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ABSTRACT

Aerodynamic Shape Optimization of Axial Turbines in Three Dimensional Flow

Mohammad Arabnia

Aerodynamic shape optimization of axial gas turbines in three dimensional flow

is addressed. An effective and practical shape parameterization strategy for tur-

bine stages is introduced to minimize the adverse effects of three-dimensional flow

features on the turbine performance. The optimization method combines a genetic

algorithm (GA), with a Response Surface Approximation (RSA) of the Artificial Neu-

ral Network (ANN) type. During the optimization process, the individual objectives

and constraints are approximated using ANN that is trained and tested using a few

three-dimensional CFD flow simulations; the latter are obtained using the commer-

cial CFD package Ansys-Fluent. To minimize three-dimensional effects, the stator

and rotor stacking curves are taken as the design variable. They are parametrically

represented using a quadratic rational Bézier curve (QRBC) whose parameters are

directly and explicitly related to the blade lean, sweep and bow, which are used as

the design variables. In addition, a noble representation of the stagger angle in the

spanwise direction is introduced. The described strategy was applied to optimize

the performance of the E/TU-3 axial turbine stage which is designed and tested in

Germany. The optimization objectives introduced the isentropic efficiency and the

streamwise vorticity, subject to some constraints. This optimization strategy proved

to be successful, flexible and practical, and resulted in remarkable improvements in

stage performance.
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Chapter 1

Introduction

Gas turbines have strong impact on human life since its introduction in the twentieth

century. It has been used mainly for power generation and later on in aircraft propul-

sion. After more than half a century of creative development, it is still a challenge for

engineers of all disciplines to achieve the ever increasing and more demanding design

requirements. Focusing on the design of gas turbines, aerodynamic features, struc-

tural integrity, vibrational aspects, combustion, cooling, acoustics and environmental

effects are the subject of active research and development.

The flow features are complicated and may be divided into compressor and

turbine aerodynamics in gas turbines. Compressor aerodynamic design is challenging

due to the stability specially when the maximum efficiency is within the surge margin.

On the other hand, turbine aerodynamics is also a challenge due to high inlet gas

temperature, secondary flow, separation and transonic flow and their interactions.

The turbomachinery design has benefited from numerical methods and increas-

ing computing power in the last decades. The CFD tools with their developing ability

in predicting the flow features are now an essential part of design system. Their appli-

cation in design is economically and logically justified. Nevertheless, the experimental

validation is still a necessary step. These tools have reduced rather significantly the
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design system and allowed for reducing the number of experimental cases required to

verify a given design.

The drive for increased efficiency, enhanced reliability, decreased noise and cost

of gas turbines especially in aerospace industry is getting stronger than ever partic-

ularly with the rise in fuel prices and stricter environmental standards. Application

of optimization methods involving CFD flow simulations is a practical strategy that

helps in reaching these goals.

The two dimensional and quasi-three dimensional design of turbine blades have

evolved into three dimensional design. Aerodynamic optimization requires a practi-

cal parameterization which can control the flow features. Its practical development

requires experience and is actually a key for performance improvement.

In the next section the important 3D aspects of the turbine stage is reviewed.

Then different optimization approaches, in particular evolutionary algorithms com-

bined with response surface approximation are discussed. This is followed by the

review of literature with the focus on parameterization and optimization approaches

are investigated. Finally, the work performed in this thesis is outlined in the last

section.

1.1. Gas turbine flow

The flow in turbomachinery is highly complex as it is three-dimensional, inherently

unsteady, compressible. This high speed flow involves laminar/transition/turbulent

flow regimes, stator-rotor interactions, vortical flows, compressibility, flow separation,

shocks, heat transfer ets. There are some physical features in turbomachinery aero-

dynamics that are purely three dimensional and cannot be completely accounted for

by 2D and even quasi-three dimensional flow simulation such as secondary flow, tip

leakage and 3D boundary layer (See Fig. 1.1). Rotation, curvature, radial pressure

2



Figure 1.1: 3D boundary layer in turbomachinery flows

gradients are introducing highly 3D flow where the losses cannot be predicted with

acceptable accuracy using cascade models.

Secondary flows combined with the passage vortex can move the wall flow into

the main stream and add further complexity to the flow field especially in a multi-stage

turbine. The interaction of tip leakage flow, annulus boundary layer and secondary

flow would enhance turbulence and augment mixing which obviously ends up in higher

losses. The mentioned features imply using of 3D design optimization of blade shape.

In turbines for instance, secondary flow is stronger than that occurring in compressors

due to higher flow turning [5]. The studies suggest that their reduction would improve

the efficiency.

1.2. Turbine blade design

Design process is reviewed in brief to indicate the role of optimization in the design

system. A typical aerodynamic design process in turbomachinery is indicated in

Fig. 1.2. The difficulty in reaching a ”good” design is to meet many criteria in

different disciplines simultaneously. Empirical and analytical methods can perform

3



an acceptable design but there is still room for improvement. The numerical methods

can also be used for flow analysis and evaluation of the design parameters. However,

the complexity of design space suggests that optimization technique can provide the

designer with information and conclusions that would be otherwise difficult to reach.

There are two conventional design optimization techniques: Inverse design and

design optimization. In the inverse design approach [6], the blade performance is

prescribed and the corresponding geometry is obtained as part of the solution. In the

optimization approach, the blade performance is described quantitative is terms of a

set of objectives restricted to constraints and significant engineering parameters are

chosen as design variables to be optimized for best performance. Inverse design is very

efficient however needs an experienced designer to prescribe a ”good” target design

variables. Although this method is very straight forward however the choice of target

values is very challenging in 3D flow design. On the other hand, the optimization

approach provides flexibility to choose objectives and constraints that the designer

wants. Application of this method in multi-point optimization or multi-disciplinary

optimization is straight forward, however, the required computing resources are larger

than those required by inverse design method. Also they can be applied for 3D blade

optimization and in general for problems with large design space. They also need the

designer experience in setting up a good optimization strategy.

1.3. Multi-disciplinary optimization

The turbine blade design is multi-disciplinary and challenging. The high gas temper-

ature requires a thermal and structural analysis. A thermal, structural and aerody-

namic optimization of a micro gas turbine was carried out for a cooled turbine blade

by Versteade [7].
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Figure 1.2: Typical turbomachinery aerodynamic design system (Taken from Casey
[1])
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Generally optimization methods can be divided to deterministic (like gradient-

based methods) and stochastic methods (like evolutionary methods). The first method

is faster but it can be trapped in local minimum especially in nonlinear functions.

The latter is robust for finding global optimum due to the use of random operators.

Genetic algorithm has been used extensively for optimization. In this research work

for single and multi-point objective optimization GA combined with surrogate mod-

eling similar to that developed by Mengistu [8] will be used. The GA and surrogate

modeling are briefly described in the following sub-sections.

1.3.1 Genetic algorithms

The difference between GA and gradient-based methods is said very well in Goldberg

[9] as: ”GA works with a coding of the parameter set, not the parameter themselves.

GA searches from population of points not a single. GA uses objective function not

derivatives. GA uses probabilistic transition rules not deterministic rules.” These

features make it robust and attractive to nonlinear aerodynamic applications. GA

can be coded in binary or continuous operators. Continuous method is simpler to

implement and also preferable when high precision is required. In binary method

when high precision is needed for chromosomes the number of bits would be large

which is not good. GA algorithm is inspired from evolution processes observed in

nature. The algorithm is shown in Fig. 1.3. GA will be discussed in more details in

Chapter 2.

Non-Dominated Sorting GA (NSGA II) introduced by Deb [10] is used for multi-

objective optimization. The initial population is initialized randomly within the de-

sign space and the fitness in each generation is based on the non-domination level

and a niche count factor, which depends on the number and proximity of neighboring

solutions. All sets in the first non-domination level are assigned a maximum value of

equal dummy fitness and this value may be reduced based on the factor called niche

6



Figure 1.3: GA algorithm
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count if that solution is located in a dense region of solution space.

The population in the second non-domination level is assigned a dummy fitness,

which is smaller than the smallest fitness value of the previous front. The same kind

of fitness reduction is carried out based on the niche count. These procedures are

repeated until all the individuals are assigned a fitness value. The genetic algorithm

operations like selection, crossover, mutation, elitism and reproduction are then car-

ried out on the individuals to provide a search direction towards the Pareto-optimal

region and the solution becomes well diversified due to the inclusion of a niche count

factor.

1.3.2 Artificial neural networks

The use of response surface models (RSM) to approximate the objective function

starting from a database reduces computation time considerably. In this work an

artificial neural network ANN is modified and improved so as to approximate the

objective function at a relatively low computing cost and with an acceptable accuracy.

The construction of an ANN model involves two steps: training and testing of the

ANN model. The steps in designing the ANN model are in brief choosing the type

of ANN network, training the model to determine its parameters and finally testing

the resulting ANN model to assess its accuracy.

The multi-layer feed forward network was chosen. It has an input layer that

consists of the design variables and the last layer is the output layer that returns the

network output. In between lies one or more hidden layer(s) where the computational

process of the network is concentrated. ANN training is discussed in more details in

Chapter 2.
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1.4. Previous investigations

In recent years a large research activity for optimization of turbomachinery perfor-

mance in both 2D and 3D analyses have been done. Overview of 2D and 3D optimiza-

tion techniques, 3D design parameters (sweep, lean, bowing and end-wall contouring),

geometric representation is discussed in the following paragraphs respectively. The

review of these papers was helpful to introduce new parameterization method of

stacking curve and understanding of 3D design parameters’ effects on flow physics.

1.4.1 Aerodynamic optimization

Global optimization methods have extensively used in aerodynamic shape optimiza-

tion [9], [11]. Mengistu [8], [12] has successfully implemented GA and SA as evolution-

ary algorithms combined with surrogate models for multi-point and multi-objective

shape optimization of 2D axial compressors and turbines. ANN model as surrogate

model has been trained to substitute CFD in the course of optimization. This sig-

nificantly reduces computation time. The accuracy and generalization capacity of

surrogate models is a subject of research and development. The effectiveness of sur-

rogate models [13] and evolutionary algorithms [14] in aerodynamic optimization still

needs further research.

1.4.2 3D effects and parameterization

In a review paper by Vad [15] among 26 documents, the physical effects of sweep

and lean particularly for low-speed axial compressors are discussed and the effects of

non radial stacking on loading, reaction and local total pressure loss are explained.

An excellent reference for previous works done on sweep and lean effects is given by

Gallimore et al. [16]. It presents sweep and lean effects on design of multistage low

and high speed axial flow compressors of Rolls-Royce gas turbines.
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In Denton [17] and Harvey [18], end-wall contouring and sweep for axial turbines

have been studied experimentally. Transonic compressor has been studied for the

effect of sweep by Amano [19]. The results showed that the sweep redistributes

the flow and reduces the secondary flow loss, depending on the baseline. It was

shown that the forward sweep reduces the tip loading in terms of the static pressure

coefficient. The comprehensive study of sweep effect on the flow is given by Potts [20].

Experimental results for compressor cascades are given by Sasaki and Breuglemans

[21]. Sweep in transonic compressor reduces shock losses by reducing the meridional

Mach number. In general, blade sweep seems to have a strong effect on efficiency in

transonic compressor to reduce shocks Kim et al.[22]. Multi-disciplinary optimization

of compressor blade where lean and sweep are included as design variables was done

by Pouzadoux [23].

Influence of lean on turbine linear cascades loss has been studied experimen-

tally by Harrison [24]. The blades have a low aspect ratio. The physical reasons to

improve loss due to leaning is explained well in terms of velocity, blade surface bound-

ary layer transition, end wall boundary layer transition and mixing losses. A detailed

experimental and numerical study of end wall profile for cascades has been studied

by Atkins [25]. He found that end wall contraction has no significant improvement in

nearly 2D velocity distribution of cascade flows. Rose [26] showed that end-wall pro-

filing can reduce pressure gradients downstream of blade and prevent the mainstream

from going to cavities between stationary and moving end-walls. Non-axisymmetric

turbine end wall design by Harvey et al. [27] has been studied numerically and ex-

perimentally. It was found that the effect of end wall profiling is remarkable and

comparable to leaning and skewing. Denton gathered a comprehensive review of 3D

effects in Denton [28]. Other papers regarding 3D effects and design are Pierret [29].

Bagshaw et al. [30] have introduced smart idea for efficiency improvement by com-

bining end-wall contouring and negative compound lean. Negative compound lean
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will load the end-walls but unload the mid-span. This will decrease mid-span profile

loss but increase loss at end-walls. On the other hand by end-wall contouring and

reduction of secondary loss the end-wall losses are decreased.

There are relatively fewer papers for turbine blade optimization that address

3D flow effects. In Lampart et al. [31] 3D blading of a high-pressure and low-

pressure steam turbine stage is optimized with direct optimization but on a coarse

mesh. Finally it is verified on a finer mesh. Among the optimized parameters are

stator and rotor blade numbers and stagger angles, rotor blade twist angle, stator

blade sweep and lean, both straight and compound. The blade sections (profiles) are

assumed not to change during the optimization. There are constraints imposed on

the design parameters, including the mass flow rate and stage reaction. Usually, 3D

blade stacking in HP turbines does not mean largely increased efficiencies [31].

There are some other papers that studied the 3D flow effects on turbine losses.

however, no attempt was made to optimize the blades Wallis et al. [32]. Examples

of optimization of stator blade linear twist, lean and sweep and rotor blade twist for

a high-load HP gas turbine stage and optimization of stator blade compound lean at

hub and tip with optimized rotor blade twist for a low-load HP steam turbine stage,

performed by Yershov et al.[33] show stage efficiency improvements as considerable as

0.8%. It was shown by Lampart and Yershov [34] that stator blade lean can serve as

a means of improving the LP exit stage efficiency from low to nominal load, with the

most spectacular efficiency gains for low loads, by far exceeding efficiency gains for

the nominal load for which the stage was optimized. However, efficiency reduction is

possible here for high loads. The effects of 3D blading in high-pressure (HP) turbine

cascades and stages were previously investigated by Potts [20], Harrison [35], Singh

et al. [36], Wang [37].

Concerning parameterization of stacking curve, parabolic or quadratic curves
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have been used by linking sweep, skew and lean angles to curve parameters. Gener-

ally, the curves don’t have continuous curvature distribution and are multi-segments.

Also there is not one parameterization tool to integrate all design variables. These

observations in the reviewed papers are suggesting a scope for more work on param-

eterization of the stacking curve.

3D aerodynamic shape optimization of blade is extremely time consuming and

virtually impossible with direct optimization methods such as GA. However by means

of surrogate models this would be possible. Research on surrogate modeling is ex-

pected to decrease the error. There are some other techniques to reduce the compu-

tational time of the optimization process. Akmandor [38] has optimized a compressor

blade with less high-fidelity calculations by means of multi-level GA. Another exam-

ple is the work of Clarich [39] where he applied statistical analysis to measure the

impact of many initial design parameters of axial compressor optimization on objec-

tive function in order to reduce the number of design variables. In addition, efficient

geometry parameterization can also be helpful to save computational time as indi-

cated by Ghaly et al. [40]. So methodology improvement is still required for turbine

blade optimization.

1.5. Present work

This work was initiated with the objective of focusing on three dimensional flow

analysis and shape optimization.

The first motivation for this work is to develop knowledge in 3D shape opti-

mization. The traditional 2D blade design cannot capture some physical features

of the flow which need to be considered in the design. Secondary flow, separation

and turbulence are genuinely 3D phenomena. The success of 2D design tools relied

on empirical correlations obtained from experiments. However, the correlations are
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limited to a particular family of turbines which would become outdated after several

years. Moreover, the experiments needed for deriving the correlations are exorbitantly

expensive. These facts have necessitated the development of reliable 3D numerical

analysis tools. 3D Navier-Stokes analysis has become a common tool in the last

decade due to the exponential progress in computer technology and the maturity of

CFD methods. Thus tremendous research work is now going on in 3D flow design

and optimization using 3D simulation tools.

The second motivation is to come up with a practical and efficient blade stacking

parameterization for turbine blades. Stacking of the profiles is an important 3D

design parameter. The literature review identifies a shortage of work on stacking

parameterization in particular for turbine blades and its quantitative impact on the

design. The topic is so new that only recently it appeared in the context of a book

chapter by Chen [41].

The third motivation is to come up with an optimization strategy where engi-

neering knowledge is coupled with mathematical optimization tools to formulate the

aerodynamic shape optimization problem of a turbine stage with the least number of

design variables for a given performance improvement.

This research work tries to address the above mentioned motivations. The

focus of the work is on the development of an efficient optimization strategy using

a practical and innovative parameterization techniques for turbine blade so as to

minimize the adverse effects of 3D flow on the turbine losses and hence improving the

blade performance in 3D flow.

1.5.1 Thesis outline

This thesis is organized as follows. Chapter 1 introduces the scope, review, motivation

for this work. The geometric modeling, flow analysis, optimization methodology

which include the GA, ANN training and structural analysis are discussed in Chapter

13



2. The stacking curve parameterization and spanwise variation of stagger angle are

described in Chapter 3. Chapter 4 presents a single-point optimization of an axial

turbine stage using the optimization tools developed in Chapter 2 and the shape

representation described in Chapter 3. Then the multi-point optimization of the same

turbine stage is presented in Chapter 5. The last chapter concludes and summarizes

the research findings, it also points out some outstanding challenges and recommends

possible future work.
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Chapter 2

Numerical tools and optimization

methodology

In this chapter, the numerical tools used for flow analysis are presented. The geomet-

rical modeling and grid generation approach are presented first. Then the CFD flow

simulation is described and assessed for accuracy. It is followed by the optimization

methodology. Also the major contributions of this thesis in terms of methodology is

presented in this chapter. In the last section a simplified structural model for turbine

blades is introduced.

2.1. Geometry modeling and grid generation

The geometrical model preparation and the grid generation are both done in Gam-

bit 2.4. which used to be the ANSYS-Fluent pre-processing tool. The geometrical

model consists of the blade geometry and the flow passage surrounding the blade,

which represents the computational domain. The details of the geometric model and

structured grid generation are described in this section.
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2.1.1 Geometry modeling

The flow passage is obtained by means of Turbo Toolbox in Gambit. It is defined

by turbine blade and hub and tip profiles. The turbine blade is defined by 5 airfoils,

each is given by a set of x, y and z available coordinates; These airfoils are defined

at different spanwise locations from hub to tip. The blade profile is then obtained

by fitting a B-spline through the given points as shown in Fig. 2.1.a. Only passage-

to-passage domain can be generated with Turbo Toolbox; i.e. the blade is always

centered in the computational domain and cannot be placed at periodic borders. The

number of blades fixes the pitch at each radial location. The medial curves that divide

the profiles equally, go through the leading and trailing edges of each profile. The two

end points of the medial curves as shown in Fig. 2.1.b can be moved on the circles

at the inlet and outlet. This can help in aligning the computational domain with the

wake shed from the blade TE. Finally a surface is swept through these medial curves

to shape the periodic surface. This surface is then rotated in both directions by half

a pitch to create the periodic surfaces that are shown in Fig. 2.1.c.

Eventually, the blade volume is obtained by a skinning process [42] on the

profiles. The computation domain is attained as the surrounded volume among the

hub, casing, inlet, outlet and periodic surfaces as indicated in Fig. 2.1.c.

The computational domain is then decomposed to reach the desired topology for

structured grid generation. The passage volume is initially divided into four blocks.

The blocks consist of inlet, pressure side, suction side and outlet blocks as shown in

Fig. 2.1.d. This is usually known as an H-topology. Each block is divided into two

sections by means of the mid-span plane which brings the total number of blocks up

to eight. This is discussed further in the following section.
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Figure 2.1: Illustration of the computation domain and grid topology generation
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2.1.2 Grid generation

A ”good” mesh is essential to resolve adequately all the flow physics implied in a given

flow, while alleviating the propagation of the numerical errors into the final results.

Therefore a grid sensitivity analysis, is necessary to find an optimum grid size so as to

obtain sufficiently refined grid. However, finer grid increases the computational time

and the possibility of having highly skewed cells especially in unstructured grids.

It is not usually easy to achieve a grid with satisfactory level of refinement and

quality particularly with highly twisted turbine blades. In addition, the two periodic

boundaries require exactly the same surface mesh which cause further restrictions

and less freedom to achieve a high quality grid. These are some of the challenges

encountered in generating a ”good” mesh.

Both unstructured and structured grid capabilities as well as a hybrid grids

are evaluated to address the above-mentioned challenges. The Fluent former pre-

processor, Gambit, has been used to generate the grid. Unstructured grid can be used

for inviscid calculation but it is not a good choice for boundary layer calculations.

In Gambit, there is a pretty helpful feature that allows using a hybrid grid, i.e.

structured O-type grid around the blade and unstructured grid anywhere else. The

structured block around the blade as shown in Fig. 2.2.a allows the solver to resolve

the flow in the boundary layer.

However, there are two major problems with hybrid grids in Gambit. Firstly,

Gambit is not always able to provide a mesh with a y+ � 1. The boundary layer

tool does not perform successfully as the mesh is refined for fully integrated bound-

ary layer calculations. Secondly, the unstructured algorithm is not robust enough for

unstructured volumetric grid generation. Even though the surface mesh is reason-

ably good, the volumetric grid generation sometimes fails for encountering negative

volumes some where inside the volume. Therefore, this type of grid is not chosen as

the fundamental grid generator for optimization.
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Multi-block structured grid is then used although it does not have the flexibility

of unstructured grids for irregular geometries such as highly twisted turbine blades.

Originally the passage is divided into four blocks as shown in Fig. 2.1.d. The number

of blocks can be increased to give more flexibility to grid generator to have different

edge mesh spacing so as to avoid highly skewed cells. This division gives more flex-

ibility and independence for meshing the individual blocks to achieve a higher mesh

quality. Therefore, a reasonably robust and sufficiently refined grid can be achieved

with this topology.

In order to keep the numerical error level to minimum in optimization, all the

different geometries are meshed with the same edge spacing scheme. i.e. having

identical number of mesh points and clustering method for respective edges. The

mesh points are clustered near LE and TE. The number of mesh points on the LE

and TE are 16 and 8, respectively. The number of mesh points in streamwise, spanwise

and azimuthal directions are 140, 60 and 52, respectively. Fig. 2.2.b shows the multi-

block structured mesh used in the optimization cases presented in Chapters 4 and 5.

In order to resolve the boundary layer flow, more mesh points can be clustered near

the walls (blade, hub and casing). The first cell adjacent to the wall gives y+ � 30

which is suitable to be used with wall functions explained in the next section.

2.2. Flow analysis

The CFD has matured during the last two decades to be an integral part of the design

process. Specifically, the Reynolds averaged Navier-Stokes (RANS) equations coupled

with different turbulence models were extensively used in aerodynamic design and

analysis. This analysis requires relatively large computer resources. The precision

and computational time required for the analysis depends directly to the spacial

discretization. Usually a fine grid is required to capture all 3D flow features with
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Figure 2.2: Turbine blade grid generation
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an ”acceptable” level of accuracy. This implies a considerable computational time.

The concern in aerodynamic optimization problems is to reduce the computation

time, since the optimization requires a ”large” number of flow simulations. There are

some techniques that facilitate the analysis such as parallel computation, multi-grid

method, implicit schemes and the initialization with rough estimation.

These features are available in ANSYS-Fluent 6.3. They have been used in

the present work. The RANS model is used to simulate the flow using second order

upwind discretization of the coupled compressible Navier-Stokes equations. Spalart-

Allmaras turbulence model with wall functions where y+ varies between 30 and 100

is used as closure. The code was run for both explicit and implicit formulations with

CFL of 200 and 1, respectively. The implicit formulation was found to converge faster

than the explicit one as it takes one hour wall clock time on 4 CPUs compared to

10 hours for the explicit formulation. However, implicit scheme, ”which generally is

unconditionally stable” [43], with the CFL number as high as 200 would take one

hour wall clock time for a similar case running on four CPUs.

The inlet boundary conditions are given as a spanwise distribution of total pres-

sure, total temperature, two flow angles and the turbulent intensity and hydraulic

diameter. The outflow boundary condition is given by the static pressure that would

satisfy the radial equilibrium equation at the exit boundary. The mixing plane ap-

proach, discussed later, is used to exchange boundary conditions at the stator-rotor

interface. For all cases presented in this work the flow is subsonic at both inlet and

exit boundaries.

An initial guess of the pressure, temperature and velocity field for both stator

and rotor can be obtained from a 1D stage calculation. Assuming constant axial

velocity and zero radial velocity, the circumferential velocity can be calculated based

on zero incidence and deviation angles for stator and rotor blades. The total pressure

and temperature are assumed to vary linearly as shown in Fig. 2.3a. and b. This
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Figure 2.3: Initialization of the computational domain based on 1D calculations

would help to have a quicker convergence.

The root mean square of the residuals for all the equations are monitored for

convergence check. However, the mass flow rate is taken as the stopping criterion

of the analysis. The solution procedure starts with first order upwind discretization

and then switches to second order discretization. The CFL number is increased after

specific number of iterations step by step, until it reaches its max which is usually

above 100 with implicit discretization. The maximum CFL is case dependent and

sometimes cannot exceed 100.

2.2.1 Turbulence modeling

The turbulence modeling is the subject of research and there are still many unan-

swered questions. Selection of a model is case dependent. It can be chosen rationally

based on many factors such as application, accuracy, computational cost, etc.

Spalart-Allmaras [44] and standard k − ω turbulence models are usually used

in internal flow steady applications. The first one is a one- equation model and the
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Figure 2.4: Comparison of Spalart-Almaras and K-ω turbulence models for a turbine
case

second one is a two-equation model. They are competitive in accuracy, nonetheless,

they can predict different results for some specific flow conditions. Therefore, the two

models are studied in the present work.

Several different rotor blades, which are obtained as part of the optimization

process discussed in section 4.3.2, are chosen for this study. Both Spalart-Allmaras

and k−ω turbulence models are used with the same boundary conditions and exactly

the same mesh to solve the steady Navier-Stokes equations. Since the interest is in loss

prediction, predicted total pressure loss coefficients of the two models are compared

to each other as shown in Fig. 2.4. According to this result, the two models are

indicating the same trend which is critical in optimization. Moreover, the absolute

value of the loss is different by almost the same amount for all the tested rotors, see

Fig. 2.4.
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The precise prediction of the total pressure loss for individual blade row and

isentropic efficiency for the stage is technically challenging. It is possible to predict

more precise absolute values for them provided that more refined meshes and more

sophisticated turbulence models are used. This comes with the expense of more

computational cost [16].

Spalart-Allmaras is therefore chosen not only because it is less computationally

expensive but also because of its accuracy. ”The Spalart-Allmaras model was designed

specifically for aerospace applications involving wall flows and has been shown to give

good results for boundary layers subjected to adverse pressure gradients. It has also

become popular in turbomachinery applications. It has been implemented to use wall

functions when the mesh resolution is not sufficiently fine.” More discussion is given

in [45].

2.2.2 Mixing plane

The numerical analysis of a stage requires the exchange of boundary data between

stator and rotor blade rows. Mixing plane approach has been introduced [46] to allow

for steady calculations. Otherwise, the time accurate simulation of the inherently

unsteady flow in a turbomachine stage is so expensive. The mixing plane implemen-

tation accommodates non-conformal interface between stator and rotor blade rows.

Basically the stator and rotor computational domains are solved independently.

Then flow properties such as velocity, static pressure and temperature are circumfer-

entially averaged at stator outlet, as well as the rotor inlet. The averaged profiles are

then exchanged between the two blade rows after several iterations. The mixed-out

averaging formulations can be found in [47].

The mixing plane approach assumes that the flow leaving one blade row is

mixed out in the circumferential direction before entering the next blade row [48].

As a result of this mixing process, entropy is generated and total pressure decreases
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abruptly through mixing plane. In the present work, the mass averaging is used for

stage analysis. Theoretically the mass and energy is conserved through the mixing

plane but there is a sudden drop in total pressure level.

2.2.3 Averaging

The aerodynamic performance of the blade and stage is measured by total pressure

loss coefficient and isentropic efficiency. The averaged flow properties such as pressure

and temperature must be averaged properly in order to calculate the performance

criteria. Usually they are averaged at inlet and outlet stations on the circumferential

planes. The mass averaged method is used to calculate flow properties.

2.2.4 Assessment of flow solver

The assessment of ANSYS-Fluent numerical results in particular for turbine stage flow

analysis is discussed in [2] which is a published paper by Fluent. A four stage turbine,

E/TU-4 [3], is modeled with unstructured mesh. The Navier-Stokes equations with

k− ε turbulence model are solved with explicit scheme at the design and at off-design

conditions. The circumferentially averaged spanwise distributions of temperature and

pressure show relatively acceptable agreement with the experimental data. These

results, as shown in Fig. 2.5, are a proof of mixing plane model capability in regard

to multi-stage flow analysis.

In addition, a single stage turbine, E/TU-3 [3], is analyzed at different condi-

tions at the design speed speed. The analysis was carried out as described in this

section. In fact with the given set of boundary conditions, the mass flow rate and

total enthalpy drop are unknown. The performance curve of the turbine at design

speed is numerically predicted as shown in Fig. 2.6.a. The experimental data and

numerical perdition follow the same trend and agree rather well towards the two ends

of the curve.
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Figure 2.5: Comparison of stage exit profiles with E/TU-4 data at design conditions
(Courtesy of [2])
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The efficiencies of the operating points in Fig. 2.6.a are also calculated and

compared with the experimental data. The numerical results are following the same

trend as the experimental data as shown in Figs. 2.6.b. The numerical results are

offset both in mass flow rate and the efficiency. This is also observed by Gallimore

et al. [16] and is basically related to the model accuracy. The precise prediction of

efficiency requires extremely refined mesh and high fidelity turbulence model. The

solution of such a model is essentially more expensive and demanding. An expensive

model is not a practical choice for the optimization method explained later in this

chapter. In fact, a relatively accurate model being capable of capturing the efficiency

trend is adequate for optimization purpose. Because the objective is to find the

location of peak efficiency in the design space rather than determining its absolute

value. The Fig. 2.6.b ensures that the flow solver is adequately accurate for the

optimization application.

2.3. Optimization method

The optimization method used in this work is based on evolutionary algorithms

(EA). Evolutionary algorithms, inspired from biological systems, is a population-

based heuristic method that can be used in optimization.

There are several EA methods namely Genetic Algorithms (GA), Differential

evolution (DE), Particle swarm Optimization (PSO) and Evolutionary Strategy (ES).

One of the most popular EA optimization methods is Genetic algorithm (GA).

The heuristic feature of GA, discussed later, makes it a practical method for aerody-

namic applications. Generally, aerodynamic optimization requires solving non-linear

equations with many design variables. The solution is multi-modal and difficult to

resolve. Therefore a gradient-based optimization can most probably be trapped in a

local extremum. However, GA uses a random operator and the probability of getting
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Figure 2.7: The aerodynamic shape optimization process with evolutionary method
based on surrogate modeling
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trapped in a local extremum is avoided, which makes it a global optimizer within the

chosen design space.

However, the GA requires extremely large number of function evaluation. Its

implementation is not practical with the current computer power. For instance, fifty

Navier-Stokes analyses would be required in each generation (iteration) for a typical

three dimensional aerodynamic shape optimization problem. Each analysis consists

of grid generation and flow field solution. Assuming at least hundred generations to

find the optimal answer, 5000 geometries are required to be analyzed. In brief, the

aerodynamic optimization with GA is generally impractical. In order to circumvent

this problem, a surrogate model is used to make the method feasible and reduce the

computation time. Therefore, the first phase of the process starts with training an

acceptable surrogate model. The procedure is indicated in Fig. 2.7.

Once the geometric parameterization is developed, the design space is defined.

Then a design of experiment (DOE) is applied to several candidates that are evenly

distributed into the design space. Usually the minimum number of candidates are two

to five times the number of design variables. Then the candidates are geometrically

modeled. Each model is meshed with exactly the same grid topology and spacing.

The next step is to solve the flow field in order to predict the aerodynamic losses.

Any high fidelity analysis such as structural analysis can be done at this step. Finally,

the data are collected into a database which contains the design variables and their

corresponding aerodynamic performance. A surrogate model is then built from this

database. This part is critical as training an accurate model is really challenging.

This is discussed in the following section.

The optimization is now fast because the functions are evaluated using the sur-

rogate models which takes a few seconds to evaluate the objective function but is

less accurate than the Navier-Stokes simulations. GA is sorting the fitness value of

each member in the population and produces the next generation of candidates. The
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details of GA is discussed later in this chapter. This optimization method was orig-

inally implemented by Mengistu [8]. It was considerably modified in this work and

adapted for 3D aerodynamic shape optimization. The major modifications are dis-

cussed in Section 2.3.3. Eventually, the optimum candidate is analyzed with the high

fidelity model. If the performance is optimum in the design space the optimization

is successfully done. Otherwise, the database is enriched by addition of the optimum

candidate. Then a new surrogate model is trained and tested. The optimization cycle

is ran again until an optimum shape is achieved.

2.3.1 Design of experiment

The design of experiment is an extensive filed with many applications mainly in

statistics and in experimental work. The Latin hypercubic sampling method [49]

is used in the present work. It is a statistical method to collect samples in a multi-

dimensional space so that all the design space is evenly covered by the chosen sampling

points.

2.3.2 Surrogate modeling

Various surrogate models namely artificial neural networks (ANN), radial basis func-

tion (RBF), wavelet and self-organization maps are used for aerodynamic applications.

The appropriate choice of model is case dependent. Artificial neural network with

back propagation training algorithm was used for the current work [50].

A multi-layer ANN network architecture is indicated in Fig. 2.8. The first

row of nodes is the input layer that accepts the user input and the last row is the

output layer that returns the network output back to the user. Between the input

and output layers, lies one or more hidden layer(s) where the computational process

of the network is concentrated.

The signal of input variables go through the synaptic links between the input
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and hidden layer. Then each node in the hidden layer receives the signals and gets

stimulated. Similarly the flow of signals go to the output layer through the synaptic

links between the hidden and output layer. Finally the output node gets stimulated

and sends the output signal. The amplitude of the output signal depends on the input

signal and the sensitivity of the node to the input signal. The mathematical model

of a network with one hidden layer is derived in Eq. 2.1. The input signals, yi(n)

are the input variables. The synaptic links are modeled by the set of weights, wji,

between each layer. The degree of stimulation is also modeled by so called activation

function, ϕ(vj). The non-linear activation function enables the network to model the

complex input-output pattern. There is always a bias neuron with unit value at each

layer.

yk(n) = ϕk(

m1∑
i=0

wkj · ϕj(

m0∑
i=0

wjiyi(n))) (2.1)

Where the activation functions used are:

ϕj =

⎧⎨
⎩

1. 1

1+e−vj
: Sigmoidalfunction (Logisticfunction)

2. e
2vj−1
e2vj+1

: Tan hyperbolic

Training the network

The ANN network shown in Fig. 2.8 must be trained by a set of input-output ex-

amples collected by high fidelity aerodynamic simulations in a database. This means

the weights have to be adjusted so as to associate to the right output for a given

input vector. The back-propagation algorithm is used to find the weights. It uses two

passes of signals to adjust the weights at each iteration n. The first pass of signal

flow is from input to the output layer. The network is exposed to the input vector to

find the value of the network output for the given initial set of weights. The error is

calculated as the difference between the network output and the real value. Then the
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Figure 2.8: A multi-layer ANN network architecture

error signal is back-propagated so as to adjust the weights accordingly. This cycle is

repeated until the error converges to a minimum value.

Assuming N number of input patterns in the database, an epoch is defined as

N presentation of input vectors to the database. The weights can be updated after

one epoch (batch mode training) or after each time an input vector is presented to

the network (sequential mode of training). The mode of training is sequential in the

present method. The input vectors are randomly selected from the database and then

presented to the network during each epoch. The stochastic feature of this random

behavior in sequential mode, makes it less likely for the back-propagation algorithm

to be trapped in a local minimum [50].

2.3.3 ANN accuracy improvement

In the optimization loop, the surrogate model is used to evaluate an approximate

value of the objective function, hence the optimum candidate will be as accurate as
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the surrogate model can be. The successful results of the optimization by this method,

surrogate-based optimization, proves the practicality of this method. Appendix C

provides information concerning universal approximation theory. This is an existence

theorem which mathematically justifies the existence of a network which is able to

approximate any arbitrary continuous function with desired level of accuracy. This

is similar to the existence of an approximation with any degree of accuracy by means

of Fourier series for any continuous function.

An ANN network can be trained practically so as to accurately approximate

the output value of a set of input vectors in a database. However, what makes the

ANN training a challenge is the generalization feature of the network. It is important

that ANN can generalize on a new input vector which is not presented to it during

the training. This feature is essentially important for optimization. Cross-validation

discussed in the following section could enhance this ability. Also the number of

hidden nodes is another parameter which can reduce the approximation error if chosen

properly.

An ensemble of surrogates was proposed [13] to take advantage of several surro-

gates simultaneously. ANN, RBF and ensemble of both were used for the evaluation

of turbine isentropic efficiency. The accuracy of the last two methods are not any

better than ANN. Usually RBF performs better with a high number of design vari-

ables. The ensemble of surrogates dose not necessarily improve the accuracy. This is

also observed by Haftka et al. [13].

The accuracy of the ANN model is indicated in Fig. 2.9 in terms of average

relative error between high fidelity and ANN output among testing patterns. This

is based on one of the cases presented in Chapter 4. This plot shows that the ANN

model is reasonably accurate for estimating the isentropic efficiency for candidates

that were not involved in the training process.
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(Taken from a single point single objective optimization using one ANN model per
objective function)
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The code developed by Mengistu [8] for ANN training was used for 2D aerody-

namic optimization. In order to use it for 3D optimization, some improvements to

enhance the accuracy of the model are achieved in the course of this research work.

These contributions are discussed in the following sub sections.

Single output architecture

In the course of this work it was found that a single output architecture has ad-

vantages over multiple output architecture. This is discussed in [51]. The first and

foremost advantage is the improvement in accuracy. Having an individual network

per output, permits more chance to change the network architecture to reduce the

errors as it involves only one unknown vector so that any change would not impact

the approximation of any other output since the networks are separate. On the other

hand, single output architecture gives more flexibility for multi-disciplinary optimiza-

tion, since adding another discipline, would require the addition of new networks to

the already trained ones.

Cross-validation and early stopping method

The mean-square error decreases in back-propagation algorithm as the learning con-

tinues to progress in epochs. However, there is a chance that the weights of the

network get overfitted and consequently the network gets too stiff to be able to gen-

eralize. Therefore, the database is divided into the training and validation subsets for

cross-validation. The training subset is used to evaluate the network weights, while

the testing set is used to assess the generalization error of the network. There is an

onset where the weights are overfitted. The validation error starts to increase at the

onset. If the training process stops at that point, the network won’t get overfitted.

This is called early stopping method and is implemented in to the current algorithm

in the present work. It is recommended when the number of patterns (N) is less than
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Figure 2.10: Early stopping applied on training of two generic functions (Appendix
C) with ANN

the number of weights times thirty (N < 30W ) [50]. The application of this method

is shown on two generic functions in Fig. 2.10; The functions are defined in Appendix

C. After certain number of epochs, which is a user input, the slope of the testing error

curve is approximated by least square method. The training stops after some more

number of epochs if the slope is positive. The training stops at the later of either a

positive slope or intersection of training and testing curves.

As the number of patterns in the database is less than the number of the weights

in the network, early stopping is necessary for improving the generalization perfor-

mance [13]. The training subset is 70% to 80% of the number of patterns in the

database, while the remaining patterns are used as a testing subset.

Network architecture optimization

There are several parameters related to ANN training such as the number of hidden

nodes, type of transfer function and the learning rate which affect the accuracy of the

network. The combination of mentioned parameters sum up to many possibilities and
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so hard to find out the best by user interaction. Therefore, a method is implemented

in the present work to verify all the given possibilities automatically and report the

best combination in terms of minimum testing (generalization) error.

A range of variation is given for number of hidden nodes (usually 5 to 30),

learning rate for input to hidden layer (usually 0.5 to 0.9) and hidden to output

layer (usually 0.01 to 0.04). Then the network is trained for each case and the RMS

testing error is calculated. Because the database may be split differently into training

and testing subsets for each case, the comparison of testing errors would not be fair

between each case. Therefore an unbiased generalization error measurement is needed

for the whole network.

K-fold cross-validation is used for calculating the generalization root mean

square error (GRMSE) [52]. The database is divided into k subsets of approximately

equal size for each combination mentioned earlier. A surrogate model is constructed

k times, each time leaving one of the subsets out of the training set, and using the

removed subset to compute the error measure of interest. The GRMSE is then com-

puted using the averaged value of the k error measures obtained.

2.3.4 Genetic algorithms (GA)

In this work, a real coded genetic algorithm GA is used where the design param-

eters are represented using a floating-point representation so that any individual is

characterized by a vector of real numbers. The GA algorithm that was developed by

Mengistu [8], involves the four basic operations namely, selection, crossover, mutation

and elitism [53]. The initial population is initialized randomly within the design space

and the fitness in each generation is evaluated by the surrogate model. Usually fifty

individuals are used in each generation.
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Selection

Next generation of candidates (children) are obtained by reproduction from the cur-

rent pool of candidates (parents). There are several selection methods to select the

pair of parents. Roulette wheel method is used in this work. All individuals are

ranked based on their fitness function. They assign a portion on the wheel which is

proportional to their fitness values. Once the wheel is revolved the individual with

higher fitness is more likely to be selected. The wheel is spun every time a parent

needs to be selected.

Cross-over

The cross-over operation is similar to offspring in nature. The new candidates are

born from the parents. They inherit part of the genetic features of there parents. In

the present work, linear combinations of the two candidates are used for cross-over

as shown in the following equation. The cross-over probability α is usually 0.7.

⎧⎨
⎩

Children1 = α(Parent1) + (1− α)(Parent2)

Children2 = α(Parent2) + (1− α)(Parent1)

Mutation

Mutation alters some of the genes in a chromosome. This operation creates a new

candidate (chromosome). It is used in GA to alleviate the chance of being trapped in

a local optimum. A mutation probability value of 0.1 is used in this work, i.e. 10%

of the population in each generation would mutate. The candidates are randomly

selected and are multiplied by a random factor in such a way that the resulting value

stays in the specified range of that variable.
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Elitism

Usually the two best candidates of each generation are directly passed to the next

generation without being manipulated by genetic operations. This is a guarantee that

the best found solutions won’t be neglected in the next generations.

2.4. Simplified structural model

Designing a turbine blade involves aerodynamic, structural, thermal, dynamic and

vibration analyses. While doing optimization in one discipline, enough attention

must be paid to other disciplines otherwise the outcome would not be practical. In

practice, the aerodynamic optimization of the blade shape drags other disciplines

into consideration. The aerodynamic performance improvement by modifying the

blades stacking is shown later to be effective, however changing the stacking curve is

a critical issue in rotor blades because of centrifugal forces. Usually the blades are

stacked radially(through the CG of the individual airfoils) to reduce the centrifugal

effects. However, aerodynamic redesign is suggesting different configuration of profile

stacking. It is important to assess such a change in stacking line on the stresses due

to centrifugal forces.

2.4.1 Structural model for blade

Rotor blade can be modeled as a rotating cantilever beam. Pressure forces exerted

from flow around the blade and centrifugal forces due to rotation are the main forces

applied on the blade. Pressure loadings distribution is nonlinear. For turbines, the

resultant pressure forces are much smaller than the centrifugal forces since the blades

are thick. Centrifugal forces are about 100 times larger than pressure forces in the

cases that were tested in this thesis. Centrifugal forces generate moment around the

center of gravity of the hub profile. This happens when the stacking is not radial. The
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Figure 2.11: Derivation of blade volume into distributed mass

moments generated by centrifugal forces result in stresses at the hub. The centrifugal

forces are also creating a tensile stress at the hub. The blade volume can be separated

into several subsections as indicated in Fig. 2.11.

Fc =

∫ rt

rh

ρω2Ardr (2.2)

where

ρ : Blade density(Kg/m3)

ω : Rotational speed (rad/s)

A : Area of blade section (m2)

r : Radial coordinate (m)

Centrifugal forces applied to each mass are calculated according to Eq. 2.3:

−→
F c =

n∑
i

Fiêi =
n∑
i

miriω
2êi (2.3)
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where

Fi : Centrifugal force exerted to ith element (N)

êi : Unit vector of Fi (rad/s)

mi : Mass of ith element (Kg)

ri : Radial coordinate of ith element (m)

The moment of each force around the center of gravity of the hub can be cal-

culated as in Eq. 2.4:

−→
M =

n∑
i

−→
l i ×−→

F i (2.4)

where

Fi : V ector connecting P0 andmi

êi : Center of gravity of the hub profile

2.4.2 Bending moment: Beam with arbitrary area

A general equation for pure bending of elastic members of arbitrary cross section

whose reference axes are not the principal axes is indicated in this part and is taken

from [4]. The two basic requirements for equilibrium are enforced: 1) The total axial

force on any cross section of a beam must be zero. 2) The external bending moment

at a section must be developed by the internal stresses acting on the cross section.

Hook’s law is postulated for uniaxial normal strain.

Summing up all the moments around the center of gravity of hub profile, three

components of the total moment are calculated. It is observed that the moment

component in z direction which generates torsion is approximately two orders of

magnitude less that the two other components. Therefore it is reasonable to neglect

Mz. The axial and tangential components of moment, Mx and My, can be used to

calculate the bending stress at hub profile.
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Figure 2.12: Bending of unsymmetrical cross section ([4])

Figure 2.12 indicates the general moment vector applied on an arbitrary area.

The generalized flexure formula can be used to calculate the bending stress distribu-

tion as in Eq. 2.5.

σbending = −MyIx +MxIxy
IxIy − I2xy

x+
MxIy +MyIxy
IxIy − I2xy

y (2.5)

where

Ix, Iy : Areamoment of inertia (m4)

Ixy : Product of inertia (m4)

Finally total stress is the combination of bending and tensile stresses.

σz = −σbending +
Fs

Ah

(2.6)

where

43



Fs : Spanwise component of total centrifugal force (N)

Ah : Hub cross section area (m2)

2.4.3 Stress distribution computation

A C++ code was written to calculate the stress distribution on the hub section based

on the above model. ANSYS-Fluent preprocessor (Gambit) is used to calculate the

center of gravity of spanwise subsections of the blade as indicated in Fig. 2.11.

ANSYS-Mechanical is used to calculate the area moment of inertia and product of

inertia of the flat hub profile.
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Chapter 3

Blade shape parameterization

This chapter describes the technique applied for parameterizing the turbine blade

shape. The design parameters for optimization of the stacking line and stagger angle

distribution are introduced. The sensitivity of the output parameters to the chosen

design variables is presented.

3.1. Blade shape representation

Geometric shape representation is an essential part of the optimization problem.

Understanding the flow physics plays an important role in developing an effective

shape parameterization. Generally geometrical entities such as the coordinates of the

control points are selected as the design parameters. However, it is more practical

to pick up the designer’s parameters for a shape optimization. Another aspect of

the parameterization is the number of parameters. The number of parameters in any

optimization problem is essentially important. The optimization problem gets more

complicated as the number of parameters increases. This is known as the ’curse of

dimensionality’ in evolutionary optimization methods. In addition, the flexibility and

geometric continuity strongly contribute to the effectiveness of the parameterization.

The blade shape is formed by stacking of several two dimensional airfoils in
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spanwise direction according to a path which is usually called stacking line and is

passing through one of the airfoils reference points. The airfoil reference point is

usually the centroid for rotor blades and the leading edge for stator blades. The

blade shape is obtained by wrapping a surface around the two-dimensional airfoils

using e.g. the skinning technique [42]. In the present optimization work, the shape of

the two-dimensional airfoils is fixed. In order to form the blade shape, the profiles are

stacked according to stacking line, then they are reoriented by changing the stagger

angle with respect to the profile reference point. Stagger angle variation and stacking

give three degrees of freedom to each profile. Each profile can rotate with respect to

radial direction, move in axial and tangential directions. Therefore ideally all possible

but feasible blade shapes for the given 2D airfoil profiles can be explored. Quadratic

rational Bézier curve (QRBC) was chosen as a geometric parameterization tool. It

was initially used to parameterize the stacking line, it was also used to represent

stagger angle distribution from hub to tip.

3.2. Quadratic rational Bézier curve (QRBC)

QRBC is a second-degree NURBS with three control points. It represents exactly a

conic curve in an oblique coordinate system, it can be expressed parametrically in

terms of u ∈ [0, 1] as [42]:

−→
C (u) =

(1− u)2w0
−→
P 0 + 2u(1− u)w1

−→
P 1 + u2w2

−→
P 2

(1− u)2w0 + 2u(1− u)w1 + u2w2

(3.1)

where
−→
C (u) gives the cartesian or cylindrical coordinates of any point on the stacking

curve in terms of the parameter u,
−→
P i is the cartesian (or cylindrical) coordinates of

control point i. The QRBC is a smooth second order curve that represents exactly

any conic line e.g. an ellipse, a parabola, a circle or a hyperbola. This feature of

the QRBC excludes inflection points in the profile, hence ensuring that all resulting
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profiles are feasible, and eliminating infeasible regions of the design space.

3.3. Stacking curve parameterization

Aerodynamicists usually deal with the blade lean, sweep and bow as the set of tradi-

tional geometric design parameters to represent the blades in the hub to tip direction.

These design parameters provide a physical insight into the design space. For this

reason, a quadratic rational Bézier curve (QRBC) was chosen to parameterize the

stacking line, not only due to its flexibility and suitability, but also due to the fact

that the design parameters can be expressed directly in terms of the QRBC parame-

ters.

Based on the QRBC representation given in Eq. 3.1, the QRBC parameters

namely, Pi and wi for i = 1 − 3, can be selected to parameterize the stacking curve.

P0 is fixed at some point on the hub surface (e.g. blade center of gravity or blade

LE) and P2 moves on the tip surface as shown in Fig. 3.1.a. In other words, without

loss of generality, the coordinates of P0 and the radial coordinate of P2 are fixed.

According to Fig. 3.1.a, the sweep angle is defined as β and is controlled by the

axial coordinate of P2. Figure 3.1.b shows the lean angle α, which is set by the

circumferential coordinate of P2. Figure 3.1.c shows the blade bowing which can be

controlled by the circumferential and radial coordinates of P1 as well as the weight

w1. The circumferential coordinate of P1 is controlled by angle ̂P1P0B as shown in

Fig. 3.1.c. The lean angle is positive in the direction of the suction side and the sweep

angle is positive in the axial direction. The positive sign of ΘP1 makes the pressure

side concave as indicated in Fig. 3.1.c and a negative value makes it convex.

The design variables of the optimization must be wisely chosen amongst the

geometrical parameters. The most influential parameters are of higher priority as

keeping all can make the optimization problem too hard to solve. The following
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a. Blade sweep

b. Blade lean

c. Blade bow (or compound lean)

Figure 3.1: Stacking curve parameterization with QRBC

48



section discusses the choice of design variables.

3.3.1 Stacking curve design variables

Designers use lean, sweep and bow for stacking of the profiles. The way these pa-

rameters are linked to the QRBC parameters makes this parameterization practical.

Generally QRBC has eight parameters for stacking curve as listed in 3.1. The weights,

coordinates of P1, the coordinates of P2 except its radial coordinate as it has to lay

on the tip surface.

These design variables are shown in the exploded views of meridional and cir-

cumferential planes in Fig. 3.2. The stacking curve is projected onto a circumferential

and meridional planes that passe through P0 in Fig. 3.2.a and b respectively.

The relationship between QRBC parameters and deign variables can be derived

by considering a cylindrical coordinate system which its z-direction is aligned with

the shaft axis of the turbine. The axial coordinate of P0 is set at zero.

The sweep angle, β, and the compound sweep angle, λ, are related to the axial

coordinates of P2 and P1 respectively as indicated in Eqs. 3.2 and 3.3. The axial

coordinate of P1 is assumed identical as the axial coordinate of P0. As the first step,

this is a simple design choice. It basically means that λ is assumed zero therefore it

is impossible to have compound sweep.

The lean angle can be related to the tangential coordinate of P2 as shown in

equation 3.4. Similarly the angle θ can be controlled with the tangential coordinate

of P1 as indicated in equation 3.5. The span ratio is a number between zero and one.

The zero and one correspond to the hub and the tip respectively. The relationship

between the span ratio and the radial coordinate of P1 is indicated in 3.6.

zP2 = (rp2 − rp0)tan(β) (3.2)

zP1 = (rp1 − rp0)tan(λ) (3.3)
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Figure 3.2: Design variables for stacking curve
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Table 3.1: List of QRBC parameters and possible design variables

QRBC parameters Related design variable Symbol
1 Axial coordinate of P2 sweep angle β
2 Tangential coordinate of P2 lean angle α
3 Axial coordinate of P1 compound sweep λ
4 Tangential coordinate of P1 compound lean θP1

5 Radial coordinate of P1 span ratio γ
6 Weight of P0 1 w0

7 Weight of P1 Bowing intensity w1

8 Weight of P2 1 w2

θP2 = arcsin(
(−rP0 cosα +

√
r2P2

− rP0 sin
2 α) sinα

rP2

) (3.4)

θP1 = arcsin(
(−rP0 cos θ +

√
r2P2

− rP0 sin
2 θ) sinα

rP2

) (3.5)

rP1 = γ(rP2 − rP0) + rP0 (3.6)

The first derivative of the QRBC at the endpoints are shown in Equations 3.7

and 3.8 (Refer to appendix A). The slope of the curve at the end points in QRBC

is not only the function of control points coordinates but also the weights. The

weight w1 influences the slop of the curve at both ends. However, the w0 and w2

only influence the slope at the P0 and P2, respectively. Therefore, the weight w1 was

selected as the design variable while the corresponding weights of P0 and P2 were

assigned a unit value.

−→
C ′(u = 0) =

2w1

w0

(P1 − P0) (3.7)

−→
C ′(u = 1) =

2w1

w2

(P2 − P1) (3.8)

The weight w1 is affecting the curvature of the curve as well as the slope at the

end points. A zero value for w1 makes the stacking curve a straight line connecting

the two end points while increasing the value of w1 increases the curvature of the
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stacking line. Hence, it is called bowing intensity. Therefore there are five stacking

curve design variables namely lean and sweep angles, compound lean, span ratio and

bowing intensity.

The slope of the stacking curve at the end points defines the magnitude of the

lean or sweep from an aerodynamic view point. A positive lean, shown in Fig. 3.3.a

makes an acute angle with the hub curve an an obtuse angle at the tip. For the

negative lean, however, there is an acute angle at the tip and obtuse angle at the hub,

as shown in Fig. 3.3.b. In the following chapter it will be shown that acute and obtuse

angles at the end points have different implications on the pressure distribution in

the end-wall region. Compound lean is introduced to produce the same type of angle

(acute or obtuse) at both hub and tip. The compound lean is indicated in Figs. 3.3.c

& d.

3.3.2 Stacking curve design variables range

The design space must be defined after selecting the design variables. An important

design concern is to keep the design space within a feasible range from a blade struc-

tural point of view and at the same time be large enough to adequately explore the

aerodynamic performance. For example, leaning the blade in the direction of rotation

will introduce bending moments due to centrifugal forces, but that will balance those

due to aerodynamic loads [54], therefore, such blade lean will be allowed. Starting

from some initial choice of design variables, preliminary results of the optimization

reveal the direction in which the design space should be extended or limited. For in-

stance, the stator lean angle of the optimum stator is always close to its lower bound.

Therefore, it would be better to extend the range of the stator from its lower limit.

i.e., instead of ±20, it is better to modify the range to [−30,+10]. The range of

possible design variables for stator and rotor stacking curves are given in the Table

3.2.
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53



Table 3.2: Stacking curve design variables range for stage

Design variables Symbol Min. Max.
1 Stator sweep angle βs -8 12
2 Stator lean angle αs -36 0
3 Stator compound lean θP1,s -20 30
4 Stator span ratio γs 0.1 0.9
5 Stator Bowing intensity w1,s 0 3
6 Rotor sweep angle βr -10 15
7 Rotor lean angle αr -5 20
8 Rotor compound lean θP1 -10 35
9 Rotor span ratio γ 0.22 0.82
10 Rotor Bowing intensity w1,r 0 3

3.3.3 Sensitivity analysis of stacking curve design variables

Once the geometric parameterization is set up, all the parameters are used as design

variable. However, not all of them have the same influence on the objective function

of the optimization problem. Besides, it is easier to solve an optimization problem

with less number of design variables. Therefore a sensitivity analysis was carried out

to identify the influence of each design variable to the objective function.

A first order variance-based method was used, it assumes no interaction between

the different design variables, hence the effect of each one on the objective function

is studied one at a time. The variance of the objective function around that of the

original geometry can be calculated by changing one parameter within its specified

range while fixing the rest. Then all the calculated variances are normalized by total

variances and a measure of importance of each parameter is calculated as a percentage.

The five introduced design variables that describe each stacking curve are used

for stator and rotor blade rows parameterization. Based on the sensitivity analysis,

it was found that among all five design variables, the lean and sweep angles are the

most influential variables for either stator or rotor, as shown in Fig. 3.4. The bowing

parameters have the least priority for this case study.

The sensitivity analysis was only applied on individual stator and rotor cases. In
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Figure 3.4: The sensitivity of the total pressure loss coefficients to the stacking curve
design variables

addition to this study, the results of a stage optimization that is presented in Chapter

4 show that the bowing is not as influential as the lean and sweep angles. The design

variables of the stage optimization case are: lean and sweep angles for stator and

rotor and rotor bowing intensity. It is observed that the bowing intensity for rotor is

almost zero for the optimum rotor blade. Based on the sensitivity analysis and the

mentioned stage optimization case, the compound lean, θP1 , and the span ratio, γ,

can be crossed out from the list of design variables if there is a need to reduce the

number of design variables. It should be noted however that this conclusion is case

dependent, e.g., if there is an aerodynamic blockage at stage inlet, this conclusion

may not apply.

3.4. Blade stagger distribution parameterization

The turbine blades are highly twisted because of the variation of blade speed from hub

to tip. Usually twist is measured by the stagger angle. In the absence of any additional

information, the distribution of the stagger angle from hub to tip is usually assumed

linear. This distribution was also included as a design variable; it was parameterized
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with QRBC.

Figures 3.5 indicates the control polygons of QRBC to represent the stagger

spanwise distribution for both stator and rotor. Control points P0, P1 and P2 are

assigned at hub, mid-span and tip, respectively, and the design variables are given

by the stagger angles at the same spanwise locations, which are the coordinates of

the control points in QRBC. Therefore with only three stagger angles the spanwise

distribution of blade stagger is parameterized.

In the present work, the stator stagger is taken to be varying linearly, see Fig.

3.5.b, and is represented by fixing P1 and varying P0 between ±5. This choice of stag-

ger variation ensures that the stator throat area can be kept approximately constant

so as to have a fair comparison between the original stage and the optimized one.

The rotor stagger angle distribution, plotted in Fig. 3.5.a, is represented with

three control points that are given by the stagger angles at hub, mid-span and tip;

all three angles are allowed to change during optimization. So we end up with four

design variables to describe the variation of stagger for both stator and rotor.

3.4.1 Design variables range

As a preliminary step, stagger angle of a rotor mid-span is studied with 2D analysis.

An initial range of variation of the stagger angle is obtained based on this analysis.

A variation of ten degrees was allowed for each stagger angle. The mid-span stagger

angle, ζm, must be between the hub and the tip stagger angles. In the present work,

the range of stagger angles are assigned according to Table 3.3.
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a. Rotor

b. Stator

Figure 3.5: Stagger angle parameterization with QRBC
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Table 3.3: Stagger angle design variables range

QRBC parameters Symbol Min. (o) Max. (o)
1 Stator hub stagger angle ζs 40 50
2 Rotor hub stagger angle ζrh 12 22
3 Rotor mid-span stagger angle ζrm 22 38
4 Rotor tip stagger angle ζrt 38 48
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Chapter 4

Single point optimization

This chapter presents the application of the present optimization methodology for

improving the efficiency of an axial turbine stage at the design point. Since the

stacking line is the geometric entity that is highly influential on the blade losses, it

is taken as the design variable while the individual airfoil sections forming the blade

shape at different spanwise locations are left unchanged. Consequently, additional

improvement is suggested by the combined redesign of stacking curve and stagger

angle in the last section.

4.1. E/TU-3 axial turbine stage

A low speed subsonic axial turbine stage, referred to as the E/TU-3 turbine, that

is built and tested at DLR, Cologne [3] is selected for redesign. The turbine stage

geometry is given as a set of x-,y- and z-coordinates of several blade sections at five

spanwise locations from hub to tip. Several geometric and aerodynamic features of

that stage are listed in Tables 4.1 and 4.2. The details which are available in Fottner

[3], helped in building the geometry and in assessing the flow simulation tool namely

ANSYS-Fluent that is used in the optimization scheme. The original stator and rotor

blade profiles are sketched in Fig. 4.1.
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Figure 4.1: E/TU-3 single stage turbine case [3]

Table 4.1: E/TU-3 single stage turbine specifications

Data Stator Rotor

Number of blades 20 31
Blade aspect ratio 0.56 0.95
Blade solidity 1.56 1.51
Flow turning 69◦ 105◦

Table 4.2: E/TU-3 single stage turbine design point specifications

Inlet total temperature (K) 346
Rotor speed (RPM) 7800
Stage pressure ratio 0.51
Reynold number 1.5× 106

Efficiency 90%
Mid-span flow coefficient 0.74
Mid-span stage loading 1.93
Average reaction (%) 31
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4.2. Optimization Objectives

There are many possible objective functions for each case. The objective function is

the designer’s choice. Usually for single blade rows the total pressure loss coefficient,

Y, or the isentropic efficiency is chosen. The objective function for a single rotor

blade row optimization is defined in Eq. 4.1 based on the rotor isentropic efficiency.

Any constraints can be introduced into the objective function as a penalty term, PT.

Fobj1(X) = Min((1− ηis,r) + PT ) (4.1)

where:

ηis,r =
1−

(
T3

T02r

)

1−
(

P3

P02,r

) γ−1
γ

(4.2)

When optimizing a turbine stage, one may choose either the total-to-total ef-

ficiency (ηtt) or the total-to-static efficiency (ηts). In designing the last stage of a

turbine, ηts would be a better choice as it ensures that the exit kinetic energy is

minimized. For any interior stage, the use of ηtt would be a better choice. These two

efficiencies can be expressed as:

ηtt =
1−

(
T03

T01

)

1−
(

P03

P01

) γ−1
γ

(4.3)

ηts =
1−

(
T03

T01

)

1−
(

P3

P01

) γ−1
γ

(4.4)

Therefore for the single stage turbine without exit propulsion the objective

function given in Eq. 4.5, can be used. The loss parameter, (1 − ηts), is minimum
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when (ηts = 100%). The PT is a penalty term that can account for any mechanical,

geometric or aerodynamic constraints imposed on the optimization process. In this

case, the mass flow rate is allowed to vary by not more than 2.8% from its designed

value otherwise, the objective function is penalized by a positive additional value.

Fobj2(X) = Min((1− ηts) + PT ) (4.5)

Secondary flow loss in turbines typically contributes to one third of the total

aerodynamic loss. Secondary flow can be measured by the streamwise vorticity which

depends on the aerodynamic inlet blockage, the flow turning and loading [55]. There-

fore, the dimensionless streamwise vorticity which is denoted by Ω∗ and defined in

Eq. 4.6 is used as an objective function. It is non-dimensionalized with the blade

rotational speed, ω.

Ω∗ =
�Ω · �V

|�V |
2ω

(4.6)

Where

�Ω = ∇× �V

Fobj3(X) = Min(C1(1− ηtt)
′ + C2Ω

∗
s
′ + C3Ω

∗
r
′ + PT ) (4.7)

where
∑i=n

i=1 Ci = 1 and the penalty term, PT, is defined as follows:

PT =

⎧⎨
⎩

0 : |ṁ−ṁdes|
ṁdes

≤ 0.028

0.5 : |ṁ−ṁdes|
ṁdes

> 0.028

To normalize all individual objective functions to vary between 0 and 1 over
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the specified range for each one of them, each objective function e.g., (ηtt) is replaced

with ((ηtt)
′) where:

f ′ =
f − fmin

fmax − fmin

f = {ηtt,Ω∗s,Ω∗r} (4.8)

Two objective functions are presented for stage namely Fobj2 and Fobj3. Fobj2,

given in Eq. 4.5, is to maximize ηts while constraining ṁ, which implies minimizing

the losses and also the kinetic energy in the secondary flow at the stage exit. The

Fobj3, given in Eq. 4.7, attempts to maximize ηtt and minimize Ωs
∗ and Ωr

∗, while

constraining ṁ. This choice is based on the fact that optimizing ηtt will minimize

the viscous flow losses and minimizing Ωs
∗ and Ωr

∗, will minimize the secondary flow

losses. The secondary flow losses are strongly influenced by inviscid flow effects such

as stretching and deforming of the incoming vortex lines and are directly related to

the stage exit secondary kinetic energy. The three objectives are scaled between zero

and one using their anticipated bounds according to Eq. 4.8. Once they are normal-

ized, they can be prioritized with the coefficients, namely Ci. Optimization objective

which is given by weighted sum of the individual objectives and is penalized with the

constraint on ṁ, can be fine tuned by changing the values of C1, C2 and C3 coeffi-

cients. For instance, ηtt can be optimized if the coefficients are assigned the following

values: C1 = 1, C2 = 0, C3 = 0. A parametric study of different combination of co-

efficients was carried out before settling on the following combination of coefficients:

C1 = 0.6, C2 = 0.2, C3 = 0.2 [56].

4.3. Blade row stacking optimization

The stacking of the individual stator and rotor blades has its own implications. The

stator blades are essentially cooled in a high pressure turbine. The interior cooling

passages are usually straight channels which constrains bowing the stator blades. On

the other hand, the rotor blades are usually stacked along a radial line that passes
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through the CG. of the individual profiles. The centrifugal forces can apply bending

moment at the hub if the stacking varies from the radial line. The optimization of

the individual stator and then rotor blade row are presented in this section.

4.3.1 Stator optimization

The variation of the upstream stator blade shape affects the rotor performance.

Therefore, stator optimization in the absence of the rotor might have a negative

effect on the rotor blade and may result in a smaller stage efficiency. In other words,

individual optimization of the stator blade does not guarantee an optimum stage per-

formance and hence is not practical. Hence, the stator blade optimization is carried

out within the stage environment with a frozen rotor blade shape. The objective is

to maximize the stage efficiency, ηtt, by varying the stacking line while keeping the

same airfoil shapes.

The QRBC parameters shown in Table 3.1 which are directly related to the

five stator design variables listed in the Table 3.1 were picked up. Lean, sweep and

bow are used as the design parameters. The range of design variables is based on the

geometric and manufacturing considerations only and is shown in Table 4.3.

Twenty three candidates were selected using LHS method and were analyzed

with ANSYS-Fluent. Two ANN models are trained for the efficiency and the mass

flow rate each having five inputs and one output.

Between the input and output layers, there is one hidden layer composed of

thirty nodes with sigmoid transfer function.

The GA with the population of fifty in each generation is used. Optimum

solution is achieved after several hundred generations.

The original and optimum design variables and their objective function are

shown in Table 4.3. The optimized stator increases the stage efficiency to 88.03%,

an increase of 0.93%; the optimum blade has a lean of −17.2◦ which has shifted the
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Figure 4.2: Optimum stator blade stacking

blade tip towards the PS, a sweep of −2.8◦ (forward sweep) and zero bowing, see Fig.

4.2. The mass flow rate is off by 1.3%.

The non-uniform inlet flow, non-zero blockage, will contribute to the secondary

flow. The bowing might be helpful to reduce the secondary flow strength by adjusting

the loadings in the end-walls. As long as the bowing intensity is zero, the spanwise

location of P1 in QRBC (γP1) and the compound lean (θP1) design variables won’t

change the blade shape. These two design variables are not necessary if the optimum

bowing remains at zero.

4.3.2 Rotor optimization

An individual rotor blade optimization case is presented, basically as an initial step

to study the stacking of the rotor blade. The stage analysis is used to set up the

rotor boundary conditions. The rotor inlet boundary condition are obtained from the
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Table 4.3: Stator optimization: The design variables, their range of variations and
efficiency of original and optimum stages

Case αs βs γP1 w1 ΘP1 ηtt ṁ(kg/s)

Original −7.3◦ 6.9◦ 0 0 0◦ 87.10 0.320
Optimum −17.2◦ −2.8◦ 0.27 0 −15◦ 88.03 0.336
min −17.3◦ −3◦ 0.10 0 −20◦ −
max −2.3◦ 17◦ 0.90 1.5 30◦ −
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stator outlet station of the E/TU-3 stage analysis. The total pressure and temperature

and flow angles obtained from this analysis are imposed as the rotor inlet boundary

conditions. The static pressure, taken from the stage back pressure, is assigned as

the rotor outlet boundary condition. The boundary conditions are indicated in Fig.

4.3. The objective is to optimize the isentropic efficiency ηis as defined in Eq. 4.1.

An ANN architecture similar to that of the stator optimization case was chosen

for the rotor. The number of candidates in the DOE is twenty three and similar GA

parameters were used.

Figure 4.3: Pressure, temperature and velocity profiles at rotor inlet boundary
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Table 4.4: Rotor optimization: The design variables, their range of variations and
efficiency of original and optimum rotors

Case αr βr γP1 w1 ΘP1 ηis ṁ

Original 0◦ 0◦ 0 0 0◦ 85.91 0.320
Optimum 9.9◦ 0.3◦ 0.39 1.5 23.3◦ 87.63 0.320
min −10◦ −10◦ 0.22 0 −10◦ − −
max 10◦ 10◦ 0.82 1.5 25◦ − −

The original and optimum rotor geometric parameters and efficiency are shown

in Table 4.4. The original rotor is radially stacked through the CG of the profiles. The

optimum rotor is leaned towards the SS by 9.9◦. The sweep change is negligible. The

bowing intensity of the optimum blade is at the max limit of bowing intensity with

the value of 1.5. Also the θP1 is nearly close to its border. The stacking curve of both

blades are shown in Fig. 4.4. Even though the bowing intensity is at its maximum

value, this optimum blade is not significantly bowed compared with a blade such as

the one given in Fig. 3.1.c. This can be explained with two facts. First, the leaning

of the tip toward the SS has lightened the magnitude of bowing intensity (i.e. the

curvature of the curve in particular near the tip). In other words, the angle between

P1P2 and the casing would have been smaller if the lean angle was less. Secondly,

the limits for bowing and θP1 look like tight. It seems that the optimizer tends to

go beyond the imposed limits. This argument is also valid for the lean angle. Based

on this observation, the design variables range for stage optimization are extended

appropriately.

The optimum rotor efficiency is 87.63%, marking an increase of 1.72%. The

main reason for the efficiency improvement is due to the equalization of pressure

distribution in spanwise direction. This will be discussed in detail in the following

sections. The mass flow rate has not changed.
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Figure 4.4: Optimum rotor blade stacking

Table 4.5: Studied cases for stress distribution

Case number Description

1 Original blade
2 αr = −5◦

3 αr = +20◦

4 βr = −10◦

5 βr = +15◦

6 w = 3
7 Optimum blade
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a. Original blade
b. α = −5o

Figure 4.5: Stress contours of the listed cases in Table 4.5

4.3.3 Structural analysis of the turbine blade

A crude stress analysis was carried out, as described in Chapter 2 to ensure that

the design blades will not break due to centrifugal stresses. Assumption is that the

moment in spanwise direction (Mz) which produces torsion is negligible.

Stress distribution

Some cases for calculating stress distribution are modeled and are shown in Table

4.5. There are seven blade geometries presented in Table 4.5 for stress calculation

at hub. The contours in Figs. 4.5 and 4.6 indicate the stress distribution caused by

bending moment due to centrifugal force. The blade radial stacking does not create

any bending moment on the hub in the original blade as is shown in Fig. 4.5.a.

Stacking effect on mechanical integrity of the blade

Centrifugal forces are calculated for E/TU-3 rotor blade. Bending moments of these

forces are calculated around the center of gravity of hub profile which is assumed
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a. α = +20o
b. β = −10o

as a flat surface. According to the cases studied, the maximum stress happens near

the trailing edge and near the location of maximum thickness on the suction side.

Depending on the configuration one region has tensile and the other has compressive

stress. All the redesigned rotor blades are experiencing a max stress that is far less

than the yield stress of Nickel-based steel alloy, which is 1035 (MPa) [4]. Since the

blade is treated as a cantilever beam, the maximum stress happens at its root. So

the hub region is the critical one. Therefore based on this study, the stacking curve

modification within the mentioned range of design variable is not generating structural

failure to the blade.

4.4. Stage optimization using stacking and stagger

angle

The interaction of the stator and rotor blade rows necessitates the simultaneous opti-

mization of the stator and rotor stacking lines. The blade profile stacking is a change

of blade shape in meridional plane. It is an effective tool to control the pressure
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c. β = +15o d. w = 3 (Bowing intensity)

Figure 4.6: Distribution of listed cases in Table 4.5

radially. This allows for to the reduction of the adverse 3D effects in the flow.

The blade stagger angle distribution is a change of blade shape in circumferential

plane. It influences rather strongly the spanwise variation of mass flow, incidence

angle and throat area, hence the 3D flow features.

In this section a stacking optimization of the stage, Case 1, is presented. The

stacking variation alone is sometimes incapable of reducing the losses, e.g. fixing a

bad incidence angle. Therefore, it is expected to gain more improvement by simulta-

neous optimization of stacking and stagger angle. Finally, Cases 2 and 3 present the

simultaneous optimization of stacking line and stagger angle distribution with single

and multiple objective optimization, respectively.

4.4.1 Case 1: Performance optimization using stacking line

The design space for the stage, as shown in Table 3.2 is different from the stator

and rotor individual blade row optimizations. The application of bowing on the

stator blades is not encouraged from the cooling channels point of view. It makes the
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manufacturing of the stator blade more complicated. In addition, the E/TU-3 turbine

case has a uniform inlet flow profile. Assuming that bowing is required mostly for

non-uniform inlet flow, no bowing is considered for this stator. Therefore, the bowing

intensity and hence the span ratio and compound lean are eliminated from the list

of design variables. On the other hand, it was observed from the individual rotor

optimization that the blade is not highly bowed. Based on this observation as well as

the sensitivity analysis that was presented in Chapter 3, the design variables selected

for the rotor are the lean, sweep and bowing intensity. The values of the span ratio

and compound lean for both stator and rotor are set to 0.5 and 35◦ respectively.

Hence the total number of design variables is five.

The size of the design space can be reduced and enlarged according to the

optimum geometry of single blade row optimization. For instance, looking at the

optimum lean angle in Table 4.4, it is realized that the lean angle range can be

extended from its maximum bound. Furthermore, the range can get smaller from the

minimum bound. It is huge save of time to cut off that part of the design space which

dose not include any optimum solution. In a similar way, the range of each design

variable is modified according to the single blade row optimization cases as shown in

Table 3.2.

Twenty one candidates that distributed within the design space by means of

LHS method, are analyzed using ANSYS-Fluent and are used to train and test the

ANN model. The boundary condition used in CFD computations are indicated in

Table 4.6. The flow properties are mass-averaged at the flow inlet and outlet stations.

Hence, total-to-total efficiency and mass flow rate are calculated. Consequently, two

ANN networks of five-input (for five design variables) and one-output (for (1− ηtt))

are trained and tested, they are then used in the optimization cycle.

The objective function consists of the (1− ηtt) penalized with the ṁ constraint;

It is given in Eq. 4.7 with coefficients being: C1 = 1 and C2 = C3 = 0. There are 50
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Table 4.6: Case 1: Boundary condition (Rotor profiles are given in Fig. 4.3)

Avg. total Avg. total Inlet Inlet Inlet Inlet Outlet
inlet inlet circumferential meridional turbulent hydraulic static

pressure temperature flow angle flow angle intensity diameter pressure
(kPa) (K) (◦) (◦) - (m) (kPa)

Stator 196 346 0 0 5% 0.046 95
Rotor Profile Profile Profile Profile 5% 0.046 95
Stage 196 346 0 0 5% 0.046 95

Table 4.7: Case 1: Single objective optimization of stacking in stage

Case αs βs αr βr wr1 ηtt% ṁ

Original −7.3◦ 6.9◦ 0◦ 0◦ 0 87.22 10.35
Case 1 opt. −36◦ −2.5◦ 2.2◦ −9.7◦ 0.05 88.56 10.64

X

Y

Z

Figure 4.7: Case 1: Optimum blade stacking (wire frame depicts the original geome-
try)
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members in each generation of GA. The cross-over and mutation probabilities are set

to 0.2 and 0.7, respectively. Two elite members are kept in each generation, they are

passed directly to the next generation.

The result of the optimization is shown in Table 4.7 where both rotor and

stator blades have forward sweep, Fig. 4.7, while rotor blade has no bowing. The

stage efficiency ηtt is increased from 87.5% to 88.56%.

Lean and sweep are changing the blade spanwise loading. Leaning towards

the blade suction side will unload the tip and put more load at hub and vice versa.

This can be seen in Figs. 4.8 and 4.9 for stator and rotor blades, respectively. For

instance, a stator lean of −36◦ increased the loading at the tip and reduced it at the

hub compared to the original loading, see Fig. 4.8a. and b. The mid-span loading

for both stator and rotor has not significantly changed.

The stage exit total pressure is also increased by 1.2%. Based on stator and

rotor pressure loss coefficients, almost 86% of the improvement is due to the rotor

blade shape optimization and only 14% improvement is due to stator blade. The

reduction of stator losses caused 1.2% increase in stator exit total pressure which in

turn increased the stage reaction by 3% from 0.26% to 0.29%.

If the profiles are not changed, the flow angles are not expected to change.

However, the stacking variation is also affecting the spanwise variation of the mass

flux and also the flow angles. This will be discussed in detail in the following sections.

4.4.2 Case 2: Performance optimization using stacking and

stagger

The stacking variation is influencing the overall spanwise pressure distribution. How-

ever, it is sometimes necessary to improve the flow characteristics locally without

disturbing the flow entirely. For instance, the flow separation can be reduced by lo-

cal modification of the profile. Therefore, simultaneous optimization of stacking and
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a. Stator hub

b. Stator tip

Figure 4.8: Case 1: Stator blade pressure distribution at hub and tip
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a. Rotor hub

b. Rotor tip

Figure 4.9: Case 1: Rotor blade pressure distribution at hub and tip
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Table 4.8: Design variables and their optimization range

Case α◦s β◦s θ◦sh α◦r β◦r θ◦rh θ◦rm θ◦rt
Org. −7.3 6.9 45 0 0 16.8 34 43.8
Case 2 opt. −35.1 3.6 49.8 8.6 −9.7 21.8 36.6 39.6
Case 3 opt. −31.5 −7.9 45 10.4 2.3 20.3 35.8 46.8

stagger angle distributions is practical to control the overall as well as local loading.

Usually the blade stagger distribution varies linearly from hub to tip, however

this is not necessarily the optimum distribution. In this section, the stagger angle

is allowed to vary quadratically using the QRBC parameterization with four design

variables described in Chapter 3. The stator stagger angle distribution is linear which

is controlled by the hub stagger angle. The rotor stagger distribution is adjusted

with three stagger angles namely at the hub, mid-span and tip. The range of stagger

design variables are shown in Tab. 3.3. Only the lean and sweep angles are chosen

for both stator and rotor stacking design variables. The range of stacking design

variables are shown in Tab. 3.2. Therefore, eight design variables are considered in

this optimization.

For this case, the objective function is formed of total to static efficiency and

is penalized with the mass flow rate, see Eq. 4.5. The optimization is carried out

assuming that the turbine maintains at the same operating conditions, i.e. fixed

rotor speed, fixed inlet and exit boundary conditions; and the mass flow rate was

constrained to change to within 2% of the design value.

The objective and constraint are approximated using an artificial neural network

(ANN) that is trained and tested using 36 CFD flow simulations. The hyperbolic tan-

gent was deemed to be a better choice of transfer function for the efficiency network.

The function sigmoid is used for the mass flow rate network. The learning rates are

90% and 2.5% for input-to-hidden and hidden-to-output layers, respectively. Then

GA with the population of 50 individuals in each generation is linked to the ANN
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approximations to find the optimum. The ANN-based optimum stage is finally sim-

ulated with CFD, as a high fidelity model, to check the accuracy of the ANN-based

solution.

The optimum blade design variables are given in Table 4.8. Original and op-

timum blade shapes are shown in Fig. 4.10. Compared to the original stator, the

optimum one is leaned towards the PS (negative lean) and is slightly swept forward.

The stagger angle is increased near the hub and decreased by an equal amount near

the tip, see Fig. 4.10.a. The rotor is leaned towards the SS (positive lean) and is

swept forward. The rotor stagger angle increases from hub to nearly 75% span and

decreases thereafter. The total-to-static efficiency increased from 74.44% to 76.18%,

an increase of 1.74 which is significant. The streamwise vorticity at stator and ro-

tor exits were reduced by 6.8% and 14%, respectively, although they have not been

explicitly included in the objective function; this confirms the fact that ηts and both

Ωs
∗ and Ωr

∗ are interdependent.

The optimum stator blade is leaned towards the PS and swept forward (Fig.

4.10.a), which results in unloading the hub and loading the tip (Fig. 4.11) hence

reducing the hub-TE separation region, see Fig. 4.13.b. On the other hand, the

hub stagger angle is increased from 45◦ to 49.8◦, which implies a smaller hub throat

area and an expected drop/rise in mass flux near the hub/tip. However this mass

flux redistribution did not materialize as the stator exit pressure associated with the

optimum loading profile as well as the reduction in separation region were such that

the exit mass flux was almost unchanged, Fig. 4.16.a.

The optimum rotor stagger angle at hub is increased while it is decreased at the

tip, see Fig. 4.10. This reduces the throat area near the hub and increases it near

the tip, hence mass flux passing near the hub is expected to decrease and vice versa

near the tip, which is confirmed in Fig. 4.16.b. The spanwise pressure distribution of

original and optimum cases are depicted in Figs. 4.11 and 4.12.
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a. Stator

b. Rotor

Figure 4.10: Case 2: original and optimum blade shapes
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Figure 4.11: Cases 2 & 3: Stator pressure loading for the original stage
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Figure 4.12: Cases 2 & 3: Rotor pressure loading for the original stage
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a. Original stator

b. Case 2 stator

c. Case 3 stator

Figure 4.13: SS flow separation and sonic surface for the original and optimum stators
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Figure 4.14: Effect of stagger angle change on the throat area

Assuming the flow angle is unchanged, the incidence angle increases as the

stagger angle increases. On the other hand, a higher blade stagger angle implies a

smaller throat area and hence less mass flux, see Fig. 4.14. So upon an increase in

stagger angle, the axial velocity at the inlet decreases. This results in lower incidence

for a turbine blade. Therefore the stagger angle increase may not necessarily mean

a drastic change in incidence angle. This argument is valid in 3D flow only if the

3D effects are relatively small, which is the case for the present rotor. Although the

optimum stagger angle increased at rotor hub from 16.8◦ to 21.8◦, the incidence is

slightly changed near the hub as shown in Fig. 4.18.c.

Figure 4.10 shows that the optimum rotor is leaned towards the SS (hence

unloading the tip) and is swept forward (hence loading the tip), the net effect being

that the pressure loading is slightly different from that of the original stage, see Fig.
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Table 4.9: Original, Case 2 and 3 stage aerodynamic characteristics

Case ηts ηtt Ω∗s Ω∗r ṁ(kg/s)

Org. 74.50 87.22 1.25 3.17 10.35
Case 2 76.18 88.30 1.50 2.64 10.27
Case 3 74.55 89.09 1.35 2.833 10.54

4.12.

Stage reaction and stage loading, given in Figs. 4.19, are discussed in Sec. 4.4.4,

where some comparison between the original stage and the two redesign cases: Case

2 and Case 3 are compared.

In summary, to maximize the stage total to static efficiency, the optimizer

reached a combination of blade lean, sweep and stagger that reduced the stator hub

loading (Fig. 4.11.c) while keeping the same mass flux distribution at stator exit (Fig.

4.16.a); this resulted in reducing the hub-TE blockage (Fig. 4.13) and the Mach num-

ber level (Fig. 4.17.a). Moreover, combination of blade lean, sweep and stagger that

is reached in the rotor resulted in a more uniform spanwise distribution of max flux

(Fig. 4.16.b). These changes in stator and rotor resulted in a higher stage loading

(Fig. 4.19.b).

4.4.3 Case 3: Performance optimization using stacking and

stagger with a different objective function

Case 3 is similar to Case 2 with except for the choice of the objective function. The

optimization objective is formed of a weighted sum of total to total efficiency (ηtt),

the streamwise vorticity downstream of the stator and rotor (Ω∗s, Ω
∗
r). Then it is

augmented by a constraint on the mass flow rate, see Eq. 4.7.

These individual objectives are the total to total efficiency ηtt, the streamwise

vorticity downstream of the stator and rotor Ω∗s and Ω∗r. The first objective represents

the overall viscous loss while the other two represent secondary flow losses downstream
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of the stator and rotor. The streamwise vorticity is directly related to secondary flow

which is a major source of losses in turbines. This choice of objective would be even

more useful in reducing secondary flow losses when the aerodynamic blockage is high

at inlet. In turbomachinery, loss mechanisms are strongly coupled and improving one

can compromise another one. For this reason, these three individual objectives were

incorporated into the optimization objective, Eq. 4.7.

The optimization is carried out as described in the previous sections and the

optimum design variables for this case, Case 3, are listed in Table 4.9. The original

and optimized stage are plotted in Fig. 4.15. The stator is leaned towards the PS

and is swept forward, while the optimum stagger distribution is equal to the original

one. The rotor is leaned (positively) towards the SS with a slight backward sweep

and an increase of nearly 4◦ in stagger angle throughout the span. The performance

of this case is presented in Table 4.9. Compared to the original case, the total to

total efficiency is increased from 87.18% to 89.09%, an increase of 1.91% . The

streamwise vorticity downstream of the stator and rotor are reduced by 16.1% and

7.8% respectively.

4.4.4 Physical implications of the optimized stages

The design variables namely: the blade lean and sweep (controlled by the stacking

line), and the blade stagger angles affect rather strongly the spanwise loading and

mass flux distributions. Lean is assumed positive when the blade tip moves towards

the SS. For a given stagger distribution, positive lean unloads the tip and loads the

hub [57]. In addition, a change in the stagger angle affects the spanwise variation of

the throat area, mass flux and reaction.

Consider Case 3 stator, the stagger distribution is not changed from the original

one. Moreover, the stator is leaned towards the PS and is swept forward, both effects

contribute to unloading the hub and loading the tip, see Fig. 4.11. As a result, the
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Figure 4.15: Case 3: original and optimum blade shapes
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separation region near the stator hub-TE was completely eliminated, as shown in

Fig. 4.13.c. In fact, Figs. 4.13 show a gradual elimination of the recirculation region

as we go from the original stage to Case 2 to Case 3 redesigns, which explains the

rise in stator exit static pressure as the aerodynamic blockage associated with the

stalled flow region is gradually eliminated hence reducing the average spanwise Mach

number, Fig. 4.17, consequently increasing the static pressure at rotor inlet. Hence

the drop in pressure (and temperature) across the rotor increases since the exit static

pressure is fixed. This explains the increase in stage reaction from the original stage

to Case 2 to Case 3 stages, see Fig. 4.19.a.

For Case 2 rotor, Fig. 4.12 shows that the pressure levels on the PS are higher

than those of the original rotor at all spanwise locations in due to the elimination of

the flow blockage and shock loss that were present near the stator hub-TE region. The

diffusion on the rotor SS in Case 3 is decreased compared with the other two cases

at all spanwise locations particularly at rotor mid-span where it is highly reduced, as

indicated in Fig. 4.12.b. Case 2 and Case 3 rotors have roughly similar geometric

parameters, as shown in Table 4.8, except for sweep and tip stagger angles. Comparing

Cases 1 and 2 the loading near the tip, depicted in Fig. 4.12.c, shows that Case 2 is

more aft-loaded and Case 1 is more front loaded.

For Case 2, the mass flux distribution downstream of the optimum stator and

rotor, plotted in Figs. 4.16.a and 4.16.b, shows clearly an increase in mass flux near

the hub, which is due to the elimination of hub-TE flow separation.

The stage loading for all cases, given in Fig. 4.19.b, shows that Case 2 loading is

slightly higher than the rest, moreover Table 4.9 shows that the streamwise vorticity

downstream of the rotor is the smallest; these observations are consistent with the

fact that ηts is highest for Case 1. (Note that the optimization objective for Case 2

is to maximize ηts.)

Figure 4.18.c shows that the trend of the rotor incidence is consistent with the
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a. Stator exit mass flux

b. Rotor exit mass flux

Figure 4.16: Spanwise variation of mass flux in the original, Case 2 and Case 3 stages
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a. Absolute Mach number at stator exit

b. Relative Mach number at rotor exit

Figure 4.17: Spanwise Mach number distribution in the original stage, Case 2 and
Case 3 stages
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a. Radial velocity at stator exit

b. Radial velocity at rotor exit

c. Rotor incidence

Figure 4.18: Spanwise radial velocity and incidence angle distribution for the original
stage, Case 2 and Case 3 stages 90
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rotor loading given in Figs. 4.12. It is believed that the changes in incidence will not

affect the losses in a drastic way, given that the blade LE is fairly thick.

The radial velocity of Case 2 and Case 3 are reduced at stator and rotor TE as

shown in Figs. 4.18.a & b. This will reduce the radial shift of the flow hence reducing

the 3D effects and making the flow more uniform.

4.5. Conclusion

This chapter presents several optimization strategies to reduce the losses in 3D ax-

ial turbine flows. Moreover, the physical implications of the design variables are

discussed.

The stacking line is proved to be an important design parameter for axial tur-

bines. It considerably influences the spanwise distribution of loading. The physical

implications of lean, sweep and bow of the blades are discussed. The QRBC param-

eterization proved to be an effective and practical technique to reduce the source of

losses in flow such as separation, secondary flow and etc. The optimization setup

evolves in many aspects in the order of the presented cases in this chapter. The

choice of design variables, parameterization, range of design variables, choice of ob-

jective function are modified so that better improvement are achieved. This ascending

rate of improvement is clear from the indicated results.

The efficiency difference between the original and optimum stages for stator

optimization case, Case 1, Case 2 and Case 3 are 0.93%, 1.34%, 1.68% and 1.87%,

respectively. The simultaneous stacking and stagger optimization with the presented

parameterization method is deemed to be an effective strategy to reduce the losses.

The stacking would change the overall spanwise loading while stagger angle change

can locally reduce losses such as separation caused by positive incidence angle.
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Chapter 5

Multi-point optimization of a gas

turbine stages

The design of a gas turbine results from a compromise of all requirements at design

point as well as off-design points. The flow features change drastically at off-design

conditions where the performance may be significantly reduced. Hence, a trade-off

between performance at design and off-design conditions is crucial. To address this

issue, multi-point optimization is carried out as it takes into account the performance

at both design and off-design conditions. The stacking optimization proved practical

to improve the performance of a gas turbine at the design point in the previous

chapter. In this chapter, the turbine stage presented in the previous chapter, E/TU-

3, is optimized over the full range of operation, at the design speed line.

5.1. Objective function

In this case the total-to-total efficiency and the streamwise vorticity at the stator

and rotor outlets are targeted for the optimization. The optimization objective is

written as a weighted sum of all individual objectives at all the operating points and
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is penalized with the design constraints. The objective function is defined as:

Fobj(X) = Min(C1

n∑
i=1

(1− ηi)
′ + C2

n∑
i=1

n∑
j=1

|η′i − η′j|+

C3

n∑
i=1

Ω′s
∗
+ C4

n∑
i=1

n∑
j=1

|Ω′si∗ − Ω′sj
∗|+

C5

n∑
i=1

Ω′r
∗
+ C6

n∑
i=1

n∑
j=1

|Ω′ri∗ − Ω′rj
∗|+

PT ) where i = 1, n (5.1)

All individual objectives are normalized between 0 and 1 as follows:

f ′ =
f − fmin

fmax − fmin

f = {ηtt,Ω∗s,Ω∗r}

Where X is the vector of design variables, which include the stator and rotor

lean and sweep angles, and the rotor bowing intensity. The summation is carried out

over n pre-selected operating points. Varying the back-pressure in the pre-determined

range while fixing the rotor speed allows for moving along a speed line where the mass

flow rate changes from minimum to maximum value, i.e. it allows for design and off-

design calculations. The first, third and fifth terms in the objective function, Eq.

5.1, attempt to maximize the total to total efficiency, ηtt, the average streamwise

vorticity at stator and rotor outlets, (Ωs
∗) and (Ωr

∗), while the second, fourth and

sixth terms terms would minimize any large difference in these objectives between any

two points, which would tend to keep them constant over the entire operating range.

The last term in the objective function is a penalty term (PT) that accounts for

any mechanical, geometric or aerodynamic constraints imposed on the optimization

process. A constraint may be the mass flow rate in a single point optimization case.

For this case the mass constraint is not applied as the mass flow rate changes between

different operating points. Therefore the PT term is zero. The summation is carried
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Table 5.1: Different coefficients in objective function equation

F(X) C1 C2 C3 C4 C5 C6

Obj1 1 0 0 0 0 0
Obj2 0 0 1 0 0 0
Obj3 0 0 0 0 1 0
Obj4 0.7 0 0.1 0 0.2 0
Obj5 0.5 0 0.25 0 0.25 0
Obj6 0.6 0 0.2 0 0.2 0
Obj7 0.5 0.1 0.15 0.05 .15 0.05
Obj8 0.16 0.16 0.16 0.16 0.16 0.16

out over n pre-selected operating points. In one of the optimization cases presented

in the following section, these pre-selected points are the design point and three off-

design points, i.e. n = 4.

The weights Ck where k = 1 → 6, are prescribed by the designer; they are

determined such that the different terms of the objective function have the desired

influence on the optimization process. The objective function and hence the optimum

solution are function of these coefficients.

The effect of the coefficients Ck on the optimum design was investigated by tak-

ing 8 different combinations, see Table 5.1 and using them to carry out optimization

Case 2, given in the next section. The corresponding results are shown in Table 5.2

which is indicating the influence of weights on results. It is desired to have non-zero

weights to have the influence of all designated objective function terms to the solu-

tion. The choice of weights is based on the best found efficiency which is implicitly

representative of other objective functions. The combination of weights Ck given by

obj7 in Table 5.1 is eventually chosen for multi-point multi-objective optimization.

5.2. Optimization at multiple points

The single point optimization of E/TU-3 case, presented in the previous chapter,

with stacking design variables showed a promising improvement. The multi-point
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Table 5.2: Optimum design variables proposed by ANN

F(X) αs βs αr βr wr1 ηtt

Obj1 −33.1 −7.2 19.9 −8.0 0.2 88.57
Obj2 0.0 −6.6 18.6 −1.9 0.0 87.71
Obj3 −1.8 11.6 19.7 −9.0 1.4 87.08
Obj4 −32.9 −7.2 19.6 −9.6 0.0 88.67%
Obj5 −29.6 −4.6 19.4 −7.7 0.0 88.48%
Obj6 −32.0 −5.8 18.1 −9.3 0.1 88.54%
Obj7 −32.2 −7.0 19.1 −8.4 0.1 88.60%
Obj8 −0.1 −3.7 19.9 −8.8 0.1 87.70%

optimization for this case is performed at the design speed line, i.e. 7800 rpm, with

a target to increase the efficiency across the whole speed line. The off-design experi-

mental data are well documented in [3].
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Figure 5.1: E/TU-3 turbine performance curve at design speed

Generally all speed lines converge at choke hence limiting the mass flow rate

as the back pressure is further reduced. The design point is usually close to choking

conditions. The isentropic efficiency is also changing as the mass flow rate is varying

while the rotational speed is fixed. At flow coefficient values lower than the design

value, the rotor incidence angle decreases while, at values higher than the design
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Table 5.3: Design speed line operating points

Case OP1 OP2 OP3 OP4

P3(Pa) 154023 141324 95123 75512

ṁred (Kg.
√
K/bar.s) 76.034 83.665 98.476 99.983

P01/P03 1.2135 1.3220 1.8357 2.1198
Δh/T01(J/(Kg.K)) 42.498 62.248 131.840 161.017

value the stator throat tends to choke. Given these facts, the isentropic efficiency

is dropping at these two extremes. Therefore multi-point optimization is necessary

to improve the performance over the entire operating range. For this purpose eight

points were selected on the design speed line to study the turbine performance. To

simulate the flow field at different points on the speed line, the static pressure at stage

exit (which is also the boundary condition at exit) for the CFD simulation is varied

while the boundary conditions at stage inlet are fixed, namely total pressure and

temperature and two flow angles. The results, given in Fig. 5.1, indicate a reasonably

good agreement between the numerical and experimental data. It must be mentioned

that experimental data are not available for the design speed line (nr = 6.9679).

Therefore the closest speed line (nr = 6.833) is chosen for comparison. Four points

on the design speed line (nr = 6.9679) are selected for optimization: points OP1,

OP2, OP3, OP4 as shown in Fig. 5.1 are considered sufficient to represent different

flow coefficients. OP3 is actually the design point. The stage outlet pressure, reduced

mass flow and stage loading of mentioned points are listed in Table 5.3.

All the geometry candidates are analyzed using CFD at all four points to create

the ANN database. Then four ANN networks are trained and tested for each objective

function and for the constraint. Each ANN has six inputs and one output. The inputs

include the five design variables of the stacking curve and one for the back pressure.

The output corresponds to the mass flow rate and one of the variables appearing in

the objective function namely the efficiency, streamwise vorticity at stator and rotor

outlets.
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Table 5.4: Original and optimum values of design variables and their range of variation

Case αs βs αr βr wr1

Min −36 −8 −5 −10 0
Max 0 12 20 15 3

Original blades −7.3 6.9 0 0 0
Optimum blades −34.1 8.3 19.7 −9.7 0.1

There are 50 members in each generation of GA. The cross-over and mutation

probabilities are set to 0.2 and 0.7 respectively. Two elite members are kept in each

generation to be passed directly to the next generation.

The ANN-based optimum stage profile is also simulated at all 4 operating points.

Figure 5.2.a shows that the optimization strategy has successfully improved the stage

performance at all four operating points. The design point efficiency is improved by

1.05%. The only improvement in terms of averaged streamwise vorticity is Ω∗r at OP3

and OP4.

The optimum stator and rotor blade shapes are indicated in Figs. 5.3 and the

optimum design variables are listed in Table 5.4. The stator blade is swept backward

and the rotor blade is swept forward. Stator lean is close to the lower limit whereas

rotor lean is toward the higher limit. Negative lean results in unloading the hub and

loading the tip while positive lean loads the hub and unloads the tip. The proposed

bowing intensity is zero. This is due to the fact that for this case the rotor inlet flow

is rather uniform. Note that a non-uniform flow can produce strong secondary flows,

and bowing the blade can push the end-wall flows to midspan where the flow is away

from end-wall the effects.

Physical characteristics

Knowing that the design point (OP3) is close to choke, the flow condition for OP4

is even more critical. The lower half-span is choked which explains the efficiency

drop at OP4. The Mach iso-surfaces of the original and optimum blades, which is
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Table 5.5: Comparison of single and multipoint optimization

Case α◦s β◦s α◦r β◦r wr1 ηtt% ṁ

Original −7.3 6.9 0 0 0 87.22 10.35
Single point opt. −36 −2.5 2.2 −9.7 0.05 88.56 10.64
Multi-point opt. −34.1 8.3 19.7 −9.6 0.1 88.58 10.77%

shown in Fig. 5.4 for OP4, indicates that half the suction side is supersonic for the

original geometry. Whereas, in the redesign case, however, the supersonic region is

significantly reduced, leading to a significant efficiency gain. Also the interaction

between the supersonic region and the boundary layer caused a large corner stall at

the stator hub SS-TE corner; this region is also reduced in the redesigned stator.

To visualize the separation region near the stator hub, streamlines near the SS are

plotted in Fig. 5.5 for the original and the redesigned stator where separation is

delayed, Fig. 5.5.b.

The design variables namely: the blade lean, sweep and bow, affect rather

strongly the spanwise loading distribution, as can be seen in the isentropic Mach

number plots at different spanwise locations of the stator blade, Fig. 5.6. In the

optimum design, the tip loading is increased while the hub loading is decreased, due

to the negative, see listed in Table 5.4. The separation can also be seen in Fig. 5.6.a

by noting the large drop of isentropic Mach number on the SS near the TE.

The rotor blade loading given in terms of the pressure coefficient, Fig. 5.7,

shows that it has increased near the hub and decreased near tip, this is due to the

positive lean present in the optimum blade case.

The choice of streamwise vorticity as an optimization objective to be minimized

for turbines is due to the fact that it is directly related to secondary flow which is a

major source of losses in turbines. This choice of objective would be even more useful

in reducing secondary flow losses when the inlet flow boundary layer or shear layer

exist. Figure 5.8 show contours the dimensionless streamwise vorticity at a quarter

chord downstream of the stator TE, where the maximum value of Ω∗r is reduced in
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a. Original geometry

b. Multi-point optimum geometry

Figure 5.4: Mach iso-surfaces of stator blade at OP4
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Figure 5.5: Reduction of corner stall in stator SS-TE region at OP4
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Figure 5.6: Isentropic mach across stator blade at OP3
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Figure 5.7: Pressure coefficient for rotor blade at OP3
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Figure 5.8: Streamwise vorticity at rotor trailing edge at OP4
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the optimum blade.

As a comparison between the single point and multi-point optimization results,

the Case 1 presented in chapter 4 is compared with the multi-point optimum case in

Table 5.5. The stator lean and rotor sweep are approximately identical in both cases.

The main difference is in the stator sweep and rotor lean angle. The total-to-total

efficiency of both cases at the design point is also nearly identical. However, mass

flow rate for the multi-point optimum case changed by 4.0%.

As a concluding remark, the single-point and multi-point optimizations of a

single-stage turbine were carried out using the same design variables. The optimum

blade shape corresponding to single-point optimization is different from the one for

multi-point optimization as indicated in Table 5.5. The efficiency improvement for

single point optimization is 0.4% and 1.05% for multi-point optimization.
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Chapter 6

Conclusion

6.1. Summary

Three dimensional aerodynamic shape optimization of turbine blades and stages is

presented in this thesis. Despite the complexity of the loss mechanism in turbine

blades, the use of genetic algorithm combined with the ANN proved to be an efficient

and practical choice particularly when used with an effective blade shape parameter-

ization method. Several optimization cases are carried out and are discussed; The

cases show the effectiveness of the present methodology in the automatic optimization

of turbine blades.

6.2. Concluding remarks

• The use of QRBC to parameterize the stacking line and stagger angle is a

key in the successful optimization of the cases presented in this work. With the

QRBC representation of the stacking curve, it can be parameterized with as low

as only five design variables to vary the lean, sweep and both compound lean

and sweep. The last two are referred to as bowing. The smooth hence feasible

shape provided by QRBC, makes it a useful method in stacking optimization
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of the blades.

• The application of GA as a global optimizer combined with ANN as low or-

der approximation proved to be a successful and practical method for shape

optimization with 3D viscous problems. The improvements made in the ANN

model increased the accuracy in computing the objective function and hence

reducing the overall computing time.

• When optimizing the rotor or the stator, the flow simulations should be done

for the whole stage to account for the interaction between the two blade rows.

• The reduced mass flow rate and the stage reaction must be constrained in the

stage optimization. Losses such as shock losses or secondary flow losses are

usually proportional to the mass flow rate. Keeping a constant reduced mass

flow rate ensures to have the same flow coefficient on the turbine map. This

would also reduce any inconsistency for turbine and compressor matching.

• The stacking of the blade profiles is an effective way of redistributing the span-

wise loading. This would basically help reduce losses associated with shock,

transonic flow, secondary flow, boundary layer flow and tip clearance flow. A

positive lean angle which moves the tip towards the suction side shifts the load-

ing from the tip to the hub. The negative lean moves the loading from the

hub to the tip. The compound lean or the bowing intensity, in the absence of

lean and sweep results in loading or unloading the end-walls depending on its

direction. The sweep also redistribute the loading. It can shift the loading in

the chordwise direction. The stacking optimization can significantly improve

the aerodynamic performance without even the need to redesign the individual

2D profiles. The stacking optimization for turbine rotor is tolerated from the

structural point of view as the blades are sufficiently thick.
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• Re-stacking can directly reduce some source of losses such as boundary layer

losses, secondary flow and shock losses. Re-staggering can influence the leading

and trailing edge losses. Simultaneous optimization of the re-stacking and re-

staggering of the blade profiles gives more control on the losses and hence more

room for improvement.

6.3. Contributions

The summary of the contributions of this work can be summarized as the following:

1. A practical stacking curve parameterization is developed by means of quadratic

rational Bézier curve for turbine blades. It integrates the geometrical param-

eters with the design variables of stacking namely the lean angle, sweep angle

and bowing of the blade. Its ability to represent the conic curves without the

chance of infeasible geometry for turbine blades such as having inflexion point

makes it unique.

2. Stagger angle spanwise variation is usually linear which is not necessarily op-

timum. A stagger angle spanwise distribution parameterization is developed

differently for stator and rotor blades of turbine by means of QRBC. The pa-

rameterization is developed in a way to keep the throat area of the blade nearly

constant for stator blades. The geometrical parameters are integrated with the

physical design variables.

3. Streamwise vorticity is introduced in the objective function of turbine stage

aerodynamic optimization to control directly the secondary flow loss which con-

stitutes a considerable portion of the aerodynamic loss. A simple and efficient

objective function is introduced which integrates the isentropic efficiency and

streamwise vorticity for gas turbine blade optimization.
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4. The current optimization methodology is improved with reducing the surrogate

model generalization error. Early stopping and k-fold cross validation, Chapter

2, are implemented into the training process of the ANN.

5. A simplified structural model is developed to assess the order of magnitude

of stress due to bending moments at the blade root while changing the blade

stacking of the blade.

6. Single-point and multi-point aerodynamic optimization of a turbine stage are

carried out with a developed parameterization of stacking curve and stagger

angle spanwise distribution.

6.4. Future work

• The compressor blades are usually swept back to reduce the adverse effects of

shocks. It would be interesting to apply the QRBC stacking parameterization

to compressor and or fan blades. Also the wind turbine blades have a high twist

in the spanwise direction. The use of QRBC in representing the wind turbine

spanwise blade twist distribution might be helpful.

• The surrogate-based optimization is highly dependent on the accuracy of the

surrogate model. The accuracy of the model can be improved during the op-

timization cycle by enriching the database that trains the model. The merit

function is a useful method to explore and exploit the design space efficiently.

It is definitely better to have it implemented in the current optimization algo-

rithm.

• This work opened the door for aerodynamic optimization of turbine blades.

however,
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• This work can provide a lot of knowledge about 3D effects of stacking and twist

of the blades based on the database of geometries and their physical implica-

tions. A keen designer can benefit from them and can further improve the flow

features with local optimization of presented optimum cases.
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Appendix A

Quadratic rational Bézier curve

(QRBC)

In this appendix, QRBC and its derivative are derived. Some features of the curve

are mentioned.

A.1. Definition

The rational Bézier curve adds adjustable weights to provide closer approximations

to arbitrary shapes. The numerator is a weighted Bernstein-form Bézier curve and

the denominator is a weighted sum of Bernstein polynomials. Rational Bézier curves

can, among other uses, be used to represent segments of conic sections exactly. Given

n + 1 control points Pi, the rational Bézier curve can be described by [42]:

�C(u) =

∑n
i=0

(
n
i

)
ui(1− u)(n−i)Piwi∑n

i=0

(
n
i

)
ui(1− u)(n−i)wi

(A.1)

QRBC is a second degree NURBS curve with three control points defined as

follows:
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−→
C (u) =

(1− u)2w0
−→
P 0 + 2u(1− u)w1

−→
P 1 + u2w2

−→
P 2

(1− u)2w0 + 2u(1− u)w1 + u2w2

(A.2)

The first derivative of the QRBC is:

−→
C ′(u) =

1

A2
[2(1− u)A− A′(i− u)2]P0w0 + [(2− 4u)A− 2A′u(1− u)]P1w1+

[2uA− u2A′]P2w2 (A.3)

where:

A(u) = ((1− u)2w0 + 2u(1− u)w1 + u2w2) (A.4)

Therefore the first derivatives at the end points are as follow:

C ′(u) =

⎧⎪⎪⎨
⎪⎪⎩

2w1

w0
(P1 − P0) u=0,

2w1

w2
(P2 − P1) u=1.

(A.5)

The slope of the curve at the end points is the function of the control points

and the weights as shown in the above equation. In fact the slope of the curve at end

points is the blade slope in the spanwise direction at hub and tip.
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Appendix B

Governing equations

In this section, the governing equations used in simulating the 3D viscous flow in the

turbine stage are briefly summarized. The flow motion of compressible viscous fluid

is governed by the (Reynolds averaged Navier-Stokes equations). Spalart-Almaras

turbulent model due to its simplicity and accuracy is chosen.

All the governing equations and turbulence model equations used for this re-

search work are solved by Ansys-Fluent CFD package. They are presented in the

following sections [58]

B.1. Reynolds averaged Navier-Stokes equations

The equations are derived from the conservation of mass (continuity), momentum

and energy. The equations of motion are derived from Newton’s second law for

compressible, viscous and Newtonian fluid.

In Reynolds averaging, the solution variables in the instantaneous (exact) Navier-

Stokes equations are decomposed into the mean (ensemble-averaged for unsteady flow

or time-averaged for steady flow) and fluctuating components. For the velocity com-

ponents:
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ui = ūi + ui
′ (B.1)

Where ūi and úi are the mean and fluctuating velocity componenets (i=1,2,3).

Likewise, for the pressure and other scalar quantities:

ui = φ̄+ φ′ (B.2)

where φ denotes a scalar such as pressure, temperature, ...

Substituting expressions of this form for the flow variables into the instantaneous

continuity and momentum equations and taking a time average (or ensemble) and

dropping the overbar on the mean velocity, ū yields the ensemble-averaged momentum

equations. They can be written in Cartesian tensor form as:

∂ρ

∂t
+

∂

∂xi

(ρui) = 0 (B.3)

∂

∂t
(ρui)+

∂

∂xj

(ρuiuj) = − ∂p

∂xi

+
∂

∂xj

[μ(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂ul

∂xl

)] +
∂

∂xj

(−ρúiúj) (B.4)

∂

∂t
(ρE) +∇ · (−→υ (ρE + p)) = ∇ · (keff∇T −

∑
j

hj

−→
Jj + (τeff · �υ)) (B.5)

where E is the total enthalpy and keff is the effective conductivity and τeff is

effective viscosity for viscous dissipation term.

Equations B.3 and B.4 are called Reynolds-averaged Navier-Stokes (RANS)

equations. They have the same general form as the instantaneous Navier-Stokes
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equations, with the velocities and other solution variables now representing ensemble-

averaged (or time-averaged) values. Additional terms now appear that represent the

effects of turbulence. These Reynolds stresses, úiúj, must be modeled in order to close

Equation B.4 . For variable-density flows, Equations B.3 and B.4 can be interpreted

as Favre-averaged Navier-Stokes equations, with the velocities representing mass-

averaged values. As such, Eq. B.3 and B.4 can be applied to density-varying flows.

Equation B.5 is the energy equation. keff is the effective conductivity (k + kt),

where kt is the turbulent thermal conductivity defined in turbulence model.
−→
Jj is the

diffusion flux of species j. The first three terms on the right hand side of the Eq.

B.5 represent energy transfer by conduction, species diffusion and viscous dissipation,

respectively.

B.2. Spalart-Almaras turbulence model

A brief overview of Spalart-Almaras turbulence model is given in this section. The

Spalart-Almaras turbulence model was developed

B.2.1 Description of the model

The transported variable in the Spalart-Allmaras model, ν̃ , is identical to the tur-

bulent kinematic viscosity except in the near-wall (viscosity-affected) region. The

transport equation for ν̃ is:

∂

∂t
(ρν̃) +

∂

∂xi

(ρν̃ui) = Gν +
1

σν̃

[
∂

∂xj

((μ+ ρν̃)
∂ν̃

∂xj

) + Cb2ρ(
∂ν̃

∂xj

)2]− Yν + Si (B.6)

where Gν is the production of turbulent viscosity, and Yν is the destruction

of turbulent viscosity that occurs in the near-wall region due to wall blocking and

viscous damping. σν̃ and Cb2 are two constants and ν is the molecular kinematic
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viscosity. Sν̃ is a user-defined source term. Note that the turbulence kinetic energy,

κ, is not calculated in the Spalart-Allmaras model.

The Reynolds-averaged approach to turbulence modeling requires that the Reynolds

stresses in Eq. B.4 be appropriately modeled. A common method employs the Boussi-

nesq hypothesis to relate the Reynolds stresses to the mean velocity gradients as

shown in Eq. B.2.1:

− ρúiúj = μt(
∂ui

∂xj

+
∂uj

∂xi

)− 2

3
(ρκ+ μt

∂uk

∂xk

)δij (B.7)

The Boussinesq hypothesis is used in the Spalart-Allmaras model. The advan-

tage of this approach is the relatively low computational cost associated with the

computation of the turbulent viscosity, μt. Only one additional transport equation

(representing turbulent viscosity) is solved. The disadvantage of Boussinesq hypoth-

esis is the assumption of isotropic scalar turbulent viscosity.
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Appendix C

Some notes on surrogate modeling

In this appendix the universal approximation theory is stated. This is an important

statement which sets the theoretical background for approximation with artificial

neural networks. Two generic function that usually used for validation are defined.

C.1. Universal approximation theory

The universal approximation theory for single layer network states [50]:

”Let ϕ(.) be a nonconstant, bounded and monotone-increasing continuous func-

tion. Let Im0 denote the m0-dimensional unit hypercubic [0, 1]m0 . The space of con-

tinuous functions on Im0 is denoted by C(Im0). Then, given any function f 	 C(Im0)

and ε > 0, there exist an integer m1 and sets of real constant αi, bi and wij where

i = 1, ...,m1 and j = 1, ...,m0 such that we may define:

F (x1, ..., xm0) =

m1∑
i=1

αiϕ(

m0∑
j=1

wijxj + bi) (C.1)

as an approximate realization of the function f(.); that is,
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|F (x1, ..., xm0)− f(x1, ..., xm0)| < ε (C.2)

for all x1, x2, ..., xm0 that lie in the input space.”

C.2. Used generic functions

The following generic functions [8] are normally used in surrogate modeling as test

functions.

Rosenbrock function:

f(X) =
n−1∑
i=1

[(1− xi)
2 + 100(xi+1 − xi

2)2] (C.3)

Speed reducer function:

f(X) = 0.78x1x2
2(3.33x3

2 + 14.93 ∗ x3 − 43.09)−

1.5 ∗ x1 ∗ (x6
2 + x7

2) + 7.47 ∗ (x6
3 + x7

3)+

0.78 ∗ (x4 ∗ x6
2 + x5 ∗ x7

2) (C.4)

C.3. ANN accuracy

All the explained techniques and improvements explained in Chapter 2 for the ANN

training code are applied for training the Rosenbrock function. The Rosenbrocks

function has been selected and modeled by ANN back propagation with a 2-31-1

architecture of the network which contains 2 input nodes (n=2), 31 hidden nodes
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Table C.1: Rosenbrock function approximation with ANN: Predicted value vs. actual
value of testing sample points

Cases Actual value Target value % Error
1 190.58 202.53 6.3
2 355.24 350.13 1.4
3 144.40 131.35 9.0
4 18.82 26.58 41.3
5 646.38 613.48 5.1
6 405.01 382.16 5.6
7 1585.90 1560.40 1.6
8 782.45 793.28 1.4
9 91.46 84.88 7.2
10 548.71 595.38 8.5
11 505.72 523.77 3.6
12 193.22 173.01 10.5
13 1153.90 1159.35 0.5
14 94.10 95.46 1.5
15 352.18 321.95 8.6
16 328.82 321.03 2.4
17 763.54 735.83 3.6
18 21.10 23.17 9.8
19 205.30 260.01 26.6
20 33.28 29.83 10.4

and 1 output node where xi varies between ±2.0. The approximation was done using

the 100 representative sample points selected using the Latin-Hypercube method over

the specified domain. Then 80 sample points are used for training. The hyperbolic

tangent function is chosen as a transfer function.

When all the modifications and improvements described in Section 2.3.3 are

implemented into the ANN model, the results thus obtained show a significant im-

provement over the model that we started with namely, Mengistu [8]. The average

and the maximum relative errors were reduced from 23% and 58% using the original

implementation of Mengistu [8] to 8% and 41% respectively, using the current ANN

model.
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