mechanisms.

37

Affordance | Inspection Editing Process Initiation Process
; Monitoring

Point yes

Select supports

Activate yes supports yes

Button press yes

Menu selection supports

Text entry box yes

Follow link yes supports yes

Fill in form yes supports

Feedback I

Change text yes supports yes

Send HTML to yes yes supports

browser

Table 3.1: Summary of Affordances and Feedback Mechanisms

3.3.1 Affordances

This is not a one - to - one mapping between the affordances provided in the prototype and

the requirements described in Section 3.2. The prototype has been designed with following

set of assumptions that limit the set of possible affordances:

e The user will interact with the prototype with a pointing device such as a mouse and

a text entry device such as a keyboard.

e The prototype will run on multiple platforins, where details like the exact keyboard

layout or the number of buttons on the mouse are not known at design time.

e A set of standard GUI widgets is available that the end user can understand, such as

text entry boxes and hyperlinks in the web browser.

Most of the affordances of the prototype can be done without the keyboard, using only the

pointing device.

38

3.3.1.1 Pointing

The most basic affordance in the prototype is pointing. Pointing is a simupler operation than
clicking. double - clicking or dragging because the mouse button is not involved. When the
user moves the mouse over the element of a prototype object. a small box appears with
a short description of the object. Such pop up message boxes have become a standard
feature of application programs and graphical operating system interfaces (they are called

balloon help on Macintoshes and tool tips in Microsoft products).

Puinting supports the user’s nced to inspect the prototype components with progressive
disclosure. It allows the elements of components to be drawn without any text. so that
hundreds of objects can be drawn in a small amount of screen real estate. The text in the
pop up message box is only the first step in inspecting the object: if more information is

required, the user can use help or click on the components.

3.3.1.2 Selection

Selection is the operation of choosing graphical objects to work on and communicating the
choice to the system. Simple selection is done by pointing at a selectable object and clicking
(pressing and releasing) the (primary) mouse button in most systems. Single clicking with

a modifier key such as the shift - key - down allows multiple objects to be selected.

Some objects in the system with selection are not selectable because they do not respond
to mouse clicks, or because they are buttons: objects that do something when clicked. In

web browsers, hyperlinks behave as buttons.

3.3.1.3 Activate

An object is activated when the user indicates that it has to do some default action, typically

by double - clicking on it. On the Macintosh, double - click activation is used to open a

39

document or invoke an application program. Doub e - clicking was chosen for the Macintosh
because singleclicking was reserved for selection and dragging. In our eurrent prototype.

activate is invoked by double clicking or by clicking the right button once.

Although, single - right - click is just a convenient alias for double - click. using it causes
confusion when users move back and forth between the prototype interface and the HTML
browser. since following a link in the browser is done with single left - click. This is another
example of a tradeoff forced upon the prototype by the choice to make use of existing
tools. This problem comes up in other systems as well: Macintosh Perforina computers.
a line designed for home users. has a feature called the “fauncher” that provides a user
configurable set of buttons that launch applications. The launcher uses single - click to
start applications, and so requires an extra affordance to allow the buttons to be dragged.

In that case, the hidden affordance of holding the option key while dragging was chosen.

The prototype implements activate in a way that is more general than double clicking on
an icon in a standard desktop interface: The component that receives the activate message
will pass information to the system about which graphic element was activated (such as the
reference element or a text label), so that it can tailor its response to the activation based

on a finer granularity.

3.3.1.4 Other affordances

The prototype makes use of a limited set of available tools for a few of its affordances. It
uses the standard button, and text entry box widgets in some components, and it has a

menu bar for less common commands. Within the web browser, it makes use of links.

The standard widgets have been a programming convenience and have caused the interface
to behave more as users expect. Standard GUT buttons highlight in a way that users expect
when the mouse moves over them. The downside of using the widgets is that they cannot

easily be dragged since they handle mouse events themselves. They also do not behave the

40

same way as other clements on the canvas do. HTML links and forms have proven very

versatile in the prototype.

3.3.2 Feedback mechanisms

The other important system interaction is feedback. Any system needs mechanisms to
convey its state. and to informn the user of problems and progress, and rich ways to respond
to user actions. In this prototype, it is done by changing the text of components. and
by sending HTML to the web browser. These mechanisms are described in the next two

sections.

3.3.2.1 Change text

On a spectrum from pure textual to pure graphical, the visual design of the prototype has
tended toward the pure graphical. The text labels that it does have are a very important
mechanism for communicating with the user. Text labels can be changed in response to
user cvents or system events, and provide a convenient way to convey the state of a process
to the user. For example, search has a status label that can have the value “searching..”or

total number of items found or “not found”.

3.3.2.2 Send HTML to web browser

The final feedback mechanism in the prototype is sending text to the web browser. This
operation supports inspection since HTML pages can contain much more information about
a result than the list of URLs. It also supports editing, since HTML pages can contain forms.

The prototype send pages to the web browser as a result of an explicit user action.

This mechanism could be used in process initiation i.e., when a service is invoked, it could
display information about the invocation, such as warnings in the web browser. In the

current implementation this mechanism is not used.

41

3.4 Class Diagrams

The architecture shown in Figure 3.1 is implemented using a set of interacting classes.
This section presents the class diagrams. wherein a class diagram describes the types of
objects in the system and various kinds of relationships that exist among different classes.
The perspective used in presenting the class diagrams is the implementation perspective,
which has an impact on the way one should interpret the diagram. The implementation

perspective has real classes and one can lay the implementation bare.

Aggregation and inheritance are two commonly used relationships. For example in Figure
3.4, Attribute panel class is an aggregation of various ComboBoxs. label, panel and a

textLabel. At the same time, label5 is inherited from label class.

Another relationship used is dependency. Dependency is shown in Figure 3.7 as dotted
arrows. A dependence exists between two elements if changes to the definition of one
clement may cause changes to the other. Dependencies between classes exist for various
reasons: One class sends a message to another; one class has another as part of its data;

one class mentions another as a parameter to an operation.

Figure 3.3 shows the main class diagram, Figure 3.7 shows the class digram for filtering and
presentation of the result and Figure 3.4, 3.5, 3.6 shows class diagram that inplements the

GUI part of the prototype. The detail description of the classes are provided in Chapter 5.

42

Verifier

protileTable:Hashtable

Verifier()
venify()
update()

loadData

Y

| profileTable
I

Query

Query : String
siteDescription:String

GetSummary
GetQueryDescription
SetQueryDescription
GetSiteName
SetSiteName

Y

RPNQuery

RPNOperend : Hashtable

NodeStructure()
isValue()

v

RPNOperend

List

domainL.ist

T

UlDigitalLibrary

mainFilter:Resultfilter = null TextArea

\ FinalQuery:String

main()
getQuery()
setFinalQuery()
getPreference()

registerUser()
checkPassword()

T

Label

Q\ queryText
1

JAY

Va ;

i —
\abc“

label2

Panel

i

L

menuPanel

titlePanel

attributePanel

label3

resultPanel

dbtypeList

dbnameL.ist

Figure 3.3: Main Class Diagram

43

. ComboBox__

| anributePanel

aperatard

| . \. _TewField |

operator2 . \
l Label \ !
i 7y keywordTextField

|._operator] T | J
/_lnbﬁls__
choice ‘
Figure 3.4: Class Diagram for Attribute Panel
panell
ComboBox TextField

i

1
photo
minor

major

mainCombo

i

titletextField

choice

streettextField

cityTextField

provinceTextField

Figurc 3.5: Class Diagram for panell

Button

i

l

similarityPanel

imageBotton4

imageBotton3

imageBotton2

imageB

utton |

selectButton |

Label

labelS

ComboBox

minorType

label6

label7 |

List

indexList

Figure 3.6: Class Diagram for Similarity panel

45

Uses-”

.
.

.

B UserProfile
profileTable: Hashtable

UserProfile()

getUserID()
setAttribute Value()

?

mainFilter

resultPanel

main()

Crc&alcs
¥

.{ Filter_impl ~

implerents

g L

indexBut

profileTable

backBut

pageMatch : Vector

resultPanel()

action()
getToteiNumOfltems()
Retrieveltems()
addtoList()
RetrieveltemsFromList()

SetPage()
hyperlinkUpdate()

<>

TextPane
Dialog editor
AN
Utility
I Theta - int
dialog| Utility()
getTheta()
dialog2 randomint()
showRandomURL()
getAttribute()
dialog3

Figure 3.7: Class Diagram for Result panel

46

ﬁs
|

resultArea 1

pageMach

TopAction

TopAction()
actionPerformed()

BackAction

history : Stack

BackAction()
actionPerformed()

Y

history

MMotion

mouseMoved()

mouseEntered()
mouseExited()

3.5 Object Interaction Diagram

This section includes the object interaction diagrams used in the design of the user interface
for a digital library. Interaction diagrams are models that describe how groups of objects
collaborate in some behaviour. These diagrams show a number of object examples and
the messages that pass between these objects. There are two kinds of interaction diagrams
namely. sequence diagrams and collaboration diagrams. We use sequence diagrams to ex-
plain the object interaction. Within a sequence diagram. an object is shown as a box at
the top of a dashed vertical line (see Figure 3.8). This vertical line is called the object’s

lifeline. The lifeline represents the object’s life during the interaction.

Each message is represented by an arrow between the lifelines of two objects. The order in
which these messages occur is shown top to bottom on the page. Each message is labelled
at minimum with the message name and arguments. In addition. some control information
can also be there. As we can see, Figure 3.8 is very simple and has immediate visual appeal.

This is its greatest strength.

One of the hardest things to understand in an object-oriented program is the overall low
of control. A good design has a lot of small methods in different classes, and at times it
can be tricky to figure out the overall sequence of behaviour. One can end up looking at
the code trying to find the sequence and sequence diagram helps to sce this. Figure 3.8
shows the high level interactive diagram for the system. Following this, Figure 3.9 shows

the detailed interactions among the objects in the user interface.

47

User ' Userlnterface

' I: registry

2: registerUser

3: getUserInfo

7. setFinalQuery

1 Registry
e e pr——

i

8: setFinalResult

11: stop

o
|
i
|
i
-
T X
\ 4 start :
5: enterSearchTer:
6: search
9:DisplayResuit
L
a \
! 10:stop)
-
. ‘

Figure 3.8: Initial object interaction diagram

48

P T [T,

e

¥ 1

1: register ' :
2: registerUser .

3:getUserInfo J '

SRRRRE

4; start

5: enterSearchTerms

6: search

7: getQuery

'
'
[
'
)
'
'
I
'
'
'

I 1:GetTotalNumOfTte
12: Retrieveltem

T L) 8: getQueﬁ]jiscription

E : 9: gexFinaIQuei'y .
: 10:5etFinalQuery! :
: ! I
j E 13:addtoList f
Z 14:'SetPage : |

' 15: DisplayResult | ‘ ! 8

16: RetrieveltemsFromList | '

17: stop X ! ! —LJ

| 8:stop | : :

| s ; J X ’LJ

Figure 3.9: Detailed object interaction diagram (when
then Theta)

49

Total number of documents is less

Chapter 4

Cooperative navigation in digital

library

In this chapter, we propose an approach to address the problem of “information overloading”
while a user is accessing digital libraries. [t inakes use of cooperation among a team of users
or their agents. Often people work as a team to achieve a large goal. This team of people
is herein referred to as a “work group”. Let an agent assist every member of the work
group. Cooperation among members of the work group is treated synonymously with the
cooperation among their agents. The members of a work group help each other in finding
the information relevant to their individual goals or the shared common goal of the team.
Apart from retrieving information, some members of a work group might disseminate some

relevant information they found to other members.

A cooperative navigation in which one user benefits from another user’s experience is de-

sirable under the following cases:

e When the output from the search engine is too large for the user to find the relevant
documents, the agent of one user can cooperate with the agents of others in the work

group to find the relevant information.

50

- \
Agent [gmccotosocososoeos = Agent 4 o o \
i
H
‘ |

Y o
User User

P

Registry agent
Domain

World

Figure 4.1: System framework for cooperative navigation. The dotted line shows the com-
munication between agents. All agents communicate with the registry, which is shown by a
solid line.

e Using the knowledge of the members of a work group, the recall and precision could

be improved.

The intention of this chapter is to focus and identify a framework that integrates a set
of homogeneous agents to perform a cooperative search. In this process, a conflict or

disagreement may arise between agents which must be detected and resolved.

4.1 System Design

The overall framework of the system (Figure 4.1) and its modules (Figure 4.2) are described

in this section.

User Model

-1 User Interfac

- Agemt

User Domain

Modei

/AN

Figure 4.2: System architecture

4.1.1 Agent

An agent is constructed to accomplish a well defined task. For example, an expert system
that mimics a reference librarian to help the user to focus his/her search for documents
can be viewed as a library agent. Given any two agents in an environment, the following
is apparent: either they are responsible for a particular task, or they are responsible for
different tasks. Thus, it is possible to partition the set of agents in an environment into two

sets, set of homogeneous agents and set of heterogeneous agents.

Definition 1 (Homogeneous and Heterogeneous Agents) Two agents Agent; and Agent,
are homogeneous iff they are constructed for solving the same task, otherwise they are said

to be heterogeneous. [GRSRY7/

Note that we use task at the level of granularity to distinguish between homogeneous and
heterogeneous agents and not at the level of implementation. Thus, two agents for cooper-
ative navigation, say one written in C language and the other written in Java, are treated
as homogeneous in this framework. This is intentional, as developers are free to choose an
implementation that best suits the environment for which an agent is being constructed. A
set of homogeneous agents is capable of communicating with each other. In addition, one
should also maintain the list of agents in an environment, the nature of their tasks, etc., in

order to facilitate communication between agents and to allow a (new) user to query the

52

Data Input

~ Yy S
L : ~
 Beliefs . Plans \\
—___/ \\
!
i | Interpreter
i }
i |
! Desires | 1 Intentions
I

——

| Speechacts

Figure 4.3: BDI architecture

agent services available. These issues bring in a notion of agent architecture, agent registry

and agent language.

Agent Architecture: The agent architecture is based on BDI (Belief, Desire and In-
tention) architecture (Figurc 4.3), which contains the following four key data structures

[GL8T7]:
1. An agent’s beliefs correspond to information the agent has about the world.

2. An agent’s desires correspond to tasks allocated to or undertaken by it.
g P

3. An agent’s intentions represent desires that it is committed to achieving.

=

. The final data structure in a BDI agent is a plen library. The plan library has a set
of plans. A plan specifies the course of action followed by an agent in order to achieve

its intentions.

The interpreter in Figure 4.3 is responsible for updating beliefs based observation made of

the world, generating new desires (tasks) on the basis of new beliefs, and selecting from the

a3

set of currently active desires some subset to act as intentions. Finally. the interpreter must
select an action to perform on the basis of the agent’s current intentions and procedural

knowledge.

Registry Agent: These agents are first registered with the central registry agent. The
registry agent provides information about where a particular agent resides in the physical
space. The registry agent contains one eutry for cach user agent and its associated details
such as. the owner of the agent. The list of services provided by the agent is also stored in

the registry.

4.1.2 The Agent Language

Definition 2 (Agent Language) An agent language L is a set of syntactic constructs that
an agent can parse into acts that are meaningful to the task associated with the agent. An

agent that can parse such a language L is said to speak that language.

An agent language is also said to define the interface of an agent because it is the only
means by which other agents can invoke the services of an agent. For example, an agent
would parse the construct (ask, jaya, Gy) to ask jaya (user agent) information about graph

Gq-

Agent Communication Languages are generally based on the Speech act [Sea69] theory. In
this, the speaker/hearer model needs to be understood. If one person was to comment to a
second person regarding an observation such as “the weather is delightful today” the first
person is considered to play the role of a speaker and the second person a hearer. These
roles are then reversed for a response from the second person. This pair (inquiry-response)

or a sequence of such pairs constitute what is known as “a conversation™.

Unfortunately, there are problems with the work described in the literaturce that are related

to our purposes. These problems can be illustrated by reference to Allen [AlI87].

54

For example. Allen defines a number of discourse acts involving actions by both agents in the
dialogue as compounds of four primitive speech acts: REQUEST. INFORM. INFORMIF
and INFORMREF. Thus the dialogue act ASKIF is defined as a REQUEST that the hearer
performm an INFORMIF act. i.e.
(REQUEST z y (INFORMIF y p))
rather than communicating the speaker’s intention. The REQUEST act has the effect that
(WANTy (INFORMIF y £ p))
which is an immplicit precoudition of
(INFORMIF y z p)
which when performed has the effect

(KNOWTIF z y)

However, Allen’s speech acts make a number of assumptions which are not valid in our
context. Because these assumptions form part of the definition of the act itself, they make
analysis of the communication difficult. Moreover, Allen’s speech acts are intended to serve
as a basis for advanced dialogue planning rather than as a basis for the actual detailed
conduct of a dialogue.

We therefore define our own speech acts to make as few assumptions as possible about the
effects of the act and whether the agents arc co-operative etc., and we characterise those
additional assumptions that we make as preconditions of the spcech act.

We use five speech acts namely, ask, answer, accept, reject and compromise. Each specech
act has number of preconditions which must be true for the successful performance of the
act.

(Notations :- I: Intention; B: Belief; s: Speaker; h: Hearer; P: Predicate)

e Ask
(ask, s, h, P): The speaker ‘s’ “asks” the hearer ‘h’ about the predicate P. The pre-

conditions for the utterance of Ask act are:

95

I. There exist *x” such that P{x) is True.

2. The speaker *s™ intends to believe P(x) after receiving the response from h.

-
[

3. Speaker 's” believes that it currently does not know whether P(x)is True or false

but believes that the hearer *h™ knows P(x).

e Answer

(answer s, h. P): Speaker 's’ ~answers™ about predicate P to hearer "h'.

The preconditions for the utterance of answer act are:

1. There exist *x’ such that P(x) is True.

2. The speaker believes P(x) is True

e Accept
(accept s, h, P): The speaker ‘s’ “accepts” the predicate P, about which the hearer ‘i’
responded.
The precondition for the utterance is that both the speaker 's” and hearer *h’ believe

in P.

¢ Reject
(reject s, h, P): The spcaker ‘s” “rejects” the predicate P, about which the hearer ‘I’
responded.
The precondition for the utterance of reject act is that hearer ‘I’ believes in P and

speaker ‘s’ does not believe in P.

¢ Compromise
(compromise s, h, P): The speaker ‘s’ needs some clarification (in the case of two agents
in a work group) or has to compromise by suggesting modification to the predicate P.
Then 's’ uses “compromisc” speech act.

The preconditions for the utterance are:

56

! A's Question to B | B’s Responses to A

ask answer
answer accept. reject. compromise
comproiise aceept, reject, compromise

Table 4.1: Possible response for a specch act

I. There exist *x" such that P(x) is truc.

[V

. The speaker 5" believes in P(x).
3. Speaker ‘s’ intends hearer “h’ to believe in P(x).

4. Speaker s’ believes that hearer "h” does not believe in P(x).

We have identified the possible communicative outcomes for a given speech act and defined
how an agent should respond to that speech act in a cooperative environment. For each of
the speech acts, we have identified one or more responses (Table 4.1). For example, if the

‘act’ is a question, the only response might be ‘answer’.

4.1.3 System Architecture

In general, three essential levels of abstraction should be considered as part of the require-

ments to building an agent. They are as follows:

e The domain model, or a description of the characteristics of the operating domain.
For example, an agent whose task is “scarching the database” would base itself on
the domain model that describes methods of searching, retrieving etc. In contrast,
an agent for “organising the search results” would rely upon a totally different model
that describes methods for receiving, storing, sorting etc.

e The user model, or a description of the characteristics of the user in a domain. The

user model is important to an agent for several reasons: (1) to adapt itself to user

characteristics. For example, an user agent can mimic user characteristics by sending

different messages to different people when informing the user of new incoming doc-
uments that will be of interest to the user. (2) to limit the amount of information
that should be output to the user and (3) to determine appropriate temporal (when
to assist?) and spatial (how to assist?) aspects of its response.

o The world model. or a description of the set of domains in which the agent is supposed
to exist. The world would also contain other {possibly heterogencous) agents with

whom a given agent should co-exist.

The software architecture of an agent is often dictated by its operating domain and the
characteristics of the users in the domain. For example, in a domain where users are
expected to exhibit same (or similar) repetitive actions, a knowledge-based approach is
useful by encoding a set of rules for the system to respond. Such an approach is also useful
whenever the nature of domain involves searching based on a fixed set of resource attributes.
On the other hand, if the users of a domain exhibit repetitive actions that is different for
each user, then a machine learning approach is desirable since the agent would customise

itself to a given user profile by learning his/her characteristics over time.

In general, an agent that acts as an intelligent user interface should contain the following

components:

1. a knowledge base to apply selective rules based upon the context of the user for his/her

assistance,

2. a learning module to learn user preferences and behaviour over time to adapt itself to

the user, and

3. ability to learn through exchanges from other (possibly heterogeneous) agents.

4.2 Functions of the system

Let us consider a response set that is large enough to warrant navigation by the user. This
set can be treated as a sub-graph. if the digital library itself is viewed as a very large graph.
At the higher level of abstraction. the nodes correspond to sites (and document items within
the site) and the edges connecting two nodes can be viewed as a labelled hyper-link. We
call this graph as “site-document™ graph. One functionality of the system is to understand
how to navigate in this graph. that is how to go from one site to another. Navigation in
the site-document graph can be achieved by one agent sharing of information among other

agents. This sharing presupposes the cooperation among agents.

The following assumptions are made while defining the functionality of the system:

e Users are willing to provide personal information.

e Search tips and search results from a site are saved and useful informmation are syn-

thesised.

Hypothesis 1 Cooperative search will improve seurch quality and decrease the time to find

relevant information.

4.2.1 Navigation in the site-document graph

Navigation can take place at two levels namely, site level and document level. Site level
represents URL or sites in the Internet, while document level represents documents relevant
to the query. A Site-Document graph G (Figure 4.4) is drawn to show the interconnection
between site level and document level. In this, navigation function S is used to deter-

mine moves within a level (from one site to another site or from one document to another

document).

Document d

Interconnection
between sites

Interconnection
_— between a sie and
its document

Figure 4.4: Site-Document graph

Given a graph G, we can determine s,. where s, is the next site to visit from the current
site s by using the function S.

S(G.sc) = sn (1)

Similarly, we use a document navigation function to navigate at the document level within
a given site.

D(se.de) = dy, (2)

where D is document navigation function; s. is current site; d. is current document; d,, is

next document at the same site.

The Choice function C decides which level to navigate, site level or document level
C(Gm) = S\D (3)

where G, is a Site-Document graph in which nodes are labelled. S is site navigation

function; D is document navigation function and choice function selects one of S or D.

In a Site-Document marked graph all the sites are marked as ‘0’ initially. A site is marked
as ‘1’ if all the documents of that site are visited, and it is marked as ‘@” if some of the

documents are visited.

For example, in Figure 4.5, site 3 is marked as ‘1’ since all the documents in that site are

60

S

\ @ \. D Document not visited

0 :
T I \\ . Document visited
o . " 0.
b [e

Figure -1.5: Site-Document(Marked) graph

visited. Site 5 is marked as '@’ since only some of the documents in that site are visited

and site 4 is marked as ‘0’ since no documents of the site are visited.

4.2.2 Case study

Consider a situation where 3 agents A;, A, and Aj arc present in a work group. A Site-
Document graph G; (Figure 4.6) is generated corresponding to a query Q; by the user U;.
The user interface agent A} helps the user in developing a navigation plan. The agents A,
and Aj belong to the same work group and have executed the query Q), and hence they
have the knowledge of Site-Document graph G,. The agent A, gets the help of agents A,

and Aj, to develop a navigation plan for G;.

The agent A, gets the help of agents A to arrive at a navigation plan, visit nodes in the
order 2, 3, 4, 5 and 6, for the query ‘Get all Architecture images by the author Ramsay
Traquair .

Note: In the site-document graph G, in figure 4.6 nodes 7, 8 and 9 are eliminated in the
plan suggested by A2.

A sample interaction which can take place between A| and A, to obtain the plan is show

61

7

Figure 4.6: Site-Document graph G, for query Q,. Circles represents the different sites
and the arch represents the link between them, and the number within the brucket represents
number of documents in the site which match the query.

below.

)

[$1]

A: Can you give me a proposal for navigating the graph G1.

Ay: Thesites 2, 3. 4 and 7 have ten documents and. site 5 and 6 have seven documents
each related to the ‘Author = Ramsay Traquair’. The sites 8 and 9 have only two

documents each related to the same author. So you can visit the sites 2, 3, 4.5 and 6.
Ay: What if I visit 2, 3, 4, 5and 77 What will I loose?

Aj: Though site 7 has ten documents related to the ‘Author = Ramsay Traquair’,
only two of them are in the field of architecture. Hence, visiting site 6 instead of 7

will be useful.

. A;: OK.

In the utterance (2) above, A, proposes a plan to ‘A;’, which include visiting sites 2, 3, 4,

5 and 7 based on its private belief. A, gives a counterproposal (3), visiting site 7 instead

of site 6. As points out the disadvantage of Al’s proposal and provides evidence for the

original proposal (4). A; re-evaluates A,'s proposal, which consists of beliefs conveyed by

utterance 2 and 4, and accepts Ay’s proposal.

62

The above assumption holds good for Az, Ay has a similar conversation with Ay and gets
a plan. Ay now will compare A3's proposal with that of Ay’s proposal. to find if there is a
conflict. If there is a conflict. it can negotiate with As and Ay to resolve the conflict or find

the best plan.

4.2.3 Algorithm for cooperative navigation (Case - 1: two agents situa-

tion.)
The Algorithm for cooperative navigation is constructed based on the following assumptions:

¢ The agents are honest i.e.; they are not lying and are consistent in their error.

¢ The agents are experts in their respective domains, because their suggestion is simply
accepted.
e The agents are co-opcrative i.c.; Two agents are said to be cooperating with cach

other in the sensc that they respond to a request as per Table 4.1.
Algorithm (Figure 4.7): protocol for exchange of messages.

1. An agent A, (initiator) uses ‘Ask (pl)’ specch act to get a plan from agent A, for
navigating a marked graph. Pl consists of a site-document graph and information
about the present site (S. and D.) of agent A;.

2. Agent A; responds using ‘Answer (p2)’ speech act, which consists of a vector V; for
A, to navigate in the site-document graph.

Note: Agents arrive at vector V;; by using its knowledge of the graph, and using the

navigation functions S(), D() and choice function C().
3. A, evaluates Ay’s proposal and selects one of the following:
(a) If the agent A; is satisfied with the response, it accepts the proposal and sends
‘Accept (p2)’ to agent Aj.

63

A A, A As

Ask(pl):’X. Ask(pl —
‘ Processing Processing
| 2 Answer(p)
L’_’/ Answer(p2) / & p-
Evaluates K Evaluates
:\CL‘cpl(pJ)r\- Reject(p3d) —\N
!

(a) (b

A I Ay

\skipl) l\‘ pl: Consists of site-document graph and information about present site
AS

Processing p2: Consists of vector V sp.
Answer(pl)
| 3 . !
Evaluates p3: Counter proposal
Compromise(p3) \- p<k: Vector Vg, and evidance in support of the vector
Processing
Answer(p4
Evaluates)
Accepi(pd) o]

(c)

Figure 4.7: Protocol diagram for two agent situation

64

(b) Else. if agent A has some elarification. it nuses “Compromise (p3)” speech act
to clarify about agent A.’s proposal. wherein p3 consists of a counter proposal.
Counter proposal is limited to once for the sake of simplicity.

(b1) Agent Au responds with “Answer (pd)’. which can include evidence in
support of the proposal. Go to step 3.

(¢} Else, Agent A, rejects the proposal using “Reject (p)” speech act. This can be

due to agent A; not accepting the agent Ay's belief or the evidence provided by

the agent.

4.2.4 Detecting conflict and resolving conflicts by negotiation

There are number of reasons why conflict may arise. For instance, agents may have “knowl-
edge conflict” due to problems of incompleteness, uncertainty or non reliability in their own
knowledge databases. Negotiation is suggested by many researchers as an important method
to resolve conflict, which can be defined as a process of communication among agents in
which conflicting goals are reformed: conflicting issues are identified and narrowed; alter-
native solutions are proposed, attacked, and defended; and an agreement is reached and

confirmed [PP87]. Hence the objective behind negotiation is to reach a consensus.

Example 1 : Example of a conflict

Consider a three agent situation (Figure 4.9). Agent Ay is trying to find a navigation plan
by consulting Ay and Aj. If it gets conflicting proposals, it will first try to detect the source
of conflict by the following method:

Agent A, using the algorithm described in the previous section gets a proposal from A, and
Aa, which constitutes vector Va1 and vector Vi respectively (Figure 4.8). In this Vi; is

the response from agent A; to agent A;. Ay now compares V,; with V3.

To detect the conflict in the proposal, set (S) equivalent of the Vector (V) is compared.

65

Figure -1.8: Communication between agents

If Sa1 = S31. there is no conflict in the proposal.

Else. if So1 # S31, there is a conflict in the proposal.

To resolve a conflict. first the focus of the conflict is determined. Once it finds the focus of
the conflict, the agents can negotiate or use confidence function *@’ to resolve the conflict.
The confidence function is based on an agents knowledge of the other agent and/or previous
experience with that agent, which can be a weighted function (Example: Figure 4.10).

If (®.4, > ®.;), then accept A,'s proposal.

Else, if (®., < ®.,), then accept A;'s proposal.

Else, if (8.4, = ®.,), then use ‘Compromise (p3)’ speech act once (for simplicity) with A,

and/or Aj to resolve the conflict or to find the best plan.

66

A A Ay

i
Asktph \
processing

Answeripl)

processing

L | Answeripd)

Evaluate r/’/
Compromise(p4) \

processing

. Answer(pS)

Accepi(ps) \
Reject(p3) '_\-\.‘

Figure 4.9: Protocol for three agents situation. In this A, gets a proposal from A, and Aj.
It then compares the proposal. Since it is not equal, it uses compromise act once with Ay to
find the best proposal.

Ay

Figure 4.10: Directed graph showing the confidence function. The weightage is between
1-10. The number in the graph represents the weight of confidence.

67

4.3 Summary

[n this chapter. we have investigated cooperative navigation in digital library as a method
to support the sharing of information processing knowledge within a team of users and also

address the challenges and opportunities that the transition to digital libraries affords.

68

Chapter 5

Implementation Overview

In this chapter, we provided an overview of our implemention of the User interface for a
Digital library that includes both text and images. We focus on the programming aspects
of user registry, query formulation and scarch result retrieval, and provide a walk through of

GUT using Figures and screen-captures. The implementation environment was the following:

e Solaris 2.5 on Sun Ultra-1 creator.

JDK 1.1.7 (Java Development Kit).

e Swingl.l.betad (Java Foundation classes for the GUI).

Emacs with JDE Java wrapper.

5.1 Implementation of the User interface

Following is a list of files of our implementation and a brief description of their functions.

e UlDigitalLibrary: Main Window of the graphical user interface.

— menuPanel: This function creates the main menu.
titlePanel: This class creates the title page.
attributePanel: GUI for attribute search.
similarityPancl: GUI for similarity search.

!

69

profileTable

register \O\K\

‘{ User @e/

user information

Figure 5.1: Functional model for registration

username
passwyr {
User

Figure 5.2: Functional model for verifying the password

profileTable

— verifier (explained in section 5.1.1).
- query (explained in section 5.1.2).
- resultPanel (explained in section 5.1.3).

5.1.1 Registering the user

Every first-timne user has to register with the system so that the system gets information
for the user profile and assigns a valid password and user name. The functional model
shown in Figure 5.1 and 5.2 depicts which of the values depend on which other values and
the functions that relate them. In the functional model, a square box represents external
object, such as User in Figure 5.1; two horizontal lines, such as profileTable in Figure 5.2

represent attribute; oval represents the functions, such as ShowRandomURLs in Figure 5.4.

The verifier class contains the following attributes and methods:

e Attributes:

1. profileTable - profileTable is a hash-table and contains (password , link(to the
profile table)) value pair.

70

9

J.
4.

PasswdTab - It is a hash-table containing username and password.
password - Contains the value of the user password.

nserNawe - Contains the user name.

o methods:

verify - This method gets the information from the user and calls update function
to update the profile. If the user has already registered it checks if the user name
and the password are valid.

loadData - Loads the users personal information.

update - Updates the user profile.

5.1.2 Query formulation

A query formulated by the user is submitted to the search engine by passing Query objects.

The query object contains the criteria that is used to retrieve items from the database. In

addition, it also contains certain site propertics.

The query class contains the following attributes and methods:

e Attributes:

L.
2.

Query - The query is either a string or a parsed tree.
siteDescription - The information related to various site details

o Methods:

L

Ll o

(1]

GetSummary - Get the QuerySummary. A QuerySummary is all the information
in the Query object packaged into a class which can be transmitted to the search

agent.

GetQueryDescription - Get just the query string or parsed query tree.
SetQueryDescription - Set the QueryDescription to a new value.
GetSiteNames - Get the various site related attribute.

SetSiteNames - Set the siteDescription attribute to a new value.

5.1.2.1 Parsed Query Description Format

The RPNQuery class defines QueryDescription data structure which contains the parsed

form of the query. The implementation of this data structure assumed Z39.50 standard

in Reverse Polish Notation (RPN) format. The tree structure is generic and flexible. A

71

QueryDescription can be in either of two formats as: a tree or as a string. Therefore. the

root of the tree is a diseriminated union which specifies the torm at. The "Query Type”

value spercifies which structure is used.

RPNQuery0 class contains the following:

e Attribute:

L.

atrributeSet: The attributeSet describes what attribute set is used in this tree.
The operators in the tree may have attributes associated with them.The set of
values from which these attributes are drawn is defined by the attributeSet.

RPNOperator: RPNOQOperator is a set of operators, wherein. three boolean oper-
ators (AND. OR. aud NOT) are supported.

RPNOperend: RPNOperend is a hashtable which contains Type and Value pair.
This is used to indicate the value assigned to an attribute.

e Methods:

L.

2.

NodeStructure - NodeStructure determines the nodes of the tree. A node can be
either a RPNQOperand or an RPNOperator with an associated sequence of nodes
which it operates on.

Leaf node: One possibility for an NodeStructure is that it may be a leaf node.
i.e., an operand. which may be a sequence of attributes/Value pair. Internal
node: The other possibility for an NodeStructure is that it may be an internal
node, i.e., it is an operator, which is a set of boolean operator.

isValue - determines the operator.

5.1.3 Retrieving the search results

The functional model of ResultPanel class is shown in Figure 5.3. This class provides the

sequence of operations that are performed by the search engine when retrieving the search

results.

The methods used for retrieving the search results are:

I. SearchEngine - This method processes the Finalquery. (implemented by University of
Montreal, as a part of the digital library project)

2. GetTotalNumberOflitems - This method returns the numnber of items that was re-
turned after the search has been performed.

3. Retrieveltems - This method retrieves the search results (list of URLSs).

4. addtoList - It creates a list of iteins returned.

72

Initialize Engine

!

Finalquery =~~~ """ """ ’

NumberOfltems=<--- - - GetTotalNumberOfltems

~

>0 Sl

Figure 5.3: Functional model for retrieving the search results

Filter ~ _(getAttribute

P
attributeValues __ __ y”_‘\
' RetrieveltemsFromList
7 -
- - ! N
o : ‘
items - X

Figure 5.4: Functional model for filtering

5.1.4 Filtering and displaying the search results

The functional model of the filtering and presentation is shown in the Figures 3.4, 5.5
and 5.6. The methods perform a list of operation when filtering and displaying the scarch

results.

The methods used for filtering are:

1. ShowRandomURL - This method shows the user a list of random URLs from which
the user can select attribute values for filtering. (Implemented by the child class of
ResultPanel).

2. getAttribute - This method gets the attribute values from the user (Implemented by
the child class of ResultPanel).

3. RetrieveltemFromList - This method returns a list of URLs after filtering.

4. SetPage - This creates a page to view the URLs sequentially.

74

NumberOfltems- . Theta

Nofilter -~

Figure 5.5: Functional model for displaying the URLs sequentially without filtering

NumberOfitems --_ _ <=Theta

Figure 5.6: Functional model for displaying the URLs sequentially

5.2 Description of the GUI

The main goal of our user interface is “case of use™ for a digital library search.

A new user starts by registering first. From the browser window. the user should click
the registry button. A window will open where the user can give perfered user name and

password. detail about the user’s preferences and personal interest.

The user can now start using the digital library with the User Name and password. Password
verification results will be displayed on the message board. If the verification fails. user has
to attempt again giving the correct user-name and password. The user will be able to proceed

once the verification succeeds.

The opening window of the user interface for digital library is shown in Figure 5.7. Two
categories of search interfaces are supported in our system, namely attribute based search
and similarity based search. The user can select a required search using the appropriate

tab button in this window.

Attribute based search shown in Figure 5.8, lets the user enter words and phrases. select
the field such as title, location, photograph and building types, to be searched, and choose
Boolean operators from pull-down menus. In this interface, the user can scarch for single
words or phrases, or the “AND/OR” of two ficlds. Search can be further refined by speci-
fying the domain of search (from the “Domain” list), type of database to be searched (from

the “Type of Database” list) and database name (from “Database Name” list).

Similarity based search shown in Figure 5.9, lets the user select an image from a list of
images given in the interface. In this interface, lists of four images are displayed for each

building type. The user can select the building type and also the type of indexing used.

The user interface will process the user input and generate as its output, a Z39.50 typel
query. Type 1 query is based on Reverse Polish Notation (RPN), which defines an expression

comprised of operators and operands. The query will be displayed in the query text box

76

(3.10). when the user selects "Query™ option from the pull down menu labelled “Search™.
The user can then edit his query if he wants to. The final output from the user interface

will be sent as an input to the search engines.

5.2.1 Response-set presentation

The result set interface for Digital library is shown in Figure 5.13 . This interface has a
panel for viewing list of URLs and a panel for displaying the HTML document and then to

follow their links.

The List panel will display the query result as a list of URLs. The user can click on the
URL to go to a particular document site. The selected document is displayed using the
HTML panel. Further. the user can navigate between documents by using “Back” button

and *Search results” button.

The presentation agent uscs filter to remove unwanted information from the response set.
Filtering is done when the response set is too large to browse sequentially. The filtcring is

based on the user profile and the content of the response set.

7

gUSEP. INTERFACE FDR DIGITAL LUUIBRARY

Drman I 0T DAtAbASE DAtabass HMe
') A To: TIc qualr
File Seach Oyian Helo iciigrze Image
Arch-pet 122 MIImAnia
QUERY |

Figure 5.7: Opening window of the Digital Library

EUSEH INTERFACE FOR DIGITAL UBRARY

DRMAIN 1L 07 DATABASE |IATAlRRS HAMS
. [t To: T qualr
File Sexch Ojian Help Scinrze lmage

Arch “pnt 122 i imedia

CUERY |

Figure 5.8: Interface for attribute based search

79

E}USEH INTERFACE FOR DIGITAL UBRARY

DA I 0 1AtaBNSE ATANSR Hame
- At et Tragualr
Eile Search Option Help Sciz-co mage

T el T 1 timedia

QUERY |

S.Intt.'pc ot mdox used:

: swumwanseo smtcn '

B el 21

L inden

li-zex

[House =
. tinar type.

Figure 5.9: Interface for similarity based search

80

gUSEH INTERFACE FOR DIGITAL UBRARY

Dondin Twpe of Database [katahase Name

,, Ar Text T-actz
e . Oplion Help ic-gro 72 Je
- Seaich Arthilezare | ¥ Jllimec 3
- Guay
QUERY

Figure 5.10: Search menu

(23 USER INTERFACE FOR DIGITAL LIBRARY

BEE

- Text
. ME)e
| Jilimec 3

oain . Tweuf Datahase Databass Hame. |

T ac J: *

B USER INTERFACE FOR [

< ece I 3ge
Ak achur2 Piullimec 3

"ragLait

Figure 5.12: Option menu

81

gUSEF: INTERFACE FDR DIGITAL LIBRARY

Intn lune b Dababiase abalase NRme
' ’ [Tox Toscal
File Search Oytian Helpy Science rage
‘ Archis=etire |\ iredia
QUERY |

—SLAMC HLSULE

tiark

o CNN leilpiat:line

H Nows 31 Mocic
& ChNN

MNet B2 s Goverwnent. “ohdzs JIecy Acr r stradon

-

) 21n2nt Sove
& CNN A idinsriert Impca~an nt Coverge

B Net Lv2ats: h2ws: 19p S57nes
& CNN Impcazanznt Uoverage

Figure 5.13: Interface for displaying the search result

82

Chapter 6

Conclusion

An easy to use and versatile user interface prototype is developed as a part of this thesis
for a joint project undertaken with three other Montreal based universities. This prototype
provides a uniform interface for texts and images. [t makes use of a simple conceptual
model that is well suited for digital libraries with a set of affordances for interacting with
the interface. The architecture allows users to access the interface and display the results
under a web browser. [t also has a filter, which filters the search results using user profile

when there are 1000’s of items retrieved as a response.

This chapter revisits the goals that were specified in Chapterl, and describes how the thesis
meets each goal. It finally concludes with a discussion of some of the issues raised by this

work, and suggests future directions for addressing those issues.

6.1 Goals revisited

Based on the needs of the users of digital libraries, as gleaned from the studies of traditional
library users, two main goals were set out in Chapterl in the design of user interfaces to

digital libraries. Those goals were to:

83

e Support user’s tasks and

e Sharing and reusing information gathered.

This section reviews the work in terms of those goals.

6.1.1 Support user’s tasks

The first goal for any user interface to a digital library is to support users in the tasks
they need to accomplish. This goal stems out of the context of traditional information
retrieval systems, which assume that searching by itself is the activity of interest. and tends

to provide little or no support beyond the presentation of results.

A working prototype developed as part of this thesis supports tasks by providing users with
various types of search interface, which contain resources appropriate to task at hand and
visually indicate the state of the current task. Bates [Bat89] points out “information needs
change throughout a series of searches and the searches need an accurnulation of results
rather than a single target result 7. In agreement with the above statement, this prototype
provides a mechanism to store and retrieve intermediate search results. Further it also
provides a filter to bring the result set closer to match the user's information needs. This
filter is based on user profile and feedback from the user on the relevance of terms appearing
in the result set. Lastly, this prototype provides a starting point for support of user tasks,
especially those tasks that require the use of different document types, such as text and

image.

6.1.2 Sharing and reusing information gathered

Information retrieval systems have been largely designed to give the impression of being
single user systems i.e., the existence and activities of other users have been hidden from each

other. In this thesis, we argue that introducing support for reusing and sharing information

84

gathered among multiple users in information retrieval systems would help themn to use the

systems more effectively,

The thesis. addresses the above problem through the use of user agents. In this case.
there are several challenges that require careful consideration and analysis. [n this thesis.
we describe an agent framework for sharing and reuse of search results. An user agent
communicates with other user agents using five speech act primitives. A protocol is proposed
for cooperation and “intelligent” inter-operation between agents. This thesis examines
how conflicts can arise in the cooperative endeavorr and how they can be resolved using
negotiation. Two main functions of the system have been identified. including helping user

find the relevant information that meets his specific needs.

6.2 Discussion

A working prototype is implemented and tested. It makes use of an image database
(Traquair photographic archive) developed by McGill University as a part of the inter-
university project. The design of this prototype has addressed the stated goals for a digital

library interface.

Indeed, the next step will likely be to perform user studies of the prototype. If the prototype
were to be refined to be a polished product, that refinement should include performance
improvements in the Java client, and regular updates to keep it synchronised with the latest

versions of Java and web browsers.

Main issues related to sharing and reuse of information gathered are privacy and ownership,
which this thesis has not addressed. Librarians have a long tradition of concern for the
privacy of their users. Collaboration usually involves some reduction of this privacy. When
the collaboration is with known individuals, the users can freely choose the degree to which

they make personal activity and information available. However an electronic system offers

85

the opportunity (should people want it) of collaboration with strangers. This may be
achieved in part by the system identifying similar research interests and offering to introduce
the participants to each other. leading to a conventional form of collaboration. The second
problem of ownership arises in which the question of rights regarding scarch history and its
use in future has to be resolved.

[t would scem. that to be acceptable to users. a system supporting collaboration should
make clear to users the benefits that accrue from their loss of privacy aloug with precise
details about the way in which information about their search activities are. and may be.

used. Future work on this proposal should include these issues.

86

REFERENCES

[ALIS7]

[Aus62]

[Bat89)]

[BP88)

[(BW94]

[CL90]

[DM96]

[Eic94]

J. Allen. Natural Language Understanding. bejamin/Cumming Publishing Com-

pany, Menlo park, CA, 1987.

J.L. Austin. How to do things with words. Oxford University Press: Oxford,

England, 1962.

M. Bates. The design of browsing and berry picking techniques for online search

interfaces. Technical report, Online Review, 1989.

M.E. Bratman and M.E. Pollack. Plans and resource-bounded practical reason-

ing. In Computational Intelligence, pages 349-355, 1988.

P. W. Birmingham and K. Willis. The university of michigan digital library:

This is not your father’s library. In Proc. Digital Libraries, 1994.

P. R. Cohen and H. J. Levesque. I[ntention is choice with commitment. In

Artificial Intelligence, pages 213-261, 1990.

E. A. Daniel and P. W. Michael. Towards inquiry-based education through

interactive software agents. In IEEE Computer, pages 69-79, 1996.

D. T Eichmann. The rbse spider - balancing effective search against web load.
In proceedings of the First International Conference on the World Wide Web,

pages 369-378, Geneva, Switzerland, 1994.

87

[FHS5|

[GK94]

[GL87)

[GRSRY7]

[GTY4]

[HF95]

[Hin62;

[HS95]

[Hya96]

R. Fagin and J. Y. Halpern. Belief. awareness, and limited reasoning. In pro-
ceedings of the ninth International Joint Conference on Artificial Intelligence

(IJCAL-85), pages 480-490, Los Angeles. CA. 1985.

M.R. Genesereth and S.P. Ketchpel. Software agents. In Comm. of the ACM,

pages 48-53, 1994.

M. Georgeff and A. Lansky. Reactive reasoning and planning. In proceedings of
the Sizth National Conference on Architecture Intelligence (AAAAI-87), pages

667-682, Seattle, WA, 1987.

P.C. Gokul R. Shinghal and T. Radhakrishnan. Designing cooperating agents for
office automation. In Fourteenth National Conference on Artificial Intelligence
(AAAI 97): Workshop on Using Al in Electronic Commerce, Virtual Organi-
zations and Enterprise Knowledge Management to Reengineer the Corporation,

pages 33-39, Providence, Rhode Island, 1997.

D. Goldberg and D. Terry. Using collaborative filtering to weave an information

tapestry. In Communications of the ACM, pages 61-70, 1994.

W.C. Hill and G. Furnas. Recommending and evaluating choices in a virtual
community of use. In proceedings of the Conference on Human Factors in Com-

puting Systems (CHI’95), pages 194-201, Denver, CO, ACM, 1995.
J. Hintikka. Knowledge and Belief. Cornell University Press: Ithaca, NY, 1962.

C. Huser and N. Streitz. Knowledge-based editing and visualization for hyper-

media encyclopedias. In Communications of the ACM, pages 49-51, 1995.

S. N. Hyacinth. Software agents: An overview. In The Knowledge Engineering

Review, 1996.

88

(Inc87]

[Joh89)

[KM93]

[Kri63]

[Lev84)

(Lid96]

[Lie95)

(PP87)

Apple Computer Inc. Human Interface Guidelines: The Apple Desktop Interface.

AddisonWesley Publication Co.. Reading, MA. 1987.

K. Johnson, J. & Mackey. The xerox star: A retrospective. In [EEE Computer,

pages 11-30, 1989.

R. Kozierok and P. Maes. A learning interface agent for scheduling meetings.
In proceedings of the ACMSIGCHI International Workshop on Intelligent User

Interfaces, pages 81-93, Florida, 1993.

S. Kripke. Semantical analysis of modal logic. In Zeitschrift fur Mathematische

Logik und Grundlagen der Mathematik, pages 67-97, 1963.

H. J. Levesque. A logic of implicit and explicit belief. In proceedings of the
Fourth national conference on artificial intelligence(AAAI84), pages 198-202,

Autin, TX, 1984.

D. Liddle. Design of the Conceptual Model. In Winograd T (ed), Bringing Design

to software. (Reading, MA: Addison Wesley, 1996.

H. Lieberman. Letizia: An agent that assists web browsing. In proceedings of

IJCAI, 1995.
P. Maes. http://pattie. www.media.mit.edu/people/pattie/.

William E. Moen. Z39.50: Information retrieval(z39.50): application service

definition and protocol specification. Technical report, National Information

Standards Organization, 1995.

L.L Putman and M.S. Poole. Conflict and negotiation. In the handbook of
organization communication: An Interdisciplinary perspective, F.M. Jablin et

al., Eds. Sage, Newbury Park, Calif.,, pages 549-599, 1987.

89

(PR90]

[RG1]

[Rhe96]

[SBY6)

[Sea69]

[urla]

[urlb]

(VB90]

[WJ98]

M. E. Pollack and M. Ringuette. Introducing the tileworld: Experimentally
evaluating agent architectures. In proceedings of the Eighth Nutional Conference

on Artificial Intelligence (AAAI90). pages 183-189, 1990.

A. S. Rao and M.P. Georgeff. Modeling rational agents within a bdi-architecture.
In proceedings of Knowlegde Representation and Reasoning. page. pages 473-484,

1991.

E. RheinfrankJ. Design languages. In In Winograd T, Bringing Design to soft-

ware, (Reading, Mass. : addison Wesley, pages 63-80, 1996.

M. Salampasis and C. Bloor. Co-operative information retrieval in digital li-
braries. Technical report, presented at the 18th annual colloquium of the BCS

IR SG, Manchester, U.K, 1996.

J. Searle. Speech Acts, Cambridge. MA, Cambridge University Press, 1969.
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-5/www/ pleiades.html.
http://www.genmagic.com.

S. Vere and T. Bickmore. A basic agent. In Computational Intelligence, pages

41-60, 1990.

M. Wooldridge and N. Jennings. The pittfalls of agentoriented development. In

proceedings of the Second Conference on Autonomous Agents(Agents’98), 1998.

90

