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Abstract

Recognition and Verification of Unconstrained Handwritten

Numerals

Jie Zhou. Ph.D.

Concordia University, 1999

Despite the success of many recognition systems for handwritten numerals within
constrained domains, the problem remains difficult when unconstrained inputs are
involved. The gap between the state-of-the-art machine recognition reliability and
high practical demand leads to this investigation of verification scheme in pattern
recognition.

A pattern verifier is an expert specially trained to reliably confirm or negate a
pattern identity from the General Purpose Recognizer (GPR), with the intention to
significantly improve the class-specific Precision Rates of the system. The main goal
of this thesis is to study the promising and critical role of a verifier in a recognition
svstem. Theoretical aspects of a verifier including its unique task and functionality,
inherent requirement, evaluation measurement, design concern and control strategy
are discussed throughout the thesis, focusing on the problems of recognizing Un-
constrained Isolated Handwritten Numerals (UIHN) and Unconstrained Touching
Handwritten Numerals (UTHN). For each problem. an integrated recognition and
verification system is designed and evaluated by incorporating together the GPR and
the verifier.

The GPR for UIHN is a combination of three conventional neural approaches.
In the design of class-spéciﬁc verifier for UIHN, a new kind of neural network —
Quantum Neural Network (QNN) — with better distinguishing ability along decision

boundary, is embedded in an efficient way. Novel experiments have been designed
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for in-depth studies of applying the QNN to both real data and confusing images
synthesized by morphing. CENPARMI database and MNIST database are used for
evaluation.

UTHN recognition is an important component for automatic document processing
in applications such as cheque processing. However, it is a more difficult problem
that has attained less attention, reflected by the mediocre performance of current
systems and lack of benchmarking databases. Two databases IRIS-Bell’98 and NIST
for UTHN are newly built by the researchers at CENPARMI and the author. They
are used in this research and are intended to serve as standard databases in this field.
A novel graph-based combination of segmentation and recognition schemes is used
in GPR for UTHN. Effective domain specific strategies making use of touching type,
touching location and structural information are applied in the verifier for UTHN.

The recognition and verification system for UTHN achieved a precision rate of
99.1% on MNIST database while the one for UTHN reached a precision rate of 96.1%
on NIST database. The two systems are also evaluated by hypothesis testing. The
substantial improvement of system precision rates by verification scheme proves the
effectiveness of the proposed systems and justifies the important role of verifiers in

the OCR system.
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Chapter 1

Introduction

“Would you tell me, please, which way I ought to
go from here?”

*That depends a good deal on where you want to
get to.”

— Lewis Carroll, Alice in Wonderland

1.1 OCR: Motivations

Optical Character Recognition (OCR) is one of the most successful applications of
automatic pattern recognition [94, 96, 70] . Research on OCR began in the mid 1950s.
Today, reasonably good OCR systems are available for only a few hundred dollars.
However, they are only good at recognizing high quality printed text documents
or neatly written handprinted texts. The current research on OCR is addressing
more diversified and sophisticated problems, including severely degraded. omnifont
machine-printed texts and unconstrained handwritten texts, analysis and recognition

of complete documents. Presently, OCR research is driven by the following needs:

1. Large volume document processing and data entry applic-ations. Among these

are: postal address recognition for mail sorting, financial document processing

1



(cheques, credit card slips) and form processing (tax forms, census forms etc.).

o

Paperless office for automated document inputting including OCR of existing

texts or faxed information.

3. Digital library and other web-based OCR services along with the popularity of

internet.
4. “Intelligent input” requirements for next generation computers.

Currently, the most diffuse data acquisition devices for off-line recognition systems
are the optical scanners which can be of four types: flatbed, paper-fed, handheld and
drum scanners.

In a typical OCR system. the input document is scanned by an optical scanner to
produce a gray-level or binary bit-mapped image. Components of interest are then
extracted and fed to recognition engines to get the final results, such as identities
of characters, words or numeral amounts. Contextual postprocessing or language

understanding modules may also be included.

1.2 Focus of Our Work

The focus of our work is recognition and verification of unconstrained handwritten
numerals, which is an important aspect of OCR problem. However, the concept and
theory of verification methods that we propose in the thesis are not restricted to the
focused problem. Instead, they can be applied OCR systems of wider scope and even
general pattern recognition problems.

Unconstrained handwritten numerals are handwritten numerals that are not writ-
ten in separate boxes, nor written neatly. nor written with a specific type of pen.
Hence. the goal is to recognize numbers written by people in real-life situations such
as zip codes on envelopes and courtesy amounts on cheques.

Our work started with recognition of unconstrained isolated handwritten numerals

(UTHN problem). Case study of our theory and methods have been conducted on

2



standard databases of isolated numerals including CENPARMI database and NIST
database. Driven by the inherent goal of recognizing numerals in real applications,
our efforts were extended to the field of unconstrained touching handwritten numerals
(CTHYN problem), typically extracted from financial documents, such as courtesy
amounts of English/French cheques and bill slips.

Recognition of touching numerals is generally considered as a more complicated
problem due to many application-specific reasons (see Chapter 5). While examining
the two problems in a consistent way, we can actually see several common reasons that
contribute to the unsatisfactory performance of many handwritten numeral recogni-
tion algorithms:

1. Variety of handwritten numerals. Features used by recognition system may
be character-intrinsic (having little relation with writer), or writer-dependent (vary-
ing with personal idiosyncrasies). Variety of these two kinds of features causes the
diversity of writing style.

2. Ambiguity of handwritten numerals. Handwritten numerals tend to have am-
biguous appearances which may cause problem to machines while humans can still
recognize them by other information such as context, heuristic guess, etc..

3. High expectation of the industry. OCR applications are expected to be used in
many fields with high demand for accuracy, e.g.. cheque reading system or financial
bill slip processing system.

The third aspect above deserves some further discussion. Although OCR systems
are expected to improve the efficiency in many areas, current systems still incur lots
of post-processing cost since people have to verify the recognition results by hand. In
the case of an automatic form reading system, assuming a recognition rate of 90%.
we will need 10 key-input corrections for each form containing 100 numerals. With
10.000 forms a day, which is a reasonable assumption in many industrial situations,
at least 100,000 extra key entries will be needed. We also note that errors are much
more intolerable than rejections since extra effort is necessary to detect errors. Thus

very high reliability is expected from the system where reliability is defined as



correct recognition rate

reliability = — ——
correct recognition rate + substitution rate

That explains why we have made substantial effort towards improving the relia-

bility of recognizing unconstrained isolated and touching handwritten numerals.

1.3 State of the Art

1.3.1 Isolated Numeral Recognition

There have been decades of intensive study on the topic of isolated handwritten
numeral recognition. Many researchers tried to improve the reliability of recognition
system by considering various features, classification methods and sophisticated rules

of multi-experts. This section presents a concise summary of these endeavours.

Features
According to Devijiver & Kittler [16], features are “the information which is most
relevant for classification purposes, in the sense of minimizing the within-class pattern

variability while enhancing the between-class pattern variability”.

e The first kind of features are the color, gray-level or binary values of all the
pixels in an image, usually represented by a N-dimensional vector, where N
is the number of pixels in the image. Since no abstraction is applied, all the
variances among the patterns are to be handled by a classification procedure.
The conventional way of using these pixel features is a direct comparison which
is called template matching. Usually the comparison is based on selected pixels
to avoid big complexity, such as the method described by Casey and Nagy [8].
Another fast evolving approach is using pixel features as direct input of artificial

neural networks. Desirable results have been reported [37. 58]. The reason of



success can be explained that the neural network also acts as a feature extractor

during the learning and weight forming [101].

Second type feature is the predefined combiration of pixel value, or the values
that are defined on a local scope centered at one pixel. Amit et al. [1] proposed
a feature based on the topography in their immediate neighborhood, which
is referred as “tags”. The arrangements of the tags are used as inputs of a
tree classifier. The difficulty in using this kind of features is in designing the
arrangements that will be sufficient to distinguish among all classes. They are
often purposely designed to represent shapes and bear a resemblance to the

geometric features.

Features of the third tyvpe are deformable prototypes. Hastie et al. [33] used
a piecewise-linear curve which is fitted to a point-set representation of the im-
age. Classification is based on the matching statistics. There may be multiple
prototypes for each class. Similar idea is used by Revow et al. [84]. In Jain
et al. [48], the characters are matched by deforming the contour to fit edge
strengths and measure the amount of deformations. The difficulty is in design-
ing enough prototypes for the problem and the computation cost in comparing

each prototype.

Features of the fourth type are the structural features of the image. which
are typically perceptual entities of the character such as bends, end points,
loops or joints. The scope of definition over the image area is usually flexible.
Thev can be detected from contour or skeleton. The set of chosen features
are designed based on the property of the problem. Most of the complexity in
recognition is handled by the feature detection algorithm. A typical successful
system has been developed by Suen et al. [96]. There are also other good results
reported [49, 41]. The down side of this method is the usually labor-intensive
and heuristic feature extraction. To measure the confidence level is also not an

easy task.



e Features of the fifth type are the results of global transformations on an image.
Typical mathematical transformations include moments [9], Fourier descrip-
tors [90] and the Walsh transform [42]. The difficulty in using these features
for recognition is usually in defining an effective similarity among feature sets,

such as among sets of Fourier descriptors.

Classification Methods

The classifiers include nearest-neighbor classifiers, Bavesian classifiers. polynomial
discriminant classifiers. neural network classifiers, tree classifiers, syntactic approaches
and Hidden Markov Model(HMM). They typically use feature descriptors in the form
of vectors and return a class identity. The first three are classic statistical classifiers
and were described in books by Duda and Hart [19], Devijver and Kittler [16], and De-
vroye et al. [17]. Neural network classifiers are more often used by recent researchers.

Their inherent relationship with statistical classifiers has also been studied {88].

e The nearest-neighbor classifier performs direct prototype matching using a pre-
defined distance to measure the similarity between a pattern and those in a
class. The distance function can be Euclidean or Hamming distance. The
problem with the method is the high computation cost when classification is
conducted [33]. They are many variants of this approach with the intention to
reduce the complexity. A famous one is k-nearest neighbor which finds k closest
matches and uses a voting scheme to decide on the class. When pixel value is

used directly, the method is referred as template matching.

o The Bayvesian classifier assigns a pattern to a class with the maximum a posterior
probability. The class prototypes are used in a training stage to estimate the

class-conditional probability density function for a feature vector [19, 72].

e The polynomial discriminant classifier [88] assigns a pattern to a class with

the maximum discriminant value which is computed by a polynomial in the



components of a feature vector. The class models are implicitly represented by

the coefficients in the polynomial.

Syntactic classifiers [26] use grammars at all levels in the Chomsky hierarchy to
describe class models. These grammars take in a high level descriptor such as
a symbol string instead of feature vectors. The class models are abstracted as

grammatical rules that can be used to generate the prototypes.

Tree classifiers are motivated by the need to reduce the complexity in prototype
matching. They are many design strategies [87. 21} but generally it is difficult to
control the growing and pruning of trees. Commonly used control methods are
mutual information, probability models or entropy values. The most famous tree
classifiers are CART [3] and C4.5 [79]. Ho {38] extends the work to C4.5 Decision

Forests and reports good results. Refer to Chapter 3 for more information.

Hidden Markov Model (HMM) [81] is a statistical framework for modelling
sequential input by state transitions. It has been widely used in speech recogni-
tion and online handwritten recognition. Its applications to offline handwritten
recognition have been growing. Cai et al. [5] define the state of a given obser-
vation in HMM as micro-state and the collections of individual micro-states as
macro-states. The statistical information of handwritten numeral is represented
by micro-states using HMMs and the structural information is modelled by re-

lationships between macrostates. Park et al. [76] use a 2-D HMM for character

recognition.

[n the past decade, there has been a tremendous increase of interest in artificial
neural networks as a possible solution to the problem of recognizing handwrit-
ten numerals [34, 36]. This has been the preferred approach and good results
have been reported. Typically, there are multiple layers of interconnected nodes
used to imitate the organization of neurons in biological systems. In the back-

propagation learning phase, which will be explained in Chapter 3, the weights



associated with each neuron are modified using an updating algorithm until the

desired outputs are achieved.

The primary advantage of neural networks is their ability to be trained au-
tomatically from examples. There are also other merits including their good
performance with noisy or incomplete data and possible parallel implementa-
tion. Artificial neural networks are adopted as the major classification approach

in our work.

Other methods include the perturbation method [31] which considers the distor-
tion of handwriting habits, rule-based system [63] and random graph method [105]

which often make use of structural features.

Combinations

Combination of several classification approaches has attracted theoretical and
practical attention in the recent years {96. 52, 83]. It can be categorized as mul-
tistage strategy or multiexpert strategy.

The main reason for combining classifiers in a multistage way is efficiency. Objects
are first preclassified using a small set of cheap features with a reject option. The
rejected samples then are passed to more complex procedures to get an identity [67,
75]. Notice that it is inherently different from the verification scheme whose major
goal is reliability and the role of verifier is reliable confirmation or negation of the
conclusion from previous stage, which will be explained in following sections.

In a multiexpert scheme, the images of numerals can be fed to two or more recog-
nition systems simultaneously. The combination occurs at the decision level on the
outputs of all systems. By selecting an identity among the individual outputs, the
multiexpert system becomes a more accurate system as a whole.

Some theoretical work has been reported. Representative results can be grouped

as follows:
e Xuet al. {107] invesigated the combination of output information at an abstract
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level. They first consider several variants of the simple voting principle, then
examine the combination of multiple classifiers in the Bayesian formalism and

Dempster-Shafer formalism.

Huang and Suen [44, 43] proposed the Behavior-Knowledge Space (BKS) method
for the combination of multiple classifiers providing abstract level information.
The BKS is a K-dimensional space which is constructed during a learning phase.
This method does not assume classifier independence but suffers from high stor-
age requirements. The storage problems can be alleviated with dynamic allo-
cation schemes. Huge training sets are needed to take full advantage of the

method.

Lam and Suen (56, 33] conducted in-depth study of the simple majority vote
and claimed it to be as effective as more complicated schemes in improving the
recognition results. Particular attention was directed toward the changes of

performance when classifiers are added.

Ho [37, 100] presented a theory of decision combination scheme based on ranking
of classes by each classifier. The ranks are comparable across different types
of classifiers and can be combined by methods which either reduce or rerank a

given set of classes.

Woods et al. [106] presented a method using local accuracy estimates. The
combination method uses estimates of each individual classifier’s local accuracy
in small regions of feature space surrounding an unknown test sample. Synthe-
sized data sets are used for the experiments. Comparison was done with other

four combination schemes. No real world data result is reported.

Cho and Kim [13] experimented with network fusion using fuzzy integral. The
fuzzy integral is a nonlinear function that is defined with respect to a fuzzy

measure. The method nonlinearly combines objective evidence, in the form of a



network output, with subjective evaluation of the importance of the individual

neural networks.

e Lee and Srihari [61, 59] presented a combination scheme based on neural network
approach. A scheme is presented to transform classifier outputs into vectors
of values in the [0.1] range. These vectors have the same dimension as the
number of classes. They are used as input to a multi-layer perceptron without
a hidden layer which is named Decision Combination Neural Network (DCNN).
By integrating a dynamic selection nmetwork, DCNXN evolves into a Dynamic
Selection Combination Network (DSCN). The main concern of this approach
is network complexity. Some discussions are then made about the ability to

eliminate redundant classifiers and the complexity control mechanism.

Some interesting results of combination scheme are also reported in practical ap-

plications:

e Suen et al. [96] described one of the earliest successful multi-expert system
for handwritten numeral recognition. They presented the combination of four
structural methods using variants of majority voting. High performance was

reported on CENPARMI database.

e Xu et al. [107] used the same four experts and results are provided using

Dempster-Shafter formalism and Bayesian formalism.

e Huang and Suen [44] also provided results on the same experts using Behaviour-
Knowledge Space method. Because of insufficient learning data. the results were

obtained by a mixed BKS-Bayesian method rather than pure BKS method.

e Combination classifiers in [100] was tested on degraded machine-printed char-

acters and word recognition.

e Lam and Suen [35] applied weighted voting to handwritten numeral recognition

using seven classifiers.
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In Section 1.3.3, we will list the performances of the most reliable systems in the
field of handwritten numeral recognition with detailed discussions. We can find that
many up-to-date reliable systems for handwritten recognition actually contain some

kind of embedded combination scheme.

1.3.2 Numeral String Recognition

Numeral String Recognition can be categorized as discrete approach and holistic
approach. The philosophy shares some resemblance with word recognition. However,
unlike word recognition, no contextual information is contained in a numeral string.

There is usually no hypothesis of the length or next numeral identity in a string.

Discrete Approach

To recognize a numeral string, we try to decompose a numeral string into subim-
ages of individual numerals. However, to successfully isolate the numerals from a
string is not always an easy job, especially when the numerals overlap or touch each
other. A survey of segmentation strategies is provided by Casey and Lecolinet [7].
Next we list the commonly used approaches for the recognition of handwritten nu-
meral strings.

Discrete approach can be purely segmentation-based which depends on the seg-
mentation method to get the correct subimages, or recognition-based which needs
the confidence of a recognizer to help ensure segmentation. The latter is also men-
tioned in the literature as segmentation-free approach. Segmentation-based method
requires a carefully designed segmentation strategy to get the correct subimages.
Segmentation-free approach, while remedies this problem, usually results in compu-

tational complexity. So combinations of these two approaches are also reported.

e The simplest segmentation strategy is based on vertical projections. The pro-
jections are running counts of the black pixels in each column. By detecting the

minimum of the absolute running value or the ratio of second derivative of the
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projection curve [2], the segmentation line candidate can be obtained. The ob-
vious limit of this approach is that its weakness with poor quality handwritter

numeral image, such as slanting and overlapping numerals.

The second segmentation strategy uses structural features. Westall et al. [103]
used vertex directed segmentation. The method is designed to segment touch-
ing numerals by identifying directly the point of connection through an analysis
of the vertices of vertically oriented edges of the strokes. Yu and Yan [108] pro-
posed a method of segmenting single touching numerals using contour features.
Shi [89] detected potential segmentation regions by analysis of the trajectory
of strokes. They are other variants of structural feature based segmentation.
Cheriet et al. [11] detect the splitting paths by background analysis to extract
the face-up and face-down valleys, strokes and loop regions of component image.
A “marriage score matrix” is then used to determine which pair of valleys is

the most appropriate.

The third segmentation strategy for numeral string is element based. The
method is called graph-based approach [23]. The segmentor constructs a graph
of the input image based on handwriting elements. each of which can be trans-
formed into both neighboring elements. An estimation of a match is then eval-
uated between the input graph and the prototype graph. This method follows
the concept of recognition-free approach in the sense that the breaks are at the
elementary stroke level, but it is less time-consuming since a thorough analysis

of the segmentation variants is done first.

The segmentation-free strategy can be based on sliding windows or Hidden
Markov Models (HMM) [77]. The Markov model is based on state-to-state
transitions within a character, which is different from those used in isolated
character recognition that represents letter-to-letter variations. These transi-
tions provide a sequence of observations on the numeral. Features are typically

measured in the left-to-right direction. Segmentation is implicitly done when
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matching the model against a given sequence of feature values.

o The combination of segmentation-based and segmentation-free strategy is ex-
emplified in Ha et al [31] which used a presegmentation module that divides the
input numeral string into independent groups of digits. The touching numerals
are then processed by a segmentation-free method which recognizes elementary

strokes by a statistical recognizer.

Another example of segmentation-based method with recognizer assistance for
touching numerals is presented by Strathy et al. [92]. They detect splitting paths by
significant contour points (SCPs) method and seek for confidence of a recognizer. This
method can handle single touching and multiple touching problems with reasonable

computation cost. The details will be given in Chapter 3.

Holistic Approach

Holistic approach recognizes the whole string as a unit. Although the problem of
segmentation can be avoided, a major limit of this method is that it usually works
on a small and predefined lexicon which contains fixed number of possible strings .

One holistic approach is based on global structural features. Wang [102] used
gradient, structrual and concavity (GSC) features to recognize touching numeral pairs
as a whole. The features are symbolic and multi-resolutional, extracted from 474
grid of subimage cells. A weighted summation of these GSC features is used for
classification.

Hidden Markov Model (HMM) can also be used as a holistic handwritten nu-
meral string recognizer. The model represents the state-to-state variations within a
specific string, which is different from the models dedicated to isolated numerals or
segmentation-free methods. It does not need either explicit or implicit segmentation.
This approach is more commonly used in word recognition than in numeral recog-
nition. The reason may be explained by the little contextual information within a

numeral string.
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1.3.3 Performance of the Current Systems

In this section, we summarize the best published performances of the systems in this
field.

The results of isolated numeral recognition are listed in Tables 1 and 2, distin-
guished by the size of the test database. The results of numeral string recognition on
databases are listed in Table 3. Table 4 presents performances of practical applica-
tions on numeral string recognition.

Table 1 gives the results on CENPARMI and CEDAR databases for isolated hand-
written numerals. (Descriptions of databases that we mention in the thesis or estab-
lished/used during our work are given in Appendix C.}

Cho [14] uses 3 combination methods based on 3 neural network classifiers. The
first classifier is a fully connected one-hidden layer perceptron. The images are size-
normalized to 16*16 then compressed to 4*4 feature vectors as input of the network.
The second classifier has the same architecture and uses Kirsh masks to extract di-
rectional features, the input feature vector also has the size of +*4. The third neural
classifier uses 15 Fourier descriptors from the outer contours and simple topological
features from the inner contours. The three combinations methods are majority vot-
ing. averaging of the separate networks and fuzzy integral. Among all the schemes. the
best performance is 96.05% recognition rate and 3.95% substitution on CENPARMI
database.

Lee [62] also uses a neural approach. He uses the similar feature vector as [14]
based on Kirsh masks. The input layer contains 4™4*4 local feature maps. The
hidden layer consists of five 44 feature maps. Genetic algorithm is used to optimize
the initial weights of the networks. A reliability of 97.10% is reported on CENPARMI
database.

AEG-CENPARMI [23] is a collaboration work of AEG researcher and CEN-
PARMI. Good result is also reported based on CENPARMI database. Six experts
are combined, among which E1-E4 are described in [96]. A reliability of 98.50% was

achieved.
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In [95] the handwritten numeral recognizer is 2 combination of three similar
standard backpropagation networks. Network A uses the pixel distance features while
network B and C use the size-normalized image pixels. The combined decision is
obtained from the sum of outputs. By training on very big datasets and years of
intensive work, the algorithm achieved a high reliability of 98.85%.

Suen et al. [96] described one of the most successful attempts to achieve high
reliability. They combine four different experts developed by CENPARMI researchers
and get the final conclusion using the consensus of the methods. Substitutions on
CENPARMI database are avoided completely while a recognition rate above 90% is
retained.

CEDAR database is another database commonly used to report test results of
recognition algorithms for isolated handwritten numerals. Lee [60] presented the re-
sults of seven different classifiers and five combination methods. The combination
methods are Bayesian, neural approach, logistic regression. fuzzy integral and ma-
jority voting. Fuzzy integral gives a performance of 98.87% on CEDAR dataset of
isolated handwritten numerals.

Ha et al. [31] applied a perturbation method on handwritten numeral recognition.
It is an approach that considers variety of distortions due to eccentric handwriting. 12
perturbation types are discussed including rotation, slant, perspective and shrinking
in different directions. Experiments show a reliability of around 99% on CEDAR
goodbs dataset.

Parascript [24] presents a system for handwritten postal address recognition named
AddressScriptT™ . The embedded handwritten numeral recognizer constructs a graph
of the input image based on handwriting elements, each of which can transform into
both neighboring elements. Two neural networks are responsible for numeral classi-
fcation. The algorithm was tested on CEDAR goodbs database (a set of 2,213 well
segmented samples extracted from CEDAR CDROM bs directory) and shows very
high reliability.

Table 2 lists the result on NIST database for isolated handwritten numerals.
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Researcher/System Recognized | Substituted | Reliability | Database Date
S. B. Cho [14] 96.05% 3.95% 96.05% | CENPARMI | 1997
S. W. Lee [62] 97.10% 2.90% 97.10% | CENPARMI | 1996
AEG-CENPARMI [25] 98.50% 1.50% 98.50% | CENPARMI | 1993
CENPARMI [93] 98.85% 1.05% 98.85% | CENPARMI | 1998
CENPARMI [96] 93.05% 0.00% 100.00% | CENPARMI | 1992
D. S. Lee [60] 98.87% 1.13% 98.87% CEDAR 1993
T. M. Ha {31] 99.09% 0.91% 99.09% CEDAR 1997
Parascript [24] 99.54% | 0.46% 99.54% CEDAR | 1998

Table 1: Some Reliable Systems for Isolated Handwritten Numeral Recognition on
CENPARMI and CEDAR databases

NIST database for isolated handwritten numerals was originally designed for a
competition on First Census Optical Character Recognition Systems Conference in
Mayv 1992 organized by the National Institute for Standards and Technology (U.S.).
The event was for assessing the state of the art in OCR. Twenty nine groups from
North America and Europe responded the call and twenty six finally attended the
conference with their test result on NIST Test Data 1 (TD1) which included 53.646
numerals. The training set provided by NIST is called NIST Special Database 3
(SD3) with 223,122 numecrals. About half of the systems recognized more than 95%
of the test samples. The results of IBM, AEG and AT&T are listed in Table 2.
Corresponding recognition rates when they try to obtain very low substitution rates
are also listed. IBM Almaden research center used a neural approach. AEG used
feature vector from KL-transform after preprocessing of the numeral image. AT&T
used gray level image and a k-nearest neighbor classifier.

The NIST datasets are then used by other researchers to train and report algo-
rithms for handwritten numerals. T.M. Ha [31] achieved a 97.10% reliability with the
algorithm described above. Hewlett Packard [50] reported a 98.60% reliability using

improved LDA (Learning by Discriminant Analysis) method.
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NIST datasets are also used at our CENPARMI laboratory due to their large
quantity of samples. With the similar methods reported upon CENPARMI database
in Table 1, high reliability has been achieved recently, which is the highest reported

in literature.

Methods Recognized(%) | Substituted(%) | Reliability(%) | Date
IBM [104] 96.51 3.49 96.51 1992
IBM 7104] 50.00 0.1 99.80 1992
AEG {104} 96.37 3.43 96.57 1992
AEG {104] 50.00 0.1 99.80 1992
AT&T [104] 96.84 3.16 96.84 1992
AT&T [104] 68.00 0.1 99.85 1992
| T.M. Ha [31] 97.10 2.90 97.10 1997
Hewlett Packard [50] 938.60 1.40 98.60 1996
CENPARMI [93] 99.07 0.93 99.07 1998
| CENPARMI [95] 94 .45 0.1 99.39 1998

Table 2: Some Reliable Systems for Isolated Handwritten Numeral Recognition on
NIST TD1 database

Table 3 lists the results of numeral string recognition as reported in the literature.

There is no standard public database yet for numeral string recognition. The data
sets often used in literature are from the zip codes database developed at CEDAR.

Researchers from CEDAR reported results with data under different directories.
Shi et al. [89] used a segmentation based approach and achieved 80.8% recognition
rate on numeral pairs under BU directory. Lower rates are reported from images
of other directories. Wang et al. [102] used a holistic approach for numeral pairs
and obtained 83.6% recognition rate as w;all as reliability, based on 2778 images from
CEDAR CD-ROM. Ha et al. [32] uses the same source of data and reported 83.6%
recognition rate on numeral string. No exact directory or amount of images was

indicated.



Up-to-date practical system performances are listed in Table 4. Performance of
Lucent system for cheque processing is obtained from advertisement. Parascript [20]
used the cross validation of courtesy amount and legal amount fields after recognizing
numeral strings on cheques. Parascript [24] reported the performance of the system
AddressScriptTM when recognizing 5-digit zip code, with the method already de-
scribed above in this section. The detailed modules of CENPARMI cheque reading
system were described in [95] and [93]. The cross-validation of courtesy amount and

legal amount is also part of the post-processing module.

Researcher Recognized | Substituted | Reliability Database Date
Z. Shi {89] 80.8% 19.2% 80.8% CEDAR (numeral pair) | 1997
X. Wang [102] 85.1% 14.9% 85.1% CEDAR (numeral pair) | 1998
T. M. Ha [32] 33.6% 16.14% 83.6% CEDAR 1998

Table 3: Performance of Numeral String Recognition based on Data in CEDAR
CDROM

| System Recognized | Substituted | Application Domain Date
Lucent (ad.) 44.0% 1.0% cheques 1998
Parascript [20] 47.0% 1.0% cheques 1997
Parascript [21] 64.0% 0.83% 5-digit zip codes 1998
Mitek [40] 55.0% 1.0% cheques 1996
CENPARMI [95] 62.0% 1.0% cheques and financial documents | 1998

Table 4: Performance of Application Systems on Numeral String Recognition

We can summarize several key aspects of performances of the state- of-the-art
systems.

Researchers are getting good results on relatively small databases of isolated hand-
written numerals. For example, after years of intensive work, our group has achieved
high reliability on CENPARMI database [95]. Good results are also reported on

CEDAR goodbs database. Test sets of the two databases contain 2000 and 2213
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digits respectively.

When the size of test database increases such as NIST TD1 which contains 58.646
images of digits, performance drops as represented by low reliabilities. To keep a high
reliability is synonymous with a big sacrifice of recognition rate, which is obviously
not ideal.

When the topic comes to numeral string recognition, performance figures go dra-
matically down to 80% level due to complicated touching cases and more diversified
writing styles. Ha et al. [32] recently reported a recognition rate of 92.7% based on
NIST. However, the result was attained on training set SD3 instead of test set and
there was no description given in the paper about their methods of extracting the
strings from NIST CDROM.

Practical systems usually report relatively low substitution rates which depend on
other sources such as city names in postal codes and legal amount in check processing.
but they give even lower correct rates with the introduction of problems occurred

during other stages (such as item extraction) and stringent demand of reliability.

1.4 Verification and Our Challenges

As we see from the analysis of system performances in section 1.3.3, although some
current methods work well in certain situations, few has achieved satisfactor}.' per-
formance in situations demanding very high reliability, such as financial document
processing.

Consequently, a special engine geared precisely toward high reliability while main-
taining reasonable recognition rate is in need. It is called Verifier and it forms the
theoretical backbone of this thesis.

Verifier is not a newcomer in a sense that the concept has been adopted in other
related domains. Verifier is a newcomer in a sense that its great potential for improv-
ing the reliability of handwritten recognition has never been addressed in literature.

Its theoretical requirements and design strategy to explore this potential have also
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never been conducted.

The concept of the verifier has been used in utterance verification and speaker veri-
fication in the domain of speech recognition. Utterance verification [98, 82] is to verify
whether or not the expected keywords are embedded in a spoken phrase or a sentence,
while speaker verification distinguishes the speaker [10]. Signature verification is an-
other well known field which deals with verification of the validity of a signature.
With the possibility of getting some hints from these fields, verification problem in
handwritten recognition has its distinguishing characteristics. Firstly handwritten
recognition has totally different pattern properties and feature sets. Secondly the
goal is to get high reliability of a complete recognition system. which implies dealing
with a multi-class problem instead of a yes-no question.

The precise definition of a pattern verifier will be given in Chapter 2. Loosely
speaking, the verifier is a specially trained expert to confirm or negate a classification
result from a general purpose recognizer, so as to improve the system reliability. Up to
now. verification in the domain of handwritten recognition has gained little attention
and effort of researchers.

In Table 5. we list recent papers concerning the concept or usage of a verifier in
OCR and their contributions. Takahashi [99] is among the earliest that mention the
concept of verification in a document analysis domain. Chiang [12] did some work on
verification of Chinese characters. Lee [51] incorporates a verifier into the system for
handwritten numerals. However, it was not until our preliminary work in Zhou et al.
'112] that the importance and functionality of a verifier is analysed and consciously
emphasized.

We consider verifier as an important stage to improve the reliability of the recog-
nition system by two rationales:

1. Whatever feature extracting method we use, we may lose some other features
and may cause errors which are not understandable to human. In the case of a
practical system, if the user cannot understand the reason which causes the error, the

system tends to be turned down. Thus a reliable confirmation or rejection scheme,
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ideally reflecting human referee view point, becomes essential to the success of a
practical system.

2. Instead of being general OCR products, current systems applications tend
to have a relatively fixed working environment, in which case, there are often extra

relations among the recognized data. These rules can be applied in the verifier.

Correspondingly, there could be two levels of verifiers:

e low level: make use of internal knowledge of the recognition system.

e high level: cross check by user-specified rules.

Low level verifier is the topic of this thesis and will always be meant when using
notion of a verifier. However, we also point out that making full use of the inherent
high-level relations between recognized data is an important task when developing

the practical system.

-
| Author Source Application Background | Contribution
Takahashi[99] | ICDAR93 | English alphabet Early work on the subject.
Chiang[12] ICPR96 | Chinese Characters Features of Chinese charac-

ters for verification purpose
are analysed.

Leel31] [CDARYT | Handwritten Numerals | Use a verification engine in the
system.
Zhou[112] ICDARO7T | Handwritten Numerals | Explicitly incorporate a veri-

fication module. Importance
and functionality are analysed.

Table 5: Literature related to Verifier in OCR Domain

Conventionally, some classifiers unconsciously made efforts to fulfill the role of a
preliminary verifier. One exampleis the feedforward artificial neural network applying
a thresholding criterion to the difference of two largest output values. to draw the
conclusion and expedite rejections. However, as we will see in Chapter 4, conventional

neural networks are not adequate enough in a verification task, as reflected by the
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inability in ensuring the fairness of thresholding. Our work thus includes exploring
the theoretical requirement of good verifiers and related design strategies.

Since only little advanced work on the verifier had been conducted in the research
domain of handwriting recognition, the pioneer work on verification theory and its
application in handwritten numeral recognition (especially on touching numeral recog-
nition). combined with the goal to build highly reliable recognition system, constitute

the challenges of our work.

1.5 Research Goals

Research goals of this thesis are twofold: theory and application. The theoretical
part is focused on the original work about the verifier, while the application part

deals with the practical problems of handwritten numeral recognition.

1.5.1 Theory

Developing theory of the verifier in the field of handwritten character recognition is
a challenge. We will start with a definition. The definition and evaluation of verifier
are based on the measurement of Precision Rate, which is a a posterior: point of view
to look at the reliability of the system. It is aimed at ensuring the accuracy of a
conclusion, thus perfectly matches the goal of a verifier. A significant improvement
of precision rate can justify the effectiveness of a verifier, which will be evaluated by
a statistical hypothesis testing.

Then we address several other issues:

1. To analyse the role of a verifier in a system from a theoretical point of view.

[SV)

_ To evaluate a verifier and explore the inherent requirement of a good verifier.
3. To design the verifier from quantitative and qualitative points of views.

4. To control the power of verification in a desired way.

[
(3]



The discussions and results of these topics are scattered over Chapter 2, Chapter
4 and Chapter 6.

Theoretically speaking, we expect a good verifier possessing an inherent advantage
in detecting the fuzziness along the decision boundary. This property is desired in
verifving a confusing sample and reaching a reliable conclusion of confirmation or
negation. A novel approach of Quantum Neural Network will be used to exemplify
this property. Discussion of qualitative and domain-specific verification is done in
Chapter 6.

We suggest a class-specific way of designing verifiers to maximize the ability of
verification. The detailed architecture of the verifier is usually problem related. The
verifiers proposed in this thesis for isolated handwritten numerals and touching hand-
written numerals can be viewed as good examples of effective verifiers. In our verifiers,

the power of verification is controlled by the inner layer components.

1.5.2 Applications

The primary goal in application aspect of our research is to develop Recognition and
Verification (R& V) systems for the problems of two domains: Unconstrained Isolated
Handwritten Numerals (UIHN) and Unconstrained Touching Handwritten Numerals
(UTHN). to get reasonably high reliability for these two practical problems and to
justify the effectiveness of verifiers based on the proposed systems. To accomplish

this goal, efforts are geared towards the following:

1. To design and implement general purpose recognizer for UIHN.

[N

To design and implement verifier for UIHN.

3. To incorporate recognizer and verifier into R&V system for UIHN, test the
performance on standard databases. Evaluate the effectiveness of verifier for

UIHN.

4. To design and implement general purpose recognizer for UTHN.
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5. To design and implement verifier for UTHN.

6. To incorporate recognizer and verifier into a R&V system for UTHN, test the

performance on databases. Evaluate the effectiveness of the verifier for UTHN.

Standard databases are important for building and evaluating systems. There
exist standard databases for GIHN problem. However, we suggest that more thorough
analyses of the properties of the databases be carried out as they may be very helpful
for understanding the behaviour of the applications. At the current stage of UTHN
problem research, lack of benchmarking databases is a big obstacle. Our efforts thus
also extend to building good and standard databases for touching numerals. with the
‘ntention to benefit other researchers in this field. The design and building process

of databases is described in Chapter 5.

1.6 Outline of the Thesis

The first chapter outlined the challenges and goals. A review of the state of the art
and system performances has also been given. We emphasize the importance of a
verifier in improving the reliability of practical systems.

In Chapter 2, we present the definition of the verifier, the evaluation method and
the architecture of a general R&V system.

Chapter 3 presents the extensive work on General Purpose Recognizer (GPR) for
UIHN. Several recognizers are implemented and compared. A final GPR for UIHN
is obtained by a combination scheme. Chapter 4 explores the design of a verifier for
UIHN. Theoretical requirements are discussed. Experiments on synthetic and real
world data are reported. The architecture of the verifier is proposed. Its effectiveness
is evaluated.

Chapters 5 and 6 focus on the problem of UTHN. Chapter 3 provides the scheme
of GPR while the following chapter presents the verifier. The problem background of

financial documents is discussed briefly. The building of two databases IRIS-Bell’98
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and NIST for UTHN are described in detail. Properties of the two databases are also
studied. Databases are used to test final performance and to evaluate the verifier.
The thesis is concluded with Chapter 7 which summaries verifier theory and main
thesis contributions. Avenues of future work are also outlined.
Appendices contain descriptions of databases used in this work, notations and

abbreviations, as well as some proofs.



Chapter 2

Verifier and System Architecture

“Who am I, then? Tell me that first, and then, if
I like being that person, ['ll come up: if not, [l
stay down here till ['m somebody else.”

— Lewis Caroll, Alice’s Adventures in Wonder-

land

2.1 Definitions

The definition of pattern verifier is based on its quantitative measurements aiming
at the goal of improving reliability. Precision Rate (PR) and Recall Rate (RR) as
defined below will be used in the thesis since they represent the functionality of a

verifier much more clearly than conventional correct rate, as we will explain.

Definition 2.1 Precision Rate (PR): Consider pattern class Cn.

Precision rate of class C, is the measurement of how well ONLY the input

patterns of class Cr are correctly classified.

Consider subset S,, of the input patterns as the set of samples belong-

ing to Cr,. Let K., be the number of input patterns classified as class Cp,
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by the system. Within A,. there are X,, patterns truly belonging to S,,.

The precision rate of C,, is then given by

PRCm = .Ym/I{m (l)

The precision rate of the system is given by
1 &
PR, =— Y PRc, (2)
0 m=1

where ng is the total number of classes.

Definition 2.2 Recall Rate (RR): Consider pattern class Cr,. Re-
call rate of class Cr, is the measurement of how well ALL the input patterns
of class Cp, are correctly classified.

Consider subset S, of the input patterns as the set of samples belong-
ing to C,. Let Kn be the number of input patterns classified as class C,,
by the system. Within K,,. there are X, patterns truly belonging to Sr.

The recall rate of Cr, is then given by

RRc,, = Xin/|Sm! (3)

where |S,.|is the cardinality of Sn.
The recall rate of the system is given by
I &
RR,,, =— > RRc, (4)
0 m=1

where ng is the number of total classes.

Definition 2.3 Pattern Verifier: A pattern verifier is a specially
trained expert to confirm or negate a preset pattern class, usually used after
a general purpose recognizer, with the intention to significantly improve

class-specific precision rates of the system.
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We can see from the Definition 2.3 that a pattern verifier focuses on PR, i.e.,
it emphasizes on getting the correct pattern, even to the extent that it skips some
relevant patterns. The objective originates from the stringent demand of system reli-
ability. We will also point out that PR is a different measurement than conventional
correct rate and it is more suitable and effective for the verifier. Below we explain
this from a statistical point of view.

Let v be the input sample and let r, denote the classification result of the system
for v. PRc,, reflects the a posteriori probability of the system performance with

respect to class Crm:

(1]
~—

PRc,, = P(v € Cnlry = mj. (:

With Bayes rule,

P(veCpn.r, =m)
P(r, =m)
P(’L‘ € Cmeru = m)

- St P(r, =mlve Ci)P(v € Ci) (6)

Examine the denominator of Equation (6). P(v € C:) can be considered as con-
stants assuming every numeral class has the same occurring probablity. In }"72; P(r. =
m|v € C;). P(r, = mlv € Cr) (i=m) is the conventional “recognition rate”. i.e., un-

like PR, the conventional recognition rate ignores the effect of the remaining items:

M =3 P(r,=mlveC). (7)

i#m

M represents the chance of mistakenly recognizing other samples as those of class
(. Only when M is small, we can get a high precision rate of Cy,. so as to ensure a
lower error rate and a high reliability of the system.

We present an example in Table 6 to illustrate the computation of precision rate

and recall rate with reference to the conventional recognition rate.
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Consider recognition of class A in a test set. Assume there are 50 samples from
it within 100 samples. We list two situations and the corresponding precision rate,
recall rate and recognition rate.

In situation I, no A is recognized as A. In situation II, 3 A are recognized as A.
We can see that although the two situations give the same recognition rate of class
A (90%). situation [ is more desirable due to its high precision rate which leads to a

higher overall system reliability.

Samples | Recognized as A | Precision Rate of A | Recall Rate of A Recog. Rate of A
I 50 A 45 100% (45/45) 90% (45/50) 90% (45/50)
50 A 0
I 30 A 45 93.7% (45/48) 90% (45/50) 90% (45/50)
50 4 3

Table 6: Example for Computing Precision Rate and Recall Rate

Precision rate reflects the system reliability. It provides the definition in a class-
specific matter. which distingishes itself from reliability and represents the character-

istics of verifiers.

2.2 Statistical Evaluation of Verifier

According to Definition 2.3, the verifier aims to significantly improve the precision
rates of the system. Evaluating the effectiveness of a verifier thus becomes a question
of whether the adoption of the verifier has introduced significant performance differ-
ence to the system, which falls into the scope of a statistical inference method called
“hyvpothesis testing” [6, 68].

Hypothesis testing is a statistical method to examine a population parameter or
to examine the relationship of two populations. To see how it will fit into our problem
of evaluating verifiers, we will start from the definitions of statistical hypothesis and

complementary hypotheses in hypothesis testing.
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Definition 2.4 Hypothesis: A hypothesis is a statement about a

population parameter.

Definition 2.5 Complementary Hypotheses: The two comple-
mentary hypotheses in a hypothesis testing problem are called the null
hypothesis and the alternative hypothesis. They are denoted by Hy and

H,, respectively.

If 8 denotes a population parameter, the general format of the null and alternative
hypothesis is Hy : § € Og and H, : 8§ € ©§ where Qg is a subset of the parameter

space and OF is its complement.

For example, if § denotes the average change in a patient’s blood pressure after
taking a drug, an experimenter might be interested in testing Hy : 8 = 0 versus
H, : 0 # 0. The null hypothesis states that, on the average, the drug has no effect
on blood pressure and the alternative hypothesis states that there is on effect. This
common situation, in which Ho states that a treatment has no effect. has led to the
term “null” hypothesis. One reason for the negative aspect of this name is that it is
common practice to set up such a hypothesis in the hope of rejecting it.

In our problem of evaluating the verifier, we can set two complementary hypotheses

as:
Hy: Svstems with or without verifier show no significant difference in precision rates:
H,: Systems with verifier show a significant improvement in precision rates.

We can then test the hypotheses by observing the samples and decide either to

accept Hy as true or to reject Hg as false and decide H,; as true.

Definition 2.6 Hypothesis Test: A hypothesis testing procedure

or hypothesis test is a rule that decides:
i For which sample values the decision is made to accept Ho as true.

ii For which sample values Hy is rejected and H, is accepted as true.

30



Definition 2.7 Critical Region: The subset of the sample space for

which Ho will be rejected is called the critical region.

Definition 2.8 Level of Significance: The probability of rejecting
a true hypothesis (type I error), denoted by a, is called the level of signif-

tcance of the test.

The meaning of the critical region is illustrated in Figure 1. If level of significance
is a = 0.01, then one percent of our possible sample will have means which fall in the
critical region, provided that Hg is true. The critical region and significance level are
set according to the seriousness of making a type I error. The more serious the type

[ error could be, the smaller a will be set.

S e

ACCEPT Ho REJECT Ho

Figure 1: Critical Region of Hypothesis Testing

Hypothesis testing is a well-developed method rich in theoretical basis. It inher-
ently takes many factors into consideration such as test set size and sample variations
to come up with a much more confident conclusion compared with a simple two
percentage figure comparison.

The procedure to solve a practical hypothesis testing problem is listed in Table 7.

In our problem of testing the effectiveness of a verifier, we will use t — test, a
will be set as 0.01. Let A be the random variable that represents the precision rates
getting from a system without verification module, let B represent the precision rates

from a system with verification module. Experiments are done on randomly selected
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Step 1: Determine the null hypothesis Hg.
Step 2: Select statistical variable and get its distribution.

Step 3: Determine the corresponding test method, which can be u—test, t —test,
x? — test or F — test.

Step 4: Determine the critical region of accepting Ho.
Step 5: Compute the result of the test.

Step 6: Compare results of Step 4 and Step 3, decide to accept Hg or reject Hg.

Table 7: Procedure of Hypothesis Testing

sets of numbers n; and n, to get distributions. The test procedures are described
below:

Step 1: Set Hy: Systems with or without verifier has no significant difference on
precision rates. H,: Systems with verifier have significant improvement on precision
rates.

Step 2: Let N(g1,0?) and N(p2.02) be the distributions of A and B respectively.
Assumne o? = o3 (value unknown). The populations are assumed to be independent.
Thus Ho : g1 = pa. Hy tp1 > pa.

Step 3: Use t — test. The appropriate statistic is.

(X=Y) = (1 —p2)

t
o~ _1_ _1_ 1/2 * ﬂ1+n2—2
S+ 50
where
2 qQ2
52 — nISl + Tlg-.._

ny+n,—2

S, and S, are sample standard deviations of A & B. n; and n, are the numbers of
samples of A & B.

Step 4: Test the hypothesis at 0.01 significance level. o = 0.01, tn;4n 20 =
tny+ny—2,0.01-

Step 5: Compute f,, +n,—2 according to experimental results.

Step 6: We will reject Hp if t1,1n;~2 > tn;+ny-20.01: otherwise, we will accept Hy.

Based on the above procedures, Chapters 4 and 6 will give the evaluations of our

verifiers according to the test results of the systems for UIHN and UTHN respectively.
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The theoretical basis of hypothesis testing is the Central Limit Theorem and Ney-
man_Pearson Lemma [80]. An exposition of these theories and different test methods
in their full generality would lead us rather far afield, and we would refer interested

readers to the literature.

2.3 Recognition and Verification System

2.3.1 Architecture

Following the idea of the previous sections, which takes high reliability as the ultimate
goal and verification as the important tool, we propose a Recognition & Verification

System for unconstrained handwritten numeral recognition depicted in Figure 2.

-

f

‘ Preprocessing General Purpose Recognizer Verifier

| rh — OJ

: i i ; - _:_h\/

i L — E——

: R o > -

—_ _J

Figure 2: Diagram of the Recognition & Verification (R&V) System

The scheme looks straightforward, with a verification module embedded in the
traditional classification system which only has a general purpose recognizer. Let us
look at the rationale behind it.

We know that pattern classification is the task of assigning a class Cm to the input
pattern v. It is equivalent to establishing a mapping of V' — D from measure space
V into the decision space D [88]. Since V — D is usually unknown, what we do is
trying to recover it from sample sets. Let P(Crn|v) denote the probability measure of
V" — D which states how probable the class C, is after v has been observed. With

our R&V system, the overall P(Cr,|v) is now expressed in the following way:
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Prsv (Cnlv) = Pr(Crlv) * Py(Cnlv) (3)

where Pr(C|v) is the a posteriori measure of the general purpose recognizer. Py (Cm|v)
is the probability that verifier will give a confirmatory answer.

We can see from Equation 8 that the final performance will now depend on two
modules jointly. The recognizer is a general purpose classifier working fairly well
for a broad class of problems, without special focus on reliabilities. The verifier will
take the role of an expert to fairly and precisely evaluate the result of recognizer, to
compensate its weakness by particular training, and to make the whole system more

reliable.

2.3.2 Usage of a Verifier

The verifier is applied after a general purpose recognizer and designed to “plug and
play”, i.e., it is used without knowing the implementation details of the recognition

modules. A verifier for Class C,, can give us three possible conclusions:

1. The class label m for sample v from the general purpose recognizer is confirmed.

Conclusion: v € Cps.

2. The class label m for sample v from the general purpose recognizer is negated.

Conclusion: v ¢ Cp. which may lead to a rejection of the input pattern.

3. There is not enough knowledge to give a precise verification. Conclusion: un-

certainty, which may lead to a rejection of the input pattern.

A good verifier is required to give reliable confirmation and negation, while not
causing many extra rejections. Using a verifier this way, errors are minimized and

the reliability of the whole R&V system is expected to be highly enhanced.
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2.3.3 Class-specific Verifier

There are four types of verifiers according to the number of classes they work on. Let

Q) denote the working space of a verifier, and let || be the dimension of the space.

e |Q] = no: General verifier, working on all classes in the problem.

e 0 < |Q| < ng: Cluster verifier. verification in clustered categories (Is it a “07,

“67, or “977).

e Qi = 2: Pairwise verifier. verification between two categories (Is it a “0” or
“677).

e |} = 1: Class-specific verifier. Working on one candidate class(Is it a “177).

Among different types of verifiers, class-specific verifier needs some extra attention.

It basically divides the verification problem into no subtasks, each verifier explicitly

indicates a pre-known focus — the candidate class. The scheme has several special

merits:

1.

[SV]

The underlying principle of “divide and conquer” makes it easier to get optimal
solutions for subproblems.

See an illustrative example of 9 classes in the sample space shown in Figure
3. Each class is clustered as a circle. If we want to develop a single shot
discriminant function to distinguish all the classes, the decision space will be
unavoidably complicated. On the other hand, if we want to separate one cluster
from the others, a circle-shape discriminant function surrounding the candidate
class will be an ideal solution(as shown in Figure 3). We also know that cer-

tain classifiers such as RBF neural network are good at this kind of functional

approximation [47].

From software engineering point of view [74], the system can be separated into
sub-modules and be developed without interference among others. For each

module, optimal features and classification method will be exploited.
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Figure 3: Illustrative Example of Class-specific Solution

Adoption of class-specific verifiers in handwritten numeral classification problem

results in system architecture having a “sun-planet” look. as in Figure 4.

—

"Class-spcciﬁc

s, Verifier
. 2 ‘\

Input and General Purpose
Preprocessing — Recognizer

Figure 4: System Architecture with Class-specific Verifiers
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Chapter 3

General Purpose Recognizer for
Unconstrained Isolated

Handwritten Numerals

“Now, I know that there are seventeen steps, be-

cause I have both seen and observed.”

— Sherlock Holmes, A Scandal in Bohemia

Designing a general purpose recognizer for unconstrained isolated handwritten nu-
merals is a topic studied by many researchers. To get a high performance recognition
module in our R&V system, different types of classifiers are experimented with the
focus on artificial neural networks and tree classifiers. Performances of four classi-
fiers: Multilayer Perceptron (MLP), Convolutional Networks, Radial Basis Function
(RBF) network and Tree Classifier C4.5 are discussed in this chapter. A general
purpose recognizer combined from the discussed classifiers is given with good perfor-
mance on standard databases. Precision rates are computed for further improvement

and effectiveness test of verifiers.



3.1 Multilayer Perceptron

Work on artificial neural networks began more than 50 years ago with the efforts
of McCulloch and Pitts [69], Hebb [35], Rosenblatt [85] et al.. More recent work
by Hopfield [39], Rumelhart and McClelland [86], Feldman [22] and others has led
new interests to the field. due to the development of new network topologies and
algorithms, new analog VLSI implementation techniques, intriguing demonstrations
in the fields of speech and image recognition as well as by a growing fascination with
the functioning of the human brain. Good reviews of various artificial neural networks
can be found in [63] and [47].

Among various neural net models, Multilayer Perceptron (MLP) is the most widely

used. especially in the problem of pattern classification.

3.1.1 Network Topology

The perceptron was conceived by Rosenblatt in 1959 [85]. The perceptron, as the
building block of MLP network, forms a weighted sum of n components of the input
vector and adds a bias value, 8. The result is then passed through a nonlinearity (See
Figure 3).

Rosenblatt’s original model used the hard-limiting nonlinearity. When percep-
trons are cascaded together in layers, it is more commor to use the sigmoid nonlin-

earity:

sig(z) = (1 +e#)71 (9)

where slope factor 3 determines the steepness of the transition region. One of the ad-
vantages of the sigmoid compared with hard-limiting is that it is differentiable, which
makes it possible to derive a gradient search learning algorithm for the multilaver
network.

By cascading perceptrons in layers, multilayer perceptron overcomes single per-

ceptron’s limitation of linear decision boundary and approximation of a simple logic
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Figure 3: Activation Functions of Conventional Perceptron
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function. The individual perceptrons in the network are called neurons or nodes.
Nodes in adjacent layers are connected through links whose associated weights deter-
mine the contribution of nodes on one end to the overall activation of nodes on the
other end.

There are generally three types of layers. Nodes in the input layer are connected
to the elements in the input vector. The multi-nodes in the output layer typically
represent different classes in the multi-class pattern recognition problem. An arbitrary
number of hidden lavers may be used depending on the desired complexity. A diagram

of a standard MLP with one hidden layer is shown in Figure 6.

- 2

Input layer Hidden layer Output layer

Input Vector

Xk

Ww2.3.No

Wi1.43

Figure 6: Diagram of One Hidden Layer MLP

3.1.2 Learning Algorithm

Conventionally, error back-propagation (BP) algorithm is used as the learning algo-
rithm. The “Standard Backpropagation” is an euphemism for the generalized delta
rule. the training algorithm that was popularized by Rumelhart, Hinton and William
[86]. By extension, the term BPNet is also used to refer a feedforward MLP trained

by backpropagation, which is adopted in this thesis.
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With the notations as in Table 8, as well as the one hidden layer topology of

Figure 6 as the illustrative example, we can derive the learning algorithm:

Wi

dix

Connecting weight between ith node in 1 layer and jth node in 1+1 layer
Desired output of ith output node for input sample zx

Real output of ith output node for input sample z¢

Output of jth hidden layer node for input sample z

nth component for input sample z

Number of training patterns

Number of hidden layer nodes

Number of input layer nodes

Number of output layer nodes

Table 8: Notations Used in BP Training Algorithm

Th
Uik stg( Z W2,,;05k)
=0

ny e
= SZg(Z wg,g.jSl.g(Z wl.j.nzn.k)) (10)

7=0 n=0

A gradient search technique is used to minimize the mean-square error on training

data:

1 &

E. = 3 Z:o(di.k — u;x)? (11)
P
E = Z E (12)
k=0

During the training process, the connecting weights are updated by gradient de-

scent, where the derivatives with respect to the weights are computed as

OB _ s, (13)

Owa ;. j
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5§2) = (u;c - dk)uk(l — u;..) (14)

OE;

alla'I :n = 6}1)1:", (15)
g
65'” =0;(1 —0;) D w2,i;6:(2) o)

=0
The weights are incremented towards the negative direction of gradient and mo-

mentum. 1. may be used to improve the convergence:

Awggj(k +1) = —ngEEe 4+ alwy (k)
.12 (17)
Awjalk +1) = —nzE + adw ja(k)

where n is the learning rate and «a is the momentum rate. To guarantee the conver-
gence, the learning rate should be small enough and may be decreased with time as

we will show in the experiments.

3.1.3 Experiments

Applving BPNet as the 10-ary classifier starts our task to develop the general purpose
recognizer for Unconstrained Isolated Handwritten Numerals (UIHN).

Experiments are based on two standard databases:

1. CENPARMI database of UIHN.
This widely used standard database of UIHN is collected from the dead letter
envelopes by the U.S. Postal Service at various locations in the U.S.. with equal
number of 600 binarized samples in each of 10 digit classes. 4000 digits are

specified as training set, other 2000 digits are used for testing.

MNIST database of CIHN. MNIST is the acronym for Modified NIST. NIST

o

originally designated SD-3 as their training set and TD-1 as their test set. How-

ever, SD-3 is much cleaner and easier to recognize than TD-1. The reason for
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this can be attributed to the fact that SD-3 was collected from Census Bureau
emplovees, while TD-1 was collected from high-school students. Drawing sensi-
ble conclusion from learning experiments requires the result to be independent
of the choice of training and test data among the complete set of samples. So

building new sets by mixing NIST database becomes a shared view{57].

TD-1 contains 58646 numeral images. We used a subset of 10000 test images
plus 5000 images from SD-3 as the test set. We combine the remaining 13646
in TD-1 with another 20000 numerals from SD-3 as the training set. After

shuffling, we got a training set of 68646 images and a test set of 15000 images.

A detailed description of the two databases is given in Appendix C.

Size-normalized raw images of the numerals are used as the input vector of BPNet
based on the consideration of avoiding distortions that may be introduced by thinning
etc.. This method of direct regression on image is also justified by the competitive
results obtained by us and other researchers [112, 38, 57].

The input vector is 22<13, which comes to 330D and thus defines the number of
nodes at the input layer. We used one hidden layer with 30 nodes and 10 nodes at
the output layer corresponding to the 10 classes of numerals.

During the training by BP algorithm. we initialize all the connecting weights to
random small values. 4000 training samples are repeatedly fed into the network and
the weights are updated according to Equation (17).

To define the stopping strategy of training process, we compute flag(k) for each
sample: flag(k) is set as 1 if E; > 0.05 or the class conclusion for the training sample
does not agree with the real identity of the sample. A sum of flag(k) for all training

samples is then obtained

P
F =Y flag(k) (18)

k=0
The training process stops if one of the following conditions is satisfied:

1. F £0.003 = P.
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2. Number of training epochs exceeds a threshold of 500.

The rationale behind this strategy is to combine the training with cross-validation
to ensure the generalization ability of the network.

The parameters of our BPNet are set as follows:

e The learning rate is set to be n = 0.3. When the number of epochs is greater

than 300 or E is smaller than 5.0, 7 is changed to 0.2.

e The momentum of training is set to be o = 0.7. When the number of epochs 1s

sreater than 300 or E is smaller than 5.0, a is changed to 0.5.

e Slope factor 3 is set as 1.0.

Figure 7 shows the diagram of E with respect to the number of training epochs
on MNIST database. We can see from Figure 7 that E drops very fast at the first

several epochs, then goes down at much smaller steps.
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Figure 7: Learning in BPNet (On MNIST Databases)

We test error notes with respect to the number of different training epochs and

get the diagram in Figure 8. Tt is observed that after 50 epochs, the test error starts
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increasing, while the training error still decreasing over time, this is when the so-called

“over-training” occurs.
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Figure 8: Error Rates of BPNet vs. Training Epochs (On MNIST Databases)

The final performance results are listed in Table 9.

Database Correct(%) | Substitution(%) | Precision(%)
CENPARMI 93.56 6.44 93.74
MNIST 94.95 3.05 94.93

Table 9: Test Results of BPNet

As a single recognition method before any combination, the result of BPNet is
satisfactory. Performance on CENPARMI database is slightly lower than on MNIST
database, which may be explained by the smaller training set size of the former.
Among the errors,imost common ones are the confusions between numerals 3 and 3,
or between 4 and 9.

Table 9 presents the results without rejection. One reason is that a combination
will be done after. Another more important consideration is that rejection criterion
is essentially an evaluation and verification of results and we will leave the task to

our more capable verifiers in the following chapters. However, we give out precision
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rates to provide an understanding of this measurement and for later examining the

effectiveness of our verifiers.

3.2 Convolutional Network

3.2.1 Network Topology and Learning Algorithm

Convolutional networks combine three architectural ideas to ensure some degree of
shift. scale and distortion invariance: local receptive fields, shared weights (or weight
replications), and spatial or temporal sub-sampling.

The necocognitron[27] can be considered as the first realization of convolutional
networks. Hubel and Wiesel’s discovery of locally-sensitive. orientation-selective neu-
rons in the cat’s visual system[43] leads to the first extensive use of receptive field

in artificial neural networks. Later variants of convolutional networks have actively

[l

been applied in the field of image analysis {57, 73. 66].

We adopted a typical convolutional network called LeNet[38]. The architecture is

shown in Figure 9.
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Figure 9: Architecture of LeNet

LeNet consists of four hidden layers named H1, H2. H3 and H4. The dimension of
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the input patterns is 3¢*27. It is bigger than 22*13 to avoid boundary overlaps. Units
in each layer are arranged in two-dimensional planes except for the output layer.

Hidden layer Hl is the feature extractor. It is composed of four groups of feature
maps of 3023 units. Each unit takes its input from a 5*5 neighbourhood on the
input plane. The receptive fields of units in this layer overlap. All the units in a map
use the same set of 26 weights (including the bias). The units in another map share
another set of 26 weights. There are 100 independent weights and 4 independent
biases in HI.

Hidden laver H2 does averaging/subsampling. It is composed of four groups of
feature maps of 13*12 units. Each unit takes its input from a 2*2 unit on the cor-
responding plane in H1. All the units in a map have the same weight value and the
same bias. Therefore, H2 forms a local averaging and a 2:1 subsampling of H1 in each
direction. There are four independent weights and four independent biases in H2

Hidden laver H3 is the feature extractor. It is composed of 12 feature maps. Each
map consists of 11*8 units. The connection scheme between H2 and H3 is quite
similar to the one between the input plane and HI, but slightly more complicated
becausc each unit receptive field is composed of one or two 33 neighbourhoods.

Hidden layer H4 does averaging/subsampling. It plays the same role as H2. The
output laver is fully connected to layer H4.

We can see from the structure that a sequential implementation of a feature map
would scan the input image with a single unit that has a local receptive field, and
store the states of this unit at the corresponding location in the feature map. This
operation is equivalent to a convolution, followed by an additive bias and squashing
function, hence the name “convolutional networks”.

In LeNet, the result of the sub-sampling layer is passed through a sigmoidal func-

tion. Weights are learned by back propagation algorithm.



3.2.2 Experiments

Experiments for UIHN involve CENPARMI and MNIST datasets. Size-normalized

raw images of the numerals are used as the input vector of the dimension 34*27.
flag(k) is set to 1 if Ex > 0.10 or the class conclusion for the training sample does

not agree with the real identification of the sample. The stopping criterion is either

of the following, with the same notation as in BPNet:

1. F <0.005=+P.

2. Number of training epoch exceeds a threshold: 300.
The parameters of our LeNet are set as follows:

e The learning rate is set to n = 0.05 when training on CENPARMI database.
With MNIST database, 7 is set to 0.001 due to much bigger number of samples.

After the number of epochs exceeds 10, 7 is decreased to 0.0005.
e The momentum of the training is set to o = 0.5.

e Slope factor 3 is set to 1.0.

Figure 10 shows the diagram of E with respect to the number of training epochs
based on MNIST database.

We test the data with different training epochs and get the diagram in Figure 11.

The convolutional networks, represented by LeNet in our experiment, have better
performance compared with BPNet. We did not see “over-training” phenomenon in
the experiments which may be explained by the small learning rates. However, the
training time is much longer. Training LeNet for 100 epochs on MN IST database
needs 4 days, while BPNet just needs several hours (both on Sun Ultra60 Worksta-
tion).

The final performance results are listed in Table 10. The general performance

of LeNet is higher than BPNet. The substitutions still occur on confusing numerals
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Figure 10: Learning in LeNet (On MNIST Databases)
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Figure 11: Error Rates of LeNet vs. Training Epochs (On MNIST Databases)
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including (4,9) and (0,8). Results also show that the precision rate of numeral 0 is
low. So we expect that the combination of several conventional approaches will lead
to a better General Purpose Recognizer. In the following sections, we will examine

two more methods for the purpose of building GPR.

Database Correct(%) | Substitution(%) | Precision(%)
CENPARMI 95.69 4.31 95.43
MNIST 96.30 3.20 96.94

Table 10: Test Results of LeNet

3.3 Radial Basis Function Network

3.3.1 Network Topology and Learning Algorithm

Broomhead and Lowe [4] were among the first users of the RBF technique to provide
an alternative to learning in artificial neural networks [71].

The name “Radial Basis Function™ (RBF) comes from the fact that kernel func-
tions are usually radially symmetric. These functions are placed at key locations in
the input space. A map based on a weighted-sum interpolation of the kernel functions
is then formed.

Typicallv, RBF network has one hidden layer of radial function nodes and an
output layer of linear nodes, with full inter-layer connections, as illustrated in Figure
12. Weights of hidden nodes encode basis function centers and variances. Each hidden
node computes the output based on the Euclidean distance between the input and
the basis function center. Each output node’s result is then a linear weighted sum of

the hidden node outputs.

We adopt Gaussian kernel as the basis function of the form:

(X — W, ))T(X — W)

20;

(19)

vj = €TP [—



[nput layer Hidden layer Output layer

Input Vector

Xk

Figure 12: Radial Basis Function Network

j = 1,2, N

where v; is the output of the jth node in the hidden layer, X is the input pattern,
147, is the weight vector for the jth node in the hidden layer, i.e.. the center of the
Gaussian function for node j; 0'12- is the normalization parameter for the jth node, i.e.,
the variance of the Gaussian function for node j. nj is the number of nodes in the
hidden layer.

The node equations of the output layer are given by:

u =WVi=12, .n, (20)

where u; is the output of the itk node in output layer, W2 is the weight vector for
this node, and V is the vector of outputs from the hidden layer. n, as before denotes
the number of output nodes.

\We can see that a fundamental difference between MLP and RBF nets is the way
in which hidden units combine values coming from preceding layers in the network-
MLP use inner products, while RBF use weighted Euclidean distance. There are also
differences in the customary methods for training MLPs and RBF networks. Most

RBF learning algorithms separate the learning of RBF into two stages:
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e Learning in the hidden layer — get the centers and variances of the Gaussian

Functions.

o Learning in the output layer — get the weights between the hidden layer and

output layer.

In our experiment, an unsupervised method (K-means clustering algorithm) is
used in first-stage learning while a supervised method (Least Mean Square algorithm)
is used in the learning process of the output layer. The two algorithms are listed in

Table 11 and Table 12 respectively.

Forj=1....n4

[nitialize the cluster center W ;

End
/= Group patterns */
Repeat

Fork=1, .. P

Assign X — Oj., if J* achieves min; HXe — Wil
End
/= compute the sample means */
Forj=1, ..., na
W; = g7 Zxaco, Xk
End

Until there is no change in cluster assignments from one iteration to the next.

Table 11: K_Means Algorithm (©; denotes cluster j, |©;| denotes the cardinality of
©;.)

3.3.2 Experiments

The experiments are still based on CENPARMI and MNIST databases.

The architecture of our RBF networks is designed as follows:
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Fori=1, ....n,
Initialize the weights W5 ;
End
Repeat
/= Compute outputs =/
Fori=1.....n,
Compute u; as u; = WLV,

where V is the output vector of the hidden layer.

Fori=1.....n,

e; = u; — d;, where d; is the desired output of ith output node.
End
/= Update weights */

Fori=1, ....n,
AWilk + 1) = —ne;V + aAW (k)
End

Until the termination condition is reached.

Table 12: LMS Algorithm

53



e Input Layer: 330 nodes;

e Hidden Layer: 20 nodes;

e Output Layer: 10 nodes.

Training algorithms have been described in the above section.
convolutional networks, learning rate  and momentum a are important parameters
during training. However, less attention has been paid to RBF network in the task of
recognizing UIHN. What are the roles of these parameters in RBF network? Under
which condition can we get a set of good-performance weights without paying too
much time on training? Do they have the behaviour similar to MLP network training?
These are some questions deserving further investigation. Table 13 gives the numbers

of training epochs needed and the corresponding recognition rates on CENPARMI

database versus « and 7..

al -y 0.1 0.3 0.5 0.7
0.0 156 (91.8%) | 76 (88.8%) | 97(86.2%) | 26(81.8%)
0.3 223 (90.0%) | 74 (87.4%) | 69(385.0%) | 11(81.9%)
0.5 116 (89.8%) | 70 (87 0%) 7 (79.6%) | 11(31.8%)
0.7 32 (82.6%) | 17 (78.8%) | 11(80.2%) | T (77.2%)

Table 13: Training Pattern in Terms of a and n in RBF Networks

We can draw the following conclusions on the effects of learning rate and momen-

tum factor on the convergence speed of training process and performance:

1. Adding and increasing of momentum factor (&) dramatically increases the con-
vergence speed. It also introduces some negative effect on the final performance.
In Table 13, when the value of « is less than 0.5, we can see that the effect on
performance is slight while the time needed in training decreases a lot (results in
the same column). The only exception is the (0.5, 0.3) pair in Table 13, which

converges only in iteration 7 and gives a poor performance of 79.6%
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possible explanation is that it reaches a local minimal soon after the training

begins.

o

A larger learning factor () also leads to a faster convergence. But its effect on
performance seems bigger even when the value is small. We can see this from
Table 13: When p increases from 0.1 to 0.5, the performance (rates in the same

row) drops several percents.

Performance of RBF network is given in Table 14, which is comparable to BPNet
but lower than LeNet. More discussions of RBF properties will be given in next

section in which we compare it to tree classifier.

Database Correct(%) | Substitution(%) | Precision(%)
CENPARMI 91.80 8.20 91.32
MNIST 94.46 5.54 94.57

Table 14: Test Results of RBF Network

3.4 Tree Classifier

3.4.1 Learning Algorithm

The use of automatically trained tree classifiers has been studied by many researchers.
The famous CART (classification and regression trees) [3] system was used success-
fully in areas like medical diagnosis and signal classification. The same algorithm
lays the foundation of Quinlan’s [D3 and the recent C4.5, although some details in
splitting and pruning are different [79].

A trained tree is shown in Figure 13. Among the various methods for designing a
decision tree. the best known is the top-down method. There are three main problems

in top-down induction of decision trees:

1. How to classify new observations, given a decision tree. The most common

approach associates each leaf with a single class and then assign that class to
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all new observations which reach that leaf. Typically, the associated class is the

one with the largest number of examples reaching the leaf.

N

How to determine the test to associate with each node of the tree, i.e., how to

split and construct the tree.

3. How to determine the leaves. It can be solved by stopping the growth of a tree
(pre-pruning) or retrospectively reducing the size of a fully expanded tree by

pruning some branches (post-pruning).

Figure 13: A Trained Tree Classifier.  stands for the sample space associated with
the internal nodes. upon which the split rules are applied. T stands for terminal
nodes. Each terminal node is assigned to a class with the largest number of examples
in the node.

C1.5 classifier, as what we use in our experiments, constructs the tree by re-
cursively splitting the input space into polygons until each subset in the partition
contains cases of a single class or until no test offers any improvement. Data could
be quantitative and/or qualitative. Each path in the tree that starts at the root and
terminates at a leaf node represents a rule that has been “learned” from the training

set.



During learning, the gain ratio criterion is used to maximize the information gain.
which expresses the useful proportion of information generated by the split on test

X:
gain ratio(X) = gain(X)/split info(X)

Entropy information is included in gain(X) and split info(X). It is a modification
of ID3 which only used gain(X) as the criterion. The result is often a very complex
tree that “overfits the data”. Pruning is then done to trim the tree to the right size.

The tree built this way can be used for a classification task including handwritten
digits. If a decision node is encountered at which the relevant attribute value is
unknown. so that the outcome of the test cannot. be determined. all possible outcomes
are explored and the class with the highest probability is assigned as the predicted

class.

3.4.2 Experiments and Comparisons

Experiments are conducted on MNIST database. To study the behaviour of a tree
classifier in the task of recognizing UTHN, a comparative study is also done between
tree classifier and neural network classifier in terms of performance, speed and memory
requirement. using C4.5 and RBF network as illustrative examples.

First of all. we notice that there are some inherent difference between C4.3 and

RBF, which may reflect in the experimental results:

¢ RBF has a much smoother boundary because of its radial basis function. while
C4.5’s decision boundaries are typically straight lines and crisp corners caused

by the recursive partitions.

¢ Number of hidden lavers in RBF could be chosen manually so as to avoid the
overfitting or underfitting, since we are using the K-means algorithm in the first

stage of learning. But tree pruning is a completely automatic method.



e The weights of RBF are learned adaptively. Due to its distributed structure, the
small change of a single weight may affect all other units and the final output,
but only in a minor way. C4.3 is not easy to adapt. Also, a suboptimal partition

may accumulate the error along the tree.

C4.5 gives a recognition rate of 85.27% on MNIST test set. Table 15 lists the
time needed for training and classification of the two methods. The learning rate
and momentum factor are both 0.1. All experiments are conducted on a Sun Ultral
workstation. The classification time is for recognizing a single digit. Table 16 lists
the memory requirement during training and classification. From the experimental
results in Tables 15, 16 and Table 14 in the previous section, we can observe the

following:

e Performance: Although the performance of the C4.5 shows that it is also feasible
for the complicated problem of recognizing UIHN, RBF network has a better

performance than C4.5. The reason may be attributed to RBF’s smoother

decision boundary and ease in adaptation.

e Speed: RBF’s training time is much longer than C4.5. With the given training
set. it took several days for the RBF network to converge while the tree classifier
only uses half an hour. But their classification speeds are comparable and both

are fast enough for practical use.

e Memory Requirement: Both classifiers use tolerable memory resources. In the
experiments, we did not put training examples into the memory due to the large

number of samples which actually implies a slower training speed.

Considering the tolerable training time and memory expense, a higher performance
becomes more desirable, which contributes to the decision that we will use neural
networks to build the general purpose recognizer for our R&V system in this thesis.
Nevertheless. it is worthwhile to point out that our work for the first time proves the
feasibility of applying tree classifiers to UITHN problem and some recent improvement

of tree classifiers[38] may increase the classification accuracy of the method.
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Classifiers RBF network C4.5 Classifier
Training 1st Stage Training | 2nd Stage Training | Total 28 minutes
2.5 hrs 30 hrs 52.5 hrs
[ Classification 0.01 seconds 0.005 seconds

Table 15: Training Time and Classification Time of Neural and Tree Classifiers

Classifiers RBF network C4.3 Classifier

Memory Usage | 0.44 Megabytes | 0.53 Megabytes

Table 16: Memory Requirements of Neural and Tree Classifiers

3.5 Combination and Overall Performance of Gen-
eral Purpose Recognizer for UTHN

In this section. we combine the decisions of the three neural classifiers to produce the
recognition result of the General Purpose Recognizer (GPR).

The combination scheme is a consensus of the methods that compensates for the
individual weaknesses while perserving the strengths.

The class identity of the choices is denoted as [ ;, the output value of the choices
is denoted as [;;. where { = 1.....L, L is the number of possible choices of each
classifier taken into consideration: j = l....., N, N is the number of classifiers. Here
i = 1 indicates the top choice of the neural classifier, { = 2 is the second choice. j =1
represents the convolutional network, j = 2,3 represent the BPNet and RBF network
respectively.

The combination is conducted as follows:

(
I, If 351,52 € {1..... N}, I j, = N jps

Rejection I Viy,in € {1....;L},j1,72 € {1, N} Li it # Tipio (21)

Voting Otherwise.
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Initialize SUM(k) = 0, k=0,..,9
For i=1,2
For j=1.2,3
SUM(Z:;) = SUM(Li;) + V({is);
End
End

Table 17: Combined Vote

In this way, if at least any of the two classifiers agree on the pattern identity as
their top choice, their conclusion is considered as that of GPR. If there is no common
conclusion among the classifiers, a rejection is given. Otherwise, a voting among the
possible choices is done:

The vote of each identity [;;: V([ ;) is set as Z:T ie., é. The sum of the vote

on each [;; is computed as presented in Table 17.

We can then get the final decision:

I, If SUM(I ;) gives the largest total vote;

Iia If [;; gets the same vote as another identity and (% 2 threshold:

Rejection Otherwise.

.

(22)
We can see that the conclusion of GPR is the [; ; which gives out the highest SUM.
If there exists a tie, the conclusion from the best performing classifier is considered.
To ensure that such a decision is reliable, the output value should exceed a threshold
t. Otherwise, a rejection is given.
The combination scheme is an expansion of the majority rule and it takes more
factors into consideration while keeping its simplicity. The results on CENPARMI
and MNIST databases are presented in Table 18.

With this scheme, the performance in terms of precision rates is slightly improved
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due to respecting and selecting the decisions of individual classifiers. However, it is
instructive to point out that, unlike the verifiers in following chapters, no inherent
ability of distinguishing different classes is embedded in any combination scheme. As
we shall see, specially trained verifiers are expected to enhance the precision rates of
the svstem in a drastic way due to their inherent properties, so as to highly improve

the reliability of the system.

Database " | Correct(%) | Substitution(%) | Rejection(%) | Precision(%)
| CENPARMI 94.83 3.32 1.85 96.66
,L‘.\[-.\'IST 95.97 2.10 1.93 97.89

Table 18: Test Results of General Purpose Recognizer for UITHN
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Chapter 4

Verifier for Unconstrained

Isolated Handwritten Numerals

“Perhaps I've trained myself to see what others
overlook. If not, why should you come to consult
me?”

— Sherlock Holmes. A Case of Identity

In this Chapter. we present the verifier for UIHN. We first analyse the general
need for a good verifier. The property is then exemplified by a novel neural approach
of Quantum Neural Network. In-depth experiments and discussions are presented for
both synthetic and real world data. The verifier for UCIHN is then proposed in a class-
specific way. The effectiveness of R&V system for UIHN is studied and evaluated by

hypothesis testing based on Precision Rates.

4.1 Theoretical Requirements

A fundamental requirement for a valid pattern verifier is that it is expected to perform

a reliable confirmation or negation of the pattern.

From the human point of view, satisfactory verification of uncertain factors will

62



employ linguistic hedges. rules-of-thumb experience, intuition and other heuristics.
Our mission is thus to incorporate human reasoning into the quantitative and/or
qualitative aspects of machine intelligence.

Here we examine the decision boundary of pattern space to extract general quan-
titative features we expect from a good verifier. Qualitative features will be evaluated
by taking into account the requirement of the specific application domain — hand-
written numeral recognition.

Consider the decision space of a simple example as in Figure 14. Let two classes of
data sets be represented by “stars” and “circles”. If the two classes are by nature well
clustered and separated as in Figure 14(a), a classifier with rough and crisp decision
boundary may be adequate for the classification problem.

For a complex situation that contains overlapping and confusing patterns which is
the common case of practical classification problem, including handwritten numeral
recognition, the classifier in Figure 14(a) will give unreliable decisions, especially along
the decision boundary. To avoid the consequence of either very low reliability or very
high rejection rate, the ability of detecting and identifying the uncertainty within the
data becomes essential. The property illustrated in Figure 14(b) which encodes the
structure of feature space into the membership function is therefore ideal for a good
verifier.

Unfortunately, some classifiers lack this kind of inherent fuzzy feature. Their
crisp decision boundary makes them inadequate for the pattern recognition task, and
definitely not good for the pattern verification task. For example. there are clear
arguments for believing that the conventional feedforward network is not very well
suited for general problems of pattern verification [29, 78].

Conventional feedforward neural network’s classification ability is influenced by
the topology of the feature space in the following manner:

Consider the problem of classifying objects described by feature vectors = € R¢
to one of n, classes Cy,...,Cn,. Let feature vector p belong to the ¢th class and let

vector ¢ not belong to the ith class. Let G; be the gradient of the response of the ith
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(b) Overlapping class with ideal decision boundary.

Figure 14: Two Class Example of Requirement on Decision Boundary
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output unit evaluated at some point between p and ¢q. Then it can be shown [78] that

Gill > c—— — M 23
1G:ll o —ql (23)

where || - || denotes L, norm on R?, c and M are positive constants and v has a value
between 0 and 1. This formula provides the theoretical lower bound of ||G:||. As
lp = q|l — 0, i.e.. the classes are coming closer together or their overlap increases,
|G|l will increase. We can see that the network forms an increasingly sharp boundary
as llp — qi| — 0, which implies that conventional feedforward neural network loses its
ability to function as a fuzzy classifier for data sets of overlapping or closely spaced
fecature vectors.

Comparatively, a novel neural network — Quantum Neural Network overcomes
this weakness by combining the advantages of neural modelling and fuzzy theoretic

principles, which make it a good candidate for verification purpose.

4.2 Quantum Neural Network

The idea of applying Quantum Neural Network originates from exploiting fuzzy feed-
forward neural network with the intention to improve the ability of recognizing con-
fusing characters, after realizing the limitation of conventional neural network with
regards to crisp boundary. Nevertheless, experiments reveal its capability of handling

more general verification problem.

4.2.1 Quantum Neuron

Quantum Neural Network has an inherently fuzzy architecture which can encode the
sample information into discrete levels of certainty/uncertainty. The goal is accom-
plished by using quantum neurons in the hidden layer of the network. The transfer
function (activation function) of quantum neuron has the ability to form graded parti-
tions instead of crisp linear partitions of the feature space. One possibility of obtaining

this kind of transfer function is to take the superposition of ns sigmoidal functions,
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Figure 15: Output of a 3-level Transfer Function in Quantum Neuron (6, = 23.0,0, =
0.0.63 = —48.0. 3 = 1.0)

each shifted by quantum interval 8, (s=1, .., ns), where ns is called the total number
of quantum levels.

The output of quantum neuron can be written as

1 & -

o3 2 sig(3= (WX =0) (24)
where sig(z) = 1/(1 + ezp(—z)), W is the weight vector, X is the input vector. 3 is
a slope factor. Defining W7 X as the input activation of the neuron. visually, we can
get the output of a 3-level (ns=3) transfer function as shown in Figure 15.

The quantum intervals of QNN will be determined by training. No a prior: fuzzy
measure needs to be pre-defined. Given a suitable training algorithm, the uncertainty
in the sample data will be adaptively learned and quantified. If the feature vector
lies at the boundary between overlapping classes, the QNN will assign it partially to
all related classes. If no uncertainty exists, QNN will assign it to the corresponding

class.
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4.2.2 Training Algorithms

The gradient-descent-based algorithm is used to train the QNN. In each training
epoch, the training algorithm updates both connectivity weights among different lay-
ers and quantum intervals of the hidden layer.

Weight updating is carried out by the standard backpropagation algorithm . Once
the synaptic weights have been obtained, quantum intervals can be learned by mini-
mizing the class-conditional variances [19} at the outputs of the hidden units.

The variance of the output of the ith hidden unit for class Cp, is

o= Y ((Oim)—0:x)? (23)

Tk Tk €Cm

where O;: is the output of the ith hidden unit with input vector z;. (Oim) =
HT,;Z:k:rkeCm Oix. |Cm| denotes the cardinality of Cn,.
By minimizing ?,,, we can get the update equation for §;, as follows [78]: for

each hidden unit 7 and its sth quantum level (s = 1....ns),

3 &
~'50{.5 = T)n_s' Z Z ((Oxm> - Oi,k) * ((\I/i.m.s> - I/i.k‘s) (26)

m=1r3:2,€Cm

where n is the learning rate; n, is the number of output nodes, i.e., the number of

classes.

(Vims) = 75— D Viks (27)
lcm[ T T ECm
Viks = Oigs(1 — Oiks) (28)

O; s is the output of the sth quantum level of the ith hidden unit with input
vector T.

The above procedures are summarized in Table 19.
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Table 19: Training Algorithm of Quantum Intervals

For k= 1, ..., number of input samples
For i = 1, ..., number of nodes in the hidden layer
Fors=1, ....ns

Compute O; 1
Compute v; 4
End
Compute O; for each hidden layer node
End
End

For m = 1. ..., number of classes

For i = 1. .... number of of nodes in the hidden layer

Compute (Vi m.s)
End
Compute (O; nm)
End
End

For k = 1. .... number of input samples

For i = 1. .... number of nodes in the hidden layer

Fors =1, ..., ns

;0 =0iy— T T iimie cn((Oim) — Oii) * ((Viyms) — Viks)

ns

End
End
End
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4.3 Why Quantum Neural Network is Good for
Verification?

This section presents experiments designed to evaluate QNN’s fuzzy decision bound-
arv. Svnthetic numeral patterns are created as data sets for this purpose. Decision
spaces of QNN on these input patterns are studied in terms of different ns (total
number of quantum levels). Comparison with BP network is also done. Experimen-
tal results clearly demonstrate that QNN provides smoother multilevel partition of
feature space while standard BP net exhibits a much sharper response. Decision
boundary’s fuzziness also turned out to differ according to ns and an optimal value
exists for a certain classification problem. Results imply that QNN satisfies the re-
quirement of a valid verifier as defined in Section 4.1. Details of this work can also

be found in Zhou et al. [110] and [111].

4.3.1 Generation of Synthesized Data Sets

Both the Quantum Neural Network and standard BP used in our experiments have
one hidden layer of 50 nodes, one input layer with 2215 nodes and one output layer
with 10 nodes. Binary raw images were normalized and fed to the network.

To study the response of networks to overlapping input patterns. we adopted a
morphing technique of image processing to generate the synthetic confusing numeral
patterns {28, 97]. We used transition morph which smoothly transforms one source
image into another by creating intermediate transition frames to test the network’s
response. In our experiment, we used one numeral image as the source and its easily
confused counterpart as the destination. (4,9), (3.3) or (0.6) can be such candidate
pairs for experimental purpose. Here we use pair (4,9) as an illustrative example.

The skeletons of the images were interpolated by a set of control points using
spline function. The source and destination arrays of the control points must have

the same dimension to provide the one-to-one mapping. The control points within the
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arrays consist of x and y coordinates. Cross-dissolving was used to get the intermedi-
ate images. Instead of interpolating linearly between source and destination control
points, we adopted tangent function to assign the weights. With the function’s flat
gradient near the origin, we can get more details in the middle region of transition,
which is the most overlapped region of the feature space, i.e., the focus of our study.

The skeletons of all the images (source image, destination image, intermediate
images) were dilated to produce a stroke width of 6 pixels. The images were then
used as input patterns to the neural networks.

Figure 16 (a) shows the source image of numeral "4” with its control points. Figure
16 (f) shows the svnthetic numeral '9’. Figures 16 (b)-(e) show several intermediate
confusing images, with gradual transition from 4" to "9".

In the experiment, 300 intermediate images were used to test the output of the

neural networks.

L‘l‘ ,/- .{ .';
d I i e
» ::. ' » '/l‘ :
: i : -
‘ L | ]

(a) (b) (¢) (d) (e) (f)

Figure 16: Synthesizing Image Patterns by Morphing

4.3.2 Experiments and Analysis On Synthesized Data Sets

Two-class training was done before we examined NN’s output. 100 images of "4’ with
small variations from the source 4’ plus 100 images of '9’ with small variations from
the destination '9’ were used as the training set. Typically. training finishes within
2-3 epochs for both QNN and BP. The training set consists of only two numerals
in order to avoid the complexity that may be introduced by other numerals. For

example, some ambiguous patterns between '3’ and ’5" can look very much like a 6"
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The synthetic numeral patterns generated in Section 4.3.1 were then fed to the
networks to examine the responses of the 4thA and 9th output nodes. Ideally. those
patterns similar to "4’ will yield a strong response at the 4tk node and lower response
at the 9¢th and vice versa. The ambiguous patterns will yield similar outputs on both
units (can be both high or low).

The difference between the output values of the 4th and 9th nodes (Y axis) in
terms of input patterns (X axis) is depicted in Figure 17. On the X axis, 300 synthetic
input patterns are indicated with the gradual transition from numeral 4 to 9. Note
that in Figure 17, for ease of comparison, graphs A-E show only the approximations
while graph F gives the detailed graph of QNN when ns is 12.

From Figure 17, we can observe the following:

I. When the inputs are gradually morphed from 4 to 9, QNN provides a graded
response for the overlapping input patterns, which implies the multilevel and
smoother partition of the feature space. QNN response function is fuzzier
and more intuitive than BP response function which exhibits sharp transitions,

abrupt jumps and valleys as shown in Figure 17 (A) .

N

Response smoothness of QNN differs according to the number of quantum levels
ns. For the example pair (4.9), ns = 12 turns out to be the optimal value. For
ns greater than the optimal value, the fuzziness of response decreases and the

coarseness increases.

The above observations clearly indicate that QNN yields fuzzier decision boundary
compared with conventional neural networks. This property can help QNN avoid

unreliable conclusion for uncertain samples, which is ideal for verification purpose.

4.3.3 Experiments on Real Data and Concern of Confusing
Pairs

Recognition experiments conducted on CENPARMI database, with the results in

Table 20, show that when the rejection rates are the same, QNN has a higher reliability
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than BP net. when we reduce the error rates of neural networks, BP gives a higher

rejection rate than QNN.

However, instead of being used as a slightly better classifier, the main advantage

of QNN network lies in its strong ability of recognizing confusing characters, which

is suitable for more general verification purpose. Figure 18 shows the performance of

BP and QNN in terms of confusing pairs. 22 confusing pairs for BP network are given

along the X axis and (m,n) means n is misrecognized as m. Corresponding numbers

of errors by QNN are also shown. Although QNN does not perform better on every

pair. its improvement on those most confusing pairs is obvious. This pattern will be

utilized in the following design of our verifier for UTHN.

Classifiers

BP Net

QNN (ns=6)

Rates(%)

Recog. Err. Rej.

Reliability | Recog. Err. Rej. Reliability

Zero Rej. Rate 93.56 6.44 0
Fixed Rej. Rate | 87.44 3.58 8.98

’ Fixed Err. Rate | 84.22 1 15.78

93.56 95.65 435 0 95.65
96.06 90.02 1 898 98.90
98.83 90.02 1 898 98.90

Table 20: Performance Comparison of BPNet and QNN. The error rate is controlled
by thresholding the difference between two highest outputs.

BPNet

B QNN

Figure 18: Most Confusing Numeral Pairs of BP and QNN
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4.4 Architecture and Experimental Results

Based on the discussion of previous sections about the properties of Quantum Neural
Network, our task now is to design verifiers for UIHN making use of QNN.

We proposed a two-layer module utilizing 10 QNN class-specific verifier and 18
QNN pairwise verifier. The architecture of these two kinds of verifier are shown in
Figure 19.

Thresholding is still used as the rejection criterion. A rejection is given when the

following condition is satisfied:

10, — 02| < 0, (29)

where O; and O, are the two maximum outputs of the nodes. 8, is the threshold
chosen for the particular class-specific verifier or pairwise verifier. It is the same cri-
terion widely used in conventional neural networks. However, the inherent multilevel
decision boundary and the ability to represent fuzzy information along overlapping
classes are expected to make thresholding a much more reliable criterion than in the
conventional neural networks.

Each QNN class-specific verifier is trained independently by using the algorithm
described in Section 4.2.2. To train the verifier V (i), all the sample of class i in
MNIST training set are fed with the output (1,0). 10,000 other patterns are fed with

the desired value (0.1). The training parameters are set as follows:

e The quantum level ns is set to 3;
o The learning rate is set to n = 0.3.
e The momentum of training is set to a = 0.3.

e The number of hidden nodes is set to 20.

Each QNN pairwise verifier is trained by feeding the samples of the two related

classes only. dedicated to verify the conclusions within a confusing pair. All training
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Input layer Hidden layer Qutput layer

T
J

0 (confirm)
[nput Vector

Xk

I (negate)

A: Class specific QNN verifier, one for each digit class, denoted as
Vo. Vi. ..., V5. Output node 0 confirms the digit while output node 1
negates it.

Input layer Hidden layer Qutput layer

Numeral Class C1

[nput Vector

Xk
Numeral Class C2

B: Pairwise QNN verifier. 18 mostly confusing pairs are considered:
(—1,9) (3~5)~ (0‘6)~ (4'5)~ (4~0)' (9'8)' (21)‘ (4'8) ('5-8)’ (l~5)° (01)-
(8,1). (0.8), (2,8), (6,3). (9.,3). (8.6), (1,7). Two output nodes represent
the pair digits.

Figure 19: QNN Verifiers



samples of the two classes in MNIST training set are fed into the QNN verifier with
the desired output of (1,0) and (0.1) respectively. The training parameters are set as

follows:

e The quantum level ns is set to 3.
e The learning rate 7 is set to 0.7.
e The momentum of training « is set to 0.2.

e The number of hidden nodes is set to 10.

The diagram of the verifier for UTHN used in our R&V system is shown in Figure
20. The underlying rationale is to make use of the distinguishing ability of QNN on
overlapping decision boundaries. The two layver scheme guarantees the full use of the
verifier and provides a chance to get a correct recognition result in case the first layer
verifier gives a negation. Figures 21, 22 and 23 give three typical dataflows of the
verifier.

[deally, we want the verifier to confirm all the true cases and negate all the wrong
cases. Except in trivial cases, this ideal cannot be attained. Like all verification
schemes. the verifier for UIHN has a problem of dealing with the balance between
false positive and false negative. By false positive we mean irresponsible confirmation
of a wrong conclusion from GPR. By false negative we mean negating a conclusion
which is actually correct. For a fixed problem, it is usually impossible to make both
tyvpes of errors arbitrarily small[6].

If we denote the probability of false positive as 3, then we can define the Power
of Verification as 1 — 3. It is common that the higher the power of verification, the
higher the possibility of false negative. How to control the power of verification so
that we can achieve high reliability while maintaining a reasonable high recognition
rate is an important problem-related issue. In our verifier for UIHN, the control is
represented by the ease of entering into second-layer verification, which decreases the

probability of false negative. Threshold control is applied in such a way that the
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Result from
General Purpose Recognize!

First-layer
Verification:

Class-specific
Verifier V(cl)
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Second-layer
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i i r Verification:
"c1" (confirmed) ! Rejection L
l i I Pair-wise
Verifiers V(cl_c?)

one V(cl_c2)
get a conclusion
c2 different

N Y

\J

Reiecti ( no conclusion or
¢jection more than one or

same as "cl”)

Figure 20: Diagram of Verifier in R&V system for UIHN
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Result from

5=

First-layer
Verification:

Class-specific
Verifier V(5)

&) "S7 (confirmed) I

Figure 21: Example One of Dataflow in Verifier: Confirmation of a Good Sample

Second-layer
Verificatnon:
Negaed VO_1) -> reecaon
V(Q_3) -> rejection
V({O_6) -> rejecuon
Vv{_8) -> 8

Figure 22: Example Two of Dataflow in Verifier: Negation and Second-layer Verifi-

cation - Resulting in a New Result

Result from

Class-specific
Verifier V(4)

First-layer
Verification:

———! Rejected I

Figure 23: Example Three of Dataflow in Verifier: Rejection of a Confusing Example
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pairwise verifier has more strict threshold (big value of 8) than class-specific verifiers
since there is a possibility that the sample goes to the pairwise verifier does not belong
to either candidate class.

Figure 24 gives the samples misclassified by the General Purpose Recognizer and
negated or corrected by Verifier. The results demonstrate the ability of the verifier to
detect erroneous conclusions. Negation of some very ambiguous samples implies the

verifier’s ability to deal with garbage samples.

& &

5->0by GPR
Negated by Verifier

s

>

7->2by GPR
Negated by Verifier

pa |

9 -> 3 by GPR
Corrected by Verifier

6->1by GPR
Negated by Verifier

=

9 -> 0 by GPR
Negated by Venfier

7 /

7->5by GPR
Negated by Verifier

9->4by GPR

I
i
)
]
|
i
!
!
)
i
I
IE Negated by Verifier
.

8 ->3 by GPR
Negated by Verifier

&

5-> 0by GPR
Negated by Verifier

0 -> 8 by GPR
Negated by Vernifier

6 -> 4 by GPR
Negated by Verifier

8 ->0by GPR
Corrected by Verifier

7->0by GPR
Negated by Verifier

4 ->0by GPR
Corrected by Verifier

2->3byGPR
Corrected by Verifier

J

Figure 24: Confusing Samples in MNIST Dataset Negated or Corrected by Verifier

The test results on standard databases are given in Table 21. We compare the

results with the performance of the most reliable systems in Tables 1 and 2. Recall
that a good system should have a high reliability with a reasonable recognition rate.

We can see that our R&V system is among the best three when both factors are

considered.

Besides building a high performance system, this work focuses on the exploration
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Database Correct(%) | Substitution(%) | Rejection(%) | Precision(%)
| CENPARMI 94.13 1.46 4.39 98.52
MNIST 95.05 0.92 4.03 99.11

Table 21: Test Results of Verifier for UTHN

of the role of verifier in an OCR system. We thus list in Table 22 the performances

of the individual classifier. General Purpose Recognizer and Verifier. We can see that

the performance of GPR is acceptable as a well performing recognizer. However, our

goal is to attain a high precision rate of a system to satisfy situations demanding

high reliability. This objective is achieved by applying the verifier which increases

the precision rate of the system by its inherent characteristics and the class-specific

design of the system. The results show that our verifier is capable of attaining very

high precision rates without sacrificing the recognition rate much.

Further to an analysis by performance figures, the next section will use hypothesis

testing to evaluate the effectiveness of the verifier from a statistical point of view.

Database Method | Correct(%) | Substitution(%) Rejection(%)J Precision(%)
| CENPARMI | BPNet 93.56 6.44 0.0 93.74
i LeNet |  95.69 431 0.0 95.43
RBFNet 91.80 8.20 0.0 91.32
GPR 94.83 3.32 1.85 96.66
Verifier 94.15 1.46 4.39 98.52
MXNIST BPNet 94.95 5.05 0.0 94.93
LeNet 96.30 3.20 0.0 96.94
RBFNet 94.46 5.54 0.0 94.57
GPR 95.97 2.10 1.93 97.39
Verifier 95.05 0.92 4.03 99.11

Table 22: Test Results for UIHN
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4.5 Evaluation of Recognition and Verification Sys-

tem for UIHN

As explained in Chapter 2, the statistical hypothesis testing is used to evaluate the
effectiveness of the verifier.

We consider hypothesis testing a more meaningful and powerful evaluation tool
than a simple two percentage figure comparison, because it views the test results as
samples from a distribution. As a mature testing philosophy. it is rich in mathematical
structure which takes deviations, sample size and result confidence into theoretical
consideration. The adoption of hypothesis testing can partially solve the question
whether a single result figure can be representative of the algorithm.

Let A be a random variable that represents the precision rates obtaining from a
system without verification module, let B represent the precision rates from a system
with verification module. We randomly selected 20 sets of samples from the test
database of UIHN (MNIST) so that the number of the two sets for hypothesis testing
are n; = n, = 20. On each set, we get a precision rate as presented in Table 23.

From Table 23. we can get sample averages of A & B as X, = 97.84, X, = 99.07
respectively. We then compute sample standard deviations S; and S; of A & B as
square root of E(X — E(X))? where X is A or B. We get S; = 0.63 and S, = 0.49,
respectivelv. With the definition

n1S? + n, S?
ny +ne — 2

S* =

we get § = 0.38.

The test starts by setting the hypotheses:

Step 1: Set Hy: Systems with or without verifier have no significant differences on
precision rates. H;: Systems with verifier have significant improvement on precision
rates.

Step 2: Let N(u1,07) and N(u2.02) be the distributions of A and B, respectively.

Assume ¢} = o3 (value unknown). The populations are assumed to be independent.
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Dataset Precision Rate for A (%) | Precision Rate for B(%)

l 99.01 99.58
2 98.06 98.37
3 96.381 98.91
4 97.03 98.43
3 98.05 99.58
6 98.31 99.61
7 98.37 99.15
8 98.07 98.78
9 97.31 93.81
10 97.77 99.01
11 98.13 99.13
12 96.82 97.70
13 97.00 98.36
14 97.33 99.21
13 93.19 99.65
16 97.35 98.91
i7 97.78 99.62
18 98.96 99.56
19 98.28 98.95
20 98.24 99.35

Table 23: Data Sets for Hypothesis Testing to Evaluate Verifier for UTHN
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Thus Hy T gy = po. Hy DM > M.
Step 3: Use t — test. The appropriate statistic under Hj is,

(X1 = Xo) = (g1 — p2)
S(L + L)1/2
ni n2

=T7.24

Step 4: Test the hypothesis at 0.01 significance level. a = 0.01, t.. ., 24 =

t3z.0.01-

Step 5: Compute t350.01. Since 38 > 30, we get a good normal approximation. By

looking into a standard normal table, corresponding to « = 0.01. we have

P{Z >2.33} =0.01

Step 6: Since 7.24 > 2.33, the observed value of Z lies in the critical region. hence
we reject Hy : g1 = po in favor of Hy : gy > po.

By hypothesis testing, we get the conclusion that the R&V system for UIHN
has significantly improved the precision rates, thus our proposed verification scheme

properly suits our definition of a good verifier.
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Chapter 5

General Purpose Recognizer for
Unconstrained Touching

Handwritten Numerals

“Data! Data! Data!”. he cried impatiently. *I

can't make bricks without clay.”

— Sherlock Holmes, The Adventure of the Copper

Beeches

Before tackling the problem of UTHN, we will first discuss the practical problem
of automatic processing of financial documents, which pushes the UTHN recognition
to the front stage. Lack of benchmarking data, a serious obstacle in research work
for on UTHN, is solved by two newly built databases, with the intention to serve
as standard databases for upcomers in this field. Building of the databases is de-
scribed in Section 5.2. A GPR for UTHN is then presented in the following sections.
It is a novel graph-based combination of segmentation-based and segmentation-free

approach. Experimental results based on the databases are also given.
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5.1 Problem Background

In an information society of today, an immense number of business and financial
documents are being processed, including bank cheques, payment slips, tax forms,
maps etc.. Automation of these processes with document analysis and recognition
technology is in strong demand. Take processing of bank cheques as an example.
According to recent survey in [93], over 55 billion cheques are processed annually in
North America. at a cost of 25 billion dollars, where the amounts are mostly keved
in manually. Recent developments in the recognition technology have allowed the
development of automatic processing systems (18, 93]. However, as we will analyze.
many challenges still hinder the emergence of successful systems.

A typical bank cheque is given in Figure 25. The textual format of the amount
is called the legal amount, while the numerical format is called the courtesy amount.
Automatic cheque processing is a multi-faceted subject that integrates many mod-
ules such as item extraction, courtesy amount recognition, legal amount recognition,
amount validation, and in some cases date zone recognition and signature verification.
Among these tasks, courtesy amount recognition is the problem of recognizing un-
constrained handwritten numeral strings. Data zone recognition also utilizes numeral

recognition methods.

= FOUG 123458
i
R 0“ /w75

f"- tuo /:oe DOLLAAS

oos

HUW DL ILELE LR

Figure 25: A Typical Bank Cheque



Research work of recognizing handwritten numeral strings is naturally focused on
touching cases, which is the core problem of string recognition (32, 89. 102]. Here
we refer to the problem as the recognition of Unconstrained Touching Handwritten
Numeral (UTHN).

Compared with the recognition of UTHN, literature indicates that the problem of
UTHN is less studied and more difficult. However, it has been gaining attention of
researchers due to its important role in practical systems. We can see from Tables
3 and 4 in Chapter 1 that the performances of UTHN recognizers are still mediocre,
especially when the practical systems are concerned. This situation is related to many
intrinsic and application specific reasons. In this thesis, our focus is UTHN recognition
in cheque or financial document processing systems. Some practical problems arising

in this domain are

1. In practical systems, the preprocessing stage may interfere with the subsequent
recognition. Remaining noise, broken strokes or incomplete string images may

present major problems to the recognizers.

(8]

The recognition problem of UTHN extracted from cheques and financial doc-
uments differs from other domain problems such as zip code recognition. Un-
limited amount, free style touching “007 in the cents part (Figure 26(a-b)) and
unforeseen garbage symbols (Figure 26(c-d)) all contribute to the low reliability
of the system. Moreover, since the systems are typically used in financial en-
vironments such as banks, revenue departments or other financial institutions.

the reliability demands of users is higher.

¥D £7

(a) (b) (c) (d)

Figure 26: Touching Numerals in Courtesy Amount of Cheques

86



3. Last but not least, up to now, there is no public-available standard database

for the recognition of UTHN extracted from cheques and financial documents.

Lack of a standard database for recognizing UTHN is the first challenge we met
in our work.

Although CEDAR CD-ROM database contains some images of touching numerals
(provided as mixture with isolated numerals), they are collected from zip codes instead
of financial domains. The size of such sets is at the level of several hundreds which is
small.

Constructing good data sets for recognizing UTHN with financial document back-
ground thus became a necessity. We need standard databases for UTHN from financial
domains, as well as a bigger size for training and testing. In the next section, we will
describe the construction of the databases toward these two goals.

With the intention to make them standard training and testing sets, we consider
building databases an important contribution toward benchmarking and evaluating

methods of recognizing UTHN.

5.2 Building Databases

5.2.1 IRIS-Bell’98 for UTHN

The IRIS-Bell'98 database is collected and established by CENPARMI.
TRIS-Bell'98 actually consists of 2 databases referred as IRIS-Cheque database and
Bell’98 database. The IRIS-cheque includes samples of Canadian personal cheques
written by employees/students of Concordia University and employees of Bell Canada,
financially supported by the Institute for Robotics and Intelligent Systems (IRIS) in
Canada. Bell’98 includes samples of phone bills written by the general public. Con-
sequently, all the data in IRIS-Bell’98 have real-life financial document backgrounds.
The document is first scanned with a resolution of 300 dots per inch, then the area

of courtesy amount is extracted. Isolated and touching numerals are distinguished
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automatically or manually. They are tagged and stored as Cenparmi Binary Code
(cbc) format.

The current IRIS-Bell'98 for UTHN contains 4059 touching numeral strings, among
which 3731 are touching numeral pairs, i.e., 92% of touching numeral strings are ac-
tually touching numeral pairs. It is a shared phenomenon with other domains{102]
that most UTHN are touching pairs. Considering that a segmentation based method
can solve the touching numeral strings of 3 or more numerals by recursively adopting
the algorithm for touching pairs. we will focus on the problem of recognizing touching
numeral pairs in the following sections.

IRIS-Bell’9S for UTHN contains a training set of 2338 touching numeral pairs and
a test set of 1193 pairs. One obvious feature of this database is its very free style.
Although small, the data set represents some difficulties of real situation for financial
document processing system.

To have an idea of the characteristics of this database, we analysed different

touching situations of IRIS-Bell’98. We categorized the situation as:

1. Single Point Touching: The simplest touching case that two numerals have only

one touching point between the numeral strokes. No ligature is involved.

o

Ligature Touching: The touching is caused by extra ligature stroke between
two numerals. After segmentation,the subimage may contain unwanted noises

produced by the ligature.

3. Ligature Overlap: The ligature not only touches a neighbouring numeral but

also overlaps with it.
1. Multiple Point Touching: The number of touching points = 2.

5. Overlap: Two numerals overlap each other. A segmented subimage may contain

part of another numeral.

6. Noise: Useless (usually harmful) pattern in the numeral image caused by extra

symbols or poor writing conditions and styles.
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7. Broken: Fragmented images which may confuse the segmentor and some clas-
sifiers. Can be caused by writing condition, scanning resolution or binarization

process.

Table 24 presents frequencies and examples of touching situation in IRIS-Bell’98
test set. High percentages of ligature touching, ligature overlapping and noise intro-
duce the difficulties of this database. It includes problems that a recognizer may meet
in real situation of processing financial documents. Nevertheless. the size of this data
set is considered to be small, which will be compensated by the data set for UTHN

extracted from NIST database.

Touching Types Frequency Examples

Single Point Touching 50%

Ligature Touching 23%

Ligature Overlap 11%

Multiple Point Touching 2.5%

40
o
0%
28
23
"
N

Noise_l (underline + “xx™) 12.6%

Noise_2 (ink or others) 4.0%

Hsﬁeﬁaqk

Cursive 2.4%

&
Broken 1.4% /

Table 24: Analysis of Touching Situations in IRIS-Bell’98 Test Set
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5.2.2 NIST for UTHN

The NIST for UTHN database is built on NIST CD ROM Special Database 19. SD
19 contains the full page of 3699 binary images of handwritten data. It represents
NIST’s most comprehensive and probably final release of class referenced images for
OCR problem. It contains all the data of Special Database 3 and 7 (SDT is also
known as TDI in literature) which it supersedes. The form page contains 34 fields:
name and date entries, a city/state field, 28 digit fields, one upper-case field, one
lower-case field and an unconstrained text paragraph. They are filled by Census field
workers or high school students and scanned with a resolution of 300 dots per inch.

In SD19, isolated numeral and upper or lower case characters are stored in a
well organized way according to the writer or the class (See details in [30]). As we
mentioned in Chapter 3, the database of isolated numerals has been used in our work
for recognizing UIHN. However, when the problem comes to UTHN, no organized
database exists. With NIST SD19 as a good resource, we decided to build a standard
database for the research work of UTHN. Considering the building of the database
a necessity of our own work, we also believe that it will benefit other researchers in
this field.

The work was separated into two stages:

1. Extract touching numerals from form images.

2. Tag the touching numerals with their identities and organize them as databases.

We summarize these two steps in this section. More details can be found in {15],

[109] and Appendix C.

Extracting Touching Numerals
Extracting touching numeralsis a semi-automatic process. First of all, the numeric
fields are extracted from the form image making use of the surrounding boxes. Given

an input numeral string, we detected all the connected components and then fed each
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component into the recognizer for UITHN. If it is rejected by the recognizer, the number
of connected components (NCC) is compared with the known number of digits (ND)
of the string. If NCC is smaller than ND, this component is considered as a sample
of touching numerals. Otherwise, it is considered as garbage.

The garbage directory is manually checked afterwards to get the missing touch-
ing numerals, which is possible when the images are fragmented. Fortunately. this
situation does not occur often. The frequency is lower than 1%.

The manual check of extracted samples is done at the next stage: tagging.

Tagging Touching Numerals

Tagging touching numerals is also a semi-automatic process. The extracted touch-
ing numerals are fed into a preliminary recognizer for UTHN, the resulting labels are
saved in a file. Another program binds the image and the corresponding label into
cbe (Cenparmi Binary Code) format which puts many images into a single file.

The tagged cbc files are manually checked afterwards. Errors are corrected and
rebound into the database.

Touching numerals are categorized according to the number of their numerals. At
the time of writing the thesis, the extracting and tagging of touching numeral pairs
have been finished, which represents the majority of all touching strings.

The database is separated into training and testing samples according to the
original partition of NIST SD 19. Consequently, NIST for UTHN contains a training
set of 4252 touching numeral pairs and a test set of 4395 touching numeral pairs.
The phenomenon that testing partition contains more touching cases also confirms
the observation we mentioned in Chapter 3 that the test set of NIST is more difficult
than the training set.

We can see that the size of NIST for UTHN is much bigger than IRIS-Bell’98,
which is a good feature for a benchmarking database. On other other hand, the
percentage of difficult situations such as garbage symbol and cursive writings are

smaller than IRIS-Bell'98. Table 25 shows the result of touching situation analysis
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on the test set of NIST for UTHN.

Touching Types Frequency | Examples

Single Point Touching 75%

Ligature Touching 9.4%

Ligature Overlap 2.5%

Multiple Point Touching

Overlap 1%

NREHE

Noise and Cursive 4.4%

Table 25: Analysis of Touching Situations in NIST for UTHN Test Set

The establishment of the above two databases for UTHN are original and impor-
tant work for the research on touching numerals. The recognition and verification of

UTHN in this thesis are conducted on these two data sets.

5.3 Segmentation

As we discussed in Chapter 1, the recognition of UTHN can be categorized as segmentation-
based. segmentation-free or holistic. What we used to tackle the touching numerals
is a graph-based combination of segmentation-based and segmentation-free methods.
This scheme solves slanting and some overlapping problems by contour tracing in the
segmentation stage. It also ensures efficient computation by a filtering stage before
recognition.

In this section, we will present the segmentation-based module, which provides

the candidates of cutting points. The method was proposed in Strathy et al. [92]
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with minor modification of the author of this thesis. Here for completeness we give a
brief description of it.

The segmentation algorithm is based on contour features. It consists of four steps:

1. Preprocessing to remove noise and normalize height.

~

. Contour analysis to determine significant contour points (SCPs).
3. Sorting of SCP pairs.

1. Guiding the cut from the entry SCP to the exit SCP.

Simple preprocessing is first done to smooth the edges and get the contour infor-
mation. A set P of significant contour points (SCPs) is then created which contains

corner points in mountain. valley and open regions such as:
e Minimum point of each valley.
e Maximum point of each mountain.

o Exit points of the imaginary straight lines formed by. wherever possible, ex-
tending the contour through the stroke at concave corners in mountains and

valleys (Figure 27).

To get the pair of SCP between which to pass the cutting path, we sort the SCPs

in P according to 9 measures of each pair:

1. A fixed number of credits for each mountain/valley pair:

[S]

A fixed number of credits for each SCP that was found by corner detection:
3. Credits for the proximity to each other of the points in the pair;
4. Credits for the sharpness of the concavity at each of the SCPs.

Credits for the proximity, where applicable, of an SCP’s valley (mountain) to

Ut

the top (bottom) of the image;

93



([ )
A
!
1
{
!
® SCP found by corner detection
O SCP found by contour extension
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Figure 27: Get SCP by Extending Contours Through a Stroke (From [92])

6. Credits, where applicable, for the distance of an SCP from the bottom (top) of

its mountain(valley);

Credits. where applicable, for the degree to which a valley corner is above a

=1

mountain corner in the image:

(v

Credits for the degree to which stroke pixels outnumber background pixels in

an imaginary straight line drawn between the pair:
9. Credits for the nearness of the pair to the left hand side of the image.

Credit values, including fixed ones, are normalized according to the height of the
bounding box of the given numeral string. After the score for each pair has been
computed the pairs are sorted from the highest score to the lowest with, the more
favourable cuts appearing towards the front of the list.

Once the cutting path has been determined, we must split the single connected
stroke component into two new components. We trace the cutting path and the outer
contour of the numeral string onto a blank image, then follow the lefthand region of
the contour chain counterclockwise and copy the contents of each corresponding row
from the original image into the left image. The right hand component is extracted

in a similar fashion.
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The method in [92] has some limitations, one of which is that it discards small
components when getting the two new subimages. Consequently, some fragmented
‘5s that have a separate above line will be incomplete. The problem is solved in this
thesis work by considering all components and pasting them back to either left or

right image according to their relative positions.

5.4 Candidate Filtering

After segmentation described in the previous section, we get a list of possible cuts in
a sorted sequence. On the average, the cardinality of P is around 20, which is the
number of possible split paths.

In a classic over-segmentation method, each segmentation candidate will be ap-
plied. The lefthand and righthand images are fed into a single-digit recognizer. If the
recognition is successful, e.g., a high confidence level is achieved, the result will be

o

returned [57]{7].

The obvious disadvantage of such a scheme is the intensive computation. Al-
ternative methods such as “split-and-merge” [32] at the stroke level also entail high
computational complexity. On the other hand, simply taking only the first several
split candidates may miss some proper cuts.

A candidate filter is thus introduced after our segmentation phase. After candidate

filtering, 3 criteria must be fulfilled:

1. The size of segmentation candidate set is significantly minimized.

[§¥]

. High probability of keeping the most appropriate candidate within the new set.

3. Moderate computation complexity.

The filtering rule is described in Table 26.
The underlying hypothesis in the filtering rule is that the most appropriate cut

point for a touching numeral pair occurs around the middle zone of the image, except

95



For each segmentation candidate sec.
If | BWiest — BWright| < Toprie- Then
Put sc in the new set
Else if BWiese — BWhighe > Topiir and lefthand image is recognized as "2’ or "5’

Put sc in the new set

e

Else if BW,ynt — BWies: > Tspi:: and righthand image is recognized as 2" or ’3
Put sc in the new set

Else if BWi. ;e — BWiigne > Typ1i and lefthand image is recognized as "1’
Put sc in the new set

Else if BWiighe — BWiest > Topii and righthand image is recognized as ‘1’
Put sc in the new set

End

End

Table 26: Filtering Rule (BW!. ;. denotes the width of lefthand component, Ty is a
pre-defined threshold.)
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images with ‘2°,°5” and ‘1’. A statistical method to test and prove the assumption is
described in Appendix D.

After filtering, the average number of segmentation candidates drops to 8. The
candidates are still kept in a sorted sequence provided by the segmentation method

and is ready for further recognition and verification.

5.5 Segmentation Recognition Cost Graph and
Double Zero Problem

In this section a graph-based segmentation-recognition scheme is introduced with
reference to the set of segmentation candidates from the previous section. A holistic
solution for touching double zero is then described due to its high frequency in [RIS-

Bell 98 database.

Segmentation Recognition Cost Graph

Segmentation Recognition Cost Graph (SRCG) is a scheme to combine segmen-
tation module and dual-recognizer into an overall consideration. It is a novel way to
combine segmentation-based and recognition-based approaches by converting many
hard constraints into soft decisions in the form of costs.

Figure 28 illustrates the recognition of a touching digit pair using SRCG. Results
and confidence values of the segmentation module and recognizers are put on the
arches of the graph. The path from “start” to “end” with the highest combined value

(lowest cost) is selected to give the best result.

To get normalized score values, the segmentation candidates are rescored accord-

ing to heuristic Gaussian like formula:

Si=e % (30)

where i=1,2..., are numbers of available candidates; a=0.4, b=10.
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Recognizer 1 Recognizer 1

Segmentation Recognizer 2 Recognizer 2
Module

Figure 28: Segmentation Recognition Cost Graph

The two recognizers used in SRCG are the neural approaches described in Chapter
3 and another recognizer used in CENPARMI[93]. The scores for these recognizers
are the confidence values of the output. In our recognizer, the confidence value is an
average of the three normalized neural network outputs.

In the illustrative example of Figure 28, a touching “39” goes through the segmen-
tor. After segmentation candidate filtering, we got 2 possible candidate cuts. We fed
the left and right subimage of each possible segmentation into two recognizers and
got 4 decisions with confidence values on the graph edges. Only the lines with the
same style (solid or dotted) can be a possible combination. We can obtain 8 possible
paths. The highest is the conclusion of ‘3" and ‘9’ with score 1.0 for segmentation,
score 1.0 for recognizer two for ‘5°, and score 1.0 for recognizer one for ‘9’, which give
a total sum of 3.0.

Figures 29 and 30 are two other examples of the way the SRCG recognizes touching

numerals. Figure 29 shows successful recognition of touching ‘78'. Figure 29 is an
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example that contains a confusing numeral ‘9’. The scores of different recognition
decision are listed in the figures, while the scores of segmentation for simplicity are

not shown.

Concern of Double Zero

Before giving out the performance of our GPR on the built databases, a remaining
problem which needs particular notice is the frequency and poor quality of the double
zero in IRIS-Bell'98 database.

There is a total of 600 touching “00”s in IRIS-Bell'98 test set, whose total size is
1193. Moreover, most of these touching double zeros are cursively written. Ligature
and overlapping are common, and cause serious difficulty in segmentation. To tackle
this problem, we developed a holistic recognizer using QNN neural network. This
network is dedicated to improve the recognition rate of “00” sequence in IRIS-Bell'98
database.

The training set of this network is extracted from MNIST database. 267 samples
of “00" are fed with the output (1.0), 400 other patterns are fed with the desired

value (0.1). The training parameters are set as follows:

e The quantum level ns is set to 3;
e The learning rate is set ton = 0.7.
e The momentum of training is set to a = 0.2.

e The number of hidden nodes are set to 20.

The network is applied after SRCG for IRIS-Bell’98 database, under the condition
that the conclusion from GPR contains at least one zero. The threshold of this
recognizer is set to 0.3, which is relatively big, to prevent a decrease in the precision
rate of “00”. The application of this recognizer increases about 10 percentage the

recognition rate of “007. However, the recognition rate, as we will report in next
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Figure 29: Example One of Recognizing UTHN: A Successful Example
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Figure 30: Example Two of Recognizing UTHN: A Confusing Example
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section, is still low. Fortunately, the cents part in financial documents is usually less
important, which may also explain that they are written in such a careless way.

Up to now, we have our General Purpose Recognizer handy for UTHN problem.
For NIST database, it is actually the SRCG.

The system rejects a decision when both of the following conditions are satisfied:
(1) two top scores with different conclusions are smaller than a threshold; (2) for the
best path, the difference between two recognizers gives different conclusions.

The first condition is easy to understand. However, in practice it is possible that
two ways of segmentation yield two highly confidence conclusions. Although the dif-
ference between two scores is not big, the top one is actually correct. The probability
of a wrong segmentation increases if for a single path there is an opinion discreteness
between the two recognizers. On the other hand, due to different characteristics of
the two recognizers, only considering the same opinion of both engines will decrease
the recognition rate too much. Thus the combination of the two rules are used as the

rejection criterion for the GPR.

5.6 Overall Performance of General Purpose Rec-

ognizer for UTHN

Using the proposed GPR proposed in the previous section, we get the performance
presented in Table 30, based on IRIS-Bell’98 and NIST test sets for touching numeral
pairs. Tables 28 and 29 list the detailed correct rate of each numeral pair.

We can see that the rates on IRIS-Bell’98 is lower than what we get from NIST,
which is consistent with the analysis of the two datasets in Section 5.2. The distri-
bution of the numeral pairs in IRIS-Bell’98 is very unbalanced due to many “00” in
the cents part of the courtesy amount.

By examining the frequency of occurrences of touching numeral pairs in NIST set,
we can observe that the 5 most frequent touching pairs are “897, “56”, “007, “50”

and “20”. The least frequent ones are “617, “91”, “14”, “41” and “717. We can see
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that touching occurs commonly when numeral ‘0° or ‘5’ show up or ‘8’ and ‘9" are
together. while ‘1’ and ‘7’ tend to stand alone. Although we can not yet conclude
that this is the general pattern of human writing, the information can be viewed as
important hints for developing 2 R&V system for UTHN as we will see in the next
chapter.

Due to lack of benchmarking data for comparison, it is not easy to compare the
results directly with other algorithms for UTHN. However, the recognition results
are already comparable to those reported on data from CEDAR CDROM. On NIST
database, we get an error rate less than 9%, which is much better than the results of
[89] and [102]. We also see that precision rates are not yet good enough to reach our
high reliability goal. The errors come from both the segmentation and recognition
stages. We will improve the precision rates at the verifier stage in the next chapter
by overcoming the problems from both sources.

Some may argue that “the precision rate of GPR can also be improved by adopting
more strict thresholding, instead of rejecting only the images that GPR is obviously
unable to handle”. The answer comes from the overall goal of R&V system. Recall
that the very purpose of the verifier is to make reliable confirmation or negation.
If a conclusion is irresponsibly rejected by the GPR. the verifier will never meet the
question. Between the choices of applying overstrict thresholding in GPR and leaving
the problem to the verifier, we are naturally prone to the latter. Inappropriate use
of the power of verification will have negative impact on our overall goal. which is to

ensure a high reliability while maintaining a reasonable recognition rate for the whole

R&V system.

Database Correct | Rejection | Precision for Strings | Precision for Numerals
[RIS-Bell’98 | 65.5% 16.3% 78.5% 84.3%
NIST 388.6% 3.1% 90.1% 94.2%

Table 27: Test Results of General Purpose Recognizer for UTHN
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occur. | correct occur. | correct occur. | correct occur. | correct
00 | 600 365 25 9 9 50 18 14 () 6 4
01 1 1 26 4 4 31 3 3 76 8 5
02 1 i 27 3 2 52 6 3 7 3 3
03 1 1 28 6 5 33 7 5] 78 T 6
04 3 1 29 6 3 54 T 4 9 12 6
05 3 3 30 13 11 53 8 T 80 12 9
| 06 1 1 31 2 2 56 9 8 81 1 1
0v 2 1 32 b 3 537 6 2 82 2 2
08 5 2 33 2 2 58 11 9 83 4 3
09 3 4 34 3 2 39 12 9 84 3 2
10 1 1 33 6 3 60 4 3 83 4 2
11 1 1 36 5) 5) 61 2 2 86 10 9
12 3 3 37 3 3 62 2 2 87 3 2
13: 0 0 38 ) 5 63 5] 3 88 15 9
14 2 1 39 T 6 64 2 0 39 13 11
15 2 2 40 6 3 65 4 3 90 3 1
16 1 0 41 4 2 66 7 5 91 0 0
17 1 1 42 3 2 67 0 0 92 1 0
13 2 1 43 2 1 68 5 ) 93 1 1
19 2 1 44 5 4 69 ) 4 94 0 0
20 25 21 45 6 6 70 13 10 95 2 2
21 3 2 46 5 3 71 5 96 3 1
22 5 4 47 1 1 72 3 2 97 2 2
23 3 5 48 4 4 3 3 2 98 8 3
24 0 0 49 7 4 T4 1 1 99 3 3

Table 28: Performance of GPR for UTHN on IRIS-Bell'98
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Chapter 6

Verifier for Unconstrained

Touching Handwritten Numerals

“Take time to consider. The smallest thing may

be the most essential.”

— Sherlock Holmes, The Adventure of the Red
Circle

6.1 Incorporating Domain Specific Verification

In Chapter 4, theoretical requirement for the verifier has been discussed. Experiments
with Quantum Neural Network further addressed the property of a good verifier. Our
verification scheme based on QNN performs effectively for UIHN.

With our discrete strategy for touching numerals, it is clear that the verifier for
UTHN can be applied to improve upon the results of GPR for UTHN. Although rea-
sonable and feasible, this scheme is not enough. The reason is that GPR of UTHN
suffers from specific weaknesses arising from the domain of touching numerals. Un-

derstanding and overcoming these difficulties, developing specially trained domain
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specific verification schemes, became the key to success of solving UTHN problem. In
this chapter, we present our work on this aspect. We deal with the following domain

specific problems:

1. Wrong segmentations which can be detected by Touching Type & Location

verification.

[S]

Errors of GPR caused by ligatures and/or weakness of recognizers which can

be solved by the structural the verifier making use of structural features.

3. Dummy symbols which can be detected by our domain specific dummy symbol

detector.

The above schemes are addressed in the following three sections respectively. In
each section. the problem is first exemplified and analysed. The corresponding ap-
proach is then proposed in detail. The architecture of Verifier for UTHN is described
in Section 6.5, which combines the domain specific schemes with the verifier for UIHN.
Experimental results are given on IRIS-Bell'98 and NIST database for UTHN. Finally.
a statistical evaluation of R&V system for UTHN is conducted using hypothesis test-

ing.

6.2 Touching Type & Location Verifier

As discussed in Chapter 1, the discrete solution and holistic solution for UTHN prob-
lem have their respective advantages and disadvantages. In discrete approach the
proper segmentation is very important. If a wrong segmentation occurs, even a perfect
recognizer won't help. Our GPR for UTHN, which considers multiple splitting pos-
sibilities with recognizer assistance in an efficient way, partially relieves the headache
of pure segmentation-based algorithm. However, it is far from worry-free. In the
example presented in Figure 31 the segmentor provides three choices according to
the scores of SCP pairs. Due to the smooth connection of the loop in ‘6" and the

stroke in ‘5°, none of the three segmentation paths separates the left ‘6" from the ‘5".
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Although GPR may still recognize the right hand image as ‘3’, it seems inevitable
to get a conclusion of ‘1’ for the left hand image. “15” is actually the conclusion of
GPR for this pair of numerals. To solve this problem, we propose Touching Type &

Location Verifier.

—_—
1 / ﬁ
cgmentation] 2
Choices
| ( ‘
- J

Figure 31: Wrong Segmentation of Touching 6" and 3"

Touching Type & Location Verifier is based on the possible touching types between
2 numerals and location of the touching zone. Given a segmented numeral, if its
touching location and touching type are impossible to occur together, the decision of
GPR is negated.

Before giving the verification details, we will first explain different kinds of touch-

ing types.
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6.2.1 Touching Types and Locations

Touching types can be categorized according to the stroke type we get after segmen-
tation. If the cutting points create an end of a stroke, we call it an End Point (EP).
Otherwise, it is a Non-end Point (NEP), which can be the side of a stroke or a bend
area. We define 4 touching types for a touching numeral pair, which will be used in

Touching Type & Location Verification:

1. EP-NEP or NEP-EP

o

EP-EP
3. NEP-NEP
4. MULTIPLE

Figure 32 exemplifies four touching types.

Touching location is defined for a segmented numeral from touching pairs. It
is divided into two kinds: uppertouching and lowertouching. If the touching occurs
within the upper half part of the segmented numeral, we say it is a UpperTouching. If
it occurs in the lower half, LowerTouching is the conclusion. Let Y be the coordinate
in the height direction, A and B be the SCP pairs of contour pixels between which
the cut path is obtained. H is the height of the numeral image. Touching location

can be simply detected according to the coordinates of the touching points:

IfYy < H/2 and Yg < H/2
Then LowerTouching;

Else if Yy > H/2 and Yg > H/2
Then UpperTouching;

Otherwise

Unknown touching location.

Touching location applies to a single segmented digit. It is only related to Touching

Tyvpe 1-3. It is possible for two touching numerals to have different touching locations,
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A 53

(2) EP-NEP (b) EP-EP
() NEP-NEP (d) MULTIPLE

Figure 32: Touching Types and Locations Used in Verification. EP represents End
Point. NEP represents Non-end Point. (a) is also an example of LowerTouching.
(b)(c) are UpperTouching.
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since the bounding box of left-hand and right-hand images may be changed after

splitting. Figure 32 also exemplifies different touching locations.

6.2.2 Detection of Touching Types

The key point of detecting touching type is to decide whether the touching point is
an end point.

There are many existing ways to accomplish this [54, 64]. We proposed a method
based on contour pixels. It is designed according to the criteria of quick computation
and easy implementation, with the consideration of using the similar data structures
of our other algorithms for segmentation and verification. Our experiments proved
the effectiveness of the algorithm. The uniqueness and problems will also be discussed
in this section.

The algorithm consists of two phases.

In the first phase, the direction of every contour pixel to the next 8-connected
pixel is computed using Freeman codes as in Figure 33. The values are stored as a

chain along the contour.

\

Figure 33: Freeman Codes of 8 Directions

In the second phase, after the segmentation has been done, we get a pair of

SCP pixels on the contour as cutting points. We examine the chain code and relative
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positions of two pixels to determine whether they compose an end point of the numeral
after being split from the original touching situation.

Ideally, the strokes leading to end-regions have relative stable width. Their edges
are parallel. the end regions — we are actually considering an open end — are expected
to have a close to 180 degree direction change, represented by a difference of 4 in
Freeman codes. Let A, B be the SCP pair, the criterion of checking end-point can be

summarized as:

1. {4 — Bj| < 0.3 x maz(width, height}, | - || is the Euclidean distance.

[\

{C4 — Cg| € {3, 3], C represents the Freeman code.

The algorithm is exemplified in Figure 34, which presents the chain codes of the
touching “63” in Figure 31 after segmentation. Examinination of the left image
discovers that the two cutting points have opposite directions represented by a code
difference of '5°. The distance between the two points is also close. We can then
decide that after splitting, the left image gets an end-point due to the cutting.

The algorithm has its merits of rotation invariance, scale invariance and speed.
Another unique advantage of our situation is that it avoids the problems inherent in
many other algorithms — to decide the locations of an extremity point or the pair
points to examine the direction changes[63]. These problems can be difficult in the
situation of circular end region, as explained in Figure 35.

However, there exist variabilities that cause difficulties in our task of detecting
end points.

One difficulty is due to the unsmooth direction transitions on the contour some-
times. Smoothing has been done before segmentation (See details in [91]). Never-
theless, it is still possible that one cutting point does not have the same tendency of
the stroke edge represented by small bumps and direction variations on the contour.
Re-examining the ‘1’ like stroke in Figure 34, we can see that although the major di-
rection code of the left edge is 6, there are some pixels with directions 5s and Ts, and

the code of the cut point is 7. This problem can be solved by averaging the codes of
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Figure 34: The Outer Contours and Freeman Codes After Segmentation of Touching
"65". Ouly the chain codes close to left cutting points are shown to highlight the

region of interest.

)

(a) A Closed Circular End-Region (b) A End-Region Created By Segmentaion

Figure 35: Two End Regions. On the left is the circular region that may cause
problems in other end-point extraction methods. On the right is our situation which
is dealing with an open contour after segmentation. It implies a straight-angled end
region.
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several contour pixels near the cut point, which will solve most cases. However, when
averaging, we have to be careful about directions 7 and 0. These two neighbouring
directions will give a very different direction after being averaged. A solution is to
replace 7 by —1 when they are found near Os.

One may ask that “why not rely on skeletons for endpoint extraction?”. Besides
the consideration of using available data structures, a statement with similar problem

background can be a brief answer:

“Let us first recall that for the great majority of samples, none of these
problems exist. Also, our work indicates that it is possible to deal with
most difficulties in an efficient and logical manner. Furthermore, skele-
tonization is a time-consuming process which has its own shortcomings,
even for endpoint detection, such as the creation of spurious branches and
endpoint erosion, especially for sample with wide strokes.” (See [63], page

168)

6.2.3 Touching Type & Location Verification

Touching Type & Location Verification is a negation scheme which examines the
impossible combination of touching type and touching location between two numerals.
Class-specific verification rules are defined for this purpose.

Let us take Figure 31 again as the illustrative example. For real numeral ‘1°. the
touching with another numeral usually occurs along the side of the stroke, i.e.. it
is a NEP tvpe touching. If a segmentation creates an end point in the lower part,
it is highly possible that the segmentor mistakenly cut one numeral into two and
left a ‘1’ like segment as the left image. Represented by Touching Type & Location
rule for numeral ‘1’, EP-EP touching type and LowerTouching Location will create a
negation. Thus we are able to avoid the error in Figure 31.

Figure 36 gives another example of touching type verification. There are 3 can-

didate cutting paths. The first candidate gives out high scores in SRCG, which may
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conclude the string as “75”. However, the conclusion of the left image has to pass
the verification rules of *7°, which include the impossible case of “EP-EP + Lower-
Touching”. This candidate conclusion is thus rejected and the chance will be given
to other cutting possibilities.

The Touching Type & Location verification rules are “hand-picked” in our current
svstem according to the samples in the training set. The targets of verification are
mostly ‘1" and ‘7", while the original sample classes are ‘0°, ‘2, ‘6” and ‘9°. This
phenomenon matches our observation of occurrence frequency as analvsed in the

Chapter 5. 3.5% samples in IRIS-Bell'98 training set are affected positively by this

verifier.
' ™\
: ; 5
Conclusion of GPR: 7 Conclusion of GPR: §
Segmentatiory 2
Choices
Conclusion of GPR: 7 Conclusion of GPR: 5
i
| L 5

Conclusion of GPR: 2 Conclusion of GPR: §

— -/

Figure 36: Example of Touching Type & Location Verification. The first two cutting
possibilities are rejected by the verification rules. The final conclusion is '25".
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6.3 Structural Verifier

Touching numerals tend to have more structural variations compared with isolated
numerals. These variations can be introduced by ligatures (including ligature touching
and ligature overlapping, see definitions in Section 5.2.1), overlaps and some degree
of cursive styles. The situation can be worsened by inappropriate segmentation.
Figure 37 gives an example when cursive style and the ligature cause some distor-
tion of the numeral ‘0’ in pair “807. Examination of the first segmentation possibility
reveals that the recognizers used in GPR for UTHN caught only the global shape of

*

the right hand image which is similar to ‘7". Although the confidence value is not
high (0.6), it is higher than the confidence value of ‘0’ in the second segmentation

possibility (0.3). It gives a final conclusion of “87".

- D

7 2

| Conclusion of GPR: 8  Conclusion of GPR: 7
; Confidence: 1.0 Confidence: 0.6

Segmentation
Choices
i
|
2

Conclusion of GPR: 8 Conclusion of GPR: 0

Confidence: 09 Confidence: 03
%
L B

Figure 37: Example of Structural Distortion. A ‘0" with a ligature on top becomes a
‘7", which will be negated by the structural verifier.

The problem is not as fatal as errors of segmentation and it is likely to be negated

by the verifier for UIHN as described in Chapter 4. However, we can see that despite
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distortion, the basic structural feature of numeral “0” — the big loop — persists in

the image, which can be used for verification purpose.

Before we discuss the detailed features we use in the structural verifier for UTHN,

we first emphasize the reason of using them as part of our verification scheme.

In domain specific verification, structural feature plays an important role. It serves

as a complement for other verifiers including QNN verifier for UIHN. We prefer to

use the structural features in the verification part instead of our GPR, due to several

considerations:

1.

o

Structural features are intuitive and explicit observations which match human
expect verification angle. As mentioned in Chapter 4, our mission of develop-
ing the verifier is to incorporate human reasoning into the quantitative and/or
qualitative aspects of the machine intelligence. We may try all kinds of feature
extraction or classification methods in GPR. nevertheless, there is still a possi-
bility of making errors that are not understandable to humans. In a practical
system, if the user can not understand the cause of the remaining errors from
her/his point of view, the system tends to be rejected. Thus a highlight of the
verifier is concern about the needs of the real users. The fact that the verifier is
in great demand for practical system justifies our decision of putting structural

features in the domain specific verification schemes.

Structural verifiers are class-specific. They have a pre-determined target., which
makes the scheme computationally effective. If a structural feature is put into
GPR, we have to filter every possible identity by hierarchically applying all
features before we know which features are essential for the input image to

finally determine its class identity.

Structural feature is very effective in indicating some dominant features for con-
firmation or negation as verification purpose. However, it would be a painstak-
ing process to develop complete sets of rules for a ten-class GPR. The manual

way of generating good classification rules are very labour-intensive. On the
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other hand, automatic rule generation can hardly guarantee the reliability, es-
pecially for unconstrained touching or cursive cases, since a very broad range

of information will be needed for complete classification rules.

In our structural verifier, holes and concavities are dominant features used for

verification purpose. Next section will explain the process of detecting these features.

6.3.1 Detecting Structural Features

Our goal is to detect significant concavities, holes or other dominant features in the

numeral image.

Concavity Detection

Concavity detection algorithm is based on contours. The algorithm consists of

three steps:

1. Compute the “close-rate” of contour pixels. “close-rate” is the measurement of
contour pixel that contains the information of gradient magnitude and gradient
direction. So we can hypothesize whether strokes are concave or convex, as well

as estimate their dimensions and centroids.

Definition 6.1 Close-Rate of Contour Pixel (i,j): Reset counter
to 0. Scan from the center pizel (i.j). The eight directions of the scan-
ning are 45, ... , 360°. At each direction, if at least one non-contour
black pizel is reached, the counter adds [ and the scanning of this

direction is finished. The final number of the counter is the close-rate

of the pizel (i.j).

From the definition. we can see that the close-rate has the range of [0,8]. The
bigger the rate, the bigger the possibility that the pixel stays at the deep bottom
of a concave stroke. Figure 38 is an example of close-rate computation. It

provides the close rates of a sample ‘2’.
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Figure 38: Computation of Contour Pixel Close Rate. The numerals shown along the
contour are the close rates of the corresponding pixel. Each of them is obtained by
adding the numbers on eight directions according to Definition 6.1.
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2. Determine two thresholds LIM1 and LIM2 according to the image dimension.
LIMI1 is the minimum number of the continuous pixels in a concave stroke with
close-rate > 6. LIM?2 is the upper limit of the number of broken pixels in a

stroke.

3. We search the entire contour to find out all the concave strokes around the
contour. We record the detailed structural information of every concave stroke
including centroids, dimension, orientation range and other special features. By
combining the information. every numeral is related to a set of concavities with

the information data.

For every numeral, the concavities found are stored in the data structure “Con-
cave” with all the related information. If the concavity is longer than a threshold. a
dominant feature of numeral ‘3’ is examined within the concavity, which is the “chin”

in the middle directing towards the left.

Hole Detection

Holes are intrinsic structural features of numerals 0, 6, 8, 9. We scan the original
image from vertical and horizontal directions respectively. If in both directions we
find the candidate of hole feature, we combine the two dimensional information to
confirm the existence of a hole. The algorithm can tolerate slightly broken strokes.
It can also prevent insignificant noise in the image.

The algorithm has three steps with Figure 39 as an illustrative example:

1. Take C(i) as the number of strokes which are crossed by the horizontal scanning

line Y = i. Scan from top to bottom, until il such as C(i) == l and C(i+1) >=
1;

2. Continue scanning, until 72 such that C(i;) >= 2 and C(i2 +1) == 1. To
prevent broken strokes, we continue to scan to see if Cia+2)==1,...Ci2+

k) == 1, where k is a small integer.
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3. Given ¢, and i, begin to confirm the hole. Assume the internal white region
at Y = ¢, +1is [l;.12]. Let B(iy +1) = |l — i]. Let D(i;) be the length
of the internal black region at Y = 7;. Similarly, we can get B(z:), D(i2 +

1), D(j1), B(j1 + 1), D(j2 + 1), B(j2). Compute:

() r = D(i)/B(i1 + 1)
(b) ro = D(i, +1)/B

(c) ra = D(j1}/B(j1 + 1)
(d) ry = D(j2 + 1)/ B(j2)

If (rl > 0.6 andr2 > 0.6) or (r3 > 0.6&&r4 > 0.6), return TRUE (the hole is
confirmed). Otherwise. return FALSE.

6.3.2 Structural Verification

Structural verification for UTHN is a negation scheme achieved by detecting the
impossible structural features of a class candidate. Class-specific verification rules
are defined for this purpose. For example, numeral “1” will get a negation if the

following conditions are satisfied:
1. There exist one or more loops.

2. The height of at least one loop is greater than a threshold 8. which is determined

according to the height of the numeral image.

This rule is created to prevent long ligatures from confusing the image identity.

Figure 40 presents another example of structural verification. It is a typical case
that a neural-based classifier makes a mistake unlikely understandable to human - an
*§’ with a long tail becomes a ‘3* — which can be easily solved by a structural verifier.

The structural verification rules are handcrafted in our system with the efforts to
ensure the reliability. Except the time constraint, we have designed the rules carefully
in order to improve the reliability while not increasing the rate of false negative. About

3% of the cases in training set of IRIS-Bell'98 are positively affected by this verifier.
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Figure 39: Algorithm of Hole Detection

Segmentation Choices

Conclusion of GPR: 7

Conclusion of GPR: 3
( Negated by Structural Verifier)

Figure 40: Example of Negation by Structural Verification




6.4 Dummy Symbol Detector

The goal of detecting dummy symbol is to introduce a systematic way to handle the
“noisy” parts of the image, which may not be handled easily by normal methods.
By normal methods we mean the GPRs and Verifiers that handle the standard 10
numeral classes or their combinations.

Dummy symbol detector is a typical domain-specific problem. In the recognition
of UTHN with financial document background, common dummy symbols can be
underscores, “xx” in the cents part of the courtesy amount or other unexpected noises.
While in other application domains such as postal code processing, hyphen sign is a
tvpical dummy symbol. The dummy symbols are also affected by algorithms. In some
stroke based segmentation approach, ligature may be separated as a single component
and becomes a dummy symbol. In this thesis, we limit our discussion to underscores.
The detector works under the condition that the segmentor can successfully separate
the dummy symbol from the numeral.

Figure 41 provides a sample of dummy symbol detection. When the identity
conclusion comes from GPR. it should first pass the dummy symbol detector. if the
detector considered it as a potential dummy, it will not go to further verification

stages for numeral classes.

GPR and Verifier 4 /

Conclusion: 9 and underline

Figure 41: Example of Dummy Symbol Detection: ’9* touches a dummy symbol. [t
is successfully segmented and detected as '9° and an underline.

An image is considered dummy if the following 3 conditions are satisfied:
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1. The segmented image locates at the bottom part of the original image of touch-

ing numerals.

Width
Height

SV}

> 6,

3. Height < 6,

Condition 3 is proposed to prevent cursive numerals that have a high Width/Height
ratio. 8, is a threshold in the range of [2,4]. 8; is a value in the range of [30.45].

The above 3 conditions are sufficiently strict that no valid numeral can be detected
as dummy. However, there is still a possibility of missing some patterns which are
actually dummies.

[n IRIS-Bell’98, above 60% dummy occurrences in training set are solved by this
detector. Among the misses, most are due to the segmentor which cannot separate
the touching numeral from the dummy symbol. There is no such dummy symbol in

the NIST for UTHN database.

6.5 Architecture and Experimental Results

In the previous several sections, we discussed domain specific verification schemes of
Touching Type & Location Verifier, Structural Verifier and Dummy Detector. By
incorporating these schemes into the QNN verifier we discussed in Chapter 4, we
propose the complete architecture of verifier for UTHN depicted in Figure 42.

The verifier has a hierarchical architecture. When an identity conclusion of a
segmented image comes from GPR for UTHN, it first goes through dummy symbol
checking. If it is considered as a dummy, further verification dedicated for numeral
classes becomes unnecessary. Otherwise, class specific Touching Type & Location
Verification and Structural Verification are offered. If the conclusion is negated by
either scheme, the system will go back to the next segmentation candidate of different

conclusion for a second chance. If both schemes keep silent, the candidate goes
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Figure 42: Diagram of Verifier in R&V system for UTHN
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straight to the QNN Verifier for a final verification. The result will be either a
confirmation or a rejection.

The experiments are conducted on IRIS-Bell’98 database and NIST for UTHN
database. The complete R&V system produces the performance shown in Table 30.
[t is one of the common strategies when dealing with two measurements of one system
which may not go toward the same direction: Try to restrict one factor at a specified
level then control the other (which is usually of more interest to us) to the goal as
desirable as possible. Compared with the results from GPR for UTHN. the precision
improvement is obvious, while the recognition rate does not drop much. It can be
explained by the reliable negation scheme with a low false negative rate, and the
helpful second chance loop.

For NIST. the drop of recognition rate is less than 3% while the improvement
of precision rate is much bigger. For IRIS-Bell’98, the drop of recognition rate is
smaller since the dummy detector also corrected some errors. However, as we empha-
sized in Section 4.5, instead of simply comparing two figures, an evaluation based on
hypothesis testing is more accurate and convincing, as we will do in the next section.

Compare Table 30 with Table 3 in Chapter 1, we can see that the relibilities of
our svstem. reflected by precision rates, is much better than those reported on data
extracted from CEDAR CDROM [89, 102, 32]. The published results were not based
on a well known standard set, which limits the possibility of further comparison. We
expect that the building of IRIS-Bell'98 and NIST for UTHN databases will provide

an open and standard base for researchers to exploit and compare techniques of UTHN

problem.
Database Correct(%) | Substitution(%) | Precision for Strings(%)
[RIS-Bell'98 65.2 9.2 89.2
NIST 85.7 3.5 96.1

Table 30: Test Results of R&V System for UTHN



6.6 Evaluation of Recognition and Verification Sys-

tem for UTHN

As in Section 4.3, the effectiveness of our verifier and R&V system for UTHN is
subject to the evaluation of statistical hypothesis testing. The test is based on NIST
for UTHN which is a bigger database than IRIS-Bell'98.

Let A be the random variable that represents the precision rates of a system
without the verification module, let B represent the precision rates of a system with
verification module. We randomly selected 20 sets of samples from the test database
of NIST for UTHN. So the number of the two sets for hypothesis testing are n; =

n, = 20. For each set. we get a precision rate as shown in Table 31.

9]

From Table 31, we can get the sample averages of A & B as X; =90.21, X, = 96.2

&

respectively and compute the sample standard deviations of A & B §; and 5

square root of £(.X — E(X))?, where X is A or B. We get 5; = 8.19 and 5> = 3.7:

H

respectively. With the definition of

g _ n1S? +n,S2
ng+no—2
we get § = 2.5.

The test starts by setting the hypotheses:

Step 1: Set Hg: Systems with or without verifier have no significant difference on
precision rates. Hp: Systems with verifier have significant improvement on precision
rates.

Step 2: Let N{u;,02) and N(u2,03) be the distributions of A and B respectively.
Assume o? = o2 (value unknown). The populations are assumed to be independent.
Thus Ho : py = p2. Hy: pr > po-

Step 3: Use ¢t — test, the appropriate statistic under Hp is,

(X = X3) ~ (1 — po)
S(L + L)z

n n2

= 7.53

Step 4: Test the hypothesis at 0.01 significance level. a = 0.01. ¢ty 4n,26 =

tas.0.01-



Dataset Precision Rate for A (%) | Precision Rate for B(%)
1 85.82 91.23
2 92.69 95.21
3 89.27 97.03
1 92.21 94.25
3 91.15 97.64
6 90.07 96.25
7 86.69 93.29
S 87.09 95.24
9 86.48 7.56
10 90.65 97.34
11 86.51 95.51
12 93.46 98.71
13 93.77 98.29
14 92.32 97.63
15 93.15 9747
16 96.03 99.06
17 91.18 96.32
18 88.40 94.14
19 90.03 97.82
20 87.31 95.66

Table 31: Data Sets for Hypothesis Testing to Evaluate Verifier for UTHN

128




Step 3: Compute t3g0.01- Since 38 > 30, we get a good normal approximation. By

looking into a standard normal table, corresponding to a = 0.01, we have

P{Z >2.33} =0.01

Step 6: Since 7.38 > 2.33, hence the observed value of Z lies in the critical region.
Hence we reject Hg : g1 = po in favour of Hy : gy > pa.

By hypothesis testing, we get the conclusion that R&V system for UTHN has sig-
nificantly improved the precision rates, thus our proposed verification scheme properly

suits our definition of a good verifier.
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Chapter 7

Conclusion

“The method employed [ would gladly erplain, ...,

But much yet remains to be said.”

— Lewis Carroll. Alice in Wonderland

For decades, researchers worked on the topic of handwriting recognition, with two

ultimate goals in mind:

e to provide deeper understanding of the essence of pattern recognition;

e to exploit techniques for OCR and document analysis systems for market needs.

In this thesis, tremendous efforts have been made with these two inherent un-
derlying directions, reflected by the theory of pattern verifier, and the two proposed
R&V systems for handwritten numerals.

The concepts of verifier are highlighted in this chapter. A summary of contribu-

tions and discussions about future directions is also provided.
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7.1 Summary of Verifier

A R&V system contains two modules: General Purpose Recognizer and Verifier.
Essentially, the role of a general purpose recognizer is indexing, by which we mean
labelling a class identity on an input sample. The task of classification thus can
be viewed as two-stage process: indexing and verification. Indexing has received
much attention in the literature with various methods developed. The scheme of
verification, although essential for systems that demand high reliability, has attained
little attention and is generally used in its simplest form.

In this thesis, the concept of a verifier has been proposed in the domain of hand-
written numeral recognition system. Despite that all the related topics have been
addressed in the previous chapters, we think it is worthwhile to highlight its dif-
ference from a general purpose recognizer in the concluding remarks, so that some
ambiguities can be resolved and deep insights can be brought out.

The comparison is based on aspects of basic task goal, measurement, target range

and methodology. The highlights are listed in Table 32.

Verifier Recognizer
| Task Goal Reliability Indexing Ability
Measurement | Precision Rate Recognition Rate

Target Range | Focus on a pre-defined identity (class- Choose from a set of
specific).  Give a confirmation or | identities.
negation.

Methodology | Advanced requirements such as bet- | No such requirements.
ter discriminant power along decision
boundary or other specially tuned ad
hoc abilities.

Table 32: Summary of Differences between Recognizer and Verifier
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7.2 Contributions

We view the introduction of verifier concept and its role in handwritten numeral
recognition systems as original contribution of this thesis.

As a pioneering work, the definitions of the role and measurement for a verifier
have been carefully examined to match the goal and functionality of the verification
scheme. Precision rate has been finally chosen due to its precise performance repre-
sentation from the verifier’'s point of view. It is a novel angle to look at a pattern
recognition system. The usage and types of verifiers are also discussed for the purpose
of incorporating it into a practical R&V system in the most effective way.

Analyvsis of theoretical requirement for a good verifier is conducted. A better
discriminant power along a decision boundary to separate confusing patterns is desired
in our verifier for handwritten numerals. A class-specific design strategy is suggested
for UIHN and UTHN problems. The power of verification is pointed out for the
control policy of verifier in practical systems.

Using hypothesis testing to justify the effectiveness of an algorithm is a new al-
ternative testing methodology for OCR problems, which considers sample size and
variance of data properties. It raises the logical question whether the comparision
between two percentage figures is enough to prove the superiority of an algorithm
and provides a possible answer.

From a practical perspective, the contributions can be summarized as follows:

e A complete neural-based geaeral purpose recognizer for UIHN is provided with
in-depth discussions of three neural approaches and performance optimization.
For the first time, multilayer perceptron, convolutional network and radial basis

function network are combined together to produce a well performing recognizer

for UTHN.

e Tree classifier, a method popular for medical diagnosis and signal classification

but seldom seen in the field of handwriting recognition, is applied to UIHN



problem and proved feasible. A comparison between neural approach and tree

classifier is also conducted for a deeper understanding of both schemes.

In designing the verifier for CIHN, a novel approach of Quantum Neural Network
is provided. The application of QNN to handwritten numeral recognition is done
the first time in OCR literature. The advantageous characteristics of QNN is
applied in an effective and computationally efficient way to fulfill its role as a

verifier.

A graph-based combination scheme of segmentation-based and segmentation-
free approaches is proposed in general purpose recognizer for UTHN. It takes
the segmentor and dual-recognizers into an overall consideration and converts

many hard constraints into soft decisions expressed in terms of costs.

Touching Type & Location analysis Structural Verification are embedded in
Verifier for UTHN. Effective methods are proposed in end-region detection and
structural feature extraction. A verifier for UTHN is designed by combining

domain-specific verification scheme and QNN verifier effectively.

With the intention to benchmark the research work of UTHN problem, two
databases are buiit with the efforts of researchers in CENPARMI and the au-
thor. They are IRIS-Bell'98 and NIST for UTHN. The availability of standard
databases is an important element and will benefit newcomers in this field. An
analysis of the properties of these two databases in terms of touching types has

also been conducted to provide deep understandings of the UTHN problem.

7.3 Future Directions

This thesis provides pioneering thoughts and basic strategies for verifiers. As a promis-

ing and important scheme, it must be of great interest to extend the work of verifier

into more concrete theories and practical engines.
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The theory can advance toward the general design strategy by examining pat-
tern recognition problems other than recognizing the UIHN and UTH. In our current
svstems, the architectures, although effective, are somehow domain-specific. A sys-
tematic study of design strategies will be desirable for further theoretical work.

Another open problem is the control strategy. Preliminary work has been in-
cluded in the thesis such as the definition of power of verification and ad hoc policies.
However, we can expect that the theoretical study of this topic has deep meaning
in understanding the relationship between the measurements of a practical system
and providing the bounds of performance measurements for a specific application.
Hints may be obtained from other fields of information technology or some statistical
theories.

For the existing practical R&V systems for UTHN and UTHN. there are also
avenues to be followed.

The performances of the systems have not achieved their upper limit. Due to
the large number of engines and the time-consuming neural training. some training
phases had to be stopped before they reached the best capability. Parameters within
verifier architecture and thresholds can be further tuned.

For UTHN problem, the segmentor works fairly well for simple touching situations.
but many errors occur when complicated writing styles are encountered. Although
segmentation is not the focus of this thesis, it is essential for the performance of
practical UTHN systems and more effort should be expended in this area if a com-
mercial system is envisaged. Garbage detector is another component needed to be
strengthened.

Finally, it might be interesting to automate the rules of Touching Type & Location
Verification and Structural Verification for UTHN. Nevertheless, we shall be careful
in exploring this direction. The reason has been indicated in [63]: although some
global attempts could be made on automation of part (or all) of the process, the high
reliability of the rules would most likely disappear and that will defect the whole

purpose of our work.
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Appendix A

Notations

Com pattern class m

Sm the set of samples belonging to C,, within the input patterns

i, number of input patterns classified as class C,, by the system

X number of patterns that truly belong to S, within A,

Hg null hypothesis

H, alternative hypothesis

Wiy connecting weight between ith node in | layer and jth node in l+1 layer in a
neural network

d. x desired output of ith output node for input sample zi

Ui real output of ith output node for input sample z«

0i.; output of ith hidden layer node for input sample z;

Tni nth component for input sample z;

P number of training patterns

ni number of hidden layer nodes

n; number of input layer nodes

no number of output layer nodes
learning rate of training algorithm

a momentum rate of the training algorithm

a in hypothesis testing level of significance
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G, gradient of the ith output of conventional neural networks

c. M positive constants
g/ real number € (0, 1)
P-4 feature vectors

quantum interval of quantum level s in QNN
ns total number of quantum levels in QNN

slope factor of activation function

1% connectivity weight vector

X input vector of quantum neuron

ol variance of the output of i¢th hidden unit for class C,

iCrm| cardinality of Cn

O:.x output of the itk hidden unit with input vector z

(Oim) o Leuzeecm Oik

Ok output of the sth quantum level of the ith hidden unit with input vector z;

Viks Oi,k.s(l — Oi,f'c.s)

1 .
(\U!-m-S) ICrml Zr;‘:zgécm Vik.s

Ab, adjustment of quantum interval for each hidden unit : and its sth quantum

level (QNXN)
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Appendix B

Glossary

BP

Back Propagation

CENPARMI Center for Pattern Recognition and Machine Intelligence

CEDAR
GPR
IRIS
MLP
MNIST
NIST
OCR
PR
QNN
R&V
RBF
RR
SCP
SRCG
UIHN
UTHN

Center of Excellence for Document Analysis and Recognition
General Purpose Recognizer

Institute for Robotics and Intelligent Systems
Multilayer Perceptron

Modified NIST

National Institute of Standards and Technology
Optical Character Recognition

Precision Rate

Quantum Neural Network

Recognition & Verification

Radial Basis Function

Recall Rate

Significant Contour Point

Segmentation Recognition Cost Graph
Unconstrained I[solated Handwritten Numerals

Unconstrained Touching Handwritten Numerals
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Appendix C

Databases

C.1 CENPARMI Database for Isolated Numer-

als

CENPARMI database for isolated numerals is one of the first databases that has been
used as a standard for UIHN problem. The descriptions can be found in [96] and [63].
Here we give a brief introduction of the database.

The database consists of about 17,000 run-length coded binarized numerals. The
samples were collected from the zip codes of dead letter envelopes provided by the
U.S. Postal Service at different locations in the U.S. Assuming one ZIP code of five
digits per writer. there are around 3400 writers.

The data were digitized in 16 grey levels on 647224 grid of 0.153mm square ele-
ments. giving a resolution of 166 dots per inch. Each digitized zipcode was enhanced.
binarized and segmented, trying to obtain no more than five body regions per ZIP
code. When successful, the resulting binary images of individual digits were run-
length encoded.

The samples in the whole data base are unevenly distributed across the ten nu-
meral classes. So the finally constituted database consists totally 6000 numerals —

Two training sets A and B and a testing set T, each consisting of 2,000 samples, with
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200 of each class.

Figure 43 gives some representative samples of the database.

0 o > X¥ S ¢ 7 & 9
sor 2 9 %8S ¢ oo i

a/23/§'{7f9
c /8 1 o € & 1 57 ¢

c s v 3 % 54 X9

6 f & 3 ¥ 5 £ 7 i 5
g J. 3 A £ b6 7 & F

Figure 43: Representative Samples of CENPARMI Database for Isolated Numerals

C.2 NIST and MNIST Databases for Isolated Nu-
merals

NIST databases for isolated numerals come from the NIST Special Database 19 pro-
vided by National Institute of Standards and Technology in U.S.A. The CD ROM
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contains 3,699 full page binary images and 814,255 handwritten numerals and alpha-
betic characters from those forms. A sample image is provided in Figure 44.

The commonly used databases for comparison of algorithms for UTHN are the
training set Special Database 3 (SD3) and test set Special Database 7 (SD7). SD7 is
also known as Test Database 1 (TD1) in the literature. Both databases were originally
for a competition on First Census Optical Character Recognition Systems Conference
in May 1992 organized by NIST. The event was for assessing the state-of-the-art in
OCR. The SD3 has 223,122 numerals while the TD1 has 38,646 numerals.

The problem with these two databases is that SD3 did not constitute very appro-
priate training material for TDI test set. Indeed, cross validation studies performed
after the competition indicated that TD1 was more diverse and more general. The
observation is confirmed by the fact that the top entry of the NIST competition was
not trained with SD3. These two databases differ due to the fact that SD3 was col-
lected among Census Bureau employees. while TD1 was collected among high-school
students.

This motivated researchers to build a Modified NIST database (MNIST) based on
the large amount of data in SD3 and SD7 by mixing the two.

In this thesis, the training set of MNIST contains 20,000 numeral from SD3 and
48.646 from TD1. The test set has 5,000 images from SD3 and 10,000 from TD1.
After shuffling, the MNIST for UIHN has a training set of 63646 images and a test

set of 15000 images.

C.3 CEDAR Database for Isolated Numerals

The CEDAR database for isolated numerals is available on CEDAR CDROM 1. It
consists of 21,179 binary images of isolated numerals. The resolution is 300 dots per
inch. Training data is in br directory and includes a total of 18,4638 samples. Balanced
training sets, of 200 samples per class, are labelled as cedar 1, cedar 2, ... cedar 7.

Testing data is in the bs directory and contains 2711 samples. A subset of 2,213 well
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HANDWRITING SAMPLE FORM

C eSr e TG |

Thin sample of bsadwriting is being collected for use in testing computer recogoition of hand printed sumbers
and letters. Ploass print the Sollowing characters in \he baxes that appear below.
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Please priat the following taxt in the box belaw:

We, tbe People of the United Statas, in order to form o moce perfect Union, eatablish Justice, imsure domestic
Tranquility, provide for the conumon Defense, promote the guneral Walfare, snd secure the Blamsings of Liberty (o
oureclves and our posterity, do ardein and establish this CONSTITUTION for the United States of America

Uk, the Feople of the Untc) STeTes iwtrder 7o Sorm 4
M’&/‘G/Ol“paif Mr/'o'»'v_} ¢574£/;'s[ TusTre € _/snsare mef;,/,-c“_
ﬂan7vi/:‘fy, prer Fe "f"’" the Common Petense,
pﬁoma')‘e Yhe germral We/%r'e,.ana/ SCcurRR, the
B/os< /ngs aF //%em/y Lo svrselves cm .:ﬂﬂr
/O\Sfeﬁl ?J /0 dr'd[QI.n d"'ﬂ/ Qg’,‘//sj b=
CONSTITOToN For the Loitel SHrtes o
Aver/ca .

Figure 44:

Example Form Image in NIST SD 19 CDROM. This is the file

hsf_page/hsf_0/f0165_04.pct.
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segmented samples were extracted from the bs directory and are known as CEDAR

goodbs database. A detailed description can be found in [46].

C.4 IRIS-BELL’98 Database

The IRIS-Bell'98 database is the result of efforts of many researchers in CENPARMI.
It consists of two projects: IRIS-cheque and Bell’98 which are images of cheques and
bill documents respectively.

The IRIS-cheque includes samples of Canadian personal cheques gathered as a
project financially sponsored by IRIS (Institute for Robotics and Intelligent Sys-
tems), with the courtesy of Interchéques Inc. and Bell Canada. Many employees at
Concordia University also helped collecting the data images. Bell'98 includes sam-
ples of phone bills written by Bell emplovees and the general public. The number of

documents are listed in Table 33.

Databases IRIS Cheque Bell'98
Related Facility Concordia Univ. Bell Canada | Bell Canada
. No. of Cheques/Bills 6,284 7.070 3,932
Source of Writers Emplovees/Students | Employees | General Public

Table 33: IRIS Cheque Database and Bell’98 Database

To describe the whole database is not an easy task. Here I will focus on the
building of IRIS-cheque database from several stages including cheque preparation,

collection, scaning and tagging.

Cheque Preparation

Every sheet for collecting data consists of a series of 5 cheques. A sample of
such data sheet is given in Figure 45. The sheets were provided by Interchéques Inc.
which prints real cheques for banks, so the cheques actually have the same format

and pattern as real ones. Totally 50,000 cheques were printed.
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Figure 45: Sample Sheet of IRIS-Bell’98 Data Collection
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The instructions for filling the cheques were then printed on the back of each sheet
in English and French. Information lines were printed at the bottom of each cheque.

As we can see from the the sheet sample, information lines contain the following:

¢ The line of “VOID SPECIMAN NON-NEGOTIABLE” at the left top of each

cheque.

o Cheque sequence number such as “#44015#". is used to keep track of the data

collection and image storage.

e Desired amount. The amounts are generated as a controlled random sequence.
The control pattern is designed in such a way that (1) Each digit can appear
at different positions of a numeral string. (2) The bigger the amount (longer
numeral string), the smaller is its occurrence probability. All amounts are less

than one million.

e Desired date zone that contains year, month and day.

Each writer fills two sheets, i.e., 10 cheques. The cheques are filled by ink. Lan-
guages can be English or French. The amount and date in the information line are
supposed to be used to fill the cheque. To make the resulting image closer to a real
cheque, each region is to be filled. The cheque can be made payable to person or
organization of any choice. It is also required to write something on the signature

line (not necessarily the real signature).

Data Collection

The data collection was done at two places: Concordia University and Bell Canada.

Cheques with sequence numbers from 0 to 27,000 were filled by Concordia Uni-
versity employees with different backgrounds, including faculty and staff members at
different departments with various levels of education.

An explanation sheet was given to each writer, explaining the purpose of this

collection — we are just collecting handwriting samples. There was a small gift draw
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to encourage more writers. Not every cheque sent out came back. There are people
who feel it would be related with personal information and are reluctant in filling the
cheques. As a result, 6,284 cheques were filled and returned out of the total number of
20,000 we sent out in Concordia University. Most of the cheques are filled in English.

Cheques with sequence numbers from 30,000 to 66,000 were filled by employees
of Bell Canada in Montreal (some cheque writers are out of the region of Montreal).

7.070 cheques were returned and we got a majority of French cheques.

Scanning & Tagging

The filled cheque sheets are scanned at 300 dots per inch in gray level. The sheet
image is automatically separated into 5 sub cheque images. The file name of the
saved cheque image corresponds to the cheque sequence number. The image files are
stored in an English or French directory according to the language of legal amount
and date.

The courtesy amounts of the cheques are then extracted automatically and saved
as binary images.

The tagging of courtesy amounts is a semi-automatic process with the assistance
of a recognizer for UTHN and a known truth file created from the information lines
of the cheques (the truth file may be wrong since it is possible that people didn't fill
the desired contents.)

The tasks of tagging the courtesy amount include (1) separate the numeral string
into isolated and touching numerals; (2) label the isolated or touching numerals with
correct identities either from truth file or from recognizer, whichever is right; (3) put
them into different directories.

When the conclusion of a numeral string comes out from a recognizer, it is com-
pared with the truth file. If they agree with each other, the tagging and file storage
are automatically done by the program. If they do not agree, the error may come from
truth file or recognizer or both. Then the operator manually looks at the cheque im-

age. If the computer recognition results are correct, just update the truth file since the
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correct tagging has been done by the program. If the recognition results are wrong,
another tagging GUI program is used to manually tag the courtesy amount of the
cheque image and save the isolated and touching numerals into different directories.

The legal amount and date zone are also automatically extracted from individual
gray cheque images with background and noise removed, and saved as binary images.
Each legal amount and date image is manually tagged. At the right end of legal
amount image, there are often cents part written in numerals (usually touching pairs)
which can be solved by the schemes proposed in this thesis for UTHN and UTHN, so
are some numeral formats in date zones.

Another database — Bell’98 is the result of a contract between Bell Canada and

CENPARMI. A sample of Bell’98 bill is given in Figure 46. Courtesy amounts are

extracted and tagged in a similar way as in IRIS-Cheque project.

NUMERO DE COMPTE DATE MONTANY DD MOMNTANT vznsé *
ACCOUNT NUMBER AMOUNT DBUE AHIJUNT PAID _,_
516 TSR 1994 11 10 150.42 . ,S/l
— . N °
068 0110 4 2 25 ns

25 L -2_ G
VEUTLLEZ JOINDRE CETTE
PARTIE AU PALEMENT
NE PAS AGRAFER
PLEASE DETACH AND
RETURN - DO NOT STAPLE

§
. 7
0000350421 l h \
..‘y'

Figure 46: Sample of Phone Bill Form. Notice that some fields have been intentionally
occluded.

Conclusively, the IRIS-Bell’98 database consists of numeral strings from courtesy
amounts, words from legal amounts and date zone images. The touching numeral
pairs are being used in this thesis work. The IRIS-Bell’98 for UTHN has a training

set of 2538 touching numeral pairs and a test set of 1193 pairs.
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C.5 NIST Database for Touching Numerals

Building the NIST database for touching numerals is one of the contributions of this
thesis. The building process has been described in Chapter 5. Here I summarize the
property of this database concisely.

The NIST for UTHN database is built on NIST CD ROM Special Database 19.
Unlike isolated numerals, there is no well-organized UTHN images on the CD ROM.
We first extract the numeral strings from the form images. then separate them into
isolated and touching numerals. We are only interested in touching cases. The iden-
tities of the touching numerals are tagged semi-automatically, then manually checked
and stored in Cenparmi Binary Code (cbc) format.

The training set for touching numeral pairs has 4,252 images. The test set consists

of 4.395 images.
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Appendix D

Filtering Rule

The Beta-Binomial Model is used. Let P be the probability of getting correct recog-
nition results using middle zone candidate as the cutting point. Assume a priori
distribution of P as Beta distribution Beta(a.b). The beta family of distribution is a
continuous family on (0.1) indexed by two parameters a & b, which decide the final

shape of the distribution. pdfis

f(p) = p*~"(1 — p)°*~/B(a.b) (31)
where
0<p<l
B(a,b) = A(a)A(b)/A(a + b) (32)
A(a) = /0 © reledr (33)

Let a priori distribution be a=b=1, which is a uniform distribution, indicating
nc advantage of adopting middle zone cutting points. It is then modified by Bayes

inference:

For a fixed p, we have p chance to get the correct result when using the middle
zone cutting point, and 1-p to lose. Let n be the total number of experiments and Y

the number of successes. Y is a Binomial distribution:
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f(¥in,p) = (G’ (1 = p)*™* (34)
We can derive posteriort distribution:

f(Yin,p) = f(p)

f(plY =y) FY)
(H)p*(1 — p)*¥p*~'(1 — p)*~'/B(a,b)
Jo(2ip(L = p)»~¥pe=1(1 — p)¥~1/B(a. b)dp
prrETH(L — p)rTvtit
B{a+y.b+n—y)
= Betala+y.b6+n—y) (33)
. a-+y R
E(ply) = P (36)

We can see that prior information (a.b) is now combined with test data (y.n).
So we can compute E(ply) using the experimental data. High probability of getting
correct result using middle zone cutting points can justify our rule of adopting cutting
points close to the middle zone of touching pairs. In the training set of NIST for

UTHN. we get a result of 0.91. which is adequate to prove the validity of the rule.
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Appendix E

Confusion Matrix of UIHN

Recognition
0 1 2 3 4 5 6 7 8 9 || Total Error
0 973 0 0 2 0 0 3 0 2 1 982 8
1 | 2 1108 1 3 0 1 0 0 3 1 1126 11
2 0 9 964 1 0 0 0 1 I 1 990 13
3 1 3 3 993 0 3 0 0 0 2 1014 14
4 0 2 0 0 932 0 { 2 0 T 952 15
5] 5 2 0 0 895 3 0 3 0 925 19
6 4 53 0 0 6 4 979 0 1 0 1004 20
! 7 0 3 8 5 11 1 0 939 2 11 1028 43
| S 1 2 7 3 3 3 7 1 947 8 997 33
9 2 3 0 4 7 3 1 2 4 942 982 26
Total | 9883 1139 983 1015 939 912 997 965 963 973 || 10000 -
Error | 15 31 19 24 27 17 18 6 16 31 - 204

Table 34: Confusion Matrix of General Purpose Recognizer for UIHN, for a total of
10,000 MNIST samples (including rejection). The first column shows the real identity
of the sample while the top row is the result identity.



| 0 1 2 3 4 5 6§ 1 35 9] Toal Ero
E 0 (948 0 0 o0 0 o0 2 o0 2 o 982 4
L |0 106 1 3 0 0 0 0 1 o0 1126 3
2 0 3 98 0 0 0 o0 1 1 o0 990 3
) 3 0 2 2 93 0 3 0 0 0 1 1014 8
B 0 1 0 0 925 0 0 2 0 6 952 9
5 12 1 0 5 o0 83 1 0o 3 o 925 12
6 |3 1 0 0o 3 2 9t o 1 o | 100 10
Tt o 1 4 2 6 0 o0 90 o 7| 103 2
f $ o0 2 3 o 1 3 1 o 933 o 997 12
L9 1 1 0 3 5 1 1 2 3 927 982 17
fTotal 1954 1098 948 966 940 SS2 972 955 944 043 || 10000 .
(Eror! 6 12 10 13 15 9 5 5 11 16 - 10

Table 35: Confusion Matrix of Verifier for UIHN. for the same 10,000 MNIST samples.
We can see that the verifier reduces the errors substantially while maintaining a
reasonable recognition rate.
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