
i

The Design and Implementation of OMA RESTful Location Services in

Wireless Sensor Environments

Md. Asadul Islam

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science at

Concordia University

Montreal, Quebec, Canada

April 2012

©Md. Asadul Islam, 2012

ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis proposal prepared

By: Md. Asadul Islam

Entitled: The Design and Implementation of OMA RESTful Location Services

 in Wireless Sensor Environments

and submitted in partial fulfilment of the requirements for the degree of

Master of Applied Science

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

__________________________________Dr. Sheldon Williamson, Chair

__________________________________Dr. N. Bouguila, External examiner

__________________________________Dr. A. Agarwal, Internal Examiner

__________________________________Dr. F. Khendek, Supervisor

__________________________________Dr. R. Glitho, Supervisor

Approved by___

William E. Lynch, Chair of Department, Electrical and Computer Engineering

Robin Drew, Dean of the Faculty of Engineering and Computer Science

iii

Abstract

The Design and Implementation of OMA RESTful Location Services in Wireless Sensor

Environments

Md. Asadul Islam

Open Mobile Alliance (OMA) RESTful location services are standard RESTful

Web services for terminal location. They are location technology-independent and enable

applications’ portability and interoperability. Wireless sensors are electronic devices that

can sense context: space, environment and physiology. Location is a key element of

space context information. Wireless sensors can sense location with a level of accuracy

that most other technologies cannot provide, which has made them the technology of

choice for several applications. This thesis is about the design and implementation of

OMA RESTful location services in wireless sensor environments for improved accuracy.

A novel architecture is proposed. The architectural components and operational

procedures are defined and implemented. The proof of concept prototype has been

realized, along with the measurements for a preliminary performance evaluation. Several

lessons were learned. For instance, it is possible to map location information for each of

the OMA services to the sensor-based location information. However, using geographic

coordinates (i.e. geographic latitude, longitude and altitude) to describe terminal location

does not match with the fine-grained location accuracy provided by WSNs.

iv

Acknowledgements

This thesis is a part of research work done in the Telecommunication Service

Engineering (TSE) research lab. This research project would not have been possible

without the support of many people. It is my pleasure to thank those people who have

helped me and made the completion of this thesis possible. First, I would like to express

my heartfelt gratitude to my supervisors, Dr. Ferhat Khendek and Dr. Roch Glitho, for

their inspiration, valuable advice and continuous support during the thesis. Their critical

comments, considerate attitude and immense knowledge helped me a lot during my

research and thesis-writing. Their patience and willing to help their students, made my

research life remarkable. Their constructive ideas played a vital role for the

accomplishment of this thesis.

I would like to give special thank Dr. Fatna Belqasmi who helped me a lot during

my research and gave me clear guidance in every stage of my research and saved me a lot

of time. I am also grateful to all of my friends and teammates in TSE lab: Majid, Razi,

for their constructive ideas, comments and sharing of knowledge and experiences with

me.

I am also grateful to my brother Sayed Hafizur Rahman, for his encouragement,

solid guidelines and constructive ideas in every stage of my thesis. His valuable advice

was always a source of my motivation in my research. His generosity to help me in every

stage of my life means a lot to me.

v

I would like to acknowledge the financial support from Concordia University,

Natural Sciences and Engineering Research Council of Canada (NSERC) and Ericsson

Canada Inc.

Last, but not least, I would like to thank my wife, Sayeda Marina Khatun, for her

understanding and love during the past few years. Her support and encouragement was in

the end what made this thesis possible. My parents, Md. Nur Ali Sarder and Rabiya

Khatun, and family members receive my deepest gratitude and love for their dedication,

many years of support during my undergraduate studies that provided the foundation for

this work and the opportunity to be where I am.

vi

Table of Contents

List of Figures…………………………………..…………..……………….………...…xi

List of Tables…………………………………………………………………………...xiv

List of Acronyms and Abbreviations…………………………………………………xvi

Chapter 1 Introduction………………………………………………………………….1

1.1 Research Domain ………………………………………………………………..1

1.2 Problem Statement and Motivations …………………………………………….3

1.3 Contribution of the Thesis ……………………………………………………….5

1.4 Organization of the Thesis ………………………………………………………6

Chapter 2 Background Information………….………………………………………...7

2.1 Wireless Sensor Networks (WSNs) ……………………………………………..7

2.1.1 Introduction …………………………………………………………………7

2.1.2 Wireless Sensor Network (WSN) Protocol Stack…………………………..8

2.1.3 Wireless Sensor Network (WSN) Architectures…………………………..10

2.1.4 Hardware Components of a Sensor Node …………………………………11

2.1.5 Software Components of a Sensor Node ………………………………….13

2.1.6 Wireless Sensor Network (WSN) Applications…………………………...14

2.1.6.1 People/Asset Tracking Applications ……………………………………15

2.1.6.2 Healthcare Applications ……………………………………………….15

2.1.7 Wireless Sensor Networks (WSNs) Challenges …………………………..17

2.2 REST and RESTful web services………………………………………………17

2.2.1 Introduction ………………………………………………………………..17

2.2.2 Resource Oriented Architecture (ROA) …………………………………..19

2.2.3 Properties of REST ………………………………………………………..20

vii

2.2.3.1 Addressability…………………………………………………………...20

2.2.3.2 Statelessness …………………………………………………………….20

2.2.3.3 Connectedness …………………………………………………………..21

2.2.3.4 Uniform Interface ……………………………………………………….21

2.2.3.5 Cache-ability ……………………………………………………………23

2.2.4 Development of a RESTFul web service ………………………………….23

2.3 OMA RESTful Location Services ……………………..………………………24

2.3.1 Introduction………. ……………………………………………………….24

2.3.2 OMA RESTful Location API Definition ………………………………….25

2.3.2.1 OMA RESTful Location Resources…………………………………….25

2.3.2.2 Sequence Diagrams ……………………………………………………..28

2.3.2.3 Examples of Request/Respone for Terminal Location Resource ………30

2.4 Chapter Summary……………………………………………………………....32

Chapter 3 Location-Services: state-of-the-art……………………………………….34

3.1 Introduction …………………………………………………………………….34

3.2 Categorization of Location Services …………………………………………...34

3.2.1 The Selected Proprietary Interfaces ……………………………………….37

3.2.1.1 WSN-RFID Based Location Services ………..…………………………37

3.2.1.2 Mote-Track Based Location System ……………………………………38

3.2.1.3 Cicada Based Indoor Localization System……………………………...42

3.2.2 Standard Location Services………………………………………………..44

3.2.2.1 REST versus SOAP……………………………………………………..44

3.2.2.2 GSMA OneAPI RESTful Location Services …………………………...46

3.2.2.3 OMA RESTful Location Services………………………………………47

viii

3.2.3 Specific Requirements for OMA RESTful Location Services in Wireless

Sensor Environments ………………………………………………………………..48

3.3 Chapter Summary………………………………………………………………49

Chapter 4 An Architecture for OMA RESTful Location Services in WSN

Environments…………………………………………………………………………...50

4.1 Introduction …………………………………………………………………….50

4.2 Overall Architecture ……………………………………………………………50

4.3 REST Gateway Architecture …………………………………………………...52

4.3.1 Request Handler …………………………………………………………...53

4.3.2 Subscription Repository …………………………………………………...53

4.3.3 Parser/Formatter Module ………………………………………………….53

4.3.4 REST-WSN Address Mapping Module …………………………………..53

4.3.5 Processing Module ………………………………………………………...55

4.3.6 HTTP Client ……………………………………………………………….56

4.4 WSN Gateway Architecture ……………………………………………………56

4.4.1 Data Provider Layer ……………………………………………………….57

4.4.2 Connectivity Layer………………………………………………………...58

4.5 Mappings ……………………………………………………………………….59

4.5.1 Coordinate Mapping Technique …………………………………………..59

4.5.2 WSN Raw Data Mapping with OMA Location-Information Model ……...61

4.6 Operational Procedures ………………………………………………………...65

4.6.1 Query Procedures ………………………………………………………….65

4.6.1.1 Get Terminal Location ………………………………………………….65

4.6.1.2 Get Distance Between Two Terminals………………………………….66

4.6.1.3 Get Distance from a Given Location……………………………………67

ix

4.6.2 Subscription Procedures…………………………………………………...68

4.6.2.1 Area/Circle Notification …………………………………………...……69

4.6.2.2 Distance Notification……………………………………………………70

4.7 Interfaces ……………………………………………………………………….70

4.7.1 REST Interface (Ri) ………………………………………………………70

4.7.2 WSN Interface (Pi) ………………………………………………………..70

4.7.3 Proprietary Sensor Interface (PCi) ………………………………………...74

4.8 Implementation…………………………………………………………………74

4.8.1 Implementation of REST Gateway ………………………………………..74

4.8.2 Implementation of WSN Gateway ………………………………………...78

4.8.3 Implementation of Notification Application………………………………79

4.8.4 Implementation Environment ……………………………………………..80

4.8.4.1 Hardware Environment …………………………………………………80

4.8.4.2 Software Environment…………………………………………………..81

4.9 Chapter Summary………………………………………………………………83

Chapter 5 Prototype Application and Performance Evaluation…………………….85

5.1 Introduction …………………………………………………………………….85

5.2 Prototype Application ………………………………………………………….85

5.3 Prototype Setup ………………………………………………………………...86

5.4 Procedures of Periodic Subscription …………………………………………...87

5.5 Test Environment ………………………………………………………………88

5.6 Performance Evaluation ………………………………………………………..90

5.6.1 Performance Metrics ………………………………………………………90

5.6.2 Measurements and Analysis …………...………………………………….91

x

5.6.2.1 Performance Analysis of all OMA Location Services ………………….91

5.6.2.2 Server Capacity Analysis for a Specific OMA RESTful Location Service

 …………………………………………………………………………100

5.6.2.3 Performance Comparisons of OMA Query Location Services with XML

and JSON Payloads ……………………………………………………………...101

5.6.2.4 Performance Comparisons of a Specific OMA Service with XML and

JSON Payloads ………………………………………………………………….103

5.7 Challenges Faced and Lessons Learned ………………………………………106

5.8 Chapter Summary……………………………………………………………..107

Chapter 6 Conclusion and future work……………………………………………...109

6.1 Summary of Contribution……………………………………………………..109

6.2 Future Works ………………………………………………………………….110

References………………………………………………………………………...……112

xi

List of Figures

Figure 2.1: A generic WSN protocol stack………………………………………........9

Figure 2.2: A typical wireless sensor network…………………………………….....10

Figure 2.3: Hardware components of a sensor node…………………………...….....11

Figure 2.4: Various sensors platform currently used in academia and industry…......13

Figure 2.5: Software components of a sensor node……………………………….....14

Figure 2.6: OMA RESTful server-side resource structure for terminal location.........26

Figure 2.7: Getting location information of a single or multiple terminals……….....28

Figure 2.8: Steps to control the periodic subscription notification………………......29

Figure 3.1: Location services: State-of-the-art………………………………….........36

Figure 3.2: Overall system architecture of WSN-RFID based location services.........38

Figure 3.3: TRLabs Smart Home Framework……………………………………......39

Figure 3.4: Mote-Track sensor network deployment…………………………….......41

Figure 3.5: Cicada sensor nodes and overall architecture………………………........43

Figure 4.1: Overall architecture…………………………………………………........51

Figure 4.2: REST gateway architecture………………………………………….......52

Figure 4.3: REST-WSN mapping table format…………………………..………......54

Figure 4.4: WSN gateway architecture…………………………………...……….....57

Figure 4.5: REST-WSN mapping table format…………………………..………......59

xii

Figure 4.6: Cricket sensor output………………………………………………….....60

Figure 4.7: Mapping of WSN data with OMA terminal-location object………….....62

Figure 4.8: Mapping of WSN data with OMA terminal-distance object………….....63

Figure 4.9: Mapping of WSN data with OMA subscription-notification object…......64

Figure 4.10: Procedures for getting terminal location……………………………......66

Figure 4.11: Procedures for getting terminal distance between two terminals…........67

Figure 4.12: Procedures for getting terminal distance from a given location……......68

Figure 4.13: Operational procedures for subscription resources…………………......69

Figure 4.14: (a) Message format, (b) Request message, (c) Multiple request message,

(d) Response message and (e) Multiple response messages…………........................73

Figure 4.15: Package structure and its dependencies for the implementation of REST

gateway………………………………………………………………….....................75

Figure 4.16: Realization of classes in the packages for REST gateway

implementation……………………………………………………………….............77

Figure 4.17: Realization of packages and classes for WSN gateway

implementation………………………………………………………………….........79

Figure 4.18: Realization of package and class for Notification Application

Implementation…………………………………………………………….……........80

Figure 4.19: MIT cricket sensor………………………………………………….......81

Figure 4.20: JAXB architecture and binding process…………………………….......82

Figure 4.21: Cricket software and ClientLib architecture………………………........83

xiii

Figure 5.1: Prototype setup………………………………………………………......86

Figure 5.2: Procedure of periodic subscription of our prototype application……......88

Figure 5.3: Average response time for all OMA RESTful location services…….......92

Figure 5.4: Server capacity for all OMA RESTful location services…………….......94

Figure 5.5: Average network load for all OMA RESTful location services……........96

Figure 5.6: Bandwidth consumption for all OMA RESTful location services…........98

Figure 5.7: Average response time vs. Server capacity comparison……………......100

Figure 5.8: Comparison of (a) average response time, (b) server capacity, (c)

bandwidth consumption, and (d) average network load of OMA query location

services with XML and JSON payload formats………………………………….....103

Figure 5.9: Comparison of (a) average response time, (b) average network load, (c)

server capacity, and (d) bandwidth consumption get single terminal location service

with XML and JSON payload formats for different number of

users………………………………………………………………………………....105

xiv

List of Tables

Table 2.1: OMA RESTful location resource…………………………………………….......27

Table 2.2: Request URI variables………………………………………………………........30

Table 2.3: Common HTTP response code used for OMA RESTful location services….......31

Table 2.4: Example of request and response to get location information of a single

terminal…………………………………………………………………………………........32

Table 3.1: Comparison of REST and SOAP based web services………………………........45

Table 3.2: Comparison of existing locator technologies with their accuracy………….........48

Table 4.1: Sample REST-WSN address mapping table…………………………………......54

Table 4.2: Sample table of recorded WSN data…………………………………………......58

Table 4.3: Sample coordinate mapping table……………………………………………......60

Table 4.4: Evaluation of TCP and UPD protocol for WSN interface………………….........72

Table 5.1: Specification of our test environment………………………………………........89

Table 5.2: Average response time for OMA RESTful location services………………........93

Table 5.3: Server capacity for OMA RESTful location services……………...……….........95

Table 5.4: Average network load for different OMA RESTful location services…...............97

Table 5.5: Bandwidth consumption for OMA RESTful location services……………..........99

Table 5.6: Get single terminal location services data for different number of users…….....101

Table 5.7: Performance results of query location services with XML and JSON payloads for

xv

all OMA Query location services…………………………………………..........................102

Table 5.8: Experimental result for a single terminal location with XML and JSON

payloads………………………………………………………………………………….....104

xvi

List of Acronyms and Abbreviations

ADC Analog to Digital Converter

A-GPS Assisted Global Positioning System

API Application Programming Interface

GPS Global Positioning System

GSM Global System for Mobile Communications

GSMA GSM Association

HAN Home Area Network

HGD Home Gateway Device

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IPC Inter-process Communication

JAXB Java Architecture for XML Binding

JCP Java Community Process

JSON JavaScript Object Notation

KB Kilobyte

MIME Multipurpose Internet Mail Extensions

MIT Massachusetts Institute of Technology

OGC Open Geospatial Consortium

OMA Open Mobile Alliance

OSGi Open Services Gateway Initiative

PC Personal Computer

PDA Personal Digital Assistant

xvii

REQ Request Message for Single Terminal

REQM Request Message for Multiple Terminals

RES Response Message for Both Single and Multiple Terminals

REST Representational State Transfer

RF Radio Frequency

RFID Radio Frequency Identification

ROA Resource Oriented Architecture

RPC Remote Procedure Call

SOAP Simple Object Access Protocol

SWF Slide Window Filter

TCP Transmission Control Protocol

TDOA Time Difference of Arrival

UDP User Datagram Protocol

UKF Unscented Kalman Filter

URI Uniform Resource Identifier

URL Universal Resource Locator

W3C World Wide Web Consortium

WADL Web Application Description Language

Wi-Fi Wireless Fidelity

WSN Wireless Sensor Network

WWBAN Wearable Wireless Body Area Network

WWW World Wide Web

XHTML Extensible Hyper Text Markup Language

XML Extensible Markup Language

1

Chapter 1 Introduction

1.1 Research Domain

 A Wireless Sensor Network (WSN) is formed by a set of small sensors equipped

with processors, memory and short range wireless communication capabilities. Sensors

are responsible to collect information and aggregate data regarding the physical

phenomena under observation. A conventional WSN architecture includes three major

components: sensor, sink and gateway. The sensors are responsible for actual sensing,

while the sinks collect information from all the sensors and send them to the application

through the gateway. The gateway acts as a dual network interface, a link between the

WSNs and the outside worlds by performing the protocol translation and necessary

mapping. Sink-less WSN architecture is another potential scenario where sensors are

responsible for communicating with external network(s) or application(s) directly as done

in [1].

A sensor is a source of contextual data such as spatial (e.g. location), environmental

(e.g. temperature, humidity and light etc.) and physiological (e.g. heartbeat, body

temperature, blood pressure and glucose level etc.). WSNs are deployed in a wide range

of application domains including healthcare applications, environmental monitoring,

military applications, commercial applications, home automation, structural monitoring,

exploration, and agricultural applications. To accurately locate a specific person or a

specific object in many of these applications are very noteworthy. In this occasion, the

sensors responsible for collecting location data of a specific object or a particular person

such as MIT (i.e. Massachusetts Institute of Technology) Cricket sensor [2] are known as

2

location sensor. The information collected by the location sensor is called location

information which will be relayed to a fixed and centralized gateway. After that the

gateway will transmit the information to the end-user applications residing in

infrastructure-based networks through standard or non-standard interfaces. The provided

location data can be used in many value-added services.

Academia and industry have a lot of interest in this research by introducing many

exciting issues in hardware, networking, and application level. Designing of efficient

routing protocols for power consumption optimization of sensor nodes, robustness and

security of the network, distributed data processing, and mobility and dynamicity of

different WSN entities are currently ongoing research [7].

Location services are defined as the services that could deliver information about the

current geographic location (e.g. spatial coordinates or civic location) of a person or a

mobile device as well as mobile asset. The term “location services” refers to mobile

services that integrate mobile device’s location or position with other information in order

to add value to the service as a whole [4]. The location information in that case could be

either geographical coordinates (i.e. latitude and longitude) or civic address (i.e. EV.15-

163, Concordia University) generated by any given location technology such as WSNs,

Cell-Id, Global Positioning System (GPS) etc. Location services are becoming more

popular and very useful in our everyday life. Location plays a vital role in many location

based applications. A task recognized by location services in healthcare system includes

keeping track of patients with critical situation, doctors, nurses, and expensive devices in

order to provide better and faster service. Another task acknowledged in large museums

and exhibitions take account of, keeping track of visitors, guiding them inside the

3

museums and exhibition halls, and finding lost friends and family members and the

nearest washroom based on their current locations. An overview of location based

applications and the level of accuracy required for each of the application is well presented

in [4]. Providing more accurate and standard location services at the application level is

still a challenging issue.

There are a few standard and non-standard location services. Open Mobile Alliance

(OMA) defined standard RESTful location services. These are standard RESTful web

services for terminal location that follows the Representational State Transfer (REST)

architectural style [5]. They are location technology independent and enable applications

portability and interoperability. OMA RESTful location services deliver information (i.e.

location, distance) about the current geographic location of any mobile terminal (e.g. Cell

phones, PDAs, and Laptops etc.) in order to provide added value to a user.

1.2 Problem Statement and Motivations

OMA RESTful location services are standard Web services for terminal location that

follows the REST design style. OMA RESTful location services are location technology-

independent and enable applications portability and interoperability. A list of technologies

that provide location information include GPS and Cell-Id of the currently serving cell in

the cellular network. GPS is one of the most well-known technologies [6]. It works very

well in outdoor environments but its usage in indoor environments is limited as the signals

from GPS satellites are too weak to penetrate most of the buildings. Furthermore, along as

the Cell-Id, the GPS does not provide the enough accuracy required by several

applications such as people/asset tracking, healthcare environments and pervasive gaming.

4

Another alternative to get location information is using WSNs. Sensors can sense

location with an accuracy (e.g. within 1-3 centimetres) that most technologies cannot

provide, making them the technology of choice for applications that require high accuracy.

To illustrate the potential benefits of accuracy that can be obtained from the

implementation of OMA RESTful location services in wireless sensor environments, let

us consider the following situation when someone enters a large building (airport,

museum, shopping mall, fair center etc.) that he/she is not familiar with. He/she may get

lost. One potential solution is that this person could use his/her cell phone or a PDA

equipped with a client application based on OMA RESTful location services to locate

herself/ himself. The application can also guide the person step by step to visit the whole

building via the user interface (with a floor plan). A user could also use the same

application to find his/her friends, relatives and colleagues inside a building, and can even

ask to be notified when some of her/his friends/relatives/colleagues are located in the

proximity of their current location in a specific area or within a specific distance. Other

services can be provided, such as locating meeting rooms, the nearest toilets or auto-teller

machines.

Our main research goal is to implement OMA RESTful location services in wireless

sensor environments in order to provide more accurate location information. There is no

ready-to-use architecture for providing OMA RESTful location services in wireless sensor

environments.

The highlight of our research work is an architecture for providing OMA RESTful

location services in wireless sensor environments. We design, implement this architecture

and perform preliminary performance evaluation.

5

1.3 Contribution of the Thesis

The main contributions of the thesis are as follows:

 We performed a detailed survey and evaluation of the state-of-the-art on the

implementation of location services with existing technologies.

 More important, we developed an architecture for the implementation of OMA

RESTful location services in wireless sensor environments. As part of this

architecture, we designed and implemented a WSN gateway architecture based

on MIT Cricket sensors [2].

 In order to establish a communication with the WSN gateway we derived a set

of requirements for designing the interfaces between REST gateway and WSN

gateway. We defined an UDP-based interface between REST gateway and

WSN gateway that met all of our requirements.

 We implemented the proof-of-concept prototype for the design and

implementation of OMA RESTful location services in WSN environments. We

implemented all the architectural components of REST gateway, and WSN

gateway. All the OMA defined services have also been implemented.

 We evaluated the performance of our system based on four different

performance metrics such as end-to-end delay, server capacity, network load,

and bandwidth consumptions. We gathered all the performance data using the

Apache JMeter [8], an open source testing tools.

6

1.4 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 provides the necessary background information on WSN, REST and

RESTful web services, and OMA RESTful location services which are required for

understanding this research work.

Chapter 3 delivers a detailed review of the state-of-the-art on the implementation of

location services with any existing location technology including WSN. We conclude this

chapter by describing the requirement/criteria for the design and implementation of OMA

RESTful location services in wireless sensor environments.

Chapter 4 elaborates on the detailed design and implementation of OMA RESTful

location services in wireless sensor environments. Firstly, we described the design and

implementation of the architectural components of a REST gateway. Secondly, we

explained the design and implementation of a WNS gateway. We conclude this chapter by

discussing the overall implementation of the system.

Chapter 5 is devoted to the prototype implementation as a proof-of-concept for the

design and implementation of OMA RESTful location services in wireless sensor

environments. The performance evaluation and related measurements are also presented.

This chapter is concluded with the discussion of performance metrics and result analysis.

Finally, Chapter 6 concludes this research work with some potential future remarks.

7

Chapter 2 Background Information

This chapter focuses on necessary background information on WSNs, REST and

RESTful web services, and OMA RESTful Location services.

2.1 Wireless Sensor Networks (WSNs)

In this section we first introduce WSNs as well as WSNs protocol stack.

Afterwards, WSN architectures, hardware components and software components of a

sensor node are discussed. We conclude this section by describing WSN applications and

WSN challenges.

2.1.1 Introduction

A sensor is a tiny electronic device that can measure, detect and gather data from

physical environment or surroundings and converts it into an electrical signal for further

processing and communication to other network entities. The so-called sensor nodes are

equipped with on-board multifunctional miniature sensors, processor, and communication

components which are low-cost and low-power intelligent devices that are small in size

and communicate untethered in short distance. Due to the recent advancements in

hardware and wireless network technologies most of the sensor devices are equipped with

wireless interface for inter-node communication. The collaboration between sensors

makes up a network defined as Sensor Network or Wireless Sensor Networks (WSNs). In

short, WSNs is formed by a set of sensors equipped with processors, memory and short

range wireless communication capabilities [7]. Modern sensor networks represent

8

significant improvements over traditional sensors, which are deployed in the following

two ways [7] [9]:

 Sensors can be positioned far from the actual phenomenon (i.e. something known

as sense perception). In this approach, a large sensor, that may use some complex

techniques to distinguish the targets from environmental noise, is required.

 Several sensors that perform only sensing can be deployed. In this case, the

positions of the sensors and communications topology need to be carefully

engineered. They transmit timed series of the sensed phenomenon to the central

nodes where the actual computations are performed and data are fused.

The positions of the sensor node do not need to be engineered or pre-determined.

We can deploy them randomly in inaccessible topographies or disaster relief operation

without any human intervention or configuration. WSN network protocols and algorithms

must own self-organizing capabilities. Sensor nodes are cooperative with each other.

They can process the raw data instead of sending them to the node responsible for fusion

using their on-board processing capabilities in order to carry simple computations and

convey only the desired and partially processed data. The aforementioned features of

WSN open the door for a wide range of new applications. A variety of potential

applications which are categorized into health, military, environmental and commercial

applications.

2.1.2 Wireless Sensor Network (WSN) Protocol Stack

Many protocols have been developed for WSNs considering energy as a critical

issue. A generic WSN protocol stack consists of a set of communication and management

9

protocols are shown in Figure 2.1. The communication protocol stack is made as usual of

physical, data-link, network, transport and application layer. The physical layer is

responsible for sensing, actuation and signal processing. The link layer is responsible for

channel sharing and timing issues where the network layer is responsible for topology

management and routing data supplied by transport layer, which is responsible for data

dissemination, accumulation, cashing and storage. The application layer is responsible for

application processing, data aggregation, and query processing. Depending on the sensing

capabilities, different types of application software can be built and used in this layer.

The management protocol stack consists of power, mobility and task management plane

which operate across all layers. The management protocol stack will assist sensors in

coordinating the sensing and lower the overall power consumption. Sensor nodes power

is controlled by power management plane. For instance, the sensor may keep its radio

turn off after receiving a message from one of its neighbors in order to avoid receiving

Figure 2.1: A generic WSN protocol stack

10

duplicate message. When the sensor is running low in energy, it will inform low power to

its neighbors and not be able to participate in routing messages. The remaining power of

the sensors suffering from low energy is reserved for sensing only. The mobility

management plane is responsible for maintaining the full operation of sensor mobility.

This will aid a sensor node to detect the route by keeping track of its neighbors. The task

management plane should be capable of coordinating all nodes toward a common

objective in a power-aware manner [7] [10].

2.1.3 Wireless Sensor Network (WSN) Architectures

 The design of the WSNs architecture is influenced by many factors such as sensing,

fault tolerance, hardware constraints, network topology and power consumption etc. All

these factors are well explained in [7]. Figure 2.2 depicts a typical WSN network

architecture which consists of three main components: sensors, sinks and gateways. The

sensors are responsible for actual sensing, while the sinks collect information from all the

sensors and send them to the application through the gateway. The gateway acts as a dual

network interface, a link between the WSNs and the outside worlds by performing the

protocol translation and necessary mapping. A more detailed description of WSNs

architectural entities are given in [1]. Sink-less WSN architecture is another potential

Figure 2.2: A typical wireless sensor network

11

scenario where sensors are responsible for communicating with external network(s) or

application(s) directly as done in [1].

2.1.4 Hardware Components of a Sensor Node

The significant hardware components of a sensor node are shown in Figure 2.3. The

components are: sensing unit, processing unit, communication unit and power unit.

Sensing Unit: The sensing unit comprises of two sub modules: single or multifunctional

sensors and a converter called Analog to Digital converter (ADC). Sensors are

responsible for sensing physical phenomenon such as light and temperature, and also

produce analog signal based on the observed phenomenon. The ADC is responsible for

converting sensed analog signals into digital signals. After that the converted digital

signals fed into the processing unit for further processing.

Figure 2.3: Hardware components of a sensor node

12

Processing Unit: The processing unit is responsible for processing and storing the sensed

data. It is also responsible for local processing and aggregation of sensed data using on-

board processing capability.

Communication Unit: Communication unit provides functionalities to communicate with

their neighboring nodes. It has a full-duplex built-in transceiver that could be used to

transmit and receive data simultaneously.

Power Unit: Power unit is responsible to supply power to the sensor node. Batteries are

the most common source of power supply. However, there is some energy scavenging

techniques that could generate power from ambient sources.

The most commonly used sensor hardware platforms in academic research,

commercial applications as well as industry includes MIT Cricket for location detection

from MIT [2], motes platform (i.e. MICA, MICA2 and TelosB) from crossbow designed

at University of California Berkley [11] and TMote-Sky from moteiv [12]. Scatterweb

[13] is another platform from Freie Universität Berlin and BTnodes with Bluetooth

wireless interface developed at ETH Zurich [14]. Some common sensor platforms are

shown in Figure 2.4.

13

2.1.5 Software Components of a Sensor Node

In addition to hardware components, sensors have also two software components:

Operating System and Middleware/Applications. Operating system and middleware are

used to provide an environment for WSN application deployment and execution. One of

the very commonly used operating systems for WSNs is TinyOS [15]. In order to provide

sensor data processing and accessing, TinyOS is ported with applications, such as

TinyDB [16] and TinyREST [17]. These applications are programmed in a special

(a) MIT Cricket Beacon (b) Crossbow Motes (MICA2)

(c) ScatterWeb (d) TMote-Sky

Figure 2.4: Various sensors platform currently used in academia and industry

14

language known as nesC [18]. Figure 2.5 shows the software components (subsystem) of

a sensor node.

2.1.6 Wireless Sensor Network (WSN) Applications

Due to the technology advancement, researchers have developed numerous

different kinds of sensors such as infrared, ultrasound, seismic, thermal, visual and

acoustic, radar and combination of infrared and radar. These sensors open the doors for

application developers to develop a wide range of WSNs applications. WSNs

applications categorized in [7] are:

(i). People/Asset tracking applications

(ii). Healthcare applications

(iii). Environmental applications

(iv). Military applications

(v). other commercial applications

Figure 2.5: Software components of a sensor node

15

Beside these categories it is also possible to extend the applications as space

exploration, chemical processing and disaster relief operations. In the following section

we are going to discuss two major application categories of people/asset tracking and

health application areas that could be used to motivate our technical problem.

2.1.6.1 People/Asset Tracking Applications

People/asset tracking inside large buildings is one important application area that

could benefit from the availability of contextual information (i.e. location information)

provided by the wireless sensors. For example, when a person enters into a large building

(e.g. airport, museum, shopping mall, fair center etc.), he/she is not familiar with, and

may get lost. One potential solution is that the person can use a cell phone or a PDA

equipped with a client application based on the OMA RESTful location services to locate

her/him. The application can also guide the person step by step to visit the whole building

as a guide throughout the user interface (i.e. floor plan). The person can also use the same

application to find his/her friends, relatives and children inside the building. Other

services like finding meeting rooms, nearest toilets, and auto-teller machines can also be

provided. Moreover, the person may ask to be notified when some of her/his

friends/relatives/children's is located in the proximity of their current location located in a

specific area or a specific distance [19].

2.1.6.2 Healthcare Applications

Another important WSNs applications area is healthcare application. The following

example shows a health monitoring application that tracks the current location of older

patients with dementia. Typically, the patients suffering from dementia may try to escape

from the hospital against orders. In this case a sitter may need to be assigned to monitor

16

continuously which is not cost effective and suitable in future healthcare environment.

Instead of assigning a sitter for each patient, we can bind a cell phone with attached

sensor into their body which can sense the location information. Application can

subscribe (with the subscription information) about the cell phone attached to the patient

body, and notify at later time when patients will try to escape or out of bed from hospital.

In a hospital or clinic, location sensors can also be attached to track the doctor’s current

position in order to inform other personnel and ensure more efficient collaboration among

them.

Tele-monitoring or telemedicine is another direction in health applications, aims at

providing automated, accelerated and more efficient healthcare assistance. This could be

done by integration of some lightweight and small sensors installed on the patient bodies.

These sensors are responsible for measuring the patient’s biomedical and physiological

data such as heart rate, blood pressure, body temperature, respiratory rate, mental status

and oxygen saturation, temperature and location information. The sensors installed on the

patient’s body together form a Wearable Wireless Body Area Network (WWBAN) [20].

WWBAN allows doctors, nurses and other medical stuff to monitor and analyze patient’s

physiological, environmental and location information remotely. The emergency

applications, such as triage and treatment of seriously injured people in a very efficient

and coordinated manner, are already realized to overcome the critical bottlenecks of

emergency activities. These emergency applications are based on WSN technology [21].

Several projects and research prototypes have been developed for healthcare

applications using WSNs. Mobi-Health European project [22] provides a continuous

monitoring of patients’ health status while they are outside of the hospital environment.

17

CodeBlue [23] provides a wireless infrastructure and architecture which can be deployed

in emergency medical care. This project combines low-power wireless biomedical

sensors, PDAs and PCs. [24] describes some illustrative applications in the wireless

healthcare application domain and also introduce detailed challenges to WSNs with

respect to the required level of reliability, privacy and security of medical data.

2.1.7 Wireless Sensor Networks (WSNs) Challenges

Despite the numerous benefits of WSN applications, WSN also poses many

challenges for the design of communication protocols, hardware architectures and

software modules. The factors that influence the design of the above protocols are mainly

focused on the optimization of power consumption, security, fault tolerance, network

routing, self-organization, network discovery, robustness, and data processing. Among all

of them, mobility of sensors is a growing research topic now-a-days. Due to the mobility

of sensor nodes and constraints of WSNs, network topology may vary. In order to cope

with this dynamic topology, special mechanisms are needed. To-date, many researchers

have been done for designing energy efficient routing protocols [25] [26] [27]. WSN

security is another challenging issue as described in [28] [29].

2.2 REST and RESTful web services

In the following section, we will discuss the background information on REST and

RESTful Web services.

2.2.1 Introduction

REST was first defined by Roy Fielding in his PhD dissertation [3]. The aim is to

design distributed networked applications by taking benefit of the existing technologies

18

and protocols of the World Wide Web (WWW). REST uses the Web’s basic technology

(e.g. HTML, XML and HTTP) as a platform to build and provision distributed services

[30]. It is one of the key players of Web 2.0, a concept associated with the web

applications that promotes interactive information sharing and collaboration over the

web. REST adopts the client-server architecture of the web and does not restrict client-

server communication to a particular protocol but more work has been done on using

REST with Hypertext Transfer Protocol (HTTP) since HTTP is the primary transfer

protocol of the web [30].

A RESTful web service is designed following REST design principles. RESTful

web services can be described using the Web Application Description Language (WADL

[80]). A WADL file describes the request that can be addressed to a service, including the

service’s Uniform Resource Identifier (URI) and the data the service expect and serves

[30].

REST models the information to operate on (e.g. a user location) as resources and

identifies each resource using a URI. A standard and unified interface is then used to

access the defined resources. This interface consist of the HTTP methods GET, POST,

PUT and DELETE, which are used to read, create, update and delete a resource,

respectively. A more details description on REST and RESTful web services can be

found in a recent survey paper [30].

REST is not an architecture, but a set of design criteria. Resource Oriented

Architecture (ROA [45]) is a RESTful architecture that provides a set of commonsense

rules for designing RESTful web services. The REST architectural style is based on the

following principles: resources, addressability, statelessness, connectedness, uniform

19

interface and cache-ability [31] [37] [33]. We will be discussing ROA and properties of

REST in following sections.

2.2.2 Resource Oriented Architecture (ROA)

As name implies ROA is all about resources. It is based on the concept of resource.

Resource is a distributed component that can be accessible through a standard common

interface. The main ROA concepts are: resource, resource name, resource representation,

resource link and resource interface.

A resource is anything that can be named and that is important enough to be

referenced as a “thing” itself (e.g. a document, a row in a database, a search result, an

item etc.). It can be a physical object or an abstract concept. A resource is the first thing

that we should consider when designing REST based applications. On the other hand, a

resource can be defined by simply an entity, an item or a thing that we want to expose.

Each resource should have at least one URI in order to uniquely identify it on the web.

Without an URI, it is not a resource and not possible to find it on the web. It is also not

possible to access two different resources by using the same URI. However, it is possible

to access same resource by using two different URIs.

Each resource has a representation that represents the current state of a resource. It

can be represented in any format or any media type. For instance: Extensible Markup

Language (XML [70]), JavaScript Object Notation (JSON [71]), Extensible Hyper Text

Markup Language (XHTML) or plain text representation. We can specify resource

representation format or media type inside the URIs itself (e.g. resource/location.xml) but

it is not a good practice to do. Rather, Content-Type header specifies the representation

20

needed to display the entity-body. On the human web, web browser displays it inline or

by running an external program. On the programmable web, web service client decide

which parser to apply to represent [34]. Resource can be linked to same or other

resources via hyperlinks. We can access the resource and manipulating it through a

uniform interface. Uniform interface is described in Section 2.2.3.4. A more information

about resource can be found on [31] [34].

2.2.3 Properties of REST

The properties of REST are: addressability, statelessness, connectedness, uniform

interface, and cache-ability.

2.2.3.1 Addressability

It is the idea that every resource in the system is addressable through URIs. The

number of URIs depends on the number of resources. With this addressability one can

bookmark a specific page. Furthermore, we can email the URI of a resource to anybody

else. A more details description with an example is presented in [31].

2.2.3.2 Statelessness

Statelessness is a property of HTTP requests that are performed in a complete

isolation. When the client makes an HTTP request, it should include all necessary

information for the server to process that request. The server should never rely on

information from previous requests. If the server needs some information from the

previous request, the client should send that information again with the new request since

the server does not keep any information about the client. This principle makes the

system simpler, reliable, scalable and cacheable. In a stateless scenario, each request is

21

separated from other request. This allows the client to make request for a specific

resource, any number of times and in any order. For instance, page-2 can be requested

before requesting page-1. A client makes a request to server A and it is successful. The

client sends another request to the same server but at that time the server goes down or

unable to response. In that case, a new server can serve the request since all the

information it requires was given to make the request successful at the time of requesting.

2.2.3.3 Connectedness

In RESTful web services, the client can navigate from one state to another by

sending links inside the representation. Representations are hypermedia, and documents

that contain not only data but also links to other resources. Human web is easy to use as it

is well connected but programmable web is not yet easy to use. In RESTful fashion, it is

obvious that resources should be connected and linked together. This allows the client to

discover the interface by traversing hyperlinks between each of its resource

representation.

2.2.3.4 Uniform Interface

Unified interface is used to access the defined resources. This interface consists of

several HTTP methods including GET, POST, PUT and DELETE, which are used to

read, create, update and delete (i.e. CURD) a resource respectively. Each of the HTTP

methods is discussed as follows:

HTTP GET: The GET HTTP method is used to retrieve whatever information is

identified by the request-URI [35]. This information is identified by the URI, which is a

representation of a resource. GET HTTP method is safe, meaning that it does not change

22

the state of the server; it only retrieves information from the server. HTTP GET method

is also considered as idempotent, meaning that it can be applied multiple identical

requests having the same effect as a single request. If the request is succeeded and the

resulting resource is returned in the message body, the appropriate response code is 200

(i.e. OK). If the resource does not exist, the response code is 404 (i.e. Not Found).

HTTP POST: The POST HTTP method is used to create a new resource with the data

enclosed in the request as a new subordinate of the given URI. When a resource is

created, it returns a 201 (i.e. Created) response code. It contains an entity which describes

the status of the request and refers to the new resource and a location header.

HTTP PUT: The HTTP PUT method is used to store the enclosed entity under the

supplied request-URI [35]. If the URI refers to an existing resource, it will update the

previously stored data on the server with the enclosed data. If the requested URI does not

point to an existing resource and is also capable of being defined as a new resource, the

origin server can create the resource with that URI. If a new resource is created, a 201

(i.e. Created) response code returns. If an existing resource is modified, a 200 (i.e. OK)

response code should be sent to indicate successful completion of the request. If the

resource is not created or modified, an appropriate error response should be given that

reflects the nature of the problem.

PUT will create a new request where the client is in charge of creating the new

resource URI (i.e. given by the client). In order to modify an existing resource, PUT

modifies an existing resource identified by the URI that already exists. On the other hand,

POST creates a new resource where the server is in charge of creating the new resource

URI. In short, HTTP PUT request identifies the entity enclosed with the request where

23

POST request identifies the resource that will handle the enclosed entity. Furthermore,

PUT HTTP method is idempotent like GET method but the POST HTTP method is not

since every HTTP POST request has different result.

HTTP DELETE: The HTTP DELETE method is used to delete the existing created

resources identified by the requesting URI. If the action is performed successfully, a

successful response status code 200 (i.e. OK) will return. Otherwise, an appropriate error

response code will return indicating the nature of the problem. The HTTP DELETE

method is also an idempotent like other GET and PUT HTTP methods.

Besides the aforementioned four main HTTP methods, there are two other HTTTP

methods; HTTP HEAD and HTTP OPTIONS are also considered as uniform interface.

HTTP HEAD method is used to fetch meta-data about a resource whereas HTTP

OPTIONS method is used to discover HTTP methods which are allowed for specific

resources.

2.2.3.5 Cache-ability

The REST architectural style allows caching the resources whenever possible with

an expiration date and time. Cache-ability offers faster response and better loading time

by decreasing the load on the server. HTTP has two caching mechanism such as

Expiration and Validation. A more details description of REST properties can be found in

[31].

2.2.4 Development of a RESTFul web service

Before staring the implementation of RESTful web services, it is important to

analyze the procedures to follow. The procedures are as follows [31]:

24

1. Figure out the data set

2. Split the data set into resources

For each kind of resource:

3. Name the resources with URIs

4. Expose a subset of the uniform interface

5. Design the representation(s) accepted from the client

6. Design the representation(s) served to the client

7. Integrate this resource into existing resources, using hypermedia links and

forms

8. Consider the typical course of events: what is supposed to happen?

9. Consider error conditions: what might go wrong?

2.3 OMA RESTful Location Services

In the following sections, we will discuss OMA RESTful location services along

with their resources, data structures and sequence diagrams.

2.3.1 Introduction

OMA RESTful location services allow an application to obtain the current location

of a given terminal and the distance of a terminal from a given location, as well as the

distance between two terminals. These services also allow for an application to manage

client subscriptions for periodic location notifications (i.e. to be periodically notified

about the current location of a terminal), area/circle notifications (i.e. to be notified when

25

a given terminal enters or leaves the target area), as well as periodic distance notifications

(i.e. to be notified when the distance between a monitored and a reference terminal

exceeds or goes below a certain threshold) [5].

2.3.2 OMA RESTful Location API Definition

In this section, we present a detail description of OMA RESTful location services.

First, we will be describing the resource structure for defining OMA RESTful location

services and their operations. Second, we will be presenting a few sequence diagrams to

demonstrate the interaction between server and client applications. Finally, we will

conclude this section by providing an example of request and response for accessing a

simple query resource (e.g. for accessing location information of a single terminal).

2.3.2.1 OMA RESTful Location Resources

OMA RESTful location services define a set of server-side resources plus one

client-side resource that is used to send notifications to the client. Figure 2.6 shows the

resource structure for server-side resources. The server-side resources are either of the

query (i.e. request/response) or subscription type (i.e. a request followed by multiple

notifications). Query resources include terminal location (e.g. current location) and

terminal distance (e.g. the distance of a terminal from a given location or the distance

between two terminals). Terminal location and terminal distance resources are accessed

via an HTTP GET request only. The GET request has no message body, whereas the

response body carries the requested information.

26

The subscription resources include: the list of subscriptions for periodic location

notifications, the list of subscriptions for area notifications, and the list of subscriptions

for distance notifications. The supported HTTP methods are GET and POST. GET

returns the list of active subscriptions, whereas POST creates a new subscription under

the target resource. The other subscription resources are: an individual subscription for

periodic location notifications, an individual subscription for area notifications, and an

individual subscription for distance notifications. For these resources, the supported

HTTP methods are GET, PUT and DELETE. GET returns the different parameters (e.g.

the notifications’ frequency) of a specific subscription identified by its subscription Id,

PUT modifies the subscription parameter, and DELETE removes the subscription and

stops the related notifications.

//{serverRoot}/{apiversion}

/location

/queries

/subscriptions

/location

/distance

/periodic

/area/circle

/distance

/{subscriptionid}

/{subscriptionid}

/{subscriptionid}

Figure 2.6: OMA RESTful server-side resource structure for terminal location

27

Resources

Base URL:

http://{serverRoot}/{apiVersion}/lo
cation

HTTP action

Terminal location

/queries/location?address={terminal

Id}

/queries/location?address={terminal
Id1}&address={terminalId2}

GET: return current location of a

terminal or multiple terminals

Terminal distance

/queries/distance?address={termina

lId}&latitude={lat}&longitude={lo

n}
/queries/distance?address={termina

lId1}&address={terminalId2}

GET: return current distance of a

terminal from a given location or
distance between two terminals

The list of subscriptions
for periodic location

notifications

/subscriptions/periodic GET: return all active
subscriptions POST: create a new

subscription

Individual subscription for

periodic location
notifications

/subscriptions/periodic/{subscriptio
nId}

GET: return specific subscription

PUT: update specific subscription
DELETE: delete one subscription

The list of subscriptions

for area notifications

/subscriptions/area/circle GET: return all active

subscriptions

POST: create a new subscription

Individual subscription for

area notifications

/subscriptions/area/circle/{subscript

ionId}

GET: return specific subscription

PUT: update specific subscription

DELETE: delete one subscription

The list of subscriptions
for distance notifications

/subscriptions/distance GET: return all active
subscriptions

POST: create a new subscription

Individual subscriptions
for distance notifications

/subscriptions/distance/{subscriptio

nId}

GET: return specific subscription

PUT: update specific subscription

DELETE: delete one subscription

Callback resource (client
side resource)

URI provided by the client at
subscription time

POST: post the notification
information to the client

application

Table 2.1: OMA RESTful location resource

The client-side resource is known as the callback resource. When a client

application requests the creation of a new subscription, it should provide the URI of the

callback resource that is to receive the periodic notifications. The only HTTP method

supported for this resource is POST. Table 2.1 summarizes the resources, their URIs and

the methods they accept. The data structures are used for all these resources are described

28

in [5]. We will only be discussing terminal location resource in details along with an

example in Section 2.3.2.3. All other resources are explained in [5] [36].

2.3.2.2 Sequence Diagrams

 This section presents two sequence diagrams, one for accessing server-side query

resource and another one for accessing server-side subscription resource. In order to

access server-side query resource, we present the scenario where the client/application

needs the location information of a single or multiple terminals. For server-side

subscription resource, we present the scenario in order to control the subscriptions for

periodic notifications of a terminal. Figure 2.7 depicts the sequence diagram in order to

acquire the location information of a single or multiple terminals. The client/application

sends HTTP GET request (step-1) with necessary information in the requested URI as a

parameter (e.g. terminal address, or terminal addresses, desired accuracy) and receives

the location information as a response (step-2).

Figure 2.7: Getting location information of a single or multiple terminals

Client/

Application
Server

1. GET: request single or multiple terminal location

2. Response: Terminal Location

R
e
tr

ie
v

e
 T

e
rm

in
a
l

L
o

c
a
ti

o
n

29

Figure 2.8 shows the sequence diagram to control the subscription for periodic

notification of a terminal. Client/application creates a new periodic subscription by

sending HTTP POST request with the subscription information in the requested body

(Step-1) and receives the created resource URI containing the subscription-Id (Step-2).

When the timer expires, the server sends back the notification to the client by the client-

provided callback URI (Step-3 & Step-4). After some times, the client/application

modifies the previously created subscription by sending the HTTP PUT request to the

Client/

Application
Server

1.POST: Create new periodic notification subscription

2. Response peridic notification subscription with

subscription id

T
im

er

 E
x

p
ir

at
io

n

4. Response

3.POST: notify new location information

5.PUT: Update and individual subscription with subscription id
6. Response

8. Response

7.POST: notify new location information

T
im

er

 E
x

p
ir

at
io

n
10. Response

9. DELETE: delete subscription with subscription id

Figure 2.8: Steps to control the periodic subscription notification

30

resource URI with subscription-Id (Step-5 & Step-6). After the modification, the server

sends the notification again until the subscription ended by the client/application (Steps-7

& Steps-8). Finally, client/application deletes the subscription by sending the HTTP

DELETE request to the URI with subscription-Id which stop the notification as well

(Step-9 & Step-10).

2.3.2.3 Examples of Request/Respone for Terminal Location Resource

This section is discussed with an example of request and response of a terminal

location resource in details Terminal location resource is used to return the current

location of a single terminal or multiple terminals. The URI is used to access the terminal

location resource is http://{serverRoot}/{apiVersion}/location/queries/location. The

request URI variables and their description are shown in Table 2.2. The request URI

variables are also common for all other HTTP requests. Each request associated with a

specific response code in the response depending on the action taken by the server. The

common HTTP response code is used for OMA RESTful location services shown in

Table 2.3.

Name of the

Variables

Description

serverRoot serverRoot defines the servers base url:

hostname+port+basepath.

Example: http://localhost:8080/location

apiVersion This indicate the API version of the ParlayREST API that the

client wants to use (e.g. 1 for version 1.x)

Table 2.2: Request URI variables

31

Response Code Description

200 Success

201 Created

204 No Content

304

ConditionNotMet (Not Modified): The condition specified in the

conditional header(s) was not met for a read operation.

400 Invalid parameters in the request

401 Authentication failure

403 Application don't have permissions to access resource due to the

policy constraints (request rate limit, etc.)

404 Not Found: The specified resource does not exist

405 Method not allowed by the resource

409 Conflict

411 Length Required: The Content-Length header was not specified.

412 Precondition Failed: The condition specified in the conditional

header(s) was not met for a write operation.

413 RequestBodyTooLarge (Request Entity Too Large): The size

of the request body exceeds the maximum size permitted.

416 InvalidRange (Requested Range Not Satisfiable): The range

specified is invalid for the current size of the resource.

500 Internal server error

503 ServerBusy (Service Unavailable): The server is currently

unable to receive requests. Please retry your request.

Table 2.3: Common HTTP response code used for OMA RESTful location

services

An example of a request and response for terminal location resource is shows in

Table 2.4. The request, which is a HTTP GET request, is responsible for receiving the

current location of a specific terminal (i.e. 5145817818). In the response, the response

32

code is 200 (i.e. OK) which indicates the successful completion of the request. It also

specifies the content type, content length and the time inside header and the actual

information inside the response body.

2.4 Chapter Summary

This chapter focused on a brief description of WSNs along with its architectures,

protocol stack, hardware and software components, REST and RESTful web services and

Request

GET http://localhost:8080/location/queries/location?address=5145817818

HTTP/1.1

Host: localhost:8080

Response

 HTTP/1.1 200 OK

 Content-Type: application/xml

 Content-Length: 1234

 Date: Thu, 04 Jun 2009 02:51:59 GMT

 <? xml version="1.0" encoding="UTF-8"?>

 <terminalLocationList>

 <terminalLocation>

 <address>5145817818/address>

 <locationRetrievalStatus>Retrieved</locationRetrievalStatus>

 <currentLocation>

 <latitude>-80.86302</latitude>

 <longitude>41.277306</longitude>

 <altitude>1001.0</altitude>

 <accuracy>100</accuracy>

 <timestamp>2011-06-03T00:27:23.000Z</timestamp>

 </currentLocation>

 </terminalLocation>

 </terminalLocationList>

Table 2.4: Example of request and response to get location information of a single

terminal

C
o
n

te
n

t

-H
ea

d
er

C
o
n

te
n

t-
B

o
d

y

33

OMA RESTful location services with its resources and their operations. In the following

chapter, we will explore the state-of-the-art for the implementation of location services

with existing technologies.

34

Chapter 3 Location-Services: State-Of-The-Art

This chapter reviews and evaluates the existing solutions for location services such

as OMA RESTful location services [5], GSMA OneAPI RESTful location services [38],

and OGC OpenLS [43] location services using different technologies (i.e. WSNs, GPS,

A-GPS, and Mobile Mast). Other non-standard approaches are also discussed.

3.1 Introduction

Schiller and Voisard defined location services as “services that integrate a mobile

device’s location or position with other information to provide added value to a user” [4].

Standard location service specifications are provided by OMA [57], GSM Association

(GSMA) [58] and Open Geospatial Consortium (OGC) [42]. Beside these standard

specifications there are a few other approaches [46] [47] [48]. Implementation of such

standard and nonstandard specifications with different technology opens the door for

application developers to offer more attractive location based services and speed up their

development.

3.2 Categorization of Location Services

We categorized location services into four groups: OMA RESTful location

services, GSMA OneAPI RESTful location services, OGC OpenLS location services and

a few other proprietary interfaces as shown in Figure 3.1. This categorization is based on

the standard and non-standard location interfaces and location APIs. The aforementioned

interfaces will not be able to provide location information without using any other locator

technologies. Different locator technologies can provide different level of accuracy. We

35

further categorized the related work into sub-categories based on the used

implementation technologies: WSN, GPS, Assisted Global Positioning System (A-GPS)

and Cell-Id (as shown in Figure 3.1). The proprietary approaches will be discussed in

Section 3.2.1. The implementations of standard interfaces (i.e. location services) with

different technologies are dealt with in Section 3.2.2.

36

L
o
ca

ti
o
n

S
er

v
ic

es

G
S

M
A

 L
o

ca
ti

o
n

 O
n

eA
P

I

(S
u

b
se

t
o

f
O

M
A

)

O
M

A
 R

E
S

T
fu

l

L
o

ca
ti

o
n

 S
er

v
ic

es
O

G
C

 O
p

en
L

S
P

ro
p

ri
et

a
ry

In
te

rf
a

ce
s

G
P

S
A

-G
P

S
G

P
S

A
-G

P
S

W
S

N
G

P
S

A
-G

P
S

C
el

l
Id

C
el

l
Id

C
el

l
Id

A
E

P
O

N
A

E
S

R
I

W
S

N
-R

F
ID

B
a

se
d

 L
o

ca
ti

o
n

se
rv

ic
es

M
o

te
T

ra
ck

B
a

se
d

 L
o

ca
ti

o
n

S
y

st
em

C
ic

a
d

a
 B

a
se

d

In
d

o
o

r
L

o
ca

li
za

ti
o

n

S
y

st
em

Interfaces

Technologies

Implementation

S
ta

n
d

a
rd

 I
n

te
rf

a
ce

s
N

o
n

st
a

n
d

a
rd

 I
n

te
rf

a
ce

s

RESTful

RESTful

SOAP

Proprietary

L
o

ca
tr

ix

F
ig

u
re

 3
.1

:
L

o
ca

ti
o
n

 s
er

v
ic

es
:

S
ta

te
-o

f-
th

e-
a
rt

37

3.2.1 The Selected Proprietary Interfaces

The most significant existing proprietary solution includes WSN-RFID based

location services [46], Mote-Track based location system [47], and Cicada based indoor

localization system [48].

3.2.1.1 WSN-RFID Based Location Services

The work presented in [46] proposed an internal location based system using Radio

Frequency Identification (RFID) and Wireless Fidelity (Wi-Fi) technology in order to

accurately determine people’s location in indoor environments. RFID is used to identify

user’s location in indoor environment with WSNs. Each RFID reader is attached to a

Millennial-Net [49] end point in order to create a wireless network. The user whose

location information needs to know is tagged with a RFID tag. When a user passed or

crossed the end points, RFID reader will detect the tag and send this data to store into a

database through a gateway application. At later time, application uses this data to detect

the location of a user and respond accordingly. Figure 3.2 shows the system architecture

of WSN-RFID based location services system. Millennial-Net sensor network is a low-

powered, self-configuring WSN. Once the nodes of Millennial-Net sensor network are

deployed in real environments, it requires minimum maintenance which minimizes the

network deployment cost as well.

38

It was shown that, a combination of sensor nodes can achieve the required level of

accuracy in order to create usable location based services [46]. However, their work did

not mention any standard payload that may be used to exchange information.

Furthermore, they also did not provide any Application Programming Interface (API)

description for application development. In addition, their work did not support

heterogeneous WSNs and reusability of existing WSNs gateways as well as existing

technology/standards.

3.2.1.2 Mote-Track Based Location System

An important research work is presented in [47]. This work analyzed the design and

implementation of a sensor-network based location system that provides sufficient

location accuracy only for home applications. They mainly focused on the location

determination system, a location storage system, and a middleware interface. The

Figure 3.2: Overall system architecture of WSN-RFID based location services

39

location determination system adopts and extends Mote-Track [50] WSN. The location

storage system is responsible for storing the location information into the location

database. The middleware interface is based on Open Services Gateway Initiative (OSGi)

[51]. It allows accessing the current and past location information from the system. This

work is a part of a Home Area Network (HAN) middleware, a component of the TRLabs

“Smart Home Framework” shown in Figure 3.3. The Home Gateway Device (HGD) is

the main component in TRLabs Smart Home Framework. HGD is an embedded

computational device that controls operations in the HAN and also serves as the home’s

link to the Internet. It is assumed that all HAN middleware services are running in the

HGD which is the source of stored location information. This work also provides a

service layer that supports service discovery and fully automated service composition

[52]. The sensor platform, location determination and middleware interfaces are

discussed as follows:

Figure 3.3: TRLabs Smart Home Framework

40

Sensor platform: Mica2 and Mica2Dot sensors [53] are used as the hardware platform

for the location determination system. Mica2 sensors run the TinyOS [54] operating

system and nesC [55] was used for programming. Mica2 and Mica2Dot are also used to

form the sensor network in order to gather information from the beacon nodes. Mica2

sensor nodes act as the beacon nodes (B). Beacon nodes are deployed at fixed locations in

home environments that transmit signals using multiple frequencies and power levels to

improve accuracy [56]. The beacon nodes are also deployed in an equally spaced grid

topology within the home. The nodes are placed in such a way that the entire home is

covered by their collective radio range. Figure 3.4 depicts the sensor network

deployment. On the other hand, Mica2Dot sensor nodes act as either mobile node (M) or

base station node (BS). Mobile nodes are carried by the home residents and received

messages from the fixed beacon nodes. The nodes calculate their positions using the

information received from the fixed beacon nodes. Mica2Dot sensor nodes also perform

as a base station node connected to the HGD. The base station node is responsible for

collecting and storing data received from the mobile node. Moreover, software is

developed to capture the sensor data received by the BS through serial port. The software

component calculates and stores the location reference point signature during the setup

phase. It also displays the location data on a graphical map of the home.

41

Location determination: Beacon nodes broadcast their signals periodically at initial data

collection phase. A beacon signal contains the beacon node id, signal sequence number,

and the power level and frequency channel. The mobile node receives this signal and

collects the information in it. It also measures the received signal strength. After that,

mobile node sends all the received information to the base station. Then the information

is written into a record for the appropriate reference point in the reference signature

database. During normal operations, beacon nodes broadcast signals in the same way as

the data collection phase. When a mobile node receives signals it creates a signal

signature from the received signals. After that, signal is matched against entries in the

reference database and mobile node. It also calculates its position using the matched

entries and forwards this location data to the HGD for storage purpose [47].

Middleware service components: An OSGi interoperability component providing access

to the location determination and storage services was developed. The location sensing

Figure 3.4: Mote-Track sensor network deployment

42

bundle delivers services including the determination of current location of a person based

on his/her Id. It also retrieves all past locations of a person [47].

However, they did not specify the APIs for application development. Moreover,

their work also did not support heterogeneous WSNs and reusability of existing WSNs

gateways as well as existing technology/standards.

3.2.1.3 Cicada Based Indoor Localization System

The research work presented in [48] describes the design and implementation of the

Cicada based indoor localization system. Their work mainly focuses on sensor specific

information. For instance, in order to measure the distance, the system uses Time

Difference of Arrival (TDOA) between Radio Frequency (RF) and ultrasonic. To

calculate the rough distance correction, it uses SWF (i.e. slide window filter) and least

square fitting. In order to estimate the coordinates UKF (i.e. unscented Kalman filter) is

adopted by the system. Finally, the system sends the estimated location coordinate to the

network in order to provide location services.

Cicada wireless infrastructure is shown in Figure. 3.5. The system is consisted of

two embedded hardware devices: CBadge and CReader. CBadge unit is used to send the

RF and ultrasonic signals periodically. On the other hand, CReader unit is used to receive

the signals sending by CBadge. CReader unit acts as a base station used to collect RF

signals transmitted by the CReaders. Finally, the base station sends the collected

information to the location server in a fixed data format. The location server is

responsible for storing the obtained position coordinate and providing location

information towards the applications. However, their research work did not define the

interface between the application and the location server. Besides, they also did not

43

provide any API descriptions for application development. Furthermore, their work did

not support heterogeneous WSNs and reusability of existing WSNs gateways as well as

existing technology/standards.

The aforementioned three proprietary solutions are location technology dependent.

Their solutions mainly focused on a specific sensor and on the proprietary interfaces.

Furthermore, they did not provide interoperability and application portability. Due to

these limitations of proprietary solutions, the aforesaid approaches are not taken into

(a) CBadge (b) CReader

Figure 3.5: Cicada sensor nodes and overall architecture

(c) Overall architecture

44

account for providing location services. Now in the following section we will analyze the

standard approaches.

3.2.2 Standard Location Services

OGC OpenLS location services, GSMA OneAPI RESTful location services and

OMA RESTful location services are the standard location services. We will contrast

REST with SOAP based web services in the following section.

3.2.2.1 REST versus SOAP

We hereafter contrast REST with Simple Object Access Protocol (SOAP) based

solutions according to three criteria to demonstrate the superiority of REST based

solutions.

Simplicity: RESTFul web services are very lightweight and simple compared to SOAP

based web services. REST leverages existing well-known W3C/IETF standards (i.e.

HTTP, XML, URI, and MIME) and necessary infrastructure has already become

pervasive [37]. On the other hand, SOAP based web services are deemed to be complex,

especially because of the use of the complex SOAP messages and Remote Procedure Call

(RPC). In SOAP based web services it is required to support SOAP and RPC on both

client and server applications. However, SOAP based web services are suitable for

enterprise application integration scenarios whereas RESTFul web services are suitable

for ad-hoc integration scenarios [37].

Flexibility of Data Representation: SOAP based web services for resource constrained

devices impose XML for data representation. However, RESTFul web services provide a

45

greater flexibility to use multiple resource representation formats. This enables a variety

of possibilities such as XML, JSON and plain text.

Easy to use and develop the Application: SOAP based web services require some

specific toolkits for developing both client and server applications. SOAP based services

require greater implementation effort and understanding of these toolkits for both client

and server side, whereas REST based web services require only greater implementation

effort on the server side. Therefore, RESTFul web services are very easy to use and

develop client application as it does not require any prior knowledge about the toolkits.

We can develop client application by simply writing the HTML code in Notepad.

Table 3.1 summarizes the comparison of REST versus SOAP. From Table 3.1, it is

easily visible that REST is the most suitable choice between the two approaches. For

instance, a standard location service such as OpenLS [43], proposed by Open Geospatial

Consortium Inc. [42], is a SOAP based web services. Hence REST is the best approach

rather than SOAP, so OpenLS location services was not taken under consideration for the

implementation of location services. In the following sections, existing standard RESTful

location services and its evaluation will be discussed.

Table 3.1: Comparison of REST and SOAP based web services

Criteria REST SOAP

1. Simplicity Simple Complex

2. Flexibility in terms of data representation Yes No

3. Easy to use and develop the application Yes No

46

3.2.2.2 GSMA OneAPI RESTful Location Services

GSMA OneAPI RESTful location services [38] are standard RESTful web services

for terminal location. They allow a web application to query the location of one or more

mobile device that is connected to a mobile operator network. GSMA RESTful location

service is a subset of OMA RESTful location services [39]. Only the service “query the

location of one or more terminals” is supported by the GSMA RESTful location services.

The other services provide by the OMA RESTful location services are not offered by the

GSMA RESTful location services. In order to retrieve the location information (i.e.

latitude/longitude) of one or more mobile terminals HTTP GET method is used. POST,

PUT and DELTE methods are not used in GSMA RESTful location services. Moreover,

to the best of our knowledge the implementation of GSMA RESTful location services

with WSN has not been done yet. However, GSMA RESTful location services, a subset

of OMA RESTful location services, implemented using technologies other than WSNs.

Reference implementation of GSMA location APIs (i.e. GSMA RESTful location

services) are available online for testing against the operator networks in Canada, Europe

and Asia pacific region. In Canada and Europe, AEPONA [40] implemented the GSMA

RESTful location services using the mobile mast technology. The reference

implementation can support both application/XML and/or application/JSON as the

resource representation format (i.e. response content type). However, the current

reference implementation can only support application/JSON as a representation format.

In addition to, Locatrix [41] also implemented the GSMA RESTful location services

using the GPS and A-GPS technology in Asia pacific region. However, this

implementation can only accept application/XML as a resource representation format.

47

Moreover, none of the above implementations can offer greater accuracy and also cannot

support requesting for multiple terminals. GSMA RESTful location services was not

considered for the implementation of location services, as it is a subset of OMA RESTful

location services and also its existing implementation cannot provide higher accuracy.

3.2.2.3 OMA RESTful Location Services

 OMA RESTful location services [5], discussed in Chapter 2, are standard

RESTful web services for terminal location. Since, GSMA RESTful location service is a

subset of OMA RESTful location services; we have only one standard solution (i.e. OMA

RESTful location services) to be considered in order to implement standard location

services. However, OMA RESTful location services could not provide any location

information without using any other locator technology. A list of locator technologies

that can provide location information includes WSN, GPS, A-GPS and Cell-Id of the

currently serving cell in the cellular network. As we mentioned in the introduction

chapter, our target is to provide greater accuracy of location information. Accuracy refers

to how precise location information a given locator technology may yield [32]. A key

question for developing location services is: How much accuracy of location information

these locator technologies can provide? We will hereafter compare these different

technologies with respect to the accuracy they can provide.

GPS is one of the most well-known locator technologies [6]. It works very well in

outdoor environments but its usage in indoor environments is limited as the signals from

GPS satellites are too weak to penetrate most of the buildings. Furthermore, along as the

Cell-Id and A-GPS, the GPS does not provide the enough accuracy required by several

applications. Another alternative to get location information is using WSNs. Wireless

48

sensors can sense location with an accuracy (e.g. within 1-3 centimeters) that most

technologies cannot provide, making them the technology of choice for applications that

require high accuracy.

 Locator Technology

Criteria

GPS A-GPS Cell-Id WSN

Accuracy Low Low Low Higher

Table 3.2: Comparison of existing locator technologies with their

accuracy

Table 3.2 provides a comparison of existing locator technologies and their accuracy.

We can see from Table 3.2, WSN provides higher accuracy than any other locator

technologies. Therefore, we chose to implement OMA RESTful location services using

WSN in order to provide a standard location service.

In the next section we derive the requirements for the implementation of OMA

RESTful location services in wireless sensor environments.

3.2.3 Specific Requirements for OMA RESTful Location Services in

Wireless Sensor Environments

The specific requirements for the design and implementation of OMA RESTful

location services in wireless sensor environments are as follows [19] [59]:

Higher level of abstraction: The end-user should have access to the location information

provided by the WSNs, without having to know the internal structure of the WSN

networks. The user should not be aware of: how location information can be obtained,

49

what is the network structure of the WNSs is, and how WSNs collaborate to access the

information from each other.

Heterogeneity of WSNs: It should be possible to support heterogeneous WSN networks

and easily introduce new WSNs.

Reusability of Existing WSNs gateway: It should be possible to reuse existing WSN

gateways, if any, to access the information provided by the WSNs. This is important

because a plethora of WSNs exist. It is easy to connect new WSNs to the system by

reusing existing gateways. This reusability speeds up the development of the system.

Reusability of Existing Technologies/Standards: Existing technologies/standards (e.g.

for interconnecting the entity that implements the OMA RESTful location services and

the WSNs) should be reused wherever possible.

3.3 Chapter Summary

In this chapter, we discussed the state-of-the-art of standard and non-standard

location services and their existing implementation. We also discussed the different

locator technologies and derived the specific requirements in order to implement OMA

RESTful location services in wireless sensor environments. In the following chapter our

novel architecture for the design and implementation of OMA RESTful location services

will be discussed.

50

Chapter 4 An Architecture for OMA RESTful

Location Services in WSN Environments

4.1 Introduction

The evaluation of architectures for location services with different technologies

were discussed in previous chapter. It has been shown that there is no existing

architecture for location service implementation with WSNs. Therefore, we develop a

novel architecture for the design and implementation of OMA RESTful location services

in wireless sensor environments.

In the next section, we introduce the overall architecture. The detailed design and

implementation of our proposed architecture is discussed in the subsequent sections. The

architectural design and implementation is divided into two phases; the first phase is

involved with the design and implementation of a REST gateway and the second phase is

involved with the design and implementation of a WSN gateway.

4.2 Overall Architecture

Figure 4.1 depicts our overall architecture. A REST gateway is used to provide

OMA RESTful location services to end-users. To get location information, the gateway is

connected to a number of WSNs. Each WSN is divided into a set of spaces/areas,

identified by unique identifiers (e.g. Space-a, Space-b and so on). Each space contains a

set of sensors and a WSN gateway, which is used to store the location information inside

51

the WSNs and to make this information available to the REST gateway. A sensor is

attached to each of the tracked end-user terminals (e.g. cell phone and PDA). When an

end-user enters a given space, the location of the sensor attached to his/her terminal is

detected and stored in the local WSN gateway (e.g. terminal-1 is currently in Space-b).

At later time a user can get the current location of a specific user by sending the request

to the REST gateway. The REST gateway receives the request from the end-user and will

communicate to the local WSN gateway to get the location information.

The REST gateway communicates with end-users through a REST interface (i.e.

Ri), and communicates with the WSN gateways through a UDP-based interface that we

define (i.e. Pi). The end-users also can communicate to the REST gateway through the

REST interface (i.e. Ri). The WSN gateway communicates with sensor nodes, which is

Figure 4.1: Overall architecture

52

dedicated for collecting location information through proprietary interfaces (i.e. PCi).

These interfaces will be discussed in Section 4.7.

4.3 REST Gateway Architecture

The REST gateway is the key component of the system responsible for protocol

translation and necessary mappings between REST and WSN. It provides a standard

REST interface (i.e. Ri) towards the applications for information exchange. REST

gateway composed of a request handler, a subscription repository, a parser/formatter

module, a REST-WSN address mapping module, a processing module, and an HTTP

client module. Figure 4.2 shows the architectural components of REST gateway

architecture.

Request

Handler

REST-WSN

Address Mapping

Notification

Monitor

Parser/

Formatter
Subscription

Repository

Interconnection/Mapping

Notification

Generator

HTTP

Client

End-Users

GW

 Processing Module

REST Interface

REST Gateway

Inference Module

Coordinate

Mapping

GW GW

Figure 4.2: REST gateway architecture

53

4.3.1 Request Handler

The request handler is the entry point of the gateway. It receives and handles the

REST requests from end-users. GET requests are forwarded to the processing module,

which gets the requested information and sends it to the end-user via the request handler.

When a POST request is received, the request handler creates a new subscription, which

it then stores in the subscription repository for further processing by the processing

module. The PUT/DELETE requests result in the updating/deleting of the appropriate

subscriptions.

4.3.2 Subscription Repository

Subscription repository is the storage location responsible for storing all

information related to the subscriptions. Application can create a subscription towards the

REST gateway by storing the information into the subscription repository. Once the

subscription information stored in the repository, application can modify or delete this

information at any time by sending request to the REST gateway.

4.3.3 Parser/Formatter Module

The parser/formatter module is used to parse the body of incoming REST requests

and to format the responses’ contents. This module is also used to transform WSN data

into standard REST format.

4.3.4 REST-WSN Address Mapping Module

The REST-WSN address mapping module maps the addresses of the OMA location

service elements into sensor specific addresses. A Terminal-Id (i.e. a phone number) is

54

associated to the Id of the sensor that is attached to it. A REST-WSN address mapping

table is used to map Terminal-Id to Sensor-Id, which is preconfigured and static. The

REST-WSN mapping table format is shown in Figure 4.3.

Terminal-Id is the unique Id of a terminal (i.e. phone number) and Sensor-Id is the

Id of the sensor attached with the associated terminal. A sample REST-WSN mapping

table is shown in Table 4.1.

Terminal-Id Sensor-Id

+1 514 581 7818 Sensor01

+1 514 581 7819 Sensor02

+1 514 581 7820 Sensor03

+1 514 581 7821 Sensor04

+1 514 581 7822 Sensor05

+1 514 581 7850 Sensor06

+1 514 581 7851 Sensor07

+1 514 581 7852 Sensor08

+1 514 581 7853 Sensor09

Table 4.1: Sample REST-WSN address mapping table

Figure 4.3: REST-WSN mapping table format

55

4.3.5 Processing Module

The processing module is the core module of the REST gateway. It is composed of

an inference module, an interconnection/mapping module, a coordinate mapping module,

a notification monitor and a notification generator.

Inference Module: The inference module receives GET requests from the request

handler. It uses the interconnection/mapping module to get the requested location or

distance information from the relevant WSN(s). After that it puts that information into the

appropriate format, and passes to the request handler.

Interconnection/Mapping Module: The interconnection/mapping module is responsible

for the communication with the WSN gateways. It performs request-mapping between

the REST gateway and the WSN gateways.

Coordinate Mapping Module: The location information, which is received from the

WSNs (e.g. terminal-1 is in Space-b), is translated into OMA location-information model

(e.g. the latitude, longitude and altitude of the current location of terminal-1) by the

coordinate mapping module. The coordinate mapping technique and the WSN raw data

mapping with OMA location-information model are conversed in Section 4.5.

Notification Monitor: The notification monitor controls the subscriptions (i.e. stored in

the subscription repository) and triggers notifications when appropriate. The triggers are

fired towards the notification generator.

Notification Generator: Notification generator generates and sends the notifications to

the HTTP client module in order to notify it. As with the inference module, the

notification generator collects location information from the WSNs through the

56

interconnection/mapping module, translates the WSN specific location information to the

OMA location format using the coordinate mapping module, and generates the

notification content using the parser/formatter module.

4.3.6 HTTP Client

HTTP client module is a special module required to implement OMA RESTful

location services. Notification generator triggers the HTTP client module with the

appropriate notifications. HTTP client module forwards them to the concerned end-users

through a POST request sent to the appropriate callback URI.

4.4 WSN Gateway Architecture

We have also designed a proprietary WSN gateway based on the MIT Cricket

sensors [2]. Since, there is no existing gateway for such type of sensors. The WSN

gateway is responsible for collecting location information from the cricket sensors and

providing this information towards the REST gateway. It also provides a UDP-based

interface (i.e. Pi) on the way to the REST gateway for WSN data exchange. The WSN

gateway architecture is shown in Figure 4.4. This architecture is structured into two

layers: data provider and connectivity layer.

57

4.4.1 Data Provider Layer

Data provider layer provides WSN data towards the REST gateway. It is

responsible for handling request from REST gateway. It consists of a request/response

handler and a repository.

Request/Response Handler: Request/response handler is the entry point of the WSN

gateway. It receives and handles request from REST gateway. When REST gateway

sends the request to the WSN gateway, it also specifies the Sensor-Id in the request

messages. The Sensor-Id indicates the specific sensor information required for the REST

gateway. When request/response handler receives a request, it will communicate with the

repository to obtain the appropriate sensor information (i.e. Space-Id) based on the

Request/Response

Handler

REST Gateway

Repository

Proprietary Sensor

Interface

Data Provider Layer

Connectivity Layer

Pi Interface

Figure 4.4: WSN gateway architecture

58

specified Sensor-Id. If the information found in the repository then request/response

handler send back this (i.e. Space-Id) information to the REST gateway.

Repository: The repository is the storage location of WSN related data (i.e. Space-Id). It

is also responsible for storing the sensed WSN information for the uses of near future. A

sample table of recorded WSN data is shown in Table 4.2. Where, Sensor-Id indicates a

unique identifier which is used to identify a sensor uniquely. On the other hand, Space-Id

specifies a space where a specific sensor is currently located. If the sensor changes its

position from one space to another, it will either update the existing information or create

a new record in the table.

Sensor-Id Space-Id

Sensor01 Space-a

Sensor02 Space-b

Sensor03 Space-c

Sensor04 Space-d

Sensor05 Space-e

Sensor06 Space-f

Table 4.2: Sample table of recorded WSN data

4.4.2 Connectivity Layer

In the connectivity layer, the proprietary cricket WSN interface enables

communication between WSN gateway and individual cricket sensor node. The

proprietary sensor interface is the key module of the connectivity layer.

59

Proprietary Sensor Interface (PCi): The proprietary sensor interface implements a

communication stack of a sensor in order to establish a communication between a WSN

gateway and individual sensor. The communication interfaces between sensor nodes are

also proprietary.

4.5 Mappings

In this section we will be discussing the coordinate mapping technique and the

WSN raw data mapping with OMA location-information model.

4.5.1 Coordinate Mapping Technique

OMA location information is based on latitude, longitude and altitude. However,

WSN is sensed location information as a proprietary format which is meaningless for

OMA services. Therefore, a mechanism is required to transform WSN raw data into

OMA location information. Several transformation techniques can be used. Among all of

the techniques, we picked up the coordinate mapping technique. Since it does not require

any pre-configuration of sensor node deployment and any processing for coordinate

transformation from one coordinate system to another. In mapping technique, a

preconfigured and static mapping table is used to map the WSN Space-Id with the

corresponding latitude longitude and altitude. The coordinate mapping table format is

shown in Figure 4.5.

Figure 4.5: REST-WSN mapping table format

60

Space-Id is the unique space identifier of a space. Latitude, longitude, and altitude

are the corresponding values of that associated space. Table 4.3 shows a sample

coordinate mapping table.

Space-Id Latitude Longitude Altitude

Space-a 23.00 -712.214 743.121

Space-b 63.00 -912.224 143.121

Space-c 123.00 -12.234 343.121

Space-d -233.00 -312.234 243.121

Space-e 33.00 -12.234 -243.121

Space-f 522.65 -12.214 -943.121

Table 4.3: Sample coordinate mapping table

Figure 4.6 shows the Space-Id and the corresponding raw data stream captured from

the MIT cricket sensor. This sensor raw data should be mapped with OMA location-

information model.

Figure 4.6: Cricket sensor output

61

4.5.2 WSN Raw Data Mapping with OMA Location-Information

Model

The complete scenario of mapping between WSN data and OMA location-

information model can be realized at different levels of data abstraction shown in Figure

4.7, Figure 4.8, and Figure 4.9. At the lowest level of data abstraction, the WSN raw data

is sensed from the individual sensor and processed and transformed into OMA location-

information data object. The OMA location-information data object is then formatted into

XML or JSON document at the highest level and can be served as OMA location-

information. OMA location-information consists of three different data objects include:

terminal-location, terminal-distance and subscription-notification.

Terminal-location data mapping: Figure 4.7 shows WSN data mapping with the

terminal-location object of OMA location-information model. The terminal-location

object is classified into address, location-retrieval-status and current-location element.

The address and location-retrieval-status are the elements of OMA location-information

model. The address represents the address of a terminal whose location information is

requested. Location-retrieval-status represents the success or failure of retrieving the

location information for a particular terminal. Current-location element represents

latitude, longitude, altitude, timestamp and accuracy. The latitude, longitude and altitude

of current-location element are mapped with the converted latitude, longitude, and

altitude of corresponding Space-Id of actual WSN data. These converted latitude,

longitude and altitude can be found from coordinate mapping table. This latitude,

longitude and altitude of the corresponding Space-Id are acquired from the coordinate

mapping table.

62

T
e
r
m

in
a

l_
L

o
c
a

ti
o

n

A
d

d
r
e
ss

L
o

c
a

ti
o

n
_

R
e
tr

iv
a

l_
S

ta
tu

s
C

u
r
r
e
n

t_
L

o
c
a

ti
o

n

O
M

A
 L

o
c
a

ti
o

n
 D

a
ta

(R
E

S
T

 f
o

r
m

a
t)

A
c
c
u

r
a

c
y

T
im

e
st

a
m

p

T
e
r
m

in
a

l_
L

o
c
a

ti
o

n
_

L
is

t

L
a

ti
tu

d
e

L
o

n
g

it
u

d
e

A
lt

it
u

d
e

S
e
n

se
d

 D
a

ta
S

e
n

se
d

 D
a

ta
S

e
n

se
d

 D
a

ta
S

e
n

se
d

 D
a

ta

F
o

r
m

a
tt

e
d

 D
a

ta

M
a

p
p

e
d

 D
a

ta

R
a

w
 D

a
ta

F
ig

u
re

 4
.7

:
M

a
p

p
in

g
 o

f
W

S
N

 d
a
ta

 w
it

h
 O

M
A

 t
er

m
in

a
l-

lo
ca

ti
o
n

 o
b

je
c
t

63

Terminal-distance mapping: Figure 4.8 shows the mapping of WSN data and terminal-

distance object of OMA location-information model. The terminal-distance object is

classified into distance, accuracy and timestamp element. The distance element of

terminal-distance object is mapped with the calculated distance between two terminals or

from a given location. REST gateway performs some additional operations in order to

calculate the distance. The additional operations of REST gateway are performed as

follows: it receives WSN raw data from WSN gateway and then converted into OMA

location format (i.e. latitude, longitude and altitude) using coordinate mapping table.

After that it calculates the distance and finally maps with distance element of terminal-

distance object of OMA location-information model.

Subscription-notification mapping: The WSN data mapping with subscription-

notification object of OMA location-information model is shown in Figure 4.9.

Distance Accuracy Timestamp

OMA Location Data

(REST format)

Terminal-Distance

Sensed Data Sensed DataSensed DataSensed Data

Formatted Data

Mapped Data

Raw Data

Figure 4.8: Mapping of WSN data with OMA terminal-distance object

64

T
er

m
in

al
_L

oc
at

io
n

A
dd

re
ss

L
oc

at
io

n_
R

et
ri

va
l_

St
at

us
C

ur
re

nt
_L

oc
at

io
n

O
M

A
 L

oc
at

io
n

D
at

a

(R
E

ST
 fo

rm
at

)

A
cc

ur
ac

y
T

im
es

ta
m

p

Su
bs

cr
ip

ti
on

_N
ot

if
ic

at
io

n

L
at

it
ud

e
L

on
gi

tu
de

A
lt

it
ud

e

Se
ns

ed
 D

at
a

Se
ns

ed
 D

at
a

Se
ns

ed
 D

at
a

Se
ns

ed
 D

at
a

F
or

m
at

te
d

D
at

a

M
ap

pe
d

D
at

a

R
aw

 D
at

a

C
al

ba
ck

_D
at

a
E

nt
er

in
g_

L
ea

vi
ng

_C
ri

te
ri

a
is

F
in

al
_N

ot
if

ic
at

io
n

L
in

k

F
ig

u
re

 4
.9

:
M

a
p

p
in

g
 o

f
W

S
N

 d
a
ta

 w
it

h
 O

M
A

 s
u

b
sc

ri
p

ti
o
n

-n
o
ti

fi
ca

ti
o
n

o
b

je
ct

65

Subscription-notification object is classified into callback-data, terminal-location,

entering-leaving-criteria, isFinal-notification and link elements. The terminal-location

element mapping with WSN raw data is already discussed in earlier.

4.6 Operational Procedures

This section describes the procedures used to answer the various REST requests,

with a focus on location information mapping between the OMA services and the WSN

environment. The operational procedures include the query and subscription procedures

are discussed in Section 4.6.1 and 4.6.2 respectively.

4.6.1 Query Procedures

This section discusses the query procedures to answer the REST request. The query

procedures are classified into get terminal location, get distance between two terminals

and get distance from a given location.

4.6.1.1 Get Terminal Location

Figure 4.10 depicts the procedures for getting terminal location information. After

the request handler gets the request (with the Terminal-Id) from the end-user, it uses the

REST-WSN address mapping module to get the Id of the sensor attached to the terminal.

It then forwards the request with the sensor Id to the inference module, which transmits

the request to all of the attached WSN gateways through the interconnection/mapping

module. The WSN gateway that senses the current location of the tracked sensor replies

with the location information (i.e. the Space-Id). The inference module then uses the

coordinate mapping module to get the OMA-specific location information (i.e. latitude,

longitude and altitude) associated with the center of the returned space. This module then

66

formats this information with the help of parser/formatter module and sent this formatted

information to the end-user in the response message. We should mention that the

coordinate mapping module maintains, for each space, the mapping between the Space-Id

and the OMA coordinates (i.e. latitude, longitude and altitude) of the space center.

4.6.1.2 Get Distance Between Two Terminals

The inference module gets the location of the two terminals (e.g. Space-a and

Space-b) from the WSN(s), and transfers them to the coordinate mapping module. The

latter gets the OMA coordinates associated with the center of both spaces, and then

calculates the distance between them. This can be done mathematically [60]. The

procedures for getting distance between two terminals are shown in Figure 4.11.

Request

Handler

REST-WSN

Address Mapping

Inference

Module

Interconnection

Mapping

Parser/

Formatter

REST

Request with

terminal id

(i.e. phone

number)

Coordinate

Mapping

1: map terminal Id (phone number)

2: sensor id

3 (b): getCurrentLocation (sensor ID)

4: REQ message (sensor ID)

3 (a): getCurrentLocation (sensor ID)

5: RES message (sensor ID current

location: Space-a)
6: Space-a

7: map coordinate (Space-a)

8: latitude, longitude and altitude of space-a

9: formatCurrentLocation (latitude, longitude, altitude)

10: Formatted Information

11: sendCurrentLocation (current location of requested terminal) OMA

location

information

send to the

end-users

 WSN

Gateways

REST gateway
Processing Module

Figure 4.10: Procedures for getting terminal location

67

4.6.1.3 Get Distance from a Given Location

To get the distance between a terminal and a given location, the REST request from

the end-user includes the Terminal-Id and the latitude, longitude and altitude of the

location. The processing module gets the latitude, longitude and altitude of the terminal

from the relevant WSN and then calculates the distance in the same way as in the

distance between two terminals, described above. The total procedures for getting

distance from a given location are shown in Figure 4.12.

Figure 4.11: Procedures for getting terminal distance between two terminals

68

4.6.2 Subscription Procedures

In this section the subscription procedures are discussed to answer the REST

requests. The subscription procedures are classified into area/circle notification and

distance notification. These procedures are shown in Figure 4.13 and discussed in the

following sections.

Figure 4.12: Procedures for getting terminal distance from a given location

69

4.6.2.1 Area/Circle Notification

When an end-user creates an area/circle subscription, he/she has to provide the Id of

the terminal to be monitored; the OMA coordinates of the center point of the area, as well

as the area radius (e.g. 50 cm). The end-user should also specify if he/she wishes to be

notified when this terminal enters or leaves the area.

The notification monitor (periodically) triggers the notification generator, which

then gets the current location of the terminal (in terms of OMA coordinates) and

Request

Handler

Parser/

Formatter
HTTP-Client

Interconnect

ion/Mapping

Notification

Monitor

Notification

Generator

1. Create a

subscription

2
.

P
ar

se
 s

u
b

sc
ri

p
ti

o
n

 (
P

O
S

T

re
q

u
es

t
b

o
d

y
)

3
.

P
ar

se
d

 i
n

fo
rm

at
io

n

6. Add subscription

(periodic, area or distance

subscription and sensor ID)

REST-WSN

Address mapping

4
.

M
ap

 t
er

m
in

al
 I

d

5
.

S
en

so
r

Id

7
.

M
o

n
it

o
r

N
o

ti
fi

ca
ti

o
n

 E
v

en
t

1
3

.
M

ap
p

in
g

8
.

E
v

en
t

10. Event Fired

Coordinate

Mapping

1
2

.
M

ap
p

ed
 D

at
a

10. getLocation

11. Location Information

16. Send notification

17. Notify

Subscription

Repository

14. Format Notification information

15. Formatted Information

9. No Event

W
S

N
 D

at
a

Figure 4.13: Operational procedures for subscription resources

70

compares it to that of the area’s center. A notification is sent to the end-user if the

difference between the two coordinates is less than the specified radius and the

subscription is for ‘entering the area’, or if the difference is greater than the radius and

the subscription is for ‘leaving the area’.

4.6.2.2 Distance Notification

To subscribe the distance notification, an end-user should specify the terminal to be

monitored, the reference terminal or location (i.e. the OMA coordinates of the reference

location), the distance threshold, and the comparison criteria (e.g. the distance

exceeds/goes below the threshold). When triggered, the notification generator gets the

distance between the monitored terminal and the reference terminal/location, compares

the distance to the specified threshold, and sends a notification when the comparison

criterion is satisfied.

4.7 Interfaces

This section discusses the different interfaces shown in Figure 4.1. Three interfaces

are defined as: REST, WSN, and proprietary sensor interfaces.

4.7.1 REST Interface (Ri)

This is the REST interface provided towards the end-users. It enables to access

the OMA RESTful location services discussed in the background section of Chapter 2.

4.7.2 WSN Interface (Pi)

In this section we discuss the interfaces provided by the WSN gateway towards the

REST gateway. This interface enables to access WSN data. WSN gateway provides this

71

interface on the way to the REST gateway. We have derived a set of requirements in

order to design this interface. The derived requirements are as follows:

Unified Interface: To enable the easy support of heterogeneous WSNs and easy

interconnection of new WSNs, the WSN gateways should provide a unified interface.

Simplicity: The second requirement is simplicity. The interface should be simple to use

and to implement, and be easy to plug into any WSN gateway. This will further simplify

new WSN interconnection.

Efficiency: The third requirement is efficiency in terms of network and time overhead.

Web services, socket and HTTP are existing protocols. This interface can use any one of

them. Our goal is to transfer raw WSN information towards the REST gateway in a faster

way. To achieve this goal we have chosen socket as a communication protocol to

implement this interface. Since, it is very easy to implement rather than other existing

protocols. However, socket communication is based on Transmission Control Protocol

(TCP) and UDP. We evaluate the TCP and UDP based socket communication according

to our requirements. The following sections represent the evaluation of the TCP and UDP

based socket communication according to our requirements.

TCP: TCP is a connection oriented protocol. In TCP protocol a connection must be

established before the transmission initiates. After the connection is established, it begins

to transfer the file until the connection goes down. If the file is lost in between the

transmission, the receiver will again request for the lost part of the file. This ensures the

reliability but takes some time to establish the connection. However, it introduces much

more network overhead due to the reliability and error checking.

72

UDP: UDP is a connectionless protocol. UDP is much faster than TCP as it does not

require establishing a connection. Moreover, it does not introduce much network

overhead (e.g. there is no extra overhead for reliability or error checking). In addition, it

is easily supported by any WSN gateway. The evaluation summary of TCP and UDP

protocol for WSN interface is shown in Table 4.4.

Protocol

Requirements

TCP Socket

UDP Socket

1. Unified Interface Yes Yes

2. Simplicity No Yes

3. Efficiency No Yes

Table 4.4: Evaluation of TCP and UPD protocol for WSN

interface

The summary presented in Table 4.4 is shown that UDP is more suitable as it

satisfies all of our requirements. So, UDP-based protocol is chosen in order to implement

the WSN interface.

The messages, which are exchanged through this interface, are composed of a

common header that indicates the message type, followed by a message body that carries

the actual raw information (e.g. Sensor-Id or Space-Id). Figure 4.14 shows the message

format and the required messages to exchange through this interface. Three types of

messages are defined as request message for single terminal (REQ), request message for

multiple terminals (REQM), and response message for both single and multiple terminals

(RES). REQ is used to request the current location of a single terminal. On the other hand

73

REQM is used to request the location of more than one terminal. RES is responsible for

sending back the current location of the requested terminals.

The message is formed by a header and a body. Where header contains the type of

the message (e.g. request or response) and the body carries the actual raw information

(e.g. Sensor-Id or Space-Id). In order to encode and decode the contents of the body we

use <//>. After that we use “</>” to encode and decode the message. Figure 4.14 (b)

represents the request type message for single terminal where header defines request type

message and body contains information of a Sensor-Id (e.g. Sensor01). Figure 4.14 (c)

indicates the request type message for multiple terminals where header defines multiple

request type message and body contains information of multiple sensor ids (e.g. Sensor01

Figure 4.14: (a) Message format, (b) Request message, (c) Multiple request

message, (d) Response message and (e) Multiple response messages

Header Body

REQ </> Sensor01

REQM </> Body

RES </> Space-a

(a)

(b)

(c)

(d)

RES </>

Space-a<//>Space-b

(e)

Sensor01<//>Sensor02

body

74

and Sensor02). Figure 4.14 (d) shows the response type message where header defines

response type message and message body carries the actual information of the specified

senor-Id, which is a Space-Id (e.g. Space-a). Figure 4.14 (e) depicts the response

messages corresponding to Figure 4.14 (c).

4.7.3 Proprietary Sensor Interface (PCi)

Proprietary sensor interfaces between WSN gateway and the sensor nodes dedicated

to collect location information. It is dependent on the sensors which are composing the

WSN. It may also differ from one WSN to another. A more details information can be

found on this proprietary sensor interfaces in [61].

4.8 Implementation

This section considers for the implementation of REST gateway and WSN gateway.

It also discusses the implementation environment.

4.8.1 Implementation of REST Gateway

In order to implement REST gateway we have chosen Jersey [62] toolkit to realize

the function blocks (i.e. components) of the REST gateway. Jersey is an open source

JAX-RS (JSR-311 [69]) reference implementation for building RESTful web services.

We have implemented all the components of REST gateway. Initially the implementation

of the components of REST gateway architecture is structured into Java packages.

Afterwards, Java packages are structured into Java classes. Figure 4.15 (generated by

Altova UModel software [63]) shows Java packages and their dependencies.

75

A list of Java packages recognized by REST gateway includes

RequestResponseHandler, MappingService, InferenceModule, InterconnectionMapping,

NotificationGenerator, NotificatioMonitor, HTTPClient, Datastructure, Common,

UserDefinedExceptions, and HelpingClass. In order to implement REST gateway the

realization of classes, which is generated by Enterprise Architecture software [64], inside

each package are shown in Figure 4.16. ‘DataStructure’ package is divided into three

sub-packages such as ‘Datastructure.Queries’, ‘Datastructure.Subscription’, and

‘Datastructure.Notifications’. The classes of data ‘DataStructure’ and ‘Common’

Figure 4.15: Package structure and its dependencies for the implementation of

REST gateway

76

package are responsible for the implementation of all data structures of OMA RESTful

location services. ‘HelpingClass’ package contains ‘DistanceCalculation’ and

String2StringArr class. Where ‘DistanceClaculation’ class is used to calculate the

distance between two geographical locations and ‘String2StringArr’ class is used to

convert from string to string array.

‘RequestResponseHandler’ package comprises ‘RequestResponseHandler’ and

‘SubscriptionHandler’ class shown in Figure 4.16 (l). The ‘RequestResponseHandler’

class is responsible for handling the entire query request and the ‘SubscriptionHandler’

class is responsible for handling the entire subscription request. ‘MappingService’

package contains all the classes responsible for different mappings shown in Figure 4.16

(i). The main classes of this package are ‘TerminalId2SensorIdmap’,

‘SensorId2LatLonMap’. Where ‘TerminalId2SensorId’ class is responsible for the REST

and WSN address mapping and ‘SensorId2LatLonMap’ is responsible for mapping

between OMA coordinate and WSN Space-Id.

‘InferenceModule’ package contains ‘TerminalLocationInfo’ and

‘TerminalDistanceInfo’ classes shown in Figure 4.16 (g). Where ‘TerminalLocationInfo’

is responsible for providing location information and ‘TerminalDistanceInfo’ is

responsible for providing terminal distance information triggered by the

‘RequestResponseHandler’ class. ‘NotificationMonitor’ package is composed of

‘AreaNotification’, ‘PeriodicNotification’ and ‘DistanceNotification’ classe. These

classes are responsible for detecting the notification event from the subscription

repository shown in Figure 4.16 (k).

77

(a) pkg Common (b) pkg

Datastructure.Subscriptions

(c) pkg Datastructure.queries

(d) pkg Interconnection/Mapping (e) pkg UserExceptions (f) pkg HelpingClass

(g) pkg InferenceModule (h) pkg HTTPClient (i) pkg MappingService

(j) pkg

Datastructure.Notifications

(k) pkg NotificationMonitor (l) pkg RequestResponseHandler

(m) pkg NotificationGenerator

Figure 4.16: Realization of classes in the packages for REST gateway implementation

78

‘NotificationGenerator’ package, shown in Figure 4.16(m), has only one class

called ‘NotificationGenerator’. This class will be triggered by one or more notification

monitor class. It also generates the notification information. ‘HTTPClient’ package

shown in Figure 4.16 (h) contains the classes that are responsible for sending notification

towards the application.

4.8.2 Implementation of WSN Gateway

We have chosen Java socket programming APIs [44], a de facto standard for Inter-

process Communication (IPC), for the implementation of WSN gateway as the

communication between REST and WSN gateway is based on UDP. We have

implemented all the components of WSN gateway. The components of WSN gateway are

structured into Java classes, which are generated by Enterprise architecture software [64],

shows in Figure 4.17. ‘WSNRequestResponseHandler’ class is the core class of WSN

gateway responsible for handling request and response messages generated by REST

gateway. The raw data are encapsulated in ‘SensorData’ class and then the encapsulated

sensor data are stored into the repository. ‘ProprietaryCricketSensorInterface’ class

implements WSN communication stack in order to communicate with the individual

cricket sensor node. ‘SensorNode’ class is an object representation of a sensor node

containing sensed data and the corresponding Sensor-Id.

79

4.8.3 Implementation of Notification Application

We have developed an application program for the realization of client notifications

by the REST gateway. Where, REST gateway sends the notifications (if any). The REST

gateway posts the notification information to the application running on the same

machine or different machine using client provided callback URI. The application is then

responsible for sending notification towards the end-users. We have used Jersey APIs

[62] to implement the notification application as well. Figure 4.18 shows the main class

for notification application of OMA RESTful location services. All other classes

regarding the implementation of OMA RESTful location data structure are already

discussed in Section 4.8.1.

Figure 4.17: Realization of packages and classes for WSN gateway

implementation

~sensorData

~sensorData

 Pkg src

80

4.8.4 Implementation Environment

Our implementation environment is involved with sensor hardware and different

software tools.

4.8.4.1 Hardware Environment

We used MIT cricket sensor [2] in order to sense location data. Cricket sensor can

report location either as a space identifier (Space-Id) or as an assigned coordinate. It can

also detect location information either as a Space-Id (i.e. room-1) or as Cartesian

coordinate (i.e. 230, 23 and 129) of a space. The Id of a space is the space identifier

which is a user defined string such as room-1 or EV.15.163. The coordinates are in the

form of (x, y, z) in Cartesian coordinate system. The cricket sensor operates either in

beacon or listener mode. Beacons are pre-configured with space identifiers and

coordinates. Beacons are actively transmitting data to the listeners and the listeners are

passively listening from different beacons at the same time. Listeners are usually attached

Figure 4.18: Realization of package and class for Notification Application

implementation

81

with the host PC through RS-232 serial interface [65]. A MIT cricket sensor is shown in

Figure 4.19.

Figure 4.19: MIT cricket sensor

4.8.4.2 Software Environment

We used different types of software tools in order to implement our system, such as

Jersey, JAXB and Cricket APIs.

Jersey API: Jersey API is a java based API provides support to create web services

according to the REST architectural style defined in JSR-311 [69]. Jersey is an open

source, production quality, JAX-RS (JSR-311) reference implementation for building

RESTful web services [62]. It also provides an API that enables developers to extend

Iersey to satisfy their needs. The REST gateway was implemented using Jersey APIs.

JAXB API: Java architecture for XML binding (JAXB [66]) is a Java based API defined

in JSR-31 [81]. The JAXB specification is developed through the Java Community

82

Process (JCP). The processes of JCP are described in [67]. JAXB API provides a fast and

easy way to marshal and un-marshal both XML and JSON payloads. It easily maps XML

and JSON documents into Java objects without any requirement for extensive knowledge

of XML and JSON programming and vice-versa. This simplifies and speeds up the

development of RESTful web services. Figure 4.20 shows the JAXB architecture and

JAXB binding process [68].

Figure 4.20: JAXB architecture and binding process

Cricket API: MIT Cricket sensor provides Cricket java client API called ClientLib [61]

to develop location-based applications. It also delivers software called cricketd and

cricketdaemon. These software run on host device with attached listener to retrieve

sensor data. MIT Cricket software architecture and ClientLib architecture are shown in

Figure 4.21(a) and 4.21(b) respectively.

83

Figure 4.21: Cricket software and ClientLib architecture

4.9 Chapter Summary

This chapter explored the design and implementation of OMA RESTful location

services in wireless sensor environments. Several architectural components of proposed

REST and WSN gateway were also discussed. Our proposed architecture satisfied all the

specific requirements we derived for OMA RESTful location services in wireless sensor

environments discussed in Chapter 3. Our implemented architecture provides an

abstraction for end-users and application developers to access the location information

through the REST gateway. REST gateway hides all the lower layer details from the end-

users and application developers, which satisfied our first requirement of higher level of

abstraction. In order to support the second and third requirements of heterogeneity of

WSNs and reusability of existing WSN gateways we separated WSN gateway component

from REST gateway. This flexibility provided us to easily introduce new WSN and

existing WSN gateways via the WSN interface (Pi). WSN interface was designed in a

84

unified and simpler way so that it can easily introduce new WSN and plug into the

existing WSN gateways easily as well. We reused existing standard APIs such as JAXB,

JAX-RS and existing technology such as MIT cricket sensors which satisfied our last

specific requirement. The next chapter will focus on the evaluation of our prototype

application.

85

Chapter 5 Prototype Application and

Performance Evaluation

5.1 Introduction

The architecture for OMA RESTful location service(s) using WSN provides a

framework for the development of location based services and applications in a faster

way. The framework provides an abstraction to developers of location based service and

application in order to rapid creation of new attractive services through the realization of

REST gateway. The REST gateway hides all the physical complexities and lower layer

details from the developers. With the help of different operations such as query and

subscription procedures one can access WSN information (i.e. location) through the

REST gateway. In the following sections, we will explain the proof-of-concept prototype

with a prototype application and the performance evaluation of our system.

5.2 Prototype Application

A prototype application of tracking a person/people can be categorized into indoor

and outdoor tracking scenario. In outdoor scenario, tracking services work appropriately

with GPS since it does not require accurate location information. However, indoor

tracking scenario requires more accurate location information. So, our targeted prototype

application is tracking a person/people inside a building. This scenario depends on user’s

context such as location data that can be provided through sensors. Sensors can be

deployed inside the building and act as a source of location data. Person/people could use

his/her cell phone or a PDA equipped with a client application based on OMA RESTful

86

Figure 5.1: Prototype setup

location services to locate herself/himself. The application can also guide the person step

by step to visit the whole building via the user interface with a floor plan.

In the following sections we introduce our prototype setup and a prototyping

scenario.

5.3 Prototype Setup

Our prototype setup is shown in the Figure 5.1. It includes a REST gateway, a WSN

gateway, a set of MIT cricket sensors [2] acting as a sensor network, a set of end-user

terminals, and a REST client that accesses the location services offered by the REST

gateway. We implemented all of the location services provided by the OMA.

For the WSN environment we divided the working area (i.e. a room) into four

spaces (Space-a, Space-b, Space-c, and Space-d). We placed four sensors (beacons) on the

ceiling of the room to represent the four spaces (i.e. each beacon is pre-configured with a

87

given Space-Id). We attached a sensor (listener) to each end-user terminal. When moving,

an application running on a terminal can automatically detect which space it is on (i.e. the

Space-Id of the closest beacon) and send it to the WSN gateway. We assume that the

terminals have already discovered the gateway when they enter into the WSN

environment.

5.4 Procedures of Periodic Subscription

Figure 5.2 shows the procedures of periodic subscription of our prototyping

application. The procedures are as follows:

Step-1: We considered two users Alice and Bob in our scenario. Bob is in Space-a in the

beginning. Alice subscribes to the current location of Bob by sending a POST request to

the REST gateway.

Step-2: REST gateway creates a new subscription for Alice about the periodic notification

of current location of Bob. After that, REST gateway response back to the Alice which

indicates a successful creation of periodic subscription.

Step-3: When the interval of periodic notification exceeds, REST gateway will

communicate with WSN gateway to get the current location of Bob.

Step-4: WSN gateway sends the appropriate information to the REST gateway.

Step-5: When REST gateway receives the appropriate information of Bob current location

from WSN gateway; it will send a notification with this information to Alice using POST

method.

88

Step-6: Alice replies back to the REST gateway. In the meantime, Bob already change his

position from ‘Space-a’ to ‘Space-b’.

Step-7: Repeat step-3 to step-6 until ending the subscription.

5.5 Test Environment

Our test an environment was involved with five laptops and a list of software include

cricketd [61], cricketdeamon [61], REST gateway, WSN gateway and REST client to run

the prototype. Laptop-1 and laptop-2 were used as end-user terminals with attached

listener. Cricketd [61] and cricketdeamon [61] software were running on laptop-1 and

laptop-2. On the other hand, WSN gateway was running on laptop-3, REST gateway was

Alice BobWSN GatewayREST Gateway

1: POST: Alice subscribe to Bob’s

terminal

2: Response

Timer

Expires?

3: Bob’s Location?

Update Bob’s Location

(Bob is in Space-a)

Update Bob’s Location

(Bob is in Space-b)

Update Bob’s Location

(Bob is in Space-c)

4: Bob’s Location=Space-a

5: Notify Bob’s current

location (Space-a) to Alice

Timer

Expires?

7: Bob’s Location?

8: Bob’s Location=Space-b

9: Notify Bob’s current

location (Space-a) to Alice

10: Response

6: Response

Figure 5.2: Procedure of periodic subscription of our prototype application

89

running on Laptop-4 and REST client was running on laptop-5. The operating system

Windows XP was installed on laptop-1 and laptop-2 and Windows 7 was installed on

laptop-3 and laptop-5. We used jersey API, an open source reference implementation of

JSR-311 [69], to implement the REST interface of the REST gateway. JAXB API [66]

was used to implement REST requests and responses’ marshaling and un-marshaling.

Table 5.1 describes the specification of our test environment.

Laptops

Software Module

Hardware Configuration

CUP Model CPU Speed Physical

Memory

Laptop-1

 End user (Alice)

 cricketd

 cricketdeamon

 Windows XP

Genuine Intel CPU

T2060

1.60GHz

512MB

Laptop-2

 End user (Bob)

 cricketd

 cricketdeamon

 Windows XP

Genuine Intel CPU

T2060

1.60GHz

0.99 GB

Laptop-3 WSN Gateway

 Windows 7

Intel Core i5 2540m 2.60GHz and

2.60GHz

4 GB

Laptop-4 REST Gateway

 Windows XP

Genuine Intel CPU

T2060

1.60GHz 0.99 GB

Laptop-5 REST Client

 Windows 7

Intel Pentium Dual

CPU T3400

2.16GHz and

2.17 GHz

4 GB

Table 5.1: Specification of our test environment

90

5.6 Performance Evaluation

In the following section the performance evaluation of our system will be discussed

in the context of a set of performance metrics.

5.6.1 Performance Metrics

The intent of performance evaluation was to examine the efficiency and feasibility

of location services in wireless sensor environments. The prototype was assessed in terms

of time delay, network load, server capacity and bandwidth consumption. From the end-

user perspective, a user expects timely response to its request. The delays we measured

include query delay, notification delay and subscription delay. Query delay is the time

difference between the time an end-user sends a query to the REST gateway and the time

he/she receives the response. Subscription delay is the time difference between sending a

subscription request to the REST gateway and receiving a 201 Created response.

Notification delay is the time difference between the time REST gateways sends a POST

request to the end-user with the notification content and the time it receives the response

(i.e. 201 Created). Network load indicates the total number of bytes sent and received by

end-users for a given request. In order to measure the server performance we need to

quantify the number of request a server can handle for a particular time period. Thus, the

server capacity indicates how many requests the server can handle to completion with a

given amount of time. Bandwidth consumption indicates how much data (average) can be

sent over the network in a given amount of time. The delays were measured in

milliseconds; the network load was measured in bytes, server capacity was measured in

91

request per second and bandwidth consumption was measured in Kilobyte (KB) per

seconds.

5.6.2 Measurements and Analysis

Apache JMeter [8], an open source testing tool from apache and which also acts

as a REST client is used to measure the performance data. Each measurement is

calculated as an average of hundred experiments. We took the data for 100, 200 and 300

concurrent users (samples) to analyze the performance.

5.6.2.1 Performance Analysis of all OMA Location Services

Table 5.2 shows the average response time for all OMA RESTful location

services with respect to the different number of users. The performance result of average

response time with respect to Table 5.2 data is shown in Figure 5.3. According to our

expectation, the average query delays for accessing query resources (i.e. S1-to-S4) are

higher than those of the subscription (i.e. S5-to-S16) and notification (i.e. S17-to-S19)

delays. This is because the query requests require a communication with the sensor

network to get the information in contrast with the subscription and notification requests.

However, the delays should remain acceptable from the end-user point of view. The

average delays are 41ms for the query and 17ms for the subscription according to 100

users.

92

Figure 5.3: Average response time for all OMA RESTful location services

S1 = get current location of a terminal

S2 = get current location of two terminal

S3 = get distance of a terminal from a given location

S4 = get distance between two terminals

S5, S6 & S7 = get a specific subscription for location, area and distance notification

S8, S9 & S10 = create a subscription for location, area, and distance notification,

respectively

S11, S12 and S13 = modify a specific subscription for location, area, and distance

notification

S14, S15 & S16 = get all active subscriptions for location, area, and distance notification

S17, S18 & S19 = location, area, and distance notification callback

93

OMA RESTful location services

Average Response Time

(millisecond)

100

Samples

200

Samples

300

Samples

Get current location of a terminal 35 72 110

Get current location of two terminal 52 103 155

Get distance of a terminal from a given location 29 55 82

Get distance between two terminals 48 58 88

Get a specific subscription for location notification 21 26 35

Get a specific subscription for area notification 13 25 38

Get a specific subscription for distance notification 14 25 35

Create a subscription for location notification 17 30 43

Create a subscription for area notification 15 32 43

Create a subscription for distance notification 17 31 50

Modify a specific subscription for location

notification 15 25 35

Modify a specific subscription for area notification 15 28 38

Modify a specific subscription for distance

notification 12 26 40

Get all active subscriptions for location 12 31 38

Get all active subscriptions for area notification 14 26 37

Get all active subscriptions for distance

notification 14 27 57

Periodic notification callback 15 26 42

Area notification callback 16 32 41

Distance notification callback 16 31 55

Table 5.2: Average response time for OMA RESTful location services

94

Table 5.3 shows the experimental results of server capacity for all OMA RESTful

location services with respect to different number of users. The comparison of server

capacity with respect to Table 5.3 data is shown in Figure 5.4. The server capacity for

accessing query resources is lower than that of the subscription and notification resources

because query requests have higher response time than the subscription and notification

requests.

Figure 5.4: Server capacity for all OMA RESTful location services

S1 = get current location of a terminal S2 = get current location of two terminal

S3 = get distance of a terminal from a given location

S4 = get distance between two terminals

S5, S6 & S7 = get a specific subscription for location, area and distance notification

S8, S9 & S10 = create a subscription for location, area, and distance notification,

respectively

S11, S12 and S13 = modify a specific subscription for location, area, and distance

notification

S14, S15 & S16 = get all active subscriptions for location, area, and distance notification

S17, S18 & S19 = location, area, and distance notification callback

95

OMA RESTful location services

Server Capacity

(request/second)

100

Samples

200

Samples

300 Samples

Get current location of a terminal 255.7545 242.9245 241.3516

Get current location of two terminal 176.6784 174.8252 172.644

Get distance of a terminal from a given location 290.6977 270.8104 264.0583

Get distance between two terminals 336.4066 295.858 280.6361

Get a specific subscription for location notification 597.619 581.3953 539.6588

Get a specific subscription for area notification 655 634.9206 625.1613

Get a specific subscription for distance notification 643.4783 636.9427 625.1613

Create a subscription for location notification 555.2041 549.4505 543.5055

Create a subscription for area notification 546.4481 502.5126 506.7568

Create a subscription for distance notification 469.4836 464.9344 457.707

Modify a specific subscription for location notification 652.4862 649.3506 604.8387

Modify a specific subscription for area notification 595.0495 573.0659 566.0164

Modify a specific subscription for distance notification 645.1613 520.1681 443.787

Get all active subscriptions for location 666.6667 598.4862 582.5243

Get all active subscriptions for area notification 610.8024 604.2296 600.2874

Get all active subscriptions for distance notification 534.7594 526.3158 457.3171

Periodic notification callback 518.1347 506.0606 490.9984

Area notification callback 550.4836 544.9591 529.1506

Distance notification callback 546.4481 505.0505 467.2897

Table 5.3: Server capacity for OMA RESTful location services

96

Table 5.4 shows the experimental result of average network loads for all OMA

RESTful location services with respect to different number of users. The comparison of

average network load for different number of users with respect to Table 5.4 data is

shown in Figure 5.5. It shows that the average network load for accessing subscription

and notification resources is generally higher than the average network load for accessing

query resources. This is due to the fact that the responses for the subscription requests

and the notification requests have higher payloads.

S1 = get current location of a terminal S2 = get current location of two terminal

S3 = get distance of a terminal from a given location,

S4 = get distance between two terminals

S5, S6 & S7 = get a specific subscription for location, area and distance notification

S8, S9 & S10 = create a subscription for location, area, and distance notification, respectively

S11, S12 and S13 = modify a specific subscription for location, area, and distance notification

S14, S15 & S16 = get all active subscriptions for location, area, and distance notification

S17, S18 & S19 = location, area, and distance notification callback

Figure 5.5: Average network load for all OMA RESTful location services

97

OMA RESTful location services

Average Network Load

(bytes)

100

Samples

200

Samples

300 Samples

Get current location of a terminal 420 420 420.42

Get current location of two terminal 740 740 739.9733

Get distance of a terminal from a given location 196 196 196.9733

Get distance between two terminals 197 197 197

Get a specific subscription for location notification 679 679 679

Get a specific subscription for area notification 826 826 826

Get a specific subscription for distance notification 838 838 838

Create a subscription for location notification 1307 1307 1307

Create a subscription for area notification 1597 1597 1597

Create a subscription for distance notification 1621 1621 1621

Modify a specific subscription for location

notification 639 639 639

Modify a specific subscription for area notification 801 801 801

Modify a specific subscription for distance

notification 784 784 784

Get all active subscriptions for location 750 750 750

Get all active subscriptions for area notification 893 893 893

Get all active subscriptions for distance notification 909 909 909

Periodic notification callback 559 559 559

Area notification callback 616 616 616

Distance notification callback 613 613 613

Table 5.4: Average network load for different OMA RESTful location services

98

Table 5.5 shows the experimental result of bandwidth consumption for all OMA

RESTful location services with different number of users. The comparison of bandwidth

consumption with respect to Table 5.5 data is shown in Figure 5.6. The bandwidth

consumption goes hand in hand with the network load, and it remains same for each

service, regardless of the number of users.

S1 = get current location of a terminal S2 = get current location of two terminal

S3 = get distance of a terminal from a given location,

S4 = get distance between two terminals

S5, S6 & S7 = get a specific subscription for location, area and distance notification

S8, S9 & S10 = create a subscription for location, area, and distance notification, respectively

S11, S12 and S13 = modify a specific subscription for location, area, and distance notification

S14, S15 & S16 = get all active subscriptions for location, area, and distance notification

S17, S18 & S19 = location, area, and distance notification callback

Figure 5.6: Bandwidth consumption for all OMA RESTful location services

99

OMA RESTful location services

Bandwidth Consumption

(KB/second)

100

Samples

200

Samples

300 Samples

Get current location of a terminal 104.8993 96.73496 99.09085

Get current location of two terminal 227.6778 226.3385 226.9257

Get distance of a terminal from a given location 55.64135 58.83266 51.75518

Get distance between two terminals 52.48057 56.91799 53.98956

Get a specific subscription for location notification 397.347 385.5151 424.1488

Get a specific subscription for area notification 504.1504 512.1528 520.4133

Get a specific subscription for distance notification 444.7605 521.248 527.9738

Create a subscription for location notification 338.3092 364.3329 367.0217

Create a subscription for area notification 440.7872 405.347 408.7706

Create a subscription for distance notification 384.2063 379.585 390.936

Modify a specific subscription for location

notification 298.832 278.832 238.832

Modify a specific subscription for area notification 350.234 323.49 345.32

Modify a specific subscription for distance

notification 403.42 398.34 367.98

Get all active subscriptions for location 488.2813 404.653 426.6535

Get all active subscriptions for area notification 522.1978 526.9307 529.5974

Get all active subscriptions for distance notification 474.7034 467.2081 405.9582

Periodic notification callback 282.8489 330.8475 268.0352

Area notification callback 282.4237 327.827 348.3953

Distance notification callback 327.1218 302.3398 279.735

Table 5.5: Bandwidth consumption for OMA RESTful location services

100

5.6.2.2 Server Capacity Analysis for a Specific OMA RESTful Location Service

Figure 5.7 shows the server capacity versus response time with respect to data of

Table 5.6. If we increase the number of users, the average response time will also

increases but it decreases the sever capacity. In order to validate this comparison, we

collected average response time and server capacity result for a single terminal location

of OMA RESTful location services with respect to different number of users shown in

Table 5.6. It shows that initially server handles more requests because of a few numbers

of users and less response time. When we increased the number of users the server

performance degraded gradually. We can see that the average response time rises linearly

up to 3000 users. Table 5.6 shows the success rate of 500 and 1000 users is 100% and

error rate is 0%. In this case the server can handle average more than 200 requests per

second. However, when we increased the number of users, the success rate decreased.

For instance, the server can handle 13 requests per second for 3500 concurrent users.

Figure 5.7: Average response time vs. Server capacity comparison

101

Number

of users

Success

Rate

(%)

Error

(%)

Avg.

Response

Time (ms)

Sever

Capacity

(req/sec)

500 100 0 120 230.7337

1000 100 0 398 188.253

1500 98.8 1.2 604 197.1269

2000 99.9 .1 1061 166.2368

3000 98.8 1.2 1322 65.5129

3500 90 10 15559 13.24

 Table 5.6: Get single terminal location services data for

different number of users

5.6.2.3 Performance Comparisons of OMA Query Location Services with XML and

JSON Payloads

It is necessary to analysis the performance of our system with XML [70] and JSON

[71] payloads as our system support both of them. First, we will focus on the

performance analysis of our system according to four performance metrics i.e. average

response time, average network load, server capacity and bandwidth consumption for all

OMA query location services with XML and JSON payloads. After that we will show

this performance analysis of our system for a single terminal location of OMA RESTful

location services with XML and JSON payloads for different number of users.

Table 5.7 shows the experimental results of all OMA query location services with

XML and JSON payloads according to our four performance metrics. It has been shown

that the average response time with XML payloads is always higher than the average

response time with JSON payloads and the server capacity with XML payloads is always

102

less than the server capacity with JSON payloads. On the other hand, average network

load and bandwidth consumption with JSON payloads are 50% faster than the average

network load and bandwidth consumption with XML payloads. Figure 5.8 shows the

performance comparison of all OMA query location services with XML and JSON

payloads. We did the measurement for each service, when 300 users were accessing the

service concurrently.

OMA Services

Avg.

Response

Time

Avg. Network

Load

Sever Capacity

Bandwidth

Consumption

XML JSON XML JSON XML JSON XML JSON

Get current location of a

terminal
110 102 420.42 225 241.3516 255.4844 99.09085 50.20409

Get current location of

two terminal
155 108 739.97 432 172.644 223.2563 126.9257 70.99874

Get distance of a

terminal from a given

location

82 75 196.97 83.95667 264.0583 275.5172 51.75518 17.67003

Get distance between

two terminals
88 82 197 83.98667 280.6361 295.5519 53.98956 18.25332

Table 5.7: Performance results of query location services with XML and JSON payloads for all

OMA Query location services

According to our expectation, the average response time with an XML payload was

higher than the average response time with a JSON payload. This is because XML

requires more processing time for XML formatting and parsing. The bandwidth

consumption and average network load for XML payload are almost two times higher

than those for a JSON payload. This is due mainly to the fact that XML is more verbose

103

than JSON (e.g. XML needs more fields/tags to represent the location information). As a

result, the server capacity with a JSON payload is higher than with an XML payload.

5.6.2.4 Performance Comparisons of a Specific OMA Service with XML and JSON

Payloads

Table 5.8 shows the experimental result of our system for a single terminal

location of OMA RESTful location services with XML and JSON payloads with different

number of users. It has been shown that if we increase the number of users, the average

response time will also increase. However, the average response time, average network

load and bandwidth consumption with JSON payloads is always less than the average

response time, average network load and bandwidth consumption with XML payloads.

Figure 5.8: Comparison of (a) average response time, (b) server capacity, (c)

bandwidth consumption, and (d) average network load of OMA query location

services with XML and JSON payload formats

104

The comparison of the performance analysis of single terminal location of OMA

RESTful location services with XML and JSON payloads with respect to different

number of users is shown in Figure 5.9. Figure 5.9 (a) shows the behavior of average

response time for different number of users with XML and JSON payloads. We can

conclude that if we increase the number of users, the average response time with JSON

payload is still less than the average response time with XML payloads. Moreover, the

server capacity with JSON payloads is higher than the server capacity with XML

payloads shown in Figure 5.9 (c). The bandwidth consumption and average network load

with JSON payloads are also two times less than the bandwidth consumption and average

network load with XML payloads shown in Figure 5.9 (b) and Figure 5.9 (d).

Average Response Time

Payloads

Number of Samples

100 200 300

XML 35 72 110

JSON 30 67 102

Average Network Load

XML 420 420 420.42

JSON 225 225 225

Server capacity

XML 255.7545 242.9245 241.3516

JSON 280.6436 263.1579 255.4844

Bandwidth consumption

XML 104.8993 96.73496 99.09085

JSON 46.06427 57.82278 50.20409

Table 5.8: Experimental result for a single terminal location with XML and

JSON payloads

105

Finally we can conclude that our system provides better performance with JSON

payloads.

Figure 5.9: Comparison of (a) average response time, (b) average network load, (c)

server capacity, and (d) bandwidth consumption get single terminal location service

with XML and JSON payload formats for different number of users

106

5.7 Challenges Faced and Lessons Learned

The first lesson we learned is that it is easy to develop a client application to access

OMA query resources. The application can be either a webpage or a standalone

application that sends HTTP requests (e.g. using Jersey client side APIs). It only took us

a couple of hours to develop a client application since we already have some experience

with HTTP, Java script [72] and Jersey Client APIs [73]. A second lesson is related to the

notification resource. These notifications are sent to the client using HTTP POST

requests, which requires the client device to run an HTTP server. This puts a stringent

requirement on the device and excludes resource-constrained devices (e.g. cell phones).

We therefore believe that it would be worthwhile to extend OMA location services to

support asynchronous notification, which will free devices from running an HTTP server.

Asynchronous communication can be implemented using Atmosphere Jersey [74].

A third lesson is that it is possible to map location information for each of the OMA

services to the sensor-based location information. However, using geographic coordinates

(i.e. geographic latitude, longitude and altitude) to describe terminal location does not

match the fine-grained location accuracy provided by WSNs (e.g. it is not possible to

know that a terminal is in room ‘a’ on the second floor of building ‘x’). Therefore, we

believe that it would be valuable to extend OMA location services to provide more

accurate location information. A fourth lesson is related to the implementation

technologies/tools for both the server and client sides. For the implementation and

deployment of the REST gateway, we needed an application server that supported

RESTful web services. Moreover, it should be very simple and easy to use. We reviewed

various existing development tools (e.g. Jersey [62], RESTlet [75], JBoss RESTEasy

107

[76], Apache CFX [77], etc.) and application servers, and discovered that Jersey with

Glassfish Server 3.x [78] meets all our requirements. Jersey is an add-on of Glassfish

server. Furthermore, since we are familiar with NetBeans [79]; we chose NetBeans as the

development environment. Jersey provides a rich set of documentation for NetBeans. On

the other hand, RESTlet is very convoluted and has less documentation, JBoss RESTEasy

has no standardized client APIs, and Apache CFX is more suitable when the co-existence

of SOAP and REST is required.

A fifth lesson concerns the processing of the requests’ and the responses’ payloads.

We found that JAXB provides a fast and easy way to marshal and un-marshal both XML

and JSON payloads. It easily maps XML/JSON documents into Java objects and vice-

versa, without any requirement for extensive knowledge of XML and JSON

programming. This simplifies and speeds up the development of RESTful web services.

The last lesson is related to the testing tools for RESTful web services. NetBeans’ 7.0

IDE provides a clear and easy-to-use testing environment. It automatically generates

testing clients for the implemented services. We have used it to test both query and

subscription resources. Apache JMeter is a free testing tool that can be used to test and

asses the performance of a RESTful system, using various metrics and parameters (e.g.

Measure the average response time of the system, and simulate a heavy load on a server).

5.8 Chapter Summary

In this chapter, we demonstrated the proof-of-concept of our architecture for OMA

RESTful location services in wireless sensor environment by implementing a prototype

application. Our proposed architecture provides an advantage to the location based service

108

developers from whom we do not require any prior knowledge of WSN domain to

implement new location based services and enables applications that require greater

accuracy. The performance analysis was also conducted to show the efficiency of our

proposed architecture. In the next and last chapter of this thesis, the conclusions with some

future works will be presented.

109

Chapter 6 Conclusion and Future Work

In this chapter, we summarize the contributions of the thesis and discuss potential

future work.

6.1 Summary of Contribution

Location services provide mobile device’s location or position with other

information to the end-users. They are gaining popularity in our everyday life. For

instance, tracking people/person inside large building is one of the examples of location

based services. However, accuracy and lack of standard REST interfaces are key issues in

many of these applications. We addressed these issues in this thesis. OMA RESTful

location services are standard RESTful web services for terminal location. They are

location technology independent and enable applications portability and interoperability.

In this thesis we provide a novel architecture for provisioning OMA RESTful location

services using wireless sensor networks. It enables application developers to offer a wide

range of new personalized and user centric applications with greater accuracy accessible

via any mobile devices (e.g. PDAs, Laptops and smart phones etc.).

We designed and implemented all the architectural components of the REST and

WSN gateways, and the OMA services. The REST gateway offers location services

towards the end-users via a standard REST interface. The WSN gateway is responsible

for collecting WSN raw data from individual sensors and providing this information to

the REST gateway. We designed an interface called UDP-based interface between the

REST gateway and the WSN gateway, and defined mappings. We chose UDP to

implement this interface as it satisfies most of our requirements.

110

We developed a proof-of-concept prototype for people/person tracking application.

We evaluated the performance of our prototype with respect to four different performance

metrics, end-to-end delay, server capacity, network load, and bandwidth consumptions.

With this evaluation, we concluded that the proposed architecture is efficient with respect

to the four metrics. However, further and more thorough validation needs to be conducted.

6.2 Future Works

As future work we can consider the following directions:

 The aspect which was not included in our work is related to the notification

resource. The notifications are sent to the client using HTTP POST requests,

which requires the client device to run an HTTP server. This puts a stringent

requirement on the device and excludes resource-constrained devices (e.g.

cell phones). We therefore believe that it would be worthwhile to extend

OMA location services to support asynchronous notification, which will

free devices from running an HTTP server. Asynchronous communication

can be implemented using Atmosphere Jersey [74].

 Another potential future work would be related to the fine-grained location

accuracy. It has been shown that it is possible to map location information

for each of the OMA services to the sensor-based location information.

However, using geographic coordinates (i.e. geographic latitude, longitude

and altitude) to describe terminal location does not match with the fine-

grained location accuracy provided by WSNs (e.g. it is not possible to know

that a terminal is in room ‘a’ on the second floor of building ‘x’). Therefore,

111

we believe that it would be valuable to extend OMA location services to

provide more accurate location information.

112

References

[1] Nuru Yakub Othman, “Web Services as application enabler for Sink-less Wireless

Sensor Networks”, Master’s Thesis, Electrical and Computer Engineering Dept.,

Concordia University, Montreal, February-2007.

[2] “MIT Cricket Sensor”, available online at: http://cricket.csail.mit.edu/ [February 17
th

2012].

[3] R. T. Fielding, “Architectural styles and the design of network-based software

architectures”, PhD thesis, 2000.

[4] J. Schiller, A. Voisard, “Location-based Services”, 1
st
 edition, The Morgan Kaufmann

Series in Data Management Systems, April 2004.

[5] Open Mobile Alliance: “RESTful bindings for Parlay X Web Services - Terminal

Location”, Candidate Version-1.0, November 23
rd

 2010, available online at:

http://www.openmobilealliance.org/Technical/release_program/parlayREST_v1_0.as

px [March 30
th
 2012].

[6] P. Enge, P. Misra, "Special Issue on GPS: The Global Positioning System",

Proceedings of the IEEE, Vol. 87, No. 1, pp.3-15, January 1999.

[7] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “A Survey on Sensor

Networks”, IEEE Communications Magazine, Vol. 40, No. 8, pp 102-114, August

2002.

[8] “Apache JMeter”, avilable online at: http://jmeter.apache.org/ [February 17
th

 2012].

http://cricket.csail.mit.edu/
http://www.openmobilealliance.org/Technical/release_program/parlayREST_v1_0.aspx
http://www.openmobilealliance.org/Technical/release_program/parlayREST_v1_0.aspx
http://jmeter.apache.org/

113

[9] C. Intanagonwiwat, R. Govindan, D. Estrin, “Directed diffusion: a scalable and robust

communication paradigm for sensor networks”, MobiCom '00 Proceedings of the 6th

annual international conference on Mobile computing and networking, pp. 56–67,

ACM New York, NY, USA, 2000.

[10] K. Sohraby, D. Minoli, T. Znati, “Wireless Sensors Networks: Technology,

Protocols and applications”, Wiley-InterScience, pp 1-31, 75-80, March 2007.

[11] “University of California-Berkeley Motes”, available online at:

http://www.xbow.com [January 11
th

 2012].

[12] “Tmoke-Sky sensors”, available online at:

http://www.snm.ethz.ch/Projects/TmoteSky, [January 11
th
 2012].

[13] “ScatterWeb sensor platform”, available online at: http://cst.mi.fu-

berlin.de/projects/ScatterWeb/ [January 11
th
 2012].

[14] “BTnodes sensor platform”, available online at: http://www.btnode.ethz.ch/

[January 11
th

 2012].

[15] “TinyOS - sensor network Operating System”, available online at:

http://www.tinyos.net/ [January 11
th

 2012].

[16] “TinyDB - sensor network Database System”, available online at:

http://telegraph.cs.berkeley.edu/tinydb/ [January 11
th
 2012].

[17] T. Luckenbach, P. Gober, S. Arbanowsk, “TinyREST - a protocol for inte-grating

sensor network into the internet”, in proc. REALWSN, June 2005.

[18] “nesC”, available online at: http://nescc.sourceforge.net/ [January 11
th
 2012].

http://www.xbow.com/
http://www.snm.ethz.ch/Projects/TmoteSky
http://cst.mi.fu-berlin.de/projects/ScatterWeb/
http://cst.mi.fu-berlin.de/projects/ScatterWeb/
http://www.btnode.ethz.ch/
http://www.tinyos.net/
http://telegraph.cs.berkeley.edu/tinydb/
http://nescc.sourceforge.net/

114

[19] M. A. Islam, F. Belqasmi, R. H. Glitho, F. Khendek, “Implementation of OMA

RESTful location services in wireless sensor environments”, Accepted in IEEE

Symposium on Computers and Communication (ISCC’12), Cappadocia, Turkey, July-

2012.

[20] A. Milenkovic, C. Otto, E. Jovanov, “Wireless sensor networks for personal

health monitoring: Issues and an implementation”, Computer Communications

(Special issue: Wireless Sensor Networks: Performance, Reliability, Security, and

Beyond, Vol. 29, pp. 2521–2533, 2006.

[21] T. Gao, T. Massey, L. Selavo, M. Welsh, M. Sarrafzadeh, “Participatory user

centered design techniques for a large scale ad-hoc health information system”, in

HealthNet ’07: Proceedings of the 1st ACM SIGMOBILE international workshop on

Systems and networking support for healthcare and assisted living environments,

(NY, USA), pp. 43–48, ACM, 2007.

[22] A. V. Halteren, R. Bults, K. Wac, D. Konstantas, I. Widya, N. Dokovsky, G.

Koprinkov, V. Jones, R. Herzog, “Mobile patient monitoring: The mobihealth

system”, The Journal on Information Technology in Healthcare, Vol. 2, No. 5, pp.

365–373, 2004.

[23] K. Lorincz, D. Malan, T. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder, G.

Mainland, M. Welsh, S. Moulton, “Sensor networks for emergency response:

Challenges and opportunities”, IEEE Pervasive Computing, vol. 3, No. 4, pp. 16–

23, Oct.-Dec. 2004.

115

[24] K. JeongGil, L. Chenyang, M. B. Srivastava, J. A. Stankovic, A. Terzis, M.

Welsh, "Wireless Sensor Networks for Healthcare," Proceedings of the IEEE, Vol.98,

No.11, pp.1947-1960, November 2010.

[25] A. Manjeshwar, D. P. Agrawal, “Teen: A routing protocol for enhanced efficiency

in wireless sensor networks”, Parallel and Distributed Processing Symposium,

International, Vol. 3, April 2001.

[26] D. Ganesan, R. Govindan, S. Shenker, D. Estrin, “Highly-resilient, energy

efficient multipath routing in wireless sensor networks”, CM SIGMOBILE Mobile

Computing and Communications Review, Vol. 5, No. 4, pp. 11–25, October 2001.

[27] K. Akkaya, M. Younis, “A survey on routing protocols for wireless sensor

networks”, Elsevier’s Ad-Hoc Network, Vol. 3, No. 3, pp. 325–349, May 2005.

[28] A. Perrig, R. Szewczyk, J. D. Tygar, V. WEN, D. E. Culler, “Spins: security

protocols for sensor networks”, Wireless Networks Journal, Vol. 8, No. 5, pp. 521–

534, September 2002.

[29] C. Karlof, D. Wagner, “Secure routing in wireless sensor networks: Attacks and

countermeasures,” Elsevier’s Ad-Hoc Networks Journal, Vol. 1, No. 2-3, pp. 293-

315, 2003.

[30] F. Belqasmi, R. Glitho, C. Fu, "RESTful web services for service provisioning in

next-generation networks: a survey", IEEE Communications Magazine, Vol.49,

No.12, pp.66-73, December 2011.

[31] L. Richardson, S. Ruby, et al. “Restful Web Services”, 1
st
 edition, O’Reilly Media,

May 2007.

116

[32] L. Wirola, I. Halivaara, J. Syrjärinne, “Requirements for the Next Generation

Standardized Location Technology Protocol for Location-Based Services”, Journal of

Global Positioning Systems, Vol. 7, No. 2 : 91-103, Nokia Inc., Finland, 2008.

[33] B. Burke, “RESTful Java with JAX-RS”, 1
st
 edition, O’Reilly Media, November

2009.

[34] Nadia Mohedano Troyano, “The design of a RESTful web-service”, Master’s

Thesis, School of Electrical Engineering, KTH, Stockholm, Sweden, June 2010.

[35] R. Fielding et al., “Hypertext Transfer Protocol – HTTP/1.1”, IETF RFC 2616,

June 1999.

[36] Open Mobile Alliance: “RESTful bindings for Parlay X Web Services –

Common”, Candidate Version 1.0, November 23
rd

 2010, available online at:

http://www.openmobilealliance.org/Technical/release_program/parlayREST_v1_0.as

px [March 30
th
 2012].

[37] C. Pautasso, O. Zimmermann, F. Leymann, “RESTful Web Services vs. “Big”

Web Services: Making the Right Architectural Decision”, In Proceedings of the 17th

International World Wide Web Conference, pages 805–814, Beijing, China, April

2008, ACM Press.

[38] “GSMA OneAPI”, available online at:

http://www.gsmworld.com/oneapi/index.html [February 26
th

 2012].

[39] Available online at:

https://gsma.securespsite.com/access/Access%20API%20Wiki/Location%20RESTful

%20API.aspx [February 26
th
 2012].

http://www.openmobilealliance.org/Technical/release_program/parlayREST_v1_0.aspx
http://www.openmobilealliance.org/Technical/release_program/parlayREST_v1_0.aspx
http://www.gsmworld.com/oneapi/index.html
https://gsma.securespsite.com/access/Access%20API%20Wiki/Location%20RESTful%20API.aspx
https://gsma.securespsite.com/access/Access%20API%20Wiki/Location%20RESTful%20API.aspx

117

[40] AEPONA: “OneAPI reference implementation specification”, available online at:

http://oneapi.aepona.com/ [February 26
th
 2012].

[41] Locatrix; available online at: http://locatrix.com/ [February 26
th

 2012].

[42] “Open Geospatial Consortium, Inc.”, available online at:

http://www.opengeospatial.org/ [February 26
th

 2012].

[43] OpenGIS Location Services (OpenLS): “Core services, part-2 gateway service”,

version 1.2, September 2008, available online at:

http://www.opengeospatial.org/standards/ols [March 30
th

 2012].

[44] “Java Socket Programming’, available online at:

http://docs.oracle.com/javase/1.4.2/docs/api/java/net/Socket.html [March 18
th
 2012].

[45] “Resource Oriented Architecture”, available online at:

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#resource_oriented_model

[March 18
th

 2012].

[46] M. J. Callaghan, P. Gormley, M. Mcbride, J. Harkin, T. M. Mcginnity, “Internal

Location Based Services using Wireless Sensor Networks and RFID Technology”,

International Journal of Computer Science and Network Security, Vol. 6 No.4, April

2006.

[47] S. Ahmad, R. Eskicioglu, P. Graham, "Design and Implementation of a Sensor

Network Based Location Determination Service for use in Home Networks", Mobile

Adhoc and Sensor Systems (MASS), IEEE International Conference on , Vol., No.,

pp.622-626, October 2006.

http://oneapi.aepona.com/
http://locatrix.com/
http://www.opengeospatial.org/
http://www.opengeospatial.org/standards/ols
http://docs.oracle.com/javase/1.4.2/docs/api/java/net/Socket.html
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/%23resource_oriented_model

118

[48] W. Jiang, Y. Chen, Y. Shi, Y. Sun, "The Design and Implementation of the

Cicada Wireless Sensor Network Indoor Localization System", Artificial Reality and

Telexistence—Workshops, ICAT '06, 16th International Conference on, Vol., no.,

pp.536-541, November 29 2006-December 1 2006.

[49] “Millennial Net Wireless Sensor”, available online at; http://www.millennial.net/

[January 27
th

 2012].

[50] “Mote-Track Sensor Network Platform”, available online at:

http://www.eecs.harvard.edu/~konrad/projects/motetrack/ [January 27
th

 2012].

[51] “OSGi: an Open source middleware”, available online at:

http://www.osgi.org/Main/HomePage [February 26
th
 2012].

[52] H. Pourreza, P. Graham, "On the fly service composition for local interaction

environments", Pervasive Computing and Communications Workshops, Fourth

Annual IEEE International Conference on, Vol., No., pp.6 pp.-399, 13-17 March

2006.

[53] Crossbow Technology Inc., “Mica2/Mic2Dot: Products and Specifications”,

available online at: http://www.xbow.com/ [February 26
th
 2012].

[54] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer, D.

Culler, “The Emergence of Networking Abstractions and Techniques in TinyOS”, In

Proc. of the First Symposium on Networked Systems Design and Implementation,

pages 1–14, March 2004.

http://www.millennial.net/
http://www.eecs.harvard.edu/~konrad/projects/motetrack/
http://www.osgi.org/Main/HomePage
http://www.xbow.com/

119

[55] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, D. Culler, “nesC: A Holistic

Approach to Networked Embedded Systems”, In Proceedings of Programming

Language Design and Implementation (PLDI), pages 1–11, June 2003.

[56] K. Lorincz, M. Welsh, “MoteTrack: A Robust, Decentralized Approach to RF-

Based Location Tracking”, In Proc. of the Int’l Workshop on Location and Context-

Awareness, pages 63–82, May 2005.

[57] “Open Mobile Alliance”, available online at: http://www.openmobilealliance.org/

[February 26
th

 2012].

[58] “GSM Association”, available online at: http://www.gsm.org/ [February 26
th

2012].

[59] M. A. Islam, F. Belqasmi, R. H. Glitho, F. Khendek, “The Design and

Implementation of OMA RESTful location services in wireless sensor environments”,

submitted to IEEE Communication Magazine, 2012.

[60] Available online at: http://www.movable-type.co.uk/scripts/latlong.html

[February 26
th

 2012].

[61] “Cricket v2 User Manual-Cricket Project”, MIT Computer Science and Artificial

Intelligence Lab, Cambridge, MA 02139; available online at:

http://cricket.csail.mit.edu/ [January 25
th
 2012].

[62] “Jersey API”, available online at: http://jersey.java.net/ [March 2
nd

 2012].

[63] “Altova UModel (Trial version) - 2012”, available online at:

http://www.altova.com/umodel.html [March 2
nd

 2012].

http://www.openmobilealliance.org/
http://www.gsm.org/
http://www.movable-type.co.uk/scripts/latlong.html
http://cricket.csail.mit.edu/
http://jersey.java.net/
http://www.altova.com/umodel.html

120

[64] “Enterprise Architecture software (Trial version)”, available online at:

http://www.sparxsystems.com/products/ea/index.html [March 2
nd

 2012].
[65] Arif Kadiwal, “Presence-based integration of Wireless Sensor Network and IP

Multimedia Subsystem: architecture implementation and case studies”, Master’s

Thesis, Electrical and Computer Engineering Dept., Concordia University, Montreal,

November-2008.

[66] “JAXB: Java architecture for XML binding”, available online at:

http://jaxb.java.net/ [March 2
nd

 2012].

[67] “Java Commuity Process-Community development of Java specification

technology”, available online at: http://jcp.org/en/home/index [March 2
nd

 2012].

[68] “JAXB Architecture”, available online at:

http://docs.oracle.com/javaee/5/tutorial/doc/bnazg.html [March 2
nd

 2012].

[69] “JSRs Java Specification Request: JSR-311”, available online at:

http://jcp.org/en/jsr/detail?id=311 [March 10
th

 2012].

[70] “Extensible Markup Language (XML)”, available online at: http://www.xml.com/

[March 10
th

 2012].

[71] “JavaScript Object Notation (JSON)”, available online at: http://www.json.org/

[March 10
th

 2012].

[72] “Java Script tuitorial”, available online at: http://www.w3schools.com/js/ [March

10
th
 2012].

[73] “Jsersey Client APIs”, available online at:

http://jersey.java.net/nonav/documentation/latest/client-api.html [March 10
th

 2012].

http://www.sparxsystems.com/products/ea/index.html
http://jaxb.java.net/
http://jcp.org/en/home/index
http://docs.oracle.com/javaee/5/tutorial/doc/bnazg.html
http://jcp.org/en/jsr/detail?id=311
http://www.xml.com/
http://www.json.org/
http://www.w3schools.com/js/
http://jersey.java.net/nonav/documentation/latest/client-api.html

121

[74] “Atmosphere Jersey”, available online at: http://atmosphere.java.net/ [March 10
th

2012].

[75] “RESTlet”, available online at: http://www.restlet.org/ [March 10
th
 2012].

[76] “JBoss REST EASY”, available online at: http://www.jboss.org/resteasy [March

10
th
 2012].

[77] “Apache CXF”, available online at: http://cxf.apache.org/ [March 10
th
 2012].

[78] “Glassfish Server 3.x”, available online at: http://glassfish.java.net/ [March 10
th

2012].

[79] “Netbean IDE v7.0”, available online at: http://netbeans.org/ [March 10
th
 2012].

[80] “Web Application Description Language”, available online at:

http://wadl.java.net/ [March 18
th
 2012].

[81] “JSRs Java Specification Request: JSR-31”, available online at:

http://jcp.org/en/jsr/detail?id=031 [March 10
th

 2012].

http://atmosphere.java.net/
http://www.restlet.org/
http://www.jboss.org/resteasy
http://cxf.apache.org/
http://glassfish.java.net/
http://netbeans.org/
http://wadl.java.net/
http://jcp.org/en/jsr/detail?id=031

