
Design and Verification of Clock Domain Crossing

Interfaces

Zaid Al-bayati

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Electrical & Computer Engineering)

at

Concordia University

Montréal, Québec, Canada

April 2012

c© Zaid Al-bayati, 2012

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Zaid Al-bayati

Entitled: “Design and Verification of Clock Domain Crossing Interfaces”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 __ Chair
 Dr. M. Z. Kabir

 __ Examiner, External
 Dr. J. Bentahar, CIISE To the Program

 __ Examiner
 Dr. G. Cowan

 __ Examiner
 Dr. Y. Savaria (Ecole Polytechnique)

 __ Supervisor
 Dr. O. Ait Mohamed

Approved by: ___
 Dr. W. E. Lynch, Chair
 Department of Electrical and Computer Engineering

____________20_____ ___________________________________
 Dr. Robin A. L. Drew
 Dean, Faculty of Engineering and
 Computer Science

ABSTRACT

Design and Verification of Clock Domain Crossing Interfaces

Zaid Al-bayati

The clock distribution network is an essential component in every synchronous

digital system. The design of this network is becoming an increasingly sophisticated

and difficult task due to the increasing logic capacity of chips and due to the fact that

this network has to reach out to each and every memory element in the chip. Multi-

clock domain circuits with Clock Domain Crossing (CDC) interfaces are emerging

as an alternative to circuits with a global clock. The design of CDC interfaces is a

challenging task due to the difficulty of dealing with two possibly unrelated clock

domains and the possibility of propagating metastability into the communicating

blocks making CDC interfaces difficult to design and verify. In this work, we present

a hybrid FIFO-asynchronous method for constructing robust CDC interfaces. This

method avoids the shortcomings of previous interfaces and provides reliable transfer

of data and control signals between different clock domains. A complete design is

proposed, fully implemented using 90nm TSMC CMOS technology, and simulated

using SPICE. Extensive simulations confirmed the robustness of the interface at dif-

ferent temperatures, different workloads, and varying frequency ratios. The reported

implementation provides a maximum throughput of 606 Mitems/s. Moreover, we

also address the challenging task of the verification of CDC interfaces. Most RTL

simulation tools available today are incapable of simulating these interfaces. In this

thesis, we present a framework for the formal verification of CDC interfaces. The

framework explicitly models metastability by taking advantage of the unique fea-

tures of probabilistic model checking. The framework is applied to common CDC

interfaces by verifying them using the PRISM model checker.

iii

ACKNOWLEDGEMENTS

It has been an amazing experience to accomplish my Master’s thesis in the

Hardware Verification Group (HVG) at Concordia. It certainly would not have

happened without the support and guidance of several people to whom I owe a

great deal.

First of all, I would like to thank my supervisor, Dr. Otmane Ait Mohamed.

He is the kind of professor and person any student would like to have as his supervi-

sor. He is knowledgable, understanding, supportive, and present in all phases of my

work. I am grateful that I had the opportunity to learn from him both in research

and in life in general.

Secondly, I sincerely thank Prof. Yvon Savaria, for co-supervising my research

work. Prof. Savaria has always given me expert advice, quality feedback and essen-

tial directions to continue this work. Also, I would like to thank Dr. Rafay Hasan,

this thesis would not have been possible without his guidance, support and encour-

agements. I am thankful to him for all the time he has given me to introduce me

into the topic and guide me throughout this work.

Next, I would like to thank all the members of HVG for being my family here.

Especially, I would like to thank two incredible friends who were always there when

I needed them, Ghaith Bany Hamad and Naeem Abbasi.

Last but not least, I would like to thank my family, especially my mother,

for their constant moral support, encouragement and their prayers. Any words of

compliment will never be enough to jusly appreciate their support during this work

and my whole life. Their support was invaluable in completing this thesis.

iv

To my mother, father, brother, and sister.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF ACRONYMS . xi

1 Introduction 1

1.1 Motivation . 1

1.2 Metastability . 3

1.3 Thesis Contribution . 5

1.4 Thesis Outline . 7

2 Background and Related Work 8

2.1 The Synchronizer . 8

2.2 CDC Design Styles . 10

2.2.1 Pausable Clocking . 11

2.2.2 Boundary Synchronization Based CDC Interfaces 14

2.2.3 FIFO Based CDC Interfaces 16

2.3 Verification of CDC Interfaces . 19

2.4 Existing CDC Verification Methods 20

2.5 Summary . 21

3 The Proposed Hybrid CDC Interface 22

3.1 Design Overview . 22

3.2 The Proposed Design . 23

3.3 The Proposed Protocol . 24

3.4 The Implementation . 26

3.4.1 The FIFO . 27

3.4.2 The Protocol-Pauser-S . 27

vi

3.4.3 The Protocol-Pauser-R . 31

3.4.4 The D Port and P Port . 31

3.5 Summary . 32

4 Simulation Results 33

4.1 General Simulations . 33

4.2 Temperature and Workload Variations 36

4.3 Frequency Variations . 36

4.4 Maximum Throughput . 37

4.5 Robustness to Metastability . 38

4.6 Comparison with Other Techniques 39

4.7 Summary . 41

5 Verification of CDC Interfaces 42

5.1 Overview of the Proposed Methodology 43

5.2 Probabilistic Model Checking . 44

5.3 The PRISM Model Checker . 46

5.4 The Proposed Verification Framework 47

5.5 Verifying the Boundary Synchronization Based CDC 49

5.6 Verifying FIFO Based CDC . 53

5.7 Verifying The Proposed CDC . 55

5.8 Summary . 57

6 Conclusion and Future Work 58

Bibliography 61

vii

LIST OF FIGURES

1.1 Master slave flip-flop . 3

1.2 Time to generate a stable value vs data arrival time for a latch [9] . 5

2.1 The two-flop synchronizer . 9

2.2 Pausable clocking (reproduced from [5]) 12

2.3 Simple boundary CDC interface . 15

2.4 FIFO based CDC interface . 17

3.1 Proposed hybrid FIFO-asynchronous CDC interface 24

3.2 STG of the proposed design . 26

3.3 FSM of the FIFO . 28

3.4 The protocol-pauser-S circuit diagram 29

3.5 The timing behavior of the protocol-pauser-S 30

3.6 Asynchronous FSM of the ports (Left: D output port, Right: P input

port) . 32

4.1 SPICE simulation . 34

4.2 SPICE simulation 2 . 35

4.3 Maximum throughput SPICE simulation 38

4.4 Parametric analysis at 0.01ps resolution in SPICE 39

4.5 Behavior comparison: (A- Clock pausing in conventional method, B-

No pausing in proposed method) . 40

5.1 Example of an MDP [35] . 45

5.2 The proposed verification framework 47

5.3 Metatsability model for a 0 -> 1 transition of a flip-flop 48

5.4 The boundary based CDC interface verified 50

viii

5.5 The sender side of the CDC . 50

5.6 The receiver side of the CDC . 51

5.7 Maximum probability as a function of number of cycles for boundary

synchronization CDC . 53

5.8 Maximum probability as a function of number of cycles for FIFO . . 55

5.9 Maximum probability as a function of number of cycles for the pro-

posed CDC . 56

ix

LIST OF TABLES

4.1 Temperature and workload variations 36

4.2 Frequency variations . 37

4.3 Comparison with FIFO based technique 40

5.1 Verification results for boundary synchronization CDC 53

5.2 Verification results for FIFO . 54

5.3 Verification results for the proposed CDC 56

x

LIST OF ACRONYMS

BDD Binary Decision Diagrams

CDC Clock Domain Crossing

CSL Continuous Stochastic Logic

CTMC Continuous Time Markov Chain

DTMC Discrete Time Markov Chain

FIFO First-Input First-Output

FSM Finite State Machine

GALS Globally-Asynchronous Locally-Synchronous

MDP Markov Decision Processes

MTBDD Multi-Terminal Binary Decision Diagrams

MTBF Mean Time Before Failure

PCTL Probabilistic Computational Tree Logic

PSL Property Specification Language

RTL Register Transfer Level

SoC System on Chip

SPICE Simulation Program with Integrated Circuit Emphasis

STG Signal Transition Graph

xi

Chapter 1

Introduction

1.1 Motivation

Most digital systems in use today are built in a synchronous manner. A global

clock signal passes through the whole chip and orchestrates its operation. However,

as digital designs grow fast in size and complexity, it is becoming more and more

difficult to provide a unified and accurate clock to the whole system. The clock dis-

tribution network is becoming a big headache for designers as it becomes more and

more difficult to deal with large variations in clock signal arrival times at different

locations in the chip. This is especially true for modern deep sub-micron technolo-

gies in the presence of interconnects of extremely varying lengths. Moreover, the

distribution of clock signals at the high frequencies used by today’s chips accounts

for a considerable share of power consumption and chip area [5].

In order to avoid these problems, the concept of Globally-Asynchronous Locally-

Synchronous (GALS) systems was developed. In this design paradigm, the system

is composed of several parts (domains) each running on its own clock. Communi-

cation between these blocks is usually achieved with asynchronous interfaces known

as Clock Domain Crossings (CDC). The CDC can be viewed as a wrapper that

1

encapsulates locally synchronous domains and controls any interaction between dif-

ferent blocks. This design style is being employed more heavily in System-on-Chip

(SoC) design. The ITRS2009 road map [4] states that by 2015 about 25% of long

interconnects in a SoC will comprise asynchronous handshaking.

The design of CDC interfaces is an inherently challenging task. These inter-

faces must decouple the timing issues of the communicating blocks and provide a

reliable transfer of data and control signals. The design of these interfaces is further

complicated by the danger of propagating metastability into the communicating

blocks. If the data input of a flip-flop comes from a clock domain that is different

from its own, it might violate the setup and hold requirements of the flip-flop. These

violations might lead to serious system errors if not handled properly. With proper

design of CDC interfaces, the probability of such failures can be made negligible.

The existence of errors in the design is usually detected with verification

tools. Verification methods are divided into functional (simulation) methods and

formal methods. Simulation at the Register Transfer Level (RTL) is still the most

widely used method. However, standard RTL simulation can not model the effect

of metastability [1]. This could delay finding some CDC errors to late stages in the

design cycle or worse these errors might not be found at all. Therefore, formal veri-

fication of CDC interfaces is the alternative needed for finding design bugs early in

the design cycle. Appropriate use of formal verification in verifying CDC interfaces

can substantially reduce CDC related errors.

This work tries to address CDC issues on both fronts. The design of reli-

able CDC interfaces is proposed. These interface try to minimize the probability of

metastability-related failures in these interfaces. In terms of verification, a method-

ology for formal verification of CDC interfaces is proposed.

2

1.2 Metastability

Static storage elements in digital circuits typically have two stable operation points

(logic ’0’ and logic ’1’). When the data at the input of a level-triggered storage

element such as a flip-flop changes, its output remains the same until the clock

signal changes. With the change in clock, the new output is observed after a small

propagation delay. The flip-flop operates normally as long as there is adequate

timing separation between the change in its data input and its clock input. This

period of time in which it is forbidden to change the data input is referred to as the

setup time (before the clock edge) and the hold time (after the clock edge).

If the input does change during the forbidden zone the clock-to-output delay,

referred to as TCQ, will increase. In fact, as the input change gets closer to the clock

edge, the flip-flop takes longer to respond because the energy supplied by the overlap

between data and clock inputs gets less and less, so it takes longer and longer to

decide [2]. This indecision of whether the output should be 0 or 1 is referred to as

metastability [3]. During this decision period, the output of the flip-flop will be at

an intermediate level between 0 and 1. This value is roughly mid-way between GND

and VDD. However, exact voltage levels depend on transistor sizing as well as on

process variations [3].

To better understand metastability in flip-flops, assume the master-slave flip-

flop shown in Figure 1.1.

���

��� ���

���

�

���

���
���

���

�

�

�

Figure 1.1: Master slave flip-flop

3

Assume that the D input is rising just before the rising edge of the clock.

Initially CLK is low and CLK is high. As D starts to rise, the rise is propagated

across the transmission gate and the node X starts to rise moving from logic 0 to

logic 1. If the clock toggle occurs just as node X is around its metastable point (for

the 90nm TSMC technology we used, this point was at about 0.4 VDD), then the

cross-coupled inverter latch will be disconnected from the input. In this situation,

node X will not have enough strength to force a clear value at the output of the

inverter, the latch will therefore hover around its metastable level for an unknown

period of time. The metastable value can propagate to the Q output causing a

failure in the logic beyond.

Metastability does not only occur because the data and clock inputs change

at the same time. Other situations might result in metastability such as when the

voltage level of the input is not an appropriate logic 0 or logic 1. Metastability might

also occur because of a badly timed clear or reset signal or because of a short clock

pulse (due to bad clock gating) [3]. However, we will only focus on metastability

caused by unsynchronized data since it is more common and more difficult to deal

with than other causes of metastability.

A metastable flip-flop will eventually settle to either high or low logic value,

however, the time taken to settle to one of the two values, known as the resolution

time tr, could be long. This time depends on the initial voltage difference between

the two terminals of the cross-couples inverter latch and hence on the data arrival

time. Figure 1.2 shows the time needed by a CMOS latch to converge to a stable

value as a function of the data arrival time [9].

When data arrives at time tmeta, the latch requires the maximum time to

resolve. Theoretically, the time required to resolve the output would be infinite [4]

but practically, noise will force it to converge. Furthermore, the value to which a

metastable flip-flop eventually settles is not known in advance. Environmental noise

can push the flip-flop to either one of the two stable logic operation points. These

4

Figure 1.2: Time to generate a stable value vs data arrival time for a latch [9]

issues make the design of interfaces that inherently have the potential to become

metastable difficult. This is especially true for clock domain crossings which occur

at the intersection of two possibly unrelated clock domains.

1.3 Thesis Contribution

It is desirable to have a clock domain crossing that does not fall into metastability.

However, the physical limitations of circuits make it impossible for flip-flops in these

interfaces not to fall into metastability. A good design should reduce the probability

of falling into metastability as much as possible and reduce the probability of its

propagation into the communicating domains. In this work, a robust novel clock

domain crossing interface is proposed. Furthermore, as the verification of CDC in-

terfaces is necessry to reduce their errors and since simulation methods are incapable

of showing metastability-related errors, a framework for the formal verification of

CDC interfaces is proposed.

In terms of reviews of related work, we believe our contribution can be sum-

marized as follows:

5

• The thesis proposes a novel hybrid CDC interface overcoming limitations in

two previous CDC interfaces, namely pausable clocking and FIFO based in-

terfaces.

• A novel circuit named as protocol-pauser is designed at the transistor level.

This circuit constitutes the most critical part of the proposed CDC interface.

• All the circuits are implemented at the transistor level using 90nm TSMC

CMOS technology. Extensive SPICE simulations under different settings are

performed to analyze the performance and demonstrate the robustness of the

interface.

• A new formal verification methodology for CDC interfaces is proposed. Unlike

previous work on CDC verification, the new methodology explicitly models

metastability and captures its probabilistic behavior by using Markov Decision

Processes (MDP) which model both stochastic and non-deterministic behavior.

• Two common CDC interfaces; namely FIFO based interfaces and bundled

data protocol based interfaces are verified using the new methodology. The

proposed CDC interface is also verified using the new approach. MDP mod-

els for these interfaces are written and their properties are verified using the

PRISM model checker.

6

1.4 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2 provides background information on CDC interfaces and reviews

some common CDC designs. The chapter also discusses the concepts of syn-

chronizers and their Mean Time Before Failure (MTBF). Finally, the chapter

provides a brief introduction into the verification of CDC interfaces and the

existing techniques in this field.

• Chapter 3 discusses our proposed hybrid FIFO asynchronous CDC interface.

The chapter elaborates on the overall protocol and then discusses the imple-

mentation details block-by-block focusing on the novel protocol-pauser design.

• Chapter 4 presents the results of electrical SPICE simulations for our pro-

posed CDC interface. The proposed interface was simulated under varying

workloads, different temperatures, different frequencies, and random phase

shifts. The results of these experiments are shown in Chapter 4.

• Chapter 5 presents our verification methodology for CDC interfaces and dis-

cusses our new approach of using probabilistic model checking for verifying

CDC interfaces. The chapter also discusses applying the methodology to three

different CDC interfaces.

• The thesis concludes by summarizing the proposed work and providing some

future research directions in Chapter 6.

7

Chapter 2

Background and Related Work

In this chapter, some background information necessary to understand the thesis

are provided. A related work survey both in the design and verification of CDC

interfaces is presented. The chapter starts by discussing an essential component in

most CDC interfaces; namely the synchronizer, then in Section 2.2, a review of the

most important existing CDC interfaces is given. A focus is made on those closely

related to our proposed work. In Section 2.3, the verification of CDC interfaces is

addressed while in Section 2.4, a review of the related works in the field of CDC

verification is given. Section 2.5 summarizes this chapter.

2.1 The Synchronizer

Before going into the design details of these interfaces, a distinction must be made

between three terms that are used extensively throughout this document:

• Globally-Asynchronous Locally-Synchronous (GALS) design: refers to the

system-level design paradigm in which a system is composed of several blocks.

Each block is synchronous by itself (runs on a single clock) but the blocks are

asynchronous to each other (run on different clocks).

8

• Clock Domain Crossing (CDC): refers to the interfaces that connect the locally-

synchronous blocks in a GALS system.

• Synchronizer: is a circuit-level term that refers to a device that samples an

asynchronous signal and outputs a version of the signal that has transitions

synchronized to a local or sample clock [6].

A GALS system might contain one or more CDCs which might contain one or

more synchronizers.

The most common synchronizer employed today is the two-flop synchronizer

shown in Figure 2.1.

��

�

��	

���

�

�

��	

���

� ����

���

Figure 2.1: The two-flop synchronizer

The job of the synchronizer is to retime the signal to make it synchronous to

the new domain and mask the effects of metastability. The first flip-flop can fall

into metastability if its input comes from a different domain. The function of the

second flip-flop is to make sure that metastable levels are not propagated into the

logic beyond. The assumption here is that metastability will resolve within one clock

cycle. If this assumption does not hold, then the two-flop synchronizer fails. The

input to the first flip-flop (R0 in the figure above) must come directly from a flip-flop

in the sender domain without having any combinational logic in between, otherwise

glitches will significantly increase the failure probability of the synchronizer [7].

This failure probability of the synchronizer is usually characterized using the

Mean Time Before Failure (MTBF). MTBF is given by [8], [10], [39]:

9

e
tr
τ

fdfclkTo
(2.1)

where :

tr: resolution time (including flip-flop clock to output time)

τ : resolution time constant

fd: the average frequency of data transitions

fclk: clock frequency

To: the asymptotic width of the metastability window with no resolution time.

τ is a circuit-dependent parameter. It reflects the circuit ability to resolve interme-

diate voltage levels [9]. To is a mathematical parameter that can be obtained by

circuit simulations and has no practical meaning. It is used to derive the metasta-

bility window Tw (the period of time in which input data transitions can not be

resolved within a given resolution time tr). It is related to Tw by [9]:

Tw = Toe
−tr/τ (2.2)

2.2 CDC Design Styles

Synchronizers are an essential components in most CDC interfaces. A question that

might rise here is that why it is not sufficient to use synchronizers only to pass

data from one clock domain to another? Why have the CDC interface at all? The

answer is that it is fine to use just a synchronizer if we are passing a single control

10

bit from one domain to the other. However, most CDC transfers are usually data

transfers or multi-bit control signals. Attempts to synchronize the data usually lead

to catastrophic results even if all data lines toggle simultaneously since some bits

will take one cycle more than others leading to data loss or inconsistent control

states [3].

To overcome these problems, the topic of CDC interface design has received

much attention from researchers. Different CDC designs have been proposed with

the general aim of having a CDC interface that has high reliability, low latency

and high throughput. Based on the hardware architecture, there are three main

strategies for implementing interfaces in GALS systems [11]:

• Pausable clocking

• Boundary synchronization based CDC interfaces

• FIFO based CDC interfaces

The last two interfaces apply brute force synchronization using synchronizer

circuits and surround the synchronizer with a suitable protocol to achieve correct

synchronization. Pausable clocking does not use synchronizers. Instead, it uses a

different mechanism which will be elaborated on next. The details of these three

interfaces are discussed in the following sections. Special focus is given to pausable

clocking interface because our design is closely related to this interface.

2.2.1 Pausable Clocking

Pausable clocking is a GALS interfacing technique that does not try to tackle the

problem on the data lines, but instead shifts the local clock to avoid having tim-

ing violation [12]. The idea is to avoid synchronization altogether. Instead, this

technique stops the clocks of the locally synchronous blocks when there is a data

transfer and releases them when the transfer is over. One of the earliest works on

11

this technique was proposed by Chaprio in [13]. However some of his assumptions

are invalid for today’s designs [5]. One of the first practical circuits for pausable

clocking is proposed in [14] and further improved in [5]. An example circuit for

pausable clocking is shown in Figure 2.2.

�

��	

���

�

�����

	
��
��

��

	��

��
��
�����

��� ���

�
 � ��
��

��
�

��� ��� �

��	

���

�

�
����� �����
��
�� �

�
����� �����
��
�� �

���

�����

�

��
��
���� �

 ��

��	

���

�
	� �

Figure 2.2: Pausable clocking (reproduced from [5])

As shown in the figure, the circuit uses controllable clock generation units

usually implemented as ring oscillators with mutual exclusion (ME) elements. When

a request is made to the clock generation unit for clock pausing, the next positive

edge of the clock gets postponed until the request is de-asserted. The D and P ports

are used to perform the asynchronous handshake between the two blocks. They are

implemented as asynchronous state machines. The protocol followed by the interface

is described in [5] and can be summarized as follows:

1. When the sender puts data on the data line, it enables the D port through a

transition on DEN .

2. The D port sends a clock pausing request to the clock generation unit through

Ri1, consequently LCLK1 in Figure 2.2 pauses. Then, the D port receives

the Ai1 signal acknowledging the pause of LCLK1, consequently the Rp signal

12

is asserted, which informs the receiver that the sender has requested a data

transfer.

3. If the receiver can accept data (a transition on PEN indicates whether the

receiver is ready to accept data or not), the P port raises the Ri2 signal, which

stops the receiver clock (LCLK2).

4. Upon receiving Ai2 assertion, the P port asserts Ap. This positive edge of Ap

is used to latch the data in the data path while the clock is still stopped.

5. Once the data is latched, the protocol terminates with the release of the re-

ceiver clock followed by the release of the sender clock.

Due to the fact that this interface employs clock stretching, it has several

features that makes it an attractive option. These features can be summarized as

follows:

1. There is no fear of metastability, thus it avoids latency due to two flip-flop

synchronizers. Latency is defined as the time taken from the moment the

sender puts a data item on the data bus till it is received by the other side.

2. Clock frequency ratios between communicating modules can be arbitrary.

3. Two communicating modules may also have arbitrary phase discrepancy.

The ISL Laboratory at the Swiss Federal Institute of Technology have im-

plemented several chips that use pausable clocking [18]. Otherwise, this technique

did not have much success in commercial circuit design. In summary, the following

problems with pausable clocking hampered its adaptation into chip design:

1. Ring oscillators are not practical for use in commercial circuit production.

They are very sensitive to process, voltage, and temperature variations [11].

13

2. When the clock is paused, sometimes it is difficult to stop the registers of the

whole system at once. Hence, the requirement of pausing clocks may lead to

clock edge discrepancy between the clock source and the registers, which may

lead to malfunctioning of the system due to inability of instantaneous pausing

of the clock at terminal registers. This phenomenon is known as the clock

over-run issue [15].

3. Restarting the clock leads to timing mismatches, known as jitter. Indeed,

after restarting a clock that was completely stopped, the dynamics of clock

generating circuits make them prone to period by period duration mismatches

[16].

4. The pausing of the clock halts the complete system. Hence no activity takes

place during the communication phase, and the system loses performance. A

pitfall is to believe that energy consumption can be advantageously reduced

thanks to clock pausing, however, if the clock is stopped, the system will take

longer to finish its job.

5. Stretching the clock often would make the effective clock frequency determined

not by the preset clock generator frequency but by communication with other

synchronous modules. This is not desirable, especially in systems where the

frequencies need to meet performance and power requirements [17].

In chapter 3, we will show how our proposed design can be used to overcome

these shortcomings.

2.2.2 Boundary Synchronization Based CDC Interfaces

Boundary synchronization based CDC interface is the most general and most com-

mon interface for applications that do not require a high throughput. This CDC

14

interface consists of two two-flop synchronizers (one at each end). These synchro-

nizers synchronize control signals only. As mentioned earlier, synchronizing data

usually leads to catastrophic results. This type of interfaces is discussed in several

references such as [6], [19]. The interface will be explained in terms of the four-way

handshake protocol but two-way handshaking can also be employed. An example

circuit for this interface is shown in Figure 2.3.

����

!��"��
#!$

��

!��"�� �����%��

��
�

	� �

�

�

��	

���

�

�

��	

���

�

�

� �	

���

�

�

� �	

���

�
�����%��
#!$

����

�

���&

��

�&��

Figure 2.3: Simple boundary CDC interface

The protocol followed by the circuit is described as follows:

1. The sender asserts the RS signal requesting a data transfer. RS gets syn-

chronized into the receiving domain using the two-flop synchronizer raising

RR.

2. The rise in RR enables the receiver register (REGR in the figure) and the fol-

lowing clock edge latches the data. In parallel, RR is sampled by the receiver’s

finite state machine (FSM). The FSM sends an acknowledgement (raises AR)

to the sender.

3. AR is synchronized by the sender synchronizer causing AS to rise.

15

4. The sender’s FSM drives RS down in response to AS. RS is synchronized into

the receiver de-asserting RR.

5. The receiver’s FSM de-asserts AR in response to RR. The negative edge of

AR is synchronized into the sender bringing down AS. Only when AS gets

de-asserted, is the sender allowed to make a new request.

This technique is simple and low cost. It has a latency of 2-3 receiver clock

cycles depending on the phase relationship between the sender and the receiver.

However, its main shortcoming is that it has a low throughput. If the receiver

processes the request immediately, then the sender can issues a new request after 8-

12 clock cycles (4-6 sender cycles + 4-6 receiver cycles) for four-way handshake. For

two-way handshake, this number can be reduced to 4-6 clock cycles (2-3 sender +

2-3 receiver) at the expense of increased complexity. All four synchronizations done

in this protocol are subject to metastability if the first flip-flop does not settle into

0 or 1 within one cycle. One solution would be to add a third flip-flop to increase

reliability but this will further increase the latency and further reduce the already

low throughput. To provide a high throughput CDC interface, FIFO based CDC

interfaces are used. These interfaces are discussed next.

2.2.3 FIFO Based CDC Interfaces

FIFO-based CDC interfaces [40], [20], [21] are the most widely used CDC interfaces

for applications that require high throughput data transfers. One of the prominent

FIFO based CDC interfaces is described in [20]. This interface uses a dual-clock

circular queue to transfer data across clock domains. The sender places data at the

end of the queue and the receiver retrieves them from the front. Hence, the queue

has two interfaces; a put interface controlled by the sender clock that takes data

from the sender and a get interface controlled by the receiver clock and supplies

data to the receiver. This CDC is shown in Figure 2.4.

16

#'#(�����

!��"�� �����%��

���
�
���
����

���
�
���
����

#��� "�����
�

�&
�� "�����
�

����

������� �
���� �

�
�����

�

�
�����

�������

�������� ��������

�������

�������

�
��

�
����

Figure 2.4: FIFO based CDC interface

As shown in the figure, the FIFO consists of the FIFO cells, two port con-

trollers (one for the get interface, and one for the put interface), and two FIFO

state detectors (empty detector and full detector).

The operation of the interface is described in details in [20] and can be illus-

trated as follows:

• When the sender wants to send data, it is put into data put bus and the sender

makes a request through req put.

• If the queue is not full, the put controller will allow the request to proceed by

asserting the en put signal which enables the queue cells for writing operations.

• The put interface has a put token. The use of tokens allows the data to remain

in its place when it is enqueued. The token acts as a pointer to the cell at the

end of the queue. Once the data item is enqueued, the token moves to the

next cell.

• The get interface has a get token indicating the cell at the start of the queue.

This interface operates in a similar manner to the get interface. Requests

17

made by the receiver are processed only if the empty detector indicates that

the queue is not empty. In this case data is provided to the receiver through

the data get bus.

This mechanism allows this CDC interface to decouple the reading and writing

operations. Each operation is controlled by its respective clock. The signals en and

fn provide single cell state information on whether each cell is empty/full to the

empty and full detectors. The tricky part of the design is the empty and full detectors

since the overall state of the queue depends on both get and put operations which

are controlled by two different clocks. Therefore, these signals are asynchronous to

the sender and receiver. Synchronizers, typically two-flop synchronizers, are used

to synchronize empty and full signals before they get outputted by the detectors.

However, these synchronizers add latency to the circuit which means that there

could be a delay in reading these two signals by the sender and receiver. Three

problem might arise from this situation:

• Writing to a full queue: This problem is caused by the delay in generating

the full state signal attributed to the use of the two-flop synchronizer. This

problem is solved by changing the definition of the full signal to be ”the FIFO

is considered full when there are either 0 or 1 empty cells left” [20].

• Reading from an empty queue: This problem is caused by the delay in gener-

ating the empty state signal attributed to the use of the two-flop synchronizer.

This problem is solved by changing the definition of the empty signal to be

”the FIFO is considered empty when there are either 0 or 1 cells filled” [20].

The signal ’ne’ in figure propagates this information to the port controller.

• Deadlock: Caused by the new empty definition. If the queue contains one data

item, it might never be read if the ’ne’ signal is used alone. Therefore, the

signal ’oe’ which is true only if the queue is really empty is used to discover

this state and allows the receiver to retrieve this item.

18

The main advantage of the FIFO interface is that it has a high throughput.

It has a maximum throughput equal to one transfer every clock cycle of the slower

domain. The FIFO can work at this rate in bulk transfers if it doesn’t become empty

or full. This interface doesn’t pause the clock allowing the sender and receiver to

continue doing useful work which allows them to finish other tasks faster.

However, FIFO interfaces have some drawbacks which can be summarized as

follows:

• It has a relatively high latency of 3-4 cycles. Latency is the time taken from

the moment the sender puts a data item on the data bus until it is received by

the other side in an empty queue. This introduced latency might be significant

and unacceptable for high-speed applications [11].

• The FIFO CDC is not very flexible in terms of clock frequency ratios. Large

differences in clock frequencies cause the FIFO to fail. For example, if the

receiver’s clock frequency is more than three times the sender’s frequency, the

receiver might read empty cells [20].

• Area requirement is relatively high and increases with FIFO size.

• Compared to pasusible clocking, the FIFO uses synchronizers which might

propagate metastability into the design.

• Throughput is significantly decreased if there is a large mismatch in the com-

munication rate and the FIFO constantly hits the empty and full states incur-

ring latency penalties [20].

2.3 Verification of CDC Interfaces

CDC interfaces are not trivial to design, it is possible to make simple mistakes that

will turn a safe CDC interface into a buggy one. Therefore, verifying CDC interfaces

19

is an important step in their design cycle. Verification methods are divided into

funtional verification (simulation) and formal verification. RTL simulation, the most

common method used by designers to check their designs, typically can not find CDC

errors. Digital simulation programs usually generate X’s when they recognize setup

and hold violations on CDC signals. This can frequently cause gate-level simulations

to fail [7]. Moreover, RTL simulation can not model the effects of metastability [1]

discussed earlier. Therefore, formal verification based methods are needed to check

these interfaces.

Formal verification has recently become an important method to check com-

plex systems. Formal verification uses methods based on mathematics to check the

correctness of systems. Its use has been increasing in industrial applications as

available tools improve in performance.

Formal verification has recently been applied to verify CDC interfaces. The

next section discusses the most important works in this field.

2.4 Existing CDC Verification Methods

Several methodologies have been presented for the formal verification of CDC in-

terfaces. One of the most important works on CDC verification is presented in

[23], [42]. In their work, the authors discuss two methods for verifying CDC inter-

faces. In the first, verification rules are generated as PSL properties from the Signal

Transition Graph (STG) representing the protocol specification and are applied to

RuleBase model checker. These rules verify that STG events occur in order and that

each event happens only in the appropriate states. The second method checks the

correctness of data transfers and checks missing or duplicated data. The authors,

however explicitly mention that the probability of metastability not resolving in one

cycle is ignored in their approach.

Another interesting work is presented in [24]. In this work, the authors use SAT

20

based bounded model checking to verify CDC protocols. The focus is on modeling

multiple clocks in the bounded model checker. They assume that setup and hold

times are zero. Different clocks are modeled by assigning a state variable for each

clock which can be either 0 or 1 at each verification tick.

In [25], the authors use SAL model checker to proof the correctness of a simple

CDC interfacing circuit, namely the boundary based CDC interface discussed earlier.

The interface is modeled as three interacting processes and a proof is generated to

check that the circuit satisfies a basic invariant.

In [26], [41], a methodology for verifying multiple clock designs in SMV model

checker is presented. The work focuses on dealing with the zero-delay abstraction

performed by formal verification tools. The output of each gate is set to a random

value for a single verification step for all gates or components along the critical path

between two domains. The authors acknowledge that this method might lead to

under- or over-approximations if there is more than one critical path in the interface;

however, they assume that these situations do not arise. In reality, hardware paths

have significant variations in delay leading to situations that are totally different

from the cases predicted by the approach.

2.5 Summary

In this chapter, the concepts of GALS and synchronizers and their relation to CDC

interfaces were presented. The operation and characteristics of the two-flop syn-

chronizer were discussed and the concept of MTBF was explained. Related work in

CDC design was reviewed especially three common CDC interfaces: pausable clock-

ing, FIFO based, and boundary based CDC interfaces. Finally, the verification of

CDC interfaces was briefly addressed and the most important existing approaches

for verifying these interfaces were explained.

21

Chapter 3

The Proposed Hybrid CDC

Interface

In this chapter, our new CDC interface; the hybrid FIFO-asynchronous CDC in-

terface is presented. The chapter starts by giving a brief introduction about the

proposed design in Section 3.1. Section 3.2 discusses the different components and

their functions. Section 3.3 describes the protocol accompanying our CDC interface

and highlights its differences from the conventional pausable protocol. In Section 3.4,

the implementation details of the important design blocks are discussed. Emphasis

is given to the novel protocol-pauser block. Section 3.5 summarized the chapter.

3.1 Design Overview

As discussed in Chapter 2, pausable clocking is one of the most important GALS

interfacing techniques, however, it suffers from several problems. To improve on

this technique, we need to avoid the performance penalty associated with pausable

clocking and avoid ring oscillators. In this chapter, we present a hybrid FIFO-

asynchronous method for constructing robust CDC interfaces. This method is built

upon the traditional pausable clocking interface and extends it with several new

22

components. A complete design is proposed and fully implemented using 90nm

TSMC CMOS technology.

The proposed interfacing methodology uses the bundled data protocol and a

customized FIFO. The use of FIFOs avoids performance penalty due to pausing

and clock over-run issues as it decouples the locally synchronous modules from

clock domain crossing interfaces. Moreover, bundled data protocol is used in a

pseudo-deterministic way, similar to pausable clocking interfaces, hence, making

the interface highly robust to metastability. Unlike conventional pausable clocking,

this interface avoids completely pausing the locally synchronous modules. Unlike

FIFO based interfaces, this interface works with any frequency ratio between the two

modules. To achieve these features, the proposed solution leverages Signal Transition

Graphs (STGs) implemented at the circuit level. SPICE circuit simulation results

confirm the operation and robustness of the design at maximum workloads, and

arbitrary frequency ratios, over a temperature range of -50 to 50 degrees Celsius.

3.2 The Proposed Design

In this section, the operation of the proposed design and its critical blocks are briefly

described. This protocol is implemented in hardware as shown in Figure 3.1.

The middle blocks in Figure 3.1, the D and P ports are asynchronous machines,

borrowed from the conventional pausable clocking methodology presented in [5].

In addition to these ports, the interface circuit contains four additional blocks: a

synchronous FIFO, two special circuits that are called protocol-pausers, one at each

end, and an Ai generator block.

Broadly, transfer requests from the sender block accumulate at the FIFO.

This synchronous FIFO blocks the sender from sending more data if it sees the

possibility of an overflow. The D and P ports are responsible for performing the

asynchronous handshake between the two domains. These two blocks are controlled

23

�

��	

���

�

#'#(

�����
�����

��
�
�
�
������) !

���

	
��
��

��	��

�� ����

��� ���

�
 � ��
��

��
�

��
�
�
�
������) �

��� ���

��
�
	
 �
�
�

�

�
����� �����
��
�� �

�
����� �����
��
�� �

�
�"

���
�

�����

�!"

�

��	

���

�	� �

Figure 3.1: Proposed hybrid FIFO-asynchronous CDC interface

by synchronous logic. The two protocol-pausers form the interface between syn-

chronous and asynchronous logic. These two blocks pause the control signals and

release them when they cannot cause timing violations at the sender or receiver,

which is the most challenging task in this design. We will first discuss the transfer

protocol followed by the hardware implementation of the various blocks.

3.3 The Proposed Protocol

Our proposed design is based on the bundled-data asynchronous handshaking pro-

tocol. To achieve a level of determinism (and to avoid conventional synchronizers),

a few modifications are done in the protocol. These modifications lead to a unique

signal sequence described in the following:

1. When the sender requests to send data, the FIFO toggles the DEN signal

activating the D port in Figure 3.1.

2. The D port raises the Ri1 signal, which in turn generates the Ai1 signal using

Ai1 generator. The D port, upon receiving the Ai1 signal, sends a request to

send data to the receiver using the Rp signal.

24

3. If the receiver can accept data (a transition on PEN indicates whether the

receiver is ready to accept data or not), the P port raises the Ri2 signal. The

protocol-pauser-R holds the processing of the request until the next positive

edge of the receiver clock. With the assertion of LCLK2, Ai2 is also raised.

4. Upon receiving Ai2, the P port asserts Ap. This positive edge of Ap is used

to latch the data into the data flip-flops with a small deterministic delay with

respect to the receiver clock. Therefore, data becomes available to the receiver

side without violating its timing constraints.

5. Following the RTZ signaling, the handshake signals Rp and Ap are negated.

The protocol-pauser-S generates a sender-safe ACK signal once the Ri1 signal

is negated.

An obvious benefit in the proposed protocol as compared to the conventional

pausable clocking protocol is that it does not require pausing of the clocks. This has

been made possible through the use of protocol pausers, which pause the transfers

managed by the protocol rather than pausing the locally synchronous blocks. This

allows the blocks to continue their normal operation thus, improving the perfor-

mance of the system. Comparison of the protocols shows that in the conventional

protocol, the clock is paused as soon as Ri is asserted (steps 2, 3 in pausable proto-

col description in Section 2.2.1). Whereas the proposed protocol halts the operation

of the interface (step 3 and 5 above). This is achieved by replacing the control-

lable clock generation units (Clock Gen. 1 and Clock Gen. 2 in Figure 2.2) with

protocol-pausers. In addition, data latching is performed while clocks are stopped

in the conventional method. In the proposed design, it is performed while the clocks

are running but the protocol-pausers ensure that there is no timing violation using

their novel circuit design, which is further elaborated in the next sections. The sig-

nal transition graph representing the transfer protocol is shown in Figure 3.2. The

superscript T is used to indicate a signal transition, whether positive or negative.

25

The bullets (tokens) indicate the initial state of the system. The implementation of

the blocks that produce this STG is discussed next.

����
���

	

��

	
��

	
���

	

��

	

�
	

���

�
�

���
�

��
	

��
�

��
�

���
�

��
�

��
�

Figure 3.2: STG of the proposed design

3.4 The Implementation

As mentioned earlier, the proposed protocol consists of the following six blocks:

• The synchronous custom FIFO

• The Protocol-Pauser-S

• The Protocol-Pauser-R

• The asynchronous D output port

• The asynchronous P input port

• The Ai generator

The last block (The Ai generator) is just a buffer used to supply the Ai signal

to meet the D port requirements. The first three blocks have been custom designed

at the transistor level while the two ports were borrowed from pasuable clocking

methodology in [5]. These blocks will be explained in the following sections.

26

3.4.1 The FIFO

The main goal of this FIFO is to decouple the terminating modules from the pseudo

pausable interface. The FIFO is also responsible for flow control. The associated

controlling state machine of the FIFO keeps checking the overall state of the system.

Whenever the data input rate becomes faster than the data consumption rate, this

state machine asserts the hold signal, which tells the sender module to wait until

the FIFO empties some space.

The Mealy state machine for a FIFO queue of size two is shown in Fig-

ure 3.3. More stages can be added in the FIFO with little modifications to the

state machine. The state machine has two inputs which are the T (transfer) and

ACK(acknowledgement) signals. The state machine operates on a delayed version

of the sender clock to allow transfer requests from the T input to be latched during

the same clock cycle in which they are produced by the sender. Upon receiving a

request at its T input, the FIFO issues the request by performing a transition on

its DEN output which tells the D port to start a handshake cycle (The D port’s

DEN input employs transition signalling and any change in DEN is translated into

a handshake request). The DEN signal is kept at the same level until the FIFO

receives an ACK signal. If a new request arrives at the FIFO’s T input during the

handshake period, it is accumulated in the queue and the DEN signal is kept stable

until an ACK signal arrives. The protocol-pauser-S block, which is discussed next,

makes sure that ACK signal does not violate the timing constraints of the FIFO.

3.4.2 The Protocol-Pauser-S

The protocol pausers form the interface between synchronous and asynchronous

logic. As mentioned in the previous section, the protocol-pauser-S is responsible

for generating the ACK signal so that it is synchronous to the FIFO. The inputs

of this block are the Ri1 signal and the clock. The Ri1 signal is generated by

27

�� ��

�# �$�%

�&

�'��� ����� '����

�'��� ����� '����

�'��� �����

�'��� �����

�����

���
�� '��

��

'����

��
��
� �����

 *���+
	��*,(�	

Figure 3.3: FSM of the FIFO

the asynchronous D port. According to the protocol, positive transition in Ri1

is generated by the D port in response to a transition on DEN (synchronous to

the sender). Therefore, it is deterministic with respect to the sender clock, while

negative transitions on Ri1 are generated in response to a negative transition in the

Ap signal, which is non-deterministic with respect to the sender clock. Hence, only

one of the transitions in Ri1 requires phase correction, which significantly simplifies

the design. The circuit diagram for the Protocol-Pauser-S is shown in Figure 3.4.

The circuit consists of a combination of two Muller C-elements both having

Ri1 as one input. The other inputs to the two C-elements are the delayed version

of the sender clock and its complement, as shown in Figure 3.4. The outputs of the

C-elements are connected to a NOR gate. The combination of these 3 gates acts as

a phase corrector for one transition of the Ri1 signal.

This correction is illustrated as follows: The 3-gate combination immediately

propagates the deterministic positive transition of the Ri1 signal to node X. For

the negative transition, this circuit blocks it till it is safe unless it causes a timing

violation in both C-elements concurrently. Timing window of such an occurrence

is so small that it is filtered out using the NOR-gate delay. We demonstrated this

metastability filtering behavior with our simulations in Section 4.5. As a second level

precaution, a worst case delay requirement can be obtained using corner-analysis and

28

�

���

�

�

��	

���

�

���

�

���� 	���-

����

	�����"
����

./�������
�
����0

	���-

1

	
���

-
�����

�

��	

���

�

�����

Figure 3.4: The protocol-pauser-S circuit diagram

this can be introduced at the output path as shown in Figure 3.4. Therefore, the

resulting ACK signal will not violate the sender’s timing constraints.

The timing behavior of the protocol-pauser-S is shown in Figure 3.5. This

figure illustrates the approximate timing instances of major events in the protocol

with respect to the sender clock. The first event in the figure is the reset in the

upper DFF. This occurs at the beginning of the sender clock cycle if Ri1 is at logic

’0’. In this case, the NOR gate output at node X is logic ’1’. Therefore, the positive

clock edge creates a reset pulse at the top flip-flop in Figure 3.4. This brings the

ACK signal to logic ’0’ (if it is initially high).

When the Ri1 signal rises, node X becomes logic ’0’. Ri1 also acts as a clock

for the upper flip-flop in Figure 3.4, latching a ’1’ into the upper flip-flop. The delay

on the Ri1 line (connected to the upper flip-flop) makes sure that these two events

occur in order. Hence, the output remains stable at logic 0.

As long as Ri1 remains high, node X will remain low and ACK will remain low.

29

�	�	

�!�("�)

*� +��,�
,-+��,�

�(�� (�("�
����.����
�/(
(� �(!0

���
������

*� �(,�,-
+��,�

�����

Figure 3.5: The timing behavior of the protocol-pauser-S

When the negative transition of Ri1 occurs, node X continues to remain low since

at least one of the outputs of C-elements remains high until the lower DFF toggles.

The first toggle in the lower DFF that occurs after the negative transition of Ri1

generates the ACK signal. Hence positive transitions in ACK become deterministic

with respect to the sender clock.

The input to the lower DFF’s clock is a delayed inverted version of the clock.

This delayed version of the clock determines the position of the leftmost arrow in

Figure 3.5. It determines the portion of the clock cycle where negative transition

of Ri1 is detected within the same clock cycle. Provided the negative transition

of Ri1 occurs after the positive transition in the inverted delayed version of the

sender clock, the transition in Ri1 is deferred to the next clock cycle. If Ri1 and the

lower DFF’s toggle occur approximately at the same time, the simulation results in

Chapter 4 demonstrate that the three gate combination (the 2 parallel C-elements

followed by NOR) with the delay turn out to be an effective metastability filter.

The design works if the timing separations among the three events in Figure 3.5 are

considered properly.

30

3.4.3 The Protocol-Pauser-R

The protocol-pauser-R operates in a similar manner as protocol-pauser-S. It gener-

ates the Ai2 signal such that it does not violate the receiver’s timing constraints.

For the receiver side, the non-deterministic transition is the positive transition of

the Ai2 signal, which is generated by the asynchronous P port. Whereas negative

transitions of Ri2 follow a deterministic sequence of events with respect to the re-

ceiver’s clock. Therefore, only the phase of the positive transition of Ri2 needs to

be corrected. The receiver pauser’s internal structure is very similar to the sender

pauser in Figure 3.4 with few modifications:

1. NOR gate, after the C-element in Figure 3.4, is replaced with an AND gate to

correct the phase of positive transitions in the Ri2 signal instead of negative

transitions.

2. The Reset signal for the upper DFF is generated from the Ai2 signal itself.

3. The final AND gate generating the ACK is expanded to include three inputs,

with the third being the receiver’s clock directly supplied. This modification

makes the rise of Ap receiver-clock dependent hence allowing the protocol to

absorb any frequency variations.

3.4.4 The D Port and P Port

The D and P ports are asynchronous finite state machines used to perform the asyn-

chronous handshake between the two ports. As mentioned earlier, they are borrowed

from pausable clocking methodology [5]. Port enable signals (DEN and PEN) use

transition signalling while the outputs (Rp, Ap, and Ri) use level signalling. The

sequence of events followed by the ports are described in the protocol description in

Section 3.3 and by the STG in Figure 3.2. The ports are implemented based on the

asynchronous FSMs [5] shown in Figure 3.6.

31

� � 1&���
	
����

	

�
	
���

	

�

	
���

�

%

�
�
�

��
�

#

��������
��	

$2

3

�
	
���

	

�

	
���

�

������	�
��	

�
�
�

��
�

� &�
��
	
��

	
���

	�

�
	
�
�

	

1
��

�
�

��
�

�

�

%

�������

#$

2

�
	
�
�

	

�������

��
�
�

��
�

�

�

��
�
��

	
���

	�

Figure 3.6: Asynchronous FSM of the ports (Left: D output port, Right: P input
port)

3.5 Summary

In this chapter, our proposed hybrid FIFO-asynchronous CDC interface that does

not pause the clocks of the communicating systems and that requires no external

synchronizers was presented. The overall design and the transfer protocol was ex-

plained. The implementation of the various blocks was explained. The blocks were

implemented in 90nm TSMC CMOS technology. Special attention was given to

the protocol-pauser block which is used as an interface between synchronous and

asynchronous logic.

32

Chapter 4

Simulation Results

In this chapter, SPICE circuit simulation results for the design proposed in Chapter

3 are presented. Section 4.1 shows proof of concept simulations for the proposed

design. Section 4.2 shows the behavior of the design under temperature and workload

variations while Section 4.3 shows its behavior under frequency variations. Section

4.4 elaborates on the maximum throughput the design can achieve. Section 4.5

addresses the issue of the design’s robustness to metastability. In Section 4.6, the

results are compared with common CDC interfaces discussed in Section 2.2. Finally,

Section 4.7 summarizes the chapter.

4.1 General Simulations

The proposed design was fully implemented using the TSMC 90nm CMOS tech-

nology. All the sub-blocks and blocks were individually simulated, then the whole

design was simulated using SPICE. Figure 4.1 shows a proof of concept simulation

of our implementation. In this experiment, we assumed that the sender requests a

transfer in each cycle, i.e. the worst case maximum workload. The frequencies for

sender and receiver are different and the phase shift is kept arbitrary.

The figure shows that a request started by DEN triggers the first half of the

33

Figure 4.1: SPICE simulation

handshake cycle by enabling the D port. The D port then drives Ri1 high. After

receiving Ai1 from the Ai1 generator, the DEN port drives Rp high. The rise in Rp

causes eventually Ri2 to rise. The second half starts when Ai2 gets asserted triggering

an asynchronous sequence eventually bringing down Ri1 and finally generating the

ACK pulse. Most importantly, the figure also shows that if the Ri2 signal asserts

closer to the receiver clock (LCLK2) edge (i.e. after the toggle of the lower DFF as

mentioned in section 3.4) then the Ai2 signal asserts to logic ’1’ after one clock cycle.

The second positive transition of Ri2 in the figure shows that this transition occurs

before the toggle of the DFF, consequently asserting Ai2 in the same cycle. The

same applies to the ACK signal which is generated at a suitable time in reference

to LCKdelayed signal no matter when Ri1 gets de-asserted. The figure also shows

that the hold signal asserts after two sender clock cycles to prevent the sender from

making more requests. The hold signal negates as soon as an ACK is received.

34

A second more comprehensive simulation showing all important signals in the

design is shown in Figure 4.2. The frequencies for sender and receiver in this simu-

lation are 620 MHz and 1.35 GHz respectively and the initial phase shift is 1.4 ns.

The order of signals in the figure correspond to the order of the STG (the first few

transitions). This figure also shows how the T signal gets latched in the same clock

cycle in which it is generated because the FIFO runs on a skewed version of the

clock.

Figure 4.2: SPICE simulation 2

Extensive simulation results show that the design can operate robustly for

several extreme variations, such as different workloads, different frequency ratios,

and extreme temperature settings. We will elaborate more on these experiments in

35

the following sections.

4.2 Temperature and Workload Variations

The robustness of the design was tested against temperature variations. The tem-

perature was varied from from -50OC to 50OC. The design continued to function

robustly in all temperatures even at maximum workload. The design’s through-

put degraded as temperature increased. The maximum throughput was observed

at -50OC and the minimum was at 50OC. The power consumption of the design

increased with temperature increase, however that increase was below 5% for a

temperature increase of 100OC. Table 4.1 shows the results of these simulations.

The frequencies of the sender and receiver in this experiment are 1.51 and 2 GHz

respectively.

Table 4.1: Temperature and workload variations

Max. workload Once in 5 Once in 10
-50C 25C 50C sender cycles sender cycles

Power (mW) 38.77 39.98 40.51 35.33 32.64
Throughput (M Data items/s) 468 426 404 298 149

The workload was also varied between maximum workload and 1 request ev-

ery 10 cycles. It was observed that for this set of frequencies (sender=1.5 GHz,

receiver=2 GHz) the sender and receiver would work with almost no overhead for

workloads of 1 transfer every 4 cycles or lower.

4.3 Frequency Variations

Various frequency ratios between the terminating modules were also used to test the

proposed CDC interface. Both integer and non-integer ratios for relative frequencies

were used for both slow-to-fast and fast-to-slow cases and with random phase shifts.

36

Table 4.2 shows some of the frequencies used along with the obtained throughput

and power consumption.

Table 4.2: Frequency variations

Sender freq. Receiver freq. Throughput (M Data items/s) Power (mW)
1.2 GHz 1 GHz 400 31.12
1 GHz 1.2 GHz 400 28.39

1.28 GHz 575 MHz 321 31.89
575 MHz 1.28 GHz 301 25.86
500 MHz 700 MHz 318 30.71
700 MHz 500 MHz 289 31.17
333 MHz 1 GHz 331 21.3
1 GHz 333 MHz 325 27.8

1.35 GHz 620 MHz 337 31.46
620 MHz 1.35 GHz 310 25.75

The throughput obtained in these experiments is measured at maximum work-

load, i.e. when the sender makes a request for communication every clock cycle. The

temperature was assumed to be 25 oC in these experiments.

4.4 Maximum Throughput

Simulations have shown that the design can achieve a maximum throughput of 606 M

items/s. This throughput can be achieved when both the sender and receiver operate

at 606 MHz frequency at 25oC and with a suitable constant phase relationship

leading to a successful transfer every clock cycle. In these conditions, the power

consumed by the handshake circuitry is 35.6 mW. Figure 4.3 shows the SPICE

simulation at maximum throughput.

We achieved operating frequencies of more than 1.5 GHz for the sender and

more than 2 GHz for the receiver at 25OC. Transistor sizing is only optimized to

achieve correct functionality. Further optimization may provide even better results.

37

Figure 4.3: Maximum throughput SPICE simulation

4.5 Robustness to Metastability

The proposed design transforms mutually asynchronous signals into pseudo deter-

ministic ones. This enhances the robustness of the design to metastability. This is

further illustrated in Figure 4.4. The figure shows parametric analysis of the pauser-

S block at 0.01 ps resolution with worst case phase relationship. At one point, the

ACK signal is generated at the clock edge immediately after (top waveform). When

Ri goes down 0.01 ps later, ACK is paused until the next cycle (middle waveform)

without getting into metastability.

38

Figure 4.4: Parametric analysis at 0.01ps resolution in SPICE

4.6 Comparison with Other Techniques

Comparing the proposed design with the conventional pausable method [5], the

proposed design does not pause the whole clock domain as is the case with pausable

clocking technique. The throughput in Tables 4.1 and 4.2 only shows throughput

while the two modules are interacting. But the overall throughput of the system

considerably increases because the clocks of the sender and receiver continue to run

in the proposed design while the sender and receiver are completely stopped in the

conventional method. This fact is illustrated in Figure 4.5. The proposed technique

also relieves the requirement of using a ring oscillator. This avoids some pausable

clocking known problems such as clock over-run and timing mismatches which have

been discussed in Chapter 2. This comes at the price of an increase in area and

power consumption compared to the original design. However, the interface is only

needed when data are transferred between the blocks. If power consumption is very

critical for the application, a simple disabling logic can be used to turn off the entire

block when data are not being transferred.

The comparison with FIFO based interfaces is summarized in Table 4.3. The

FIFO part of the comparison is based on results reported in [20]. The comparison is

more complex and depends on the workload and the frequencies of the interacting

39

�����

���

�����

���

.�0 .20

Figure 4.5: Behavior comparison: (A- Clock pausing in conventional method, B- No
pausing in proposed method)

domains. For the proposed interface, the protocol pausers pause the protocol twice

in each transfer cycle to avoid violating the timing constraints of the synchronous

blocks. This pausing makes the design flexible in terms of the frequency discrep-

ancies between the communicating modules. The design functions correctly even

if one of the communicating modules runs significantly faster than the other. On

the other hand, FIFO based interfaces might fail if the receiver’s frequency is more

than 3 times the sender’s frequency [20]. The cost of avoiding frequency restrictions

is a decrease in the throughput of bulk data transfers. The proposed design has a

lower throughput than the FIFO design if data is being transferred each clock cycle.

However, most of the communicating modules do not send data every clock cycle. A

control flow ratio of one transfer every ten clock cycles is considered very pessimistic

[22].

Table 4.3: Comparison with FIFO based technique

Proposed design FIFO based design
Min. latency (ns) 1.14 0.5 Tsnd + 2.5 Trec

Max. latency (ns) 1.14 + Trec 0.5 Tsnd + 3 Trec

Max. throughput (items/s) 1
1.65ns

1
max[Trec,Tsnd]

Min. throughput (items/s) 1
1.65ns+Trec+Tsnd

1
max[Trec,Tsnd]

A very important performance metric in such designs is latency. Table 4.3

40

reports latencies as functions of Tsnd and Trec, where Tsnd is the clock period of the

sender and Trec is the clock period of the receiver. Replacing with values for Tsnd

and Trec shows that for most cases, the proposed design has a lower latency than

a FIFO design. For example, when operating at 1 GHz on the send and receive

sides (Tsnd = Trec = 1ns), our design decreases the latency of the interface by 39%.

Circuit level optimizations can be applied to decrease the latency and increase the

throughput further. Our design has a lower latency because it does not require

two-flop synchronizers. In summary, the FIFO design can provide higher maximum

throughput, while the proposed design provides higher flexibility with different clock

speeds, and lower latency.

4.7 Summary

In this chapter, simulation results for the proposed hybrid FIFO-asynchronous CDC

interface were presented. Electrical SPICE simulations were performed for various

scenarios including maximum workloads, different temperatures, different frequen-

cies, and worst case phase relationships. The design showed high robustness in all

performed experiments. The design achieved operating frequencies of more than 1.5

GHz for the sender and more than 2 GHz for the receiver. The maximum through

achievable by the design is 606 Mitems/s.

41

Chapter 5

Verification of CDC Interfaces

As discussed in Secrion 2.3, CDC interfaces cause most RTL simulations to fail.

Thus, formal verification, a technique based on mathematical reasoning usually used

to complement RTL simulation, can be used for verifying CDC interfaces. In this

chapter, we will present a methodology for verifying CDC interfaces based on proba-

bilistic model checking. First, an overview of the proposed methodology is presented

in Section 5.1. In Section 5.2, some details about the technique used, namely prob-

abilistic model checking, are given. Section 5.3 provides an overview of the PRISM

model checker which is used for verification in the proposed methodology. In Section

5.4, the proposed framework for verifying CDC interfaces is discussed. Section 5.5

presents the first case study, the verification of the boundary synchronization based

CDC interfaces, while Section 5.6 presents the second case study, the verification

of FIFO based CDC interfaces. The verification of our proposed design is also pre-

sented as a third case study in Section 5.7. Finally, Section 5.8 summarizes the

chapter.

42

5.1 Overview of the Proposed Methodology

In this section, our framework for the verification of CDC interfaces is presented.

CDC interfaces are subject to metastability failures which are probabilistic in nature

and depend on the protocol used as well as on continuous-time circuit level issues

as discussed in Section 2.1. Our framework for verifying CDC interfaces takes into

account these issues. Compared to other related works discussed in Section 2.4, our

approach is the first approach that takes into account the probabilistic behavior of

a synchronizer in a CDC interface. Previous work on this topic has either ignored

metastability or modeled it as a random one cycle jitter as initially proposed in [27].

The failures of synchronizers are related to circuit-level issues that can not

be modeled at the level of abstraction in which model checkers work. However, in

order to take them into account, we use probabilistic model checking and explicitly

model the failure probability of the synchronizer within the model. It is important

to see these failures in the perspective of the whole system. The general structure

of the system including the way synchronizers are used, and the type and number

of synchronizers in the design all play an important role in determining its charac-

teristics. All these aspects are modeled in the proposed framework. The type of

the synchronizer affects some probabilities inside the model. The structure of the

protocol affects the states and transitions of the model constructed. Finally, each

synchronizer is explicitly replaced by its model therefore the number of synchronizers

is explicitly captured.

Before going into the details of the proposed framework, an overview of proba-

bilistic model checking and the PRISM model checker is presented as it is necessary

to understand our work.

43

5.2 Probabilistic Model Checking

Model checking is one of the most prominent formal verification techniques used

today. It was first developed in the early 1980s separately by Clarke and Emerson

[30] and by Quielle and Sifakis [43]. In model checking, a system is modeled as a

set of states and transitions between them that represents how the system behavior

evolves from one state to another over time in response to internal and external

stimulus. It is based on the construction of a mathematical model of the system to

be analyzed. Properties of this system are then expressed formally in temporal logic

and automatically analyzed against the constructed model [28].

Probabilistic model checking [31] is a formal verification method that can be

applied to systems that exhibit stochastic behavior. Probabilistic model checking

inherits the advantages of model checking such as the exhaustive search through the

state space of the model and automatic execution from high level models. Moreover,

it adds the ability to reason about quantitative properties. In contrast to discrete-

event simulation techniques, which generate approximate results by averaging results

from a large number of random samples, probabilistic model checking applies nu-

merical computation to yield exact results [34]. Probabilistic model checking has

a wide range of applications in fields such as communication protocols, security,

biological process modeling, and reliability analysis.

Probabilistic Model checking requires two inputs [34]:

• A description of the system to be analyzed typically given in some high-level

modeling language. The model checker then constructs the corresponding

probabilistic model.

• A formal specification of quantitative properties of the system that are to be

analyzed, usually expressed in variants of temporal logic.

In probabilistic model checking, probabilistic models such as Continuous Time

44

Markov Chains (CTMC), Discrete Time Markov Chains (DTMC), and Markov De-

cision processes (MDP) are usually built. In our framework, CDC interfaces were

modeled using Markov Decision Processes (MDP) [44], a commonly used formalism

for modeling systems that exhibit a combination of probabilistic and nondetermin-

istic behavior. MDP is formally defined as [29]:

Definition: [Markov Decision Process] A Markov decision process (MDP) is

a tuple M = (S, s, αM, δM,L) where:

• S is a finite set of states,

• s is an initial state,

• αM is a finite alphabet,

• δM : S × αM → Dist (S) is a (partial) probabilistic transition function, and

Dist (S) is a convex distribution over S.

• L : S → 2AP is a labeling function mapping each state to a set of atomic

propositions taken from a set AP.

Figure 5.1 shows an example of an MDP [35].

Figure 5.1: Example of an MDP [35]

45

The properties are specified in quantitative variants of known temporal logics

such as PCTL (Probabilistic Computation Tree Logic) , CSL (Continuous Stochastic

Logic), and PCTL*. These logics do not just provide a Yes/No answer on whether a

property is satisfied by the model, it can also provide quantitative measures on the

minimum and maximum probability that a certain property holds. In our frame-

work, the properties were expressed in PCTL [32] (Probabilistic Computational Tree

Logic) and PCTL* [33].

The verification of these properties has to be done inside a model checker that

supports probabilistic model checking. In this work, the PRISM [36] model checker

is used.

5.3 The PRISM Model Checker

PRISM [36] is an open source probabilistic model checker developed at the Univer-

sity of Birmingham and the University of Oxford. PRISM supports many different

probabilistic models such as discrete-time and continuous-time Markov chains and

Markov Decision Processes (MDP). PRISM has its own high level language to de-

scribe these models. This language is described thoroughly in the PRISM manual

available in [28]. Models in PRISM are written in the form of state-based modules,

each composed by a set of guarded commands. Modules can communicate with

each other through global variables. PRISM also supports module synchronization

through action labels.

PRISM constructs the global probabilistic model through parallel composi-

tion of the component modules following the interleaving semantic of the parallel

composition operator. The data structures in PRISM are based on BDDs (Binary

Decision Diagrams [45]) and MTBDDs (Multi-Terminal Binary Decision Diagrams

[46]). PRISM supports simulations both random and guided and also supports a

wide range of probabilistic temporal logics to specify properties to be verified such

46

as PCTL, PCTL* and CSL. We have used the PRISM model checker to verify

our MDP models of CDC interfaces. The next section elaborates on the proposed

methodology used to verify these interfaces.

5.4 The Proposed Verification Framework

As discussed in Section 5.1, the safety of the CDC interface is affected by both

the protocol used as well as the the synchronizer characteristics. Our verification

framework is the first framework that captures both these factors in its model. The

proposed framework is shown in Figure 5.2.

	���/� !
��� !�����
��3��
��������������

��'!$
$
"��

$ 2#
��������

!����� 4������

�
����������

�����������
��5����&����

�� �

�

������

��'!$
$
"��
�������

-�� �

�	� �
�����
��" ��4�6

Figure 5.2: The proposed verification framework

The proposed methodology uses both the CDC specification as well as the

synchronizer circuit specification as part of its MDP model of the system. These two

specs are totally different. Design specs refer to the description of the protocol used

47

in the CDC interface. The structure of the PRISM model for verifying the system

is developed based on the protocol description. The model is written in PRISM

language as a description for an MDP from which PRISM generates the underlying

MDP model. One missing detail in the MDP model which needs to be obtained from

synchronizer characteristics is the probability of falling into metastability. This can

be obtained using circuit-level MTBF analysis such as in [37], [38].

The properties to be verified depend of the model studied and which aspects

of the design the designer wants to verify. Some properties are common to all CDC

interfaces and some are specific to some CDC protocols. Reliability requirements

for the CDC interface are also used to generate the properties to be verified. The

properties are written in PCTL and PCTL*. The PRISM model checker then verifies

these properties to check whether the CDC interface is correct and safe.

In our verification model, metastability was modeled explicitly as a state in

the system. This modeling can be illustrated with the model for a 0-to-1 transition

of a synchronizer as shown in Figure 5.3.

��
�,�

��

��
�,�

�&
�,�

�1
�,4

�& �1

Figure 5.3: Metatsability model for a 0 -> 1 transition of a flip-flop

The transition is modeled as a non-deterministic choice between a normal

operation mode in which it does not get into metastability and a metastability mode

in which it enters metastability. When a synchronizer enters metastability, its output

is set to one of three possible outputs 0, 1, M. Probabilities of entering each state

48

p1, p2, p3 depend on the type and design of the flip-flops or synchronization circuits

used. The probabilities can then be plugged in into PRISM for verifying the system

as a whole in the presence of metastability. A designer might be especially interested

in the overall behavior of the system for a given probability of metastability (p3).

The PRISM code representing the metastability model is given below:

[] s=0 -> (s’=1)&(X’=1);
[] s=0 -> p1:(s’=1)&(X’=1)+p2:(s’=2)&(X’=0)+p3:(s’=3)&(X’=2)&(metas’=true);
[] s=2 -> (s’=1)&(X’=1);

The next few sections show case studies of our verification methodology for

three different CDC interfaces.

5.5 Verifying the Boundary Synchronization Based

CDC

In the remaining part of this chapter, the modeling of common CDC interfaces in

PRISM will be discussed. This section focuses on the verification of the boundary

synchronization based CDC interface discussed in Section 2.2.2. Our modeling tech-

nique is explained using this interface because it is simple and easy to follow. The

boundary synchronization based CDC is shown in Figure 5.4.

Our model of the this interface is shown in Figures 5.5 and 5.6. The sender

module representing the sender side of the CDC interface is shown in Figure 5.5 and

the receiver module representing the receiver side of the CDC is shown in Figure

5.6.

The interface is modeled as MDP. Metastability is modeled as shown in Figure

5.3. The sender and receiver interact through global variables. As shown in Figure

5.5, The transitions correspond directly to the boundary synchronization based CDC

protocol in Section 2.2.2. When both the modules are in their initial state, the send

signal which is an input to the sender part of the CDC starts the handshake cycle.

49

����

!��"��
#!$

��

!��"�� �����%��

��
�

	� �

�

�

��	

���

�

�

��	

���

�

�

� �	

���

�

�

� �	

���

�
�����%��
#!$

����

�

���&

��

�&��

Figure 5.4: The boundary based CDC interface verified

!�

!7

!�

!�

!8

!9

!:

!;

!<

!=

������

� ��

��

�

��
���

�

��
�

�����

� ���

��
��

� �
�

���

 �
�

��
��

��
����

������

���

���
����

�
� �����

Figure 5.5: The sender side of the CDC

50

!8

!�

!�

!<

!7

!;

!9

!�

!:

����

���
� ��

����
�

����

��
�

�
� ���

������ �
�

���
� �
�

�����

��
��

��

����

������

���
����

�������

Figure 5.6: The receiver side of the CDC

The sender module drives R1 to logic 1 in response. The R1 signal gets synchronized

into the receiver and the receiver module moves from the initial state to state S1. In

this state Rm is asserted to logic 1. Afterwards, the receiver’s MDP model chooses

non-deterministically between the left transition from state S1 in Figure 5.6 to state

S3 (modeling the case in which metastability does not occur) and the right transition

from state S1 (modeling the case in which metastability does occur). This second

transition is further subdivided into three probabilistic choices:

• The synchronizer converges to logic 1 before the next clock edge (represented

by the transition to state S3 with probability p1).

• The synchronizer converges to logic 0 before the next clock edge (represented

by the transition to state S2 with probability p2).

• The synchronizer does not converge to a stable logic value by the next clock

51

edge (represented by the transition to state S8 with probability p3).

The two modules then continue following the request/ack mechanism as de-

fined in the protocol description in Section 2.2.2. For the present time, assumptions

are made for the values of synchronizer failures and convergence probabilities [p1,

p2, p3] to prove the concept of our verification framework. These values are affected

by several factors such as the type of synchronization circuit, the type of flip-flops,

and technology used. The probability of the sender flip-flop entering metastability

and staying for more than one cycle was assumed to be 5∗10−4, and for the receiver

flip-flop, it was assumed to be 2.5 ∗ 10−4. Several references such as [37] discuss the

probability of failures for different types of flip-flops.

Three properties for this model were checked:

• P1: Pmin=? [(snd=true) => (F(A2=1))] Returns the minimum probability

that a request to send data is acknowledged.

F is a the temporal operator commonly referred to as “evenually”. F p, where

p is a property, is true in a path if p becomes true at some point in that path.

• P2: Pmax=? [(request=false) and (R2=1)] Returns the maximum probability

that data is latched to the receiver without being sent by the sender. Where

request is a variable that keeps track of ongoing requests that have not been

acknowledged.

• P3: Pmax=? [F<K (metas=true)] Returns the maximum probability that

metastability occurs within K cycles.

The PRISM model constructed consists of 90 states and 339 transitions. Memory

requirements for the constructed model were 56 KB. The table below shows the

returned result and the time required for model checking for each of the properties

specified. The verification has been conducted on a machine with an Intel Core

i5 CPU running at 2.27 GHz and with a 4 GB memory. It is natural that the

52

probability that the system enters a metastable state increases with time as more

requests are synchronized. Figure 5.7 shows the probability of entering a metastable

state as a function of the number of cycles (K). The probability increases quickly at

the start and as the number of cycles exceeds 25000, it slowly converges to 1.

Table 5.1: Verification results for boundary synchronization CDC

Property Model Checking Time (Seconds) Result (P=?)
P1 0.037 0.99925
P2 0.031 0

P3 (K=1000) 0.027 0.095

Figure 5.7: Maximum probability as a function of number of cycles for boundary
synchronization CDC

5.6 Verifying FIFO Based CDC

The FIFO interface as discussed in Secion 2.2.3 was modeled in PRISM in a similar

way to the boundary synchronization protocol interface. An MDP module for a put

interface and a get interface was constructed. A FIFO size of 4 cells was modeled.

The same metastability probabilities of 5 ∗ 10−4 and 2.5 ∗ 10−4 were used. The

PRISM model constructed consists of 33128 states and 157680 transitions. Memory

53

requirements for the constructed model were 4.2 MB. Some properties verified are

shown below:

• P1: Pmin=?[((reqput)and(!full)and(ptoken=n))=>

(F((reqget)and(!empty)and(gtoken=n)))] Returns the minimum probability

that a data item written to the FIFO is eventually read.

• P2: Pmax=? [F < K (metas=true)] Returns the maximum probability that

metastability occurs within K cycles.

• P3: Pmax=?[(enput)and(ptoken=n)and(cfulln=true)] Where enput is an in-

ternal signal in the FIFO that enables writing, and cfulln indicates whether

cell n of the FIFO is full. The property returns the maximum probability of

writing to a full cell.

• P4: Pmax=?[((enget)and(gtoken=n)and(cfulln=false)] Where enget is an in-

ternal signal in the FIFO that enables reading. The property returns the

maximum probability of reading from an empty cell.

The verification results are shown in the table below. Figure 5.8 shows the

probability of entering a metastable state as a function of the number of cycles. The

probability is generally higher than boundary synchronization based interface since

the interface is more complex and data can be transmitted at a higher rate leading

to a higher frequency of input changes at the inputs of the flip-flops.

Table 5.2: Verification results for FIFO

Property Model checking time (seconds) Result (P=?)
P1 6.393 1

P2 (K=1000) 7.248 0.28
P3 (n=0) 0.139 0
P4 (n=0) 0.802 0

54

Figure 5.8: Maximum probability as a function of number of cycles for FIFO

5.7 Verifying The Proposed CDC

The proposed design which was discussed in Chapter 3 was also modeled and verified

using the new verification approach. A PRISM model consisting of 203 states and

757 transitions was constructed. The same metastability probabilities of 5 ∗ 10−4

and 2.5∗10−4 were used. Memory requirements were 69KB. Some properties verified

are shown below:

• P1: Pmin=? [(T=true)=> (F (ACK=1))] Returns the minimum probability

that a request to send data is acknowledged.

• P2: Pmax=? [(fifoEmpty=true)and(Ap=true)] Returns the maximum proba-

bility that data is latched to the receiver without being sent by the sender.

• P3: Pmax=? [F < K (metas=true)] Returns the maximum probability that

metastability occurs within K cycles.

The verification results are shown in the table below. Figure 5.9 shows the

probability of entering a metastable state as a function of the number of cycles. The

probability is generally lower than the other two protocols indicating a more robust

interface at the protocol level.

55

Table 5.3: Verification results for the proposed CDC

Property Model Checking Time (Seconds) Result (P=?)
P1 0.054 1
P2 0.040 0

P3 (K=1000) 0.05 0.055

Figure 5.9: Maximum probability as a function of number of cycles for the proposed
CDC

56

5.8 Summary

In this chapter, a framework for verifying CDC interfaces using probabilistic model

checking was presented. The framework allows for modeling metastability. CDC

interfaces are modeled as Markov Decision Processes integrating both probabilistic

and non-deterministic behavior. Three different CDC interfaces; boudary synchro-

nization based CDC, FIFO based CDC, and our proposed CDC were modeled and

verified using this approach. Properties were written in PCTL and PCTL* and

verified using the PRISM model checker.

57

Chapter 6

Conclusion and Future Work

In this thesis, we have presented a novel interface design to be used as a clock

domain crossing in chips that employ many clock domains. The proposed design

is especially useful in the booming SoC design field where components of varying

characteristics are being integrated on a single chip. The proposed design allows

the data and control signals to cross clock domain boundaries safely. The design

relieves the communicating modules of the communication overhead and allows them

to continue their normal operation while the interface takes care of the transmission.

The proposed technique is a hybrid technique that uses the benefits and avoids

the shortcomings of other techniques. Unlike previously proposed CDC interfaces,

the new interface does not require the communicating modules to stop their oper-

ation during transfers or to have a particular frequency ratio range. The interface

resolves these issues by using a mixed synchronous/asynchronous communication

protocol utilizing the asynchronous part for the handshake and the synchronous

part for communication with the synchronous sender and receiver. The interface

uses two special circuits (protocol-pausers) custom designed at the transistor level

to separate the synchronous world from the asynchronous world by pausing the

protocol whenever there is a fear of timing violations.

The proposed technique was implemented block-by-block at the transistor level

58

using TSMC 90nm technology and extensively simulated using SPICE. The proposed

design proved robust and continued to function correctly even in extreme conditions

such as low and high temperatures, varying frequencies, and different workloads.

Even with worst case phase relationships tested at very fine resolutions, the design

produced distinct output signals. The design has a maximum throughput of 606

M data items/s and a low latency. The design operates regardless of the frequency

ratio of the communication modules.

A methodology for the formal verification of CDC interfaces was also pro-

posed. To our knowledge this is the first methodology for formal verification of

CDC interfaces that takes into account the failure probability of the synchroniz-

ers. The framework uses probabilistic model checking and models the system as

Markov Decision Processes (MDP) which allows the modeling of probabilistic and

non-deterministic behavior.

Common CDC interfaces, namely boundary synchronization based CDC in-

terface and FIFO based CDC interface were verified using the proposed framework.

The proposed CDC interface was also verified using the new approach. The PRISM

probabilistic model checker was used for verification. The proposed framework is

important for checking the correctness of error-prone CDC interfaces as it allows for

verifying design properties in a more realistic environment in which a system con-

tains possibly many failure-prone synchronization circuits. The framework provides

the minimum and/or maximum probabilities that a certain probability is satisfied

by the system in the presence of metastability.

The proposed CDC design can be optimized in the future by applying proper

transistor sizing to achieve better performance. The promising results of the pauser

circuit means that this circuit could form the basis of new designs for other similar

problems. One interesting field for improvement will be extending the interface to

allow more than two modules to communicate at the same time. This also embeds

the challenge of arbitration if more than one request arrive exactly at the same time.

59

Our future work also includes exploring MTBF analysis for different synchro-

nization circuits to generate accurate failure probabilities to be included within our

verification framework.

60

Bibliography

[1] Feng Y, Zhou Z, Tong D, Cheng X. Clock domain crossing fault model and

coverage metric for validation of SoC design. In Proc. Conference on Design,

Automation and Test in Europe (DATE’07), Nice, France, April 16-20, 2007,

pp. 1385-1390.

[2] Kinniment, D. J., Synchronization and Arbitration in Digital Systems, 2007,

John Wiley & Sons, Ltd.

[3] Ginosar, R., Metastability and Synchronizers: A Tutorial, IEEE Design and

Test of Computers, Vol. 28, Issue 5, pp. 23-35, 2011.

[4] ITRS 2009, available online at

http://www.itrs.net/Links/2009ITRS/Home2009.htm.

[5] Muttersbach, J., Villiger, T., and Fichtner, W. Practical Design of Globally-

Asynchronous Locally-Synchronous Systems. In Proc. Int. Symp. on Advanced

Research in Asynchronous Circuits and Systems (ASYNC’00), Eilat, Israel,

2000, pp. 52-59.

[6] R. William J. Dally and John W. Poulton, Digital Systems Engineering, Cam-

bridge University Press, 1998.

[7] Cummings C., Clock Domain Crossing (cdc) Design and Verification Techniques

Using System Verilog, SNUG-2008, Boston, MA, 2008.

61

[8] H. Veendrick, The behavior of flip-flops used as synchronizers and prediction of

their failure rate. IEEE Journal of Solid-state Circuits, vol. SC-15, no. 2, pp.

169-176, 1980.

[9] C. L. Portmann et al., Metastability in CMOS library elements in reduced sup-

ply and technology scaled applications, IEEE Journal of Solid-State Circuits,

vol. 30, pp. 39-46, 1995.

[10] U. Ko and P. Balsara. High-Performance Energy-Efficient D-Flip-Flop Circuits.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8,

2000, pp. 94-98.

[11] M. Krstic, E. Grass, F. K. Gurkaynak, and P. Vivet. Globally asynchronous,

locally synchronous circuits: Overview and outlook. IEEE Design & Test of

Computers, vol. 24, no. 5, pp. 430-441, 2007.

[12] Jens Muttersbach. Globally-Asynchronous Locally-Synchronous Architectures

for VLSI Systems. Ph.D. thesis, ETH, Zurich, 2001.

[13] Daniel M. Chapiro. Globally-Asynchronous Locally- Synchronous Systems.

Ph.D. thesis, StanfordUni versity, October 1984.

[14] Z. K. Y. Yun and R. P. Donohue. Pausible clocking: A first step toward het-

erogeneous systems. In Proc. International Conf. Computer Design (ICCD’96),

Austin, TX, 1996, pp. 118-123.

[15] Dobkin, R., Ginosar, R., and Sotiriou, C.P. Data Synchronization Issues in

GALS SoCs. in 10th IEEE International Symposium on Asynchronous Circuits

and Systems, April 2004, pp. 170-179.

[16] Teehan, P., Greenstreet, M., and Lemieux, G., A Survey and Taxonomy of

GALS Design Styles. In IEEE Design & Test of Computers, Vol. 24, Issue 5,

pp. 418-428, 2007.

62

[17] A. Iyer and D. Marculescu. Power and performance evaluation of globally asyn-

chronous locally synchronous processors. In Proceedings of the 29th Annual

International Symposium on Computer Architecture, , 2002, pp. 158-168.

[18] F.K. Gurkaynak et al., GALS at ETH Zurich: Success or Failure?. Proc. 12th

IEEE Intl Symp. Asynchronous Circuits and Systems (ASYNC’06), 2006, IEEE

CS Press, pp. 150-159.

[19] R. Ginosar, Fourteen ways to fool your synchronizer, in Proc. IEEE Int. Symp.

Asynchronous Circuits and Systems (ASYNC’03), 2003, pp. 8996.

[20] T. Chelcea and S. M. Nowick, Robust interfaces for mixed-timing systems,

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 8, pp. 857-873,

2004.

[21] A. Chakraborty and M. Greenstreet, Efficient Self-Timed Interfaces for Cross-

ing Clock Domains. Proc. 9th Intl Symp. Asynchronous Circuits and Systems

(ASYNC’03), 2003, IEEE CS Press, pp. 78-88.

[22] Mekie, J., Chakraborty, S., Venkataramani, G., Thiagarajan, P.S., and Sharma,

D.K. Interface design for rationally clocked GALS systems. In Proc. 12th IEEE

Intl. Symp. on Asynchronous Circuits and Systems (ASYNC’06), 2006, pp.

160-171.

[23] T. Kapschitz and R. Ginosar, Formal verification of synchronizers. CHARME

05, vol. 3725 of LNCS, pp. 359-362. 2005.

[24] E. M. Clarke, D. Kroening, and K. Yorav, Specifying and Verifying Systems

with Multiple Clocks. In Proc. 21st International Conference on Computer De-

sign (ICCD’03), 2003, pp. 48-55.

63

[25] Brown, G., Verification of a Data Synchronization Circuit For All Time. In

Proc. 6th International Conference on Application of Concurrency to System

Design (ACSD’06), 2006, pp. 217-228.

[26] Safranek, D., Smrcka, A., Vojnar, T., Rehak, V., Rehak, Z., and Matousek,

P, Verifying VHDL Design with Multiple Clocks in SMV, FMICS, vol. 4346 of

LNCS, Springer, 2006.

[27] K. Yorav, S. Katz, and R. Kiper. Reproducing synchronization bugs with model

checking. In CHARME’01, LNCS Volume 2144/2001, pp. 98-103, Springer,

2001.

[28] The PRISM manual. available online at http://www.prsimmodelchecker.org.

[29] V. Forejt, M. Kwiatkowska, G. Norman and D. Parker, Automated Verification

Techniques for Probabilistic Systems. Formal Methods for Eternal Networked

Software Systems (SFM’11), vol. 6659 of LNCS, pp. 53-113, Springer, June

2011.

[30] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for

branching time temporal logic. In Logic of Programs: Workshop, Yorktown

Heights, NY, May 1981, volume 131 of Lecture Notes in Computer Science.

Springer-Verlag, 1981.

[31] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In M.

Bernardo and J. Hillston, editors, Formal Methods for the Design of Computer,

Communication and Software Systems: Performance Evaluation (SFM’07), vol-

ume 4486 of LNCS, pp. 220-270. Springer, 2007.

[32] A logic for reasoning about time and reliability. Formal Aspects of Computing,

Vol 6,pp. 102-111, 1994.

64

[33] C. Baier., On algorithmic verification methods for probabilistic systems, Habili-

tation thesis, Faculty of Mathemaitcs and Informatics, University of Mannheim.

1998.

[34] M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic model check-

ing for performance and reliability analysis. ACM SIGMETRICS Performance

Evaluation Review, Vol. 36, No. 4,pp. 40-45, 2009.

[35] V. Shmatikov. Probabilistic Model Checking for Security Protocols [online].

Accessed on March 10th, 2012.

http://www.stanford.edu/class/cs259/WWW04/lectures/07-

Probabilistic%20Model%20Checking.pdf.

[36] M. Kwiatkowska, G. Norman, and D. Parker, PRISM 4.0: Verification of Proba-

bilistic Real-time Systems, In Proc. 23rd International Conference on Computer

Aided Verification (CAV11), 2011, vol. 6806 of LNCS, pp. 585-591, Springer.

[37] D. Li, P. Chuang, and M. Sachdev, Comparative Analysis and Study of Metasta-

bility on High Performance Flip-flops,” in 11th International Symposium on

Quality Electronic Design, March 2010, pp. 853-860.

[38] Foley, C., Characterizing metastability, Second International Symposium on

Advanced Research in Asynchronous Circuits and Systems, 18-21 Mar 1996,

pp. 175-184.

[39] Kinniment, D.J., Bystrov, A., Yakovlev, A.V., Synchronization circuit perfor-

mance, IEEE Journal of Solid-State Circuits, vol.37, no.2, pp. 202-209, Feb

2002.

[40] Chelcea, T., Nowick, S.M., Low-latency asynchronous FIFO’s using token rings,

Sixth International Symposium on Advanced Research in Asynchronous Cir-

cuits and Systems (ASYNC’00), 2000, pp. 210-220.

65

[41] Smrcka,A.: Verifcation of Asynchronous and Parametrized Hardware Designs,

Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 2,

No. 2, pp. 60-69, 2010.

[42] R. Dobkin, T. Kapshitz, S. Flur and R.Ginosar, Assertion Based Verification

of Multiple-Clock GALS Systems,. Proc. IFIP/IEEE Int. Conference on Very

Large Scale Integration (VLSI-SoC), 2008.

[43] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concur-

rent systems in cesar. In Proceedings of the 5th Colloquium on International

Symposium on Programming, pages 337-351, London, UK, 1982. Springer- Ver-

lag.

[44] Puterman M., Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming (1st ed.), John Wiley Sons , New York, NY, USA., 1994.

[45] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, Vol. 35, No 8, pp. 677-691, 1986.

[46] M. Fujita, P.C. McGeer and J.C.-Y. Yang, Multi-terminal binary decision dia-

grams: An efficient data structure for matrix representation. Formal Methods

in System Design, Vol. 10, Numbers 2-3, pp. 149-169, 1997.

66

	p1
	Al-bayati-MASc Sign
	p377

